One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn 2O 4
Disseler, S. M.; Chen, Y.; Yeo, S.; ...
2015-12-08
In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn 2O 4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions aroundmore » Mn 3+ ions on the spinel lattice.« less
SU-F-J-158: Respiratory Motion Resolved, Self-Gated 4D-MRI Using Rotating Cartesian K-Space Sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, F; Zhou, Z; Yang, Y
Purpose: Dynamic MRI has been used to quantify respiratory motion of abdominal organs in radiation treatment planning. Many existing 4D-MRI methods based on 2D acquisitions suffer from limited slice resolution and additional stitching artifacts when evaluated in 3D{sup 1}. To address these issues, we developed a 4D-MRI (3D dynamic) technique with true 3D k-space encoding and respiratory motion self-gating. Methods: The 3D k-space was acquired using a Rotating Cartesian K-space (ROCK) pattern, where the Cartesian grid was reordered in a quasi-spiral fashion with each spiral arm rotated using golden angle{sup 2}. Each quasi-spiral arm started with the k-space center-line, whichmore » were used as self-gating{sup 3} signal for respiratory motion estimation. The acquired k-space data was then binned into 8 respiratory phases and the golden angle ensures a near-uniform k-space sampling in each phase. Finally, dynamic 3D images were reconstructed using the ESPIRiT technique{sup 4}. 4D-MRI was performed on 6 healthy volunteers, using the following parameters (bSSFP, Fat-Sat, TE/TR=2ms/4ms, matrix size=500×350×120, resolution=1×1×1.2mm, TA=5min, 8 respiratory phases). Supplemental 2D real-time images were acquired in 9 different planes. Dynamic locations of the diaphragm dome and left kidney were measured from both 4D and 2D images. The same protocol was also performed on a MRI-compatible motion phantom where the motion was programmed with different amplitude (10–30mm) and frequency (3–10/min). Results: High resolution 4D-MRI were obtained successfully in 5 minutes. Quantitative motion measurements from 4D-MRI agree with the ones from 2D CINE (<5% error). The 4D images are free of the stitching artifacts and their near-isotropic resolution facilitates 3D visualization and segmentation of abdominal organs such as the liver, kidney and pancreas. Conclusion: Our preliminary studies demonstrated a novel ROCK 4D-MRI technique with true 3D k-space encoding and respiratory motion self-gating. The technique leads to high-resolution and artifacts-free 4D images for improved abdominal organ motion studies. K.S acknowledges funding support from NIH R01CA188300.« less
Dynamically accumulated dose and 4D accumulated dose for moving tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Heng; Li Yupeng; Zhang Xiaodong
2012-12-15
Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove themore » principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference between the dynamic dose and 4D dose as a function of number of deliveries and/or total deliver time was also established.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, J; Jung, J; Yi, B
2015-06-15
Purpose: To test a method to reconstruct a four-dimensional (4D) dose distribution using the correlation of pre-calculated 4D electronic portal imaging device (EPID) images and measured cine-EPID images. Methods: 1. A phantom designed to simulate a tumor in lung (a polystyrene block with 3.0 cm diameter embedded in cork) was placed on a sinusoidally moving platform with 2 cm amplitude and 4 sec/cycle. Ten-phase 4D CT images were acquired for treatment planning and dose reconstruction. A 6MV photon beam was irradiated on the phantom with static (field size=5×8.5 cm{sup 2}) and dynamic fields (sliding windows, 10×10 cm{sup 2}, X1 MLCmore » closing in parallel with the tumor movement). 2. 4D and 3D doses were calculated forwardly on PTV (1 cm margin). 3. Dose images on EPID under the fields were calculated for 10 phases. 4. Cine EPID images were acquired during irradiation. 5. Their acquisition times were correlated to the phases of the phantom at which irradiation occurred by inter-comparing calculated “reference” EPID images with measured images (2D gamma comparison). For the dynamic beam, the tumor was hidden under MLCs during a portion of irradiation time; the correlation performed when the tumor was visible was extrapolated. 6. Dose for each phase was reconstructed on the 4D CT images and summed over all phases. The summation was compared with forwardly calculated 4D and 3D dose distributions. Monte Carlo methods were used for all calculations. Results: For the open and dynamic beams, the 4D reconstructed doses showed the pass rates of 92.7 % and 100 %, respectively, at the isocenter plane given 3% / 3 mm criteria. The better agreement of the dynamic beam was from its dose gradient which blurred the otherwise sharp difference between forward and reconstructed doses. This also contributed slightly better agreement in DVH of PTV. Conclusion: The feasibility of 4D reconstruction was demonstrated.« less
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
1977-02-01
8217P(V, .’f\\,, OCA A, 4 6), V"D(S4, 3LL) X , )lq , 5)\\8, 1( 5) , + ITP ,V0L.L,ACVI;’ D ’k-11AY VA[.IL11:3 + , ’AV./24,/, PLAC/25/,r~ f/26/ ,’A/27/, ITP /28...8217) DT(TFA2)=D( ITF) DT( rPN) =D( irF) DT(’TVF1)=D( ITF) iT(TrVF2) =D( I’rF) L1=L( 1) L2=L( 2) TF( Ll)D( ITP ) TF( L,2)=D( IT F) TC ( L1) =D( ITC) TC( L2)=D...34Gas Dynamics", McGraw Hill, 1958 7. Report GH20-0205-4 "System/360 Scientific Subroutine Package - Version III, Programmer’s Manual," IBM Corp., August
Vogt, Florian M; Theysohn, Jens M; Michna, Dariusz; Hunold, Peter; Neudorf, Ulrich; Kinner, Sonja; Barkhausen, Jörg; Quick, Harald H
2013-09-01
To evaluate time-resolved interleaved stochastic trajectories (TWIST) contrast-enhanced 4D magnetic resonance angiography (MRA) and compare it with 3D FLASH MRA in patients with congenital heart and vessel anomalies. Twenty-six patients with congenital heart and vessel anomalies underwent contrast-enhanced MRA with both 3D FLASH and 4D TWIST MRA. Images were subjectively evaluated regarding total image quality, artefacts, diagnostic value and added diagnostic value of 4D dynamic imaging. Quantitative comparison included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness measurements. Three-dimensional FLASH MRA was judged to be significantly better in terms of image quality (4.0 ± 0.6 vs 3.4 ± 0.6, P < 0.05) and artefacts (3.8 ± 0.4 vs 3.3 ± 0.5, P < 0.05); no difference in diagnostic value was found (4.2 ± 0.4 vs 4.0 ± 0.4); important additional functional information was found in 21/26 patients. SNR and CNR were higher in the pulmonary trunk in 4D TWIST, but slightly higher in the systemic arteries in 3D FLASH. No difference in vessel sharpness delineation was found. Although image quality was inferior compared with 3D FLASH MRA, 4D TWIST MRA yields robust images and added diagnostic value through dynamic acquisition was found. Thus, 4D TWIST MRA is an attractive alternative to 3D FLASH MRA. • New magnetic resonance angiography (MRA) techniques are increasingly introduced for congenital cardiovascular problems. • Time-resolved angiography with interleaved stochastic trajectories (TWIST) is an example. • Four-dimensional TWIST MRA provided inferior image quality compared to 3D FLASH MRA but without significant difference in vessel sharpness. • Four-dimensional TWIST MRA gave added diagnostic value.
Nonlinear 3D MHD verification study: SpeCyl and PIXIE3D codes for RFP and Tokamak plasmas
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Cappello, S.; Chacon, L.
2010-11-01
A strong emphasis is presently placed in the fusion community on reaching predictive capability of computational models. An essential requirement of such endeavor is the process of assessing the mathematical correctness of computational tools, termed verification [1]. We present here a successful nonlinear cross-benchmark verification study between the 3D nonlinear MHD codes SpeCyl [2] and PIXIE3D [3]. Excellent quantitative agreement is obtained in both 2D and 3D nonlinear visco-resistive dynamics for reversed-field pinch (RFP) and tokamak configurations [4]. RFP dynamics, in particular, lends itself as an ideal non trivial test-bed for 3D nonlinear verification. Perspectives for future application of the fully-implicit parallel code PIXIE3D to RFP physics, in particular to address open issues on RFP helical self-organization, will be provided. [4pt] [1] M. Greenwald, Phys. Plasmas 17, 058101 (2010) [0pt] [2] S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996) [0pt] [3] L. Chac'on, Phys. Plasmas 15, 056103 (2008) [0pt] [4] D. Bonfiglio, L. Chac'on and S. Cappello, Phys. Plasmas 17 (2010)
ARN Integrated Retail Module (IRM) & 3D Whole Body Scanner System at Fort Carson, Colorado
2006-12-01
the Central Issue Facility (CIF), Ft. Carson, CO; and, 4) Develop and validate dynamic local tariffs. Additional information on Apparel...Scanner; 3) Integrate 3D Whole Body scanning technology with the ARN Integrated Retail Module (IRM) for clothing issue at the Central Issue Facility ...CIF), Ft. Carson, CO; and, 4) Develop and validate dynamic local tariffs. The main goals of the ARN 3D scanning research initiative at the Ft
Dynamic Paper Constructions for Easier Visualization of Molecular Symmetry
ERIC Educational Resources Information Center
Sein, Lawrence T., Jr.
2010-01-01
A system for construction of simple poster-board models is described. The models dynamically demonstrate the symmetry operations of proper rotation, improper rotation, reflection, and inversion for the chemically important point groups D[subscript 3h], D[subscript 4h], D[subscript 5h], D[subscript 6h], T[subscript d], and O[subscript h]. The…
He, W.; Anderson, R.N.
1998-08-25
A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.
He, Wei; Anderson, Roger N.
1998-01-01
A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolu; Yang, Hao
2017-12-01
The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.
Evaluation of lung tumor motion management in radiation therapy with dynamic MRI
NASA Astrophysics Data System (ADS)
Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon
2017-03-01
Surrogate-based tumor motion estimation and tracing methods are commonly used in radiotherapy despite the lack of continuous real time 3D tumor and surrogate data. In this study, we propose a method to simultaneously track the tumor and external surrogates with dynamic MRI, which allows us to evaluate their reproducible correlation. Four MRIcompatible fiducials are placed on the patient's chest and upper abdomen, and multi-slice 2D cine MRIs are acquired to capture the lung and whole tumor, followed by two-slice 2D cine MRIs to simultaneously track the tumor and fiducials, all in sagittal orientation. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and group-wise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model to the fiducial segmentations on the 2D cine MRIs. We tested our method on five lung cancer patients. Internal target volume from 4D-CT showed average sensitivity of 86.5% compared to the actual tumor motion for 5 min. 3D tumor motion correlated with the external surrogate signal, but showed a noticeable phase mismatch. The 3D tumor trajectory showed significant cycle-to-cycle variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from fiducials at different locations.
ART 3.5D: an algorithm to label arteries and veins from three-dimensional angiography.
Barra, Beatrice; De Momi, Elena; Ferrigno, Giancarlo; Pero, Guglielmo; Cardinale, Francesco; Baselli, Giuseppe
2016-10-01
Preoperative three-dimensional (3-D) visualization of brain vasculature by digital subtraction angiography from computerized tomography (CT) in neurosurgery is gaining more and more importance, since vessels are the primary landmarks both for organs at risk and for navigation. Surgical embolization of cerebral aneurysms and arteriovenous malformations, epilepsy surgery, and stereoelectroencephalography are a few examples. Contrast-enhanced cone-beam computed tomography (CE-CBCT) represents a powerful facility, since it is capable of acquiring images in the operation room, shortly before surgery. However, standard 3-D reconstructions do not provide a direct distinction between arteries and veins, which is of utmost importance and is left to the surgeon's inference so far. Pioneering attempts by true four-dimensional (4-D) CT perfusion scans were already described, though at the expense of longer acquisition protocols, higher dosages, and sensible resolution losses. Hence, space is open to approaches attempting to recover the contrast dynamics from standard CE-CBCT, on the basis of anomalies overlooked in the standard 3-D approach. This paper aims at presenting algebraic reconstruction technique (ART) 3.5D, a method that overcomes the clinical limitations of 4-D CT, from standard 3-D CE-CBCT scans. The strategy works on the 3-D angiography, previously segmented in the standard way, and reprocesses the dynamics hidden in the raw data to recover an approximate dynamics in each segmented voxel. Next, a classification algorithm labels the angiographic voxels and artery or vein. Numerical simulations were performed on a digital phantom of a simplified 3-D vasculature with contrast transit. CE-CBCT projections were simulated and used for ART 3.5D testing. We achieved up to 90% classification accuracy in simulations, proving the feasibility of the presented approach for dynamic information recovery for arteries and veins segmentation.
Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU
NASA Astrophysics Data System (ADS)
Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.
2007-03-01
In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.
Management and display of four-dimensional environmental data sets using McIDAS
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Santek, David; Suomi, Verner E.
1990-01-01
Over the past four years, great strides have been made in the areas of data management and display of 4-D meteorological data sets. A survey was conducted of available and planned 4-D meteorological data sources. The data types were evaluated for their impact on the data management and display system. The requirements were analyzed for data base management generated by the 4-D data display system. The suitability of the existing data base management procedures and file structure were evaluated in light of the new requirements. Where needed, new data base management tools and file procedures were designed and implemented. The quality of the basic 4-D data sets was assured. The interpolation and extrapolation techniques of the 4-D data were investigated. The 4-D data from various sources were combined to make a uniform and consistent data set for display purposes. Data display software was designed to create abstract line graphic 3-D displays. Realistic shaded 3-D displays were created. Animation routines for these displays were developed in order to produce a dynamic 4-D presentation. A prototype dynamic color stereo workstation was implemented. A computer functional design specification was produced based on interactive studies and user feedback.
Kondo, Atsushi; Suzuki, Takayuki; Kotani, Ryosuke; Maeda, Kazuyuki
2017-05-23
A new 3D metal-organic framework (MOF), in which 2D layers are interlaced to form a 3D architecture, was synthesized by a reaction of Cu(BF 4 ) 2 and 1,3-bis(4-pyridyl)propane (bpp) in a water/1-hexanol solvent system, and the crystal structure of the MOF was successfully solved. The MOF is reversibly transformed to a 1D chain MOF, which shows gate adsorption properties. The dynamic transformation gives crystal size reduction resulting in a slight change in CO 2 adsorption isotherms. The 1D MOF shows selective adsorption/separation properties on benzene and its analogues with similar sizes and shapes (benzene, toluene, and cyclohexane).
Motion-aware stroke volume quantification in 4D PC-MRI data of the human aorta.
Köhler, Benjamin; Preim, Uta; Grothoff, Matthias; Gutberlet, Matthias; Fischbach, Katharina; Preim, Bernhard
2016-02-01
4D PC-MRI enables the noninvasive measurement of time-resolved, three-dimensional blood flow data that allow quantification of the hemodynamics. Stroke volumes are essential to assess the cardiac function and evolution of different cardiovascular diseases. The calculation depends on the wall position and vessel orientation, which both change during the cardiac cycle due to the heart muscle contraction and the pumped blood. However, current systems for the quantitative 4D PC-MRI data analysis neglect the dynamic character and instead employ a static 3D vessel approximation. We quantify differences between stroke volumes in the aorta obtained with and without consideration of its dynamics. We describe a method that uses the approximating 3D segmentation to automatically initialize segmentation algorithms that require regions inside and outside the vessel for each temporal position. This enables the use of graph cuts to obtain 4D segmentations, extract vessel surfaces including centerlines for each temporal position and derive motion information. The stroke volume quantification is compared using measuring planes in static (3D) vessels, planes with fixed angulation inside dynamic vessels (this corresponds to the common 2D PC-MRI) and moving planes inside dynamic vessels. Seven datasets with different pathologies such as aneurysms and coarctations were evaluated in close collaboration with radiologists. Compared to the experts' manual stroke volume estimations, motion-aware quantification performs, on average, 1.57% better than calculations without motion consideration. The mean difference between stroke volumes obtained with the different methods is 7.82%. Automatically obtained 4D segmentations overlap by 85.75% with manually generated ones. Incorporating motion information in the stroke volume quantification yields slight but not statistically significant improvements. The presented method is feasible for the clinical routine, since computation times are low and essential parts run fully automatically. The 4D segmentations can be used for other algorithms as well. The simultaneous visualization and quantification may support the understanding and interpretation of cardiac blood flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, C. J., E-mail: cforrest@lle.rochester.edu; Glebov, V. Yu.; Goncharov, V. N.
Upgraded microchannel-plate–based photomultiplier tubes (MCP-PMT’s) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C{sub 15}H{sub 11}NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT’s, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 10{sup 6}. With these enhancements, the 13.4-m nTOF can measure the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yields and average ion temperatures in a singlemore » line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 10{sup 9} to 1 × 10{sup 14} and the ion temperature with an accuracy approaching 5% for both the D(t,n){sup 4}He and D(d,n){sup 3}He reactions.« less
von Spiczak, Jochen; Mannil, Manoj; Kozerke, Sebastian; Alkadhi, Hatem; Manka, Robert
2018-03-30
Since patients with myocardial hypoperfusion due to coronary artery disease (CAD) with preserved viability are known to benefit from revascularization, accurate differentiation of hypoperfusion from scar is desirable. To develop a framework for 3D fusion of whole-heart dynamic cardiac MR perfusion and late gadolinium enhancement (LGE) to delineate stress-induced myocardial hypoperfusion and scar. Prospective feasibility study. Sixteen patients (61 ± 14 years, two females) with known/suspected CAD. 1.5T (nine patients); 3.0T (seven patients); whole-heart dynamic 3D cardiac MR perfusion (3D-PERF, under adenosine stress); 3D LGE inversion recovery sequences (3D-SCAR). A software framework was developed for 3D fusion of 3D-PERF and 3D-SCAR. Computation steps included: 1) segmentation of the left ventricle in 3D-PERF and 3D-SCAR; 2) semiautomatic thresholding of perfusion/scar data; 3) automatic calculation of ischemic/scar burden (ie, pathologic relative to total myocardium); 4) projection of perfusion/scar values onto artificial template of the left ventricle; 5) semiautomatic coregistration to an exemplary heart contour easing 3D orientation; and 6) 3D rendering of the combined datasets using automatically defined color tables. All tasks were performed by two independent, blinded readers (J.S. and R.M.). Intraclass correlation coefficients (ICC) for determining interreader agreement. Image acquisition, postprocessing, and 3D fusion were feasible in all cases. In all, 10/16 patients showed stress-induced hypoperfusion in 3D-PERF; 8/16 patients showed LGE in 3D-SCAR. For 3D-PERF, semiautomatic thresholding was possible in all patients. For 3D-SCAR, automatic thresholding was feasible where applicable. Average ischemic burden was 11 ± 7% (J.S.) and 12 ± 7% (R.M.). Average scar burden was 8 ± 5% (J.S.) and 7 ± 4% (R.M.). Interreader agreement was excellent (ICC for 3D-PERF = 0.993, for 3D-SCAR = 0.99). 3D fusion of 3D-PERF and 3D-SCAR facilitates intuitive delineation of stress-induced myocardial hypoperfusion and scar. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Melo, L F; Monteiro, P L J; Nascimento, A B; Drum, J N; Spies, C; Prata, A B; Wiltbank, M C; Sartori, R
2018-04-01
This experiment aimed to compare circulating progesterone (P4), follicular dynamics, and fertility during reuse of intravaginal P4 implants that were sanitized by autoclave or chemical disinfection in lactating Holstein cows submitted to fixed-time artificial insemination (FTAI). For this, 123 primiparous and 226 multiparous cows from 2 farms, averaging (mean ± standard deviation) 163.9 ± 141.9 d in milk, 35.7 ± 11.3 kg of milk/d, and a body condition score of 2.9 ± 0.5, were enrolled in the study. Cows were randomly assigned to 1 of 2 treatments using a completely randomized design and each cow received a reused implant (1.9 g of P4; previously used for 8 d) that was either autoclaved (AUT; n = 177) or chemically disinfected (CHEM; n = 172) on d -10. Also on d -10, cows received 2 mg of estradiol benzoate and 100 μg of GnRH. On d -3, cows received 25 mg of dinoprost (PGF 2α ). A second PGF 2α was given on d -2, along with 1 mg of estradiol cypionate and P4 implant removal. Cows received FTAI on d 0. A subset of cows (n = 143) was evaluated by ultrasound on d -10, -8, -6, -3, -2, 0, and 5 to identify ovarian structures, and blood was sampled on d -10, -3, and -2 for P4 concentrations by RIA. Pregnancy diagnoses were performed at d 32 and 60. Statistical analyses was performed using PROC-MIXED for continuous variables and PROC-GLIMMIX of SAS 9.4 (SAS Institute Inc., Cary, NC) for binomial variables. The treatments did not differ in circulating P4 on d -10 or -3, but P4 was greater on d -2 in CHEM cows. Ovulation to the treatments on d -10 was associated with lower circulating P4 on d -10 (2.0 vs. 3.1 ng/mL) and resulted in greater P4 on d -3 (4.0 vs. 2.4 ng/mL) and more cows with a corpus luteum on d -3 (100 vs. 40%) than nonovulating cows. Cows that ovulated to d -10 treatments were more likely to have a synchronized new follicular wave (97.9 vs. 63.2%) and had an earlier wave emergence (1.9 vs. 2.6 d), resulting in less cows ovulating a persistent follicle (0.0 vs. 35.7%). Type of P4 implant, corpus luteum presence on d -10, and ovulation to d -10 treatments did not affect fertility (pregnancy per AI; P/AI). However, P/AI on farm A was greater than on farm B at 32 (40.8 vs. 27.8%) and 60 d (35.8 vs. 24.3%), independent of treatment. In conclusion, P4 implants with different P4 release patterns did not produce detectable differences in follicular dynamics, synchronization rate, or P/AI. Nevertheless, presence of corpus luteum or ovulation at the beginning of the FTAI protocol affected reproductive variables, such as timing and synchronization of follicular wave emergence, and size of the ovulatory follicle. Beyond that, more overall synchronized cows became pregnant to the FTAI protocol. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.
2016-03-01
Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.
Kotasidis, F A; Mehranian, A; Zaidi, H
2016-05-07
Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.
NASA Astrophysics Data System (ADS)
Kotasidis, F. A.; Mehranian, A.; Zaidi, H.
2016-05-01
Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.
Seres, Enikoe; Seres, Jozsef; Namba, Shinichi; Afa, John; Serrat, Carles
2017-12-11
Applying extreme ultraviolet (XUV) transient absorption spectroscopy, the dynamics of the two laser dressed transitions 3d 5/2 -to-5p 3/2 and 3p 3/2 -to-5s 1/2 at photon energies of 91.3 eV and 210.4 eV were examined with attosecond temporal resolution. The dressing process was modeled with density matrix equations which are found to describe very accurately both the experimentally observed transmission dynamics and the linear and nonlinear dressing oscillations at 0.75 PHz and 1.5 PHz frequencies. Furthermore, using Fourier transform XUV spectroscopy, quantum beats from the 3d 5/2 -3d 3/2 and 3p 3/2 -3p 1/2 sublevels at 0.3 PHz and 2.0 PHz were experimentally identified and resolved.
Mandatori, Domitilla; Penolazzi, Letizia; Pipino, Caterina; Di Tomo, Pamela; Di Silvestre, Sara; Di Pietro, Natalia; Trevisani, Sara; Angelozzi, Marco; Ucci, Mariangela; Piva, Roberta; Pandolfi, Assunta
2018-02-01
Menaquinones, also known as Vitamin K2 family, regulate calcium homeostasis in a 'bone-vascular cross-talk' and recently received particular attention for their positive effect on bone formation. Given that the correlation between menaquinones and bone metabolism to date is still unclear, the objective of our study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of the menaquinones family, in the modulation of osteogenesis. For this reason, we used a model of human amniotic fluid mesenchymal stem cells (hAFMSCs) cultured both in two-dimensional (2D) and three-dimensional (3D; RCCS™bioreactor) in vitro culture systems. Furthermore, to mimic the 'bone remodelling unit' in vitro, hAFMSCs were co-cultured in the 3D system with human monocyte cells (hMCs) as osteoclast precursors. The results showed that in a conventional 2D culture system, hAFMSCs were responsive to the MK-4, which significantly improved the osteogenic process through γ-glutamyl carboxylase-dependent pathway. The same results were obtained in the 3D dynamic system where MK-4 treatment supported the osteoblast-like formation promoting the extracellular bone matrix deposition and the expression of the osteogenic-related proteins (alkaline phosphatase, osteopontin, collagen type-1 and osteocalcin). Notably, when the hAFMSCs were co-cultured in a 3D dynamic system with the hMCs, the presence of MK-4 supported the cellular aggregate formation as well as the osteogenic function of hAFMSCs, but negatively affected the osteoclastogenic process. Taken together, our results demonstrate that MK-4 supported the aggregate formation of hAFMSCs and increased the osteogenic functions. Specifically, our data could help to optimize bone regenerative medicine combining cell-based approaches with MK-4 treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Zhang, Wei; Zheng, Ying; Orsini, Lorenzo; Morelli, Andrea; Galli, Giancarlo; Chiellini, Emo; Carpenter, Everett E.; Wynne, Kenneth J.
2010-01-01
A copolyacrylate with semifluorinated and polydimethylsiloxane side chains (D5-3) was used as a surface modifier for a condensation cured PDMS coating. The decyl fluorous group is represented by “D”; “5” is a 5 kDa silicone, and “3” the mole ratio of fluorous to silicone side chain. Wetting behavior was assessed by dynamic contact angle (DCA) analysis using isopropanol, which differentiates silicone and fluorous wetting behavior. Interestingly, a maximum in surface oleophobicity was found at low D5-3 concentration (0.4 wt%). Higher concentrations result in decreased oleophobicity reflected in decreased contact angles. To understand this unexpected observation, dynamic light scattering (DLS) studies were initiated on a model system consisting of hydroxyl-terminated PDMS (18 kDa) containing varying amounts of D5-3. DLS revealed D5-3 aggregation as a function of temperature and concentration. A model is proposed by which D5-3 surface concentration is depleted via phase separation favoring D5-3 aggregation at concentrations >0.4 wt%, that is, the CMC. This model suggests increasing aggregate / micelle concentrations at increased D5-3 concentration. Bulk morphologies studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) support this model by showing increased aggregate concentrations with increased D5-3 >0.4 wt%. PMID:20000339
Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning
NASA Astrophysics Data System (ADS)
Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon
2018-01-01
Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient’s chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.
Li, Yi-Chen; Zhang, Yu Shrike; Akpek, Ali; Shin, Su Ryon; Khademhosseini, Ali
2016-12-02
Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication. We first discuss the state of the art and limitations associated with current 3D printing modalities and their transition into the inclusion of the additional time dimension. We then suggest the potential use of different stimuli-responsive biomaterials as the bioink that may achieve 4D bioprinting where transformation of fabricated biological constructs can be realized. We finally conclude with future perspectives.
Exact results in 3d N = 2 Spin(7) gauge theories with vector and spinor matters
NASA Astrophysics Data System (ADS)
Nii, Keita
2018-05-01
We study three-dimensional N = 2 Spin(7) gauge theories with N S spinorial matters and with N f vectorial matters. The quantum Coulomb branch on the moduli space of vacua is one- or two-dimensional depending on the matter contents. For particular values of ( N f , N S ), we find s-confinement phases and derive exact superpotentials. The 3d dynamics of Spin(7) is connected to the 4d dynamics via KK-monopoles. Along the Higgs branch of the Spin(7) theories, we obtain 3d N = 2 G 2 or SU(4) theories and some of them lead to new s-confinement phases. As a check of our analysis we compute superconformal indices for these theories.
A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.
Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K
2014-05-01
Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.
Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion
Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza
2013-01-01
Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free-breathing 3D acquisitions. PMID:24123058
Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor.
Cimetta, E; Flaibani, M; Mella, M; Serena, E; Boldrin, L; De Coppi, P; Elvassore, N
2007-05-01
The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.
Infusion of a Gaming Paradigm into Computer-Aided Engineering Design Tools
2012-05-03
Virtual Test Bed (VTB), and the gaming tool, Unity3D . This hybrid gaming environment coupled a three-dimensional (3D) multibody vehicle system model...from Google Earth to the 3D visual front-end fabricated around Unity3D . The hybrid environment was sufficiently developed to support analyses of the...ndFr Cti3r4 G’OjrdFr ctior-2 The VTB simulation of the vehicle dynamics ran concurrently with and interacted with the gaming engine, Unity3D which
1988-02-01
d 3 ’iN3131iJ303 HiJnSSjHd QBOV^AV fcmwt^flomsx^^ <lNWWlWW\\’WWlWVNWiy»UVVTiniinilf^»1lll>Wf%|rrw<rv*rviiV"jw- j »-,w\\iW¥ *« ■ \\ iLn mit...0) T3 U 0 -0 0) CQ 0) £ u 9 <U « Ä f-t * J 4J 0 0 (0 .H U-t H PL, 0 • cn 0J l-l 3 00 d D ’iN3101dJ3O3 HanSSBHd QBOVHJAV...34dTdT • (2.3) where dS D J „ dx 57" 2 or ds" r ’ (2.4) from Eq. (2.1). By substitution of Eq. (2.2) and Eq. (2.4) into Eq. (2.3)
Dynamically generated N* and {Lambda}* resonances in the hidden charm sector around 4.3 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Jiajun; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, E-46071 Valencia; Molina, R.
2011-07-15
The interactions of D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. A series of meson-baryon dynamically generated relatively narrow N* and {Lambda}* resonances are predicted around 4.3 GeV in the hidden charm sector. We make estimates of production cross sections of these predicted resonances in p-barp collisions for the experiment of antiproton annihilation at Darmstadt (PANDA) at the forthcoming GSI Facility for Antiproton and Ion Research (FAIR) facility.
4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters
Werner, René
2017-01-01
Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail–which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were between 98% and 100%. Parameters of major influence on 4D VMAT dose simulation accuracy were the degree of temporal discretization of the dose delivery process (the higher, the better) and correct alignment of the assumed breathing phases at the beginning of the dose measurements and simulations. Given the high γ-passing rates between simulated motion-affected doses and dynamic measurements, we consider the simulations to provide a reliable basis for assessment of VMAT motion effects that–in the sense of 4D QA of VMAT treatment plans–allows to verify target coverage in hypofractioned VMAT-based radiotherapy of moving targets. Remaining differences between measurements and simulations motivate, however, further detailed studies. PMID:28231337
4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters.
Sothmann, Thilo; Gauer, Tobias; Werner, René
2017-01-01
Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail-which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were between 98% and 100%. Parameters of major influence on 4D VMAT dose simulation accuracy were the degree of temporal discretization of the dose delivery process (the higher, the better) and correct alignment of the assumed breathing phases at the beginning of the dose measurements and simulations. Given the high γ-passing rates between simulated motion-affected doses and dynamic measurements, we consider the simulations to provide a reliable basis for assessment of VMAT motion effects that-in the sense of 4D QA of VMAT treatment plans-allows to verify target coverage in hypofractioned VMAT-based radiotherapy of moving targets. Remaining differences between measurements and simulations motivate, however, further detailed studies.
Spectral dimension of the universe in quantum gravity at a lifshitz point.
Horava, Petr
2009-04-24
We extend the definition of "spectral dimension" d_{s} (usually defined for fractal and lattice geometries) to theories in spacetimes with anisotropic scaling. We show that in gravity with dynamical critical exponent z in D+1 dimensions, the spectral dimension of spacetime is d_{s}=1+D/z. In the case of gravity in 3+1 dimensions with z=3 in the UV which flows to z=1 in the IR, the spectral dimension changes from d_{s}=4 at large scales to d_{s}=2 at short distances. Remarkably, this is the behavior found numerically by Ambjørn et al. in their causal dynamical triangulations approach to quantum gravity.
Visualization of Concrete Slump Flow Using the Kinect Sensor
Park, Minbeom
2018-01-01
Workability is regarded as one of the important parameters of high-performance concrete and monitoring it is essential in concrete quality management at construction sites. The conventional workability test methods are basically based on length and time measured by a ruler and a stopwatch and, as such, inevitably involves human error. In this paper, we propose a 4D slump test method based on digital measurement and data processing as a novel concrete workability test. After acquiring the dynamically changing 3D surface of fresh concrete using a 3D depth sensor during the slump flow test, the stream images are processed with the proposed 4D slump processing algorithm and the results are compressed into a single 4D slump image. This image basically represents the dynamically spreading cross-section of fresh concrete along the time axis. From the 4D slump image, it is possible to determine the slump flow diameter, slump flow time, and slump height at any location simultaneously. The proposed 4D slump test will be able to activate research related to concrete flow simulation and concrete rheology by providing spatiotemporal measurement data of concrete flow. PMID:29510510
Visualization of Concrete Slump Flow Using the Kinect Sensor.
Kim, Jung-Hoon; Park, Minbeom
2018-03-03
Workability is regarded as one of the important parameters of high-performance concrete and monitoring it is essential in concrete quality management at construction sites. The conventional workability test methods are basically based on length and time measured by a ruler and a stopwatch and, as such, inevitably involves human error. In this paper, we propose a 4D slump test method based on digital measurement and data processing as a novel concrete workability test. After acquiring the dynamically changing 3D surface of fresh concrete using a 3D depth sensor during the slump flow test, the stream images are processed with the proposed 4D slump processing algorithm and the results are compressed into a single 4D slump image. This image basically represents the dynamically spreading cross-section of fresh concrete along the time axis. From the 4D slump image, it is possible to determine the slump flow diameter, slump flow time, and slump height at any location simultaneously. The proposed 4D slump test will be able to activate research related to concrete flow simulation and concrete rheology by providing spatiotemporal measurement data of concrete flow.
CFL3D Version 6.4-General Usage and Aeroelastic Analysis
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Rumsey, Christopher L.; Biedron, Robert T.
2006-01-01
This document contains the course notes on the computational fluid dynamics code CFL3D version 6.4. It is intended to provide from basic to advanced users the information necessary to successfully use the code for a broad range of cases. Much of the course covers capability that has been a part of previous versions of the code, with material compiled from a CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release. This part of the material is presented to users of the code not familiar with computational fluid dynamics. There is new capability in CFL3D version 6.4 presented here that has not previously been published. There are also outdated features no longer used or recommended in recent releases of the code. The information offered here supersedes earlier manuals and updates outdated usage. Where current usage supersedes older versions, notation of that is made. These course notes also provides hints for usage, code installation and examples not found elsewhere.
Dyamical Systems Theory and Lagrangian Data Assimilation in 4D Geophysical Fluid Dynamics
The long-term goal of our project (known as OCEAN 3D +1) was to better understand and predict ocean circulation features that are fundamentally three...dimensional in space and that vary in time. In particular, we sought to quantify the dynamical processes that govern the formation , evolution, and...predictability of 3D +1 transport pathways in the ocean. Our approach was to develop algorithms to thoroughly analyze a hierarchy of model and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stemkens, B; Tijssen, RHN; Denis de Senneville, B Denis
2015-06-15
Purpose: To estimate full field-of-view abdominal respiratory motion from fast 2D image navigators using a 4D-MRI based motion model. This will allow for radiation dose accumulation mapping during MR-Linac treatment. Methods: Experiments were conducted on a Philips Ingenia 1.5T MRI. First, a retrospectively ordered 4D-MRI was constructed using 3D transient-bSSFP with radial in-plane sampling. Motion fields were calculated through 3D non-rigid registration. From these motion fields a PCA-based abdominal motion model was constructed and used to warp a 3D reference volume to fast 2D cine-MR image navigators that can be used for real-time tracking. To test this procedure, a time-seriesmore » consisting of two interleaved orthogonal slices (sagittal and coronal), positioned on the pancreas or kidneys, were acquired for 1m38s (dynamic scan-time=0.196ms), during normal, shallow, or deep breathing. The coronal slices were used to update the optimal weights for the first two PCA components, in order to warp the 3D reference image and construct a dynamic 4D-MRI time-series. The interleaved sagittal slices served as an independent measure to test the model’s accuracy and fit. Spatial maps of the root-mean-squared error (RMSE) and histograms of the motion differences within the pancreas and kidneys were used to evaluate the method. Results: Cranio-caudal motion was accurately calculated within the pancreas using the model for normal and shallow breathing with an RMSE of 1.6mm and 1.5mm and a histogram median and standard deviation below 0.2 and 1.7mm, respectively. For deep-breathing an underestimation of the inhale amplitude was observed (RMSE=4.1mm). Respiratory-induced antero-posterior and lateral motion were correctly mapped (RMSE=0.6/0.5mm). Kidney motion demonstrated good motion estimation with RMSE-values of 0.95 and 2.4mm for the right and left kidney, respectively. Conclusion: We have demonstrated a method that can calculate dynamic 3D abdominal motion in a large volume, while acquiring real-time cine-MR images for MR-guided radiotherapy.« less
3D and 4D magnetic susceptibility tomography based on complex MR images
Chen, Zikuan; Calhoun, Vince D
2014-11-11
Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.
Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.
Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus
We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.
Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei
2013-01-01
Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.
Mounier, Roman; Lobo, David; Cook, Fabrice; Fratani, Alexandre; Attias, Arie; Martin, Mathieu; Chedevergne, Karin; Bardon, Jean; Tazi, Sanaa; Nebbad, Biba; Bloc, Sébastien; Plaud, Benoît; Dhonneur, Gilles
2015-12-01
Our aim was to describe the pattern of ventriculostomy-related infection (VRI) development using a dynamic approach. Retrospective longitudinal study. We analyzed the files of 449 neurosurgical patients who underwent placement of external ventricular drain (EVD). During the study period, CSF sampling was performed on a daily base setting. VRI was defined as a positive CSF culture resulting in antibiotic treatment. For VRI patients, we arbitrary defined day 0 (D0) as the day antibiotic treatment was started. In these patients, we compared dynamic changes in clinical and biological parameters at four pre-determined time points: (D-4, D-3, D-2, D-1) with those of D0. For all CSF-positive cultures, we compared CSF biochemical markers' evolution pattern between VRI patients and the others, considered as a control cohort. Thirty-two suffered from VRI. Peripheral white blood cell count did not differ between D-4-D0. Median body temperature, CSF cell count, median Glasgow Coma Scale, CSF protein, and glucose concentrations were significantly different between D-4, D-3, D-2, and D0. At D0, 100 % of CSF samples yielded organisms in culture. The physician caring for the patient decided to treat VRI based upon positive CSF culture in only 28 % (9/32) of cases. In the control cohort, CSF markers' profile trends to normalize, while it worsens in the VRI patients. We showed that clinical symptoms and biological abnormalities of VRI evolved over time. Our data suggest that VRI decision to treat relies upon a bundle of evidence, including dynamic changes in CSF laboratory exams combined with microbiological analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanier, N.E.; Cowan, J.S.; Workman, J.
2006-04-15
Kodak direct exposure film (DEF) [B. L. Henke et al., J. Opt. Soc. Am. B 3, 1540 (1986)] has been the standard for moderate energy (1-10 keV) x-ray diagnostic applications among the high-energy-density and inertial confinement fusion research communities. However, market forces have prompted Kodak to discontinue production of DEF, leaving these specialized communities searching for a replacement. We have conducted cross-calibration experiments and film characterizations on five possible substitutes for Kodak DEF. The film types studied were Kodak's Biomax MR (BMR) and SR45 along with Agfa's D8, D7, and D4sc. None of the films tested matched the speed ofmore » DEF. BMR and D8 were closest but D8 exhibited lower noise, with superior resolution and dynamic range. Agfa D7, Agfa D4sc, and Kodak SR45 were significantly less sensitive than BMR and D8, however, the improvements they yielded in resolution and dynamic range warrant their use if experimental constraints allow.« less
Bechar, Ikhlef; Trubuil, Alain
2006-01-01
We describe a novel automatic approach for vesicle trafficking analysis in 3D+T videomicroscopy. Tracking individually objects in time in 3D+T videomicroscopy is known to be a very tedious job and leads generally to unreliable results. So instead, our method proceeds by first identifying trafficking regions in the 3D volume and next analysing at them the vesicle trafficking. The latter is viewed as significant change in the fluorescence of a region in the image. We embed the problem in a model selection framework and we resolve it using dynamic programming. We applied the proposed approach to analyse the vesicle dynamics related to the trafficking of the RAB6A protein between the Golgi apparatus and ER cell compartments.
Generalized five-dimensional dynamic and spectral factor analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Fakhri, Georges; Sitek, Arkadiusz; Zimmerman, Robert E.
2006-04-15
We have generalized the spectral factor analysis and the factor analysis of dynamic sequences (FADS) in SPECT imaging to a five-dimensional general factor analysis model (5D-GFA), where the five dimensions are the three spatial dimensions, photon energy, and time. The generalized model yields a significant advantage in terms of the ratio of the number of equations to that of unknowns in the factor analysis problem in dynamic SPECT studies. We solved the 5D model using a least-squares approach. In addition to the traditional non-negativity constraints, we constrained the solution using a priori knowledge of both time and energy, assuming thatmore » primary factors (spectra) are Gaussian-shaped with full-width at half-maximum equal to gamma camera energy resolution. 5D-GFA was validated in a simultaneous pre-/post-synaptic dual isotope dynamic phantom study where {sup 99m}Tc and {sup 123}I activities were used to model early Parkinson disease studies. 5D-GFA was also applied to simultaneous perfusion/dopamine transporter (DAT) dynamic SPECT in rhesus monkeys. In the striatal phantom, 5D-GFA yielded significantly more accurate and precise estimates of both primary {sup 99m}Tc (bias=6.4%{+-}4.3%) and {sup 123}I (-1.7%{+-}6.9%) time activity curves (TAC) compared to conventional FADS (biases=15.5%{+-}10.6% in {sup 99m}Tc and 8.3%{+-}12.7% in {sup 123}I, p<0.05). Our technique was also validated in two primate dynamic dual isotope perfusion/DAT transporter studies. Biases of {sup 99m}Tc-HMPAO and {sup 123}I-DAT activity estimates with respect to estimates obtained in the presence of only one radionuclide (sequential imaging) were significantly lower with 5D-GFA (9.4%{+-}4.3% for {sup 99m}Tc-HMPAO and 8.7%{+-}4.1% for {sup 123}I-DAT) compared to biases greater than 15% for volumes of interest (VOI) over the reconstructed volumes (p<0.05). 5D-GFA is a novel and promising approach in dynamic SPECT imaging that can also be used in other modalities. It allows accurate and precise dynamic analysis while compensating for Compton scatter and cross-talk.« less
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.;
2014-01-01
This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
Cluster dynamics transcending chemical dynamics toward nuclear fusion
Heidenreich, Andreas; Jortner, Joshua; Last, Isidore
2006-01-01
Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 1015–1020 W·cm−2). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C4+(D+)4)n and (D+I22+)n at IM = 1018 W·cm−2, that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D2)n, (HT)n, (CD4)n, (DI)n, (CD3I)n, and (CH3I)n clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D2)n clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., 12C(P,γ)13N driven by CE of (CH3I)n clusters, were explored. PMID:16740666
Cluster dynamics transcending chemical dynamics toward nuclear fusion.
Heidenreich, Andreas; Jortner, Joshua; Last, Isidore
2006-07-11
Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.
Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes
NASA Astrophysics Data System (ADS)
Kim, Kyoohyun; Lee, Seoeun; Yoon, Jonghee; Heo, Jihan; Choi, Chulhee; Park, Yongkeun
2016-11-01
Lipid droplets (LDs) are subcellular organelles with important roles in lipid storage and metabolism and involved in various diseases including cancer, obesity, and diabetes. Conventional methods, however, have limited ability to provide quantitative information on individual LDs and have limited capability for three-dimensional (3-D) imaging of LDs in live cells especially for fast acquisition of 3-D dynamics. Here, we present an optical method based on 3-D quantitative phase imaging to measure the 3-D structural distribution and biochemical parameters (concentration and dry mass) of individual LDs in live cells without using exogenous labelling agents. The biochemical change of LDs under oleic acid treatment was quantitatively investigated, and 4-D tracking of the fast dynamics of LDs revealed the intracellular transport of LDs in live cells.
Annular dynamics of memo3D annuloplasty ring evaluated by 3D transesophageal echocardiography.
Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Yoshioka, Daisuke; Sawa, Yoshiki
2018-04-01
We assessed the mitral annular motion after mitral valve repair with the Sorin Memo 3D® (Sorin Group Italia S.r.L., Saluggia, Italy), which is a unique complete semirigid annuloplasty ring intended to restore the systolic profile of the mitral annulus while adapting to the physiologic dynamism of the annulus, using transesophageal real-time three-dimensional echocardiography. 17 patients (12 male; mean age 60.4 ± 14.9 years) who underwent mitral annuloplasty using the Memo 3D ring were investigated. Mitral annular motion was assessed using QLAB®version8 allowing for a full evaluation of the mitral annulus dynamics. The mitral annular dimensions were measured throughout the cardiac cycle using 4D MV assessment2® while saddle shape was assessed through sequential measurements by RealView®. Saddle shape configuration of the mitral annulus and posterior and anterior leaflet motion could be observed during systole and diastole. The mitral annular area changed during the cardiac cycle by 5.7 ± 1.8%.The circumference length and diameter also changed throughout the cardiac cycle. The annular height was significantly higher in mid-systole than in mid-diastole (p < 0.05). The Memo 3D ring maintained a physiological saddle-shape configuration throughout the cardiac cycle. Real-time three-dimensional echocardiography analysis confirmed the motion and flexibility of the Memo 3D ring upon implantation.
Excited state dynamics of the astaxanthin radical cation
NASA Astrophysics Data System (ADS)
Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef
2010-07-01
Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.
Anisotropic evolution of 5D Friedmann-Robertson-Walker spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Chad A.; Stanley, Ethan
2011-10-15
We examine the time evolution of the five-dimensional Einstein field equations subjected to a flat, anisotropic Robertson-Walker metric, where the 3D and higher-dimensional scale factors are allowed to dynamically evolve at different rates. By adopting equations of state relating the 3D and higher-dimensional pressures to the density, we obtain an exact expression relating the higher-dimensional scale factor to a function of the 3D scale factor. This relation allows us to write the Friedmann-Robertson-Walker field equations exclusively in terms of the 3D scale factor, thus yielding a set of 4D effective Friedmann-Robertson-Walker field equations. We examine the effective field equations inmore » the general case and obtain an exact expression relating a function of the 3D scale factor to the time. This expression involves a hypergeometric function and cannot, in general, be inverted to yield an analytical expression for the 3D scale factor as a function of time. When the hypergeometric function is expanded for small and large arguments, we obtain a generalized treatment of the dynamical compactification scenario of Mohammedi [Phys. Rev. D 65, 104018 (2002)] and the 5D vacuum solution of Chodos and Detweiler [Phys. Rev. D 21, 2167 (1980)], respectively. By expanding the hypergeometric function near a branch point, we obtain the perturbative solution for the 3D scale factor in the small time regime. This solution exhibits accelerated expansion, which, remarkably, is independent of the value of the 4D equation of state parameter w. This early-time epoch of accelerated expansion arises naturally out of the anisotropic evolution of 5D spacetime when the pressure in the extra dimension is negative and offers a possible alternative to scalar field inflationary theory.« less
Schalk, Stefan G; Demi, Libertario; Smeenge, Martijn; Mills, David M; Wallace, Kirk D; de la Rosette, Jean J M C H; Wijkstra, Hessel; Mischi, Massimo
2015-05-01
Currently, nonradical treatment for prostate cancer is hampered by the lack of reliable diagnostics. Contrastultrasound dispersion imaging (CUDI) has recently shown great potential as a prostate cancer imaging technique. CUDI estimates the local dispersion of intravenously injected contrast agents, imaged by transrectal dynamic contrast-enhanced ultrasound (DCE-US), to detect angiogenic processes related to tumor growth. The best CUDI results have so far been obtained by similarity analysis of the contrast kinetics in neighboring pixels. To date, CUDI has been investigated in 2-D only. In this paper, an implementation of 3-D CUDI based on spatiotemporal similarity analysis of 4-D DCE-US is described. Different from 2-D methods, 3-D CUDI permits analysis of the entire prostate using a single injection of contrast agent. To perform 3-D CUDI, a new strategy was designed to estimate the similarity in the contrast kinetics at each voxel, and data processing steps were adjusted to the characteristics of 4-D DCE-US images. The technical feasibility of 4-D DCE-US in 3-D CUDI was assessed and confirmed. Additionally, in a preliminary validation in two patients, dispersion maps by 3-D CUDI were quantitatively compared with those by 2-D CUDI and with 12-core systematic biopsies with promising results.
Image-Based Reconstruction and Analysis of Dynamic Scenes in a Landslide Simulation Facility
NASA Astrophysics Data System (ADS)
Scaioni, M.; Crippa, J.; Longoni, L.; Papini, M.; Zanzi, L.
2017-12-01
The application of image processing and photogrammetric techniques to dynamic reconstruction of landslide simulations in a scaled-down facility is described. Simulations are also used here for active-learning purpose: students are helped understand how physical processes happen and which kinds of observations may be obtained from a sensor network. In particular, the use of digital images to obtain multi-temporal information is presented. On one side, using a multi-view sensor set up based on four synchronized GoPro 4 Black® cameras, a 4D (3D spatial position and time) reconstruction of the dynamic scene is obtained through the composition of several 3D models obtained from dense image matching. The final textured 4D model allows one to revisit in dynamic and interactive mode a completed experiment at any time. On the other side, a digital image correlation (DIC) technique has been used to track surface point displacements from the image sequence obtained from the camera in front of the simulation facility. While the 4D model may provide a qualitative description and documentation of the experiment running, DIC analysis output quantitative information such as local point displacements and velocities, to be related to physical processes and to other observations. All the hardware and software equipment adopted for the photogrammetric reconstruction has been based on low-cost and open-source solutions.
Young Infants' Perception of the Trajectories of Two- and Three-Dimensional Objects
ERIC Educational Resources Information Center
Johnson, Scott P.; Bremner, J. Gavin; Slater, Alan M.; Shuwairi, Sarah M.; Mason, Uschi; Spring, Jo; Usherwood, Barrie
2012-01-01
We investigated oculomotor anticipations in 4-month-old infants as they viewed center-occluded object trajectories. In two experiments, we examined performance in two-dimensional (2D) and three-dimensional (3D) dynamic occlusion displays and in an additional 3D condition with a smiley face as the moving target stimulus. Rates of anticipatory eye…
Pahlavian, Soroush Heidari; Bunck, Alexander C.; Thyagaraj, Suraj; Giese, Daniel; Loth, Francis; Hedderich, Dennis M.; Kröger, Jan Robert; Martin, Bryn A.
2016-01-01
Abnormal alterations in cerebrospinal fluid (CSF) flow are thought to play an important role in pathophysiology of various craniospinal disorders such as hydrocephalus and Chiari malformation. Three directional phase contrast MRI (4D Flow) has been proposed as one method for quantification of the CSF dynamics in healthy and disease states, but prior to further implementation of this technique, its accuracy in measuring CSF velocity magnitude and distribution must be evaluated. In this study, an MR-compatible experimental platform was developed based on an anatomically detailed 3D printed model of the cervical subarachnoid space and subject specific flow boundary conditions. Accuracy of 4D Flow measurements was assessed by comparison of CSF velocities obtained within the in vitro model with the numerically predicted velocities calculated from a spatially averaged computational fluid dynamics (CFD) model based on the same geometry and flow boundary conditions. Good agreement was observed between CFD and 4D Flow in terms of spatial distribution and peak magnitude of through-plane velocities with an average difference of 7.5% and 10.6% for peak systolic and diastolic velocities, respectively. Regression analysis showed lower accuracy of 4D Flow measurement at the timeframes corresponding to low CSF flow rate and poor correlation between CFD and 4D Flow in-plane velocities. PMID:27043214
SU-C-207-01: Four-Dimensional Inverse Geometry Computed Tomography: Concept and Its Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K; Kim, D; Kim, T
2015-06-15
Purpose: In past few years, the inverse geometry computed tomography (IGCT) system has been developed to overcome shortcomings of a conventional computed tomography (CT) system such as scatter problem induced from large detector size and cone-beam artifact. In this study, we intend to present a concept of a four-dimensional (4D) IGCT system that has positive aspects above all with temporal resolution for dynamic studies and reduction of motion artifact. Methods: Contrary to conventional CT system, projection data at a certain angle in IGCT was a group of fractionated narrow cone-beam projection data, projection group (PG), acquired from multi-source array whichmore » have extremely short time gap of sequential operation between each of sources. At this, for 4D IGCT imaging, time-related data acquisition parameters were determined by combining multi-source scanning time for collecting one PG with conventional 4D CBCT data acquisition sequence. Over a gantry rotation, acquired PGs from multi-source array were tagged time and angle for 4D image reconstruction. Acquired PGs were sorted into 10 phase and image reconstructions were independently performed at each phase. Image reconstruction algorithm based upon filtered-backprojection was used in this study. Results: The 4D IGCT had uniform image without cone-beam artifact on the contrary to 4D CBCT image. In addition, the 4D IGCT images of each phase had no significant artifact induced from motion compared with 3D CT. Conclusion: The 4D IGCT image seems to give relatively accurate dynamic information of patient anatomy based on the results were more endurable than 3D CT about motion artifact. From this, it will be useful for dynamic study and respiratory-correlated radiation therapy. This work was supported by the Industrial R&D program of MOTIE/KEIT [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
Planning 4D intensity-modulated arc therapy for tumor tracking with a multileaf collimator
NASA Astrophysics Data System (ADS)
Niu, Ying; Betzel, Gregory T.; Yang, Xiaocheng; Gui, Minzhi; Parke, William C.; Yi, Byongyong; Yu, Cedric X.
2017-02-01
This study introduces a practical four-dimensional (4D) planning scheme of IMAT using 4D computed tomography (4D CT) for planning tumor tracking with dynamic multileaf beam collimation. We assume that patients can breathe regularly, i.e. the same way as during 4D CT with an unchanged period and amplitude, and that the start of 4D-IMAT delivery can be synchronized with a designated respiratory phase. Each control point of the IMAT-delivery process can be associated with an image set of 4D CT at a specified respiratory phase. Target is contoured at each respiratory phase without a motion-induced margin. A 3D-IMAT plan is first optimized on a reference-phase image set of 4D CT. Then, based on the projections of the planning target volume in the beam’s eye view at different respiratory phases, a 4D-IMAT plan is generated by transforming the segments of the optimized 3D plan by using a direct aperture deformation method. Compensation for both translational and deformable tumor motion is accomplished, and the smooth delivery of the transformed plan is ensured by forcing connectivity between adjacent angles (control points). It is envisioned that the resultant plans can be delivered accurately using the dose rate regulated tracking method which handles breathing irregularities (Yi et al 2008 Med. Phys. 35 3955-62).This planning process is straightforward and only adds a small step to current clinical 3D planning practice. Our 4D planning scheme was tested on three cases to evaluate dosimetric benefits. The created 4D-IMAT plans showed similar dose distributions as compared with the 3D-IMAT plans on a single static phase, indicating that our method is capable of eliminating the dosimetric effects of breathing induced target motion. Compared to the 3D-IMAT plans with large treatment margins encompassing respiratory motion, our 4D-IMAT plans reduced radiation doses to surrounding normal organs and tissues.
Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L
2015-08-01
Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.
Kräutler, Vincent; Müller, Martin; Hünenberger, Philippe H
2007-10-15
The present article reports long timescale (200 ns) simulations of four beta-D-hexopyranoses (beta-D-glucose, beta-D-mannose, beta-D-galactose and beta-D-talose) using explicit-solvent (water) molecular dynamics and vacuum stochastic dynamics simulations together with the GROMOS 45A4 force field. Free-energy and solvation free-energy differences between the four compounds are also calculated using thermodynamic integration. Along with previous experimental findings, the present results suggest that the formation of intramolecular hydrogen-bonds in water is an 'opportunistic' consequence of the close proximity of hydrogen-bonding groups, rather than a major conformational driving force promoting this proximity. In particular, the conformational preferences of the hydroxymethyl group in aqueous environment appear to be dominated by 1,3-syn-diaxial repulsion, with gauche and solvation effects being secondary, and intramolecular hydrogen-bonding essentially negligible. The rotational dynamics of the exocyclic hydroxyl groups, which cannot be probed experimentally, is found to be rapid (10-100 ps timescale) and correlated (flip-flop hydrogen-bonds interconverting preferentially through an asynchronous disrotatory pathway). Structured solvent environments are observed between the ring and lactol oxygen atoms, as well as between the 4-OH and hydroxymethyl groups. The calculated stability differences between the four compounds are dominated by intramolecular effects, while the corresponding differences in solvation free energies are small. An inversion of the stereochemistry at either C(2) or C(4) from equatorial to axial is associated with a raise in free energy. Finally, the particularly low hydrophilicity of beta-D-talose appears to be caused by the formation of a high-occurrence hydrogen-bonded bridge between the 1,3-syn-diaxial 2-OH and 4-OH groups. Overall, good agreement is found with available experimental and theoretical data on the structural, dynamical, solvation and energetic properties of these compounds. However, this detailed comparison also reveals some discrepancies, suggesting the need (and providing a solid basis) for further refinement.
Computerized Interpretation of Dynamic Breast MRI
2006-05-01
correction, tumor segmentation , extraction of computerized features that help distinguish between benign and malignant lesions, and classification. Our...for assessing tumor extent in 3D. The primary feature used for 3D tumor segmentation is the postcontrast enhancement vector. Tumor segmentation is a...Appendix B. 4. Investigation of methods for automatic tumor segmentation We developed an automatic method for assessing tumor extent in 3D. The
Enabling Real-Time Volume Rendering of Functional Magnetic Resonance Imaging on an iOS Device.
Holub, Joseph; Winer, Eliot
2017-12-01
Powerful non-invasive imaging technologies like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI) are used daily by medical professionals to diagnose and treat patients. While 2D slice viewers have long been the standard, many tools allowing 3D representations of digital medical data are now available. The newest imaging advancement, functional MRI (fMRI) technology, has changed medical imaging from viewing static to dynamic physiology (4D) over time, particularly to study brain activity. Add this to the rapid adoption of mobile devices for everyday work and the need to visualize fMRI data on tablets or smartphones arises. However, there are few mobile tools available to visualize 3D MRI data, let alone 4D fMRI data. Building volume rendering tools on mobile devices to visualize 3D and 4D medical data is challenging given the limited computational power of the devices. This paper describes research that explored the feasibility of performing real-time 3D and 4D volume raycasting on a tablet device. The prototype application was tested on a 9.7" iPad Pro using two different fMRI datasets of brain activity. The results show that mobile raycasting is able to achieve between 20 and 40 frames per second for traditional 3D datasets, depending on the sampling interval, and up to 9 frames per second for 4D data. While the prototype application did not always achieve true real-time interaction, these results clearly demonstrated that visualizing 3D and 4D digital medical data is feasible with a properly constructed software framework.
Validation of a Hartmann-Moiré wavefront sensor with large dynamic range.
Wei, Xin; Van Heugten, Tony; Thibos, Larry
2009-08-03
Our goal was to validate the accuracy, repeatability, sensitivity, and dynamic range of a Hartmann-Moiré (HM) wavefront sensor (PixelOptics, Inc.) designed for ophthalmic applications. Testing apparatus injected a 4 mm diameter monochromatic (532 nm) beam of light into the wavefront sensor for measurement. Controlled amounts of defocus and astigmatism were introduced into the beam with calibrated spherical (-20D to + 18D) and cylindrical (-8D to + 8D) lenses. Repeatability was assessed with three repeated measurements within a 2-minute period. Correlation coefficients between mean wavefront measurements (n = 3) and expected wavefront vergence for both sphere and cylinder lenses were >0.999. For spherical lenses, the sensor was accurate to within 0.1D over the range from -20D to + 18D. For cylindrical lenses, the sensor was accurate to within 0.1D over the range from -8D to + 8D. The primary limitation to demonstrating an even larger dynamic range was the increasingly critical requirements for optical alignment. Sensitivity to small changes of vergence was constant over the instrument's full dynamic range. Repeatability of measurements for fixed condition was within 0.01D. The Hartmann-Moiré wavefront sensor measures defocus and astigmatism accurately and repeatedly with good sensitivity over a large dynamic range required for ophthalmic applications.
Yiallourou, Theresia I.; Kröger, Jan Robert; Stergiopulos, Nikolaos; Maintz, David
2012-01-01
Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques. PMID:23284970
2017-04-01
dimensional canard and computational domain ..........................4 Fig. 3 Prescribed dynamic ramp motion for the 2-D airfoil at k2 = 0.5 (a) and...airfoil as a function of equivalent mean angle of attack, unfiltered (a, c) and filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b...filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b) and 1.0 (c–d), M∞ = 0.5 .....10 Fig. 6 Lift coefficient of dynamic canard
Bammer, Roland; Hope, Thomas A.; Aksoy, Murat; Alley, Marcus T.
2012-01-01
Exact knowledge of blood flow characteristics in the major cerebral vessels is of great relevance for diagnosing cerebrovascular abnormalities. This involves the assessment of hemodynamically critical areas as well as the derivation of biomechanical parameters such as wall shear stress and pressure gradients. A time-resolved, 3D phase-contrast (PC) MRI method using parallel imaging was implemented to measure blood flow in three dimensions at multiple instances over the cardiac cycle. The 4D velocity data obtained from 14 healthy volunteers were used to investigate dynamic blood flow with the use of multiplanar reformatting, 3D streamlines, and 4D particle tracing. In addition, the effects of magnetic field strength, parallel imaging, and temporal resolution on the data were investigated in a comparative evaluation at 1.5T and 3T using three different parallel imaging reduction factors and three different temporal resolutions in eight of the 14 subjects. Studies were consistently performed faster at 3T than at 1.5T because of better parallel imaging performance. A high temporal resolution (65 ms) was required to follow dynamic processes in the intracranial vessels. The 4D flow measurements provided a high degree of vascular conspicuity. Time-resolved streamline analysis provided features that have not been reported previously for the intracranial vasculature. PMID:17195166
Muruve, Noah G G; Cheng, Y Frank; Feng, Yuanchao; Liu, Tao; Muruve, Daniel A; Hassett, Daniel J; Irvin, Randall T
2016-11-01
In this work, PEGylated D-amino acid K122-4 peptide (D-K122-4-PEG), derived from the type IV pilin of Pseudomonas aeruginosa, coated on 304 stainless steel was investigated for its corrosion resistant properties in a sodium chloride solution by various electrochemical measurements, surface characterization and molecular dynamics simulation. As a comparison, stainless steel electrodes coated with non-PEGylated D-amino acid retroinverso peptide (RI-K122-4) and D-amino acid K122-4 peptide (D-K122-4) were used as control variables during electrochemical tests. It was found that the D-K122-4-PEG coating is able to protect the stainless steel from corrosion in the solution. The RI-K122-4 coating shows corrosion resistant property and should be investigated further, while the D-K122-4 peptide coating, in contrast, shows little to no effect on corrosion. The morphological characterizations support the corrosion resistance of D-K122-4-PEG on stainless steel. The adsorption of D-K122-4 molecules occurs preferentially on Fe2O3, rather than Cr2O3, present on the stainless steel surface. Copyright © 2016 Elsevier B.V. All rights reserved.
Dynamic Decision Making under Uncertainty and Partial Information
2013-11-14
integral under the natural filtration generated by the Brownian motions . This compact expression potentially enables us to design sub- optimal penalties...bounds on bermudan option price under jump diffusion processes. Quantitative Finance , 2013. Under review, available at http://arxiv.org/abs/1305.4321... Finance , 19:53 – 71, 2009. [3] D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 4th edition, 2012. [4] D.B. Brown and J.E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollias, Pavlos
2017-04-23
With the vast upgrades to the ARM program radar measurement capabilities in 2010 and beyond, our ability to probe the 3D structure of clouds and associated precipitation has increased dramatically. This project build on the PI's and co-I's expertisein the analysis of radar observations. The first research thrust aims to document the 3D morphological (as depicted by the radar reflectivity structure) and 3D dynamical (cloud$-$scale eddies) structure of boundary layer clouds. Unraveling the 3D dynamical structure of stratocumulus and shallow cumulus clouds requires decomposition of the environmental wind contribution and particle sedimentation velocity from the observed radial Doppler velocity. Themore » second thrust proposes to unravel the mechanism of cumulus entrainment (location, scales) and its impact on microphysics utilizing radar measurements from the vertically pointing and new scanning radars at the ARM sites. The third research thrust requires the development of a cloud$-$tracking algorithm that monitors the properties of cloud.« less
Self-Assembly of Coherently Dynamic, Auxetic Two-Dimensional Protein Crystals
Suzuki, Yuta; Cardone, Giovanni; Restrepo, David; Zavattieri, Pablo D.; Baker, Timothy S.; Tezcan, F. Akif
2016-01-01
Two-dimensional (2D) crystalline materials possess unique structural, mechanical, and electronic properties1,2, which have rendered them highly attractive in many applications3-5. Although there have been advances in preparing 2D materials that consist of one or few atomic/molecular layers6,7, bottom-up assembly of 2D crystalline materials remains a considerable challenge and an active area of development8-10. Even more challenging is the design of dynamic 2D lattices that can undergo large-scale motions without loss of crystallinity. Dynamicity in porous 3D crystalline solids has been exploited for stimuli-responsive functions and adaptive behavior11-13. As in the case of such 3D materials, integrating flexibility/adaptiveness into crystalline 2D lattices would greatly broaden the functional scope of 2D materials. Here we report the self-assembly of unsupported, 2D protein lattices with precise spatial arrangements and patterns through a readily accessible design strategy. Three single- or double-point mutants of the C4 symmetric protein RhuA were designed to assemble via different modes of intermolecular interactions (single disulfide, double disulfide and metal coordination) into crystalline 2D arrays. Owing to the flexibility of the single disulfide interactions, the lattices of one of the variants (C98RhuA) are essentially defect-free and undergo substantial but fully correlated changes in molecular arrangement, giving coherently dynamic 2D molecular lattices. Notably, C98RhuA lattices possess a Poisson's ratio of −1, the lowest thermodynamically possible value for an isotropic material. PMID:27135928
NASA Astrophysics Data System (ADS)
Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.
2012-01-01
Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum-likelihood expectation-maximization (4D ML-EM) reconstructions gave more accurate reconstructions than did standard frame-by-frame static 3D ML-EM reconstructions. The SPECT/P results showed that 4D ML-EM reconstruction gave higher and more accurate estimates of K1 than did 3D ML-EM, yielding anywhere from a 44% underestimation to 24% overestimation for the three patients. The SPECT/D results showed that 4D ML-EM reconstruction gave an overestimation of 28% and 3D ML-EM gave an underestimation of 1% for K1. For the patient study the 4D ML-EM reconstruction provided continuous images as a function of time of the concentration in both ventricular cavities and myocardium during the 2 min infusion. It is demonstrated that a 2 min infusion with a two-headed SPECT system rotating 180° every 54 s can produce measurements of blood pool and myocardial TACs, though the SPECT simulation studies showed that one must sample at least every 30 s to capture a 1 min infusion input function.
Optimization of compressive 4D-spatio-spectral snapshot imaging
NASA Astrophysics Data System (ADS)
Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing
2017-10-01
In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.
NASA Technical Reports Server (NTRS)
Tan, C. M.; Carr, L. W.
1996-01-01
A variety of empirical and computational fluid dynamics two-dimensional (2-D) dynamic stall models were compared to recently obtained three-dimensional (3-D) dynamic stall data in a workshop on modeling of 3-D dynamic stall of an unswept, rectangular wing, of aspect ratio 10. Dynamic stall test data both below and above the static stall angle-of-attack were supplied to the participants, along with a 'blind' case where only the test conditions were supplied in advance, with results being compared to experimental data at the workshop itself. Detailed graphical comparisons are presented in the report, which also includes discussion of the methods and the results. The primary conclusion of the workshop was that the 3-D effects of dynamic stall on the oscillating wing studied in the workshop can be reasonably reproduced by existing semi-empirical models once 2-D dynamic stall data have been obtained. The participants also emphasized the need for improved quantification of 2-D dynamic stall.
Dhers, Sébastien; Feltham, Humphrey L C; Rouzières, Mathieu; Clérac, Rodolphe; Brooker, Sally
2016-11-15
Crystallisation of the tetranuclear 3d-4f Single-Molecule Magnet (SMM) [CuTb III (L Et )(NO 3 ) 3 (MeOH)]·MeOH (1) with Na 2 [tpa] (tpa = terephthalate and H 6 L Et is the [3 + 3] imine macrocycle derived from 1,4-diformyl-2,3-dihydroxybenzene and 1,2-diaminoethane) gives a structurally characterised one-dimensional cationic polymer {[CuTb III (L Et )(tpa)(H 2 O) 3 ](NO 3 )·0.5H 2 O·0.25MeOH} n (2). A comparative study of the static and dynamic magnetic properties of 2 and its precursor, 1, is reported.
Itinerant and localized magnetization dynamics in antiferromagnetic Ho
Rettig, L.; Dornes, C.; Thielemann-Kuhn, N.; ...
2016-06-21
Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L 3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Here, tuning the x-ray energy to the electric dipole (E1, 2p → 5d) or quadrupole (E2, 2p → 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3–τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similarmore » spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f–5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.« less
[Accommodation to monochromatic targets in people with different color vision statuses].
Qian, Yishan; Huang, Jia; Chu, Renyuan
2015-01-01
To compare the accommodation response (AR) to monochromatic targets in subjects with different color vision statuses, and to investigate the role of color vision in the control of accommodation and emmetropization. It was a case-control study. Accommodation was measured with a dynamic infrared optometer while subjects [17 protans, 47 deutans, and 23 normals; mean age: (20.0 ± 4.4) years] viewed a (1) red on black or (2) green on black vertical square-wave gratings of iso-luminance (3 cycles/deg; 0.9 contrast) in a Badal optic system. The grating stepped 1.00 D towards the eye from an initial position of 0 D until 5.00 D. With red-black targets, the AR in the protans (AR = 1.98 D) was worse than that in the normals (AR = 2.55 D) when the accommodation stimulus (AS) was 4.00 D (LSD, P = 0.031). The AR in the deutans were worse than that in the normals when the AS was 3.00, 4.00, and 5.00 D (3.00 D: 1.23 D vs. 1.69 D, P = 0.002; 4.00 D: 1.89 D vs. 2.55 D, P = 0.002; 5.00 D: 2.40 D vs. 3.17 D, P = 0.003). With green-black targets, the AR in the protans were worse than that in the normals when the AS was 3.00 and 4.00 D (3.00 D: 1.13 D vs. 1.61 D, P = 0.004; 4.00 D: 1.80 D vs. 2.34 D, P = 0.021). In the deutans, the AR was worse with stimuli of 3.00, 4.00, and 5.00 D (3.00 D: 1.21 D vs. 1.61 D, P = 0.003; 4.00 D: 1.65 D vs. 2.34 D, P < 0.001; 5.00 D: 2.36 D vs. 2.93 D, P = 0.007). No significant differences between the protans and deutans were found for all the stimulus conditions. In the protans, accommodation to red-black targets was better than that to green-black targets when the stimulus was 2.00, 3.00, and 5.00 D (2.00 D: t = -2.81, P = 0.013; 3.00 D: t = -4.55, P < 0.001; 5.00 D: t = -3.15, P = 0.006). In the deutans, accommodation to red-black targets was better than that to green-black targets when the stimulus was 4.00 D (t = -2.19, P = 0.034). In the normals, accommodation to red-black targets were better than that to green-black targets when the stimulus was 2.00, 4.00, and 5.00 D (2.00 D: t = -2.57, P = 0.017; 4.00 D, t = -2.67, P = 0.014; 5.00 D: t = -2.15, P = 0.043). Individuals with a color vision deficiency tend to have a larger accommodative lag than normals. Red targets tend to induce better accommodation response than green ones. Color vision may play a role in the control of accommodation and emmetropization.
NASA Astrophysics Data System (ADS)
Heczko, Dawid; Kamińska, Ewa; Minecka, Aldona; Dzienia, Andrzej; Jurkiewicz, Karolina; Tarnacka, Magdalena; Talik, Agnieszka; Kamiński, Kamil; Paluch, Marian
2018-05-01
Broadband Dielectric Spectroscopy was applied to investigate molecular dynamics of two anhydrosaccharides, i.e., 1,6-anhydro-β-D-mannopyranose, anhMAN (hydrogen-bonded system) and 2,3,4-tri-O-acetyl-1,6-anhydro-β-D-glucopyranose, ac-anhGLU (van der Waals material), at different thermodynamic conditions. Moreover, the reported data were compared with those recently published for two other H-bonded systems, i.e., 1,6-anhydro-β-D-glucopyranose (anhGLU) and D-glucose (D-GLU). A direct comparison of the dynamical behavior of the materials with a similar chemical structure but significantly differing by the degrees of freedom, complexity, and intermolecular interactions made it possible to probe the impact of compression on the fragility, Temperature-Pressure Superpositioning and pressure coefficient of the glassy crystal/glass transition temperatures (d Tg c/d p ; d Tg/d p ). Moreover, the correlation between d Tg c/d p determined experimentally from the high-pressure dielectric data and the Ehrenfest equation has been tested for the plastic crystals (anhGLU and anhMAN) for the first time. Interestingly, a satisfactory agreement was found between both approaches. It is a quite intriguing finding which can be rationalized by the fact that the studied materials are characterized by the low complexity (lower degrees of freedom with respect to the molecular mobility) as well as ordered internal structure. Therefore, one can speculate that in contrast to the ordinary glasses the dynamics of the plastic crystals might be described with the use of a single order parameter. However, to confirm this thesis further, pressure-volume-temperature (PVT) experiments enabling calculations of the Prigogine Defay ratio are required.
Yu, Zhengyang; Zheng, Shusen; Chen, Huaiqing; Wang, Jianjun; Xiong, Qingwen; Jing, Wanjun; Zeng, Yu
2006-10-01
This research studies the process of dynamic concision and 3D reconstruction from medical body data using VRML and JavaScript language, focuses on how to realize the dynamic concision of 3D medical model built with VRML. The 2D medical digital images firstly are modified and manipulated by 2D image software. Then, based on these images, 3D mould is built with VRML and JavaScript language. After programming in JavaScript to control 3D model, the function of dynamic concision realized by Script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be formed in high quality near to those got in traditional methods. By this way, with the function of dynamic concision, VRML browser can offer better windows of man-computer interaction in real time environment than before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and has a promising prospect in the fields of medical image.
Ruhlandt, A; Töpperwien, M; Krenkel, M; Mokso, R; Salditt, T
2017-07-26
We present an approach towards four dimensional (4d) movies of materials, showing dynamic processes within the entire 3d structure. The method is based on tomographic reconstruction on dynamically curved paths using a motion model estimated by optical flow techniques, considerably reducing the typical motion artefacts of dynamic tomography. At the same time we exploit x-ray phase contrast based on free propagation to enhance the signal from micron scale structure recorded with illumination times down to a millisecond (ms). The concept is demonstrated by observing the burning process of a match stick in 4d, using high speed synchrotron phase contrast x-ray tomography recordings. The resulting movies reveal the structural changes of the wood cells during the combustion.
4D-PET reconstruction using a spline-residue model with spatial and temporal roughness penalties
NASA Astrophysics Data System (ADS)
Ralli, George P.; Chappell, Michael A.; McGowan, Daniel R.; Sharma, Ricky A.; Higgins, Geoff S.; Fenwick, John D.
2018-05-01
4D reconstruction of dynamic positron emission tomography (dPET) data can improve the signal-to-noise ratio in reconstructed image sequences by fitting smooth temporal functions to the voxel time-activity-curves (TACs) during the reconstruction, though the optimal choice of function remains an open question. We propose a spline-residue model, which describes TACs as weighted sums of convolutions of the arterial input function with cubic B-spline basis functions. Convolution with the input function constrains the spline-residue model at early time-points, potentially enhancing noise suppression in early time-frames, while still allowing a wide range of TAC descriptions over the entire imaged time-course, thus limiting bias. Spline-residue based 4D-reconstruction is compared to that of a conventional (non-4D) maximum a posteriori (MAP) algorithm, and to 4D-reconstructions based on adaptive-knot cubic B-splines, the spectral model and an irreversible two-tissue compartment (‘2C3K’) model. 4D reconstructions were carried out using a nested-MAP algorithm including spatial and temporal roughness penalties. The algorithms were tested using Monte-Carlo simulated scanner data, generated for a digital thoracic phantom with uptake kinetics based on a dynamic [18F]-Fluromisonidazole scan of a non-small cell lung cancer patient. For every algorithm, parametric maps were calculated by fitting each voxel TAC within a sub-region of the reconstructed images with the 2C3K model. Compared to conventional MAP reconstruction, spline-residue-based 4D reconstruction achieved >50% improvements for five of the eight combinations of the four kinetics parameters for which parametric maps were created with the bias and noise measures used to analyse them, and produced better results for 5/8 combinations than any of the other reconstruction algorithms studied, while spectral model-based 4D reconstruction produced the best results for 2/8. 2C3K model-based 4D reconstruction generated the most biased parametric maps. Inclusion of a temporal roughness penalty function improved the performance of 4D reconstruction based on the cubic B-spline, spectral and spline-residue models.
Jung, Jiwon; Lee, Hyun-Jung; Kim, Sun-Mi; Kang, Young-Ah; Lee, Young-Shin; Chong, Yong Pil; Sung, Heungsup; Lee, Sang-Oh; Choi, Sang-Ho; Kim, Yang Soo; Woo, Jun Hee; Lee, Jung-Hee; Lee, Je-Hwan; Lee, Kyoo-Hyung; Kim, Sung-Han
2017-02-01
CMV-specific cell mediated immune responses before and after hematopoietic stem cell transplantation (HCT) can categorize patients as at high or low risk of CMV development. We evaluated the usefulness of the CMV-specific T-cell ELISPOT assay for predicting the development of CMV infections after HCT in recipients with donor-positive and recipient-positive CMV serology (D+/R+ ). CMV pp65 and IE1-specific ELISPOT assays were performed before HCT (D0), and at 30 (D30) and 90 (D90) days after HCT. Of the 84 HCT recipients with D+/R+, 42 (50%) developed≥1 episode of CMV infection. Thirty-nine (64%) of 61 patients with Δ(D30-D0) pp65<42 developed CMV infections compared with 3 (14%) of 21 patients with Δ(D30-D0) pp65≥42 (P<0.001). Twenty-three (74%) of 31 patients with Δ(D30-D0) IE1<-4 developed CMV infections compared with 19 (37%) of 51 patients with Δ(D30-D0) IE1≥-4 (P=0.001). pp65 Δ(D30-D0) ≥42 had 93% sensitivity for ruling out subsequent CMV infection, and pp65 Δ(D30-D0)<42 followed by Δ(D30-D0) IE1<-4 had 100% specificity for ruling in the subsequent CMV infection. In addition, 10 (53%) of 19 patients with Δ(D90-D30) pp65<23 had relapsing CMV infections, compared with 3 (15%) of 20 patients with Δ(D90-D30) pp65≥23 (P=0.02). The sensitivity and specificity of Δ(D90-D30) pp65 were 77% (95% CI 50-92) and 65% (95% CI, 46-81). Dynamic change in the CMV-specific ELISPOT assay before versus after HCT appears to predict the subsequent development of CMV infection and relapsing CMV infection. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg
2015-08-15
Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite elementmore » method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.« less
Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin
2016-01-01
The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 10(6) hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems in stem cell differentiation approaches for improved formation of differentiated tissue structures.
Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin
2016-01-01
Abstract The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems in stem cell differentiation approaches for improved formation of differentiated tissue structures. PMID:27610270
NASA Astrophysics Data System (ADS)
Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.
2015-11-01
The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.
NASA Astrophysics Data System (ADS)
Tokizaki, Chihiro; Yoshida, Takahiko; Takayanagi, Toshiyuki
2016-05-01
The cyclooctatetraene (COT) anion has a stable D4h structure that is similar to the transition state configurations of the neutral C-C bond-alternation (D4h ↔ D8h ↔ D4h) and ring-inversion (D2d ↔ D4h ↔ D2d) unimolecular reactions. The previously measured photodetachment spectrum of COT- revealed the reaction dynamics in the vicinity of the two transition states on the neutral potential energy surface. In this work, the photodetachment spectrum is calculated quantum mechanically on ab initio-level potential energy surfaces within a three degree-of-freedom reduced-dimensionality model. Very good agreement has been obtained between theory and experiment, providing reliable interpretations for the experimental spectrum. A detailed picture of the reactive molecular dynamics of the COT unimolecular reaction in the transition state region is also discussed.
Time-reversal breaking in QCD4, walls, and dualities in 2 + 1 dimensions
NASA Astrophysics Data System (ADS)
Gaiotto, Davide; Komargodski, Zohar; Seiberg, Nathan
2018-01-01
We study SU( N ) Quantum Chromodynamics (QCD) in 3+1 dimensions with N f degenerate fundamental quarks with mass m and a θ-parameter. For generic m and θ the theory has a single gapped vacuum. However, as θ is varied through θ = π for large m there is a first order transition. For N f = 1 the first order transition line ends at a point with a massless η' particle (for all N ) and for N f > 1 the first order transition ends at m = 0, where, depending on the value of N f , the IR theory has free Nambu-Goldstone bosons, an interacting conformal field theory, or a free gauge theory. Even when the 4 d bulk is smooth, domain walls and interfaces can have interesting phase transitions separating different 3 d phases. These turn out to be the phases of the recently studied 3 d Chern-Simons matter theories, thus relating the dynamics of QCD4 and QCD3, and, in particular, making contact with the recently discussed dualities in 2+1 dimensions. For example, when the massless 4 d theory has an SU( N f ) sigma model, the domain wall theory at low (nonzero) mass supports a 3 d massless CP^{N_f-1} nonlinear σ-model with a Wess-Zumino term, in agreement with the conjectured dynamics in 2+1 dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.ed
Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume ofmore » the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). Results: For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. Conclusions: The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.« less
Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan
2016-07-01
A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.
NASA Technical Reports Server (NTRS)
Sohn, Jeong L.
1988-01-01
The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.
Hu, Guiqing; Liu, Jun; Roux, Kenneth H; Taylor, Kenneth A
2017-08-15
The human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) envelope spike (Env) mediates viral entry into host cells. The V3 loop of the gp120 component of the Env trimer contributes to the coreceptor binding site and is a target for neutralizing antibodies. We used cryo-electron tomography to visualize the binding of CD4 and the V3 loop monoclonal antibody (MAb) 36D5 to gp120 of the SIV Env trimer. Our results show that 36D5 binds gp120 at the base of the V3 loop and suggest that the antibody exerts its neutralization effect by blocking the coreceptor binding site. The antibody does this without altering the dynamics of the spike motion between closed and open states when CD4 is bound. The interaction between 36D5 and SIV gp120 is similar to the interaction between some broadly neutralizing anti-V3 loop antibodies and HIV-1 gp120. Two conformations of gp120 bound with CD4 are revealed, suggesting an intrinsic dynamic nature of the liganded Env trimer. CD4 binding substantially increases the binding of 36D5 to gp120 in the intact Env trimer, consistent with CD4-induced changes in the conformation of gp120 and the antibody binding site. Binding by MAb 36D5 does not substantially alter the proportions of the two CD4-bound conformations. The position of MAb 36D5 at the V3 base changes little between conformations, indicating that the V3 base serves as a pivot point during the transition between these two states. IMPORTANCE Glycoprotein spikes on the surfaces of SIV and HIV are the sole targets available to the immune system for antibody neutralization. Spikes evade the immune system by a combination of a thick layer of polysaccharide on the surface (the glycan shield) and movement between spike domains that masks the epitope conformation. Using SIV virions whose spikes were "decorated" with the primary cellular receptor (CD4) and an antibody (36D5) at part of the coreceptor binding site, we visualized multiple conformations trapped by the rapid freezing step, which were separated using statistical analysis. Our results show that the CD4-induced conformational dynamics of the spike enhances binding of the antibody. Copyright © 2017 American Society for Microbiology.
1977-06-01
SPHEROIDAL BUOYS As mentioned previously, for the limiting case of zero ; educed frequency where tile free surface behaves as a rigid plane, the...4P ) -4 -4 ft O D - % Cdd :# P) fy ou Cd 1d Cd’. . 6 - C3 ’o .. eg S w Cd *g.4C~dI~**II~.a Ký 0 4 : 10 In H-C IV ..4 _ C) bu 0 40 la W C2C W cc lp lqa
Deuterated Methane and Ethane in the Atmosphere of Jupiter
NASA Astrophysics Data System (ADS)
Parkinson, C. D.; Yung, Y. L.; Lee, A. Y.; Crisp, D.
2003-12-01
CH3D and C2H5D are isotopic tracers in the deep Jovian atmosphere and susceptible to transport and chemical effects. It is expected that the tropospheric ([D]/[H])CH4 ratios determined from the various observations made should be relatively invariable, yet previous determinations of this quantity for Jupiter have given results inconsistent with experimental error bars. This suggests that there may be a problem with the interpretion of some of the observations, or that the apparent CH3D column abundance is variable. We report on the effects of varying important parameters over this pressure regime on the CH3D and C2H5D mixing ratios, CH3D and C2H5D fractionation, the ([D]/[H])CH4, ([D]/[H])C2H_6 and D/H (= ([D]/[H])H2) ratios and compare with the various CH3D and HD observations. Our results show that since the CH3D and C2H5D mixing ratios are strongly dependent upon K(z) in the region of interest where temporal or latitudinal variations in K(z) could significantly impact the measured ([D]/[H])CH4 ratio. The K(z) adopted represents complex upward convection and downdraft mixing that occurs in the Jovian atmosphere as evidenced by recent observations (Gierasch et al., 2000; Ingersoll et al., 2000; Roos-Serote et al., 2000; Vincent et al., 2000). Using our technique allows for the first time a way to explain the discrepancies in the ([D]/[H])CH4 ratio observations by offering a plausible link between the CH3D and C2H5D observations and upper tropospheric dynamical processes. In any case our calculations show how ([D]/[H])CH4 and ([D]/[H])C2H_6 can be used as a diagnostic tracer to constrain K(z) and to better understand the dynamics of the atmosphere in this pressure regime. Additionally, we have made calculations of the C2H5D in the thermosphere of Jupiter. The principal reactions determining the D abundance appear to be generation by reaction of H with vibrationally hot HD and loss by reaction of D with H2(v=0,1) and CH3. The H, CH3D and C2H5D distributions have been calculated using the Caltech/JPL KINETICS 1-D photochemistry-diffusion model with the column H constrained using the H lyman-alpha airglow. Reactions involving C2H5D are described by Parkinson (2002). Performing sensitivity studies, we have found an enhancement of greater than two orders of magnitude in C2H5D due to the vibrational chemistry, which is significantly larger than that for CH3D enhancement reported by Parkinson et al (2003). This is of great interest and suggests that C2H5D should be detectable in the lower thermosphere: we propose that observations of this species should be made. Enhancement of deuterated hydrocarbons indicates that there may be exchange of these species between the statosphere and troposphere and further show their usefulness as isotopic tracers in the Jovian atmosphere.
Yi, B; Yang, X; Niu, Y; Yu, C
2012-06-01
Conformal SBRT plans for Lung cancer with static gantry angles are ideal candidates for applying motion tracking because of: (1) better dosimetric conformity with reduced target margin and (2) easier and more faithful target tracking without intensity modulation. This work is to demonstrate that by delivering the target tracking during gantry rotation, we can significantly improve delivery efficiency without negatively affecting plan quality. A lung SBRT plan with static beams was created using CT images of the reference breathing phase. It is converted to an arc plan with variable dose rate followed by the conversion to a 4D plan with the segment aperture morphing (SAM) method (Gui 2010) with considerations of both target location and shape changes as depicted by the 4D CT. Gantry angle ranges were determined from the clinical monitor units, with the 22.2 MU/degree, which is chosen to maximize the dose rate. All segments of the dynamic 4D plan were merged into a single arc with variable dose rate. Each segment occupying 1/10 of the breathing period delivers 6.6 MUs at a dose rate of 1000 MU/min. Delivery time was measured and compared to the planned. The dose distributions of the single phase 3D plan and the arc 4D plan showed little difference. The delivered time for the 4D arc plan agreed with the calculated time, and is almost the same as delivering the 3D plan without target tracking. A 12 Gy treatment takes less than 2.5 min. The feasibility of a novel 4D delivery method where a 3D SBRT plan is converted into 4D arc delivery has been demonstrated. In addition to realizing the conventional target tracking benefits, our method further improves delivery efficiency, which is important for maintaining the geometric relationship between the target motion and the breathing surrogate during treatment. This study is supported by NIH_Grant_1R01CA133539-01 A2. © 2012 American Association of Physicists in Medicine.
4D tumor centroid tracking using orthogonal 2D dynamic MRI: Implications for radiotherapy planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tryggestad, Erik; Flammang, Aaron; Shea, Steven M.
2013-09-15
Purpose: Current pretreatment, 4D imaging techniques are suboptimal in that they sample breathing motion over a very limited “snapshot” in time. Heretofore, long-duration, 4D motion characterization for radiotherapy planning, margin optimization, and validation have been impractical for safety reasons, requiring invasive markers imaged under x-ray fluoroscopy. To characterize 3D tumor motion and associated variability over durations more consistent with treatments, the authors have developed a practical dynamic MRI (dMRI) technique employing two orthogonal planes acquired in a continuous, interleaved fashion.Methods: 2D balanced steady-state free precession MRI was acquired continuously over 9–14 min at approximately 4 Hz in three healthy volunteersmore » using a commercial 1.5 T system; alternating orthogonal imaging planes (sagittal, coronal, sagittal, etc.) were employed. The 2D in-plane pixel resolution was 2 × 2 mm{sup 2} with a 5 mm slice profile. Simultaneous with image acquisition, the authors monitored a 1D surrogate respiratory signal using a device available with the MRI system. 2D template matching-based anatomic feature registration, or tracking, was performed independently in each orientation. 4D feature tracking at the raw frame rate was derived using spline interpolation.Results: Tracking vascular features in the lung for two volunteers and pancreatic features in one volunteer, the authors have successfully demonstrated this method. Registration error, defined here as the difference between the sagittal and coronal tracking result in the SI direction, ranged from 0.7 to 1.6 mm (1σ) which was less than the acquired image resolution. Although the healthy volunteers were instructed to relax and breathe normally, significantly variable respiration was observed. To demonstrate potential applications of this technique, the authors subsequently explored the intrafraction stability of hypothetical tumoral internal target volumes and 3D spatial probability distribution functions. The surrogate respiratory information allowed the authors to show how this technique can be used to study correlations between internal and external (surrogate) information over these prolonged durations. However, compared against the gold standard of the time stamps in the dMRI frames, the temporal synchronization of the surrogate 1D respiratory information was shown to be likely unreliable.Conclusions: The authors have established viability of a novel and practical pretreatment, 4D tumor centroid tracking method employing a commercially available dynamic MRI sequence. Further developments from the vendor are likely needed to provide a reliably synchronized surrogate 1D respiratory signal, which will likely broaden the utility of this method in the pretreatment radiotherapy planning context.« less
NASA Technical Reports Server (NTRS)
Smith, G. K.; Jie, J.; Fox, G. E.; Gao, X.
1995-01-01
DNA triplet repeats, 5'-d(CTG)n and 5'-d(CAG)n, are present in genes which have been implicated in several neurodegenerative disorders. To investigate possible stable structures formed by these repeating sequences, we have examined d(CTG)n, d(CAG)n and d(CTG).d(CAG)n (n = 2 and 3) using NMR and UV optical spectroscopy. These studies reveal that single stranded (CTG)n (n > 2) forms stable, antiparallel helical duplexes, while the single stranded (CAG)n requires at least three repeating units to form a duplex. NMR and UV melting experiments show that the Tm increases in the order of [(CAG)3]2 < [(CTG)3]2 << (CAG)3.(CTG)3. The (CTG)3 duplex is stable and exhibits similar NMR spectra in solutions containing 0.1-4 M NaCl and at a pH range from 4.6 to 8.8. The (CTG)3 duplex, which contains multiple-T.T mismatches, displays many NMR spectral characteristics similar to those of B-form DNA. However, unique NOE and 1H-31P coupling patterns associated with the repetitive T.T mismatches in the CTG repeats are discerned. These results, in conjunction with recent in vitro studies suggest that longer CTG repeats may form hairpin structures, which can potentially cause interruption in replication, leading to dynamic expansion or deletion of triplet repeats.
A > 4 MGy radiation tolerant 8 THzOhm transimpedance amplifier with 50 dB dynamic range
NASA Astrophysics Data System (ADS)
Verbeeck, J.; Steyaert, M.; Leroux, P.
2013-02-01
A 130 nm Transimpedance Amplifier has been developed with a 255 MHz bandwidth, 90 dBΩ transimpedance gain and a dynamic input range of 1:325 or 50 dB for a photo-diode capacitance of 0.75 pF. The equivalent integrated input noise is 160 nA @ 25°C. The gain of the voltage amplifier, used in the transimpedance amplifier (TIA), degrades less than 3% over a temperature range from -40 °C up to 125 °C. The TIA and attenuator exhibit a radiation tolerance larger than 4 MGy, as evidenced by radiation assessment.
Han, Fei; Zhou, Ziwu; Du, Dongsu; Gao, Yu; Rashid, Shams; Cao, Minsong; Shaverdian, Narek; Hegde, John V; Steinberg, Michael; Lee, Percy; Raldow, Ann; Low, Daniel A; Sheng, Ke; Yang, Yingli; Hu, Peng
2018-06-01
To optimize and evaluate the respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK-4D-MRI) method in a 0.35 T MRI-guided radiotherapy (MRgRT) system. The study included seven patients with abdominal tumors treated on the MRgRT system. ROCK-4D-MRI and 2D-CINE, was performed immediately after one of the treatment fractions. Motion quantification based on 4D-MRI was compared with those based on 2D-CINE. The image quality of 4D-MRI was evaluated against 4D-CT. The gross tumor volumes (GTV) were defined based on individual respiratory phases of both 4D-MRI and 4D-CT and compared for their variability over the respiratory cycle. The motion measurements based on 4D-MRI matched well with 2D-CINE, with differences of 1.04 ± 0.52 mm in the superior-inferior and 0.54 ± 0.21 mm in the anterior-posterior directions. The image quality scores of 4D-MRI were significantly higher than 4D-CT, with better tumor contrast (3.29 ± 0.76 vs. 1.86 ± 0.90) and less motion artifacts (3.57 ± 0.53 vs. 2.29 ± 0.95). The GTVs were more consistent in 4D-MRI than in 4D-CT, with significantly smaller GTV variability (9.31 ± 4.58% vs. 34.27 ± 23.33%). Our study demonstrated the clinical feasibility of using the ROCK-4D-MRI to acquire high quality, respiratory motion-resolved 4D-MRI in a low-field MRgRT system. The 4D-MRI image could provide accurate dynamic information for radiotherapy treatment planning. Copyright © 2018 Elsevier B.V. All rights reserved.
Saito, Toshikuni; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Hayashibe, Mitsuhiro; Otake, Yoshito
2006-01-01
We have been developing a DSVC (Dynamic Spatial Video Camera) system to measure and observe human locomotion quantitatively and freely. A 4D (four-dimensional) human model with detailed skeletal structure, joint, muscle, and motor functionality has been built. The purpose of our research was to estimate skeletal movements from body surface shapes using DSVC and the 4D human model. For this purpose, we constructed a body surface model of a subject and resized the standard 4D human model to match with geometrical features of the subject's body surface model. Software that integrates the DSVC system and the 4D human model, and allows dynamic skeletal state analysis from body surface movement data was also developed. We practically applied the developed system in dynamic skeletal state analysis of a lower limb in motion and were able to visualize the motion using geometrically resized standard 4D human model.
A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.
Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe
2018-01-01
Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.
NASA Astrophysics Data System (ADS)
Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye
2015-11-01
In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.
Guo, Qinghua; Erickson, Bradley J; Chang, Alice Y; Erickson, Dana
2015-03-01
The objective of this study was to determine whether dynamic magnetic resonance imaging (dMRI) enhancement parameters could predict dopamine agonist (DA) resistance in prolactinomas. We retrospectively identified patients with prolactinomas who were treated with DA and underwent dMRI from 2001 through 2012 at Mayo Clinic (Rochester, MN). Intensities of the adenoma and pituitary gland were measured by drawing regions of interest on the images. Enhancement ratio, enhancement peak, prepeak slope (PPS), and enhancement time were compared between DA-resistant and DA-responsive groups, between DA-treated and DA-naive groups, and between the first and follow-up dMRIs. We identified 49 patients with prolactinomas, with 6 (12.2%) showing DA resistance. Thirty-seven patients (75.5%) underwent dMRI while receiving treatment, 12 (25.5%) underwent dMRI before starting therapy, and 10 (20.4%) had follow-up dMRI after DA therapy. The PPS of the tumor was higher in the treatment-resistant group versus the responsive group (mean [SD], 4.42 [3.19] vs 2.65 [1.59]; P = 0.03), whereas no difference was noted in the pituitary gland (5.79 [2.21] vs 4.06 [2.48]; P = 0.11). Logistic regression analysis indicated that tumor PPS was associated with DA resistance (odds ratio, 1.71; 95% confidence interval, 1.07-3.27; P = 0.02). Dynamic MRI with PPS analysis potentially can be used early in the treatment course to evaluate DA resistance in pituitary prolactinomas.
Radial quantization of the 3d CFT and the higher spin/vector model duality
NASA Astrophysics Data System (ADS)
Hu, Shan; Li, Tianjun
2014-10-01
We study the radial quantization of the 3dO(N) vector model. We calculate the higher spin charges whose commutation relations give the higher spin algebra. The Fock states of higher spin gravity in AdS4 are realized as the states in the 3d CFT. The dynamical information is encoded in their inner products. This serves as the simplest explicit demonstration of the CFT definition for the quantum gravity.
Statistical Reproducibility of the Dynamic and Static Fatigue Experiments.
1980-10-01
82171a no 3 a s d e te rm-,I n ed7 from t Ynamic ’ra-,4-e 2x oe r imen. Figure 2. T-he c oeffic 4e nt o - v arari an ( C . o f .4eib L’ sIatce --ar a-:e...e rc lecnnique to aeterr-ine zne v~iidit of the assumptions. - .2 Static Fatioue Static -aticue tests entai- , the reDeatec measuremen- c - azure ...ress -ance ncreased, anc- tec.-ease: zs n :El ~ c a -amet: -7 4creas2c. -o r a ze sac, nC~e 3Es3 ra-.<e ~ D 3 s ar, c a s n amD-e , s e : ) rrc uCb c 0
NASA Astrophysics Data System (ADS)
Roy, A.; De, S.; Arora, Bindiya; Sahoo, B. K.
2017-10-01
We present precise values of the dipole polarizabilities (α) of the ground [4{{{f}}}146{{s}}]{}2{{{S}}}1/2 and metastable [4{{{f}}}145{{d}}]{}2{{{D}}}3/2 states of Yb+, that are important in reducing systematics in the clock frequency of the [4{{{f}}}146{{s}}]{}2{{{S}}}1/2\\to [4{{{f}}}145{{d}}]{}2{{{D}}}3/2 transition. The static values of α for the ground and [4{{{f}}}145{{d}}]{}2{{{D}}}3/2 states are estimated to be 9.8(1)× {10}-40 {{{J}}{{m}}}2 {{{V}}}-2 and 17.6(5) × {10}-40 {{J}} {{{m}}}2 {{{V}}}-2, respectively, while the tensor contribution to the [4{{{f}}}145{{d}}]{}2{{{D}}}3/2 state as -12.3(3)× {10}-40 {{{J}}{{m}}}2 {{{V}}}-2 compared to the experimental value -13.6(22)× {10}-40 {{J}} {{{m}}}2 {{{V}}}-2. This corresponds to the differential scalar polarizability value of the above transition as -7.8(5) × {10}-40 {{{J}}{{m}}}2 {{{V}}}-2 in contrast to the available experimental value -6.9(1.4) × {10}-40 J m2 V-2 . This results in the black-body radiation shift of the clock transition as -0.44(3) Hz at the room temperature, which is large as compared to the previously estimated values. Using the dynamic α values, we report the tune-out and magic wavelengths that could be of interest to subdue systematics due to the Stark shifts and for constructing lattice optical clock using Yb+.
Comparing Dislodgeable 2,4-D Residues across Athletic Field Turfgrass Species and Time
Brosnan, James T.; Breeden, Gregory K.
2016-01-01
2,4-dimethylamine salt (2,4-D) is an herbicide commonly applied on athletic fields for broadleaf weed control that can dislodge from treated turfgrass. Dislodge potential is affected by numerous factors, including turfgrass canopy conditions. Building on previous research confirming herbicide-turfgrass dynamics can vary widely between species, field research was initiated in 2014 and 2015 in Raleigh, NC, USA to quantify dislodgeable 2,4-D residues from dormant hybrid bermudagrass (Cynodon dactylon L. x C. transvaalensis) and hybrid bermudagrass overseeded with perennial ryegrass (Lolium perenne L.), which are common athletic field playing surfaces in subtropical climates. Additionally, dislodgeable 2,4-D was compared at AM (7:00 eastern standard time) and PM (14:00) sample timings within a day. Samples collected from perennial ryegrass consistently resulted in greater 2,4-D dislodgment immediately after application (9.4 to 9.9% of applied) compared to dormant hybrid bermudagrass (2.3 to 2.9%), as well as at all AM compared to PM timings from 1 to 3 d after treatment (DAT; 0.4 to 6.3% compared to 0.1 to 0.8%). Dislodgeable 2,4-D did not differ across turfgrass species at PM sample collections, with ≤ 0.1% of the 2,4-D applied dislodged from 1 to 6 DAT, and 2,4-D detection did not occur at 12 and 24 DAT. In conclusion, dislodgeable 2,4-D from treated turfgrass can vary between species and over short time-scales within a day. This information should be taken into account in human exposure risk assessments, as well as by turfgrass managers and athletic field event coordinators to minimize 2,4-D exposure. PMID:27936174
Seuter, Sabine; Pehkonen, Petri; Heikkinen, Sami; Carlberg, Carsten
2013-12-01
The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes. © 2013.
4D scattering amplitudes and asymptotic symmetries from 2D CFT
Cheung, Clifford; de la Fuente, Anton; Sundrum, Raman
2017-01-25
We reformulate the scattering amplitudes of 4D at space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D at space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlatorsmore » via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the \\tracks" of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Lastly, we discuss a toy model for black hole horizons via a restriction to the Rindler region.« less
4D scattering amplitudes and asymptotic symmetries from 2D CFT
NASA Astrophysics Data System (ADS)
Cheung, Clifford; de la Fuente, Anton; Sundrum, Raman
2017-01-01
We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the "tracks" of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Finally, we discuss a toy model for black hole horizons via a restriction to the Rindler region.
Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto
2018-02-08
The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Marchal, Claire; Filinchuk, Yaroslav; Chen, Xiao-Yan; Imbert, Daniel; Mazzanti, Marinella
2009-01-01
Four picolinate building blocks were implemented into the multidentate linker N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]butylenediamine (H(4)tpabn) with a linear flexible spacer to promote the assembly of lanthanide-based 1D coordination polymers. The role of the linker in directing the geometry of the final assembly is evidenced by the different results obtained in the presence of Htpabn(3-) and tpabn(4-) ions. The tpabn(4-) ion leads to the desired 1D polymer {[Nd(tpabn)]H(3)O x 6 H(2)O}(infinity) (12). The Htpabn(3-) ion leads to the assembly of Tb(III) and Er(III) ions into 1D zigzag chains of the general formula {[M(Htpabn)] x xH(2)O}(infinity) (M = Tb, x = 14 (1); M = Tb, x = 8 (11); M = Er, x = 14 (2); M = Er, x = 5.5 (4)), a 2D network is formed by the Eu(III) ion (i.e., {[Eu(Htpabn)] x 10 H(2)O}(infinity) (7)), and both supramolecular isomers (1D and 2D) are obtained by the Tb(III) ion. The high flexibility of the polymeric chains results in a dynamic behavior with a solvent-induced reversible structural transition. The Tb(III)- and Eu(III)-containing polymers display high-luminescence quantum yields (38 and 18%, respectively). A sizeable near-IR luminescence emission is observed for the Er(III)- and Nd(III)-containing polymers when lattice water molecules are removed.
Lee, Shih-Huang; Chin, Chih-Hao; Chen, Wei-Kan; Huang, Wen-Jian; Hsieh, Chu-Chun
2011-05-14
We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C(2)H(3)N and C(2)H(2)N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N((2)D)+C(2)H(4) established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N((2)D) atom adds to the C=C π-bond of ethene (C(2)H(4)) to form a cyclic complex c-CH(2)(N)CH(2) that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C(2)H(3)N; c-CH(2)(N)CH+H is the dominant product channel. Subsequently, most C(2)H(3)N radicals, notably c-CH(2)(N)CH, further decompose to CH(2)CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.
Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue
Vierkotten, Sarah; Lindner, Michael; Königshoff, Melanie; Eickelberg, Oliver
2015-01-01
During the last decades, the study of cell behavior was largely accomplished in uncoated or extracellular matrix (ECM)-coated plastic dishes. To date, considerable cell biological efforts have tried to model in vitro the natural microenvironment found in vivo. For the lung, explants cultured ex vivo as lung tissue cultures (LTCs) provide a three-dimensional (3D) tissue model containing all cells in their natural microenvironment. Techniques for assessing the dynamic live interaction between ECM and cellular tissue components, however, are still missing. Here, we describe specific multidimensional immunolabeling of living 3D-LTCs, derived from healthy and fibrotic mouse lungs, as well as patient-derived 3D-LTCs, and concomitant real-time four-dimensional multichannel imaging thereof. This approach allowed the evaluation of dynamic interactions between mesenchymal cells and macrophages with their ECM. Furthermore, fibroblasts transiently expressing focal adhesions markers incorporated into the 3D-LTCs, paving new ways for studying the dynamic interaction between cellular adhesions and their natural-derived ECM. A novel protein transfer technology (FuseIt/Ibidi) shuttled fluorescently labeled α-smooth muscle actin antibodies into the native cells of living 3D-LTCs, enabling live monitoring of α-smooth muscle actin-positive stress fibers in native tissue myofibroblasts residing in fibrotic lesions of 3D-LTCs. Finally, this technique can be applied to healthy and diseased human lung tissue, as well as to adherent cells in conventional two-dimensional cell culture. This novel method will provide valuable new insights into the dynamics of ECM (patho)biology, studying in detail the interaction between ECM and cellular tissue components in their natural microenvironment. PMID:26092995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Y; Fan, Z; Yang, W
Purpose: 4D-CT is often limited by motion artifacts, low temporal resolution, and poor phase-based target definition. We recently developed a novel k-space self-gated 4D-MRI technique with high spatial and temporal resolution. The goal here is to geometrically validate 4D-MRI using a MRI-CT compatible respiratory motion phantom and comparison to 4D-CT. Methods: 4D-MRI was acquired using 3T spoiled gradient echo-based 3D projection sequences. Respiratory phases were resolved using self-gated k-space lines as the motion surrogate. Images were reconstructed into 10 temporal bins with 1.56×1.56×1.56mm3. A MRI-CT compatible phantom was designed with a 23mm diameter ball target filled with highconcentration gadolinium(Gd) gelmore » embedded in a 35×40×63mm3 plastic box stabilized with low-concentration Gd gel. The whole phantom was driven by an air pump. Human respiratory motion was mimicked using the controller from a commercial dynamic phantom (RSD). Four breathing settings (rates/depths: 10s/20mm, 6s/15mm, 4s/10mm, 3s/7mm) were scanned with 4D-MRI and 4D-CT (slice thickness 1.25mm). Motion ground-truth was obtained from input signals and real-time video recordings. Reconstructed images were imported into Eclipse(Varian) for target contouring. Volumes and target positions were compared with ground-truth. Initial human study was investigated on a liver patient. Results: 4D-MRI and 4D-CT scans for the different breathing cycles were reconstructed with 10 phases. Target volume in each phase was measured for both 4D-CT and 4D-MRI. Volume percentage difference for the 6.37ml target ranged from 6.67±5.33 to 11.63±5.57 for 4D-CT and from 1.47±0.52 to 2.12±1.60 for 4D-MRI. The Mann-Whitney U-test shows the 4D-MRI is significantly superior to 4D-CT (p=0.021) for phase-based target definition. Centroid motion error ranges were 1.35–1.25mm (4D-CT), and 0.31–0.12mm (4D-MRI). Conclusion: The k-space self-gated 4D-MRI we recently developed can accurately determine phase-based target volume while avoiding typical motion artifacts found in 4D-CT, and is being further studied for use in GI targeting and motion management. This work supported in part by grant 1R03CA173273-01.« less
Disruption of sheet-like structures in Alfvénic turbulence by magnetic reconnection
NASA Astrophysics Data System (ADS)
Mallet, A.; Schekochihin, A. A.; Chandran, B. D. G.
2017-07-01
We propose a mechanism whereby the intense, sheet-like structures naturally formed by dynamically aligning Alfvénic turbulence are destroyed by magnetic reconnection at a scale \\hat{λ }_D, larger than the dissipation scale predicted by models of intermittent, dynamically aligning turbulence. The reconnection process proceeds in several stages: first, a linear tearing mode with N magnetic islands grows and saturates, and then the X-points between these islands collapse into secondary current sheets, which then reconnect until the original structure is destroyed. This effectively imposes an upper limit on the anisotropy of the structures within the perpendicular plane, which means that at scale \\hat{λ }_D the turbulent dynamics change: at scales larger than \\hat{λ }_D, the turbulence exhibits scale-dependent dynamic alignment and a spectral index approximately equal to -3/2, while at scales smaller than \\hat{λ }_D, the turbulent structures undergo a succession of disruptions due to reconnection, limiting dynamic alignment, steepening the effective spectral index and changing the final dissipation scale. The scaling of \\hat{λ }_D with the Lundquist (magnetic Reynolds) number S_{L_\\perp } depends on the order of the statistics being considered, and on the specific model of intermittency; the transition between the two regimes in the energy spectrum is predicted at approximately \\hat{λ }_D˜ S_{L_\\perp }^{-0.6}. The spectral index below \\hat{λ }_D is bounded between -5/3 and -2.3. The final dissipation scale is at \\hat{λ }_{η ,∞}˜ S_{L_\\perp }^{-3/4}, the same as the Kolmogorov scale arising in theories of turbulence that do not involve scale-dependent dynamic alignment.
Reproducibility of the dynamics of facial expressions in unilateral facial palsy.
Alagha, M A; Ju, X; Morley, S; Ayoub, A
2018-02-01
The aim of this study was to assess the reproducibility of non-verbal facial expressions in unilateral facial paralysis using dynamic four-dimensional (4D) imaging. The Di4D system was used to record five facial expressions of 20 adult patients. The system captured 60 three-dimensional (3D) images per second; each facial expression took 3-4seconds which was recorded in real time. Thus a set of 180 3D facial images was generated for each expression. The procedure was repeated after 30min to assess the reproducibility of the expressions. A mathematical facial mesh consisting of thousands of quasi-point 'vertices' was conformed to the face in order to determine the morphological characteristics in a comprehensive manner. The vertices were tracked throughout the sequence of the 180 images. Five key 3D facial frames from each sequence of images were analyzed. Comparisons were made between the first and second capture of each facial expression to assess the reproducibility of facial movements. Corresponding images were aligned using partial Procrustes analysis, and the root mean square distance between them was calculated and analyzed statistically (paired Student t-test, P<0.05). Facial expressions of lip purse, cheek puff, and raising of eyebrows were reproducible. Facial expressions of maximum smile and forceful eye closure were not reproducible. The limited coordination of various groups of facial muscles contributed to the lack of reproducibility of these facial expressions. 4D imaging is a useful clinical tool for the assessment of facial expressions. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Selective 4D modelling framework for spatial-temporal land information management system
NASA Astrophysics Data System (ADS)
Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos
2015-06-01
This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.
Canstein, C; Cachot, P; Faust, A; Stalder, A F; Bock, J; Frydrychowicz, A; Küffer, J; Hennig, J; Markl, M
2008-03-01
The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used to transform aortic geometries as measured by contrast-enhanced MR angiography into realistic vascular models with large anatomical coverage. Integration into a flow circuit with patient-specific pulsatile in-flow conditions and application of flow-sensitive 4D MRI permitted detailed analysis of local and global 3D flow dynamics in a realistic vascular geometry. Visualization of characteristic 3D flow patterns and quantitative comparisons of the in vitro experiments with in vivo data and CFD simulations in identical vascular geometries were performed to evaluate the accuracy of vascular model systems. The results indicate the potential of such patient-specific model systems for detailed experimental simulation of realistic vascular hemodynamics. Further studies are warranted to examine the influence of refined boundary conditions of the human circulatory system such as fluid-wall interaction and their effect on normal and pathological blood flow characteristics associated with vascular geometry. (c) 2008 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Jing; McLawhorn, Robert; Read, Paul W.
Purpose: To investigate the effects of breathing variation on gating window internal target volume (ITV{sub GW}) in respiratory gated radiation therapy. Method and Materials: Two-dimensional dynamic MRI (dMRI) of lung motion was acquired in ten volunteers and eight lung cancer patients. Resorted dMRI using 4DCT acquisition method (RedCAM) was generated for selected subjects by simulating the image rebinning process. A dynamic software generated phantom (dSGP) was created by moving a solid circle (to mimic the ''tumor'') with dMRI-determined motion trajectories. The gating window internal target area (ITA{sub GW}, 2D counterpart of ITV{sub GW}) was determined from both RedCAM and dSGP/dMRI.more » Its area (A), major axis (L1), minor axis (L2), and similarity (S) were calculated and compared. Results: In the phantom study of 3 cm tumor, measurements of the ITA{sub GW} from dSGP (A=10.0{+-}1.3 cm{sup 2}, L1=3.8{+-}0.4 cm, and L2=3.3{+-}0.1 cm) are significantly (p<0.001) greater than those from RedCAM (A=8.5{+-}0.7 cm{sup 2}, L1=3.5{+-}0.2 cm, and L2=3.1{+-}0.1 cm). Similarly, the differences are significantly greater (p<0.001) for the 1 cm tumor (A=1.9{+-}0.5 cm{sup 2}, L1=1.9{+-}0.4 cm, and L2=1.3{+-}0.1 cm in dSGP; A=1.3{+-}0.1 cm{sup 2}, L1=1.5{+-}0.2 cm, and L2=1.1{+-}0.1 cm in RedCAM). In patient studies, measurements of the ITA{sub GW} from dMRI (A=15.5{+-}8.2 cm{sup 2}, L1=5.0{+-}1.1 cm, and L2=3.8{+-}1.2 cm) are also significantly greater (p<0.05) than those from RedCAM (A=13.2{+-}8.5 cm{sup 2}, L1=4.3{+-}1.4 cm, and L2=3.7{+-}1.2 cm). Similarities were 0.9{+-}0.1, 0.8{+-}0.1, and 0.8{+-}0.1 in the 3 cm tumor phantom, 1 cm tumor phantom, and patient studies, respectively. Conclusion: ITV{sub GW} can be underestimated by 4DCT due to breathing variations. An additional margin may be needed to account for this potential error in generating a PTV{sub GW}. Cautions need to be taken when generating ITV{sub GW} from 4DCT in respiratory gated radiation therapy, especially for small tumors (<3 cm) with a large motion range (>1 cm).« less
Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.
Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P
2015-10-01
Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.
Dynamic three-dimensional model of the coronary circulation
NASA Astrophysics Data System (ADS)
Lehmann, Glen; Gobbi, David G.; Dick, Alexander J.; Starreveld, Yves P.; Quantz, M.; Holdsworth, David W.; Drangova, Maria
2001-05-01
A realistic numerical three-dimensional (3D) model of the dynamics of human coronary arteries has been developed. High- resolution 3D images of the coronary arteries of an excised human heart were obtained using a C-arm based computed tomography (CT) system. Cine bi-plane coronary angiograms were then acquired from a patient with similar coronary anatomy. These angiograms were used to determine the vessel motion, which was applied to the static 3D coronary tree. Corresponding arterial bifurcations were identified in the 3D CT image and in the 2D angiograms. The 3D positions of the angiographic landmarks, which were known throughout the cardiac cycle, were used to warp the 3D image via a non-linear thin-plate spline algorithm. The result was a set or 30 dynamic volumetric images sampling a complete cardiac cycle. To the best of our knowledge, the model presented here is the first dynamic 3D model that provides a true representation of both the geometry and motion of a human coronary artery tree. In the future, similar models can be generated to represent different coronary anatomy and motion. Such models are expected to become an invaluable tool during the development of dynamic imaging techniques such as MRI, multi-slice CT and 3D angiography.
Respiratory motion resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK)
Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng
2017-01-01
Purpose To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. Methods The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel ROtating Cartesian K-space (ROCK) reordering method was designed that incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in 6 healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. Results The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2×1.2×1.6mm3 and 8 respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a −12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2±4.5% for the diaphragm, 8.2±4.9% and 8.9±5.1% for the right and left kidney. Conclusion The proposed 4D-MRI technique could provide high resolution, high quality, respiratory motion resolved 4D images with good soft-tissue contrast and are free of the “stitching” artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. PMID:28133752
Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK).
Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng
2017-04-01
To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel rotating cartesian k-space (ROCK) reordering method was designed which incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in six healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2 × 1.2 × 1.6 mm 3 and eight respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a -12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2 ± 4.5% for the diaphragm, 8.2 ± 4.9% and 8.9 ± 5.1% for the right and left kidney. The proposed 4D-MRI technique could provide high-resolution, high-quality, respiratory motion-resolved 4D images with good soft-tissue contrast and are free of the "stitching" artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. © 2017 American Association of Physicists in Medicine.
A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images
Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.
1986-01-01
The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16
Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal
Frietsch, B.; Bowlan, J.; Carley, R.; Teichmann, M.; Wienholdt, S.; Hinzke, D.; Nowak, U.; Carva, K.; Oppeneer, P. M.; Weinelt, M.
2015-01-01
The Heisenberg–Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale. PMID:26355196
Yu, Zheng-yang; Zheng, Shu-sen; Chen, Lei-ting; He, Xiao-qian; Wang, Jian-jun
2005-07-01
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
Yu, Zheng-yang; Zheng, Shu-sen; Chen, Lei-ting; He, Xiao-qian; Wang, Jian-jun
2005-01-01
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging. PMID:15973760
Recent software developments for biomechanical assessment
NASA Astrophysics Data System (ADS)
Greaves, John O. B.
1990-08-01
While much of the software developed in research laboratories is narrow in focus and suited for a specific experiment, some of it is broad enough and of high enough quality to be useful to others in solving similar problems. Several biomechanical assessment packages are now beginning to emerge, including: * 3D research biomechanics (5- and 6-DOF) with kinematics, kinetics, 32-channel analog data subsystem, and project management. * 3D full-body gait analysis with kinematics, kinetics, EMG charts, and force plate charts. * 2D dynamic rear-foot assessment. * 2D occupational biomechanics lifting task and personnel assessments. * 2D dynamic gait analysis. * Multiple 2D dynamic spine assessments. * 2D sport and biomechanics assessments with kinematics and kinetics. * 2D and 3D equine gait assessments.
On the emergence of the ΛCDM model from self-interacting Brans-Dicke theory in d= 5
NASA Astrophysics Data System (ADS)
Reyes, Luz Marina; Perez Bergliaffa, Santiago Esteban
2018-01-01
We investigate whether a self-interacting Brans-Dicke theory in d=5 without matter and with a time-dependent metric can describe, after dimensional reduction to d=4, the FLRW model with accelerated expansion and non-relativistic matter. By rewriting the effective 4-dimensional theory as an autonomous 3-dimensional dynamical system and studying its critical points, we show that the ΛCDM cosmology cannot emerge from such a model. This result suggests that a richer structure in d=5 may be needed to obtain the accelerated expansion as well as the matter content of the 4-dimensional universe.
Ding, Feng; Sharma, Shantanu; Chalasani, Poornima; Demidov, Vadim V.; Broude, Natalia E.; Dokholyan, Nikolay V.
2008-01-01
RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular dynamics (DMD) simulations, incorporating base-pairing and base-stacking interactions. We demonstrate correct folding of 150 structurally diverse RNA sequences. The majority of DMD-predicted 3D structures have <4 Å deviations from experimental structures. The secondary structures corresponding to the predicted 3D structures consist of 94% native base-pair interactions. Folding thermodynamics and kinetics of tRNAPhe, pseudoknots, and mRNA fragments in DMD simulations are in agreement with previous experimental findings. Folding of RNA molecules features transient, non-native conformations, suggesting non-hierarchical RNA folding. Our method allows rapid conformational sampling of RNA folding, with computational time increasing linearly with RNA length. We envision this approach as a promising tool for RNA structural and functional analyses. PMID:18456842
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, A; Prior, P; Gore, E
Purpose: 4DCT has been widely used to generate internal tumor volume (ITV) for a lung tumor for treatment planning. However, lung tumors may show different respiratory motion on the treatment day. The purpose of this study is to evaluate 4D KV conebeam computed tomography (CBCT) for monitoring tumor interfractional motion variation between simulation and each fraction of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: 4D KV CBCT was acquired with the Elekta XVI system. The accuracy of 4D KV CBCT for image-guided radiation therapy (IGRT) was tested with a dynamic thorax motion phantom (CIRS, Virginia) with a linearmore » amplitude of 2 cm. In addition, an adult anthropomorphic phantom (Alderson, Rando) with optically stimulated luminescence (OSL) dosimeters embedded at the center and periphery of a slab of solid water was used to measure the dose of 4D KV CBCT and to compare it with the dose with 3D KV CBCT. The image registration was performed by aligning\\ each phase images of 4D KV CBCT to the planning images and the final couch shifts were calculated as a mean of all these individual shifts along each direction.A workflow was established based on these quality assurance tests for lung cancer patients. Results: 4D KV CBCT does not increase imaging dose in comparison to 3D KV CBCT. Acquisition of 4D KV CBCT is 4 minutes as compared to 2 minutes for 3D KV CBCT. Most of patients showed a small daily variation of tumor respiratory motion about 2 mm. However, some patients may have more than 5 mm variations of tumor respiratory motion. Conclusion: The radiation dose does not increase with 4D KV CBCT. 4D KV CBCT is a useful tool for monitoring interfractional variations of tumor respiratory motion before SBRT of lung cancer patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mory, Cyril, E-mail: cyril.mory@philips.com; Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes; Auvray, Vincent
2014-02-15
Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method,more » which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.« less
NASA Astrophysics Data System (ADS)
Sezer, Güneş Günay; Arıcı, Mürsel; Erucar, İlknur; Yeşilel, Okan Zafer; Özel, Handan Ucun; Gemici, Betül Tuba; Erer, Hakan
2017-11-01
Two new coordination polymers (CPs) - [Zn(μ4-ppda)(μ-abpy)0.5]n(1) and [Cd(μ3-opda)(μ-abpy)0.5(H2O)]n(2) (o/ppda = 1,2/1,4-phenylenediacetate, abpy = 4,4‧-azobis(pyridine)) - have been synthesized by using Zn(II)/Cd(II) salts in the presence of o- and p-phenylenediacetic acid and abpy under hydrothermal conditions. Their structures have been characterized by FT-IR spectroscopy, elemental analysis, X-ray powder diffraction and single crystal X-ray diffraction techniques. The structural diversities were observed depending on anionic ligands and metal centers in the synthesized complexes. Complex 1 consists of a 2-fold interpenetrated 3D+3D→3D framework with pcu topology while complex 2 has a 2D structure with sql topology. The adsorption of methylene blue (MB) was studied to examine the potential of the title CPs for removal of dyes from aqueous solution. Molecular dynamics (MD) simulations were also performed to examine diffusion of MB in 1 and 2. Thermal and optical properties of two complexes were also discussed.
Spinor description of D = 5 massless low-spin gauge fields
NASA Astrophysics Data System (ADS)
Uvarov, D. V.
2016-07-01
Spinor description for the curvatures of D = 5 Yang-Mills, Rarita-Schwinger and gravitational fields is elaborated. Restrictions imposed on the curvature spinors by the dynamical equations and Bianchi identities are analyzed. In the absence of sources symmetric curvature spinors with 2s indices obey first-order equations that in the linearized limit reduce to Dirac-type equations for massless free fields. These equations allow for a higher-spin generalization similarly to 4d case. Their solution in the form of the integral over Lorentz-harmonic variables parametrizing coset manifold {SO}(1,4)/({SO}(1,1)× {ISO}(3)) isomorphic to the three-sphere is considered. Superparticle model that contains such Lorentz harmonics as dynamical variables, as well as harmonics parametrizing the two-sphere {SU}(2)/U(1) is proposed. The states in its spectrum are given by the functions on S 3 that upon integrating over the Lorentz harmonics reproduce on-shell symmetric curvature spinors for various supermultiplets of D = 5 space-time supersymmetry.
Live dynamic analysis of the developing cardiovascular system in mice
NASA Astrophysics Data System (ADS)
Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Larina, Irina V.
2017-02-01
The study of the developing cardiovascular system in mice is important for understanding human cardiogenesis and congenital heart defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development under the regulation of dynamic factors like contractile force and blood flow using optical coherence tomography (OCT). We have previously developed an OCT based approach that combines static embryo culture and advanced image processing with computational modeling to live-image mouse embryos and obtain 4D (3D+time) cardiodynamic datasets. Here we present live 4D dynamic blood flow imaging of the early embryonic mouse heart in correlation with heart wall movement. We are using this approach to understand how specific mutations impact heart wall dynamics, and how this influences flow patterns and cardiogenesis. We perform studies in mutant embryos with cardiac phenotypes such as myosin regulatory light chain 2, atrial isoform (Mlc2a). This work is brings us closer to understanding the connections between dynamic mechanical factors and gene programs responsible for early cardiovascular development.
NASA Astrophysics Data System (ADS)
Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei
2016-04-01
We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.
4D blood flow mapping using SPIM-microPIV in the developing zebrafish heart
NASA Astrophysics Data System (ADS)
Zickus, Vytautas; Taylor, Jonathan M.
2018-02-01
Fluid-structure interaction in the developing heart is an active area of research in developmental biology. However, investigation of heart dynamics is mostly limited to computational uid dynamics simulations using heart wall structure information only, or single plane blood ow information - so there is a need for 3D + time resolved data to fully understand cardiac function. We present an imaging platform combining selective plane illumination microscopy (SPIM) with micro particle image velocimetry (μPIV) to enable 3D-resolved flow mapping in a microscopic environment, free from many of the sources of error and bias present in traditional epi uorescence-based μPIV systems. By using our new system in conjunction with optical heart beat synchronization, we demonstrate the ability obtain non-invasive 3D + time resolved blood flow measurements in the heart of a living zebrafish embryo.
Ahmad, Moiz; Balter, Peter; Pan, Tinsu
2011-10-01
Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time. 4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts.
Ahmad, Moiz; Balter, Peter; Pan, Tinsu
2011-01-01
Purpose: Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4–6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. Methods: The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Results: Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3–8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time. Conclusions: 4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts. PMID:21992381
Gerlach, Jörg C; Lin, Yen-Chih; Brayfield, Candace A; Minteer, Danielle M; Li, Han; Rubin, J Peter; Marra, Kacey G
2012-01-01
To further differentiate adipose-derived stem cells (ASCs) into mature adipocytes and create three-dimensional (3D) adipose tissue in vitro, we applied multicompartment hollow fiber-based bioreactor technology with decentral mass exchange for more physiological substrate gradients and integral oxygenation. We hypothesize that a dynamic 3D perfusion in such a bioreactor will result in longer-term culture of human adipocytes in vitro, thus providing metabolically active tissue serving as a diagnostic model for screening drugs to treat diabetes. ASCs were isolated from discarded human abdominal subcutaneous adipose tissue and then inoculated into dynamic 3D culture bioreactors to undergo adipogenic differentiation. Insulin-stimulated glucose uptake from the medium was assessed with and without TNF-alpha. 3D adipose tissue was generated in the 3D-bioreactors. Immunohistochemical staining indicated that 3D-bioreactor culture displayed multiple mature adipocyte markers with more unilocular morphologies as compared with two-dimensional (2D) cultures. Results of real-time polymerase chain reaction showed 3D-bioreactor treatment had more efficient differentiation in fatty acid-binding protein 4 expression. Repeated insulin stimulation resulted in increased glucose uptake, with a return to baseline between testing. Importantly, TNF-alpha inhibited glucose uptake, an indication of the metabolic activity of the tissue. 3D bioreactors allow more mature adipocyte differentiation of ASCs compared with traditional 2D culture and generate adipose tissue in vitro for up to 2 months. Reproducible metabolic activity of the adipose tissue in the bioreactor was demonstrated, which is potentially useful for drug discovery. We present here, to the best of our knowledge for the first time, the development of a coherent 3D high density fat-like tissue consisting of unilocular structure from primary adipose stem cells in vitro.
Gerlach, Jörg C.; Lin, Yen-Chih; Brayfield, Candace A.; Minteer, Danielle M.; Li, Han; Rubin, J. Peter
2012-01-01
To further differentiate adipose-derived stem cells (ASCs) into mature adipocytes and create three-dimensional (3D) adipose tissue in vitro, we applied multicompartment hollow fiber-based bioreactor technology with decentral mass exchange for more physiological substrate gradients and integral oxygenation. We hypothesize that a dynamic 3D perfusion in such a bioreactor will result in longer-term culture of human adipocytes in vitro, thus providing metabolically active tissue serving as a diagnostic model for screening drugs to treat diabetes. ASCs were isolated from discarded human abdominal subcutaneous adipose tissue and then inoculated into dynamic 3D culture bioreactors to undergo adipogenic differentiation. Insulin-stimulated glucose uptake from the medium was assessed with and without TNF-alpha. 3D adipose tissue was generated in the 3D-bioreactors. Immunohistochemical staining indicated that 3D-bioreactor culture displayed multiple mature adipocyte markers with more unilocular morphologies as compared with two-dimensional (2D) cultures. Results of real-time polymerase chain reaction showed 3D-bioreactor treatment had more efficient differentiation in fatty acid-binding protein 4 expression. Repeated insulin stimulation resulted in increased glucose uptake, with a return to baseline between testing. Importantly, TNF-alpha inhibited glucose uptake, an indication of the metabolic activity of the tissue. 3D bioreactors allow more mature adipocyte differentiation of ASCs compared with traditional 2D culture and generate adipose tissue in vitro for up to 2 months. Reproducible metabolic activity of the adipose tissue in the bioreactor was demonstrated, which is potentially useful for drug discovery. We present here, to the best of our knowledge for the first time, the development of a coherent 3D high density fat-like tissue consisting of unilocular structure from primary adipose stem cells in vitro. PMID:21902468
Choi, Heekyoung; Cho, Kang Jin; Seo, Hyowon; Ahn, Junho; Liu, Jinying; Lee, Shim Sung; Kim, Hyungjun; Feng, Chuanliang; Jung, Jong Hwa
2017-12-13
Transfer and inversion of supramolecular chirality from chiral calix[4]arene analogs (3D and 3L) with an alanine moiety to an achiral bipyridine derivative (1) with glycine moieties in a coassembled hydrogel are demonstrated. Molecular chirality of 3D and 3L could transfer supramolecular chirality to an achiral bipyridine derivative 1. Moreover, addition of 0.6 equiv of 3D or 3L to 1 induced supramolecular chirality inversion of 1. More interestingly, the 2D-sheet structure of the coassembled hydrogels formed with 0.2 equiv of 3D or 3L changed to a rolled-up tubular structure in the presence of 0.6 equiv of 3D or 3L. The chirality inversion and morphology change are mainly mediated by intermolecular hydrogen-bonding interactions between the achiral and chiral molecules, which might be induced by reorientations of the assembled molecules, confirmed by density functional theory calculations.
Suzuki, N; Sakuma, T; Michi, K; Ueno, T
1981-01-01
The tongue movements during the production of Japanese speech sounds in five patients with anterior openbite associated with 1-5 mm of overjet were investigated using dynamic palatography and cinematography. The dynamic palatograph is an electric device capable of recording constantly changing palatolingual contact as a function of time by use of a thin plastic artificial palate equipped with 63 electrodes. As a result, the following articulatory characteristics were observed during the utterance of the Japanese sounds /s/,/f/,/t/,/d/,/n/,/r/,/ts/,/tf/,/dz/,/d3/. (1) The area of maximal palatolingual contacts was smaller than the normal. (2) Forward positioning of the tongue was confirmed in all cases. (3) The interruption of the breath stream was made with the dorsal surface of the tongue and the maxillary anterior teeth. (4) The sounds /s/,/f/,/dz/,/d3/, were recognized as distorted sound as /theta/, in English.
Wang, Yu-Ling; Chen, Lin; Liu, Cai-Ming; Du, Zi-Yi; Chen, Li-Li; Liu, Qing-Yan
2016-05-04
Organizing magnetically isolated 3d transition metal ions, which behave as single-ion magnet (SIM) units, in a coordination network is a promising approach to design novel single-molecule magnets (SMMs). Herein 3D chiral and 2D achiral cobalt(ii) coordination compounds based on single metal nodes with a 4-(benzimidazole-1-yl)benzoic acid (Hbmzbc) ligand, namely, [Co(bmzbc)2(1,2-etdio)]n () (1,2-etdio = 1,2-ethanediol) and [Co(bmzbc)2(Hbmzbc)]n (), have been synthesized and structurally characterized. The 3D chiral structure with 2-fold interpenetrating qtz topological nets consisting of totally achiral components was obtained via spontaneous resolution, while the achiral structure is a 2D (4,4) net. In both structures, individual cobalt(ii) ions are spatially well separated by the long organic ligands in the well-defined networks. Magnetic measurements on and showed field-induced slow magnetic relaxation resulting from single-ion anisotropy of the individual Co(ii) ions. Analysis of the dynamic ac susceptibilities with the Arrhenius law afforded an anisotropy energy barrier of 16.8(3) and 31.3(2) K under a 2 kOe static magnetic field for and , respectively. The distinct coordination environments of the Co(ii) ions in and lead to the different anisotropic energy barriers.
Clément, Julien; Hagemeister, Nicola; Aissaoui, Rachid; de Guise, Jacques A
2014-01-01
Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to contrast simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limbs during quasi-stat ic and fast-dynamic squats in healthy and pathological subjects. Ten subjects were recruited: five healthy and five osteoarthritis subjects. A motion-capture system, force plate, and surface electrodes respectively recorded 3D kinematics, 3D kinetics and EMG of the lower limbs. Each subject performed a quasi-static squat and several fast-dynamic squats from 0° to 70° of knee flexion. The two squatting conditions were compared for positions where quasi-static and fast-dynamic knee flexion-extension angles were similar. Mean differences between quasi-static and fast-dynamic squats were 1.5° for rotations, 1.9 mm for translations, 2.1% of subjects' body weight for ground reaction forces, 6.6 Nm for torques, 11.2 mm for center of pressure, and 6.3% of maximum fast-dynamic electromyographic activities for EMG. Some significant differences (p<0.05) were found in internal rotation, anterior translation, vertical force and EMG. All differences between quasi-static and fast-dynamic squats were small. 69.5% of compared data were equivalent. In conclusion, this study showed that quasi-static and fast-dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG, although some reservations still remain. Copyright © 2014 Elsevier B.V. All rights reserved.
Dynamics of Proton Spin: Role of qqq Force
NASA Astrophysics Data System (ADS)
Mitra, A. N.
The analytic structure of the qqq wave function, obtained recently in the high momentum regime of QCD, is employed for the formulation of baryonic transition amplitudes via quark loops. A new aspect of this study is the role of a direct (Y -shaped, Mercedes-Benz type) qqq force in generating the qqq wave function The dynamics is that of a Salpeter-like equation (3D support for the kernel) formulated covariantly on the light front, a la Markov-Yukawa Transversality Principle (MYTP) which warrants a 2-way interconnection between the 3D and 4D Bethe-Salpeter (BSE) forms for 2 as well as 3 fermion quarks. The dynamics of this 3-body force shows up through a characteristic singularity in the hypergeometric differential equation for the 3D wave function ϕ, corresponding to a negative eigenvalue of the spin operator iσ1·σ2 × σ3 which is an integral part of the qqq force. As a first application of this wave function to the problem of the proton spin anomaly, the two-gluon contribution to the anomaly yields an estimate of the right sign, although somewhat smaller in magnitude.
Ki, Bo-Min; Huh, In Ae; Choi, Jung-Hyun; Cho, Kyung-Suk
2018-04-16
The relationships between nutrient dynamics and the bacterial community at the water-sediment interface were investigated using the results of nutrient release fluxes, bacterial communities examined by 16S rRNA pyrosequencing and canonical correlation analysis (CCA) accompanied by lab-scale benthic chamber experiment. The nutrient release fluxes from the sediments into the water were as follows: -3.832 to 12.157 mg m -2 d -1 for total phosphorus, 0.049 to 9.993 mg m -2 d -1 for PO 4 -P, -2.011 to 41.699 mg m -2 d -1 for total nitrogen, -7.915 to -0.074 mg m -2 d -1 for NH 3 -N, and -17.940 to 1.209 mg m -2 d -1 for NO 3 -N. To evaluate the relationship between the bacterial communities and environmental variables, CCA was conducted in three representative conditions: in the overlying water, in the sediment at a depth of 0-5 cm, and in the sediment at a depth of 5-15 cm. CCA results showed that environmental variables such as nutrient release fluxes (TN, NH 4 , NO 3 , TP, and PO 4 ) and water chemical parameters (pH, DO, COD, and temperature) were highly correlated with the bacterial communities. From the results of the nutrient release fluxes and the bacterial community, this study proposed the hypothesis for bacteria involved in the nutrient dynamics at the interface between water and sediment. In the sediment, sulfate-reducing bacteria (SRB) such as Desulfatibacillum, Desulfobacterium, Desulfomicrobium, and Desulfosalsimonas are expected to contribute to the decomposition of organic matter, and release of ammonia (NH 4 + ) and phosphate (PO 4 3- ). The PO 4 3- released into the water layer was observed by the positive fluxes of PO 4 3- . The NH 4 + released from the sediment was rapidly oxidized by the methane-oxidizing bacteria (MOB). This study observed in the water layer dominantly abundant MOB of Methylobacillus, Methylobacter, Methylocaldum, and Methylophilus. The nitrate (NO 3 - ) accumulation caused by the oxidation environment of the water layer moved back to the sediment, which led to the relatively large negative fluxes of NO 3 - , compared to the small negative fluxes of NH 4 + .
Lattice Boltzmann Method for 3-D Flows with Curved Boundary
NASA Technical Reports Server (NTRS)
Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi
2002-01-01
In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.
Multiyear Statistics of 2-D Shortwave Radiative Effects at Three ARM Sites
NASA Technical Reports Server (NTRS)
Varnai, Tamas
2010-01-01
This study examines the importance of horizontal photon transport effects, which are not considered in the 1-D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference between 2-D and 1-D radiative calculations for 2-D vertical cross-sections of clouds that were observed at three sites over 2- to 3-year periods. The results show that 2-D effects increase multiyear 24-hour average total solar absorption by about 4.1 W/sq m, 1.2 W/sq m, and 0.3 W/sq m at a tropical, mid-latitude, and arctic site, respectively. However, 2-D effects are often much larger than these average values, especially for high sun and for convective clouds. The results also reveal a somewhat unexpected behavior, that horizontal photon transport often enhances solar heating even for oblique sun. These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently multidimensional nature of shortwave radiative processes.
Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, King C.; Evans, James W.; Liu, Da -Jiang
The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D N ~ N –β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for “perfect” sizes N p = L 2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for N p+3, Nmore » p+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes N p+1 and N p+2. D N versus N oscillates strongly between the slowest branch (for N p+3) and the fastest branch (for N p+1). All branches merge for N = O(10 2), but macroscale behavior is only achieved for much larger N = O(10 3). Here, this analysis reveals the unprecedented diversity of behavior on the nanoscale.« less
Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters
Lai, King C.; Evans, James W.; Liu, Da -Jiang
2017-11-27
The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D N ~ N –β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for “perfect” sizes N p = L 2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for N p+3, Nmore » p+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes N p+1 and N p+2. D N versus N oscillates strongly between the slowest branch (for N p+3) and the fastest branch (for N p+1). All branches merge for N = O(10 2), but macroscale behavior is only achieved for much larger N = O(10 3). Here, this analysis reveals the unprecedented diversity of behavior on the nanoscale.« less
Dobi, Krisztina; Hajdú, István; Flachner, Beáta; Fabó, Gabriella; Szaszkó, Mária; Bognár, Melinda; Magyar, Csaba; Simon, István; Szisz, Dániel; Lőrincz, Zsolt; Cseh, Sándor; Dormán, György
2014-05-28
Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost effective approach. If structures of active compounds are available rapid 2D similarity search can be performed on multimillion compound databases but the generated library requires further focusing by various 2D/3D chemoinformatics tools. We report here a combination of the 2D approach with a ligand-based 3D method (Screen3D) which applies flexible matching to align reference and target compounds in a dynamic manner and thus to assess their structural and conformational similarity. In the first case study we compared the 2D and 3D similarity scores on an existing dataset derived from the biological evaluation of a PDE5 focused library. Based on the obtained similarity metrices a fusion score was proposed. The fusion score was applied to refine the 2D similarity search in a second case study where we aimed at selecting and evaluating a PDE4B focused library. The application of this fused 2D/3D similarity measure led to an increase of the hit rate from 8.5% (1st round, 47% inhibition at 10 µM) to 28.5% (2nd round at 50% inhibition at 10 µM) and the best two hits had 53 nM inhibitory activities.
Togao, Osamu; Hiwatashi, Akio; Obara, Makoto; Yamashita, Koji; Momosaka, Daichi; Nishimura, Ataru; Arimura, Koichi; Hata, Nobuhiro; Yoshimoto, Koji; Iihara, Koji; Van Cauteren, Marc; Honda, Hiroshi
2018-05-08
To evaluate the performance of four-dimensional pseudo-continuous arterial spin labeling (4D-pCASL)-based angiography using CENTRA-keyhole and view sharing (4D-PACK) in the visualization of flow dynamics in distal cerebral arteries and leptomeningeal anastomosis (LMA) collaterals in moyamoya disease in comparison with contrast inherent inflow-enhanced multiphase angiography (CINEMA), with reference to digital subtraction angiography (DSA). Thirty-two cerebral hemispheres from 19 patients with moyamoya disease (mean age, 29.7 ± 19.6 years; five males, 14 females) underwent both 4D-MR angiography and DSA. Qualitative evaluations included the visualization of anterograde middle cerebral artery (MCA) flow and retrograde flow via LMA collaterals with reference to DSA. Quantitative evaluations included assessments of the contrast-to-noise ratio (CNR) on these vessels. The linear mixed-effect model was used to compare the 4D-PACK and CINEMA methods. The vessel visualization scores were significantly higher with 4D-PACK than with CINEMA in the visualization of anterograde flow for both Observer 1 (CINEMA, 3.53 ± 1.39; 4D-PACK, 4.53 ± 0.80; p < 0.0001) and Observer 2 (CINEMA, 3.50±1.39; 4D-PACK, 4.31 ± 0.86; p = 0.0009). The scores were higher with 4D-PACK than with CINEMA in the visualization of retrograde flow for both Observer 1 (CINEMA, 3.44 ± 1.05; 4D-PACK, 4.47 ± 0.88; p < 0.0001) and Observer 2 (CINEMA, 3.19 ± 1.20; 4D-PACK, 4.38 ± 0.91; p < 0.0001). The maximum CNR in the anterograde flow was higher in 4D-PACK (40.1 ± 16.1, p = 0.0001) than in CINEMA (27.0 ± 16.6). The maximum CNR in the retrograde flow was higher in 4D-PACK (36.1 ± 10.0, p < 0.0001) than in CINEMA (15.4 ± 8.0). The 4D-PACK provided better visualization and higher CNRs in distal cerebral arteries and LMA collaterals compared with CINEMA in patients with this disease. • The 4D-PACK enables good visualization of distal cerebral arteries in moyamoya disease. • The 4D-PACK enables direct visualization of leptomeningeal collateral vessels in moyamoya disease. • Vessel visualization by 4D-PACK can be useful in assessing cerebral hemodynamics.
Exciton Dynamics of 2D Hybrid Perovskite Nanocrystal
NASA Astrophysics Data System (ADS)
Guo, Rui; Zhu, Zhuan; Boulesbaa, Abdelaziz; Venkatesan, Swaminathan; Xiao, Kai; Bao, Jiming; Yao, Yan; Li, Wenzhi
Organic-inorganic hybrid perovskites have emerged as promising materials for applications in photovoltaic and optoelectronic devices. Among the perovskites, two dimensional (2D) perovskites are of great interests due to their remarkable optical and electrical properties as well as the flexibility of material selection for the organic and inorganic moieties. In this study, we demonstrate the solution-phase growth of large square-shaped single-crystalline 2D hybrid perovskites of (C6H5C2H4 NH3) 2 PbBr4 with a few unit cells thickness. Compared to the bulk crystal, a band gap shift and new photoluminescence (PL) peak are observed from the hybrid perovskite sheets. Color of the 2D crystals can be tuned by adjusting the sheet thickness. Pump-probe spectroscopy is used to investigate the exciton dynamics and exhibits a biexponential decay with an amplitude-weighted lifetime of 16.7 ps. Such high-quality (C6H5C2H4 NH3) 2 PbBr4 sheets are expected to have high PL quantum efficiency which can be adopted for light-emitting devices. National Science Foundation (Grant No. CMMI-1334417 and DMR-1506640).
NASA Astrophysics Data System (ADS)
Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino
2017-11-01
In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.
3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading
2011-01-01
Background Dynamic three-dimensional (3D) deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better estimation of material characteristics of the underlying structures. This is an important factor in a reliable biomechanical modelling and simulation as well as in a successful design of complex implants. PMID:21762533
Progress in the Development of a Global Quasi-3-D Multiscale Modeling Framework
NASA Astrophysics Data System (ADS)
Jung, J.; Konor, C. S.; Randall, D. A.
2017-12-01
The Quasi-3-D Multiscale Modeling Framework (Q3D MMF) is a second-generation MMF, which has following advances over the first-generation MMF: 1) The cloud-resolving models (CRMs) that replace conventional parameterizations are not confined to the large-scale dynamical-core grid cells, and are seamlessly connected to each other, 2) The CRMs sense the three-dimensional large- and cloud-scale environment, 3) Two perpendicular sets of CRM channels are used, and 4) The CRMs can resolve the steep surface topography along the channel direction. The basic design of the Q3D MMF has been developed and successfully tested in a limited-area modeling framework. Currently, global versions of the Q3D MMF are being developed for both weather and climate applications. The dynamical cores governing the large-scale circulation in the global Q3D MMF are selected from two cube-based global atmospheric models. The CRM used in the model is the 3-D nonhydrostatic anelastic Vector-Vorticity Model (VVM), which has been tested with the limited-area version for its suitability for this framework. As a first step of the development, the VVM has been reconstructed on the cubed-sphere grid so that it can be applied to global channel domains and also easily fitted to the large-scale dynamical cores. We have successfully tested the new VVM by advecting a bell-shaped passive tracer and simulating the evolutions of waves resulted from idealized barotropic and baroclinic instabilities. For improvement of the model, we also modified the tracer advection scheme to yield positive-definite results and plan to implement a new physics package that includes a double-moment microphysics and an aerosol physics. The interface for coupling the large-scale dynamical core and the VVM is under development. In this presentation, we shall describe the recent progress in the development and show some test results.
Dyvorne, Hadrien; Knight-Greenfield, Ashley; Jajamovich, Guido; Besa, Cecilia; Cui, Yong; Stalder, Aurélien; Markl, Michael; Taouli, Bachir
2015-04-01
To develop a highly accelerated phase-contrast cardiac-gated volume flow measurement (four-dimensional [4D] flow) magnetic resonance (MR) imaging technique based on spiral sampling and dynamic compressed sensing and to compare this technique with established phase-contrast imaging techniques for the quantification of blood flow in abdominal vessels. This single-center prospective study was compliant with HIPAA and approved by the institutional review board. Ten subjects (nine men, one woman; mean age, 51 years; age range, 30-70 years) were enrolled. Seven patients had liver disease. Written informed consent was obtained from all participants. Two 4D flow acquisitions were performed in each subject, one with use of Cartesian sampling with respiratory tracking and the other with use of spiral sampling and a breath hold. Cartesian two-dimensional (2D) cine phase-contrast images were also acquired in the portal vein. Two observers independently assessed vessel conspicuity on phase-contrast three-dimensional angiograms. Quantitative flow parameters were measured by two independent observers in major abdominal vessels. Intertechnique concordance was quantified by using Bland-Altman and logistic regression analyses. There was moderate to substantial agreement in vessel conspicuity between 4D flow acquisitions in arteries and veins (κ = 0.71 and 0.61, respectively, for observer 1; κ = 0.71 and 0.44 for observer 2), whereas more artifacts were observed with spiral 4D flow (κ = 0.30 and 0.20). Quantitative measurements in abdominal vessels showed good equivalence between spiral and Cartesian 4D flow techniques (lower bound of the 95% confidence interval: 63%, 77%, 60%, and 64% for flow, area, average velocity, and peak velocity, respectively). For portal venous flow, spiral 4D flow was in better agreement with 2D cine phase-contrast flow (95% limits of agreement: -8.8 and 9.3 mL/sec, respectively) than was Cartesian 4D flow (95% limits of agreement: -10.6 and 14.6 mL/sec). The combination of highly efficient spiral sampling with dynamic compressed sensing results in major acceleration for 4D flow MR imaging, which allows comprehensive assessment of abdominal vessel hemodynamics in a single breath hold.
Analysis of dynamics and fit of diving suits
NASA Astrophysics Data System (ADS)
Mahnic Naglic, M.; Petrak, S.; Gersak, J.; Rolich, T.
2017-10-01
Paper presents research on dynamical behaviour and fit analysis of customised diving suits. Diving suits models are developed using the 3D flattening method, which enables the construction of a garment model directly on the 3D computer body model and separation of discrete 3D surfaces as well as transformation into 2D cutting parts. 3D body scanning of male and female test subjects was performed with the purpose of body measurements analysis in static and dynamic postures and processed body models were used for construction and simulation of diving suits prototypes. All necessary parameters, for 3D simulation were applied on obtained cutting parts, as well as parameters values for mechanical properties of neoprene material. Developed computer diving suits prototypes were used for stretch analysis on areas relevant for body dimensional changes according to dynamic anthropometrics. Garment pressures against the body in static and dynamic conditions was also analysed. Garments patterns for which the computer prototype verification was conducted were used for real prototype production. Real prototypes were also used for stretch and pressure analysis in static and dynamic conditions. Based on the obtained results, correlation analysis between body changes in dynamic positions and dynamic stress, determined on computer and real prototypes, was performed.
Guo, Qinghua; Erickson, Bradley J.; Chang, Alice Y.; Erickson, Dana
2015-01-01
Objective To determine whether dynamic magnetic resonance imaging (dMRI) enhancement parameters could predict dopamine agonist (DA) resistance in prolactinomas. Methods We retrospectively identified patients with prolactinomas who were treated with DA and underwent dMRI from 2001 through 2012 at Mayo Clinic (Rochester, Minnesota). Intensities of the adenoma and pituitary gland were measured by drawing regions of interest on the images. Enhancement ratio, enhancement peak, prepeak slope (PPS), and enhancement time were compared between DA-resistant and DA-responsive groups, between DA-treated and DA-naïve groups, and between the first and follow-up dMRIs. Results We identified 49 patients with prolactinomas, with 6 (12.2%) that showed DA resistance. Thirty-seven patients (75.5%) underwent dMRI while receiving treatment, 12 (25.5%) underwent dMRI before starting therapy, and 10 (20.4%) had follow-up dMRI after DA therapy. The PPS of the tumor was higher in the treatment-resistant group vs the responsive group (mean [SD], 4.42 [3.19] vs 2.65 [1.59]; P=.03), whereas no difference was noted in the pituitary gland (5.79 [2.21] vs 4.06 [2.48]; P=.11). Logistic regression analysis indicated that tumor PPS was associated with DA resistance (odds ratio, 1.71; 95% CI, 1.07-3.27; P=.02). Conclusions dMRI with PPS analysis potentially can be used early in the treatment course to evaluate DA resistance in pituitary prolactinomas. PMID:25551412
The First Static and Dynamic Analysis of 3-D Printed Sintered Ceramics for Body Armor Applications
2016-09-01
evaluate sintered alumina tiles produced by 3-D printing methodology. This report examines the static and quasi -static parameters (including density...Figures iv List of Tables iv Acknowledgments v 1. Introduction 1 2. Processing and Experimental Procedures 1 3. Results and Discussion 7 4...6 Fig. 8 Experimental setup for recording fracture .............................................7 Fig. 9 Rod projectile
Cibis, Merih; Jarvis, Kelly; Markl, Michael; Rose, Michael; Rigsby, Cynthia; Barker, Alex J.; Wentzel, Jolanda J.
2016-01-01
Viscous dissipation inside Fontan circulation, a parameter associated with the exercise intolerance of Fontan patients, can be derived from computational fluid dynamics (CFD) or 4D flow MRI velocities. However, the impact of spatial resolution and measurement noise on the estimation of viscous dissipation is unclear. Our aim was to evaluate the influence of these parameters on viscous dissipation calculation. Six Fontan patients underwent whole heart 4D flow MRI. Subject-specific CFD simulations were performed. The CFD velocities were down-sampled to isotropic spatial resolutions of 0.5 mm, 1 mm, 2 mm and to MRI resolution. Viscous dissipation was compared between (1) high resolution CFD velocities, (2) CFD velocities down-sampled to MRI resolution, (3) down-sampled CFD velocities with MRI mimicked noise levels, and (4) in-vivo 4D flow MRI velocities. Relative viscous dissipation between subjects was also calculated. 4D flow MRI velocities (15.6±3.8 cm/s) were higher, although not significantly different than CFD velocities (13.8±4.7 cm/s, p=0.16), down-sampled CFD velocities (12.3±4.4 cm/s, p=0.06) and the down-sampled CFD velocities with noise (13.2±4.2 cm/s, p=0.06). CFD-based viscous dissipation (0.81±0.55 mW) was significantly higher than those based on down-sampled CFD (0.25±0.19 mW, p=0.03), down-sampled CFD with noise (0.49±0.26 mW, p=0.03) and 4D flow MRI (0.56±0.28 mW, p=0.06). Nevertheless, relative viscous dissipation between different subjects was maintained irrespective of resolution and noise, suggesting that comparison of viscous dissipation between patients is still possible. PMID:26298492
From 3D to 4D seismic tomography at El Hierro Island (Canary Islands, Spain)
NASA Astrophysics Data System (ADS)
Garcia-Yeguas, A.; Koulakov, I.; Jakovlev, A.; Ibáñez, J. M.
2012-04-01
In this work we are going to show the advantages of a dynamic tomography 4D, versus a static image 3D related with a volcanic reactivation and eruption at El Hierro island (Canary Islands, Spain). In this process a high number of earthquakes before and during the eruptive processes have been registered. We are going to show a 3D image as an average of the velocity structure and then the characteristics and physical properties on the medium, including the presence or not of magma. This image will be complemented with its evolution along the time, observing its volcanic dynamic and its influence over the medium properties, including its power as an important element on early warnings protocols. After more than forty years of quiet at Canary Islands, since 1971 with Teneguía eruption at La Palma Island, and more than 200 years on El Hierro Island (The last eruption known at El Hierro took place in 1793, volcán de Lomo Negro), on 19th July on 2011 the Spanish seismic national network, administered by IGN (Instituto Geográfico Nacional), detected an increase of local seismic activity below El Hierro island (Canary Islands, Spain). Since this moment an intense swarm took place, with more than 11000 events, until 11th December, with magnitudes (MLg) from 0.2 to 4.4. In this period two eruptive processes have been declared in front of the South coast of El Hierro island, and they have not finished yet. This seismic swarm has allowed carrying out a 3D seismic tomography, using P and S waves traveltimes. It has showed a low velocity from the North to the South. On the other hand, we have performed a 4D seismic tomography, taking the events occurred at different intervals of time. We can observe the evolution of the negative anomaly along the time, from the North to the South, where has taken place La Restinga submarine eruption. 4D seismic tomography is an innovative and powerful tool able to show the evolution in time of a volcanic process.
2015-06-04
that involve physics coupling with phase change in the simulation of 3D deep convection. We show that the VMS+DC approach is a robust technique that can...of 3D deep convection. We show that the VMS+DC approach is a robust technique that can damp the high order modes characterizing the spectral element...of Spectral Elements, Deep Convection, Kessler Microphysics Preprint J. Comput. Phys. 283 (2015) 360-373 June 4, 2015 1. Introduction In the field of
Denkova, Pavletta; Vassilev, Nikolay; Van Lokeren, Luk; Willem, Rudolph
2008-04-01
The static and dynamic stereochemistry of dimesityl-2,4,6-trimethoxyphenylmethane in solution was investigated by lineshape analysis of 1D NMR spectra and cross-peak amplitude processing in 2D EXSY spectra, recorded at variable temperatures. Previous studies on this propeller-shaped chiral compound show that the stereomer threshold interconversion is associated with helicity reversal and occurs through [1,2]- and [1,3]-two ring flips of one mesityl and the 2,4,6-trimethoxyphenyl rings. In the present study, the experimental rate constants of the [1,2]- and [1,3]-two ring flips, which are identical, were determined at various temperatures by combining quantitative 2D EXSY spectra processing and complete lineshape analysis (CLSA) of 1D NMR spectra. The latter were subjected to reference deconvolution and linear prediction in order to eliminate the lineshape distortions due to magnetic field inhomogeneity. The activation parameters of these ring flips were determined by an Eyring equation analysis of the temperature dependence of the rate constant. The experimentally determined activation enthalpy and entropy for the two-ring flips, and those obtained from theoretical ab initio calculations at different levels of theory and basis sets, were found to be in good agreement. Copyright (c) 2008 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Assefa, Haregewein; Kamath, Shantaram; Buolamwini, John K.
2003-08-01
The overexpression and/or mutation of the epidermal growth factor receptor (EGFR) tyrosine kinase has been observed in many human solid tumors, and is under intense investigation as a novel anticancer molecular target. Comparative 3D-QSAR analyses using different alignments were undertaken employing comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) for 122 anilinoquinazoline and 50 anilinoquinoline inhibitors of EGFR kinase. The SYBYL multifit alignment rule was applied to three different conformational templates, two obtained from a MacroModel Monte Carlo conformational search, and one from the bound conformation of erlotinib in complex with EGFR in the X-ray crystal structure. In addition, a flexible ligand docking alignment obtained with the GOLD docking program, and a novel flexible receptor-guided consensus dynamics alignment obtained with the DISCOVER program in the INSIGHTII modeling package were also investigated. 3D-QSAR models with q2 values up to 0.70 and r2 values up to 0.97 were obtained. Among the 4-anilinoquinazoline set, the q2 values were similar, but the ability of the different conformational models to predict the activities of an external test set varied considerably. In this regard, the model derived using the X-ray crystallographically determined bioactive conformation of erlotinib afforded the best predictive model. Electrostatic, hydrophobic and H-bond donor descriptors contributed the most to the QSAR models of the 4-anilinoquinazolines, whereas electrostatic, hydrophobic and H-bond acceptor descriptors contributed the most to the 4-anilinoquinoline QSAR, particularly the H-bond acceptor descriptor. A novel receptor-guided consensus dynamics alignment has also been introduced for 3D-QSAR studies. This new alignment method may incorporate to some extent ligand-receptor induced fit effects into 3D-QSAR models.
Burning invariant manifolds for reaction fronts in three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Mitchell, Kevin; Solomon, Tom
2017-11-01
The geometry of reaction fronts that propagate in fully three-dimensional (3D) fluid flows is studied using the tools of dynamical systems theory. The evolution of an infinitesimal front element is modeled as a six-dimensional ODE-three dimensions for the position of the front element and three for the orientation of its unit normal. This generalizes an earlier approach to understanding front propagation in two-dimensional (2D) fluid flows. As in 2D, the 3D system exhibits prominent burning invariant manifolds (BIMs). In 3D, BIMs are two-dimensional dynamically defined surfaces that form one-way barriers to the propagation of reaction fronts within the fluid. Due to the third dimension, BIMs in 3D exhibit a richer topology than their cousins in 2D. In particular, whereas BIMs in both 2D and 3D can originate from fixed points of the dynamics, BIMs in 3D can also originate from limit cycles. Such BIMs form robust tube-like channels that guide and constrain the evolution of the front within the bulk of the fluid. Supported by NSF Grant CMMI-1201236.
Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S
2010-01-01
To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p<0.001) with higher conformity index value of 0.81±0.07 compared to both the 3D-CRT plans. The doses to the liver and bowel reduced significantly (p<0.001) with IMRT plans compared to other 3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Yong, E-mail: yong.yue@cshs.org; Yang, Wensha; McKenzie, Elizabeth
Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by usingmore » SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm{sup 3}. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm{sup 3}) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target-stretching, partial-missing, and other motion artifacts in various phases, whereas the 4D-MRI images are visually free of those artifacts. Volume percentage difference for the 6.37 ml target ranged from 5.3% ± 4.3% to 10.3% ± 5.9% for 4D-CT, and 1.47 ± 0.52 to 2.12 ± 1.60 for 4D-MRI. With an increase of respiratory rate, the target volumetric and geometric deviations increase for 4D-CT images while remaining stable for the 4D-MRI images. Target motion amplitude errors at different RRs were measured with a range of 0.66–1.25 mm for 4D-CT and 0.2–0.42 mm for 4D-MRI. The results of Mann–Whitney tests indicated that 4D-MRI significantly outperforms 4D-CT in phase-based target volumetric (p = 0.027) and geometric (p < 0.001) measures. Both modalities achieve equivalent accuracy in measuring motion amplitude (p = 0.828). Conclusions: The k-space self-gated 4D-MRI technique provides a robust method for accurately imaging phase-based target motion and geometry. Compared to 4D-CT, the current 4D-MRI technique demonstrates superior spatiotemporal resolution, and robust resistance to motion artifacts caused by fast target motion and irregular breathing patterns. The technique can be used extensively in abdominal targeting, motion gating, and toward implementing MRI-based adaptive radiotherapy.« less
[Dynamic study of the female levator ani muscle using MRI 3D vectorial modeling].
Delmas, Vincent; Ami, Olivier; Iba-Zizen, Marie-Thérèse
2010-06-01
The levator ani muscle has a major role in the female pelvic floor, and is involved in the pathophysiology of pelvic prolapse and stress urinary incontinence. We conducted an anatomical and morphological study of this muscle using dynamic 3D vectorial reconstruction MRI, in order to analyze the contraction of two major components of the levator ani: the iliococcygeus and pubococcygeus. Three volunteer healthy continent nulliparous women aged from 19 to 22 underwent dynamic pelvic MRI. Coronal T2-weighted pelvic images were obtained in the supine position, at rest, holding back, and during Valsalva stress effort. 3D vectorial models were reconstructed by manual segmentation of the source images, and were set up on bony anatomic marks. Iliococcygeus and pubococcygeus volumes were measured in the three positions. Volumetrics, displacement and dynamic morphing changes were analyzed with 3D vectorial animation software. The urogenital hiatus extended more holding back (mean +4.31 mm) than on effort (mean +2.78 mm). The iliococcygeus lowered (mean -3.95 mm) and deviated outward (mean +3.01 mm). The basic tone of the iliococcygeus muscle gives it a dome shape, and its reflex contraction against abdominal strain ensures anal and urinary continence The levator ani is more than a pelvic diaphragm: it is a truly dynamic pelvic floor. Its points of support on the stiff osseous frame allow it to retain the pelvic organs. The levator ani muscle seems to prevent anal prolapse during stress strain.
Face recognition based on matching of local features on 3D dynamic range sequences
NASA Astrophysics Data System (ADS)
Echeagaray-Patrón, B. A.; Kober, Vitaly
2016-09-01
3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.
Abdoli-Eramaki, Mohammad; Stevenson, Joan M; Agnew, Michael J; Kamalzadeh, Amin
2009-04-01
The purpose of this study was to validate a 3D dynamic virtual model for lifting tasks against a validated link segment model (LSM). A face validation study was conducted by collecting x, y, z coordinate data and using them in both virtual and LSM models. An upper body virtual model was needed to calculate the 3D torques about human joints for use in simulated lifting styles and to estimate the effect of external mechanical devices on human body. Firstly, the model had to be validated to be sure it provided accurate estimates of 3D moments in comparison to a previously validated LSM. Three synchronised Fastrak units with nine sensors were used to record data from one male subject who completed dynamic box lifting under 27 different load conditions (box weights (3), lifting techniques (3) and rotations (3)). The external moments about three axes of L4/L5 were compared for both models. A pressure switch on the box was used to denote the start and end of the lift. An excellent agreement [image omitted] was found between the two models for dynamic lifting tasks, especially for larger moments in flexion and extension. This virtual model was considered valid for use in a complete simulation of the upper body skeletal system. This biomechanical virtual model of the musculoskeletal system can be used by researchers and practitioners to give a better tool to study the causes of LBP and the effect of intervention strategies, by permitting the researcher to see and control a virtual subject's motions.
A Study of Wind Shear Effects on Aircraft Operations and Safety in Australia,
1981-03-01
and 24 Sydney 167 II 12 07, 16(T) and 25 Hobart 16 10 7 12 and 30(T) Melbourne 106 8 6 34(T) Canberra 113 3 6 17(T) Townsville NA 3 3 01(T) Wynyard 17...Information Paper, August 1978. 3. Anderson, K. W., and Clark, B. A. J. Wind shear in Australia. Aviation Safety Digest, No. 106 , 14-20, 1979. 4. Anderson...d, and dH ./d: are not regarded as shears in fluid dynamics. However, in aerodynamics and aviation meteorology, the wider definition of wind shear is
NASA Astrophysics Data System (ADS)
Belashov, V. Yu.; Belashova, E. S.
2016-11-01
On the basis of the model of the three-dimensional (3D) generalized Kadomtsev-Petviashvili equation for magnetic field h = B / B the formation, stability, and dynamics of 3D soliton-like structures, such as the beams of fast magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a low-frequency branch of oscillations when β = 4 πnT/ B 2 ≪ 1 and β > 1, are studied. The study takes into account the highest dispersion correction determined by values of the plasma parameters and the angle θ = ( B, k), which plays a key role in the FMS beam propagation at those angles to the magnetic field that are close to π/2. The stability of multidimensional solutions is studied by an investigation of the Hamiltonian boundness under its deformations on the basis of solving of the corresponding variational problem. The evolution and dynamics of the 3D FMS wave beam are studied by the numerical integration of equations with the use of specially developed methods. The results can be interpreted in terms of the self-focusing phenomenon, as the formation of a stationary beam and the scattering and self-focusing of the solitary beam of FMS waves. These cases were studied with a detailed investigation of all evolutionary stages of the 3D FMS wave beams in the ionospheric and magnetospheric plasma.
Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT.
Gambra, Enrique; Ortiz, Sergio; Perez-Merino, Pablo; Gora, Michalina; Wojtkowski, Maciej; Marcos, Susana
2013-01-01
Custom high-resolution high-speed anterior segment spectral domain Optical Coherence Tomography (OCT) provided with automatic quantification and distortion correction algorithms was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo in four subjects, for accommodative demands between 0 to 6 D in 1 D steps. Anterior and posterior lens radii of curvature decreased with accommodative demand at rates of 0.73 and 0.20 mm/D, resulting in an increase of the estimated optical power of the eye of 0.62 D per diopter of accommodative demand. Dynamic fluctuations in crystalline lens radii of curvature, anterior chamber depth and lens thickness were also estimated from dynamic 2-D OCT images (14 Hz), acquired during 5-s of steady fixation, for different accommodative demands. Estimates of the eye power from dynamical geometrical measurements revealed an increase of the fluctuations of the accommodative response from 0.07 D to 0.47 D between 0 and 6 D (0.044 D per D of accommodative demand). A sensitivity analysis showed that the fluctuations of accommodation were driven by dynamic changes in the lens surfaces, particularly in the posterior lens surface.
Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT
Gambra, Enrique; Ortiz, Sergio; Perez-Merino, Pablo; Gora, Michalina; Wojtkowski, Maciej; Marcos, Susana
2013-01-01
Custom high-resolution high-speed anterior segment spectral domain Optical Coherence Tomography (OCT) provided with automatic quantification and distortion correction algorithms was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo in four subjects, for accommodative demands between 0 to 6 D in 1 D steps. Anterior and posterior lens radii of curvature decreased with accommodative demand at rates of 0.73 and 0.20 mm/D, resulting in an increase of the estimated optical power of the eye of 0.62 D per diopter of accommodative demand. Dynamic fluctuations in crystalline lens radii of curvature, anterior chamber depth and lens thickness were also estimated from dynamic 2-D OCT images (14 Hz), acquired during 5-s of steady fixation, for different accommodative demands. Estimates of the eye power from dynamical geometrical measurements revealed an increase of the fluctuations of the accommodative response from 0.07 D to 0.47 D between 0 and 6 D (0.044 D per D of accommodative demand). A sensitivity analysis showed that the fluctuations of accommodation were driven by dynamic changes in the lens surfaces, particularly in the posterior lens surface. PMID:24049680
NASA Astrophysics Data System (ADS)
Kim, Sung-Jin; Jeong, Daun; Kim, SeongMin; Choi, Yeong Suk; Ihn, Soo-Ghang; Yun, Sungyoung; Lim, Younhee; Lee, Eunha; Park, Gyeong-Su
2016-02-01
Although the morphology of the active layer in bulk heterojunction organic photovoltaic (BHJ-OPV) cells is critical for determining the quantum efficiency (QE), predicting the real QE for a 3-dimensional (3D) morphology has long been difficult because structural information on the composition complexity of donor (D): acceptor (A) blends with small domain size is limited to 2D observations via various image-processing techniques. To overcome this, we reconstruct the 3D morphology by using an isotropic statistical approach based on 2D energy-filtered transmission electron microscopy (EF-TEM) images. This new reconstruction method is validated to obtain the internal QE by using a dynamic Monte Carlo simulation in the BHJ-OPV system with different additives such as 4 vol% 1-chloronaphthalene (CN) and 4 vol% 1,8-diiodooctane (DIO) (compared to the case of no additive); the resulting trend is compared with the experimental QE. Therefore, our developed method can be used to predict the real charge transport performance in the OPV system accurately.
NASA Astrophysics Data System (ADS)
Yulaeva, E.; Fan, Y.; Moosdorf, N.; Richard, S. M.; Bristol, S.; Peters, S. E.; Zaslavsky, I.; Ingebritsen, S.
2015-12-01
The Digital Crust EarthCube building block creates a framework for integrating disparate 3D/4D information from multiple sources into a comprehensive model of the structure and composition of the Earth's upper crust, and to demonstrate the utility of this model in several research scenarios. One of such scenarios is estimation of various crustal properties related to fluid dynamics (e.g. permeability and porosity) at each node of any arbitrary unstructured 3D grid to support continental-scale numerical models of fluid flow and transport. Starting from Macrostrat, an existing 4D database of 33,903 chronostratigraphic units, and employing GeoDeepDive, a software system for extracting structured information from unstructured documents, we construct 3D gridded fields of sediment/rock porosity, permeability and geochemistry for large sedimentary basins of North America, which will be used to improve our understanding of large-scale fluid flow, chemical weathering rates, and geochemical fluxes into the ocean. In this talk, we discuss the methods, data gaps (particularly in geologically complex terrain), and various physical and geological constraints on interpolation and uncertainty estimation.
Dynamic integral imaging technology for 3D applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Huang, Yi-Pai; Javidi, Bahram; Martínez-Corral, Manuel; Shieh, Han-Ping D.; Jen, Tai-Hsiang; Hsieh, Po-Yuan; Hassanfiroozi, Amir
2017-05-01
Depth and resolution are always the trade-off in integral imaging technology. With the dynamic adjustable devices, the two factors of integral imaging can be fully compensated with time-multiplexed addressing. Those dynamic devices can be mechanical or electrical driven. In this presentation, we will mainly focused on discussing various Liquid Crystal devices which can change the focal length, scan and shift the image position, or switched in between 2D/3D mode. By using the Liquid Crystal devices, dynamic integral imaging have been successfully applied on 3D Display, capturing, and bio-imaging applications.
Quantification of tumor mobility during the breathing cycle using 3D dynamic MRI
NASA Astrophysics Data System (ADS)
Schoebinger, Max; Plathow, Christian; Wolf, Ivo; Kauczor, Hans-Ulrich; Meinzer, Hans-Peter
2006-03-01
Respiration causes movement and shape changes in thoracic tumors, which has a direct influence on the radio-therapy planning process. Current methods for the estimation of tumor mobility are either two-dimensional (fluoroscopy, 2D dynamic MRI) or based on radiation (3D (+t) CT, implanted gold markers). With current advances in dynamic MRI acquisition, 3D+t image sequences of the thorax can be acquired covering the thorax over the whole breathing cycle. In this work, methods are presented for the interactive segmentation of tumors in dynamic images, the calculation of tumor trajectories, dynamic tumor volumetry and dynamic tumor rotation/deformation based on 3D dynamic MRI. For volumetry calculation, a set of 21 related partial volume correcting volumetry algorithms has been evaluated based on tumor surrogates. Conventional volumetry based on voxel counting yielded a root mean square error of 29% compared to a root mean square error of 11% achieved by the algorithm performing best among the different volumetry methods. The new workflow has been applied to a set of 26 patients. Preliminary results indicate, that 3D dynamic MRI reveals important aspects of tumor behavior during the breathing cycle. This might imply the possibility to further improve high-precision radiotherapy techniques.
Verification of real sensor motion for a high-dynamic 3D measurement inspection system
NASA Astrophysics Data System (ADS)
Breitbarth, Andreas; Correns, Martin; Zimmermann, Manuel; Zhang, Chen; Rosenberger, Maik; Schambach, Jörg; Notni, Gunther
2017-06-01
Inline three-dimensional measurements are a growing part of optical inspection. Considering increasing production capacities and economic aspects, dynamic measurements under motion are inescapable. Using a sequence of different pattern, like it is generally done in fringe projection systems, relative movements of the measurement object with respect to the 3d sensor between the images of one pattern sequence have to be compensated. Based on the application of fully automated optical inspection of circuit boards at an assembly line, the knowledge of the relative speed of movement between the measurement object and the 3d sensor system should be used inside the algorithms of motion compensation. Optimally, this relative speed is constant over the whole measurement process and consists of only one motion direction to avoid sensor vibrations. The quantified evaluation of this two assumptions and the error impact on the 3d accuracy are content of the research project described by this paper. For our experiments we use a glass etalon with non-transparent circles and transmitted light. Focused on the circle borders, this is one of the most reliable methods to determine subpixel positions using a couple of searching rays. The intersection point of all rays characterize the center of each circle. Based on these circle centers determined with a precision of approximately 1=50 pixel, the motion vector between two images could be calculated and compared with the input motion vector. Overall, the results are used to optimize the weight distribution of the 3d sensor head and reduce non-uniformly vibrations. Finally, there exists a dynamic 3d measurement system with an error of motion vectors about 4 micrometer. Based on this outcome, simulations result in a 3d standard deviation at planar object regions of 6 micrometers. The same system yields a 3d standard deviation of 9 µm without the optimization of weight distribution.
Scaling analysis of [Fe(pyrazole)4]2[Nb(CN)8] molecular magnet
NASA Astrophysics Data System (ADS)
Konieczny, P.; Pełka, R.; Zieliński, P. M.; Pratt, F. L.; Pinkowicz, D.; Sieklucka, B.; Wasiutyński, T.
2013-10-01
The critical behaviour of the three dimensional (3D) molecular magnet {[FeII(pirazol)4]2[NbIV(CN)8]·4H2O}n has been studied with the use of experimental techniques such as ac magnetometry and zero field μSR spectroscopy. The sample orders magnetically below Tc=7.8 K. The measurements allowed to determine static exponents β, γ, and the dynamic exponent w. The resulting exponent values indicate that the studied system belongs to the universality class of the 3D Heisenberg model.
3D Protein Dynamics in the Cell Nucleus.
Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E
2017-01-10
The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, Kyeoreh; Park, Jongchan; Park, Yongkeun
2017-01-01
Holographic displays generate realistic 3D images that can be viewed without the need for any visual aids. They operate by generating carefully tailored light fields that replicate how humans see an actual environment. However, the realization of high-performance, dynamic 3D holographic displays has been hindered by the capabilities of present wavefront modulator technology. In particular, spatial light modulators have a small diffraction angle range and limited pixel number limiting the viewing angle and image size of a holographic 3D display. Here, we present an alternative method to generate dynamic 3D images by controlling volume speckle fields significantly enhancing image definition. We use this approach to demonstrate a dynamic display of micrometre-sized optical foci in a volume of 8 mm × 8 mm × 20 mm.
Stewart, Richard S; Kiss, Ilona M; Wilkinson, Robert S
2014-04-16
Four-dimensional (4D) light imaging has been used to study behavior of small structures within motor nerve terminals of the thin transversus abdominis muscle of the garter snake. Raw data comprises time-lapse sequences of 3D z-stacks. Each stack contains 4-20 images acquired with epifluorescence optics at focal planes separated by 400-1,500 nm. Steps in the acquisition of image stacks, such as adjustment of focus, switching of excitation wavelengths, and operation of the digital camera, are automated as much as possible to maximize image rate and minimize tissue damage from light exposure. After acquisition, a set of image stacks is deconvolved to improve spatial resolution, converted to the desired 3D format, and used to create a 4D "movie" that is suitable for variety of computer-based analyses, depending upon the experimental data sought. One application is study of the dynamic behavior of two classes of endosomes found in nerve terminals-macroendosomes (MEs) and acidic endosomes (AEs)-whose sizes (200-800 nm for both types) are at or near the diffraction limit. Access to 3D information at each time point provides several advantages over conventional time-lapse imaging. In particular, size and velocity of movement of structures can be quantified over time without loss of sharp focus. Examples of data from 4D imaging reveal that MEs approach the plasma membrane and disappear, suggesting that they are exocytosed rather than simply moving vertically away from a single plane of focus. Also revealed is putative fusion of MEs and AEs, by visualization of overlap between the two dye-containing structures as viewed in each three orthogonal projections.
Characterization of 3-Dimensional PET Systems for Accurate Quantification of Myocardial Blood Flow.
Renaud, Jennifer M; Yip, Kathy; Guimond, Jean; Trottier, Mikaël; Pibarot, Philippe; Turcotte, Eric; Maguire, Conor; Lalonde, Lucille; Gulenchyn, Karen; Farncombe, Troy; Wisenberg, Gerald; Moody, Jonathan; Lee, Benjamin; Port, Steven C; Turkington, Timothy G; Beanlands, Rob S; deKemp, Robert A
2017-01-01
Three-dimensional (3D) mode imaging is the current standard for PET/CT systems. Dynamic imaging for quantification of myocardial blood flow with short-lived tracers, such as 82 Rb-chloride, requires accuracy to be maintained over a wide range of isotope activities and scanner counting rates. We proposed new performance standard measurements to characterize the dynamic range of PET systems for accurate quantitative imaging. 82 Rb or 13 N-ammonia (1,100-3,000 MBq) was injected into the heart wall insert of an anthropomorphic torso phantom. A decaying isotope scan was obtained over 5 half-lives on 9 different 3D PET/CT systems and 1 3D/2-dimensional PET-only system. Dynamic images (28 × 15 s) were reconstructed using iterative algorithms with all corrections enabled. Dynamic range was defined as the maximum activity in the myocardial wall with less than 10% bias, from which corresponding dead-time, counting rates, and/or injected activity limits were established for each scanner. Scatter correction residual bias was estimated as the maximum cavity blood-to-myocardium activity ratio. Image quality was assessed via the coefficient of variation measuring nonuniformity of the left ventricular myocardium activity distribution. Maximum recommended injected activity/body weight, peak dead-time correction factor, counting rates, and residual scatter bias for accurate cardiac myocardial blood flow imaging were 3-14 MBq/kg, 1.5-4.0, 22-64 Mcps singles and 4-14 Mcps prompt coincidence counting rates, and 2%-10% on the investigated scanners. Nonuniformity of the myocardial activity distribution varied from 3% to 16%. Accurate dynamic imaging is possible on the 10 3D PET systems if the maximum injected MBq/kg values are respected to limit peak dead-time losses during the bolus first-pass transit. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Study on embedding fiber Bragg grating sensor into the 3D printing structure for health monitoring
NASA Astrophysics Data System (ADS)
Li, Ruiya; Tan, Yuegang; Zhou, Zude; Fang, Liang; Chen, Yiyang
2016-10-01
3D printing technology is a rapidly developing manufacturing technology, which is known as a core technology in the third industrial revolution. With the continuous improvement of the application of 3D printing products, the health monitoring of the 3D printing structure is particularly important. Fiber Bragg grating (FBG) sensing technology is a new type of optical sensing technology with unique advantages comparing to traditional sensing technology, and it has great application prospects in structural health monitoring. In this paper, the FBG sensors embedded in the internal structure of the 3D printing were used to monitor the static and dynamic strain variation of 3D printing structure during loading process. The theoretical result and experimental result has good consistency and the characteristic frequency detected by FBG sensor is consistent with the testing results of traditional accelerator in the dynamic experiment. The results of this paper preliminary validate that FBG embedded in the 3D printing structure can effectively detecting the static and dynamic stain change of the 3D printing structure, which provide some guidance for the health monitoring of 3D printing structure.
Dynamic properties of biologically active synthetic heparin-like hexasaccharides.
Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M
2005-10-01
A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R., Angulo, J., Nieto, P.M., and Martin-Lomas. M. (2002) The activation of fibroblast growth factors by heparin: synthesis and structural study of rationally modified heparin-like oligosaccharides. Can. J. Chem,. 80, 917-936; Lucas, R., Angulo, J., Nieto, P.M., and Martin-Lomas, M. (2003) Synthesis and structural studies of two new heparin-like hexasaccharides. Org. Biomol. Chem., 1, 2253-2266) and biological data (Angulo, J., Ojeda, R., de Paz, J.L., Lucas, R., Nieto, P.M., Lozano, R.M., Redondo-Horcajo, M., Giménez-Gallego, G., and Martín-Lomas, M. (2004) The activation of fibroblast growth factors (FGFs) by glycosaminoglycans: influence of the sulphation pattern on the biological activity of FGF-1. Chembiochem, 5, 55-61). Fast internal motions observed for the less sulphated compound 2, as compared with 1, may be related to their different behavior in stimulating FGF1-induced mitogenic activity.
14 CFR 25.473 - Landing load conditions and assumptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... presence of systems or procedures significantly affects the lift. (c) The method of analysis of airplane... dynamic characteristics. (2) Spin-up and springback. (3) Rigid body response. (4) Structural dynamic response of the airframe, if significant. (d) The landing gear dynamic characteristics must be validated by...
Metastability and nucleation in the 2D-Potts ferromagnet
NASA Astrophysics Data System (ADS)
de Berganza, Miguel Ibáñez
2009-01-01
The nature of the temperature-driven transition of the 2D q>4-Potts model, and the associated metastability, are studied. The problem was firstly investigated by Binder [1,2] in 1981, who discussed the existence of metastable states in a temperature interval below the critical point, which is first-order for q>4. Starting from the droplet expansion theory for the 2D Potts condensation point (Meunier & Morel, 2000 [3]), we compare the metastability derived from the theory with the dynamic metastability found with a local updating rule dynamics. The results are interpreted in terms of the microscopic mechanisms of nucleation, and compared to those described by Classical Nucleation Theory for the Ising model in an external field, which result to be different in several aspects.
Dense and dynamic 3D selection for game-based virtual environments.
Cashion, Jeffrey; Wingrave, Chadwick; LaViola, Joseph J
2012-04-01
3D object selection is more demanding when, 1) objects densly surround the target object, 2) the target object is significantly occluded, and 3) when the target object is dynamically changing location. Most 3D selection techniques and guidelines were developed and tested on static or mostly sparse environments. In contrast, games tend to incorporate densly packed and dynamic objects as part of their typical interaction. With the increasing popularity of 3D selection in games using hand gestures or motion controllers, our current understanding of 3D selection needs revision. We present a study that compared four different selection techniques under five different scenarios based on varying object density and motion dynamics. We utilized two existing techniques, Raycasting and SQUAD, and developed two variations of them, Zoom and Expand, using iterative design. Our results indicate that while Raycasting and SQUAD both have weaknesses in terms of speed and accuracy in dense and dynamic environments, by making small modifications to them (i.e., flavoring), we can achieve significant performance increases.
UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites
Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco
2016-01-01
Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components. PMID:28773704
UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.
Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco
2016-07-16
Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.
Breast segmentation in MR images using three-dimensional spiral scanning and dynamic programming
NASA Astrophysics Data System (ADS)
Jiang, Luan; Lian, Yanyun; Gu, Yajia; Li, Qiang
2013-03-01
Magnetic resonance (MR) imaging has been widely used for risk assessment and diagnosis of breast cancer in clinic. To develop a computer-aided diagnosis (CAD) system, breast segmentation is the first important and challenging task. The accuracy of subsequent quantitative measurement of breast density and abnormalities depends on accurate definition of the breast area in the images. The purpose of this study is to develop and evaluate a fully automated method for accurate segmentation of breast in three-dimensional (3-D) MR images. A fast method was developed to identify bounding box, i.e., the volume of interest (VOI), for breasts. A 3-D spiral scanning method was used to transform the VOI of each breast into a single two-dimensional (2-D) generalized polar-coordinate image. Dynamic programming technique was applied to the transformed 2-D image for delineating the "optimal" contour of the breast. The contour of the breast in the transformed 2-D image was utilized to reconstruct the segmentation results in the 3-D MR images using interpolation and lookup table. The preliminary results on 17 cases show that the proposed method can obtain accurate segmentation of the breast based on subjective observation. By comparing with the manually delineated region of 16 breasts in 8 cases, an overlap index of 87.6% +/- 3.8% (mean +/- SD), and a volume agreement of 93.4% +/- 4.5% (mean +/- SD) were achieved, respectively. It took approximately 3 minutes for our method to segment the breast in an MR scan of 256 slices.
Construction of 4D high-definition cortical surface atlases of infants: Methods and applications.
Li, Gang; Wang, Li; Shi, Feng; Gilmore, John H; Lin, Weili; Shen, Dinggang
2015-10-01
In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development. Copyright © 2015 Elsevier B.V. All rights reserved.
Estimation of the left ventricular shape and motion with a limited number of slices
NASA Astrophysics Data System (ADS)
Robert, Anne; Schmitt, Francis J. M.; Mousseaux, Elie
1996-04-01
In this paper, we describe a method for the reconstruction of the surface of the left ventricle from a set of lacunary data (that is an incomplete, unevenly sampled and unstructured data set). Global models, because they compress the properties of a surface into a small set of parameters, have a strong regularizing power and are therefore very well suited to lacunary data. Globally deformable superquadrics are particularly attractive, because of their simplicity. This model can be fitted to the data using the Levenberg-Marquardt algorithm for non-linear optimization. However, the difficulties we experienced to get temporally consistent solutions as well as the intrinsic 4D character of the data led us to generalize the classical 3D superquadric model to 4D. We present results on a 4D sequence from the Dynamic Spatial Reconstructor of the Mayo Clinic, and on a 4D IRM sequence.
Fernández-de-Manúel, Laura; Díaz-Díaz, Covadonga; Jiménez-Carretero, Daniel; Torres, Miguel; Montoya, María C
2017-05-01
Embryonic stem cells (ESCs) can be established as permanent cell lines, and their potential to differentiate into adult tissues has led to widespread use for studying the mechanisms and dynamics of stem cell differentiation and exploring strategies for tissue repair. Imaging live ESCs during development is now feasible due to advances in optical imaging and engineering of genetically encoded fluorescent reporters; however, a major limitation is the low spatio-temporal resolution of long-term 3-D imaging required for generational and neighboring reconstructions. Here, we present the ESC-Track (ESC-T) workflow, which includes an automated cell and nuclear segmentation and tracking tool for 4-D (3-D + time) confocal image data sets as well as a manual editing tool for visual inspection and error correction. ESC-T automatically identifies cell divisions and membrane contacts for lineage tree and neighborhood reconstruction and computes quantitative features from individual cell entities, enabling analysis of fluorescence signal dynamics and tracking of cell morphology and motion. We use ESC-T to examine Myc intensity fluctuations in the context of mouse ESC (mESC) lineage and neighborhood relationships. ESC-T is a powerful tool for evaluation of the genealogical and microenvironmental cues that maintain ESC fitness.
Kim, Jeehyun; Kim, Jung Hoon; Yoon, Soon Ho; Choi, Won Seok; Kim, Young Jae; Han, Joon Koo; Choi, Byung-Ihn
2015-12-01
The aim of this study was to assess the feasibility of using dynamic contrast-enhanced ultrasound (DCE-US) with a 3-D transducer to evaluate therapeutic responses to targeted therapy. Rabbits with hepatic VX2 carcinomas, divided into a treatment group (n = 22, 30 mg/kg/d sorafenib) and a control group (n = 13), were evaluated with DCE-US using 2-D and 3-D transducers and computed tomography (CT) perfusion imaging at baseline and 1 d after the first treatment. Perfusion parameters were collected, and correlations between parameters were analyzed. In the treatment group, both volumetric and 2-D DCE-US perfusion parameters, including peak intensity (33.2 ± 19.9 vs. 16.6 ± 10.7, 63.7 ± 20.0 vs. 30.1 ± 19.8), slope (15.3 ± 12.4 vs. 5.7 ± 4.5, 37.3 ± 20.4 vs. 15.7 ± 13.0) and area under the curve (AUC; 1004.1 ± 560.3 vs. 611.4 ± 421.1, 1332.2 ± 708.3 vs. 670.4 ± 388.3), had significantly decreased 1 d after the first treatment (p = 0.00). In the control group, 2-D DCE-US revealed that peak intensity, time to peak and slope had significantly changed (p < 0.05); however, volumetric DCE-US revealed that peak intensity, time-intensity AUC, AUC during wash-in and AUC during wash-out had significantly changed (p = 0.00). CT perfusion imaging parameters, including blood flow, blood volume and permeability of the capillary vessel surface, had significantly decreased in the treatment group (p = 0.00); however, in the control group, peak intensity and blood volume had significantly increased (p = 0.00). It is feasible to use DCE-US with a 3-D transducer to predict early therapeutic response after targeted therapy because perfusion parameters, including peak intensity, slope and AUC, significantly decreased, which is similar to the trend observed for 2-D DCE-US and CT perfusion imaging parameters. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Lovato, Tatiana; Stagni, Stefano; Zacchini, Stefano
2010-07-05
A comprehensive study discussing the different parameters that influence the self-assembly of [Pt(3n)(CO)(6n)](2-) (n = 4-8) clusters with miscellaneous mono- and dications into 0-D, 1-D, 2-D, and 3-D materials is herein reported. As an unexpected bonus, the use of Ru(II) dications allowed the first structural characterization of the previously unknown [Pt(21)(CO)(42)](2-) dianion. 0-D structures, which contain isolated ions, are electrical insulators in solid form. Conversely, as soon as infinite chains of clusters are formed, the electrical resistivity, measured in pressed pellets, decreases to 10(5)-10(6), 10(4), and 10(2) ohms cm for discontinuous, semicontinuous, and continuous chains, respectively. Therefore, the resemblance of these materials to molecular metal wires is not only morphological but also functional. Preliminary results of possible self-assembly phenomena in a solution of [Pt(15)(CO)(30)](2-) and [Pt(18)(CO)(36)](2-) according to dynamic light scattering experiments are also reported.
3D Pneumatic and 2D Dynamic Probes: Their Development and Subsequent Use in a Transonic Fan
1992-12-01
PROBES: THEIR DEVELOPMENT AND SUBSEQUENT USE IN A TRANSONIC FAN by M. A. Cherrett J. D. Bryce H. P. Hodson* SUMMARY Three different 3D pneumatic...Development & Subsequent Use In A Transonic Fan. by NM A Cherrett & J D Bryce, H P Hodson, Aerodynamics & Propulsion Department, Whittle Laboratory...the dynamic DRA which has been reported by Cherrett 1. Bryce’ A schematic yawmeter ) blockage accounted for approximately 3.0% of the diagram of the
Kelly, R F; Meaney, K D; Gilmore, M; Desjardins, T R; Zhang, Y
2016-11-01
In order to investigate the role of both neutral and ion dynamics in large-scale helicon discharges, a laser induced fluorescence (LIF) system capable of measuring both ArI and ArII fluorescence using a single tunable laser is being developed. The system is based on a >250 mW solid state laser. For ArI measurements, the laser pumps the metastable ( 2 P 0 3/2 )4s level to the ( 2 P 0 1/2 )4p level using 696.7352 nm light, and fluorescence radiation from decay to the ( 2 P 0 1/2 )4s level at 772.6333 nm is observed. For ArII, currently in development, the metastable ( 3 P)3d 4 F 7/2 level will be pumped to the ( 3 P)4p 4 D 0 7/2 level using 688.8511 nm, and decay fluorescence to the ( 3 P)4s 4 P 5/2 level at 434.9285 nm measured. Here all wavelengths are in a vacuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, B; Kim, S; Kim, T
Purpose: To develop a novel method that enables 4D MR imaging in near real-time for continuous monitoring of tumor motion in MR-guided radiotherapy. Methods: This method is mainly based on an idea of expanding dynamic keyhole to full volumetric imaging acquisition. In the VDK approach introduced in this study, a library of peripheral volumetric k-space data is generated in given number of phases (5 and 10 in this study) in advance. For 4D MRI at any given time, only volumetric central k-space data are acquired in real-time and combined with pre-acquired peripheral volumetric k-space data in the library corresponding tomore » the respiratory phase (or amplitude). The combined k-space data are Fourier-transformed to MR images. For simulation study, an MRXCAT program was used to generate synthetic MR images of the thorax with desired respiratory motion, contrast levels, and spatial and temporal resolution. 20 phases of volumetric MR images, with 200 ms temporal resolution in 4 s respiratory period, were generated using balanced steady-state free precession MR pulse sequence. The total acquisition time was 21.5s/phase with a voxel size of 3×3×5 mm{sup 3} and an image matrix of 128×128×56. Image similarity was evaluated with difference maps between the reference and reconstructed images. The VDK, conventional keyhole, and zero filling methods were compared for this simulation study. Results: Using 80% of the ky data and 70% of the kz data from the library resulted in 12.20% average intensity difference from the reference, and 21.60% and 28.45% difference in threshold pixel difference for conventional keyhole and zero filling, respectively. The imaging time will be reduced from 21.5s to 1.3s per volume using the VDK method. Conclusion: Near real-time 4D MR imaging can be achieved using the volumetric dynamic keyhole method. That makes the possibility of utilizing 4D MRI during MR-guided radiotherapy.« less
Decoupled 1D/3D analysis of a hydraulic valve
NASA Astrophysics Data System (ADS)
Mehring, Carsten; Zopeya, Ashok; Latham, Matt; Ihde, Thomas; Massie, Dan
2014-10-01
Analysis approaches during product development of fluid valves and other aircraft fluid delivery components vary greatly depending on the development stage. Traditionally, empirical or simplistic one-dimensional tools are being deployed during preliminary design, whereas detailed analysis such as CFD (Computational Fluid Dynamics) tools are used to refine a selected design during the detailed design stage. In recent years, combined 1D/3D co-simulation has been deployed specifically for system level simulations requiring an increased level of analysis detail for one or more components. The present paper presents a decoupled 1D/3D analysis approach where 3D CFD analysis results are utilized to enhance the fidelity of a dynamic 1D modelin context of an aircraft fuel valve.
PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.
Ekhteiari Salmas, Ramin; Seeman, Philip; Aksoydan, Busecan; Stein, Matthias; Yurtsever, Mine; Durdagi, Serdar
2017-04-19
The dopamine D2 receptor (D2R) plays an important part in the human central nervous system and it is considered to be a focal target of antipsychotic agents. It is structurally modeled in active and inactive states, in which homodimerization reaction of the D2R monomers is also applied. The ASP2314 (also known as ACR16) ligand, a D2R stabilizer, is used in tests to evaluate how dimerization and conformational changes may alter the ligand binding space and to provide information on alterations in inhibitory mechanisms upon activation. The administration of the D2R agonist ligand ACR16 [ 3 H](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol ((+)PHNO) revealed K i values of 32 nM for the D2 high R and 52 μM for the D2 low R. The calculated binding affinities of ACR16 with post processing molecular dynamics (MD) simulations analyses using MM/PBSA for the monomeric and homodimeric forms of the D2 high R were -9.46 and -8.39 kcal/mol, respectively. The data suggests that the dimerization of the D2R leads negative cooperativity for ACR16 binding. The dimerization reaction of the D2 high R is energetically favorable by -22.95 kcal/mol. The dimerization reaction structurally and thermodynamically stabilizes the D2 high R conformation, which may be due to the intermolecular forces formed between the TM4 of each monomer, and the result strongly demonstrates dimerization essential for activation of the D2R.
Liu, Jing; Li, Yan; Zhang, Shuwei; Xiao, Zhengtao; Ai, Chunzhi
2011-01-01
In recent years, great interest has been paid to the development of compounds with high selectivity for central dopamine (DA) D3 receptors, an interesting therapeutic target in the treatment of different neurological disorders. In the present work, based on a dataset of 110 collected benzazepine (BAZ) DA D3 antagonists with diverse kinds of structures, a variety of in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), homology modeling, molecular docking and molecular dynamics (MD) were carried out to reveal the requisite 3D structural features for activity. Our results show that both the receptor-based (Q2 = 0.603, R2ncv = 0.829, R2pre = 0.690, SEE = 0.316, SEP = 0.406) and ligand-based 3D-QSAR models (Q2 = 0.506, R2ncv =0.838, R2pre = 0.794, SEE = 0.316, SEP = 0.296) are reliable with proper predictive capacity. In addition, a combined analysis between the CoMFA, CoMSIA contour maps and MD results with a homology DA receptor model shows that: (1) ring-A, position-2 and R3 substituent in ring-D are crucial in the design of antagonists with higher activity; (2) more bulky R1 substituents (at position-2 of ring-A) of antagonists may well fit in the binding pocket; (3) hydrophobicity represented by MlogP is important for building satisfactory QSAR models; (4) key amino acids of the binding pocket are CYS101, ILE105, LEU106, VAL151, PHE175, PHE184, PRO254 and ALA251. To our best knowledge, this work is the first report on 3D-QSAR modeling of the new fused BAZs as DA D3 antagonists. These results might provide information for a better understanding of the mechanism of antagonism and thus be helpful in designing new potent DA D3 antagonists. PMID:21541053
Liu, Jing; Li, Yan; Zhang, Shuwei; Xiao, Zhengtao; Ai, Chunzhi
2011-02-18
In recent years, great interest has been paid to the development of compounds with high selectivity for central dopamine (DA) D3 receptors, an interesting therapeutic target in the treatment of different neurological disorders. In the present work, based on a dataset of 110 collected benzazepine (BAZ) DA D3 antagonists with diverse kinds of structures, a variety of in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), homology modeling, molecular docking and molecular dynamics (MD) were carried out to reveal the requisite 3D structural features for activity. Our results show that both the receptor-based (Q(2) = 0.603, R(2) (ncv) = 0.829, R(2) (pre) = 0.690, SEE = 0.316, SEP = 0.406) and ligand-based 3D-QSAR models (Q(2) = 0.506, R(2) (ncv) =0.838, R(2) (pre) = 0.794, SEE = 0.316, SEP = 0.296) are reliable with proper predictive capacity. In addition, a combined analysis between the CoMFA, CoMSIA contour maps and MD results with a homology DA receptor model shows that: (1) ring-A, position-2 and R(3) substituent in ring-D are crucial in the design of antagonists with higher activity; (2) more bulky R(1) substituents (at position-2 of ring-A) of antagonists may well fit in the binding pocket; (3) hydrophobicity represented by MlogP is important for building satisfactory QSAR models; (4) key amino acids of the binding pocket are CYS101, ILE105, LEU106, VAL151, PHE175, PHE184, PRO254 and ALA251. To our best knowledge, this work is the first report on 3D-QSAR modeling of the new fused BAZs as DA D3 antagonists. These results might provide information for a better understanding of the mechanism of antagonism and thus be helpful in designing new potent DA D3 antagonists.
Taking geoscience to the IMAX: 3D and 4D insight into geological processes using micro-CT
NASA Astrophysics Data System (ADS)
Dobson, Katherine; Dingwell, Don; Hess, Kai-Uwe; Withers, Philip; Lee, Peter; Pistone, Mattia; Fife, Julie; Atwood, Robert
2015-04-01
Geology is inherently dynamic, and full understanding of any geological system can only be achieved by considering the processes by which change occurs. Analytical limitations mean understanding has largely developed from ex situ analyses of the products of geological change, rather than of the processes themselves. Most methods essentially utilise "snap shot" sampling: and from thin section petrography to high resolution crystal chemical stratigraphy and field volcanology, we capture an incomplete view of a spatially and temporally variable system. Even with detailed experimental work, we can usually only analyse samples before and after we perform an experiment, as routine analysis methods are destructive. Serial sectioning and quenched experiments stopped at different stages can give some insight into the third and fourth dimension, but the true scaling of the processes from the laboratory to the 4D (3D + time) geosphere is still poorly understood. Micro computed tomography (XMT) can visualise the internal structures and spatial associations within geological samples non-destructively. With image resolutions of between 200 microns and 50 nanometres, tomography has the ability to provide a detailed sample assessment in 3D, and quantification of mineral associations, porosity, grain orientations, fracture alignments and many other features. This allows better understanding of the role of the complex geometries and associations within the samples, but the challenge of capturing the processes that generate and modify these structures remains. To capture processes, recent work has focused on developing experimental capability for in situ experiments on geological materials. Data presented will showcase examples from recent experiments where high speed synchrotron x-ray tomography has been used to acquire each 3D image in under 2 seconds. We present a suite of studies that showcase how it is now possible to take quantification of many geological processed into 3D and 4D. This will include tracking the interactions between bubbles and crystals in a deforming magma, the dissolution of individual mineral grains from low grade ores, and quantification of three phase flow in sediments and soils. Our aim is to demonstrate how XMT can provide new insight into dynamic processes in all geoscience disciplines, and give you some insight into where 4D geoscience could take us next.
Slenkamp, Karla M.; Lynch, Michael S.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira
2016-01-01
Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]− (FeRu) dissolved in D2O or formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4− (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent. PMID:27158634
Slenkamp, Karla M; Lynch, Michael S; Brookes, Jennifer F; Bannan, Caitlin C; Daifuku, Stephanie L; Khalil, Munira
2016-03-01
Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5Ru(III)NCFe(II)(CN)5](-) (FeRu) dissolved in D2O or formamide and [(NC)5Fe(II)CNPt(IV)(NH3)4NCFe(II)(CN)5](4-) (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent.
Murad-Regadas, S M; Regadas, F S P; Barreto, R G L; Rodrigues, L V; de Souza, M H L P
2009-10-01
The aim of this prospective study was to test two-dimensional dynamic anorectal ultrasonography (2D-DAUS) in the assessment of anismus and compare it with echodefecography (ECD). Fifty consecutive female patients with outlet delay were submitted to 2D and 3D-DAUS, measuring the relaxing or contracting puborectalis muscle angle during straining. The patients were assigned to one of two groups based on ECD findings. Group I consisted of 29 patients without anismus and group II included 21 patients diagnosed with anismus. Subsequently 2D-DAUS images were checked for anismus and compared with ECD findings. Upon straining, the angle produced by the movement of the puborectalis muscle decreased in 26 out of the 29 (89.6%) patients of group I and increased 19 out of the 21 (90.4%) patients of group II. The mean angle during straining differed significantly between group I and group II. The index of agreement between the two scanning modes was 89.6% (26/29) for group I (Kappa: 0.796; CI: 95%; range: 0.51-1.0) and 90.4% (19/21) for group II (Kappa: 0.796; CI: 95%; range: 0.51-1.0). Two-dimensional dynamic anal ultrasonography can be used as an alternative method to assess patients with anismus, although the 3-D modality is more precise to evaluate the PR angle as the sphincters integrity as the whole muscle length is clearly visualized.
Heart rate recovery in elite Spanish male athletes.
Peinado, A B; Benito, P J; Barriopedro, M; Lorenzo, I; Maffulli, N; Calderón, F J
2014-06-01
During postexercise recovery, heart rate (HR) initially falls rapidly, followed by a period of slower decrease, until resting values are reached. The aim of the present work was to examine the differences in the recovery heart rate (RHR) between athletes engaged in static and dynamic sports. The study subjects were 294 federated sportsmen competing at the national and international level in sports classified using the criteria of Mitchell et al. as either prevalently static (N.=89) or prevalently dynamic (N.=205). Within the dynamic group, the subjects who practised the most dynamic sports were assigned to further subgroups: triathlon (N.=20), long distance running (N.=58), cycling (N.=28) and swimming (N.=12). All athletes were subjected to a maximum exertion stress test and their HR recorded at 1, 2, 3 and 4 min (RHR1,2,3,4) into the HR recovery period. The following indices of recovery (IR) were then calculated: IR1=(HRpeak-RHR1,2,3,4)/(HRmax-HRrest)*100, IR2=(HRpeak-RHR1,2,3,4)/(HRmax/HRpeak), and IR3=HRpeak-RHR1,2,3,4. The differences in the RHR and IR for the static and dynamic groups were examined using two way ANOVA. The RHR at minutes 2 (138.7±15.2 vs. 134.8±14.4 beats·min⁻¹) and 3 (128.5±15.2 vs. 123.3±14.4 beats·min⁻¹) were significantly higher for the static group (Group S) than the dynamic group (Group D), respectively. Significant differences were seen between Group D and S with respect to IR1 at minutes 1 (26.4±8.7 vs. 24.8±8.4%), 2 (43.8±8.1 vs. 41.5±7.8%), 3 (52.1±8.3 vs. 49.1±8%) and 4 (56.8±8.6 vs. 55.4±7.4%) of recovery. For IR2, significant differences were seen between the same groups at minutes 2 (59.7±12.5 vs. 55.9±10.8 beats·min⁻¹) and 3 (71.0±13.5 vs. 66.1±11.4 beats·min⁻¹) of recovery. Finally, for IR3, the only significant difference between Group D and S was recorded at minute 3 of recovery (72.2±12.5 vs. 66.2±11.5 beats·min⁻¹). This work provides information on RHR of a large population of elite Spanish athletes, and shows marked differences in the way that HR recovers in dynamic and static sports.
Atmospheric chemistry and transport modeling in the outer solar system
NASA Astrophysics Data System (ADS)
Lee, Yuan-Tai (Anthony)
2001-11-01
This thesis consists of 1-D and 2-D photochemical- dynamical modeling in the upper atmospheres of outer planets. For 1-D modeling, a unified hydrocarbon photochemical model has been studied in Jupiter, Saturn, Uranus, Neptune, and Titan, by comparing with the Voyager observations, and the recent measurements of methyl radicals by ISO in Saturn and Neptune. The CH3 observation implies a kinetically sensitive test to the measured and estimated hydrocarbon rate constants at low temperatures. We identify the key reactions that control the concentrations of CH3 in the model, such as the three-body recombination reaction, CH3 + CH3 + M --> C 2H6 + M, and the recycling reaction H + CH3 + M --> CH4 + M. The results show reasonable agreement with ISO values. In Chapter 4, the detection of PH3 in the lower stratosphere and upper troposphere of Jupiter has provided a photochemical- dynamical coupling model to derive the eddy diffusion coefficient in the upper troposphere of Jupiter. Using a two-layers photochemical model with updated photodissociation cross-sections and chemical rate constants for NH3 and PH 3, we find that the upper tropospheric eddy diffusion coefficient <10 5 cm2 sec-1, and the deeper tropospheric value >106 cm2 sec-1, are required to match the derived PH3 vertical profile by the observation. The best-fit functional form derivation of eddy diffusion coefficient in the upper troposphere of Jupiter above 400 mbar is K = 2.0 × 104 (n/2.2 × 1019)-0.5 cm 2 sec-1. On the other hand, Chapter 5 demonstrates a dynamical-only 2-D model of C2H6 providing a complete test for the current 2-D transport models in Jovian lower stratosphere and upper troposphere (270 to 0.1 mbar pressure levels). Different combinations of residual advection, horizontal eddy dispersion, and vertical eddy mixing are examined at different latitudes.
Atomic data on inelastic processes in low-energy manganese-hydrogen collisions
NASA Astrophysics Data System (ADS)
Belyaev, Andrey K.; Voronov, Yaroslav V.
2017-10-01
Aims: The aim of this paper is to calculate cross sections and rate coefficients for inelastic processes in low-energy Mn + H and Mn+ + H- collisions, especially, for processes with high and moderate rate coefficients. These processes are required for non-local thermodynamic equilibrium (non-LTE) modeling of manganese spectra in cool stellar atmospheres, and in particular, for metal-poor stars. Methods: The calculations of the cross sections and the rate coefficients were performed by means of the quantum model approach within the framework of the Born-Oppenheimer formalism, that is, the asymptotic semi-empirical method for the electronic MnH molecular structure calculation followed by the nonadiabatic nuclear dynamical calculation by means of the multichannel analytic formulas. Results: The cross sections and the rate coefficients for low-energy inelastic processes in manganese-hydrogen collisions are calculated for all transitions between 21 low-lying covalent states and one ionic state. We show that the highest values of the cross sections and the rate coefficients correspond to the mutual neutralization processes into the final atomic states Mn(3d54s(7S)5s e 6S), Mn(3d54s(7S)5p y 8P°), Mn(3d54s(7S)5s e 8S), Mn(3d54s(7S)4d e 8D) [the first group], the processes with the rate coefficients (at temperature T = 6000 K) of the values 4.38 × 10-8, 2.72 × 10-8, 1.98 × 10-8, and 1.59 × 10-8 cm3/ s, respectively, that is, with the rate coefficients exceeding 10-8 cm3/ s. The processes with moderate rate coefficients, that is, with values between 10-10 and 10-8 cm3/ s include many excitation, de-excitation, mutual neutralization and ion-pair formation processes. In addition to other processes involving the atomic states from the first group, the processes from the second group include those involving the following atomic states: Mn(3d5(6S)4s4p (1P°) y 6P°), Mn(3d54s(7S)4d e 6D), Mn(3d54s(7S)5p w 6P°), Mn(3d5(4P)4s4p (3P°) y 6D°), Mn(3d5(4G)4s4p (3P°) y 6F°). The processes with the highest and moderate rate coefficients are expected to be important for non-LTE modeling of manganese spectra in stellar atmospheres. Rate coefficients Kif(T) for the excitation, de-excitation, mutual neutralization, and ion-pair formation processes in manganese-hydrogen collisions are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A106
Pouch, Alison M; Aly, Ahmed H; Lai, Eric K; Yushkevich, Natalie; Stoffers, Rutger H; Gorman, Joseph H; Cheung, Albert T; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A
2017-09-01
Transesophageal echocardiography is the primary imaging modality for preoperative assessment of mitral valves with ischemic mitral regurgitation (IMR). While there are well known echocardiographic insights into the 3D morphology of mitral valves with IMR, such as annular dilation and leaflet tethering, less is understood about how quantification of valve dynamics can inform surgical treatment of IMR or predict short-term recurrence of the disease. As a step towards filling this knowledge gap, we present a novel framework for 4D segmentation and geometric modeling of the mitral valve in real-time 3D echocardiography (rt-3DE). The framework integrates multi-atlas label fusion and template-based medial modeling to generate quantitatively descriptive models of valve dynamics. The novelty of this work is that temporal consistency in the rt-3DE segmentations is enforced during both the segmentation and modeling stages with the use of groupwise label fusion and Kalman filtering. The algorithm is evaluated on rt-3DE data series from 10 patients: five with normal mitral valve morphology and five with severe IMR. In these 10 data series that total 207 individual 3DE images, each 3DE segmentation is validated against manual tracing and temporal consistency between segmentations is demonstrated. The ultimate goal is to generate accurate and consistent representations of valve dynamics that can both visually and quantitatively provide insight into normal and pathological valve function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlahović, Filip; Perić, Marko; Zlatar, Matija, E-mail: matijaz@chem.bg.ac.rs
2015-06-07
Herein, we present the systematic, comparative computational study of the d − d transitions in a series of first row transition metal hexaaqua complexes, [M(H{sub 2}O){sub 6}]{sup n+} (M{sup 2+/3+} = V {sup 2+/3+}, Cr{sup 2+/3+}, Mn{sup 2+/3+}, Fe{sup 2+/3+}, Co{sup 2+/3+}, Ni{sup 2+}) by the means of Time-dependent Density Functional Theory (TD-DFT) and Ligand Field Density Functional Theory (LF-DFT). Influence of various exchange-correlation (XC) approximations have been studied, and results have been compared to the experimental transition energies, as well as, to the previous high-level ab initio calculations. TD-DFT gives satisfactory results in the cases of d{sup 2}, d{supmore » 4}, and low-spin d{sup 6} complexes, but fails in the cases when transitions depend only on the ligand field splitting, and for states with strong character of double excitation. LF-DFT, as a non-empirical approach to the ligand field theory, takes into account in a balanced way both dynamic and non-dynamic correlation effects and hence accurately describes the multiplets of transition metal complexes, even in difficult cases such as sextet-quartet splitting in d{sup 5} complexes. Use of the XC functionals designed for the accurate description of the spin-state splitting, e.g., OPBE, OPBE0, or SSB-D, is found to be crucial for proper prediction of the spin-forbidden excitations by LF-DFT. It is shown that LF-DFT is a valuable alternative to both TD-DFT and ab initio methods.« less
4D BADA-based Trajectory Generator and 3D Guidance Algorithm
NASA Technical Reports Server (NTRS)
Palacios, Eduardo Sepulveda; Johnson, Marcus A.
2013-01-01
This paper presents a hybrid integration between aerodynamic, airline procedures and other BADA-based (Base of Aircraft Data) coefficients with a classical aircraft dynamic model. This paper also describes a three-dimensional guidance algorithm implemented in order to produce commands for the aircraft to follow a flight plan. The software chosen for this work is MATLAB.
Yoon, Ki-Hyuk; Kang, Min-Koo; Lee, Hwasun; Kim, Sung-Kyu
2018-01-01
We study optical technologies for viewer-tracked autostereoscopic 3D display (VTA3D), which provides improved 3D image quality and extended viewing range. In particular, we utilize a technique-the so-called dynamic fusion of viewing zone (DFVZ)-for each 3D optical line to realize image quality equivalent to that achievable at optimal viewing distance, even when a viewer is moving in a depth direction. In addition, we examine quantitative properties of viewing zones provided by the VTA3D system that adopted DFVZ, revealing that the optimal viewing zone can be formed at viewer position. Last, we show that the comfort zone is extended due to DFVZ. This is demonstrated by a viewer's subjective evaluation of the 3D display system that employs both multiview autostereoscopic 3D display and DFVZ.
A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells.
Liu, Haijiao; Usprech, Jenna; Sun, Yu; Simmons, Craig A
2016-04-01
Cellular microenvironments present cells with multiple stimuli, including not only soluble biochemical and insoluble matrix cues but also mechanical factors. Biomaterial array platforms have been used to combinatorially and efficiently probe and define two-dimensional (2D) and 3D microenvironmental cues to guide cell functions for tissue engineering applications. However, there are few examples of array platforms that include dynamic mechanical forces, particularly to enable stretching of 3D cell-seeded biomaterials, which is relevant to engineering connective and cardiovascular tissues. Here we present a deformable membrane platform that enables 3D dynamic mechanical stretch of arrayed biomaterial constructs. Cell-seeded polyethylene glycol norbornene (PEG-NB) hydrogels were bound to miniaturized deformable membranes via a thiol-ene reaction with off-stoichiometry thiol-ene based polydimethylsiloxane (OSTE-PDMS) as the membrane material. Bonding to OSTE-PDMS enabled the 3D hydrogel microconstructs to be cyclically deformed and stretched by the membrane. As a first demonstration, human mesenchymal stromal cells (MSCs) embedded in PEG-NB were stretched for several days. They were found to be viable, spread in the 3D hydrogels, and exhibited a contractile myofibroblast phenotype when exposed to dynamic 3D mechanical deformation. This platform, which is readily scalable to larger arrays, enables systematic interrogation of the relationships between combinations of 3D mechanobiological cues and cellular responses, and thus has the potential to identify strategies to predictably control the construction of functional engineered tissues. Current high-throughput biomaterial screening approaches fail to consider the effects of dynamic mechanical stimulation, despite its importance in a wide variety of regenerative medicine applications. To meet this need, we developed a deformable membrane platform that enables 3D dynamic stretch of arrayed biomaterial constructs. Our approach combines microtechnologies fabricated with off-stoichiometry thiol-ene based polydimethylsiloxane membranes that can covalently bond cell-seeded polyethylene glycol norbornene 3D hydrogels, a model biomaterial with tunable adhesive, elastic and degradation characteristics. As a first demonstration, we show that human mesenchymal stromal cells embedded in hydrogels and subjected to dynamic mechanical stimulation undergo myofibroblast differentiation. This system is readily scaled up to larger arrays, and will enable systematic and efficient screening of combinations of 3D mechanobiological and biomaterial cues on cell fate and function. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
High-Resolution Large-Field-of-View Three-Dimensional Hologram Display System and Method Thereof
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Mintz, Frederick W. (Inventor); Tsou, Peter (Inventor); Bryant, Nevin A. (Inventor)
2001-01-01
A real-time, dynamic, free space-virtual reality, 3-D image display system is enabled by using a unique form of Aerogel as the primary display media. A preferred embodiment of this system comprises a 3-D mosaic topographic map which is displayed by fusing four projected hologram images. In this embodiment, four holographic images are projected from four separate holograms. Each holographic image subtends a quadrant of the 4(pi) solid angle. By fusing these four holographic images, a static 3-D image such as a featured terrain map would be visible for 360 deg in the horizontal plane and 180 deg in the vertical plane. An input, either acquired by 3-D image sensor or generated by computer animation, is first converted into a 2-D computer generated hologram (CGH). This CGH is then downloaded into large liquid crystal (LC) panel. A laser projector illuminates the CGH-filled LC panel and generates and displays a real 3-D image in the Aerogel matrix.
Flow in cerebral aneurysms: 4D Flow MRI measurements and CFD models
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy; Schnell, Susanne
2017-11-01
4D Flow MRI is capable of measuring blood flow in vivo, providing time-resolved velocity fields in 3D. The dynamic range of the 4D Flow MRI is determined by a velocity sensitivity parameter (venc), set above the expected maximum velocity, which can result in noisy data for slow flow regions. A dual-venc 4D flow MRI technique, where both low- and high-venc data are acquired, can improve velocity-to-noise ratio and, therefore, quantification of clinically-relevant hemodynamic metrics. In this study, patient-specific CFD simulations were used to evaluate the advantages of the dual-venc approach for assessment of the flow in cerebral aneurysms. The flow in 2 cerebral aneurysms was measured in vivo with dual-venc 4D Flow MRI and simulated with CFD, using the MRI data to prescribe flow boundary conditions. The flow fields obtained with computations were compared to those measured with a single- and dual-venc 4D Flow MRI. The numerical models resolved small flow structures near the aneurysmal wall, that were not detected with a single-venc acquisition. Comparison of the numerical and imaging results shows that the dual-venc approach can improve the accuracy of the 4D Flow MRI measurements in regions characterized by high-velocity jets and slow recirculating flows.
Costigliola, Lorenzo; Schrøder, Thomas B; Dyre, Jeppe C
2016-06-21
The recent theoretical prediction by Maimbourg and Kurchan [e-print arXiv:1603.05023 (2016)] that for regular pair-potential systems the virial potential-energy correlation coefficient increases towards unity as the dimension d goes to infinity is investigated for the standard 12-6 Lennard-Jones fluid. This is done by computer simulations for d = 2, 3, 4 going from the critical point along the critical isotherm/isochore to higher density/temperature. In both cases the virial potential-energy correlation coefficient increases significantly. For a given density and temperature relative to the critical point, with increasing number of dimension the Lennard-Jones system conforms better to the hidden-scale-invariance property characterized by high virial potential-energy correlations (a property that leads to the existence of isomorphs in the thermodynamic phase diagram, implying that it becomes effectively one-dimensional in regard to structure and dynamics). The present paper also gives the first numerical demonstration of isomorph invariance of structure and dynamics in four dimensions. Our findings emphasize the need for a universally applicable 1/d expansion in liquid-state theory; we conjecture that the systems known to obey hidden scale invariance in three dimensions are those for which the yet-to-be-developed 1/d expansion converges rapidly.
NASA Astrophysics Data System (ADS)
Kelly, R. F.; Meaney, K. D.; Gilmore, M.; Desjardins, T. R.; Zhang, Y.
2016-11-01
In order to investigate the role of both neutral and ion dynamics in large-scale helicon discharges, a laser induced fluorescence (LIF) system capable of measuring both ArI and ArII fluorescence using a single tunable laser is being developed. The system is based on a >250 mW solid state laser. For ArI measurements, the laser pumps the metastable (2P03/2)4s level to the (2P01/2)4p level using 696.7352 nm light, and fluorescence radiation from decay to the (2P01/2)4s level at 772.6333 nm is observed. For ArII, currently in development, the metastable (3P)3d 4F7/2 level will be pumped to the (3P)4p 4D07/2 level using 688.8511 nm, and decay fluorescence to the (3P)4s 4P5/2 level at 434.9285 nm measured. Here all wavelengths are in a vacuum.
NASA Astrophysics Data System (ADS)
Li, Jing; Wu, Huayi; Yang, Chaowei; Wong, David W.; Xie, Jibo
2011-09-01
Geoscientists build dynamic models to simulate various natural phenomena for a better understanding of our planet. Interactive visualizations of these geoscience models and their outputs through virtual globes on the Internet can help the public understand the dynamic phenomena related to the Earth more intuitively. However, challenges arise when the volume of four-dimensional data (4D), 3D in space plus time, is huge for rendering. Datasets loaded from geographically distributed data servers require synchronization between ingesting and rendering data. Also the visualization capability of display clients varies significantly in such an online visualization environment; some may not have high-end graphic cards. To enhance the efficiency of visualizing dynamic volumetric data in virtual globes, this paper proposes a systematic framework, in which an octree-based multiresolution data structure is implemented to organize time series 3D geospatial data to be used in virtual globe environments. This framework includes a view-dependent continuous level of detail (LOD) strategy formulated as a synchronized part of the virtual globe rendering process. Through the octree-based data retrieval process, the LOD strategy enables the rendering of the 4D simulation at a consistent and acceptable frame rate. To demonstrate the capabilities of this framework, data of a simulated dust storm event are rendered in World Wind, an open source virtual globe. The rendering performances with and without the octree-based LOD strategy are compared. The experimental results show that using the proposed data structure and processing strategy significantly enhances the visualization performance when rendering dynamic geospatial phenomena in virtual globes.
4D imaging of transient structures and morphologies in ultrafast electron microscopy.
Barwick, Brett; Park, Hyun Soon; Kwon, Oh-Hoon; Baskin, J Spencer; Zewail, Ahmed H
2008-11-21
With advances in spatial resolution reaching the atomic scale, two-dimensional (2D) and 3D imaging in electron microscopy has become an essential methodology in various fields of study. Here, we report 4D imaging, with in situ spatiotemporal resolutions, in ultrafast electron microscopy (UEM). The ability to capture selected-area-image dynamics with pixel resolution and to control the time separation between pulses for temporal cooling of the specimen made possible studies of fleeting structures and morphologies. We demonstrate the potential for applications with two examples, gold and graphite. For gold, after thermally induced stress, we determined the atomic structural expansion, the nonthermal lattice temperature, and the ultrafast transients of warping/bulging. In contrast, in graphite, striking coherent transients of the structure were observed in both image and diffraction, directly measuring, on the nanoscale, the longitudinal resonance period governed by Young's elastic modulus. The success of these studies demonstrates the promise of UEM in real-space imaging of dynamics.
Shin, H-J; Song, J H; Jung, J-Y; Kwak, Y-K; Kay, C S; Kang, Y-N; Choi, B O; Jang, H S
2013-01-01
Objective: To evaluate the accuracy of pencil beam calculation (PBC) and Monte Carlo calculation (MCC) for dynamic arc therapy (DAT) in a cylindrically shaped homogenous phantom, by comparing the two plans with an ion chamber, a film and a three-dimensional (3D) volumetric dosemeter. Methods: For this study, an in-house phantom was constructed, and the PBC and MCC plans for DAT were performed using iPlan® RT (BrainLAB®, Heimstetten, Germany). The A16 micro ion chamber (Standard Imaging, Middleton, WI), Gafchromic® EBT2 film (International Specialty Products, Wayne, NJ) and ArcCHECK™ (Sun Nuclear, Melbourne, FL) were used for measurements. For comparison with each plan, two-dimensional (2D) and 3D gamma analyses were performed using 3%/3 mm and 2%/2 mm criteria. Results: The difference between the PBC and MCC plans using 2D and 3D gamma analyses was found to be 7.85% and 28.8%, respectively. The ion chamber and 2D dose distribution measurements did not exhibit this difference revealed by the comparison between the PBC and MCC plans. However, the 3D assessment showed a significant difference between the PBC and MCC (62.7% for PBC vs 93.4% for MCC, p = 0.034). Conclusion: Evaluation using a 3D volumetric dosemeter can be clinically useful for delivery quality assurance (QA), and the MCC should be used to achieve the most reliable dose calculation for DAT. Advances in knowledge: (1) The DAT plan calculated using the PBC has a limitation in the calculation methods, and a 3D volumetric dosemeter was found to be an adequate tool for delivery QA of DAT. (2) The MCC was superior to PBC in terms of the accuracy in dose calculation for DAT even in the homogenous condition. PMID:24234583
NASA Astrophysics Data System (ADS)
Varma, Vikram
A combined experimental and theoretical protocol for the conformational analysis of oligosaccharides is presented. Three disaccharides, methyl alpha - scD-mannopyranosyl-(1 to 3)-alpha- scD-mannopyranoside, methyl beta- scD-galactopyranosyl-(1 to 4)-beta- scD-glucopyranoside, and propyl beta- scD-2-acetamido -2-deoxy glucopyranosyl-(1 to 3)- alpha- scL-rhamnopyranoside, are used to evaluate a protocol for conformational analysis that makes use of molecular dynamics calculations with the CHARMM force field. Dynamics trajectories computed in vacuo and in water are used to calculate time-averaged NMR parameters such as spin-lattice relaxation times (T_1 ), Nuclear Overhauser Enhancements (NOE), and heteronuclear spin-spin coupling constants (^3J _{rm CH}). The calculated NMR parameters are then compared to experimental values and used to evaluate the computational procedure. The energetically accessible conformations are effectively sampled by the simulations. The method has been extended to the conformational analysis of higher-order oligosaccharides corresponding to the cell-wall polysaccharide of the Streptococcus Group A, and the Shigella flexneri Y O-antigen. The Streptococcus Group A cell-wall polysaccharide is comprised of a backbone of rhamnopyranosyl units connected by alternating alpha- scL-(1 to 3) and alpha- scL -(1 to 2) linkages, to which are attached N-acetyl-beta- scD-glucosamine ( beta- scD-GlcpNAc) residues at the 3 positions of the rhamnose backbone.rm A&rm B^'qquad A^'& rm Bqquad Acr[{-alpha}{-}L{-}Rha {it p}{-}(1to2){-alpha }{-}L{-}Rha{it p} {-}(1to3){-alpha}{ -}L{-}Rha{it p}-(1to2) -alpha-L-Rha{it p}{-}(1 to3){-alpha}{-}L{- }Rha{it p}{-}cr&uparrow(1 to3)&uparrow(1to3)crbeta {-}D{-}&rm Glc{it p }NAcqquadbeta{-}D{-}& rm Glc{it p}NAccr&rm C ^'&rm C] A branched trisaccharide (A^' -(C)B), a tetrasaccharide (A^' -(C)B-A), a pentasaccharide (C^' -B^'-A ^'-(C)B), and two hexasaccharides (C^'-B^ '-A^' -(C)B-A) and (A-(C^')B ^'-A^' -(C)B), have been chosen for study. The Shigella flexneri Y O-antigen is a linear polysaccharide that is composed of rhamnose units linked alpha- scL-(1 to 3) and alpha- scL-(1 to 2), interspersed by N-acetyl-beta - scD-glucosamine (beta- scD -GlcpNAc) to form a periodic repeating unit ABCD. &rm A&rm B&rm C&rm Dcr [{-alpha}{-}L {-}Rha{it p}-(1to2){ -alpha}{-}L{-}Rha{it p}{-}(1to3){-alpha} {-}L{-}Rha{it p}{ -}(1to3){-}beta{-}D {-}Glc{it p}NAc{-}(1 to2){-}]_{it n}A heptasaccharide corresponding to the fragment (ABCDA^'B ^'C^' ) of the Shigella flexneri Y polysaccharide has been investigated. The conformational properties of all of the oligosaccharides have been studied using molecular dynamics simulations. Interproton distances derived from ROESY spectra are used to determine the starting conformations of the oligosaccharides used in the dynamics calculations, and dynamics simulations are computed with proton pairs constrained to the ROESY -derived distances, as well as with the constraints removed. These dynamics trajectories are used to calculate ROESY buildup curves with CROSREL, a program that treats cross relaxation by means of a full matrix relaxation approach. The calculated buildup curves compare favorably with the experimental buildup curves. The study demonstrates that molecular dynamics, in conjunction with NMR spectroscopy, can be a useful tool in the understanding of the conformational behavior of oligosaccharides in solution. The results provide a model for antigen topology that can be used to infer some of the critical features of antibody-antigen interactions.
MPACT Theory Manual, Version 2.2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downar, Thomas; Collins, Benjamin S.; Gehin, Jess C.
2016-06-09
This theory manual describes the three-dimensional (3-D) whole-core, pin-resolved transport calculation methodology employed in the MPACT code. To provide sub-pin level power distributions with sufficient accuracy, MPACT employs the method of characteristics (MOC) solutions in the framework of a 3-D coarse mesh finite difference (CMFD) formulation. MPACT provides a 3D MOC solution, but also a 2D/1D solution in which the 2D planar solution is provided by MOC and the axial coupling is resolved by one-dimensional (1-D) lower order (diffusion or P3) solutions. In Chapter 2 of the manual, the MOC methodology is described for calculating the regional angular and scalarmore » fluxes from the Boltzmann transport equation. In Chapter 3, the 2D/1D methodology is described, together with the description of the CMFD iteration process involving dynamic homogenization and solution of the multigroup CMFD linear system. A description of the MPACT depletion algorithm is given in Chapter 4, followed by a discussion of the subgroup and ESSM resonance processing methods in Chapter 5. The final Chapter 6 describes a simplified thermal hydraulics model in MPACT.« less
[Effect of electromagnetic pulse irradiation on structure and function of Leydig cells in mice].
Wang, Shui-Ming; Wang, De-Wen; Peng, Rui-Yun; Gao, Ya-Bing; Yang, Yi; Hu, Wen-Hua; Chen, Hao-Yu; Zhang, You-Ren; Gao, Yan
2003-08-01
To explore the effect of electromagnetic pulse (EMP) irradiation on structure and function of Leydig cells in mice. One hundred and fourteen male Kunming mice were randomly divided into irradiated and control group, the former radiated generally by 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP respectively five times within two minutes. Pathological changes of Leydig cells were observed by light and electron microscope. Serum testosterone (T), luteinizing hormone (LH) and estradiol (E2) were measured dynamically by radioimmunoassay at 6 h, 1 d, 3 d, 7 d, 14 d and 28 d after irradiation. Main pathological changes were edema and vacuolation, swelling of cytoplasmic mitochondria, reduce of lipid droplets, pale staining of most of lipid droplets, and partial or complete cavitation of lipid droplets in Leydig cells within 28 days after EMP radiation. Compared with normal controls, serum T decreased in all in different degrees within 28 days, and dropped significantly at 6 h-14 d, 6 h-7 d and 1 d-28 d after 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP irradiation(P < 0.05 or P < 0.01). EMP irradiation caused no significant changes in serum LH and E2. Leydig cells are among those that are the most susceptible to EMP irradiation. EMP irradiation may cause significant injury in structure and function of Leydig cells in mice, whose earlier and continuous effect is bound to affect sexual function and sperm production.
Six new C21 steroidal glycosides from Asclepias curassavica L.
Li, Jun-Zhu; Liu, Hai-Yang; Lin, Yi-Ju; Hao, Xiao-Jiang; Ni, Wei; Chen, Chang-Xiang
2008-07-01
Six new C(21) steroidal glycosides, named curassavosides A-F (3-8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (4), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (5), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-d-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (8), respectively. All compounds (1-8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines.
Chen, Hsin-Yu; Larson, Peder E Z; Gordon, Jeremy W; Bok, Robert A; Ferrone, Marcus; van Criekinge, Mark; Carvajal, Lucas; Cao, Peng; Pauly, John M; Kerr, Adam B; Park, Ilwoo; Slater, James B; Nelson, Sarah J; Munster, Pamela N; Aggarwal, Rahul; Kurhanewicz, John; Vigneron, Daniel B
2018-03-25
The purpose of this study was to develop a new 3D dynamic carbon-13 compressed sensing echoplanar spectroscopic imaging (EPSI) MR sequence and test it in phantoms, animal models, and then in prostate cancer patients to image the metabolic conversion of hyperpolarized [1- 13 C]pyruvate to [1- 13 C]lactate with whole gland coverage at high spatial and temporal resolution. A 3D dynamic compressed sensing (CS)-EPSI sequence with spectral-spatial excitation was designed to meet the required spatial coverage, time and spatial resolution, and RF limitations of the 3T MR scanner for its clinical translation for prostate cancer patient imaging. After phantom testing, animal studies were performed in rats and transgenic mice with prostate cancers. For patient studies, a GE SPINlab polarizer (GE Healthcare, Waukesha, WI) was used to produce hyperpolarized sterile GMP [1- 13 C]pyruvate. 3D dynamic 13 C CS-EPSI data were acquired starting 5 s after injection throughout the gland with a spatial resolution of 0.5 cm 3 , 18 time frames, 2-s temporal resolution, and 36 s total acquisition time. Through preclinical testing, the 3D CS-EPSI sequence developed in this project was shown to provide the desired spectral, temporal, and spatial 5D HP 13 C MR data. In human studies, the 3D dynamic HP CS-EPSI approach provided first-ever simultaneously volumetric and dynamic images of the LDH-catalyzed conversion of [1- 13 C]pyruvate to [1- 13 C]lactate in a biopsy-proven prostate cancer patient with full gland coverage. The results demonstrate the feasibility to characterize prostate cancer metabolism in animals, and now patients using this new 3D dynamic HP MR technique to measure k PL , the kinetic rate constant of [1- 13 C]pyruvate to [1- 13 C]lactate conversion. © 2018 International Society for Magnetic Resonance in Medicine.
Klarhöfer, Markus; Dilharreguy, Bixente; van Gelderen, Peter; Moonen, Chrit T W
2003-10-01
A 3D sequence for dynamic susceptibility imaging is proposed which combines echo-shifting principles (such as PRESTO), sensitivity encoding (SENSE), and partial-Fourier acquisition. The method uses a moderate SENSE factor of 2 and takes advantage of an alternating partial k-space acquisition in the "slow" phase encode direction allowing an iterative reconstruction using high-resolution phase estimates. Offering an isotropic spatial resolution of 4 x 4 x 4 mm(3), the novel sequence covers the whole brain including parts of the cerebellum in 0.5 sec. Its temporal signal stability is comparable to that of a full-Fourier, full-FOV EPI sequence having the same dynamic scan time but much less brain coverage. Initial functional MRI experiments showed consistent activation in the motor cortex with an average signal change slightly less than that of EPI. Copyright 2003 Wiley-Liss, Inc.
Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.
1996-12-17
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.
Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei
1996-01-01
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.
Charge dynamics of 57Fe probe atoms in La2Li0.5Cu0.5O4
NASA Astrophysics Data System (ADS)
Presniakov, I. A.; Sobolev, A. V.; Rusakov, V. S.; Moskvin, A. S.; Baranov, A. V.
2018-06-01
The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states "+3". An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration ("Cu2+-O-" state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O-(L) → Fe4+ + O2-, which transforms "Fe3+" into "Fe4+" state. The experimental spectra in the entire temperature range 77-300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.
Tang, Jinghua; McGrath, Michael; Laszczak, Piotr; Jiang, Liudi; Bader, Dan L; Moser, David; Zahedi, Saeed
2015-12-01
Design and fitting of artificial limbs to lower limb amputees are largely based on the subjective judgement of the prosthetist. Understanding the science of three-dimensional (3D) dynamic coupling at the residuum/socket interface could potentially aid the design and fitting of the socket. A new method has been developed to characterise the 3D dynamic coupling at the residuum/socket interface using 3D motion capture based on a single case study of a trans-femoral amputee. The new model incorporated a Virtual Residuum Segment (VRS) and a Socket Segment (SS) which combined to form the residuum/socket interface. Angular and axial couplings between the two segments were subsequently determined. Results indicated a non-rigid angular coupling in excess of 10° in the quasi-sagittal plane and an axial coupling of between 21 and 35 mm. The corresponding angular couplings of less than 4° and 2° were estimated in the quasi-coronal and quasi-transverse plane, respectively. We propose that the combined experimental and analytical approach adopted in this case study could aid the iterative socket fitting process and could potentially lead to a new socket design. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Magic wavelengths of the Ca+ ion for circularly polarized light
NASA Astrophysics Data System (ADS)
Jiang, Jun; Jiang, Li; Wang, Xia; Zhang, Deng-Hong; Xie, Lu-You; Dong, Chen-Zhong
2017-10-01
The dynamic dipole polarizabilities of low-lying states of Ca+ ions for circularly polarized light are calculated by using the relativistic configuration interaction plus core polarization approach. The magic wavelengths are determined for the magnetic sublevel transitions 4 s1/2 ,m→4 pj',m' and 4 s1/2 ,m→3 dj',m' with total angular momentum j' and its components m'. In contrast to the case of linearly polarized light, several additional magic wavelengths are found for these transitions. We suggest that accurate measurements on the magic wavelengths near 851 nm for the 4 s1/2 ,m→4 p3/2 ,m' transitions can be used to determine the ratio of the oscillator strengths for the 4 p3/2→3 d3/2 and 4 p3/2→3 d5/2 transitions.
NASA Astrophysics Data System (ADS)
Zhao, Jiaye; Wen, Huihui; Liu, Zhanwei; Rong, Jili; Xie, Huimin
2018-05-01
Three-dimensional (3D) deformation measurements are a key issue in experimental mechanics. In this paper, a displacement field correlation (DFC) method to measure centrosymmetric 3D dynamic deformation using a single camera is proposed for the first time. When 3D deformation information is collected by a camera at a tilted angle, the measured displacement fields are coupling fields of both the in-plane and out-of-plane displacements. The features of the coupling field are analysed in detail, and a decoupling algorithm based on DFC is proposed. The 3D deformation to be measured can be inverted and reconstructed using only one coupling field. The accuracy of this method was validated by a high-speed impact experiment that simulated an underwater explosion. The experimental results show that the approach proposed in this paper can be used in 3D deformation measurements with higher sensitivity and accuracy, and is especially suitable for high-speed centrosymmetric deformation. In addition, this method avoids the non-synchronisation problem associated with using a pair of high-speed cameras, as is common in 3D dynamic measurements.
Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.
Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus
2014-12-01
This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.
Quantitative 4D analyses of epithelial folding during Drosophila gastrulation.
Khan, Zia; Wang, Yu-Chiun; Wieschaus, Eric F; Kaschube, Matthias
2014-07-01
Understanding the cellular and mechanical processes that underlie the shape changes of individual cells and their collective behaviors in a tissue during dynamic and complex morphogenetic events is currently one of the major frontiers in developmental biology. The advent of high-speed time-lapse microscopy and its use in monitoring the cellular events in fluorescently labeled developing organisms demonstrate tremendous promise in establishing detailed descriptions of these events and could potentially provide a foundation for subsequent hypothesis-driven research strategies. However, obtaining quantitative measurements of dynamic shapes and behaviors of cells and tissues in a rapidly developing metazoan embryo using time-lapse 3D microscopy remains technically challenging, with the main hurdle being the shortage of robust imaging processing and analysis tools. We have developed EDGE4D, a software tool for segmenting and tracking membrane-labeled cells using multi-photon microscopy data. Our results demonstrate that EDGE4D enables quantification of the dynamics of cell shape changes, cell interfaces and neighbor relations at single-cell resolution during a complex epithelial folding event in the early Drosophila embryo. We expect this tool to be broadly useful for the analysis of epithelial cell geometries and movements in a wide variety of developmental contexts. © 2014. Published by The Company of Biologists Ltd.
Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings.
Rosso, O A; Figliola, A; Creso, J; Serrano, E
2004-07-01
EEG signals obtained during tonic-clonic epileptic seizures can be severely contaminated by muscle and physiological noise. Heavily contaminated EEG signals are hard to analyse quantitatively and also are usually rejected for visual inspection by physicians, resulting in a considerable loss of collected information. The aim of this work was to develop a computer-based method of time series analysis for such EEGs. A method is presented for filtering those frequencies associated with muscle activity using a wavelet transform. One of the advantages of this method over traditional filtering is that wavelet filtering of some frequency bands does not modify the pattern of the remaining ones. In consequence, the dynamics associated with them do not change. After generation of a 'noise free' signal by removal of the muscle artifacts using wavelets, a dynamic analysis was performed using non-linear dynamics metric tools. The characteristic parameters evaluated (correlation dimension D2 and largest Lyapunov exponent lambda1) were compatible with those obtained in previous works. The average values obtained were: D2=4.25 and lambda1=3.27 for the pre-ictal stage; D2=4.03 and lambda1=2.68 for the tonic seizure stage; D2=4.11 and lambda1=2.46 for the clonic seizure stage.
NASA Astrophysics Data System (ADS)
Lee, Shih-Huang; Huang, Wen-Jian; Chen, Wei-Kan
2007-10-01
We measured time-of-flight (TOF) spectra of products from the reaction O( 3P/ 1D) + C 2H 4 at collision energy 6.4 kcal mol -1 using a quadrupole mass filter and tunable vacuum-ultraviolet light for ionization. All carbon-containing products from five exit channels - CH 2CHO + H, CH 2CO + H 2, CH 3 + HCO, CH 2 + HCHO, and CH 2CO + 2H - were identified. Product channels CH 2CHO + H and CH 2CO + 2H associate with 3P and 1D atomic oxygen reactants, respectively. Both 3P and 1D oxygen reactants might be responsible for the other reactions. The ionization threshold of nascent vinoxy radicals is 9.3 ± 0.1 eV.
MMIC LNA based novel composite-channel Al0.3Ga0.7N/Al0.05Ga0.95N/GaNHEMTs
NASA Astrophysics Data System (ADS)
Cheng, Zhi-Qun; Cai, Yong; Liu, Jie; Zhou, Yu-Gang; Lau Kei, May; Chen, Kevin J.
2007-11-01
A microwave monolithic integrated circuit (MMIC) C-band low noise amplifier (LNA) using 1 μm-gate composite-channel Al0.3Ga0.7N/Al0.05Ga0.95N/GaN high electron mobility transistors (CC-HEMTs) has been designed, fabricated and characterized. The material structure and special channel of CC-HEMT were given and analysed. The MMIC LNA with CC-HEMT showed a noise figure of 2.4 dB, an associated gain of 12.3 dB, an input return loss of -6 dB and an output return loss of -16 dB at 6 GHz. The IIP3 of the LNA is 13 dBm at 6 GHz. The LNA with 1 μm × 100 μm device showed very high-dynamic range with decent gain and noise figure.
Miao, Shida; Cui, Haitao; Nowicki, Margaret; Lee, Se-Jun; Almeida, José; Zhou, Xuan; Zhu, Wei; Yao, Xiaoliang; Masood, Fahed; Plesniak, Michael W; Mohiuddin, Muhammad; Zhang, Lijie Grace
2018-05-02
4D printing is a highly innovative additive manufacturing process for fabricating smart structures with the ability to transform over time. Significantly different from regular 4D printing techniques, this study focuses on creating novel 4D hierarchical micropatterns using a unique photolithographic-stereolithographic-tandem strategy (PSTS) with smart soybean oil epoxidized acrylate (SOEA) inks for effectively regulating human bone marrow mesenchymal stem cell (hMSC) cardiomyogenic behaviors. The 4D effect refers to autonomous conversion of the surficial-patterned scaffold into a predesigned construct through an external stimulus delivered immediately after printing. Our results show that hMSCs actively grew and were highly aligned along the micropatterns, forming an uninterrupted cellular sheet. The generation of complex patterns was evident by triangular and circular outlines appearing in the scaffolds. This simple, yet efficient, technique was validated by rapid printing of scaffolds with well-defined and consistent micro-surface features. A 4D dynamic shape change transforming a 2-D design into flower-like structures was observed. The printed scaffolds possessed a shape memory effect beyond the 4D features. The advanced 4D dynamic feature may provide seamless integration with damaged tissues or organs, and a proof of concept 4D patch for cardiac regeneration was demonstrated for the first time. The 4D-fabricated cardiac patch showed significant cardiomyogenesis confirmed by immunofluorescence staining and qRT-PCR analysis, indicating its promising potential in future tissue and organ regeneration applications.
Enhanced understanding of the MHD dynamics and ELM control experiments in KSTAR
NASA Astrophysics Data System (ADS)
Park, Hyeon K.
2013-10-01
In KSTAR, H-mode discharges have been achieved reliably at toroidal fields from 1.4 to 3.5 T with a heating power of ~ 5 MW. Using real-time plasma shape control the flattop time in H-mode has been extended to over ~ 16 s at 600 kA in the 2012 campaign and the extended plasma operation boundary has surpassed the n = 1 no-wall limit with βN /li up to 4.1. In order to achieve a high beta steady state operation in KSTAR, establishment of predictive MHD simulation and first-principle-based control of the harmful MHD are the first steps. Visualization of MHD dynamics via a 2-D Electron Cyclotron Emission Imaging (ECEI) has significantly enhanced the level of understanding of the MHD dynamics. Following the first 2-D ELM measurements in H-mode plasmas in KSTAR the measured 2-D ELM images were compared with synthetic images from the BOUT + + code. The physics of ELMs is characterized based on a wide range of measured mode numbers (n, m) local magnetic shear and pressure gradients. The observed ELM dynamics during control experiments have been enlightening and consistent with the stability models. Near the q ~ 2 surface, the island width and Δ' of the m = 2 tearing mode have been verified through the modified Rutherford model based on the 2-D images. With the aid of a second (toroidally separated) ECEI system installed in the 2012 KSTAR campaign, a 3-D reconstruction of the MHD instabilities has allowed further validation of the computed magnetic field pitch angles, rotation speeds, and toroidal asymmetries of the MHDs Work supported by NRF of Korea under contract No. 20120005920 and the U.S. DoE under contract No. DE-FG-02-99ER54531.
Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration.
Ehrhardt, Jan; Werner, René; Schmidt-Richberg, Alexander; Handels, Heinz
2011-02-01
Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis.
Adiabatic Invariant Approach to Transverse Instability: Landau Dynamics of Soliton Filaments.
Kevrekidis, P G; Wang, Wenlong; Carretero-González, R; Frantzeskakis, D J
2017-06-16
Consider a lower-dimensional solitonic structure embedded in a higher-dimensional space, e.g., a 1D dark soliton embedded in 2D space, a ring dark soliton in 2D space, a spherical shell soliton in 3D space, etc. By extending the Landau dynamics approach [Phys. Rev. Lett. 93, 240403 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.240403], we show that it is possible to capture the transverse dynamical modes (the "Kelvin modes") of the undulation of this "soliton filament" within the higher-dimensional space. These are the transverse stability or instability modes and are the ones potentially responsible for the breakup of the soliton into structures such as vortices, vortex rings, etc. We present the theory and case examples in 2D and 3D, corroborating the results by numerical stability and dynamical computations.
Advanced treatment planning using direct 4D optimisation for pencil-beam scanned particle therapy
NASA Astrophysics Data System (ADS)
Bernatowicz, Kinga; Zhang, Ye; Perrin, Rosalind; Weber, Damien C.; Lomax, Antony J.
2017-08-01
We report on development of a new four-dimensional (4D) optimisation approach for scanned proton beams, which incorporates both irregular motion patterns and the delivery dynamics of the treatment machine into the plan optimiser. Furthermore, we assess the effectiveness of this technique to reduce dose to critical structures in proximity to moving targets, while maintaining effective target dose homogeneity and coverage. The proposed approach has been tested using both a simulated phantom and a clinical liver cancer case, and allows for realistic 4D calculations and optimisation using irregular breathing patterns extracted from e.g. 4DCT-MRI (4D computed tomography-magnetic resonance imaging). 4D dose distributions resulting from our 4D optimisation can achieve almost the same quality as static plans, independent of the studied geometry/anatomy or selected motion (regular and irregular). Additionally, current implementation of the 4D optimisation approach requires less than 3 min to find the solution for a single field planned on 4DCT of a liver cancer patient. Although 4D optimisation allows for realistic calculations using irregular breathing patterns, it is very sensitive to variations from the planned motion. Based on a sensitivity analysis, target dose homogeneity comparable to static plans (D5-D95 <5%) has been found only for differences in amplitude of up to 1 mm, for changes in respiratory phase <200 ms and for changes in the breathing period of <20 ms in comparison to the motions used during optimisation. As such, methods to robustly deliver 4D optimised plans employing 4D intensity-modulated delivery are discussed.
Realization and characterization of a beam of titanium atoms
NASA Astrophysics Data System (ADS)
Azaroual, E. M.; Luc, P.; Vetter, R.
1992-06-01
A dense thermal beam of titanium atoms has been realized using a tungsten crucible inside a high temperature oven (leqslant 2 300 K). Its flux (≈ 10^{14} atom/cm^2/s) and its long term stability have been measured by means of a quartz balance, its angular divergence has been evaluated from the size of a metallic spot deposited on a glass plate. A spectroscopic investigation performed via the laser-induced fluorescence technique has led to the measurement of the isotope shifts between ^{46}Ti, ^{48}Ti and ^{50}Ti, for six visible 3d^2 4s^2 a ^3FJ''to 3d^2 4s4p z ^5DJ' transitions. This beam offers the characteristics required to apply high resolution laser techniques to reaction dynamics crossed-beam experiments. Un jet intense de titane atomique a été réalisé à partir d'un creuset de tungstène porté à haute température (leqslant 2 300 K). Le flux (≈ 10^{14} atomes/cm^2/s) et la stabilité à long terme du jet ont été mesurés avec une balance à quartz ; la divergence angulaire a été évaluée à partir de la dimension de dépôts métalliques sur des lames-témoin. Le jet a également été caractérisé par spectroscopie : la technique de fluorescence induite par laser a permis de mesurer le déplacement spectral dû aux isotopes 46, 48 et 50 de Ti, pour six transitions visibles du type 3d^2 4s^2 a ^3FJ''to 3d^2 4s4p z ^5DJ'. Le jet réalisé offre les caractéristiques requises pour l'application des techniques laser à haute résolution aux expériences de dynamique réactionnelle en faisceaux croisés.
Powell, David E; Schøyen, Merete; Øxnevad, Sigurd; Gerhards, Reinhard; Böhmer, Thomas; Koerner, Martin; Durham, Jeremy; Huff, Darren W
2018-05-01
The trophic transfer of cyclic methylsiloxanes (cVMS) in aquatic ecosystems is an important criterion for assessing bioaccumulation and ecological risk. Bioaccumulation and trophic transfer of cVMS, specifically octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were evaluated for the marine food webs of the Inner and Outer Oslofjord, Norway. The sampled food webs included zooplankton, benthic macroinvertebrates, shellfish, and finfish species. Zooplankton, benthic macroinvertebrates, and shellfish occupied the lowest trophic levels (TL ≈2 to 3); northern shrimp (Pandalus borealis) and Atlantic herring (Clupea harengus) occupied the middle trophic levels (TL ≈3 to 4), and Atlantic cod (Gadus morhua) occupied the highest tropic level (TL>4.0). Trophic dynamics in the Oslofjord were best described as a compressed food web defined by demersal and pelagic components that were confounded by a diversity in prey organisms and feeding relationships. Lipid-normalized concentrations of D4, D5, and D6 were greatest in the lowest trophic levels and significantly decreased up the food web, with the lowest concentrations being observed in the highest trophic level species. Trophic magnification factors (TMF) for D4, D5, and D6 were <1.0 (range 0.3 to 0.9) and were consistent between the Inner and Outer Oslofjord, indicating that exposure did not impact TMF across the marine food web. There was no evidence to suggest biomagnification of cVMS in the Oslofjord. Rather, results indicated that trophic dilution of cVMS, not trophic magnification, occurred across the sampled food webs. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Liu, Junxue; Leng, Jing; Wu, Kaifeng; Zhang, Jun; Jin, Shengye
2017-02-01
Two-dimensional (2D) organolead halide perovskites are promising for various optoelectronic applications. Here we report a unique spontaneous charge (electron/hole) separation property in multilayered (BA) 2 (MA) n-1 Pb n I 3n+1 (BA = CH 3 (CH 2 ) 3 NH 3 + , MA = CH 3 NH 3 + ) 2D perovskite films by studying the charge carrier dynamics using ultrafast transient absorption and photoluminescence spectroscopy. Surprisingly, the 2D perovskite films, although nominally prepared as "n = 4", are found to be mixture of multiple perovskite phases, with n = 2, 3, 4 and ≈ ∞, that naturally align in the order of n along the direction perpendicular to the substrate. Driven by the band alignment between 2D perovskites phases, we observe consecutive photoinduced electron transfer from small-n to large-n phases and hole transfer in the opposite direction on hundreds of picoseconds inside the 2D film of ∼358 nm thickness. This internal charge transfer efficiently separates electrons and holes to the upper and bottom surfaces of the films, which is a unique property beneficial for applications in photovoltaics and other optoelectronics devices.
Leaf senescence under various gravity conditions: relevance to the dynamics of plant hormones
NASA Astrophysics Data System (ADS)
Miyamoto, K.; Yuda, T.; Shimazu, T.; Ueda, J.
Effects of simulated microgravity and hypergravity on the senescence of oat leaf segments excised from the primary leaves of 8-d-old green seedlings were studied using a 3-dimensional (D) clinostat as a simulator of weightlessness and a centrifuge, respectively. During the incubation with water under 1-g conditions at 25 °C in the dark, the loss of chlorophyll of the segments was found dramatically immediately after leaf excision, and leaf color completely turned to yellow after 3-d to 4-d incubation. In this case kinetin (10 μM) was effective in retarding senescence. The application of simulated microgravity conditions on a 3-D clinostat enhanced chlorophyll loss in the presence or absence of kinetin. The loss of chlorophyll was also enhanced by hypergravity conditions (ca. 8 to 16 g), but the effect was smaller than that of simulated microgravity conditions on the clinostat. Jasmonates (JAs) and abscisic acid (ABA) promoted senescence under simulated microgravity conditions on the clinostat as well as under 1-g conditions. After 2-d incubation with water or 5-d incubation with kinetin, the endogenous levels of JAs and ABA of the segments kept under simulated microgravity conditions on the clinostat remained higher than those kept under 1-g conditions. These findings suggest that physiological processes of leaf senescence and the dynamics of endogenous plant hormone levels are substantially affected by gravity.
A 3-D CFD Analysis of the Space Shuttle RSRM With Propellant Fins @ 1 sec. Burn-Back
NASA Technical Reports Server (NTRS)
Morstadt, Robert A.
2003-01-01
In this study 3-D Computational Fluid Dynamic (CFD) runs have been made for the Space Shuttle RSRM using 2 different grids and 4 different turbulent models, which were the Standard KE, the RNG KE, the Realizable KE, and the Reynolds stress model. The RSRM forward segment consists of 11 fins. By taking advantage of the forward fin symmetry only half of one fin along the axis had to be used in making the grid. This meant that the 3-D model consisted of a pie slice that encompassed 1/22nd of the motor circumference and went along the axis of the entire motor. The 3-D flow patterns in the forward fin region are of particular interest. Close inspection of these flow patterns indicate that 2 counter-rotating axial vortices emerge from each submerged solid propellant fin. Thus, the 3-D CFD analysis allows insight into complicated internal motor flow patterns that are not available from the simpler 2-D axi-symmetric studies. In addition, a comparison is made between the 3-D bore pressure drop and the 2-D axi-symmetric pressure drop.
Yang, Jenn-Ming; Yang, Shwu-Huey; Huang, Wen-Chen; Tzeng, Chii-Ruey
2013-07-01
To determine morphologic differences between Monarc and TVT-O procedures in axial and coronal planes by three- and four-dimensional (3D and 4D) ultrasound. Retrospective chart audits and ultrasound analyses were conducted on 128 women who had undergone either Monarc or TVT-O procedures for urodynamic stress incontinence. Thirty matched pairs of the two successful procedures were randomly selected and compared. Matched variables were age, parity, body mass index, cesarean status, menopausal status, and primary surgeries. Six-month postoperative 3D and 4D ultrasound results obtained at rest, on straining, and during coughing in these 60 women were analyzed. Assessed ultrasound parameters included the axial tape urethral distance (aTUD), axial central urethral echolucent area (aUCEA), axial tape angle (aTA), and coronal tape angle (cTA), all of which were measured at three equidistant points along the tapes. Paired t-tests were used to compare differences in ultrasound parameters between women after the two procedures and a P value <0.004 was considered significant after Bonferroni correction. At rest, women subjected to Monarc procedures had a significantly wider aTA at one-fourth of the tape and a wider cTA at one-, two-, and three-fourths of the tape than did those subjected to TVT-O procedures. There were no significant differences in other resting ultrasound parameters between these two procedures. Additionally, after both procedures women had comparable straining and coughing ultrasound manifestations as well as respective dynamic changes. Despite flatter resting tape angulations in women following Monarc procedures, both Monarc and TVT-O tapes had equivalent dynamic patterns and changes assessed by 4D ultrasound. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Jaakson, H; Karis, P; Ling, K; Ilves-Luht, A; Samarütel, J; Henno, M; Jõudu, I; Waldmann, A; Reimann, E; Pärn, P; Bruckmaier, R M; Gross, J J; Kaart, T; Kass, M; Ots, M
2018-01-01
Glucose uptake in tissues is mediated by insulin receptor (INSR) and glucose transporter 4 (GLUT4). The aim of this study was to examine the effect of body condition during the dry period on adipose tissue mRNA and protein expression of INSR and GLUT4, and on the dynamics of glucose and insulin following the i.v. glucose tolerance test in Holstein cows 21 d before (d -21) and after (d 21) calving. Cows were grouped as body condition score (BCS) ≤3.0 (thin, T; n = 14), BCS = 3.25 to 3.5 (optimal, O; n = 14), and BCS ≥3.75 (overconditioned, OC; n = 14). Blood was analyzed for glucose, insulin, fatty acids, and β-hydroxybutyrate concentrations. Adipose tissue was analyzed for INSR and GLUT4 mRNA and protein concentrations. During the glucose tolerance test 0.15 g/kg of body weight glucose was infused; blood was collected at -5, 5, 10, 20, 30, 40, 50, and 60 min, and analyzed for glucose and insulin. On d -21 the area under the curve (AUC) of glucose was smallest in group T (1,512 ± 33.9 mg/dL × min) and largest in group OC (1,783 ± 33.9 mg/dL × min), and different between all groups. Basal insulin on d -21 was lowest in group T (13.9 ± 2.32 µU/mL), which was different from group OC (24.9 ± 2.32 µU/mL. On d -21 the smallest AUC 5-60 of insulin in group T (5,308 ± 1,214 µU/mL × min) differed from the largest AUC in group OC (10,867 ± 1,215 µU/mL × min). Time to reach basal concentration of insulin in group OC (113 ± 14.1 min) was longer compared with group T (45 ± 14.1). The INSR mRNA abundance on d 21 was higher compared with d -21 in groups T (d -21: 3.3 ± 0.44; d 21: 5.9 ± 0.44) and O (d -21: 3.7 ± 0.45; d 21: 4.7 ± 0.45). The extent of INSR protein expression on d -21 was highest in group T (7.3 ± 0.74 ng/mL), differing from group O (4.6 ± 0.73 ng/mL), which had the lowest expression. The amount of GLUT4 protein on d -21 was lowest in group OC (1.2 ± 0.14 ng/mL), different from group O (1.8 ± 0.14 ng/mL), which had the highest amount, and from group T (1.5 ± 0.14 ng/mL). From d -21 to 21, a decrease occurred in the GLUT4 protein levels in both groups T (d -21: 1.5 ± 0.14 ng/mL; d 21: 0.8 ± 0.14 ng/mL) and O (d -21: 1.8 ± 0.14 ng/mL; d 21: 0.8 ± 0.14 ng/mL). These results demonstrate that in obese cows adipose tissue insulin resistance develops prepartum and is related to reduced GLUT4 protein synthesis. Regarding glucose metabolism, body condition did not affect adipose tissue insulin resistance postpartum. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effect of tumor amplitude and frequency on 4D modeling of Vero4DRT system.
Miura, Hideharu; Ozawa, Shuichi; Hayata, Masahiro; Tsuda, Shintaro; Yamada, Kiyoshi; Nagata, Yasushi
2017-01-01
An important issue in indirect dynamic tumor tracking with the Vero4DRT system is the accuracy of the model predictions of the internal target position based on surrogate infrared (IR) marker measurement. We investigated the predictive uncertainty of 4D modeling using an external IR marker, focusing on the effect of the target and surrogate amplitudes and periods. A programmable respiratory motion table was used to simulate breathing induced organ motion. Sinusoidal motion sequences were produced by a dynamic phantom with different amplitudes and periods. To investigate the 4D modeling error, the following amplitudes (peak-to-peak: 10-40 mm) and periods (2-8 s) were considered. The 95th percentile 4D modeling error (4D- E 95% ) between the detected and predicted target position ( μ + 2SD) was calculated to investigate the 4D modeling error. 4D- E 95% was linearly related to the target motion amplitude with a coefficient of determination R 2 = 0.99 and ranged from 0.21 to 0.88 mm. The 4D modeling error ranged from 1.49 to 0.14 mm and gradually decreased with increasing target motion period. We analyzed the predictive error in 4D modeling and the error due to the amplitude and period of target. 4D modeling error substantially increased with increasing amplitude and decreasing period of the target motion.
Kowal, Ewa A; Seneviratne, Uthpala; Wickramaratne, Susith; Doherty, Kathleen E; Cao, Xiangkun; Tretyakova, Natalia; Stone, Michael P
2014-05-19
1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N(6) position of adenine in DNA. Two enantiomers of bis-N(6)-dA adducts of DEB have been identified: R,R-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (R,R-DHB-dA), and S,S-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (S,S-DHB-dA) [ Seneviratne , U. , Antsypovich , S. , Dorr , D. Q. , Dissanayake , T. , Kotapati , S. , and Tretyakova , N. ( 2010 ) Chem. Res. Toxicol. 23 , 1556 -1567 ]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5'-d(C(1)G(2)G(3)A(4)C(5)X(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19)C(20)C(21)G(22))-3' duplex [X(6) = R,R-DHB-dA (R(6)) or S,S-DHB-dA (S(6))]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N(6) bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N(6) bond, allows the complementary thymine, T(17), to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T(17) N3H imino proton. The loss of the second Watson-Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as compared to the corresponding unmodified duplex. The reduced base stacking at the adduct sites may also contribute to the thermal instability.
2015-01-01
1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N6 position of adenine in DNA. Two enantiomers of bis-N6-dA adducts of DEB have been identified: R,R-N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (R,R-DHB-dA), and S,S-N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (S,S-DHB-dA) [SeneviratneU., AntsypovichS., DorrD. Q., DissanayakeT., KotapatiS., and TretyakovaN. (2010) Chem. Res. Toxicol.23, 1556−156720873715]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5′-d(C1G2G3A4C5X6A7G8A9A10G11)-3′:5′-d(C12T13T14C15T16T17G18T19C20C21G22)-3′ duplex [X6 = R,R-DHB-dA (R6) or S,S-DHB-dA (S6)]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N6 bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N6 bond, allows the complementary thymine, T17, to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T17 N3H imino proton. The loss of the second Watson–Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as compared to the corresponding unmodified duplex. The reduced base stacking at the adduct sites may also contribute to the thermal instability. PMID:24741991
Klaewsongkram, Jettanong; Thantiworasit, Pattarawat; Sodsai, Pimpayao; Buranapraditkun, Supranee; Mongkolpathumrat, Pungjai
2016-11-01
Imatinib is a tyrosine kinase inhibitor indicated for the treatment of gastrointestinal stromal tumors (GISTs) and certain neoplastic diseases; however, nonimmediate adverse reactions are common. To describe the process of imatinib slow desensitization in patients who experienced nonimmediate reactions to imatinib and the dynamic change in drug-specific CD4 + CD25 + CD134 + T-lymphocyte percentages. Five patients diagnosed as having GISTs and with a recent history of imatinib-induced nonimmediate reactions (maculopapular exanthema with eosinophilia, exfoliative dermatitis, palmar-plantar erythrodysesthesia, and drug rash with eosinophilia and systemic symptoms) were desensitized using a slow desensitization protocol. The reintroduced imatinib dosage was stepped up every week starting from 10 mg/d and increasing to 25, 50, 75, 100, 150, 200, and 300 mg/d until the target dose of 400 mg/d was achieved. Prednisolone of up to 30 mg/d was allowed if allergic reactions recurred. The percentages of CD4 + CD25 + CD134 + T cells present after incubating peripheral blood mononuclear cells with imatinib, at baseline and after successful desensitization, were analyzed using flow cytometric analysis. By using a slow desensitization technique, all patients were able to receive 400 mg/d of imatinib, and prednisolone was gradually tapered off. The percentages of imatinib-induced CD4 + CD25 + CD134 + T cells decreased from a mean (SD) of 11.3% (6.5%) and 13.4% (7.3%) at baseline to 3.2% (0.7%) and 3.0% (1.1%) after successful desensitization, when stimulating peripheral blood mononuclear cells with 1 and 2 μM of imatinib, respectively. Slow desensitization is a helpful procedure in treating patients with imatinib-induced nonimmediate reactions other than simple maculopapular exanthema. The reduced percentages of imatinib-induced CD4 + CD25 + CD134 + T cells in these patients may be associated with immune tolerance. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin
2016-09-08
An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the treatment delivery accuracy as well. © 2016 The Authors.
2D signature for detection and identification of drugs
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei
2011-06-01
The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.
Correlation-Induced Self-Doping in the Iron-Pnictide Superconductor Ba2Ti2Fe2As4O
NASA Astrophysics Data System (ADS)
Ma, J.-Z.; van Roekeghem, A.; Richard, P.; Liu, Z.-H.; Miao, H.; Zeng, L.-K.; Xu, N.; Shi, M.; Cao, C.; He, J.-B.; Chen, G.-F.; Sun, Y.-L.; Cao, G.-H.; Wang, S.-C.; Biermann, S.; Qian, T.; Ding, H.
2014-12-01
The electronic structure of the iron-based superconductor Ba2Ti2Fe2As4O (Tconset=23.5 K ) has been investigated by using angle-resolved photoemission spectroscopy and combined local density approximation and dynamical mean field theory calculations. The electronic states near the Fermi level are dominated by both the Fe 3 d and Ti 3 d orbitals, indicating that the spacer layers separating different FeAs layers are also metallic. By counting the enclosed volumes of the Fermi surface sheets, we observe a large self-doping effect; i.e., 0.25 electrons per unit cell are transferred from the FeAs layer to the Ti2As2O layer, leaving the FeAs layer in a hole-doped state. This exotic behavior is successfully reproduced by our dynamical mean field calculations, in which the self-doping effect is attributed to the electronic correlations in the 3 d shells. Our work provides an alternative route of effective doping without element substitution for iron-based superconductors.
Short-Term Adaptive Modification of Dynamic Ocular Accommodation
Bharadwaj, Shrikant R.; Vedamurthy, Indu; Schor, Clifton M.
2009-01-01
Purpose Indirect observations suggest that the neural control of accommodation may undergo adaptive recalibration in response to age-related biomechanical changes in the accommodative system. However, there has been no direct demonstration of such an adaptive capability. This investigation was conducted to demonstrate short-term adaptation of accommodative step response dynamics to optically induced changes in neuromuscular demands. Methods Repetitive changes in accommodative effort were induced in 15 subjects (18–34 years) with a double-step adaptation paradigm wherein an initial 2-D step change in blur was followed 350 ms later by either a 2-D step increase in blur (increasing-step paradigm) or a 1.75-D step decrease in blur (decreasing-step paradigm). Peak velocity, peak acceleration, and latency of 2-D single-step test responses were assessed before and after 1.5 hours of training with these paradigms. Results Peak velocity and peak acceleration of 2-D step responses increased after adaptation to the increasing-step paradigm (9/12 subjects), and they decreased after adaptation to the decreasing-step paradigm (4/9 subjects). Adaptive changes in peak velocity and peak acceleration generalized to responses that were smaller (1 D) and larger (3 D) than the 2-D adaptation stimulus. The magnitude of adaptation correlated poorly with the subject's age, but it was significantly negatively correlated with the preadaptation dynamics. Response latency decreased after adaptation, irrespective of the direction of adaptation. Conclusions Short-term adaptive changes in accommodative step response dynamics could be induced, at least in some of our subjects between 18 and 34 years, with a directional bias toward increasing rather than decreasing the dynamics. PMID:19255153
Ramp and periodic dynamics across non-Ising critical points
NASA Astrophysics Data System (ADS)
Ghosh, Roopayan; Sen, Arnab; Sengupta, K.
2018-01-01
We study ramp and periodic dynamics of ultracold bosons in an one-dimensional (1D) optical lattice which supports quantum critical points separating a uniform and a Z3 or Z4 symmetry broken density-wave ground state. Our protocol involves both linear and periodic drives which takes the system from the uniform state to the quantum critical point (for linear drive protocol) or to the ordered state and back (for periodic drive protocols) via controlled variation of a parameter of the system Hamiltonian. We provide exact numerical computation, for finite-size boson chains with L ≤24 using exact diagonalization (ED), of the excitation density D , the wave function overlap F , and the excess energy Q at the end of the drive protocol. For the linear ramp protocol, we identify the range of ramp speeds for which D and Q show Kibble-Zurek scaling. We find, based on numerical analysis with L ≤24 , that such scaling is consistent with that expected from critical exponents of the q -state Potts universality class with q =3 ,4 . For the periodic protocol, we show that the model displays near-perfect dynamical freezing at specific frequencies; at these frequencies D ,Q →0 and |F |→1 . We provide a semi-analytic explanation of such freezing behavior and relate this phenomenon to a many-body version of Stuckelberg interference. We suggest experiments which can test our theory.
Glycosylated polyacrylate nanoparticles by emulsion polymerization
Abeylath, Sampath C.; Turos, Edward
2007-01-01
A selection of glycosylated polyacrylate nanoparticles has been prepared by radical-initiated emulsion polymerization in aqueous media. Using ethyl acrylate as a co-monomer, carbohydrate acrylates were incorporated into the poly(ethyl acrylate) framework to give stable emulsions of glyconanoparticles with an average particle size of around 40 nm. Using this technique a variety of glyconanoparticles were prepared from 3-O-acryloyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose, 1-O-acryloyl-2,3:5,6-di-O-isopropylidene-α-D-mannofuranose, 6-O-acryloyl-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose, 2-N-acryloyl-1,3,4,6-tetra-O-acetyl-β-D-glucosamine, 5-O-acryloyl-2,3-isopropylidene-1-methoxy-β-D-ribofuranose and 4-N-acetyl-5’-O-acryloyl-2’,3’-O-isopropylidene cytidine. Scanning electron microscopy, dynamic light scattering and proton NMR analysis of the emulsions indicated essentially 100% incorporation of the carbohydrate acrylate monomer into the polymer with the exception of O-benzyl- and O-benzoyl-protected carbohydrate acrylates, which gave incomplete incorporation. Formation of larger glyconanoparticles of ~80nm with (unprotected) 3-O-acryloyl-D-glucose and 5-O-acryloyl-1-methoxy-β-D-ribofuranose revealed the influence of free hydroxyl groups in the monomer on the particle size during polymerization, a feature which is also apparently dependent on the amount of carbohydrate in the matrix. This methodology allows for a new, simple route to the synthesis of polymeric glyconanoparticles with potential applications in targeted drug delivery and materials development. PMID:18677404
Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.
Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z
2018-06-01
To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Flicker-defined form perimetry in glaucoma patients.
Horn, Folkert K; Kremers, Jan; Mardin, Christian Y; Jünemann, Anselm G; Adler, Werner; Tornow, Ralf P
2015-03-01
To assess the potential of flicker-defined form (FDF) perimetry to detect functional loss in patient groups with beginning glaucoma, and to evaluate the dynamic range of the FDF stimulus in individual patients and at individual test positions. FDF perimetry and standard automated perimetry (SAP) were performed at identical test locations (adapted G1 protocol) in 60 healthy subjects and 111 glaucoma patients. All patients showed glaucomatous optic disc appearance. Grouping within the glaucoma cohort was based on SAP-performance: 33 "preperimetric" open-angle glaucoma (OAG) patients, 28 "borderline" OAG (focal defects and SAP-mean defect (MD) <2 dB), 33 "early" OAG (SAP-MD < 5 dB), 17 "advanced" OAG. All participants were experienced in psychophysical and perimetric tests. Defect values and the areas under receiver operating characteristic curves (ROC) in patient groups were statistically compared. The values of FDF-MD in the preperimetric, borderline, and early OAG group were 2.7 ± 3.4 dB, 5.5 ± 2.6 dB, and 8.5 ± 3.4 dB respectively (all significantly above normal). The percentage of patients exceeding normal FDF-MD was 27.3 %, 60.7 %, and 87.9 % respectively. The age-adjusted FDF-mean defect (MD) of the G1X-protocol was not significantly correlated with refractive error, lens opacity, pupil size, or gender. Occurrence of ceiling effects (inability to detect targets at highest contrast) showed a high correlation with visual field losses (R = 0.72, p < 0.001). Local analysis indicates that SAP losses exceeding 5 dB could not be distinguished with the FDF technique. The FDF stimulus was able to detect beginning glaucoma damage. Patients with SAP-MD values exceeding 5 dB should be monitored with conventional perimetry because of its larger dynamic range.
NASA Astrophysics Data System (ADS)
Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel
2015-03-01
The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.
1990-03-01
Computations, edited by I. Babu ka, 0. C . Zienkiewicz, J. Gago, and E. R. de A. Oliveira ( John Wiley and Sons, New York, 1986), p. 281. [4] B. Wedan and J...GENERATION TO COMPLEX 3-D CONFIGURATIONS ., " c 1- For Papers presented and discussion- held at the Specialists’ Meeting of the Fluid Dynamics Panel in...the Panels which are composed of experts appointed by the National Delegates. the Consultant and Fxch., ., c Progi amime and the Aerospace Applications
Comparative 1D and 3D numerical investigation of open-channel junction flows and energy losses
NASA Astrophysics Data System (ADS)
Luo, Hao; Fytanidis, Dimitrios K.; Schmidt, Arthur R.; García, Marcelo H.
2018-07-01
The complexity of open channel confluences stems from flow mixing, secondary circulation, post-confluence flow separation, contraction and backwater effects. These effects in turn result in a large number of parameters required to adequately quantify the junction induced hydraulic resistance and describe mean flow pattern and turbulent flow structures due to flow merging. The recent development in computing power advances the application of 3D Computational Fluid Dynamics (CFD) codes to visualize and understand the Confluence Hydrodynamic Zone (CHZ). Nevertheless, 1D approaches remain the mainstay in large drainage network or waterway system modeling considering computational efficiency and data availability. This paper presents (i) a modified 1D nonlinear dynamic model; (ii) a fully 3D non-hydrostatic, Reynolds-averaged Navier-Stokes Equations (RANS)-based, Computational Fluid Dynamics (CFD) model; (iii) an analysis of changing confluence hydrodynamics and 3D turbulent flow structure under various controls; (iv) a comparison of flow features (i.e. upstream water depths, energy losses and post-confluence contraction) predicted by 1D and 3D models; and (v) parameterization of 3D flow characteristics in 1D modeling through the computation of correction coefficients associated with contraction, energy and momentum. The present comprehensive 3D numerical investigation highlights the driving mechanisms for junction induced energy losses. Moreover, the comparative 1D and 3D study quantifies the deviation of 1D approximations and associated underlying assumptions from the 'true' resultant flow field. The study may also shed light on improving the accuracy of the 1D large network modeling through the parameterization of the complex 3D feature of the flow field and correction of interior boundary conditions at junctions of larger angles and/or with substantial lateral inflows. Moreover, the enclosed numerical investigations may enhance the understanding of the primary mechanisms contributing to hydraulic structure induced turbulent flow behavior and increased hydraulic resistance.
Communication: X-ray excited optical luminescence from TbCl3 at the giant resonance of terbium
NASA Astrophysics Data System (ADS)
Heigl, F.; Jürgensen, A.; Zhou, X.-T.; Hu, Y.-F.; Zuin, L.; Sham, T. K.
2013-02-01
We have studied the optical recombination channels of TbCl3 using x-ray excited optical luminescence at the N4,5 absorption edge of Tb (giant resonance) in both the energy and time domain. The luminescence exhibits a relatively fast 5D3, and a slow 5D4 decay channel in the blue and green, respectively. The rather short lifetime of the 5D3 state indicates that the decay is mainly driven by Tb-Tb ion interaction via non-radiative energy transfer (cross-relaxation). At the giant resonance the X-ray Absorption Near Edge Structure (XANES) recorded using partial photoluminescence yield is inverted. In the pre-edge region the contrast of the spectral feature is significantly better in optical XANES than in total electron yield. Changes in the intensity of 5D3-7F5 (544 nm) and 5D4-7F6 (382 nm) optical transitions as the excitation energy is tuned across the giant resonance are also noted. The results provide detailed insight into the dynamics of the optical recombination channels and an alternative method to obtain high sensitivity, high energy resolution XANES at the giant resonance of light emitting rare-earth materials.
Ishihara, Yoshitomo; Nakamura, Mitsuhiro; Miyabe, Yuki; Mukumoto, Nobutaka; Matsuo, Yukinori; Sawada, Akira; Kokubo, Masaki; Mizowaki, Takashi; Hiraoka, Masahiro
2017-03-01
To develop a four-dimensional (4D) dose calculation system for real-time tumor tracking (RTTT) irradiation by the Vero4DRT. First, a 6-MV photon beam delivered by the Vero4DRT was simulated using EGSnrc. A moving phantom position was directly measured by a laser displacement gauge. The pan and tilt angles, monitor units, and the indexing time indicating the phantom position were also extracted from a log file. Next, phase space data at any angle were created from both the log file and particle data under the dynamic multileaf collimator. Irradiation both with and without RTTT, with the phantom moving, were simulated using several treatment field sizes. Each was compared with the corresponding measurement using films. Finally, dose calculation for each computed tomography dataset of 10 respiratory phases with the X-ray head rotated was performed to simulate the RTTT irradiation (4D plan) for lung, liver, and pancreatic cancer patients. Dose-volume histograms of the 4D plan were compared with those calculated on the single reference respiratory phase without the gimbal rotation [three-dimensional (3D) plan]. Differences between the simulated and measured doses were less than 3% for RTTT irradiation in most areas, except the high-dose gradient. For clinical cases, the target coverage in 4D plans was almost identical to that of the 3D plans. However, the doses to organs at risk in the 4D plans varied at intermediate- and low-dose levels. Our proposed system has acceptable accuracy for RTTT irradiation in the Vero4DRT and is capable of simulating clinical RTTT plans. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR
Zinke, Maximilian; Fricke, Pascal; Samson, Camille; ...
2017-07-07
Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less
Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinke, Maximilian; Fricke, Pascal; Samson, Camille
Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less
Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material
NASA Astrophysics Data System (ADS)
Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming
2016-10-01
Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.
Terlier, T; Lee, J; Lee, K; Lee, Y
2018-02-06
Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance the correlation of chemical information from spectroscopic techniques with the physical properties obtained by AFM.
Potential for wind extraction from 4D-Var assimilation of aerosols and moisture
NASA Astrophysics Data System (ADS)
Zaplotnik, Žiga; Žagar, Nedjeljka
2017-04-01
We discuss the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from observations of atmospheric tracers and the mass field through internal model dynamics and the multivariate relationships in the background-error term for 4D-Var. The presence of non-linear moist dynamics makes the wind retrieval from tracers very difficult. On the other hand, it has been shown that moisture observations strongly influence both tropical and mid-latitude wind field in 4D-Var. We present an intermediate complexity model that describes nonlinear interactions between the wind, temperature, aerosols and moisture including their sinks and sources in the framework of the so-called first baroclinic mode atmosphere envisaged by A. Gill. Aerosol physical processes, which are included in the model, are the non-linear advection, diffusion and sources and sinks that exist as dry and wet deposition and diffusion. Precipitation is parametrized according to the Betts-Miller scheme. The control vector for 4D-Var includes aerosols, moisture and the three dynamical variables. The former is analysed univariately whereas wind field and mass field are analysed in a multivariate fashion taking into account quasi-geostrophic and unbalanced dynamics. The OSSE type of studies are performed for the tropical region to assess the ability of 4D-Var to extract wind-field information from the time series of observations of tracers as a function of the flow nonlinearity, the observations density and the length of the assimilation window (12 hours and 24 hours), in dry and moist environment. Results show that the 4D-Var assimilation of aerosols and temperature data is beneficial for the wind analysis with analysis errors strongly dependent on the moist processes and reliable background-error covariances.
NASA Astrophysics Data System (ADS)
Karakatsanis, Nicolas A.; Rahmim, Arman
2014-03-01
Graphical analysis is employed in the research setting to provide quantitative estimation of PET tracer kinetics from dynamic images at a single bed. Recently, we proposed a multi-bed dynamic acquisition framework enabling clinically feasible whole-body parametric PET imaging by employing post-reconstruction parameter estimation. In addition, by incorporating linear Patlak modeling within the system matrix, we enabled direct 4D reconstruction in order to effectively circumvent noise amplification in dynamic whole-body imaging. However, direct 4D Patlak reconstruction exhibits a relatively slow convergence due to the presence of non-sparse spatial correlations in temporal kinetic analysis. In addition, the standard Patlak model does not account for reversible uptake, thus underestimating the influx rate Ki. We have developed a novel whole-body PET parametric reconstruction framework in the STIR platform, a widely employed open-source reconstruction toolkit, a) enabling accelerated convergence of direct 4D multi-bed reconstruction, by employing a nested algorithm to decouple the temporal parameter estimation from the spatial image update process, and b) enhancing the quantitative performance particularly in regions with reversible uptake, by pursuing a non-linear generalized Patlak 4D nested reconstruction algorithm. A set of published kinetic parameters and the XCAT phantom were employed for the simulation of dynamic multi-bed acquisitions. Quantitative analysis on the Ki images demonstrated considerable acceleration in the convergence of the nested 4D whole-body Patlak algorithm. In addition, our simulated and patient whole-body data in the postreconstruction domain indicated the quantitative benefits of our extended generalized Patlak 4D nested reconstruction for tumor diagnosis and treatment response monitoring.
Gamallo, Pablo; Akpinar, Sinan; Defazio, Paolo; Petrongolo, Carlo
2015-11-19
The quantum dynamics of three CH(X(2)Π) + D((2)S) reactions is studied by means of the coupled-channel time-dependent real-wavepacket (WP) and flux methods at collision energy Ecol ≤ 0.6 eV and on three potential energy surfaces (PESs): the Born-Oppenheimer (BO) ground PES X̃(3)A″ and the excited ones ã(1)A' and b̃(1)A″, coupled by nonadiabatic (NA) Renner-Teller (RT) effects. This three-state model is suitable for obtaining initial-state-resolved observables, is based on a complete analysis of the correlation diagram of the lowest electronic states of the CHD intermediate and of their NA interactions, and neglects the smaller coupling effects due to the asymptotic electronic angular momenta that become important in state-to-state dynamics. WPs are propagated on each PES at total angular momentum values J ≤ 70, with CH in the two lowest vibrational states v0 and in the ground rotational state j0 = 1. Reaction probabilities are obtained for three possible final products (f): (dP) CH decay and C((3)P) + HD(X(1)Σ(+)) formation that occurs on the uncoupled ground PES, (dD) CH decay and C((1)D) + HD(X(1)Σ(+)) formation that depends on the RT-coupled singlet species, and (ex) exchange to CD(X(2)Π) + H((2)S) available adiabatically from the X̃(3)A″ PES and nonadiabatically from ã(1)A' and b̃(1)A″. Observable cross sections σf,v0j0 and rate constants kf,v0j0 in the temperature range T = 100-2000 K are obtained for (dP), (dD), and (ex) channels. Comparing BO with RT probabilities, we show that NA effects are important at high J values for the (ex) channel at v0 = 1. Real time mechanisms on the three PESs show that RT couplings are opened after some time and clearly point out the formation of the product channels. Both cross sections and rate constants present the same sequence, for example σex,11 > σdP,01 ∼ σex,01 > σdP,11 ≫ σdD,11 ≫ σdD,01, and the CH vibrational excitation enhances the total removal CH+D reactivity by a factor of ∼1.7, mainly due to the increase of the (ex) channel contribution from ∼47% at v0 = 0 to ∼76% at v0 = 1. This fact implies a considerable vibrational enhancement of combustion processes at high temperature. In agreement with the probability results, the ã(1)A'/b̃(1)A″ RT coupling increases both σex,11 and kex,11 up to ∼30%. Moreover, including the three PESs in the dynamics simulation of CH+D increase by far the (ex)/(dP) branching ratio with respect to the CH + H' reaction. Thus, at room temperature, kdP,01 changes from 10.8 × 10(-11) to 3.4 × 10(-11) cm(3) s(-1) substituting H atom by D.
2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall
NASA Technical Reports Server (NTRS)
Piziali, R. A.
1994-01-01
A comprehensive experimental investigation of the pressure distribution over a semispan wing undergoing pitching motions representative of a helicopter rotor blade was conducted. Testing the wing in the nonrotating condition isolates the three-dimensional (3-D) blade aerodynamic and dynamic stall characteristics from the complications of the rotor blade environment. The test has generated a very complete, detailed, and accurate body of data. These data include static and dynamic pressure distributions, surface flow visualizations, two-dimensional (2-D) airfoil data from the same model and installation, and important supporting blockage and wall pressure distributions. This body of data is sufficiently comprehensive and accurate that it can be used for the validation of rotor blade aerodynamic models over a broad range of the important parameters including 3-D dynamic stall. This data report presents all the cycle-averaged lift, drag, and pitching moment coefficient data versus angle of attack obtained from the instantaneous pressure data for the 3-D wing and the 2-D airfoil. Also presented are examples of the following: cycle-to-cycle variations occurring for incipient or lightly stalled conditions; 3-D surface flow visualizations; supporting blockage and wall pressure distributions; and underlying detailed pressure results.
Covariant Uniform Acceleration
NASA Astrophysics Data System (ADS)
Friedman, Yaakov; Scarr, Tzvi
2013-04-01
We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and its acceleration is a function of the observer's acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.
Prakash, Gaurav; Agarwal, Amar; Kumar, Dhivya Ashok; Jacob, Soosan; Agarwal, Athiya; Maity, Amrita
2011-03-01
To evaluate the visual and refractive outcomes and expected benefits of Tissue Saving Treatment algorithm-guided surface ablation with iris recognition and dynamic rotational eye tracking. This prospective, interventional case series comprised 122 eyes (70 patients). Pre- and postoperative assessment included uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), refraction, and higher order aberrations. All patients underwent Tissue Saving Treatment algorithm-guided surface ablation with iris recognition and dynamic rotational eye tracking using the Technolas 217z 100-Hz excimer platform (Technolas Perfect Vision GmbH). Follow-up was performed up to 6 months postoperatively. Theoretical benefit analysis was performed to evaluate the algorithm's outcomes compared to others. Preoperative spherocylindrical power was sphere -3.62 ± 1.60 diopters (D) (range: 0 to -6.75 D), cylinder -1.15 ± 1.00 D (range: 0 to -3.50 D), and spherical equivalent -4.19 ± 1.60 D (range: -7.75 to -2.00 D). At 6 months, 91% (111/122) of eyes were within ± 0.50 D of attempted correction. Postoperative UDVA was comparable to preoperative CDVA at 1 month (P=.47) and progressively improved at 6 months (P=.004). Two eyes lost one line of CDVA at 6 months. Theoretical benefit analysis revealed that of 101 eyes with astigmatism, 29 would have had cyclotorsion-induced astigmatism of ≥ 10% if iris recognition and dynamic rotational eye tracking were not used. Furthermore, the mean percentage decrease in maximum depth of ablation by using the Tissue Saving Treatment was 11.8 ± 2.9% over Aspheric, 17.8 ± 6.2% over Personalized, and 18.2 ± 2.8% over Planoscan algorithms. Tissue saving surface ablation with iris recognition and dynamic rotational eye tracking was safe and effective in this series of eyes. Copyright 2011, SLACK Incorporated.
A Protocol for Real-time 3D Single Particle Tracking.
Hou, Shangguo; Welsher, Kevin
2018-01-03
Real-time three-dimensional single particle tracking (RT-3D-SPT) has the potential to shed light on fast, 3D processes in cellular systems. Although various RT-3D-SPT methods have been put forward in recent years, tracking high speed 3D diffusing particles at low photon count rates remains a challenge. Moreover, RT-3D-SPT setups are generally complex and difficult to implement, limiting their widespread application to biological problems. This protocol presents a RT-3D-SPT system named 3D Dynamic Photon Localization Tracking (3D-DyPLoT), which can track particles with high diffusive speed (up to 20 µm 2 /s) at low photon count rates (down to 10 kHz). 3D-DyPLoT employs a 2D electro-optic deflector (2D-EOD) and a tunable acoustic gradient (TAG) lens to drive a single focused laser spot dynamically in 3D. Combined with an optimized position estimation algorithm, 3D-DyPLoT can lock onto single particles with high tracking speed and high localization precision. Owing to the single excitation and single detection path layout, 3D-DyPLoT is robust and easy to set up. This protocol discusses how to build 3D-DyPLoT step by step. First, the optical layout is described. Next, the system is calibrated and optimized by raster scanning a 190 nm fluorescent bead with the piezoelectric nanopositioner. Finally, to demonstrate real-time 3D tracking ability, 110 nm fluorescent beads are tracked in water.
60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode
Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru
2016-01-01
A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267
SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Y; Bowsher, J; Yan, S
2014-06-01
Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medicalmore » Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.« less
On the dynamics of jellyfish locomotion via 3D particle tracking velocimetry
NASA Astrophysics Data System (ADS)
Piper, Matthew; Kim, Jin-Tae; Chamorro, Leonardo P.
2016-11-01
The dynamics of jellyfish (Aurelia aurita) locomotion is experimentally studied via 3D particle tracking velocimetry. 3D locations of the bell tip are tracked over 1.5 cycles to describe the jellyfish path. Multiple positions of the jellyfish bell margin are initially tracked in 2D from four independent planes and individually projected in 3D based on the jellyfish path and geometrical properties of the setup. A cubic spline interpolation and the exponentially weighted moving average are used to estimate derived quantities, including velocity and acceleration of the jellyfish locomotion. We will discuss distinctive features of the jellyfish 3D motion at various swimming phases, and will provide insight on the 3D contraction and relaxation in terms of the locomotion, the steadiness of the bell margin eccentricity, and local Reynolds number based on the instantaneous mean diameter of the bell.
Collective Surfing of Chemically Active Particles
NASA Astrophysics Data System (ADS)
Masoud, Hassan; Shelley, Michael J.
2014-03-01
We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.
Zhang, D; Miyase, T; Kuroyanagi, M; Umehara, K; Ueno, A
1996-04-01
Five new oleanane-type saponins, polygalasaponins XXVIII-XXXII, along with one known saponin, polygalasaponin XXIV, and one known acylated sucrose, tenuifoliside C, were isolated from the root of Polygala japonica. The structures of these new compounds were elucidated as 3-O-beta-D-glucopyranosyl pesenegenin 28-O-beta-D-xylopyranosyl (1-->4)-alpha-L-rhamnopyranosyl (1-->2)-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl presenegenin 28-O-beta-D-galactopyranosyl (1-->5)-beta-D-apiofuranosyl (1-->4)-beta-D-xylopyranosyl (1-->4)-alpha-L-rhamno-pyranosyl (1-->2)-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl presenegenin 28-O-beta-D-galactopyranosyl (1-->4)-beta-D-xylopyranosyl (1-->4)-alpha-L-rhamnopyranosyl (1-->2)-[4-O-p-methoxycinnamoyl]-[beta-D-glucopyranosyl (1-->3)]-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl presenegenin 28-O-alpha-L-arabinopyranosyl (1-->3)-beta-D-xylopyranosyl (1-->4)-[beta-D-apiofuranosyl (1-->3)]-alpha-L-rhamnopyranosyl (1-->2)-[4-O-3,4,5-trimethoxycinnamoyl]-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl persenegenin 28-O-alpha-L-arabinopyranosyl (1-->3)-beta-D-xylopyranosyl (1-->4)-[beta-D-apiofuranosyl (1-->3)-alpha-L-rhamnopyranosyl (1-->2)-[4-O-p-methoxycinnamoyl]-[alpha-L-rhamnopyranosyl (1-->3)-beta-D-fucopyranosyl ester, respectively, on the basis of spectroscopic and chemical evidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, C.; Luo, Z.; Volkow, N.D.
Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca{sup 2+}]{sub i} ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum.more » Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca{sup 2+}]{sub i} in D1R-expressing neurons (10.6 {+-} 3.2%) in striatum within 8.3 {+-} 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca{sup 2+}]{sub i} increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca{sup 2+}]{sub i} in D2R-expressing neurons (10.4 {+-} 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca{sup 2+}]{sub i} decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.« less
Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory.
Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong
2015-11-19
The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells.
Rezk, Peter E; Graham, Jacob R; Moran, Theodore S; Gordon, Richard K; Sciuto, Alfred M; Doctor, Bhupendra P; Nambiar, Madhusoodana P
2007-03-01
Exposure to a chemical warfare nerve agent (CWNA) leads to severe respiratory distress, respiratory failure, or death if not treated. We investigated the toxic effects of nerve agent VX on the respiratory dynamics of guinea pigs following exposure to 90.4 mug/m3 of VX or saline by microinstillation inhalation technology for 10 min. Respiratory parameters were monitored by whole-body barometric plethysmography at 4, 24, and 48 h, 7 d, 18 d, and 4 wk after VX exposure. VX-exposed animals showed a significant decrease in the respiratory frequency (RF) at 24 and 48 h of recovery (p value .0329 and .0142, respectively) compared to the saline control. The tidal volume (TV) slightly increased in VX exposed animals at 24 and significantly at 48 h (p = .02) postexposure. Minute ventilation (MV) increased slightly at 4 h but was reduced at 24 h and remained unchanged at 48 h. Animals exposed to VX also showed an increase in expiratory (Te) and relaxation time (RT) at 24 and 48 h and a small reduction in inspiratory time (Ti) at 24 h. A significant increase in end expiratory pause (EEP) was observed at 48 h after VX exposure (p = .049). The pseudo lung resistance (Penh) was significantly increased at 4 h after VX exposure and remained slightly high even at 48 h. Time-course studies reveal that most of the altered respiratory dynamics returned to normal at 7 d after VX exposure except for EEP, which was high at 7 d and returned to normal at 18 d postexposure. After 1 mo, all the monitored respiratory parameters were within normal ranges. Bronchoalveolar lavage (BAL) 1 mo after exposure showed virtually no difference in protein levels, cholinesterase levels, cell number, and cell death in the exposed and control animals. These results indicate that sublethal concentrations of VX induce changes in respiratory dynamics and functions that over time return to normal levels.
Yip, Eugene; Yun, Jihyun; Gabos, Zsolt; Baker, Sarah; Yee, Don; Wachowicz, Keith; Rathee, Satyapal; Fallone, B Gino
2018-01-01
Real-time tracking of lung tumors using magnetic resonance imaging (MRI) has been proposed as a potential strategy to mitigate the ill-effects of breathing motion in radiation therapy. Several autocontouring methods have been evaluated against a "gold standard" of a single human expert user. However, contours drawn by experts have inherent intra- and interobserver variations. In this study, we aim to evaluate our user-trained autocontouring algorithm with manually drawn contours from multiple expert users, and to contextualize the accuracy of these autocontours within intra- and interobserver variations. Six nonsmall cell lung cancer patients were recruited, with institutional ethics approval. Patients were imaged with a clinical 3 T Philips MR scanner using a dynamic 2D balanced SSFP sequence under free breathing. Three radiation oncology experts, each in two separate sessions, contoured 130 dynamic images for each patient. For autocontouring, the first 30 images were used for algorithm training, and the remaining 100 images were autocontoured and evaluated. Autocontours were compared against manual contours in terms of Dice's coefficient (DC) and Hausdorff distances (d H ). Intra- and interobserver variations of the manual contours were also evaluated. When compared with the manual contours of the expert user who trained it, the algorithm generates autocontours whose evaluation metrics (same session: DC = 0.90(0.03), d H = 3.8(1.6) mm; different session DC = 0.88(0.04), d H = 4.3(1.5) mm) are similar to or better than intraobserver variations (DC = 0.88(0.04), and d H = 4.3(1.7) mm) between two sessions. The algorithm's autocontours are also compared to the manual contours from different expert users with evaluation metrics (DC = 0.87(0.04), d H = 4.8(1.7) mm) similar to interobserver variations (DC = 0.87(0.04), d H = 4.7(1.6) mm). Our autocontouring algorithm delineates tumor contours (<20 ms per contour), in dynamic MRI of lung, that are comparable to multiple human experts (several seconds per contour), but at a much faster speed. At the same time, the agreement between autocontours and manual contours is comparable to the intra- and interobserver variations. This algorithm may be a key component of the real time tumor tracking workflow for our hybrid Linac-MR device in the future. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Jing; Read, Paul W.; Baisden, Joseph M.
Purpose: To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Methods and Materials: Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA)more » from RedCAM ({epsilon}), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability ({nu}). Results: Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies ({epsilon} = -21.64% {+-} 8.23%) and lung tumor patient studies ({epsilon} = -20.31% {+-} 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly ({epsilon} = -5.13{nu} - 6.71, r{sup 2} = 0.76) with the subjects' respiratory variability. Conclusions: Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.« less
Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke
2007-11-01
To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.
NASA Astrophysics Data System (ADS)
Kercheva, M.; Ryabova, T.; Ryabov, V.; Karpov, R.
2015-11-01
The aim of this study was to assess the intraobserver reproducibility of parameters of standard and 2 dimensional speckle tracking echocardiography, dynamics of global longitudinal strain in patients with acute primary anterior STEMI. The study included 24 patients, mean age 58.46±10.2. Echocardiography with 2D speckle tracking imaging was performed on the 1st (T1), 7th (T2), 14th days (T3) after STEMI («Vivid E9»). Analysis of echocardiographic images was performed offline at the different periods by the two independent observers (EchoPac) - experienced and inexperienced. In order to assess the agreement between standard and 2D speckle tracking echocardiography, a correlation analysis (Pearson correlation, Spearman's rank correlation coefficient) and Bland-Altman analysis were undertaken. The 23 patients had urgent reperfusion therapy, 6 patients underwent primary PCI, 16 patients - PCI after successful fibrinolysis (68%). GLS and WMSI had the best intraobsever reproducibility. Dynamics of EDV LV, ESV LV, EF LV was without significant differences. Nevertheless, it was found positive dynamic of GLS: - 12.65±3.53 (T1), -13.61±3.81 (T2), -14.27±4.1 (T3), p<0.05. GLS reduced 11.35% (p=0.0048) from T1 to T3. The best intraobserver reproducibility of parameters of 2 D speckle-tracking and standard echocardiography was revealed in GLS and WMSI. The modern management of STEMI patients limits adverse postinfarction remodeling and preserves of global left ventricular contractility detected by the EF LV. However, GLS had the positive dynamics and improved to the 14th day.
CFD Investigation of Effect of Depth to Diameter Ratio on Dimple Flow Dynamics
2007-06-01
contained dynamic vortical flow structures with behavior varying between each dimple studied. This dynamic vortex activity was observed to be linked... 1 1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation for Research . . . . . . . . . . . . . . . . . . 1 1.3...59 F. 1 . Pressure tap for ReD 20500 Rex 5000 0.05 h/D dimple . . . . . 66 F.2. Pressure tap for ReD 20500 Rex 77000 0.05 h/D dimple
Scheduling and Coordination of Multiple Dynamic Systems.
1979-12-01
Lemna 9. For C (.) defined in (39), .im C (D) -C (D ) exists V DE(.,D) (42) D-D and him4 C(D) C*(D+) exists V DE[D,D). (43) D-D Proof. For any DEi(,D] a...0[t0 ,1 ] where -to - [t,..., tK ’ (151) With this minor abuse of notation, the gradient of C[(t,V1 is to be K found with respect to t ER This
NASA Astrophysics Data System (ADS)
Schübler, Moritz; Sadek, Bassem; Kottke, Tim; Weizel, Lilia; Stark, Holger
2017-09-01
Neurleptic drugs, e.g. aripiprazole, targeting the dopamine D2s and D3 receptors (D2sR and D3R) in the central nervous system are widely used in the treatment of several psychotic and neurodegenerative diseases. Therefore, a new series of benz[d]thiazole-based ligands (1-18) was synthesized by applying the bioisosteric approach derived from the selective D3Rs ligand BP-897 and its structurally related benz[d]imidazole derivatives. Herein, introduction of the benz[d]thiazole moiety was well tolerated by D2sR and D3R binding sites leading to antagonist affinities in the low nanomolar concentration range at both receptor subtypes. Further exploration of different substitution patterns at the benz[d]thiazole heterocycle and the basic 4-phenylpiperazine resulted in the discovery of high dually acting D2sR and D3R ligands. Moreover, the methoxy substitution at 2-position of 4-phenylpiperazine resulted in significantly (22-fold) increased D2sR binding affinity as compared to the parent ligand BP-897, and improved physicochemical and drug-likeness properties of ligands 1-9. However, the latter structural modifications failed to improve the drug-able properties in ligands having un-substituted 4-phenylpiperazine analogues (10-18). Accordingly, compound 7 showed in addition to high dual affinity at the D2sR and D3R (Ki (hD2SR) = 2.8 ± 0.8 nM; Ki (hD3R) = 3.0 ± 1.6 nM), promising clogS, clogP, LE (hD2sR, hD3R), LipE (hD2sR, hD3R), and drug-likeness score values of -4.7, 4.2, (0.4, 0.4), (4.4, 4.3), and 0.7, respectively. Also, the deaminated analogue 8 (Ki (hD2SR) = 3.2 ± 0.4 nM; Ki (hD3R) = 8.5 ± 2.2 nM) revealed clogS, clogP, LE (hD2sR, hD3R), LipE (hD2sR, hD3R) and drug-likeness score values of -4.7, 4.2, (0.4, 0.4), (3.9, 3.5), and 0.4, respectively. The results observed for the newly developed benz[d]thiazole-based ligands 1-18 provide clues for the diversity in structure activity relationships (SARs) at the D2sR and D3R subtypes.
1990-04-01
Maxwell (Texas A&M University-) 4. ACCURACY OF THE QUAD& THICK SHELL ELEMENT ’........... .. 3.0 by William R. Case, Tiffany D. Bowles, Al ia K. Croft and...Computer Literacy: Mainframe Monsters and Pacman. Symposium on Advances and Trends in Structures and Dynamics, Washington, D.C., October 1984. 4. Woodward...No. 1, 1985. 5. Wilson, E.L., and M. Holt: CAL-80-Computer Assisted Learning of Structural Engineering. Symposium on Advances and Trends in
Vehicle dynamics control by using a three-dimensional stabilizer pendulum system
NASA Astrophysics Data System (ADS)
Goodarzi, A.; Naghibian, M.; Choodan, D.; Khajepour, A.
2016-12-01
Active safety systems of a vehicle normally work well on tyre-road interactions, however, these systems deteriorate in performance on low-friction road conditions. To combat this effect, an innovative idea for the yaw moment and roll dynamic control is presented in this paper. This idea was inspired by the chase and run dynamics animals like cheetahs in the nature; cheetahs have the ability to swerve while running at very high speeds. A cheetah controls its dynamics by rotating its long tail. A three-dimensional stabilizer pendulum system (3D-SPS) resembles the rotational motion of the tail of a cheetah to improve the stability and safety of a vehicle. The idea has been developed in a stand-alone 3D stabilizer pendulum system as well as in an integrated control system, which consists of an ordinary differential braking direct yaw control (DYC) and active steering control that is assisted by the 3D-SPS. The performance of the proposed 3D-SPS has been evaluated over a wide range of handling manoeuvres by using a comprehensive numerical simulation. The results show the advantage of 3D-SPS over conventional control approaches, which are ineffective on low-friction road conditions and high lateral acceleration manoeuvres. It should however be noted that the best vehicle dynamics performance is obtained when an integrated 3D-SPS and DYC and AFS is utilised.
Bhave, Sampada; Lingala, Sajan Goud; Newell, John D; Nagle, Scott K; Jacob, Mathews
2016-06-01
The objective of this study was to increase the spatial and temporal resolution of dynamic 3-dimensional (3D) magnetic resonance imaging (MRI) of lung volumes and diaphragm motion. To achieve this goal, we evaluate the utility of the proposed blind compressed sensing (BCS) algorithm to recover data from highly undersampled measurements. We evaluated the performance of the BCS scheme to recover dynamic data sets from retrospectively and prospectively undersampled measurements. We also compared its performance against that of view-sharing, the nuclear norm minimization scheme, and the l1 Fourier sparsity regularization scheme. Quantitative experiments were performed on a healthy subject using a fully sampled 2D data set with uniform radial sampling, which was retrospectively undersampled with 16 radial spokes per frame to correspond to an undersampling factor of 8. The images obtained from the 4 reconstruction schemes were compared with the fully sampled data using mean square error and normalized high-frequency error metrics. The schemes were also compared using prospective 3D data acquired on a Siemens 3 T TIM TRIO MRI scanner on 8 healthy subjects during free breathing. Two expert cardiothoracic radiologists (R1 and R2) qualitatively evaluated the reconstructed 3D data sets using a 5-point scale (0-4) on the basis of spatial resolution, temporal resolution, and presence of aliasing artifacts. The BCS scheme gives better reconstructions (mean square error = 0.0232 and normalized high frequency = 0.133) than the other schemes in the 2D retrospective undersampling experiments, producing minimally distorted reconstructions up to an acceleration factor of 8 (16 radial spokes per frame). The prospective 3D experiments show that the BCS scheme provides visually improved reconstructions than the other schemes do. The BCS scheme provides improved qualitative scores over nuclear norm and l1 Fourier sparsity regularization schemes in the temporal blurring and spatial blurring categories. The qualitative scores for aliasing artifacts in the images reconstructed by nuclear norm scheme and BCS scheme are comparable.The comparisons of the tidal volume changes also show that the BCS scheme has less temporal blurring as compared with the nuclear norm minimization scheme and the l1 Fourier sparsity regularization scheme. The minute ventilation estimated by BCS for tidal breathing in supine position (4 L/min) and the measured supine inspiratory capacity (1.5 L) is in good correlation with the literature. The improved performance of BCS can be explained by its ability to efficiently adapt to the data, thus providing a richer representation of the signal. The feasibility of the BCS scheme was demonstrated for dynamic 3D free breathing MRI of lung volumes and diaphragm motion. A temporal resolution of ∼500 milliseconds, spatial resolution of 2.7 × 2.7 × 10 mm, with whole lung coverage (16 slices) was achieved using the BCS scheme.
Nadgorny, Milena; Xiao, Zeyun; Chen, Chao; Connal, Luke A
2016-10-26
In this work we describe the synthesis, thermal and rheological characterization, hot-melt extrusion, and three-dimensional printing (3DP) of poly(2-vinylpyridine) (P2VP). We investigate the effect of thermal processing conditions on physical properties of produced filaments in order to achieve high quality, 3D-printable filaments for material extrusion 3DP (ME3DP). Mechanical properties and processing performances of P2VP were enhanced by addition of 12 wt % acrylonitrile-butadiene-styrene (ABS), which reinforced P2VP fibers. We 3D-print P2VP filaments using an affordable 3D printer. The pyridine moieties are cross-linked and quaternized postprinting to form 3D-printed pH-responsive hydrogels. The printed objects exhibited dynamic and reversible pH-dependent swelling. These hydrogels act as flow-regulating valves, controlling the flow rate with pH. Additionally, a macroporous P2VP membrane was 3D-printed and the coordinating ability of the pyridyl groups was employed to immobilize silver precursors on its surface. After the reduction of silver ions, the structure was used to catalyze the reduction of 4-nitrophenol to 4-aminophenol with a high efficiency. This is a facile technique to print recyclable catalytic objects.
Relative Motion Modeling and Autonomous Navigation Accuracy
2016-11-15
Dynamical Astronomy , Vol. 91, No. 3-4, 2005, pp. 239–268. [9] B. Mahajan, S. R. Vadali, and K. T. Alfriend, “Analytic Solution for Satellite...and Dynamical Astronomy , Vol. 9, April 1974, pp. 239–267. [14] D. Vallado, Fundamentals of Astrodynamics and Applications, New York, NY: McGraw- Hill
Platania, Chiara Bianca Maria; Salomone, Salvatore; Leggio, Gian Marco; Drago, Filippo; Bucolo, Claudio
2012-01-01
Dopamine (DA) receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D3 (hD3) receptor has been recently solved. Based on the hD3 receptor crystal structure we generated dopamine D2 and D3 receptor models and refined them with molecular dynamics (MD) protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD3 and hD2L receptors was differentiated by means of MD simulations and D3 selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental Ki was obtained for hD3 and hD2L receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands. PMID:22970199
Application of 6D Building Information Model (6D BIM) for Business-storage Building in Slovenia
NASA Astrophysics Data System (ADS)
Pučko, Zoran; Vincek, Dražen; Štrukelj, Andrej; Šuman, Nataša
2017-10-01
The aim of this paper is to present an application of 6D building information modelling (6D BIM) on a real business-storage building in Slovenia. First, features of building maintenance in general are described according to the current Slovenian legislation, and also a general principle of BIM is given. After that, step-by-step activities for modelling 6D BIM are exposed, namely from Element list for maintenance, determination of their lifetime and service measures, cost analysing and time analysing to 6D BIM modelling. The presented 6D BIM model is designed in a unique way in which cost analysis is performed as 5D BIM model with linked data to use BIM Construction Project Management Software (Vico Office), integrated with 3D BIM model, whereas time analysis as 4D BIM model is carried out as non-linked data with the help of Excel (without connection to 3D BIM model). The paper is intended to serve as a guide to the building owners to prepare 6D BIM and to provide an insight into the relevant dynamic information about intervals and costs for execution of maintenance works in the whole building lifecycle.
Iryo, Yasuhiko; Hirai, Toshinori; Nakamura, Masanobu; Inoue, Yasuteru; Watanabe, Masaki; Ando, Yukio; Azuma, Minako; Nishimura, Shinichiro; Shigematsu, Yoshinori; Kitajima, Mika; Yamashita, Yasuyuki
2015-09-01
To evaluate whether 3-T four-dimensional (4D) arterial spin-labelling (ASL) -based magnetic resonance angiography (MRA) is useful for assessing the collateral circulation via the circle of Willis in patients with carotid artery steno-occlusive disease. Institutional review board approval and prior written informed consent from all patients were obtained. The inclusion criteria were fulfilled by 13 patients with carotid artery steno-occlusive disease. All underwent 4D-ASL MRA at 3 T and digital subtraction angiography (DSA). The flow-sensitive alternating inversion recovery (FAIR) preparation scheme with look-locker sampling was used for spin labeling. At 300-ms intervals seven dynamic scans were obtained with a spatial resolution of 0.5×0.5×0.6 mm(3). The collateral flow via the circle of Willis was read on 4D-ASL MRA and DSA images by two sets of two independent readers each. κ statistics were used to assess interobserver and intermodality agreement. On DSA, collateral flow via the anterior communicating artery (AcomA) was observed in six patients, via the posterior communicating artery (PcomA) in four patients, and via both the AcomA and PcomA in three patients. With respect to the qualitative evaluation of 4D-ASL MRA images, interobserver agreement was excellent for all items (κ=1). 4D-ASL MRA and DSA consensus readings agreed on the type of collateral flow pattern in 10 of the 13 patients (77%). Intermodality agreement was good (κ=0.606; 95% confidence interval (CI): 0.215-0.997). 3 T 4D-ASL MRA may be a useful tool for the evaluation of the collateral circulation in patients with carotid artery steno-occlusive disease. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang; ...
2018-02-09
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
NASA Astrophysics Data System (ADS)
Tao, Y.; Muller, J.-P.
2017-09-01
In this paper, we demonstrate novel Super-resolution restoration and 3D reconstruction tools developed within the EU FP7 projects and their applications to advanced dynamic feature tracking through HiRISE repeat stereo. We show an example with one of the RSL sites in the Palikir Crater took 8 repeat-pass 25cm HiRISE images from which a 5cm RSL-free SRR image is generated using GPT-SRR. Together with repeat 3D modelling of the same area, it allows us to overlay tracked dynamic features onto the reconstructed "original" surface, providing a much more comprehensive interpretation of the surface formation processes in 3D.
Xue, Ming; Lane, Barton F.; Kang, Min Kyu; Patel, Kruti; Regine, William F.; Klahr, Paul; Wang, Jiahui; Chen, Shifeng; D’Souza, Warren; Lu, Wei
2016-01-01
Purpose: To develop an individually optimized contrast-enhanced (CE) 4D-computed tomography (CT) for radiotherapy simulation in pancreatic ductal adenocarcinomas (PDA). Methods: Ten PDA patients were enrolled. Each underwent three CT scans: a 4D-CT immediately following a CE 3D-CT and an individually optimized CE 4D-CT using test injection. Three physicians contoured the tumor and pancreatic tissues. Image quality scores, tumor volume, motion, tumor-to-pancreas contrast, and contrast-to-noise ratio (CNR) were compared in the three CTs. Interobserver variations were also evaluated in contouring the tumor using simultaneous truth and performance level estimation. Results: Average image quality scores for CE 3D-CT and CE 4D-CT were comparable (4.0 and 3.8, respectively; P = 0.082), and both were significantly better than that for 4D-CT (2.6, P < 0.001). Tumor-to-pancreas contrast results were comparable in CE 3D-CT and CE 4D-CT (15.5 and 16.7 Hounsfield units (HU), respectively; P = 0.21), and the latter was significantly higher than in 4D-CT (9.2 HU, P = 0.001). Image noise in CE 3D-CT (12.5 HU) was significantly lower than in CE 4D-CT (22.1 HU, P = 0.013) and 4D-CT (19.4 HU, P = 0.009). CNRs were comparable in CE 3D-CT and CE 4D-CT (1.4 and 0.8, respectively; P = 0.42), and both were significantly better in 4D-CT (0.6, P = 0.008 and 0.014). Mean tumor volumes were significantly smaller in CE 3D-CT (29.8 cm3, P = 0.03) and CE 4D-CT (22.8 cm3, P = 0.01) than in 4D-CT (42.0 cm3). Mean tumor motion was comparable in 4D-CT and CE 4D-CT (7.2 and 6.2 mm, P = 0.17). Interobserver variations were comparable in CE 3D-CT and CE 4D-CT (Jaccard index 66.0% and 61.9%, respectively) and were worse for 4D-CT (55.6%) than CE 3D-CT. Conclusions: CE 4D-CT demonstrated characteristics comparable to CE 3D-CT, with high potential for simultaneously delineating the tumor and quantifying tumor motion with a single scan. PMID:27782710
Wang, Yi; Gong, Chunxiu; Cao, Bingyan; Meng, Xi; Wei, Liya; Wu, Di; Liang, Xuejun; Li, Wenjing; Liu, Min; Gu, Yi; Su, Chang
2017-05-01
To investigate the effect of initial insulin dosage on blood glucose (BG) dynamics, β-cell protection, and oxidative stress in type 1 diabetes mellitus. Sixty newly diagnosed type 1 diabetes mellitus patients were randomly assigned to continuous subcutaneous insulin infusions of 0.6 ± 0.2 IU/kg/d (group 1), 1.0 ± 0.2 IU/kg/d (group 2), or 1.4 ± 0.2 IU/kg/d (group 3) for 3 wk. BG was monitored continuously for the first 10 d and the last 2 d of wk 2 and 3. A total of 24-hour urinary 8-iso-PGF2α was assayed on days 8, 9, and 10. The occurrence and duration of the honeymoon period were recorded. Fasting C-peptide and glycosylated hemoglobin (HbA1c) were assayed after 1, 6, and 12 months of insulin treatment. BG decreased to the target range by the end of wk 3 (group 1), wk 2 (group 2), or wk 1 (group 3). The actual insulin dosage over the 3 wk, frequency of hypoglycemia on wk 1 and 2, and median BG at the end of wk 1 differed significantly, but not 8-iso-PGF2α and the honeymoon period in the three groups. No severe hypoglycemia event was observed in any patient, but there was significant difference in the first occurrence of hypoglycemia. Differences in initial insulin dosage produced different BG dynamics in wk 1, equivalent BG dynamics on wk 2 and 3, but had no influence on short- and long-term BG control and honeymoon phase. The wide range of initial insulin dosage could be chosen if guided by BG monitoring. © 2016 The Authors. Pediatric Diabetes published by John Wiley & Sons Ltd.
A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing.
Dai, Shanshan; Perera, Rukshan T; Yang, Zi; Rosenstein, Jacob K
2016-10-01
An integrated current measurement system with ultra wide dynamic range is presented and fabricated in a 180-nm CMOS technology. Its dual-mode design provides concurrent voltage and frequency outputs, without requiring an external clock source. An integrator-differentiator core provides a voltage output with a noise floor of 11.6 fA/ [Formula: see text] and a -3 dB cutoff frequency of 1.4 MHz. It is merged with an asynchronous current-to-frequency converter, which generates an output frequency linearly proportional to the input current. Together, the voltage and frequency outputs yield a current measurement range of 155 dB, spanning from 204 fA (100 Hz) or 1.25 pA (10 kHz) to 11.6 μA. The proposed architecture's low noise, wide bandwidth, and wide dynamic range make it ideal for measurements of highly nonlinear electrochemical and electrophysiological systems.
Wang, Hansen; Kim, Susan S.; Zhuo, Min
2010-01-01
Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP regulates local protein synthesis in dendritic spines. Dopamine (DA) is involved in the modulation of synaptic plasticity. Activation of DA receptors can regulate higher brain functions in a protein synthesis-dependent manner. Our recent study has shown that FMRP acts as a key messenger for DA modulation in forebrain neurons. Here, we demonstrate that FMRP is critical for DA D1 receptor-mediated synthesis of synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) in the prefrontal cortex (PFC). DA D1 receptor stimulation induced dynamic changes of FMRP phosphorylation. The changes in FMRP phosphorylation temporally correspond with the expression of SAPAP3 after D1 receptor stimulation. Protein phosphatase 2A, ribosomal protein S6 kinase, and mammalian target of rapamycin are the key signaling molecules for FMRP linking DA D1 receptors to SAPAP3. Knockdown of SAPAP3 did not affect surface expression of α-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) GluR1 receptors induced by D1 receptor activation but impaired their subsequent internalization in cultured PFC neurons; the subsequent internalization of GluR1 was also impaired in Fmr1 knock-out PFC neurons, suggesting that FMRP may be involved in subsequent internalization of GluR1 through regulating the abundance of SAPAP3 after DA D1 receptor stimulation. Our study thus provides further insights into FMRP involvement in DA modulation and may help to reveal the molecular mechanisms underlying impaired learning and memory in fragile X syndrome. PMID:20457613
Wang, Hansen; Kim, Susan S; Zhuo, Min
2010-07-09
Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP regulates local protein synthesis in dendritic spines. Dopamine (DA) is involved in the modulation of synaptic plasticity. Activation of DA receptors can regulate higher brain functions in a protein synthesis-dependent manner. Our recent study has shown that FMRP acts as a key messenger for DA modulation in forebrain neurons. Here, we demonstrate that FMRP is critical for DA D1 receptor-mediated synthesis of synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) in the prefrontal cortex (PFC). DA D1 receptor stimulation induced dynamic changes of FMRP phosphorylation. The changes in FMRP phosphorylation temporally correspond with the expression of SAPAP3 after D1 receptor stimulation. Protein phosphatase 2A, ribosomal protein S6 kinase, and mammalian target of rapamycin are the key signaling molecules for FMRP linking DA D1 receptors to SAPAP3. Knockdown of SAPAP3 did not affect surface expression of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) GluR1 receptors induced by D1 receptor activation but impaired their subsequent internalization in cultured PFC neurons; the subsequent internalization of GluR1 was also impaired in Fmr1 knock-out PFC neurons, suggesting that FMRP may be involved in subsequent internalization of GluR1 through regulating the abundance of SAPAP3 after DA D1 receptor stimulation. Our study thus provides further insights into FMRP involvement in DA modulation and may help to reveal the molecular mechanisms underlying impaired learning and memory in fragile X syndrome.
A Dynamical Perspective on Additional Planets in 55 Cancri
NASA Astrophysics Data System (ADS)
Raymond, Sean N.; Barnes, Rory; Gorelick, Noel
2008-12-01
Five planets are known to orbit the star 55 Cancri. The recently discovered planet f at 0.78 AU (Fischer et al.) is located at the inner edge of a previously identified stable zone that separates the three close-in planets from planet d at 5.9 AU. Here we map the stability of the orbital space between planets f and d using a suite of n-body integrations that include an additional, yet-to-be-discovered planet g with a radial velocity amplitude of 5 ms-1 (planet mass = 0.5-1.2 Saturn masses). We find a large stable zone extending from 0.9 to 3.8 AU at eccentricities below 0.4. For each system we quantify the probability of detecting planets b-f on their current orbits given perturbations from hypothetical planet g, in order to further constrain the mass and orbit of an additional planet. We find that large perturbations are associated with specific mean motion resonances (MMRs) with planets f and d. We show that two MMRs, 3f:1g (the 1:3 MMR between planets g and f) and 4g:1d cannot contain a planet g. The 2f:1g MMR is unlikely to contain a planet more massive than ~20 M⊕. The 3g:1d and 5g:2d MMRs could contain a resonant planet but the resonant location is strongly confined. The 3f:2g, 2g:1d, and 3g:2d MMRs exert a stabilizing influence and could contain a resonant planet. Furthermore, we show that the stable zone may in fact contain 2-3 additional planets, if they are ~50 M⊕ each. Finally, we show that any planets exterior to planet d must reside beyond 10 AU.
Boivin, Arnaud; Amellal, Samira; Schiavon, Michel; van Genuchten, Martinus Th
2005-11-01
The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.
Horn, N L; Donkin, S S; Applegate, T J; Adeola, O
2009-09-01
Mucin dynamics may be particularly sensitive to a Thr deficiency due to the high concentration and structural importance of Thr in the mucin protein backbone. Intestinal mucin secretion, expression of mucin gene (MUC2), and histological characteristics were investigated in male broilers and White Pekin ducklings offered diets containing 3.3, 5.8, or 8.2 g of Thr/kg in 4 studies. Seventy-two birds of each species were fed a standard broiler starter diet from 1 to 14 d of age followed by assignment to 3 dietary treatments in a randomized complete block design for a 7-d feeding trial in experiment 1 (broilers) and experiment 2 (ducklings). The dietary treatments consisted of an isonitrogenous corn-soybean meal-based diet with the addition of crystalline amino acids and graded levels of Thr. Dietary treatments contained 3.3, 5.8, or 8.2 g of Thr/kg. Dietary formulation and experimental design for experiments 3 (broilers) and 4 (ducklings) were similar to experiments 1 and 2 except that birds were fed 3.3 or 8.2 g of Thr/kg for durations of 7 or 14 d. For chicks, increased dietary Thr resulted in higher levels of intestinal crude mucin excretion in experiment 1 (P=0.04) but not in experiment 3, whereas intestinal sialic acid excretion increased in experiment 3 (P=0.02) but not in experiment 1. Furthermore, there was no effect of Thr on intestinal goblet cell density or MUC2 mRNA abundance for broilers. For ducklings, there was an increase in intestinal crude mucin excretion in both experiments (P<0.05) as dietary Thr increased, although there was no effect of Thr on intestinal sialic acid excretion. There was a tendency for an increase in intestinal goblet cell density (cells/microm of villus length; P=0.09) as dietary Thr increased in experiment 2. For experiment 4, intestinal MUC2 mRNA abundance increased (P=0.03) as dietary Thr increased for the 14-d feeding trial but not for the 7-d feeding trial. The data establish a link between dietary Thr and intestinal crude mucin dynamics in chicks for experiment 1 and ducklings for both experiments.
Exploring Wave-Wave Interactions in a General Circulation Model
NASA Astrophysics Data System (ADS)
Nystrom, Virginia; Gasperini, Federico; Forbes, Jeffrey M.; Hagan, Maura E.
2018-01-01
Nonlinear interactions involving Kelvin waves with (periods, zonal wave numbers) = (3.7d, s =- 1) (UFKW1) and = (2.4d, s =- 1) (UFKW2) and s = 0 and s = 1 quasi 9 day waves (Q9DW) with diurnal tides DW1, DW2, DW3, DE2, and DE3 are explored within a National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulation driven at its ˜30 km lower boundary by interpolated 3-hourly output from Modern-Era Retrospective Analysis for Research and Applications (MERRA). The existence of nonlinear wave-wave interactions between the above primary waves is determined by the presence of secondary waves (SWs) with frequencies and zonal wave numbers that are the sums and differences of those of the primary (interacting) waves. Focus is on 10-21 April 2009, when the nontidal dynamics in the mesosphere-lower thermosphere (MLT) region is dominated by UFKW and when identification of SW is robust. Fifteen SWs are identified in all. An interesting triad is identified involving UFKW1, DE3, and a secondary UFKW4 = (1.5d, s =- 2): The UFKW1-DE3 interaction produces UFKW4, the UFKW4-DE3 interaction produces UFKW1, and the UFKW1 interaction with UFKW4 produces DE3. At 120 km the dynamic range of the reconstructed latitude-longitude zonal wind field due to all of the SW is roughly half that of the primary waves, which produced them. This suggests that nonlinear wave-wave interactions could significantly modify the way that the lower atmosphere couples with the ionosphere.
Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
Lee, Sangmin; Ahn, Jae Hyun; Seo, Jong-Mo; Chung, Hum; Cho, Dong-Il Dan
2015-06-17
In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.
NASA Astrophysics Data System (ADS)
Zhang, Yixuan; Deng, Lu; Kitova, Elena N.; Klassen, John S.
2013-10-01
The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal p-(1→4)-β-D-Glc p (GM1)) and corresponding glycosphingolipid (β-D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal p-(1→4)-β-D-Glc p-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)n+ ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)n- ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)n+/- ions, as well as for deprotonated (S4 + 4Btl)n- ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)n+ ions was observed as a minor pathway. The (S4 + 4Btl)n+ ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)15+ ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein-ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.
From N=4 Galilean superparticle to three-dimensional non-relativistic N=4 superfields
NASA Astrophysics Data System (ADS)
Fedoruk, Sergey; Ivanov, Evgeny; Lukierski, Jerzy
2018-05-01
We consider the general N=4 , d = 3 Galilean superalgebra with arbitrary central charges and study its dynamical realizations. Using the nonlinear realization techniques, we introduce a class of actions for N=4 three-dimensional non-relativistic superparticle, such that they are linear in the central charge Maurer-Cartan one-forms. As a prerequisite to the quantization, we analyze the phase space constraints structure of our model for various choices of the central charges. The first class constraints generate gauge transformations, involving fermionic κ-gauge transformations. The quantization of the model gives rise to the collection of free N=4 , d = 3 Galilean superfields, which can be further employed, e.g., for description of three-dimensional non-relativistic N=4 supersymmetric theories.
An Investigation of the Dynamic Model of Modern Military Conflict.
1982-03-01
of the Lotka - Volterra equations for multi-species ecosystems [Ref. 4: 37-38]. More specifically it takes on the form: (Eqn 2.7) d(Si) 4 4 dt s [ -I a...0.10-------------------- 42 D. INSTABILITY WITH d xyAT 1.40------------------ 42 E. INSTABILITY WITH d yxAT 1.40------------------ 49 F. GENERAL ... GENERAL OBSERVATIONS--------------------------- 64 B. IMPLICATIONS FOR FUTURE RESEARCH--------------- 65 LIST OF REFERENCES
Liu, Xiao-wei; Pang, Guo-xiang; Liu, Xi-pu; Jiang, Ru-xin; Jin, Yu-mei; Sun, Yu-min; Wang, Zhong-hai
2003-10-01
To evaluate the static and dynamic contrast sensitivity changes in myopic patients before and after laser in situ keratomileusis (LASIK). Seventy-three eyes in 37 patients with myopia (with or without astigmatism) who received LASIK were tested for static and dynamic contrast sensitivities using the METRO VISION MON ELEC I system at 0.7, 1.4, 2.7, 5.5, 11, and 22 cpd and cps prior to LASIK, and at one-, three-, and six-month intervals after LASIK. All eyes gained naked visual acuity of more than 0.5 after LASIK. The contrast sensitivity was depressed at all frequencies 1 month after LASIK, as compared to one week prior to LASIK. The depression at 2.7, 5.5, 11 (P < 0.01) and 22 cpd (P < 0.05) was statistically significant for static contrast sensitivity, and also at 5.5 (P < 0.01) and 11 cps (P < 0.05) for dynamic contrast sensitivity. Myopic eyes between 6.25 D and 14.0 D, and astigmatic eyes 2 DC and more, suffered more static and dynamic contrast sensitivity depression than the myopic eyes between 1.25 D and 6.00 D and astigmatic eyes less than 2 DC. Contrast sensitivities were improved and exceeded preoperative levels 3 months after LASIK, and improved even more 6 months after LASIK. All sequences were statistically significant for static contrast sensitivity (P < 0.01), while only 2.7, 5.5, and 11 cps were statistically significant for dynamic contrast sensitivity (P < 0.01). The astigmatic eyes 2 DC and more showed less improvement, even below the preoperative level at 1.4 cps of dynamic contrast sensitivity. While temporary depression of contrast sensitivity for myopic eyes after LASIK was seen, contrast sensitivity soon returned to exceed preoperative levels at 3 months after LASIK, while improving even more 6 months after LASIK.
Adding gauge fields to Kaplan's fermions
NASA Astrophysics Data System (ADS)
Blum, T.; Kärkkäinen, Leo
1994-04-01
We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U (1) gauge theory we use an inhomogenous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field.
Marangoni-driven chemotaxis, chemotactic collapse, and the Keller-Segel equation
NASA Astrophysics Data System (ADS)
Shelley, Michael; Masoud, Hassan
2013-11-01
Almost by definition, chemotaxis involves the biased motion of motile particles along gradients of a chemical concentration field. Perhaps the most famous model for collective chemotaxis in mathematical biology is the Keller-Segel model, conceived to describe collective aggregation of slime mold colonies in response to an intrinsically produced, and diffusing, chemo-attractant. Heavily studied, particularly in 2D where the system is ``super-critical'', it has been proved that the KS model can develop finite-time singularities - so-called chemotactic collapse - of delta-function type. Here, we study the collective dynamics of immotile particles bound to a 2D interface above a 3D fluid. These particles are chemically active and produce a diffusing field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. Remarkably, we show that this system involving 3D diffusion and fluid dynamics, exactly yields the 2D Keller-Segel model for the surface-flow of active particles. We discuss the consequences of collapse on the 3D fluid dynamics, and generalizations of the fluid-dynamical model.
Department of Defense Weapon System Acquisition Policy: A System Dynamics Model and Analysis.
1982-09-01
dimensionless) PRPRD = Perceived Pressure for R&D (dimensionless) PU - Programs in Progress (programs) RPRD - Raw Pressure for R&D (dimensionless) TDPP - Time...ECAP) TH9 Pressure Ra Pressure_.- for Acquisition ( TDPP ) TH25 4for Acquisition (DPFAO) TH22D (DPPFAO) TH21 US Intelligence \\ - 7 Delay Time / efense...DIBP, DPPFAQ. K) TH22 A CPPFAG.K=DLINF3(RPFAG.KTCPP) TH23 A CPFAQ.K=MAX (DIBPCPPFAQ.K) TH24 C TDPP =12 TH25 C TCPP-24 TH26 CPFAQ Congressional Pressure
How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision
Cao, Yongqiang; Grossberg, Stephen
2014-01-01
The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon color spreading, binocular rivalry, 3D Necker cube, and many examples of 3D figure-ground separation. PMID:25309467
How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision.
Cao, Yongqiang; Grossberg, Stephen
2014-01-01
The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon color spreading, binocular rivalry, 3D Necker cube, and many examples of 3D figure-ground separation.
NASA Astrophysics Data System (ADS)
Sang, Xiahan
Intermetallics offer unique property combinations often superior to those of more conventional solid solution alloys of identical composition. Understanding of bonding in intermetallics would greatly accelerate development of intermetallics for advanced and high performance engineering applications. Tetragonal intermetallics L10 ordered TiAl, FePd and FePt are used as model systems to experimentally measure their electron densities using quantitative convergent beam electron diffraction (QCBED) method and then compare details of the 3d-4d (FePd) and 3d-5d (FePt) electron interactions to elucidate their role on properties of the respective ferromagnetic L10-ordered intermetallics FePd and FePt. A new multi-beam off-zone axis condition QCBED method has been developed to increase sensitivity of CBED patterns to change of structure factors and the anisotropic Debye-Waller (DW) factors. Unprecedented accuracy and precision in structure and DW factor measurements has been achieved by acquiring CBED patterns using beam-sample geometry that ensures strong dynamical interaction between the fast electrons and the periodic potential in the crystalline samples. This experimental method has been successfully applied to diamond cubic Si, and chemically ordered B2 cubic NiAl, tetragonal L10 ordered TiAl and FePd. The accurate and precise experimental DW and structure factors for L10 TiAl and FePd allow direct evaluation of computer calculations using the current state of the art density functional theory (DFT) based electron structure modeling. The experimental electron density difference map of L1 0 TiAl shows that the DFT calculations describe bonding to a sufficient accuracy for s- and p- electrons interaction, e. g., the Al-layer. However, it indicate significant quantitative differences to the experimental measurements for the 3d-3d interactions of the Ti atoms, e.g. in the Ti layers. The DFT calculations for L10 FePd also show that the current DFT approximations insufficiently describe the interaction between Fe-Fe (3d-3d), Fe-Pd (3d-4d) and Pd-Pd (4d-4d) electrons, which indicates the necessity to evaluate applicability of different DFT approximations, and also provides experimental data for the development of new DFT approximation that better describes transition metal based intermetallic systems.
NASA Technical Reports Server (NTRS)
Brock, Joseph M; Stern, Eric
2016-01-01
Dynamic CFD simulations of the SIAD ballistic test model were performed using US3D flow solver. Motivation for performing these simulations is for the purpose of validation and verification of the US3D flow solver as a viable computational tool for predicting dynamic coefficients.
Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation.
Coolens, Catherine; Bracken, John; Driscoll, Brandon; Hope, Andrew; Jaffray, David
2012-05-01
Conventional (i.e., respiratory-correlated) 4DCT exploits the repetitive nature of breathing to provide an estimate of motion; however, it has limitations due to binning artifacts and irregular breathing in actual patient breathing patterns. The aim of this work was to evaluate the accuracy and image quality of a dynamic volume, CT approach (4D(vol)) using a 320-slice CT scanner to minimize these limitations, wherein entire image volumes are acquired dynamically without couch movement. This will be compared to the conventional respiratory-correlated 4DCT approach (RCCT). 4D(vol) CT was performed and characterized on an in-house, programmable respiratory motion phantom containing multiple geometric and morphological "tumor" objects over a range of regular and irregular patient breathing traces obtained from 3D fluoroscopy and compared to RCCT. The accuracy of volumetric capture and breathing displacement were evaluated and compared with the ground truth values and with the results reported using RCCT. A motion model was investigated to validate the number of motion samples needed to obtain accurate motion probability density functions (PDF). The impact of 4D image quality on this accuracy was then investigated. Dose measurements using volumetric and conventional scan techniques were also performed and compared. Both conventional and dynamic volume 4DCT methods were capable of estimating the programmed displacement of sinusoidal motion, but patient breathing is known to not be regular, and obvious differences were seen for realistic, irregular motion. The mean RCCT amplitude error averaged at 4 mm (max. 7.8 mm) whereas the 4D(vol) CT error stayed below 0.5 mm. Similarly, the average absolute volume error was lower with 4D(vol) CT. Under irregular breathing, the 4D(vol) CT method provides a close description of the motion PDF (cross-correlation 0.99) and is able to track each object, whereas the RCCT method results in a significantly different PDF from the ground truth, especially for smaller tumors (cross-correlation ranging between 0.04 and 0.69). For the protocols studied, the dose measurements were higher in the 4D(vol) CT method (40%), but it was shown that significant mAs reductions can be achieved by a factor of 4-5 while maintaining image quality and accuracy. 4D(vol) CT using a scanner with a large cone-angle is a promising alternative for improving the accuracy with which respiration-induced motion can be characterized, particularly for patients with irregular breathing motion. This approach also generates 4DCT image data with a reduced total scan time compared to a RCCT scan, without the need for image binning or external respiration signals within the 16 cm scan length. Scan dose can be made comparable to RCCT by optimization of the scan parameters. In addition, it provides the possibility of measuring breathing motion for more than one breathing cycle to assess stability and obtain a more accurate motion PDF, which is currently not feasible with the conventional RCCT approach.
Wibirama, Sunu; Hamamoto, Kazuhiko
2014-01-01
Visually induced motion sickness (VIMS) is an important safety issue in stereoscopic 3D technology. Accompanying subjective judgment of VIMS with objective measurement is useful to identify not only biomedical effects of dynamic 3D contents, but also provoking scenes that induce VIMS, duration of VIMS, and user behavior during VIMS. Heart rate variability and depth gaze behavior are appropriate physiological indicators for such objective observation. However, there is no information about relationship between subjective judgment of VIMS, heart rate variability, and depth gaze behavior. In this paper, we present a novel investigation of VIMS based on simulator sickness questionnaire (SSQ), electrocardiography (ECG), and 3D gaze tracking. Statistical analysis on SSQ data shows that nausea and disorientation symptoms increase as amount of dynamic motions increases (nausea: p<;0.005; disorientation: p<;0.05). To reduce VIMS, SSQ and ECG data suggest that user should perform voluntary gaze fixation at one point when experiencing vertical motion (up or down) and horizontal motion (turn left and right) in dynamic 3D contents. Observation of 3D gaze tracking data reveals that users who experienced VIMS tended to have unstable depth gaze than ones who did not experience VIMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garaud, Pascale; Brummell, Nicholas
2015-12-10
Fingering convection (otherwise known as thermohaline convection) is an instability that occurs in stellar radiative interiors in the presence of unstable compositional gradients. Numerical simulations have been used in order to estimate the efficiency of mixing induced by this instability. However, fully three-dimensional (3D) computations in the parameter regime appropriate for stellar astrophysics (i.e., low Prandtl number) are prohibitively expensive. This raises the question of whether two-dimensional (2D) simulations could be used instead to achieve the same goals. In this work, we address this issue by comparing the outcome of 2D and 3D simulations of fingering convection at low Prandtlmore » number. We find that 2D simulations are never appropriate. However, we also find that the required 3D computational domain does not have to be very wide: the third dimension only needs to contain a minimum of two wavelengths of the fastest-growing linearly unstable mode to capture the essentially 3D dynamics of small-scale fingering. Narrow domains, however, should still be used with caution since they could limit the subsequent development of any large-scale dynamics typically associated with fingering convection.« less
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jeffrey
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical andmore » physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less
The role of dimension and shape in colloidal liquids and glasses
NASA Astrophysics Data System (ADS)
Vivek, Skanda
In two-dimensions, the laws of physics give rise to intriguing phenomena such as long-range correlations that do not decay at infinity. However, reality can only be quasi-2D at best. This thesis is an effort to bridge the gap between 2D theory and reality, by doing experiments. Here we consider two different model systems - soap films as 2D fluids, and 2D colloidal glass formers. We look at diffusion of tracer particles in soap films and test the validity of 2D theory. We find that for thin films, both 2D surface viscosity and 3D viscosity are important. To a good approximation, soap films are thin films and can be considered 2D for flow. Next, we look at glassy dynamics in 2D and 3D colloidal glass formers. We demonstrate that the differences between 2D and 3D are long-wavelength fluctuations, precisely those that distinguish 2D and 3D phase transitions. Through a novel analysis method that removes the influence of these fluctuations, we show that 2D and 3D glass transitions are otherwise similar. Finally, we look at the effect of shape anisotropy of dimers in 2D glasses, and find that glass dynamics are highly dependent on shape, both in experiments and simulations. These colloidal and simulation results are a prediction of aspect ratio dependent diffusion in real glasses.
Dynamic basis for dG•dT misincorporation via tautomerization and ionization
NASA Astrophysics Data System (ADS)
Kimsey, Isaac J.; Szymanski, Eric S.; Zahurancik, Walter J.; Shakya, Anisha; Xue, Yi; Chu, Chia-Chieh; Sathyamoorthy, Bharathwaj; Suo, Zucai; Al-Hashimi, Hashim M.
2018-02-01
Tautomeric and anionic Watson-Crick-like mismatches have important roles in replication and translation errors through mechanisms that are not fully understood. Here, using NMR relaxation dispersion, we resolve a sequence-dependent kinetic network connecting G•T/U wobbles with three distinct Watson-Crick mismatches: two rapidly exchanging tautomeric species (Genol•T/UG•Tenol/Uenol population less than 0.4%) and one anionic species (G•T-/U- population around 0.001% at neutral pH). The sequence-dependent tautomerization or ionization step was inserted into a minimal kinetic mechanism for correct incorporation during replication after the initial binding of the nucleotide, leading to accurate predictions of the probability of dG•dT misincorporation across different polymerases and pH conditions and for a chemically modified nucleotide, and providing mechanisms for sequence-dependent misincorporation. Our results indicate that the energetic penalty for tautomerization and/or ionization accounts for an approximately 10-2 to 10-3-fold discrimination against misincorporation, which proceeds primarily via tautomeric dGenol•dT and dG•dTenol, with contributions from anionic dG•dT- dominant at pH 8.4 and above or for some mutagenic nucleotides.
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Xie, Zhenghui; Jia, Binghao
2016-09-01
Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon-nitrogen (CN) interactions (CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83 (BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production (GPP) and latent heat flux (LE) for the dry season, and improved the carbon (C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m-2 d-1, net ecosystem exchange by 1.96 g C m-2 d-1, LE by 5.0 W m-2, and soil moisture by 0.03 m3 m-3, at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses (including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.
Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering
Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus
2015-01-01
This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs. PMID:26146475
NASA Astrophysics Data System (ADS)
Leist, Steven Kyle
4D printing is an emerging additive manufacturing technology that combines 3D printing with smart materials. Current 3D printing technology can print objects with a multitude of materials; however, these objects are usually static, geometrically permanent, and not suitable for multi-functional use. The 4D printed objects can change their shape over time when exposed to different external stimuli such as heat, pressure, magnetic fields, or moisture. In this research, heat and light reactive smart materials are explored as a 4D printing materials. Synthetization of a material that actuates when exposed to stimulus can be a very difficult process, and merging that same material with the ability to be 3D printed can be further difficult. A common 3D printing thermoplastic, poly(lactic) acid (PLA), is used as a shape memory material that is 3D printed using a fused deposition machine (FDM) and combined with nylon fabric for the exploration of smart textiles. The research shows that post printed PLA possesses shape memory properties depending on the thickness of the 3D printed material and the activation temperature. PLA can be thermomechanically trained into temporary shapes and return to its original shape when exposed to high temperatures. PLA can be 3D printed onto nylon fabrics for the creation of the smart textiles. Additionally, a photoisomerable shape changing material is explored because light activation is wireless, controllable, focusable, abundant, causes rapid shape change of the smart material, and induces reversible shape change in the material. This study supports the fundamental research to generate knowledge needed for synthesis of a novel azobenzene shape changing polymer (SCP) and integrating this smart material into objects printed with a 4D printing process using syringe printing. Multiple versions of azobenzene SCP are synthesized that actuate when exposed to 365 nm and 455 nm light. Two SCPs, MeOABHx and DR1Hx, are selected for the 4D printing research because of their ability to photoisomerize at room temperature and 3D printability. The physical properties of these polymers are characterized, photomechanical bending tests are performed, and the photo-generated stress is measured using a dynamic mechanical analyzer (DMA). The SCPs are deposited onto a passive layer to create bilayer films in order to actuate. The photomechanical efficiency of bilayer films is evaluated depending on the thickness of the passive layer film, type of azobenzene SCP, wavelength of the light source, intensity of the light source, and distance between the light and films. 4D printing can be used to streamline the design and manufacturing process of actuating parts. Complex heavy parts can be removed from actuation systems such as onboard power storage, motors, sensors, and processors by embedding these capabilities into the material themselves. This reduces the amount of required parts, the amount of materials, and reduces the cost of producing these parts. 4D printed products possess the properties of programmability, reaction and adaption to their environment, and automation. Therefore, they can find wider applications including foldable unmanned aerial vehicles, artificial muscles, grippers, biomedical drug delivery systems, stents, and minimally invasive surgeries.
Peyraga, Guillaume; Caron, Delphine; Lizee, Thibaut; Metayer, Yann; Septans, Anne-Lise; Pointreau, Yoann; Denis, Fabrice; Ganem, Gerard; Lafond, Cedrik; Roche, Sophie; Dupuis, Olivier
2018-06-01
The palliative treatment for cervico-thoracic spinal metastases is based on a three-dimensional conformal radiation therapy (3D-CRT). Digestive toxicities are common and cause a clinical impact frequently underestimated in patients. We performed a retrospective study of digestive side effects occurring after palliative 3D-CRT for cervico-thoracic spinal metastases. All patients receiving palliative 3D-CRT at Jean Bernard Center from January 2013 to December 2014 for spinal metastases between the 5th cervical vertebra (C5) and the 12th thoracic vertebra (T12) were eligible. Three-dimensional conformal RT was delivered by a linear accelerator (CLINAC, Varian). Premedication to prevent digestive toxicities was not used. Adverse events ("esophagitis" and "nausea and/or vomiting") were evaluated according to the NCI-CTCae (version 4). From January 2013 to December 2014, 128 patients met the study criteria. The median age was 68.6 years [31.8; 88.6]. Most patients (84.4%) received 30 Gy in 10 fractions. The median overall time of treatment was 13 days [3-33]. Forty patients (31.3%) suffered from grade ≥ 2 of "esophagitis" (35 grade 2 (27.4%) and 5 grade 3 (3.9%)). Eight patients (6.3%) suffered from grade ≥ 2 of "nausea and/or vomiting" (6 grade 2 (4.7%), 1 grade 3 (0.8%), and 1 grade 4 (0.8%)). The high incidence of moderate to severe digestive toxicities after palliative 3D-CRT for cervico-thoracic spinal metastases led to consider static or dynamic intensity-modulated radiation therapy (IMRT) to reduce the dose to organ at risk (the esophagus and stomach). Dosimetric studies and implementation in the clinic should be the next steps.
Rodríguez-Serrano, M; Pazmiño, D M; Sparkes, I; Rochetti, A; Hawes, C; Romero-Puertas, M C; Sandalio, L M
2014-09-01
2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23 mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·(-), whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Rodríguez-Serrano, M.; Pazmiño, D. M.; Sparkes, I.; Rochetti, A.; Hawes, C.; Romero-Puertas, M. C.; Sandalio, L. M.
2014-01-01
2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·–, whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. PMID:24913628
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, R; Wong, M; Lee, V
2015-06-15
Purpose: To cross-validate the MGDR of COMPASS (IBA dosimetry, GmbH, Germany) and OCTAVIUS 4D system (PTW, Freiburg, Germany). Methods: Volumetric-modulated arc plans (5 head-and-neck and 3 prostate) collapsed to 40° gantry on the OCTAVIUS 4D phantom in QA mode on Monaco v5.0 (Elekta, CMS, Maryland Heights, MO) were delivered on a Elekta Agility linac. This study was divided into two parts: (1) error-free measurements by gantry-mounted EvolutionXX 2D array were reconstructed in COMPASS (IBA dosimetry, GmbH, Germany), and by OCTAVIUS 1500 array in Versoft v6.1 (PTW, Freiburg, Germany) to obtain the 3D doses (COM4D and OCTA4D). COM4D and OCTA4D weremore » compared to the raw measurement (OCTA3D) at the same detector plane for which OCTAVIUS 1500 was perpendicular to 0° gantry axis while the plans were delivered at gantry 40°; (2) beam steering errors of energy (Hump=-2%) and symmetry (2T=+2%) were introduced during the delivery of 5 plans to compare the MGDR doses COM4D-Hump (COM4D-2T), OCTA4D-Hump (OCTA4D-2T), with raw doses OCTA3D-Hump (OCTA3D-2T) and with OCTA3D to assess the error reconstruction and detection ability of MGDR tools. All comparisons used Υ-criteria of 2%(local dose)/2mm and 3%/3mm. Results: Averaged Υ passing rates were 85% and 96% for COM4D,and 94% and 99% for OCTA4D at 2%/2mm and 3%/3mm criteria respectively. For error reconstruction, COM4D-Hump (COM4D-2T) showed 81% (93%) at 2%/2mm and 94% (98%) at 3%/3mm, while OCTA4D-Hump (OCTA4D-2T) showed 96% (96%) at 2%/2mm and 99% (99%) at 3%/3mm. For error detection, OCTA3D doses were compared to COM4D-Hump (COM4D-2T) showing Υ passing rates of 93% (93%) at 2%/2mm and 98% (98%), and to OCTA4D-Hump (OCTA4D -2T) showing 94% (99%) at 2%/2mm and 81% (96%) at 3%/3mm, respectively. Conclusion: OCTAVIUS MGDR showed better agreement to raw measurements in both error- and error-free comparisons. COMPASS MGDR deviated from the raw measurements possibly owing to beam modeling uncertainty.« less
PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
Flaibani, Marina; Luni, Camilla; Sbalchiero, Elisa; Elvassore, Nicola
2009-01-01
It has been widely demonstrated that perfusion bioreactors improve in vitro three-dimensional (3D) cultures in terms of high cell density and uniformity of cell distribution; however, the studies reported in literature were primarily based on qualitative analysis (histology, immunofluorescent staining) or on quantitative data averaged on the whole population (DNA assay, PCR). Studies on the behavior, in terms of cell cycle, of a cell population growing in 3D scaffolds in static or dynamic conditions are still absent. In this work, a perfusion bioreactor suitable to culture C(2)C(12) muscle precursor cells within 3D porous collagen scaffolds was designed and developed and a method based on flowcytometric analyses for analyzing the cell cycle in the cell population was established. Cells were extracted by enzymatic digestion of the collagen scaffolds after 4, 7, and 10 days of culture, and flow cytometric live/dead and cell cycle analyses were performed with Propidium Iodide. A live/dead assay was used for validating the method for cell extraction and staining. Moreover, to investigate spatial heterogeneity of the cell population under perfusion conditions, two stacked scaffolds in the 3D domain, of which only the upstream layer was seeded, were analyzed separately. All results were compared with those obtained from static 3D cultures. The live/dead assay revealed the presence of less than 20% of dead cells, which did not affect the cell cycle analysis. Cell cycle analyses highlighted the increment of cell fractions in proliferating phases (S/G(2)/M) owing to medium perfusion in long-term cultures. After 7-10 days, the percentage of proliferating cells was 8-12% for dynamic cultures and 3-5% for the static controls. A higher fraction of proliferating cells was detected in the downstream scaffold. From a general perspective, this method provided data with a small standard deviation and detected the differences between static and dynamic cultures and between upper and lower scaffolds. Our methodology can be extended to other cell types to investigate the influence of 3D culture conditions on the expression of other relevant cell markers.
Conservative boundary conditions for 3D gas dynamics problems
NASA Technical Reports Server (NTRS)
Gerasimov, B. P.; Karagichev, A. B.; Semushin, S. A.
1986-01-01
A method is described for 3D-gas dynamics computer simulation in regions of complicated shape by means of nonadjusted rectangular grids providing unified treatment of various problems. Some test problem computation results are given.
PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo, DN10000, and GMR3D are trademarks of Hewlett-Packard, Incorporated. System V is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo, DN10000, and GMR3D are trademarks of Hewlett-Packard, Incorporated. System V is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.
Shen, Xin; Javidi, Bahram
2018-03-01
We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.
She, Hoi Lam; Roest, Arno A W; Calkoen, Emmeline E; van den Boogaard, Pieter J; van der Geest, Rob J; Hazekamp, Mark G; de Roos, Albert; Westenberg, Jos J M
2017-01-01
To evaluate the inflow pattern and flow quantification in patients with functional univentricular heart after Fontan's operation using 4D flow magnetic resonance imaging (MRI) with streamline visualization when compared with the conventional 2D flow approach. Seven patients with functional univentricular heart after Fontan's operation and twenty-three healthy controls underwent 4D flow MRI. In two orthogonal two-chamber planes, streamline visualization was applied, and inflow angles with peak inflow velocity (PIV) were measured. Transatrioventricular flow quantification was assessed using conventional 2D multiplanar reformation (MPR) and 4D MPR tracking the annulus and perpendicular to the streamline inflow at PIV, and they were validated with net forward aortic flow. Inflow angles at PIV in the patient group demonstrated wide variation of angles and directions when compared with the control group (P < .01). The use of 4D flow MRI with streamlines visualization in quantification of the transatrioventricular flow had smaller limits of agreement (2.2 ± 4.1 mL; 95% limit of agreement -5.9-10.3 mL) when compared with the static plane assessment from 2DFlow MRI (-2.2 ± 18.5 mL; 95% limit of agreement agreement -38.5-34.1 mL). Stronger correlation was present in the 4D flow between the aortic and trans-atrioventricular flow (R 2 correlation in 4D flow: 0.893; in 2D flow: 0.786). Streamline visualization in 4D flow MRI confirmed variable atrioventricular inflow directions in patients with functional univentricular heart with previous Fontan's procedure. 4D flow aided generation of measurement planes according to the blood flood dynamics and has proven to be more accurate than the fixed plane 2D flow measurements when calculating flow quantifications. © 2016 Wiley Periodicals, Inc.
Wan, Li; Song, Hongyuan; Chen, Xiao; Zhang, Yu; Yue, Qin; Pan, Panpan; Su, Jiacan; Elzatahry, Ahmed A; Deng, Yonghui
2018-06-01
1D core-shell magnetic materials with mesopores in shell are highly desired for biocatalysis, magnetic bioseparation, and bioenrichment and biosensing because of their unique microstructure and morphology. In this study, 1D magnetic mesoporous silica nanochains (Fe 3 O 4 @nSiO 2 @mSiO 2 nanochain, Magn-MSNCs named as FDUcs-17C) are facilely synthesized via a novel magnetic-field-guided interface coassembly approach in two steps. Fe 3 O 4 particles are coated with nonporous silica in a magnetic field to form 1D Fe 3 O 4 @nSiO 2 nanochains. A further interface coassembly of cetyltrimethylammonium bromide and silica source in water/n-hexane biliquid system leads to 1D Magn-MSNCs with core-shell-shell structure, uniform diameter (≈310 nm), large and perpendicular mesopores (7.3 nm), high surface area (317 m 2 g -1 ), and high magnetization (34.9 emu g -1 ). Under a rotating magnetic field, the nanochains with loaded zoledronate (a medication for treating bone diseases) in the mesopores, show an interesting suppression effect of osteoclasts differentiation, due to their 1D nanostructure that provides a shearing force in dynamic magnetic field to induce sufficient and effective reactions in cells. Moreover, by loading Au nanoparticles in the mesopores, the 1D Fe 3 O 4 @nSiO 2 @mSiO 2 -Au nanochains can service as a catalytically active magnetic nanostirrer for hydrogenation of 4-nitrophenol with high catalytic performance and good magnetic recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Weng, Shizhuang; Dong, Ronglu; Zhu, Zede; Zhang, Dongyan; Zhao, Jinling; Huang, Linsheng; Liang, Dong
2018-01-01
Conventional Surface-Enhanced Raman Spectroscopy (SERS) for fast detection of drugs in urine on the portable Raman spectrometer remains challenges because of low sensitivity and unreliable Raman signal, and spectra process with manual intervention. Here, we develop a novel detection method of drugs in urine using chemometric methods and dynamic SERS (D-SERS) with mPEG-SH coated gold nanorods (GNRs). D-SERS combined with the uniform GNRs can obtain giant enhancement, and the signal is also of high reproducibility. On the basis of the above advantages, we obtained the spectra of urine, urine with methamphetamine (MAMP), urine with 3, 4-Methylenedioxy Methamphetamine (MDMA) using D-SERS. Simultaneously, some chemometric methods were introduced for the intelligent and automatic analysis of spectra. Firstly, the spectra at the critical state were selected through using K-means. Then, the spectra were proposed by random forest (RF) with feature selection and principal component analysis (PCA) to develop the recognition model. And the identification accuracy of model were 100%, 98.7% and 96.7%, respectively. To validate the effect in practical issue further, the drug abusers'urine samples with 0.4, 3, 30 ppm MAMP were detected using D-SERS and identified by the classification model. The high recognition accuracy of > 92.0% can meet the demand of practical application. Additionally, the parameter optimization of RF classification model was simple. Compared with the general laboratory method, the detection process of urine's spectra using D-SERS only need 2 mins and 2 μL samples volume, and the identification of spectra based on chemometric methods can be finish in seconds. It is verified that the proposed approach can provide the accurate, convenient and rapid detection of drugs in urine.
Temperature dependence of Ti 1s near-edge spectra in Ti-based perovskites: theory and experiment
NASA Astrophysics Data System (ADS)
Shirley, Eric; Cockayne, Eric; Ravel, Bruce; Woicik, Joseph
Ti 1s near-edge spectra (around 4970 eV) in SrTiO3 and PbTiO3 reveal electric-dipole and quadrupole transitions to Ti 3d, 4p and mixed 3d-4p states. Crystal field-split pre-edge features attributed to 1s ->3d transitions are small compared to the main edge jump at the onset of the Ti 4s/4p continuum. Pre-edge and subsequent near-edge features are predicted to be weaker than what is observed, unless one accounts for ferroelectric polarization in PbTiO3 and thermal motion in both compounds. Using density-functional theory molecular dynamics simulations at various temperatures (including sampling two phases of PbTiO3), we capture the statistically averaged root-mean-square deviations of Ti4+ ions from the centers of their oxygen cages. By sampling appropriate snapshots of atomic configurations and averaging Ti 1s absorption spectra computed within a Bethe-Salpeter Equation framework, we obtain absorption spectra that agree well with experiment, including details related to ferroelectric polarization, phase transitions, and fluctuations of atomic coordinates.
Dynamic Stall of Finite Span Blades and its Control
NASA Astrophysics Data System (ADS)
Taylor, Keith; Leong, Chia; Amitay, Michael
2013-11-01
An experimental investigational study into a dynamically pitching s809 airfoil at a Reynolds number of 220,000 was conducted. Particle Image Velocimetry was employed to visualize and quantify the flow field around the airfoil. This investigation compares a 2-D configuration with 3-D configuration (i.e., a finite span blade). The difference in the flow field between these two configurations is explored, as the vibrations present in the 3-D configuration (due to the dynamic stall) may contribute to a different apparent flow field than classical results would suggest. In addition, a comparison between lift and drag coefficients, measured on the 2-D and 3-D configurations, is explored, demonstrating how time varying lift and drag forces oscillate at characteristic frequencies associated with the primary vibrational modes of the model. In addition, flow control is applied through the actuation of an array of synthetic jets located near the leading edge of the model, in order to effect changes in the flow field around the model, demonstrating how dynamic stall can be delayed or eliminated during dynamic conditions.
X-Ray diffraction and resonance shear measurement of nano-confined ionic liquids.
Tomita, Kazuhito; Mizukami, Masashi; Nakano, Shinya; Ohta, Noboru; Yagi, Naoto; Kurihara, Kazue
2018-05-23
X-ray diffraction measurement at the SPring-8 synchrotron was employed to investigate the structures of two types of imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTF2]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), confined between silica surfaces by varying the surface separation distances of ca. 500 nm (bulk liquid), ca. 10 nm, and ca. 2 nm (hard wall thickness). The obtained diffraction profiles and intensities were discussed by considering the structures and properties of the nano-confined ILs between the silica surfaces investigated by resonance shear measurement (RSM) and molecular dynamics simulation (MD) in our previous reports. [C4mim][NTf2] showed two diffraction peaks at q = 8.8 nm-1 (spacing d = 0.71 nm) and at q = 14.0 nm-1 (spacing d = 0.45 nm) at the greatest distance (D = ca. 500 nm), which were assigned to the interval between the same ions (anion-anion or cation-cation) within the polar network of [C4mim][NTf2] and the interval between the neighboring anion-cation, respectively. The positions of these two peaks remained the same at D = ca. 10 nm and at the hard wall (D = ca. 2 nm) and their intensity factor increased, indicating that both the cation and anion existed in the same layer. This result was consistent with the checkerboard structure of [C4mim][NTf2] on the silica surface computer simulated in our previous studies. On the other hand, [C4mim][BF4] showed a peak at q = 15.4 nm-1 (spacing d = 0.41 nm) corresponding to the anion-cation interval at the greatest distance (D = ca. 500 nm). This peak became broader and weaker at D = ca. 12 nm and at D = ca. 2 nm.
Berg, Ronan M G; Plovsing, Ronni R
2016-01-01
In sepsis, higher PaCO2 levels are associated with impaired dynamic cerebral autoregulation (dCA), which may expose the brain to hypo- and hyperperfusion during acute fluctuations in blood pressure. We hypothesised that short-term mechanical hyperventilation would dCA in critically ill patients with sepsis. Seven mechanically ventilated septic patients were included. We assessed dCA before and after 30 min of mechanical hyperventilation. Transfer function analysis of spontaneous oscillations in transcranial Doppler-based middle cerebral artery blood flow velocity (MCAv) and invasive mean arterial blood pressure was used to assess dCA. Mechanical enhance hyperventilation reduced the median PaCO2 from 5.3 (IQR, 5.0-6.5) to 4.7 (IQR, 4.2-5.1) kPa (p < 0.05). This was associated with a reduction in the median MCAv from 57 (IQR, 33-68) to 32 (IQR, 21-40) cm sec(-1) (p < 0.05). Apart from a small increase in gain in the low frequency range (2.32 [IQR 1.80-2.41] vs. 2.59 (2.40-4.64) cm mmHg(-1) sec(-1); p < 0.05), this was not associated with any enhancement in dCA. In conclusion, cerebral CO2 vasoreactivity was found to be preserved in septic patients; nevertheless, and in contrast to our working hypothesis, short-term mechanical hyperventilation did not enhance dCA.
1988-12-01
Figures ................................... v List of Tables ................................... vi I. Introduction ..................... 1 Background... 1 Problem ................................ 3 Scope .................................. 4 Approach...Collected Data on Variables ...... 136 Appendix D: Collected Data on Operations...............208 iv List of Figures Figure Page 2- 1 Keyword Search
Imaging of the 3D dynamics of flagellar beating in human sperm.
Silva-Villalobos, F; Pimentel, J A; Darszon, A; Corkidi, G
2014-01-01
The study of the mechanical and environmental factors that regulate a fundamental event such as fertilization have been subject of multiple studies. Nevertheless, the microscopical size of the spermatozoa and the high beating frequency of their flagella (up to 20 Hz) impose a series of technological challenges for the study of the mechanical factors implicated. Traditionally, due to the inherent characteristics of the rapid sperm movement, and to the technological limitations of microscopes (optical or confocal) to follow in three dimensions (3D) their movement, the analysis of their dynamics has been studied in two dimensions, when the head is confined to a surface. Flagella propel sperm and while their head can be confined to a surface, flagellar movement is not restricted to 2D, always displaying 3D components. In this work, we present a highly novel and useful tool to analyze sperm flagella dynamics in 3D. The basis of the method is a 100 Hz oscillating objective mounted on a bright field optical microscope covering a 16 microns depth space at a rate of ~ 5000 images per second. The best flagellum focused subregions were associated to their respective Z real 3D position. Unprecedented graphical results making evident the 3D movement of the flagella are shown in this work and supplemental material illustrating a 3D animation using the obtained experimental results is also included.
Overview of fast algorithm in 3D dynamic holographic display
NASA Astrophysics Data System (ADS)
Liu, Juan; Jia, Jia; Pan, Yijie; Wang, Yongtian
2013-08-01
3D dynamic holographic display is one of the most attractive techniques for achieving real 3D vision with full depth cue without any extra devices. However, huge 3D information and data should be preceded and be computed in real time for generating the hologram in 3D dynamic holographic display, and it is a challenge even for the most advanced computer. Many fast algorithms are proposed for speeding the calculation and reducing the memory usage, such as:look-up table (LUT), compressed look-up table (C-LUT), split look-up table (S-LUT), and novel look-up table (N-LUT) based on the point-based method, and full analytical polygon-based methods, one-step polygon-based method based on the polygon-based method. In this presentation, we overview various fast algorithms based on the point-based method and the polygon-based method, and focus on the fast algorithm with low memory usage, the C-LUT, and one-step polygon-based method by the 2D Fourier analysis of the 3D affine transformation. The numerical simulations and the optical experiments are presented, and several other algorithms are compared. The results show that the C-LUT algorithm and the one-step polygon-based method are efficient methods for saving calculation time. It is believed that those methods could be used in the real-time 3D holographic display in future.
Carter, John L; Patel, Ankura; Hocum, Gabriel; Benninger, Brion
2017-05-01
In teaching anatomy, clinical imaging has been utilized to supplement the traditional dissection laboratory promoting education through visualization of spatial relationships of anatomical structures. Viewing the thyroid gland using 3D/4D ultrasound can be valuable to physicians as well as students learning anatomy. The objective of this study was to investigate the perceptions of first-year medical students regarding the integration of 3D/4D ultrasound visualization of spatial anatomy during anatomical education. 108 first-year medical students were introduced to 3D/4D ultrasound imaging of the thyroid gland through a detailed 20-min tutorial taught in small group format. Students then practiced 3D/4D ultrasound imaging on volunteers and donor cadavers before assessment through acquisition and identification of thyroid gland on at least three instructor-verified images. A post-training survey was administered assessing student impression. All students visualized the thyroid gland using 3D/4D ultrasound. Students revealed 88.0% strongly agreed or agreed 3D/4D ultrasound is useful revealing the thyroid gland and surrounding structures and 87.0% rated the experience "Very Easy" or "Easy", demonstrating benefits and ease of use including 3D/4D ultrasound in anatomy courses. When asked, students felt 3D/4D ultrasound is useful in teaching the structure and surrounding anatomy of the thyroid gland, they overwhelmingly responded "Strongly Agree" or "Agree" (90.2%). This study revealed that 3D/4D ultrasound was successfully used and preferred over 2D ultrasound by medical students during anatomy dissection courses to accurately identify the thyroid gland. In addition, 3D/4D ultrasound may nurture and further reinforce stereostructural spatial relationships of the thyroid gland taught during anatomy dissection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, W; Xue, M; Lane, B
Purpose: To develop an individually optimized contrast-enhanced (CE) 4D-CT for radiotherapy simulation in pancreatic ductal adenocarcinomas (PDA). Methods: Ten PDA patients were enrolled. Each underwent 3 CT scans: a 4D-CT immediately following a CE 3D-CT and an individually optimized CE 4D-CT using test injection. Three physicians contoured the tumor and pancreatic tissues. We compared image quality scores, tumor volume, motion, tumor-to-pancreas contrast, and contrast-to-noise ratio (CNR) in the 3 CTs. We also evaluated interobserver variations in contouring the tumor using simultaneous truth and performance level estimation (STAPLE). Results: Average image quality scores for CE 3DCT and CE 4D-CT were comparablemore » (4.0 and 3.8, respectively; P=0.47), and both were significantly better than that for 4D-CT (2.6, P<0.001). Tumor-to-pancreas contrast results were comparable in CE 3D-CT and CE 4D-CT (15.5 and 16.7 HU, respectively; P=0.71), and the latter was significantly higher than in 4D-CT (9.2 HU, P=0.03). Image noise in CE 3D-CT (12.5 HU) was significantly lower than in CE 4D-CT (22.1 HU, P<0.001) and 4D-CT (19.4 HU, P=0.005). CNRs were comparable in CE 3D-CT and CE 4DCT (1.4 and 0.8, respectively; P=0.23), and the former was significantly better than in 4D-CT (0.6, P = 0.04). Mean tumor volumes were smaller in CE 3D-CT (29.8 cm{sup 3}) and CE 4D-CT (22.8 cm{sup 3}) than in 4D-CT (42.0 cm{sup 3}), although these differences were not statistically significant. Mean tumor motion was comparable in 4D-CT and CE 4D-CT (7.2 and 6.2 mm, P=0.23). Interobserver variations were comparable in CE 3D-CT and CE 4D-CT (Jaccard index 66.0% and 61.9%, respectively) and were worse for 4D-CT (55.6%) than CE 3D-CT. Conclusion: CE 4D-CT demonstrated characteristics comparable to CE 3D-CT, with high potential for simultaneously delineating the tumor and quantifying tumor motion with a single scan. Supported in part by Philips Healthcare.« less
Chan, Mark; Chiang, Chi Leung; Lee, Venus; Cheung, Steven; Leung, Ronnie; Wong, Matthew; Lee, Frankle; Blanck, Oliver
2017-01-01
Aim of this study was to comparatively evaluate the accuracy of respiration-correlated (4D) and uncorrelated (3D) cone beam computed tomography (CBCT) in localizing lipiodolized hepatocellular carcinomas during stereotactic body radiotherapy (SBRT). 4D-CBCT scans of eighteen HCCs were acquired during free-breathing SBRT following trans-arterial chemo-embolization (TACE) with lipiodol. Approximately 1320 x-ray projections per 4D-CBCT were collected and phase-sorted into ten bins. A 4D registration workflow was followed to register the reconstructed time-weighted average CBCT with the planning mid-ventilation (MidV) CT by an initial bone registration of the vertebrae and then tissue registration of the lipiodol. For comparison, projections of each 4D-CBCT were combined to synthesize 3D-CBCT without phase-sorting. Using the lipiodolized tumor, uncertainties of the treatment setup estimated from the absolute and relative lipiodol position to bone were analyzed separately for 4D- and 3D-CBCT. Qualitatively, 3D-CBCT showed better lipiodol contrast than 4D-CBCT primarily because of a tenfold increase of projections used for reconstruction. Motion artifact was observed to subside in 4D-CBCT compared to 3D-CBCT. Group mean, systematic and random errors estimated from 4D- and 3D-CBCT agreed to within 1 mm in the cranio-caudal (CC) and 0.5 mm in the anterior-posterior (AP) and left-right (LR) directions. Systematic and random errors are largest in the CC direction, amounting to 4.7 mm and 3.7 mm from 3D-CBCT and 5.6 mm and 3.8 mm from 4D-CBCT, respectively. Safety margin calculated from 3D-CBCT and 4D-CBCT differed by 2.1, 0.1 and 0.0 mm in the CC, AP, and LR directions. 3D-CBCT is an adequate alternative to 4D-CBCT when lipoid is used for localizing HCC during free-breathing SBRT. Similar margins are anticipated with 3D- and 4D-CBCT.
NASA Astrophysics Data System (ADS)
Gupta, G. P.; Msezane, A. Z.
2005-01-01
We have performed large scale CIV3 calculations of excitation energies from ground states for 109 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the (1s 22s 22p 6)3s 23p( 2P 0), 3s3p 2( 2S, 2P, 2D, 4P), 3s 23d( 2D), 3p 3( 4S 0, 2P 0, 2D 0), 3s3p( 3P 0)3d( 2P 0, 2D 0, 2F 0, 4P 0, 4D 0, 4F 0), 3s3p( 1P 0)3d( 2P 0, 2D 0, 2F 0), 3p 2( 1S)3d( 2D), 3p 2( 1D)3d( 2S, 2P, 2D), 3p 2( 3P)3d( 2P, 2D, 4P), 3s3d 2( 2S, 2P, 2D, 4P), 3p3d 2( 1S)( 2P 0), 3p3d 2( 1D)( 2P 0, 2D 0, 2F 0), 3p3d 2( 1G)( 2F 0), 3p3d 2( 3P)( 2P 0, 2D 0, 4S 0, 4P 0, 4D 0), 3p3d 2( 3F)( 2D 0, 2F 0, 4D 0, 4F 0), 3s 24s( 2S), 3s 24p( 2P 0), 3s 24d( 2D), 3s 24f( 2F 0), 3s3p( 3P 0)4s( 2P 0, 4P 0), and 3s3p( 1P 0)4s( 2P 0) states of Fe XIV and Ni XVI. These states are represented by very extensive configuration-interaction (CI) wavefunctions obtained using the CIV3 computer code of Hibbert. The relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian which consists of the nonrelativistic term plus the one-body mass correction, Darwin term, and spin-orbit, spin-other-orbit, and spin-spin operators. The errors which often occur with sophisticated ab initio atomic structure calculations are reduced. Our calculated excitation energies, including their ordering, are in excellent agreement with the available experimental results for both of the ions studied. From our transition probabilities, we have also calculated radiative lifetimes of the lowest 37 fine-structure levels in Fe XIV and Ni XVI and compared them with available theoretical and experimental results. The mixing among several fine-structure levels is found to be so strong that the correct identification of these levels becomes very difficult. We predict new data for several levels where no other theoretical and/or experimental results are available. We hope that our extensive calculations will be useful to experimentalists in identifying the fine-structure levels in their future work.
[3-D echocardiography: new developments and future prospects].
Müller, Silvana; Bartel, Thomas; Pachinger, Otmar; Erbel, Raimund
2002-05-01
Due to limitations in transthoracic and occasionally transesophageal 2-D echocardiography with respect to volumetric analysis and morphologic and functional assessment in patients with congenital malformations and valvular heart disease, additional diagnostic tools have been established. In parallel with the rapid evolution in computer technology, 3-D echocardiography has grown into a well-developed technique, such as volume-rendered 3-D reconstruction, capable of displaying dynamic morphology depicting depth of the structures, their attachment, and spatial relation to the surrounding tissue. Nevertheless, the complexity of data acquisition and data processing required for adequate dynamic 3-D echocardiographic imaging and volumetric analysis does not allow to use this approach routinely. The commonly used dynamic 3-D echocardiography means off-line computer-assisted image reconstruction from a series of cross-sectional echocardiographic images using currently available transesophageal and transthoracic transducers. Alternatively, real-time 3-D echocardiography based on novel matrix, phased-array transducer technology has been introduced. Although this technique can be easily combined with any routine examination, its clinical use is limited because of a lower image quality in comparison with dynamic 3-D echocardiography. Up to now, there is no transesophageal approach available using real-time 3-D echocardiography. Recently, dynamic 3-D echocardiographic technique has matured noticeably. Beside the well-known sequential scanning, which is characterized by a fixed probe and patient in space and predetermined motion of the transducer, the freehand scanning using an electromagnetic location system has found its way to clinical environment. The main advantage of this technique is that the transducer can be freely moved by the examiner and, thus, the data set acquired within a routine examination. Also 3-D rendering and display have been developed further. In this respect, especially the "real-time rendering mode" allowing the reconstructed 3-D image to be animated and moved in space and to look at it from different perspectives has gained increasing acceptance. In valvular heart disease, reconstructive surgical treatment is aspired. 3-D echocardiographic imaging is the only technique providing "surgical views" prior to opening the heart. It is capable of distinguishing particular destructive substructures of the valves and the valvular apparatus. Especially in mitral valvular reconstruction, it is of clinical importance to achieve optimal surgical results. With respect to volumetric and mass analysis, 3-D echocardiography is more accurate and reproducible in comparison with conventional 2-D analysis. It provides data independent of geometric assumptions, what may considerably influence the results in the presence of wall motion abnormalities, especially in aneurysmatic ventricles. Volumetric analysis of the aneurysmal portion may also be helpful prior to surgical resection. 3-D echocardiography can also be recommended as a valuable additional approach to atrial septal defect (ASD), corrected transposition of the great arteries, cor triatriatum, and, within limits, to ventricular septal defect (VSD) as well. Especially with respect to ASD and VSD, the potential significance of 3-D echocardiography prior to device closure is emphasized. At present, its additional information in decision-making and the increasing number of clinical cases that can be addressed and answered already justify the clinical use of this technique.
PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P. G.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
Kardar, Laleh; Li, Yupeng; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y.; Liao, Li; Zhu, Ronald X.; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D.; Lim, Gino; Zhang, Xiaodong
2015-01-01
Purpose The primary aim of this study was to evaluate the impact of interplay effects for intensity-modulated proton therapy (IMPT) plans for lung cancer in the clinical setting. The secondary aim was to explore the technique of iso-layered re-scanning for mitigating these interplay effects. Methods and Materials Single-fraction 4D dynamic dose without considering re-scanning (1FX dynamic dose) was used as a metric to determine the magnitude of dosimetric degradation caused by 4D interplay effects. The 1FX dynamic dose was calculated by simulating the machine delivery processes of proton spot scanning on moving patient described by 4D computed tomography (4DCT) during the IMPT delivery. The dose contributed from an individual spot was fully calculated on the respiratory phase corresponding to the life span of that spot, and the final dose was accumulated to a reference CT phase by using deformable image registration. The 1FX dynamic dose was compared with the 4D composite dose. Seven patients with various tumor volumes and motions were selected. Results The CTV prescription coverage for the 7 patients were 95.04%, 95.38%, 95.39%, 95.24%, 95.65%, 95.90%, and 95.53%, calculated with use of the 4D composite dose, and were 89.30%, 94.70%, 85.47%, 94.09%, 79.69%, 91.20%, and 94.19% with use of the 1FX dynamic dose. For the 7 patients, the CTV coverage, calculated by using single-fraction dynamic dose, were 95.52%, 95.32%, 96.36%, 95.28%, 94.32%, 95.53%, and 95.78%, using maximum MU limit value of 0.005. In other words, by increasing the number of delivered spots in each fraction, the degradation of CTV coverage improved up to 14.6%. Conclusions Single-fraction 4D dynamic dose without re-scanning was validated as a surrogate to evaluate the interplay effects for IMPT for lung cancer in the clinical setting. The interplay effects can be potentially mitigated by increasing the number of iso-layered re-scanning in each fraction delivery. PMID:25407877
Kardar, Laleh; Li, Yupeng; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y; Liao, Li; Zhu, Ronald X; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D; Lim, Gino; Zhang, Xiaodong
2014-01-01
The primary aim of this study was to evaluate the impact of the interplay effects of intensity modulated proton therapy (IMPT) plans for lung cancer in the clinical setting. The secondary aim was to explore the technique of isolayered rescanning to mitigate these interplay effects. A single-fraction 4-dimensional (4D) dynamic dose without considering rescanning (1FX dynamic dose) was used as a metric to determine the magnitude of dosimetric degradation caused by 4D interplay effects. The 1FX dynamic dose was calculated by simulating the machine delivery processes of proton spot scanning on a moving patient, described by 4D computed tomography during IMPT delivery. The dose contributed from an individual spot was fully calculated on the respiratory phase that corresponded to the life span of that spot, and the final dose was accumulated to a reference computed tomography phase by use of deformable image registration. The 1FX dynamic dose was compared with the 4D composite dose. Seven patients with various tumor volumes and motions were selected for study. The clinical target volume (CTV) prescription coverage for the 7 patients was 95.04%, 95.38%, 95.39%, 95.24%, 95.65%, 95.90%, and 95.53% when calculated with the 4D composite dose and 89.30%, 94.70%, 85.47%, 94.09%, 79.69%, 91.20%, and 94.19% when calculated with the 1FX dynamic dose. For these 7 patients, the CTV coverage calculated by use of a single-fraction dynamic dose was 95.52%, 95.32%, 96.36%, 95.28%, 94.32%, 95.53%, and 95.78%, with a maximum monitor unit limit value of 0.005. In other words, by increasing the number of delivered spots in each fraction, the degradation of CTV coverage improved up to 14.6%. A single-fraction 4D dynamic dose without rescanning was validated as a surrogate to evaluate the interplay effects of IMPT for lung cancer in the clinical setting. The interplay effects potentially can be mitigated by increasing the amount of isolayered rescanning in each fraction delivery.
Short-Time Dynamics of the Random n-Vector Model
NASA Astrophysics Data System (ADS)
Chen, Yuan; Li, Zhi-Bing; Fang, Hai; He, Shun-Shan; Situ, Shu-Ping
2001-11-01
Short-time critical behavior of the random n-vector model is studied by the theoretic renormalization-group approach. Asymptotic scaling laws are studied in a frame of the expansion in ɛ=4-d for n≠1 and {√ɛ} for n=1 respectively. In d<4, the initial slip exponents θ‧ for the order parameter and θ for the response function are calculated up to the second order in ɛ=4-d for n≠1 and {√ɛ} for n=1 at the random fixed point respectively. Our results show that the random impurities exert a strong influence on the short-time dynamics for d<4 and n
Synchrotron x-ray imaging of pulmonary alveoli in respiration in live intact mice
NASA Astrophysics Data System (ADS)
Chang, Soeun; Kwon, Namseop; Kim, Jinkyung; Kohmura, Yoshiki; Ishikawa, Tetsuya; Rhee, Chin Kook; Je, Jung Ho; Tsuda, Akira
2015-03-01
Despite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement. Previous studies have been therefore limited to alveoli at lung apices or subpleural alveoli under open thorax conditions. Here we report direct and real-time visualization of alveoli of live intact mice during respiration using tracking X-ray microscopy. Our studies, for the first time, determine the alveolar size of normal mice in respiration without positive end expiratory pressure as 58 +/- 14 (mean +/- s.d.) μm on average, accurately measured in the lung bases as well as the apices. Individual alveoli of normal lungs clearly show heterogeneous inflation from zero to ~25% (6.7 +/- 4.7% (mean +/- s.d.)) in size. The degree of inflation is higher in the lung bases (8.7 +/- 4.3% (mean +/- s.d.)) than in the apices (5.7 +/- 3.2% (mean +/- s.d.)). The fraction of the total tidal volume allocated for alveolar inflation is 34 +/- 3.8% (mean +/- s.e.m). This study contributes to the better understanding of alveolar dynamics and helps to develop potential treatment options for pulmonary diseases.
Dynamic Supersonic Base Store Ejection Simulation Using Beggar
2008-12-01
selected convergence tolerance. Beggar accomplishes this is by using the symmetric Gauss - Seidel relaxation scheme implemented as follows [26]: [ ln+1,m...scheme (Section 2.3.3). To compute a time accurate solution to an unsteady flow problem, Beggar ap- plies Newtons Method to Eq. 2.15. The full method ...3.6. Separation Distance (x/D) . . . . . . . . . . . . . . . . . . . . 46 4.1. Drag Coefficient of Static Solutions Compared to Dynamic Solu- tions
Epsky, Nancy D; Gill, Micah A
2017-06-01
Volatile chemicals produced by actively fermenting aqueous grape juice bait have been found to be highly attractive to the African fig fly, Zaprionus indianus Gupta. This is a highly dynamic system and time period of fermentation is an important factor in bait efficacy. A series of field tests were conducted that evaluated effects of laboratory versus field fermentation and sampling period (days after placement [DAP]) on bait effectiveness as the first step in identifying the chemicals responsible for attraction. Tests of traps with bait that had been aged in the laboratory for 0, 3, 6, and 9 d and then sampled 3 DAP found higher capture in traps with 0- and 3-d-old baits than in traps with 6- or 9-d-old baits. To further define the time period that produced the most attractive baits, a subsequent test evaluated baits aged for 0, 2, 4, and 6 d in the laboratory and sampled after 1-4 DAP, with traps sampled and bait discarded at the end of each DAP period. The highest capture was in traps with 4-d-old bait sampled 1 DAP, with the second best capture in traps with 0-d-old bait sampled 3 DAP. However, there tended to be fewer flies as DAP increased, indicating potential loss of identifiable flies owing to decomposition in the actively fermenting solutions. When traps were sampled and bait recycled daily, the highest capture was in 2- and 4-d-old baits sampled 1 DAP and in 0-d-old baits sampled 2-4 DAP. Similar patterns were observed for capture of nontarget drosophilids. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second
NASA Astrophysics Data System (ADS)
Zuo, Chao; Tao, Tianyang; Feng, Shijie; Huang, Lei; Asundi, Anand; Chen, Qian
2018-03-01
Fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time, we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.
Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Chao; Tao, Tianyang; Feng, Shijie
We report that fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time,more » we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Lastly, based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.« less
Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second
Zuo, Chao; Tao, Tianyang; Feng, Shijie; ...
2017-11-06
We report that fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time,more » we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Lastly, based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.« less
Liu, Xiaofang; Zhu, Quanfei; Chen, Huaixia; Zhou, Liuzi; Dang, Xueping; Huang, Jianlin
2014-03-01
An organic-inorganic hybrid molecular imprinting monolith (HMIM) has been prepared, characterized and applied for the determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in rice with high-performance liquid chromatography-photodiodes array detector (HPLC-PAD). By optimizing the polymerization conditions, such as the volume ratio of the inorganic alcoholysate and organic part, the 2,4-D-HMIM was synthesized in a micro pipette tip using acrylamide as the functional monomer, ethylene dimethacrylate as the cross-linker and methanol as the porogenic solvent. The morphology of the monolith was studied by scanning electronmicroscopy and Fourier transform infrared spectra. The imprinted factor of the monolith for 2,4-D reached 3.29. A simple, rapid and sensitive method for the determination of 2,4-D in rice using the HMIM microextraction combined with high-performance liquid chromatography-photodiodes array detector was developed. Some parameters affecting the sample pretreatment were investigated, including the type and volume of eluent, the flow rate and volume of sample solution. The assay exhibited a linear dynamic range of 167-4167μg/kg with the correlation coefficient above 0.9972. The detection limit (at S/N=3) was 50μg/kg. The proposed method was successfully applied for the selective determination of 2,4-D in rice. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, M; Patel, K; Regine, W
2014-06-01
Purpose: To study the feasibility of individually optimized contrastenhancement (CE) 4D-CT for pancreatic adenocarcinoma (PDA) in radiotherapy simulation. To evaluate the image quality and contrast enhancement of tumor in the CE 4D-CT, compared to the clinical standard of CE 3D-CT and 4D-CT. Methods: In this IRB-approved study, each of the 7 PDA patients enrolled underwent 3 CT scans: a free-breathing 3D-CT with contrast (CE 3D-CT) followed by a 4D-CT without contrast (4D-CT) in the first study session, and a 4D-CT with individually synchronized contrast injection (CE 4D-CT) in the second study session. In CE 4D-CT, the time of full contrastmore » injection was determined based on the time of peak enhancement for the test injection, injection rate, table speed, and longitudinal location and span of the pancreatic region. Physicians contoured both the tumor (T) and the normal pancreatic parenchyma (P) on the three CTs (end-of-exhalation for 4D-CT). The contrast between the tumor and normal pancreatic tissue was computed as the difference of the mean enhancement level of three 1 cm3 regions of interests in T and P, respectively. Wilcoxon rank sum test was used to statistically compare the scores and contrasts. Results: In qualitative evaluations, both CE 3D-CT and CE 4D-CT scored significantly better than 4D-CT (4.0 and 3.6 vs. 2.6). There was no significant difference between CE 3D-CT and CE 4D-CT. In quantitative evaluations, the contrasts between the tumor and the normal pancreatic parenchyma were 0.6±23.4, −2.1±8.0, and −19.6±28.8 HU, in CE 3D-CT, 4D-CT, and CE 4D-CT, respectively. Although not statistically significant, CE 4D-CT achieved better contrast enhancement between the tumor and the normal pancreatic parenchyma than both CE 3D-CT and 4DCT. Conclusion: CE 4D-CT achieved equivalent image quality and better contrast enhancement between tumor and normal pancreatic parenchyma than the clinical standard of CE 3D-CT and 4D-CT. This study was supported in part by Philips Healthcare.« less
Omelyan, Igor; Kovalenko, Andriy
2015-04-14
We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD with explicit solvent. We have been able to fold the miniprotein from a fully denatured, extended state in about 60 ns of quasidynamics steered with 3D-RISM-KH mean solvation forces, compared to the average physical folding time of 4-9 μs observed in experiment.
Cottam, H B; Revankar, G R; Robins, R K
1983-01-01
The glycosylation of 4,6-dichloropyrazolo[3,4-d]pyrimidine and 4-chloro-6-methylthiopyrazolo[3,4-d]pyrimidine via the corresponding trimethylsilyl intermediate and tetra-O-acetyl-beta-D-ribofuranose in the presence of trimethylsilyl triflate as a catalyst, gave selective glycosylation at N1 as the only nucleoside product. The intermediates 4,6-dichloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 7 and 4-chloro-6-methylthio-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 13 gave new and convenient synthetic routes to the inosine analog 1, the guanosine analog 2, the adenosine analog 3, and the isoguanosine analog 16. Glycosylation of the trimethylsilyl derivative of 6-chloropyrazolo[3,4-d]pyrimidine-4-one unexpectedly gave the N2-glycosyl isomer 20 as the major product. A number of new 4,6-disubstituted pyrazolo[3,4-d]pyrimidine nucleosides were prepared from these glycosyl intermediates. PMID:6835838
Zahedi, S; Sales, D; Romero, L I; Solera, R
2013-10-01
Different high feed organic loading rates (OLRs) (from 5.7 g to 46.0 g TVS/l/d) or hydraulic retention times (HRTs) (from 15 d to 2 d) in single-phase dry-thermophilic anaerobic digestion (AD) of organic fraction municipal solid waste (OFMSW) were investigated. The specific gas production (SGP) values (0.25-0.53 m(3)/kg TVS) and the percentages of Eubacteria, Archaea, H2-utilising methanogens (HUMs) and acetate-utilising methanogens (AUMs) were stable within the ranges 80.2-91.1%, 12.4-18.5%, 4.4-9.8% and 5.5-10.9%, respectively. A HUM/AUM ratio greater than 0.7 seems to be necessary to maintain very low partial pressures of H2 required for dry AD process. Increasing OLR resulted in an increase in all the populations, except for propionate-utilising acetogens (PUAs). Optimal conditions were obtained at 3d HRT (OLR=30.7 g TVS/l/d), which is lower than the doubling time of acetogens and methanogens. The methane production (MP) was clearly higher than those reported in AD of OFMSW. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Santos-Filho, Osvaldo A.; Mishra, Rama K.; Hopfinger, A. J.
2001-09-01
Free energy force field (FEFF) 3D-QSAR analysis was used to construct ligand-receptor binding models for a set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines. The molecular target (`receptor') used was a 3D-homology model of a specific mutant type of Plasmodium falciparum (Pf) dihydrofolate reductase (DHFR). The dependent variable of the 3D-QSAR models is the IC50 inhibition constant for the specific mutant type of PfDHFR. The independent variables of the 3D-QSAR models (the descriptors) are scaled energy terms of a modified first-generation AMBER force field combined with a hydration shell aqueous solvation model and a collection of 2D-QSAR descriptors often used in QSAR studies. Multiple temperature molecular dynamics simulation (MDS) and the genetic function approximation (GFA) were employed using partial least square (PLS) and multidimensional linear regressions as the fitting functions to develop FEFF 3D-QSAR models for the binding process. The significant FEFF energy terms in the best 3D-QSAR models include energy contributions of the direct ligand-receptor interaction. Some changes in conformational energy terms of the ligand due to binding to the enzyme are also found to be important descriptors. The FEFF 3D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the PfDHFR to current antimalarials. The FEFF 3D-QSAR models are also compared to receptor-independent (RI) 4D-QSAR models developed in an earlier study and subsequently refined using recently developed generalized alignment rules.
SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi-Ardekani, A; Wronski, M; Kim, A
2015-06-15
Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode priormore » to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla.« less
Management of three-dimensional intrafraction motion through real-time DMLC tracking.
Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul
2008-05-01
Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.
Dynamic 2D self-phase-map Nyquist ghost correction for simultaneous multi-slice echo planar imaging.
Yarach, Uten; Tung, Yi-Hang; Setsompop, Kawin; In, Myung-Ho; Chatnuntawech, Itthi; Yakupov, Renat; Godenschweger, Frank; Speck, Oliver
2018-02-09
To develop a reconstruction pipeline that intrinsically accounts for both simultaneous multislice echo planar imaging (SMS-EPI) reconstruction and dynamic slice-specific Nyquist ghosting correction in time-series data. After 1D slice-group average phase correction, the separate polarity (i.e., even and odd echoes) SMS-EPI data were unaliased by slice GeneRalized Autocalibrating Partial Parallel Acquisition. Both the slice-unaliased even and odd echoes were jointly reconstructed using a model-based framework, extended for SMS-EPI reconstruction that estimates a 2D self-phase map, corrects dynamic slice-specific phase errors, and combines data from all coils and echoes to obtain the final images. The percentage ghost-to-signal ratios (%GSRs) and its temporal variations for MB3R y 2 with a field of view/4 shift in a human brain obtained by the proposed dynamic 2D and standard 1D phase corrections were 1.37 ± 0.11 and 2.66 ± 0.16, respectively. Even with a large regularization parameter λ applied in the proposed reconstruction, the smoothing effect in fMRI activation maps was comparable to a very small Gaussian kernel size 1 × 1 × 1 mm 3 . The proposed reconstruction pipeline reduced slice-specific phase errors in SMS-EPI, resulting in reduction of GSR. It is applicable for functional MRI studies because the smoothing effect caused by the regularization parameter selection can be minimal in a blood-oxygen-level-dependent activation map. © 2018 International Society for Magnetic Resonance in Medicine.
Xie, Sheng-Ming; Zhang, Xin-Huan; Zhang, Ze-Jun; Zhang, Mei; Jia, Jia; Yuan, Li-Ming
2013-04-01
Compared with liquid chromatography and capillary electrophoresis, the diversity of gas chromatography chiral stationary phases is rather limited. Here, we report the fabrication of Co(D-Cam)1/2(bdc)1/2(tmdpy) (D-Cam = D-camphoric acid; bdc = 1,4-benzenedicarboxylate; tmdpy = 4,4'-trimethylenedipyridine)-coated open tubular columns for high-resolution gas chromatographic separation of compounds. The Co(D-Cam)1/2(bdc)1/2(tmdpy) compound possesses a 3-D framework containing enantiopure building blocks embedded in intrinsically chiral topological nets. In this study, two fused-silica open tubular columns with different inner diameters and lengths, including column A (30 m × 530 μm i.d.) and column B (2 m × 75 μm i.d.), were prepared by a dynamic coating method using Co-(D-Cam)1/2(bdc)1/2(tmdpy) as the stationary phase. The chromatographic properties of the two columns were investigated using n-dodecane as the test compound at 120 °C. The number of theoretical plates (plates/m) of the two metal-organic framework columns was 1,450 and 3,100, respectively. The separation properties were evaluated using racemates, isomers, alkanes, alcohols, and Grob's test mixture. The limit of detection and limit of quantification were found to be 0.125 and 0.417 ng for citronellal enantiomers, respectively. Repeatability (n = 6) showed lower than 0.25 % relative standard deviation (RSD) for retention times and lower than 2.2 % RSD for corrected peak areas. The experimental results showed that the stationary phase has excellent selectivity and also possesses good recognition ability toward these organic compounds, especially chiral compounds.
The role of tachysterol in vitamin D photosynthesis - a non-adiabatic molecular dynamics study
NASA Astrophysics Data System (ADS)
Cisneros, Cecilia; Thompson, Travis; Baluyot, Noel; Smith, Adam C.; Tapavicza, Enrico
To investigate the role of tachysterol in the photophysical/chemical regulation of vitamin D photosynthesis, we studied its electronic absorption properties and excited state dynamics using time-dependent density functional theory (TDDFT), coupled cluster theory (CC2), and non-adiabatic molecular dynamics. In excellent agreement with experiments, the simulated electronic spectrum shows a broad absorption band covering the spectra of the other vitamin D photoisomers. The broad band stems from the spectral overlap of four different ground state rotamers. After photoexcitation, the first excited singlet state (S1) decays within 882 fs. The S1 dynamics is characterized by a strong twisting of the central double bond. 96% of all trajectories relax without chemical transformation to the ground state. In 2.3 % of the trajectories we observed [1,5]-sigmatropic hydrogen shift forming the partly deconjugated toxisterol D1. 1.4 % previtamin D formation is observed via hula-twist double bond isomerization. We find a strong dependence between photoreactivity and dihedral angle conformation: hydrogen shift only occurs in cEc and cEt rotamers and double bond isomerization occurs mainly in cEc rotamers. Our study confirms the hypothesis that cEc rotamers are more prone to previtamin D formation than other isomers. We also observe the formation of a cyclobutene-toxisterol in the hot ground state (0.7 %). Due to its strong absorption and unreactive behavior, tachysterol acts mainly as a sun shield suppressing previtamin D formation. Tachysterol shows stronger toxisterol formation than previtamin D. Absorption of low energy UV light by the cEc rotamer can lead to previtamin D formation. Our study reinforces a recent hypothesis that tachysterol can act as a previtamin D source when only low energy ultraviolet light is available, as it is the case in winter or in the morning and evening hours of the day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Häggström, Ida, E-mail: haeggsti@mskcc.org; Beattie, Bradley J.; Schmidtlein, C. Ross
2016-06-15
Purpose: To develop and evaluate a fast and simple tool called dPETSTEP (Dynamic PET Simulator of Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo (MC), useful for educational purposes and evaluation of the effects of the clinical environment, postprocessing choices, etc., on dynamic and parametric images. Methods: The tool was developed in MATLAB using both new and previously reported modules of PETSTEP (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise, scatters, randoms, and attenuationmore » are simulated for each frame. Each frame is then reconstructed into images according to the user specified method, settings, and corrections. Reconstructed images were compared to MC data, and simple Gaussian noised time activity curves (GAUSS). Results: dPETSTEP was 8000 times faster than MC. Dynamic images from dPETSTEP had a root mean square error that was within 4% on average of that of MC images, whereas the GAUSS images were within 11%. The average bias in dPETSTEP and MC images was the same, while GAUSS differed by 3% points. Noise profiles in dPETSTEP images conformed well to MC images, confirmed visually by scatter plot histograms, and statistically by tumor region of interest histogram comparisons that showed no significant differences (p < 0.01). Compared to GAUSS, dPETSTEP images and noise properties agreed better with MC. Conclusions: The authors have developed a fast and easy one-stop solution for simulations of dynamic PET and parametric images, and demonstrated that it generates both images and subsequent parametric images with very similar noise properties to those of MC images, in a fraction of the time. They believe dPETSTEP to be very useful for generating fast, simple, and realistic results, however since it uses simple scatter and random models it may not be suitable for studies investigating these phenomena. dPETSTEP can be downloaded free of cost from https://github.com/CRossSchmidtlein/dPETSTEP.« less
NASA Astrophysics Data System (ADS)
Cucchiaro, S.; Maset, E.; Fusiello, A.; Cazorzi, F.
2018-05-01
In recent years, the combination of Structure-from-Motion (SfM) algorithms and UAV-based aerial images has revolutionised 3D topographic surveys for natural environment monitoring, offering low-cost, fast and high quality data acquisition and processing. A continuous monitoring of the morphological changes through multi-temporal (4D) SfM surveys allows, e.g., to analyse the torrent dynamic also in complex topography environment like debris-flow catchments, provided that appropriate tools and procedures are employed in the data processing steps. In this work we test two different software packages (3DF Zephyr Aerial and Agisoft Photoscan) on a dataset composed of both UAV and terrestrial images acquired on a debris-flow reach (Moscardo torrent - North-eastern Italian Alps). Unlike other papers in the literature, we evaluate the results not only on the raw point clouds generated by the Structure-from- Motion and Multi-View Stereo algorithms, but also on the Digital Terrain Models (DTMs) created after post-processing. Outcomes show differences between the DTMs that can be considered irrelevant for the geomorphological phenomena under analysis. This study confirms that SfM photogrammetry can be a valuable tool for monitoring sediment dynamics, but accurate point cloud post-processing is required to reliably localize geomorphological changes.
Suganya, P Rathi; Kalva, Sukesh; Saleena, Lilly M
2016-01-01
ADAMTS4 (Aggrecanase-1) is an important enzyme, which belongs to ADAMTS family. Aggrecanase-1 is involved in aggrecan degradation of articular cartilage in osteoarthritis and rheumatoid arthritis. Overall variability of S1' domain of ADAMTS4 has been the main selectivity determinant to design the unique inhibitors. 34 inhibitors from Binding database and literature were used to develop the pharmacophore model. The five featured pharmacophore model AHHRR had the best survival score of 3.493 and post-hoc score of 2.545, indicating that the model is highly reliable. The 3D-QSAR acquired had excellent r(2) value of 0.99 and GH score of 0.839. The validated pharmacophore model was used for insilico screening of Asinex and ZINC database for finding the potential lead compounds. ZINC00987406 and ASN04459656 which pose high glide score i.e >7 Kcal/mol and H-bond and hydrophobic interactions in the S1'loop residues of ADAMTS4 were subjected to Molecular Dynamics Simulation studies. Molecular dynamic simulation result indicates that the RMSD and RMSF of backbone atoms for the above complexes were within the limit of 2.0 A˚. These compounds can be potential candidates for osteoarthritis by inhibiting ADAMTS4.
Shen, Hujun; Deng, Mingsen; Zhang, Yachao
2017-10-01
Recent crystal structures of RNA-dependent RNA polymerase (3D pol ) from Coxsackievirus B3 (CVB3) revealed that a tyrosine mutation at Phe364 (F364Y) resulted in structures with open active site whereas a hydrophobic mutation at Phe364 (F364A) led to conformations with closed active site. Besides, the crystal structures showed that the F364W mutation had no preference between the open and closed active sites, similar to wild-type. In this paper, we present a molecular dynamics (MD) study on CVB3 3D pol in order to address some important questions raised by experiments. First, MD simulations of F364Y and F364A were carried out to explore how these mutations at Phe364 influence active site dynamics and conformations. Second, MD simulations of wild-type and mutants were performed to discover the connection between active site dynamics and polymerase function. MD simulations reveal that the effect of mutations on active site dynamics is associated with the interaction between the structural motifs A and D in CVB3 3D pol . Interestingly, we discover that the active site state is influenced by the formation of a hydrogen bond between backbone atoms of Ala231 (in motif A) and Ala358 (in motif D), which has never been revealed before. Copyright © 2017 Elsevier Inc. All rights reserved.
Dubey, R; Jain, R K; Abbas, S A; Matta, K L
1987-08-01
Methyl 2-O-benzyl-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha- D-mannopyranoside (4) and methyl 2-O-benzyl-3-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (6) were prepared from a common intermediate, namely, methyl 2-O-benzyl-4,6-O-benzylidene-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D- mannopyranosyl)-alpha-D-mannopyranoside. On treatment with tert-butylchlorodiphenylsilane, in N,N-dimethylformamide in the presence of imidazole, 4 and 6 afforded methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (7), and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert- butyldiphenylsilyl-alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (8), respectively. Compound 8 was converted into its 2,3-O-isopropylidene derivative (9), and oxidation of 7 and 9 with pyridinium chlorochromate, and reduction of the resulting carbonyl intermediates gave methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-talopyranoside and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert-butyldiphe nylsilyl- 2,3-O-isopropylidene-alpha-D-talopyranosyl)-alpha-D-talopyranoside , respectively. Removal of the protecting groups furnished the title disaccharides.
Gibbs Free-Energy Gradient along the Path of Glucose Transport through Human Glucose Transporter 3.
Liang, Huiyun; Bourdon, Allen K; Chen, Liao Y; Phelix, Clyde F; Perry, George
2018-06-11
Fourteen glucose transporters (GLUTs) play essential roles in human physiology by facilitating glucose diffusion across the cell membrane. Due to its central role in the energy metabolism of the central nervous system, GLUT3 has been thoroughly investigated. However, the Gibbs free-energy gradient (what drives the facilitated diffusion of glucose) has not been mapped out along the transport path. Some fundamental questions remain. Here we present a molecular dynamics study of GLUT3 embedded in a lipid bilayer to quantify the free-energy profile along the entire transport path of attracting a β-d-glucose from the interstitium to the inside of GLUT3 and, from there, releasing it to the cytoplasm by Arrhenius thermal activation. From the free-energy profile, we elucidate the unique Michaelis-Menten characteristics of GLUT3, low K M and high V MAX , specifically suitable for neurons' high and constant demand of energy from their low-glucose environments. We compute GLUT3's binding free energy for β-d-glucose to be -4.6 kcal/mol in agreement with the experimental value of -4.4 kcal/mol ( K M = 1.4 mM). We also compute the hydration energy of β-d-glucose, -18.0 kcal/mol vs the experimental data, -17.8 kcal/mol. In this, we establish a dynamics-based connection from GLUT3's crystal structure to its cellular thermodynamics with quantitative accuracy. We predict equal Arrhenius barriers for glucose uptake and efflux through GLUT3 to be tested in future experiments.
GenomeD3Plot: a library for rich, interactive visualizations of genomic data in web applications.
Laird, Matthew R; Langille, Morgan G I; Brinkman, Fiona S L
2015-10-15
A simple static image of genomes and associated metadata is very limiting, as researchers expect rich, interactive tools similar to the web applications found in the post-Web 2.0 world. GenomeD3Plot is a light weight visualization library written in javascript using the D3 library. GenomeD3Plot provides a rich API to allow the rapid visualization of complex genomic data using a convenient standards based JSON configuration file. When integrated into existing web services GenomeD3Plot allows researchers to interact with data, dynamically alter the view, or even resize or reposition the visualization in their browser window. In addition GenomeD3Plot has built in functionality to export any resulting genome visualization in PNG or SVG format for easy inclusion in manuscripts or presentations. GenomeD3Plot is being utilized in the recently released Islandviewer 3 (www.pathogenomics.sfu.ca/islandviewer/) to visualize predicted genomic islands with other genome annotation data. However, its features enable it to be more widely applicable for dynamic visualization of genomic data in general. GenomeD3Plot is licensed under the GNU-GPL v3 at https://github.com/brinkmanlab/GenomeD3Plot/. brinkman@sfu.ca. © The Author 2015. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.
2014-03-01
The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.
Tong, Yubing; Udupa, Jayaram K; Ciesielski, Krzysztof C; Wu, Caiyun; McDonough, Joseph M; Mong, David A; Campbell, Robert M
2017-01-01
Dynamic or 4D imaging of the thorax has many applications. Both prospective and retrospective respiratory gating and tracking techniques have been developed for 4D imaging via CT and MRI. For pediatric imaging, due to radiation concerns, MRI becomes the de facto modality of choice. In thoracic insufficiency syndrome (TIS), patients often suffer from extreme malformations of the chest wall, diaphragm, and/or spine with inability of the thorax to support normal respiration or lung growth (Campbell et al., 2003, Campbell and Smith, 2007), as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort and interference with the breathing mechanism itself. Therefore (ventilator-supported) free-breathing MRI acquisition is currently the best choice for imaging these patients. This, however, raises a question of how to create a consistent 4D image from such acquisitions. This paper presents a novel graph-based technique for compiling the best 4D image volume representing the thorax over one respiratory cycle from slice images acquired during unencumbered natural tidal-breathing of pediatric TIS patients. In our approach, for each coronal (or sagittal) slice position, images are acquired at a rate of about 200-300ms/slice over several natural breathing cycles which yields over 2000 slices. A weighted graph is formed where each acquired slice constitutes a node and the weight of the arc between two nodes defines the degree of contiguity in space and time of the two slices. For each respiratory phase, an optimal 3D spatial image is constructed by finding the best path in the graph in the spatial direction. The set of all such 3D images for a given respiratory cycle constitutes a 4D image. Subsequently, the best 4D image among all such constructed images is found over all imaged respiratory cycles. Two types of evaluation studies are carried out to understand the behavior of this algorithm and in comparison to a method called Random Stacking - a 4D phantom study and 10 4D MRI acquisitions from TIS patients and normal subjects. The 4D phantom was constructed by 3D printing the pleural spaces of an adult thorax, which were segmented in a breath-held MRI acquisition. Qualitative visual inspection via cine display of the slices in space and time and in 3D rendered form showed smooth variation for all data sets constructed by the proposed method. Quantitative evaluation was carried out to measure spatial and temporal contiguity of the slices via segmented pleural spaces. The optimal method showed smooth variation of the pleural space as compared to Random Stacking whose behavior was erratic. The volumes of the pleural spaces at the respiratory phase corresponding to end inspiration and end expiration were compared to volumes obtained from breath-hold acquisitions at roughly the same phase. The mean difference was found to be roughly 3%. The proposed method is purely image-based and post-hoc and does not need breath holding or external surrogates or instruments to record respiratory motion or tidal volume. This is important and practically warranted for pediatric patients. The constructed 4D images portray spatial and temporal smoothness that should be expected in a consistent 4D volume. We believe that the method can be routinely used for thoracic 4D imaging. Copyright © 2016 Elsevier B.V. All rights reserved.
Gwynne, Craig R; Curran, Sarah A
2014-12-01
Clinical assessment of lower limb kinematics during dynamic tasks may identify individuals who demonstrate abnormal movement patterns that may lead to etiology of exacerbation of knee conditions such as patellofemoral joint (PFJt) pain. The purpose of this study was to determine the reliability, validity and associated measurement error of a clinically appropriate two-dimensional (2-D) procedure of quantifying frontal plane knee alignment during single limb squats. Nine female and nine male recreationally active subjects with no history of PFJt pain had frontal plane limb alignment assessed using three-dimensional (3-D) motion analysis and digital video cameras (2-D analysis) while performing single limb squats. The association between 2-D and 3-D measures was quantified using Pearson's product correlation coefficients. Intraclass correlation coefficients (ICCs) were determined for within- and between-session reliability of 2-D data and standard error of measurement (SEM) was used to establish measurement error. Frontal plane limb alignment assessed with 2-D analysis demonstrated good correlation compared with 3-D methods (r = 0.64 to 0.78, p < 0.001). Within-session (0.86) and between-session ICCs (0.74) demonstrated good reliability for 2-D measures and SEM scores ranged from 2° to 4°. 2-D measures have good consistency and may provide a valid measure of lower limb alignment when compared to existing 3-D methods. Assessment of lower limb kinematics using 2-D methods may be an accurate and clinically useful alternative to 3-D motion analysis when identifying individuals who demonstrate abnormal movement patterns associated with PFJt pain. 2b.
NASA Astrophysics Data System (ADS)
Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T. H.
2017-10-01
Semantic 3D city models play an important role in solving complex real-world problems and are being adopted by many cities around the world. A wide range of application and simulation scenarios directly benefit from the adoption of international standards such as CityGML. However, most of the simulations involve properties, whose values vary with respect to time, and the current generation semantic 3D city models do not support time-dependent properties explicitly. In this paper, the details of solar potential simulations are provided operating on the CityGML standard, assessing and estimating solar energy production for the roofs and facades of the 3D building objects in different ways. Furthermore, the paper demonstrates how the time-dependent simulation results are better-represented inline within 3D city models utilizing the so-called Dynamizer concept. This concept not only allows representing the simulation results in standardized ways, but also delivers a method to enhance static city models by such dynamic property values making the city models truly dynamic. The dynamizer concept has been implemented as an Application Domain Extension of the CityGML standard within the OGC Future City Pilot Phase 1. The results are given in this paper.
Aurally aided visual search performance in a dynamic environment
NASA Astrophysics Data System (ADS)
McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.
2008-04-01
Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.
Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N
1999-01-01
The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328
Phenolic and lignan glycosides from the butanol extract of Averrhoa carambola L. root.
Wen, Qingwei; Lin, Xing; Liu, Yeqi; Xu, Xiaohui; Liang, Tao; Zheng, Ni; Kintoko; Huang, Renbin
2012-10-19
Fifteen compounds, which included six chiral lignans and nine phenolic glycosides, were separated from the butanol fraction of Averrhoa carambola L. root and identified. All of the compounds, namely 3,4,5-trimethoxyphenol-1-O-β-D-glucopyranoside, benzyl-1-O-β-D-glucopyranoside, (+)-5'-methoxyisolariciresinol 3α-O-β-D-gluco-pyranoside, (+)-isolariciresinol 3α-O-β-D-glucopyranoside, koaburaside, (+)-lyoniresinol 3α-O-β-D-glucopyranoside, (-)-lyoniresinol 3α-O-β-D-glucopyranoside, (-)-5'-methoxyisolariciresinol 3α-O-β-D-glucopyranoside, (-)-isolariciresinol 3α-O-β-D-glucopyranoside, 3,5-dimethoxy-4-hydroxyphenyl 1-O-β-apiofuranosyl (1''→6')-O-β-D-glucopyranoside, 3,4,5-trimethoxyphenyl 1-O-β-apiofuranosyl (1''→6')-β-gluco-pyranoside, methoxyhydroquinone-4-β-D-glucopyranoside, (2S)-2-O-β-D-gluco-pyranosyl-2-hydroxyphenylacetic acid, 3-hydroxy-4-methoxyphenol 1-O-β-D-apio-furanosyl-(1''→6')-O-β-D-glucopyranoside and 4-hydroxy-3-methoxyphenol 1-O-β-D-apiofuranosyl-(1''→6')-O-β-D-glucopyranoside were isolated from this plant for the first time.
NASA Astrophysics Data System (ADS)
Zeng, Peng; Wei, Xiantao; Zhou, Shaoshuai; Yin, Min; Chen, Yonghu
2016-09-01
A series of Pr3+/Ce3+ doped yttrium aluminium garnet (Y3Al5O12 or simply YAG) phosphors were synthesized to investigate the energy transfer between Pr3+ and Ce3+ for their potential application in a white light-emitting diode and quantum information storage and processing. The excitation and emission spectra of YAG:Pr3+/Ce3+ were measured and analyzed, and it revealed that the reabsorption between Pr3+ and Ce3+ was so weak that it can be ignored, and the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2) did occur. By analyzing the excitation and the emission spectra, the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2) was examined in detail with an original strategy deduced from fluorescence dynamics and the Dexter energy transfer theory, and the critical distances of energy transfer were derived to be 7.9 Å and 4.0 Å for Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2), respectively. The energy transfer rates of the two processes of various concentrations were discussed and evaluated. Furthermore, for the purpose of sensing a single Pr3+ state with a Ce3+ ion, the optimal distance of Ce3+ from Pr3+ was evaluated as 5.60 Å, where the probability of success reaches its maximum value of 78.66%, and meanwhile the probabilities were evaluated for a series of Y3+ sites in a YAG lattice. These results will be of valuable reference for achievement of the optimal energy transfer efficiency in Pr3+/Ce3+ doped YAG and other similar systems.
Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations
NASA Technical Reports Server (NTRS)
Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.
2017-01-01
A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.
Dynamical density delay maps: simple, new method for visualising the behaviour of complex systems
2014-01-01
Background Physiologic signals, such as cardiac interbeat intervals, exhibit complex fluctuations. However, capturing important dynamical properties, including nonstationarities may not be feasible from conventional time series graphical representations. Methods We introduce a simple-to-implement visualisation method, termed dynamical density delay mapping (“D3-Map” technique) that provides an animated representation of a system’s dynamics. The method is based on a generalization of conventional two-dimensional (2D) Poincaré plots, which are scatter plots where each data point, x(n), in a time series is plotted against the adjacent one, x(n + 1). First, we divide the original time series, x(n) (n = 1,…, N), into a sequence of segments (windows). Next, for each segment, a three-dimensional (3D) Poincaré surface plot of x(n), x(n + 1), h[x(n),x(n + 1)] is generated, in which the third dimension, h, represents the relative frequency of occurrence of each (x(n),x(n + 1)) point. This 3D Poincaré surface is then chromatised by mapping the relative frequency h values onto a colour scheme. We also generate a colourised 2D contour plot from each time series segment using the same colourmap scheme as for the 3D Poincaré surface. Finally, the original time series graph, the colourised 3D Poincaré surface plot, and its projection as a colourised 2D contour map for each segment, are animated to create the full “D3-Map.” Results We first exemplify the D3-Map method using the cardiac interbeat interval time series from a healthy subject during sleeping hours. The animations uncover complex dynamical changes, such as transitions between states, and the relative amount of time the system spends in each state. We also illustrate the utility of the method in detecting hidden temporal patterns in the heart rate dynamics of a patient with atrial fibrillation. The videos, as well as the source code, are made publicly available. Conclusions Animations based on density delay maps provide a new way of visualising dynamical properties of complex systems not apparent in time series graphs or standard Poincaré plot representations. Trainees in a variety of fields may find the animations useful as illustrations of fundamental but challenging concepts, such as nonstationarity and multistability. For investigators, the method may facilitate data exploration. PMID:24438439
Barkauskas, Kestutis J; Rajiah, Prabhakar; Ashwath, Ravi; Hamilton, Jesse I; Chen, Yong; Ma, Dan; Wright, Katherine L; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole
2014-09-11
The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, W; Xue, M; Patel, K
2015-06-15
Purpose: This study presents quantitative and qualitative assessment of the image qualities in contrast-enhanced (CE) 3D-CT, 4D-CT and CE 4D-CT to identify feasibility for replacing the clinical standard simulation with a single CE 4D-CT for pancreatic adenocarcinoma (PDA) in radiotherapy simulation. Methods: Ten PDA patients were enrolled and underwent three CT scans: a clinical standard pair of CE 3D-CT immediately followed by a 4D-CT, and a CE 4D-CT one week later. Physicians qualitatively evaluated the general image quality and regional vessel definitions and gave a score from 1 to 5. Next, physicians delineated the contours of the tumor (T) andmore » the normal pancreatic parenchyma (P) on the three CTs (CE 3D-CT, 50% phase for 4D-CT and CE 4D-CT), then high density areas were automatically removed by thresholding at 500 HU and morphological operations. The pancreatic tumor contrast-to-noise ratio (CNR), signal-tonoise ratio (SNR) and conspicuity (C, absolute difference of mean enhancement levels in P and T) were computed to quantitatively assess image quality. The Wilcoxon rank sum test was used to compare these quantities. Results: In qualitative evaluations, CE 3D-CT and CE 4D-CT scored equivalently (4.4±0.4 and 4.3±0.4) and both were significantly better than 4D-CT (3.1±0.6). In quantitative evaluations, the C values were higher in CE 4D-CT (28±19 HU, p=0.19 and 0.17) than the clinical standard pair of CE 3D-CT and 4D-CT (17±12 and 16±17 HU, p=0.65). In CE 3D-CT and CE 4D-CT, mean CNR (1.8±1.4 and 1.8±1.7, p=0.94) and mean SNR (5.8±2.6 and 5.5±3.2, p=0.71) both were higher than 4D-CT (CNR: 1.1±1.3, p<0.3; SNR: 3.3±2.1, p<0.1). The absolute enhancement levels for T and P were higher in CE 4D-CT (87, 82 HU) than in CE 3D-CT (60, 56) and 4DCT (53, 70). Conclusions: The individually optimized CE 4D-CT is feasible and achieved comparable image qualities to the clinical standard simulation. This study was supported in part by Philips Healthcare.« less
Mendoza, F J; Aguilera-Aguilera, R; Gonzalez-De Cara, C A; Toribio, R E; Estepa, J C; Perez-Ecija, A
2015-12-01
Glucose-insulin dynamic challenges such as the intravenous glucose tolerance test (IVGTT) and combined glucose-insulin test (CGIT) have not been described in donkeys. The objectives of this study were (1) to characterize the IVGTT and CGIT in healthy adult donkeys, and (2) to establish normal glucose-insulin proxies. Sixteen donkeys were used and body morphometric variables obtained each. For the IVGTT, glucose (300 mg/kg) was given IV. For the CGIT, glucose (150 mg/kg) followed by recombinant insulin (0.1 IU/kg) were administered IV. Blood samples for glucose and insulin determinations were collected over 300 min. In the IVGTT the positive phase lasted 160.9 ± 13.3 min, glucose concentration peaked at 323.1 ± 9.2 mg/dL and declined at a rate of 1.28 ± 0.15 mg/dL/min. The glucose area under the curve (AUC) was 21.4 ± 1.9 × 10(3) mg/dL/min and the insulin AUC was 7.2 ± 0.9 × 10(3) µIU/mL/min. The positive phase of the CGIT curve lasted 44 ± 3 min, with a glucose clearance rate of 2.01 ± 0.18 mg/dL/min. The negative phase lasted 255.9 ± 3 min, decreasing glucose concentration at rate of -0.63 ± 0.06 mg/dL/min, and reaching a nadir (33.1 ± 3.6 mg/dL) at 118.3 ± 6.3 min. The glucose and insulin AUC values were 15.2 ± 0.9 × 10(3) mg/dL/min and 13.2 ± 0.9 × 10(3) µIU/mL/min. This is the first study characterizing CGIT and IVGTT, and glucose-insulin proxies in healthy adult donkeys. Distinct glucose dynamics, when compared with horses, support the use of species-specific protocols to assess endocrine function. Copyright © 2015 Elsevier Ltd. All rights reserved.
Beaudette, Shawn M; Howarth, Samuel J; Graham, Ryan B; Brown, Stephen H M
2016-10-01
Several different state-space reconstruction methods have been employed to assess the local dynamic stability (LDS) of a 3D kinematic system. One common method is to use a Euclidean norm (N) transformation of three orthogonal x, y, and z time-series' followed by the calculation of the maximum finite-time Lyapunov exponent (λmax) from the resultant N waveform (using a time-delayed state space reconstruction technique). By essentially acting as a weighted average, N has been suggested to account for simultaneous expansion and contraction along separate degrees of freedom within a 3D system (e.g. the coupling of dynamic movements between orthogonal planes). However, when estimating LDS using N, non-linear transformations inherent within the calculation of N should be accounted for. Results demonstrate that the use of N on 3D time-series data with arbitrary magnitudes of relative bias and zero-crossings cause the introduction of error in estimates of λmax obtained through N. To develop a standard for the analysis of 3D dynamic kinematic waveforms, we suggest that all dimensions of a 3D signal be independently shifted to avoid the incidence of zero-crossings prior to the calculation of N and subsequent estimation of LDS through the use of λmax. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Nitescu, Nicoletta; DiBona, Gerald F; Grimberg, Elisabeth; Guron, Gregor
2010-01-01
The aim was to examine the role of angiotensin II type 1 receptors in dynamic autoregulation of renal blood flow (RBF) in endotoxemia. Experiments were performed on anesthetized rats 16 h after intraperitoneal lipopolysaccharide (LPS) or vehicle administration. After baseline measurements, groups Sham-Saline, LPS-Saline and LPS-Candesartan received isotonic saline or candesartan (10 μg kg(-1) i.v.). Data were collected during eight consecutive 20-min clearance periods (C1-8). Transfer function (TF) analysis in the frequency domain was used to examine dynamic autoregulation of RBF. Endotoxemic rats showed an approximate 50% reduction in glomerular filtration rate (GFR) and RBF (p < 0.05 vs. Sham-Saline). Candesartan significantly increased RBF (+40 ± 6% vs. baseline; p < 0.05) but did not significantly influence GFR. Endotoxemic animals showed a normal myogenic response but had elevated TF gain values in the frequency range of the tubuloglomerular feedback mechanism (TGF; 0.01-0.03 Hz) reflecting impaired autoregulation (periods C3-4, 2.2 ± 1.6 vs. -2.6 ± 0.6 dB, p < 0.05, and C7-8, -0.4 ± 1.3 vs. -4.0 ± 0.8 dB, p < 0.05; in groups LPS-Saline and Sham-Saline, respectively). Candesartan normalized TF gain in this frequency range (periods C7-8, -6.1 ± 2.3 dB in group LPS-Candesartan, p < 0.05 vs. LPS-Saline). Candesartan ameliorates the adverse effect of endotoxin on the TGF component of dynamic autoregulation of RBF. Copyright © 2010 S. Karger AG, Basel.
Van den Herrewegen, Inge; Cuppens, Kris; Broeckx, Mario; Barisch-Fritz, Bettina; Vander Sloten, Jos; Leardini, Alberto; Peeraer, Louis
2014-08-22
Multi-segmental foot kinematics have been analyzed by means of optical marker-sets or by means of inertial sensors, but never by markerless dynamic 3D scanning (D3DScanning). The use of D3DScans implies a radically different approach for the construction of the multi-segment foot model: the foot anatomy is identified via the surface shape instead of distinct landmark points. We propose a 4-segment foot model consisting of the shank (Sha), calcaneus (Cal), metatarsus (Met) and hallux (Hal). These segments are manually selected on a static scan. To track the segments in the dynamic scan, the segments of the static scan are matched on each frame of the dynamic scan using the iterative closest point (ICP) fitting algorithm. Joint rotations are calculated between Sha-Cal, Cal-Met, and Met-Hal. Due to the lower quality scans at heel strike and toe off, the first and last 10% of the stance phase is excluded. The application of the method to 5 healthy subjects, 6 trials each, shows a good repeatability (intra-subject standard deviations between 1° and 2.5°) for Sha-Cal and Cal-Met joints, and inferior results for the Met-Hal joint (>3°). The repeatability seems to be subject-dependent. For the validation, a qualitative comparison with joint kinematics from a corresponding established marker-based multi-segment foot model is made. This shows very consistent patterns of rotation. The ease of subject preparation and also the effective and easy to interpret visual output, make the present technique very attractive for functional analysis of the foot, enhancing usability in clinical practice. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Molecular dynamics of DNA quadruplex molecules containing inosine, 6-thioguanine and 6-thiopurine.
Stefl, R; Spacková, N; Berger, I; Koca, J; Sponer, J
2001-01-01
The ability of the four-stranded guanine (G)-DNA motif to incorporate nonstandard guanine analogue bases 6-oxopurine (inosine, I), 6-thioguanine (tG), and 6-thiopurine (tI) has been investigated using large-scale molecular dynamics simulations. The simulations suggest that a G-DNA stem can incorporate inosines without any marked effect on its structure and dynamics. The all-inosine quadruplex stem d(IIII)(4) shows identical dynamical properties as d(GGGG)(4) on the nanosecond time scale, with both molecular assemblies being stabilized by monovalent cations residing in the channel of the stem. However, simulations carried out in the absence of these cations show dramatic differences in the behavior of d(GGGG)(4) and d(IIII)(4). Whereas vacant d(GGGG)(4) shows large fluctuations but does not disintegrate, vacant d(IIII)(4) is completely disrupted within the first nanosecond. This is a consequence of the lack of the H-bonds involving the N2 amino group that is not present in inosine. This indicates that formation of the inosine quadruplex could involve entirely different intermediate structures than formation of the guanosine quadruplex, and early association of cations in this process appears to be inevitable. In the simulations, the incorporation of 6-thioguanine and 6-thiopurine sharply destabilizes four-stranded G-DNA structures, in close agreement with experimental data. The main reason is the size of the thiogroup leading to considerable steric conflicts and expelling the cations out of the channel of the quadruplex stem. The G-DNA stem can accommodate a single thioguanine base with minor perturbations. Incorporation of a thioguanine quartet layer is associated with a large destabilization of the G-DNA stem whereas the all-thioguanine quadruplex immediately collapses. PMID:11159416
Development of 1D Liner Compression Code for IDL
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John; Pancotti, Anthony
2015-11-01
A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coolens, Catherine, E-mail: catherine.coolens@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario
2015-01-01
Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from amore » 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions: Parametric voxel-based analysis of 4D DCE CT data resulted in greater accuracy and reliability in measuring changes in perfusion CT-based kinetic metrics, which have the potential to be used as biomarkers in patients with metastatic brain cancer.« less
Paviosides A-H, eight new oleane type saponins from Aesculus pavia with cytotoxic activity.
Lanzotti, Virginia; Termolino, Pasquale; Dolci, Marcello; Curir, Paolo
2012-05-15
A phytochemical analysis of Aesculus pavia has led to the isolation of eight novel triterpenoid saponins, based on oleane type skeleton and named paviosides A-H (1a, 1b-4a, 4b). On the basis of chemical, and 2D NMR and mass spectrometry data, the structures of the new compounds were elucidated as 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-d-glucopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl barringtogenol C (1a), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-glucopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-angeloyl-22-acetyl barringtogenol C (1b), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-galactopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl barringtogenol C (2a), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-galactopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-angeloyl-22-acetyl barringtogenol C (2b), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-xylopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl barringtogenol C (3a), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-xylopyranosyl (1 → 4)]-β-d-glucopyranosiduronic acid 21-angeloyl-22-acetyl barringtogenol C (3b), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-xylopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl protoaescigenin (4a), and 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-xylopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-angeloyl-22-acetyl protoaescigenin (4b). The compounds showed cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma, cell lines. Among them, paviosides E-H (3a, 3b and 4a, 4b) showed higher activity with values ranging from 2.1 to 3.6 μg/mL. Structure-activity relationship studies indicated the positive effect on the activity of xylose unit in the place of glucose, while a little detrimental effect is observed when glucose is substituted by galactose. The aglycone structure and the presence of a tigloyl or an angeloyl group at C-21 do not affect significantly the inhibitory activity on both tested cell lines. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comparison of diagnostic accuracies of 2D and 3D MR elastography of the liver
Morisaka, Hiroyuki; Motosugi, Utaroh; Glaser, Kevin J.; Ichikawa, Shintaro; Ehman, Richard L.; Sano, Katsuhiro; Ichikawa, Tomoaki; Onishi, Hiroshi
2017-01-01
Purpose To evaluate the effect of imaging sequence (spin-echo echo-planar imaging [EPI] and gradient-echo [GRE]) and postprocessing method (2-dimensional [2D] and 3D inversion algorithms) on liver magnetic resonance elastography (MRE) and to validate the diagnostic performance of EPI-MRE3D versus conventional GRE-MRE2D for liver fibrosis staging. Materials and Methods Three MRE methods (EPI-MRE3D, EPI-MRE2D, and GRE-MRE2D) were performed on soft and mildly stiff phantoms and 58 patients with chronic liver disease at a 3-Tesla clinical MRI scanner, and stiffness values were compared among the 3 methods. A validation study comprised 73 patients with histological liver fibrosis (F0–4, METAVIR system). Areas under the receiver operating characteristic curves (AUCs) and accuracies for diagnosing significant fibrosis (F3–4) and cirrhosis (F4) were compared between EPI-MRE3D and GRE-MRE2D. Results Stiffness values of soft and mildly stiff phantoms were 2.4 kPa and 4.0kPa by EPI-MRE3D; 2.6 kilopascal [kPa] and 4.2kPa by EPI-MRE2D; and 2.7 kPa and 4.2kPa by GRE-MRE2D. In patients, EPI-MRE3D provided significantly lower stiffness values than other methods (p<0.001). However, there was no significant difference between GRE-MRE2D and EPI-MRE2D (p=0.12). The AUCs and accuracies of EPI-MRE3D and GRE-MRE2D were statistically equivalent in the diagnoses of significant fibrosis (F3–4) and cirrhosis (F4) (all p<0.005). Conclusion EPI-MRE3D showed lower modestly liver stiffness values than conventional GRE-MRE2D. The diagnostic performances of EPI-MRE3D and GRE-MRE2D were equivalent for liver fibrosis staging. PMID:27662640
Dynamics of cD clusters of galaxies. II: Analysis of seven Abell clusters
NASA Technical Reports Server (NTRS)
Oegerle, William R.; Hill, John M.
1994-01-01
We have investigated the dynamics of the seven Abell clusters A193, A399, A401, A1795, A1809, A2063, and A2124, based on redshift data reported previously by us (Hill & Oegerle, (1993)). These papers present the initial results of a survey of cD cluster kinematics, with an emphasis on studying the nature of peculiar velocity cD galaxies and their parent clusters. In the current sample, we find no evidence for significant peculiar cD velocities, with respect to the global velocity distribution. However, the cD in A2063 has a significant (3 sigma) peculiar velocity with respect to galaxies in the inner 1.5 Mpc/h, which is likely due to the merger of a subcluster with A2063. We also find significant evidence for subclustering in A1795, and a marginally peculiar cD velocity with respect to galaxies within approximately 200 kpc/h of the cD. The available x-ray, optical, and galaxy redshift data strongly suggest that a subcluster has merged with A1795. We propose that the subclusters which merged with A1795 and A2063 were relatively small, with shallow potential wells, so that the cooling flows in these clusters were not disrupted. Two-body gravitational models of the A399/401 and A2063/MKW3S systems indicate that A399/401 is a bound pair with a total virial mass of approximately 4 x 10(exp 15) solar mass/h, while A2063 and MKW3S are very unlikely to be bound.
Aldolase as a Chirality Intersection of L-Amino Acids and D-Sugars
NASA Astrophysics Data System (ADS)
Munegumi, Toratane
2015-06-01
Aldolase plays an important role in glycolysis and gluconeogenesis to produce D-fructose-1,6-bisphosphate (D-FBP) from dihydroxyacetone phosphate (DHP) and D-glyceraldehyde-3-phosphate (D-GAP). This reaction is stereoselective and retains the D-GAP 2R configuration and yields D-FBP (with the configuration: 3S, 4S, 5R). The 3- and 4-position carbons are the newly formed chiral carbons because the 5-position carbon of D-FBP comes from the 2-position of D-GAP. Although four diastereomeric products, ( 3S, 4R, 5R), ( 3R, 4R, 5R), ( 3R, 4S, 5R), ( 3S, 4S, 5R), are expected in the nonenzymatic reaction, only the ( 3S, 4S, 5R) diastereomer (D-FBP) is obtained. Therefore, the chirality in the 3- and 4-positions is induced by the chirality of the enzyme composed of L-amino acid residues. D-Glucose-6-phosphate (D-G6P), which is generated from D-FBP in the gluconeogenesis pathway, produces D-ribose-5-phosphate (D-R5P) in the pentose phosphate pathway. D-R5P is converted to PRPP (5-phosphoribosyl-α-pyrophosphate), which is used for the de novo synthesis of nucleotides. Ribonucleic acid (RNA) uses the nucleotides as building blocks. The configurations of the 4R-carbon and of the 3S-carbon are retained. The stereochemical structure of RNA is based on 3S as well as 4R (D). The consideration above suggests that aldolase is a key enzyme that determines the 3S configuration in D-R5P. It is thus a chirality intersection between amino acids and sugars, because the sugar chirality is determined by the chiral environment of an L-amino acid protein, aldolase, to produce D-FBP.
NASA Astrophysics Data System (ADS)
Belashov, Vasily
We study the formation, structure, stability and dynamics of the multidimensional soliton-like beam structures forming on the low-frequency branch of oscillation in the ionospheric and magnetospheric plasma for cases when beta=4pinT/B(2) <<1 and beta>1. In first case with the conditions omega
AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures
Zambrano, Rafael; Jamroz, Michal; Szczasiuk, Agata; Pujols, Jordi; Kmiecik, Sebastian; Ventura, Salvador
2015-01-01
Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties to predict the aggregation properties of folded globular proteins, where aggregation-prone sites are often not contiguous in sequence or buried inside the native structure. The AGGRESCAN3D (A3D) server overcomes these limitations by taking into account the protein structure and the experimental aggregation propensity scale from the well-established AGGRESCAN method. Using the A3D server, the identified aggregation-prone residues can be virtually mutated to design variants with increased solubility, or to test the impact of pathogenic mutations. Additionally, A3D server enables to take into account the dynamic fluctuations of protein structure in solution, which may influence aggregation propensity. This is possible in A3D Dynamic Mode that exploits the CABS-flex approach for the fast simulations of flexibility of globular proteins. The A3D server can be accessed at http://biocomp.chem.uw.edu.pl/A3D/. PMID:25883144
Dynamic representation of 3D auditory space in the midbrain of the free-flying echolocating bat
2018-01-01
Essential to spatial orientation in the natural environment is a dynamic representation of direction and distance to objects. Despite the importance of 3D spatial localization to parse objects in the environment and to guide movement, most neurophysiological investigations of sensory mapping have been limited to studies of restrained subjects, tested with 2D, artificial stimuli. Here, we show for the first time that sensory neurons in the midbrain superior colliculus (SC) of the free-flying echolocating bat encode 3D egocentric space, and that the bat’s inspection of objects in the physical environment sharpens tuning of single neurons, and shifts peak responses to represent closer distances. These findings emerged from wireless neural recordings in free-flying bats, in combination with an echo model that computes the animal’s instantaneous stimulus space. Our research reveals dynamic 3D space coding in a freely moving mammal engaged in a real-world navigation task. PMID:29633711
Cyclo[n]pyrroles: Size and Site Specific Binding to G-Quadruplexes
Baker, Erin Shammel; Lee, Jeong T.
2014-01-01
Inhibiting the enzyme telomerase by stabilizing the G-quadruplex has potential in anticancer drug design. Diprotonated cyclo[n]pyrroles represent a set of expanded porphyrin analogues with structures similar to telomestatin, a natural product known to bind to and stabilize G-quadruplexes. As a first step towards testing whether cyclo[n]pyrroles display a similar function, a series of diprotonated cyclo[n]pyrroles (where n = 6, 7 and 8) was each added to the human telomere repeat sequence d(T2AG3)4 and examined with mass spectrometry, ion mobility and molecular dynamics calculations. Nano-ESI-MS indicated that the smaller the cyclo[n]pyrrole, the stronger it binds to the telomeric sequence. It was also found that cyclo[6]pyrrole bound to d(T2AG3)4 better than octaethylporphyrin, a finding rationalized by cyclo[6]pyrrole having a +2 charge, while octaethylporphyrin bears no charge. Ion mobility measurements were used to measure the collision cross section of each d(T2AG3)4/cyclo[n]pyrrole complex. Only one peak was observed in the arrival time distributions for all complexes and the experimental cross sections indicated that only structures with d(T2AG3)4 in an antiparallel G-quadruplex arrangement and each cyclo[n]pyrrole externally stacked below the G-quartets occur under these experimental conditions. When the cyclo[n]pyrroles were intercalated or nonspecifically bound to the quadruplex or if different conformations than antiparallel were considered for d(T2AG3)4, the theoretical cross sections did not match experiment. On this basis, it is inferred that 1) external stacking represents the dominant binding mode for the interaction of cyclo[n]pyrroles with d(T2AG3)4 and 2) the overall size and charge of the cyclo[n]pyrroles play important roles in defining the binding strength. PMID:16492050
Integrating protein structural dynamics and evolutionary analysis with Bio3D.
Skjærven, Lars; Yao, Xin-Qiu; Scarabelli, Guido; Grant, Barry J
2014-12-10
Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution. Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case. The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/ .
Potential Energy Surfaces and Dynamics for Energetic Ionic Liquids
2012-04-09
advantage of such architectures12. Very recently, we have implemented the FMO method on the BG/ P system at Argonne National Laboratory, demonstrating that...Molecular Orbital Method”, J. Comp. Theoret. Chem., 6, 1 (2010). 4. T. Nagata, D . Fedorov, K. Kitaura, and M.S. Gordon, “A Combined Effective Fragment...Chem., 3, 177 (2007). 6. T. Nagata, D . Fedorov, K. Kitaura, and M.S. Gordon, “A Combined Effective Fragment Potential - Fragment Molecular Orbital
Martyr-Koller, R.C.; Kernkamp, H.W.J.; Van Dam, Anne A.; Mick van der Wegen,; Lucas, Lisa; Knowles, N.; Jaffe, B.; Fregoso, T.A.
2017-01-01
A linked modeling approach has been undertaken to understand the impacts of climate and infrastructure on aquatic ecology and water quality in the San Francisco Bay-Delta region. The Delft3D Flexible Mesh modeling suite is used in this effort for its 3D hydrodynamics, salinity, temperature and sediment dynamics, phytoplankton and water-quality coupling infrastructure, and linkage to a habitat suitability model. The hydrodynamic model component of the suite is D-Flow FM, a new 3D unstructured finite-volume model based on the Delft3D model. In this paper, D-Flow FM is applied to the San Francisco Bay-Delta to investigate tidal, seasonal and annual dynamics of water levels, river flows and salinity under historical environmental and infrastructural conditions. The model is driven by historical winds, tides, ocean salinity, and river flows, and includes federal, state, and local freshwater withdrawals, and regional gate and barrier operations. The model is calibrated over a 9-month period, and subsequently validated for water levels, flows, and 3D salinity dynamics over a 2 year period.Model performance was quantified using several model assessment metrics and visualized through target diagrams. These metrics indicate that the model accurately estimated water levels, flows, and salinity over wide-ranging tidal and fluvial conditions, and the model can be used to investigate detailed circulation and salinity patterns throughout the Bay-Delta. The hydrodynamics produced through this effort will be used to drive affiliated sediment, phytoplankton, and contaminant hindcast efforts and habitat suitability assessments for fish and bivalves. The modeling framework applied here will serve as a baseline to ultimately shed light on potential ecosystem change over the current century.
NASA Astrophysics Data System (ADS)
Martyr-Koller, R. C.; Kernkamp, H. W. J.; van Dam, A.; van der Wegen, M.; Lucas, L. V.; Knowles, N.; Jaffe, B.; Fregoso, T. A.
2017-06-01
A linked modeling approach has been undertaken to understand the impacts of climate and infrastructure on aquatic ecology and water quality in the San Francisco Bay-Delta region. The Delft3D Flexible Mesh modeling suite is used in this effort for its 3D hydrodynamics, salinity, temperature and sediment dynamics, phytoplankton and water-quality coupling infrastructure, and linkage to a habitat suitability model. The hydrodynamic model component of the suite is D-Flow FM, a new 3D unstructured finite-volume model based on the Delft3D model. In this paper, D-Flow FM is applied to the San Francisco Bay-Delta to investigate tidal, seasonal and annual dynamics of water levels, river flows and salinity under historical environmental and infrastructural conditions. The model is driven by historical winds, tides, ocean salinity, and river flows, and includes federal, state, and local freshwater withdrawals, and regional gate and barrier operations. The model is calibrated over a 9-month period, and subsequently validated for water levels, flows, and 3D salinity dynamics over a 2 year period. Model performance was quantified using several model assessment metrics and visualized through target diagrams. These metrics indicate that the model accurately estimated water levels, flows, and salinity over wide-ranging tidal and fluvial conditions, and the model can be used to investigate detailed circulation and salinity patterns throughout the Bay-Delta. The hydrodynamics produced through this effort will be used to drive affiliated sediment, phytoplankton, and contaminant hindcast efforts and habitat suitability assessments for fish and bivalves. The modeling framework applied here will serve as a baseline to ultimately shed light on potential ecosystem change over the current century.
UV-LIGA Microfabrication of 220 GHz Sheet Beam Amplifier Gratings with SU-8 Photoresists
2010-01-01
4 4 4a Diethyl ether 3d, RT 0 Tetrahydrofuran (THF) 3d, RT 1 2 4 3 3 Py + pyridinium (Pym) HBr crystals 2d, RT 1 2 3 2 Py + Pym HCl crystals 2d, RT 1...1 1 Acetone + Pym HBr crystals 2d, RT 1 0 Pym dichromate in Py 2d, RT 1 2 1 Pym chlorochromate in Py 2d, RT 4 1 2 1a Propylamine (PA) 2d, RT 1 2 3 2
Chen, Yi-Chun; Chang, Yao-Tsung; Chang, Yung-Sheng; Huang, Chun-Hao; Chuang, Woei-Jer
2012-01-01
Rhodostomin (Rho) is an RGD protein that specifically inhibits integrins. We found that Rho mutants with the P48A mutation 4.4–11.5 times more actively inhibited integrin α5β1. Structural analysis showed that they have a similar 3D conformation for the RGD loop. Docking analysis also showed no difference between their interactions with integrin α5β1. However, the backbone dynamics of RGD residues were different. The values of the R2 relaxation parameter for Rho residues R49 and D51 were 39% and 54% higher than those of the P48A mutant, which caused differences in S2, Rex, and τe. The S2 values of the P48A mutant residues R49, G50, and D51 were 29%, 14%, and 28% lower than those of Rho. The Rex values of Rho residues R49 and D51 were 0.91 s−1 and 1.42 s−1; however, no Rex was found for those of the P48A mutant. The τe values of Rho residues R49 and D51 were 9.5 and 5.1 times lower than those of P48A mutant. Mutational study showed that integrin α5β1 prefers its ligands to contain (G/A)RGD but not PRGD sequences for binding. These results demonstrate that the N-terminal proline residue adjacent to the RGD motif affect its function and dynamics, which suggests that the dynamic properties of the RGD motif may be important in Rho's interaction with integrin α5β1. PMID:22238583
NASA Astrophysics Data System (ADS)
Andonov, Zdravko
This R&D represent innovative multidimensional 6D-N(6n)D Space-Time (S-T) Methodology, 6D-6nD Coordinate Systems, 6D Equations, new 6D strategy and technology for development of Planetary Space Sciences, S-T Data Management and S-T Computational To-mography. . . The Methodology is actual for brain new RS Microwaves' Satellites and Compu-tational Tomography Systems development, aimed to defense sustainable Earth, Moon, & Sun System evolution. Especially, extremely important are innovations for monitoring and protec-tion of strategic threelateral system H-OH-H2O Hydrogen, Hydroxyl and Water), correspond-ing to RS VHRS (Very High Resolution Systems) of 1.420-1.657-22.089GHz microwaves. . . One of the Greatest Paradox and Challenge of World Science is the "transformation" of J. L. Lagrange 4D Space-Time (S-T) System to H. Minkovski 4D S-T System (O-X,Y,Z,icT) for Einstein's "Theory of Relativity". As a global result: -In contemporary Advanced Space Sciences there is not real adequate 4D-6D Space-Time Coordinate System and 6D Advanced Cosmos Strategy & Methodology for Multidimensional and Multitemporal Space-Time Data Management and Tomography. . . That's one of the top actual S-T Problems. Simple and optimal nD S-T Methodology discovery is extremely important for all Universities' Space Sci-ences' Education Programs, for advances in space research and especially -for all young Space Scientists R&D!... The top ten 21-Century Challenges ahead of Planetary and Space Sciences, Space Data Management and Computational Space Tomography, important for successfully de-velopment of Young Scientist Generations, are following: 1. R&D of W. R. Hamilton General Idea for transformation all Space Sciences to Time Sciences, beginning with 6D Eukonal for 6D anisotropic mediums & velocities. Development of IERS Earth & Space Systems (VLBI; LLR; GPS; SLR; DORIS Etc.) for Planetary-Space Data Management & Computational Planetary & Space Tomography. 2. R&D of S. W. Hawking Paradigm for 2D Complex Time and Quan-tum Wave Cosmology Paradigm for Decision of the Main Problem of Contemporary Physics. 3. R&D of Einstein-Minkowski Geodesies' Paradigm in the 4D-Space-Time Continuum to 6D-6nD Space-Time Continuum Paradigms and 6D S-T Equations. . . 4. R&D of Erwin Schrüdinger 4D S-T Universe' Evolutional Equation; It's David Bohm 4D generalization for anisotropic mediums and innovative 6D -for instantaneously quantum measurement -Bohm-Schrüdinger 6D S-T Universe' Evolutional Equation. 5. R&D of brain new 6D Planning of S-T Experi-ments, brain new 6D Space Technicks and Space Technology Generalizations, especially for 6D RS VHRS Research, Monitoring and 6D Computational Tomography. 6. R&D of "6D Euler-Poisson Equations" and "6D Kolmogorov Turbulence Theory" for GeoDynamics and for Space Dynamics as evolution of Gauss-Riemann Paradigms. 7. R&D of N. Boneff NASA RD for Asteroid "Eros" & Space Science' Laws Evolution. 8. R&D of H. Poincare Paradigm for Nature and Cosmos as 6D Group of Transferences. 9. R&D of K. Popoff N-Body General Problem & General Thermodynamic S-T Theory as Einstein-Prigogine-Landau' Paradigms Development. ü 10. R&D of 1st GUT since 1958 by N. S. Kalitzin (Kalitzin N. S., 1958: Uber eine einheitliche Feldtheorie. ZAHeidelberg-ARI, WZHUmnR-B., 7 (2), 207-215) and "Multitemporal Theory of Relativity" -With special applications to Photon Rockets and all Space-Time R&D. GENERAL CONCLUSION: Multidimensional Space-Time Methodology is advance in space research, corresponding to the IAF-IAA-COSPAR Innovative Strategy and R&D Programs -UNEP, UNDP, GEOSS, GMES, Etc.
Spin dynamics of qqq wave function on light front in high momentum limit of QCD: Role of qqq force
NASA Astrophysics Data System (ADS)
Mitra, A. N.
2008-04-01
The contribution of a spin-rich qqq force (in conjunction with pairwise qq forces) to the analytical structure of the qqq wave function is worked out in the high momentum regime of QCD where the confining interaction may be ignored, so that the dominant effect is Coulombic. A distinctive feature of this study is that the spin-rich qqq force is generated by a ggg vertex (a genuine part of the QCD Lagrangian) wherein the 3 radiating gluon lines end on as many quark lines, giving rise to a (Mercedes-Benz type) Y-shaped diagram. The dynamics is that of a Salpeter-like equation (3D support for the kernel) formulated covariantly on the light front, a la Markov-Yukawa Transversality Principle (MYTP) which warrants a 2-way interconnection between the 3D and 4D Bethe-Salpeter (BSE) forms for 2 as well as 3 fermion quarks. With these ingredients, the differential equation for the 3D wave function ϕ receives well-defined contributions from the qq and qqq forces. In particular a negative eigenvalue of the spin operator iσ1 · σ2 × σ3 which is an integral part of the qqq force, causes a characteristic singularity in the differential equation, signalling the dynamical effect of a spin-rich qqq force not yet considered in the literature. The potentially crucial role of this interesting effect vis-a-vis the so-called 'spin anomaly' of the proton, is a subject of considerable physical interest.
An evaluation of 3-D traffic simulation modeling capabilities
DOT National Transportation Integrated Search
2007-06-01
The use of 3D modeling in simulation has become the standard for both the military and private sector. Compared to physical models, 3D models are more affordable, more flexible, and can incorporate complex operations. Unlike a physical model, a dynam...
3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xing; Zhang, Lei; Tong, Huimin
2015-05-05
Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less
Last, Isidore; Jortner, Joshua
2004-11-01
In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for I< or =10(17) W cm(-2)), and the attainment of cluster vertical ionization (CVI) (at I=10(17) W cm(-2) for cluster radius R(0)< or =31 A). Nuclear kinematic effects on heterocluster Coulomb explosion are governed by the kinematic parameter eta=q(C)m(A)/q(A)m(C) for (CA(4))(n) clusters (A=H,D), where q(j) and m(j) (j=A,C) are the ionic charges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)< or =E(j,M). These results for uniform Coulomb explosion serve as benchmark reference data for the assessment of the effects of nonuniform explosion, where the CVI scaling law for the energetics still holds, with deviations of the a coefficient, which increase with increasing eta. Kinematic effects (for eta>1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters. Kinematic effects for nonuniform explosion also result in a narrow isotope dependent energy distribution (of width DeltaE) of the light ions (with DeltaE/E(H,av) approximately 0.3 and DeltaE/E(D,av) approximately 0.4), with the distribution peaking at the high energy edge, in marked contrast with the uniform explosion case. Features of laser-heterocluster interactions were inferred from the analyses of the intensity dependent boundary radii (R(0))(I) and the corresponding average D+ ion energies (E(D,av))(I), which provide a measure for optimization of the cluster size at intensity I for the neutron yield from dd nuclear fusion driven by Coulomb explosion (NFDCE) of these heteroclusters. We infer on the advantage of deuterium containing heteronuclear clusters, e.g., (CD4)(n) in comparison to homonuclear clusters, e.g., (D2)(n/2), for dd NFDCE, where the highly charged heavy ions (e.g., C4+ or C6+) serve as energetic and kinematic triggers driving the D+ ions to a high (10-200 keV) energy domain. (c) 2004 American Institute of Physics.
Update: Advancement of Contact Dynamics Modeling for Human Spaceflight Simulation Applications
NASA Technical Reports Server (NTRS)
Brain, Thomas A.; Kovel, Erik B.; MacLean, John R.; Quiocho, Leslie J.
2017-01-01
Pong is a new software tool developed at the NASA Johnson Space Center that advances interference-based geometric contact dynamics based on 3D graphics models. The Pong software consists of three parts: a set of scripts to extract geometric data from 3D graphics models, a contact dynamics engine that provides collision detection and force calculations based on the extracted geometric data, and a set of scripts for visualizing the dynamics response with the 3D graphics models. The contact dynamics engine can be linked with an external multibody dynamics engine to provide an integrated multibody contact dynamics simulation. This paper provides a detailed overview of Pong including the overall approach and modeling capabilities, which encompasses force generation from contact primitives and friction to computational performance. Two specific Pong-based examples of International Space Station applications are discussed, and the related verification and validation using this new tool are also addressed.
Chang, I-Ya; Kim, DaeGwi; Hyeon-Deuk, Kim
2017-09-20
The possibility of precisely manipulating interior nanospace, which can be adjusted by ligand-attaching down to the subnanometer regime, in a hyperstructured quantum dot (QD) superlattice (QDSL) induces a new kind of collective resonant coupling among QDs and opens up new opportunities for developing advanced optoelectric and photovoltaic devices. Here, we report the first real-time dynamics simulations of the multiple exciton generation (MEG) in one-, two-, and three-dimensional (1D, 2D, and 3D) hyperstructured H-passivated Si QDSLs, accounting for thermally fluctuating band energies and phonon dynamics obtained by finite-temperature ab initio molecular dynamics simulations. We computationally demonstrated that the MEG was significantly accelerated, especially in the 3D QDSL compared to the 1D and 2D QDSLs. The MEG acceleration in the 3D QDSL was almost 1.9 times the isolated QD case. The dimension-dependent MEG acceleration was attributed not only to the static density of states but also to the dynamical electron-phonon couplings depending on the dimensionality of the hyperstructured QDSL, which is effectively controlled by the interior nanospace. Such dimension-dependent modifications originated from the short-range quantum resonance among component QDs and were intrinsic to the hyperstructured QDSL. We propose that photoexcited dynamics including the MEG process can be effectively controlled by only manipulating the interior nanospace of the hyperstructured QDSL without changing component QD size, shape, compositions, ligand, etc.
Theoretical Analysis of Novel Quasi-3D Microscopy of Cell Deformation
Qiu, Jun; Baik, Andrew D.; Lu, X. Lucas; Hillman, Elizabeth M. C.; Zhuang, Zhuo; Guo, X. Edward
2012-01-01
A novel quasi-three-dimensional (quasi-3D) microscopy technique has been developed to enable visualization of a cell under dynamic loading in two orthogonal planes simultaneously. The three-dimensional (3D) dynamics of the mechanical behavior of a cell under fluid flow can be examined at a high temporal resolution. In this study, a numerical model of a fluorescently dyed cell was created in 3D space, and the cell was subjected to uniaxial deformation or unidirectional fluid shear flow via finite element analysis (FEA). Therefore, the intracellular deformation in the simulated cells was exactly prescribed. Two-dimensional fluorescent images simulating the quasi-3D technique were created from the cell and its deformed states in 3D space using a point-spread function (PSF) and a convolution operation. These simulated original and deformed images were processed by a digital image correlation technique to calculate quasi-3D-based intracellular strains. The calculated strains were compared to the prescribed strains, thus providing a theoretical basis for the measurement of the accuracy of quasi-3D and wide-field microscopy-based intracellular strain measurements against the true 3D strains. The signal-to-noise ratio (SNR) of the simulated quasi-3D images was also modulated using additive Gaussian noise, and a minimum SNR of 12 was needed to recover the prescribed strains using digital image correlation. Our computational study demonstrated that quasi-3D strain measurements closely recovered the true 3D strains in uniform and fluid flow cellular strain states to within 5% strain error. PMID:22707985
An Evaluative Review of Simulated Dynamic Smart 3d Objects
NASA Astrophysics Data System (ADS)
Romeijn, H.; Sheth, F.; Pettit, C. J.
2012-07-01
Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.
Motion compensation for fully 4D PET reconstruction using PET superset data
NASA Astrophysics Data System (ADS)
Verhaeghe, J.; Gravel, P.; Mio, R.; Fukasawa, R.; Rosa-Neto, P.; Soucy, J.-P.; Thompson, C. J.; Reader, A. J.
2010-07-01
Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for 18F-FDG obtained from Patlak analysis.
Motion compensation for fully 4D PET reconstruction using PET superset data.
Verhaeghe, J; Gravel, P; Mio, R; Fukasawa, R; Rosa-Neto, P; Soucy, J-P; Thompson, C J; Reader, A J
2010-07-21
Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for (18)F-FDG obtained from Patlak analysis.
Triterpenoid saponins from the root of Anemone tomentosa.
Wang, Yi; Kang, Wei; Hong, Liang-jian; Hai, Wen-li; Wang, Xiao-yang; Tang, Hai-feng; Tian, Xiang-rong
2013-01-01
Three new triterpenoid saponins, tomentoside A (1), B (2) and C (3), along with four known saponins (4-7) were isolated from the root of Anemone tomentosa. The structures of the new compounds were elucidated as 3-O-β-D-ribopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-α-L-arabinopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (1), 3-O-β-D-ribopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (2) and 3-O-β-D-galactopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyl oleanolic acid 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (3) on the basis of chemical and spectral evidence. In the oligosaccharide chains of compound 3, the characteristic D-galactose residue is a rare structural feature and secondly encountered among triterpenoid saponins from Anemone.
2D-Raman-THz spectroscopy: A sensitive test of polarizable water models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, Peter, E-mail: peter.hamm@chem.uzh.ch
2014-11-14
In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essentialmore » to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.« less
NASA Astrophysics Data System (ADS)
Reddikumar, Maddipatla; Tanabe, Ayano; Hashimoto, Nobuyuki; Cense, Barry
2017-02-01
An optical coherence tomography (OCT) system with a 2.8-mm beam diameter is presented. Sensorless defocus correction can be performed with a Badal optometer and astigmatism correction with a liquid crystal device. OCT B-scans were used in an image-based optimization algorithm for aberration correction. Defocus can be corrected from -4.3 D to +4.3 D and vertical and oblique astigmatism from -2.5 D to +2.5 D. A contrast gain of 6.9 times was measured after aberration correction. In comparison with a 1.3-mm beam diameter OCT system, this concept achieved a 3.7-dB gain in dynamic range on a model retina. Both systems were used to image the retina of a human subject. As the correction of the liquid crystal device can take more than 60 s, the subject's spectacle prescription was adopted instead. This resulted in a 2.5 times smaller speckle size compared with the standard OCT system. The liquid crystal device for astigmatism correction does not need a high-voltage amplifier and can be operated at 5 V. The correction device is small (9 mm×30 mm×38 mm) and can easily be implemented in existing designs for OCT.
2002-01-01
Thermal Conductivity Enhancement by Optical Phono n Sub-Band Engineering of Nanostructures Based on C and BN DARPA CONTRACT MDA972-02-C-0044... Engineering in 3-D Nanostructures Based on C an d BN Nanotubes " 1.3.1a. Phonon dynamics and thermal properties of zigzag carbon nanotubes Content I...Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3-D Nanostructure s Based on C and BN Nanotubes " . Here, the dynamics of the heat
Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids
NASA Astrophysics Data System (ADS)
Dinic, Jelena; Sharma, Vivek
Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.
Investigation of co-flow jet flow control and its applications
NASA Astrophysics Data System (ADS)
Lefebvre, Alexis M.
This thesis investigates the performance of co-flow jet (CFJ) flow control and its applications using experimental testing and computational fluid dynamics (CFD) simulations. For a stationary airfoil and wing, CFJ increases the lift coefficient (CL), reduces the drag and may produce thrust at a low angle of attack (AoA). The maximum lift coefficient is substantially increased for a 2D CFJ airfoil and reaches a value of 4.8 at Cmicro = 0.30. The power consumption of the CFJ pump, measured by the power coefficient (Pc), is influenced by a variety of parameters, including the momentum coefficient (C micro ), the AoA, the injection slot location, and the internal cavity configuration. A low Cmicro of 0.04 produces a rather small Pc in the range of 0.01--0.02 while a higher Cmicro rapidly increases the Pc. Due to the stronger leading edge suction effect, increasing the AoA decreases the Pc. That is until the flow is near separation, within about 2°--3° of the stall AoA. An injection slot location within 2%--5% chord from the leading edge very effectively reduces the power coefficient. An internal cavity design with no separation is crucial to minimize the CFJ power consumption. Overall, the CFJ effectiveness is enhanced with an increasing Mach number as long as the flow remains subsonic, typically with free stream Mach number less than 0.4. Two pitching airfoil oscillations with dynamic stall are studied in this thesis, namely the mild dynamic stall and the deep dynamic stall. At Mach 0.3, the CFJ with a relatively low Cmicro of 0.08 removes the mild dynamic stall. Thereby, the time-averaged lift is increased by 32% and the time-averaged drag is decreased by 80%. The resulting time-averaged aerodynamic (L/D)ave, which does not take the pumping power into account, reaches 118.3. When C micro is increased, the time-averaged drag becomes negative, which demonstrates the feasibility of a CFJ to propel helicopter blades using its pump as the only source of power. The deep-stall is mitigated at Cmicro = 0.12 and completely removed at C micro = 0.20 with a great L/D)ave increase. At Mach 0.4, the CFJ mitigates the mild dynamic stall. However, the energy consumption is higher than at Mach 0.3 due to the appearance of shock waves in the flow. A 3D CFJ wing based on NACA 6415 airfoil with an aspect ratio of 20 produces a maximum L/D of 38.5 at a remarkably high cruise CL of 1.20 with an AoA of 5.0° and a low Cmicro of 0.04. The takeoff and landing performance is also excellent with a maximum C L of 4.7 achieved atCmicro of 0.28 and AoA of 40.0°. When the wing thickness is increased from 15% to 21%, not only the lift is increased by about 5% but the structural strength is also improved. Overall the CFJ wing efficiency is found to be similar to that of conventional wings, but the lift coefficient at cruise condition is much higher, typically by 2--3 times. In the final study of this thesis, a CFJ Electric Aircraft (CFJ-EA) is designed for the general aviation. The aircraft has a high wing loading so that it can carry more battery and reach a longer range with a relatively small wing size. The CFJ-EA cruises at a very high C L of 1.3, which produces a wing loading of 182.3kg /m2, about 3 times higher than that of a conventional general aviation airplane. To determine the aircraft range and endurance, we introduce the corrected aerodynamic efficiency ( L/D)c defined as (L/D) c = L/(D+P/V infinity), where the L and D are the aerodynamic lift and drag, P is the CFJ pumping power and Vinfinity is the free stream velocity. The (L/D)c of the CFJ-EA is excellent with a cruise value of 23.5 at a low C micro of 0.04. Takeoff and landing distances are also good due to a very high maximum CL of 4.8, achieved with a high Cmicro of 0.28. During takeoff and landing, the wing pivots around its 1/4 chord axis so that it can achieve an AoA of 25.0° with the fuselage rotated by only 5.0°. Based on a measure of merit defined as MPS=Miles*Passengers/S, where S is the wing planform area, the MPS of the present EA design is about half that of a conventional reciprocating engine general aviation airplane, and is 1.5 to 2.5 times greater than the MPS of the state of the art EA. (Abstract shortened by UMI.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soummer, Remi; Hagan, J. Brendan; Pueyo, Laurent
2011-11-01
HR 8799 is currently the only multiple-planet system that has been detected with direct imaging, with four giant planets of masses 7-10 M{sub Jup} orbiting at large separations (15-68 AU) from this young late A star. Orbital motion provides insight into the stability and possible formation mechanisms of this planetary system. Dynamical studies can also provide constraints on the planets' masses, which help calibrate evolutionary models, yet measuring the orbital motion is a very difficult task because the long-period orbits (50-500 yr) require long time baselines and high-precision astrometry. This paper studies the three planets HR 8799b, c, and dmore » in the archival data set of HR 8799 obtained with the Hubble Space Telescope (HST) NICMOS coronagraph in 1998. The detection of all three planets is made possible by a careful optimization of the Locally Optimized Combination of Images algorithm, and we used a statistical analysis of a large number of reduced images. This work confirms previous astrometry for planet b and presents new detections and astrometry for planets c and d. These HST images provide a ten-year baseline with the discovery images from 2008, and therefore offer a unique opportunity to constrain their orbital motion now. Recent dynamical studies of this system show the existence of a few possible stable solutions involving mean motion resonances (MMRs), where the interaction between c and d plays a major role. We study the compatibility of a few of these stable scenarios (1d:1c, 1d:2c, or 1d:2c:4d) with the new astrometric data from HST. In the hypothesis of a 1d:2c:4b MMR our best orbit fit is close to the stable solution previously identified for a three-planet system and involves low eccentricity for planet d (e{sub d} = 0.10) and moderate inclination of the system (i = 28.0 deg), assuming a coplanar system, circular orbits for b and c, and exact resonance with integer period ratios. Under these assumptions, we can place strong constraints on the inclination of the system (27.3-31.4 deg) and on the eccentricity for d e{sub d} < 0.46. Our results are robust to small departures from exact integer period ratios and consistent with previously published results based on dynamical studies for a three-planet system prior to the discovery of the fourth planet.« less
Molecular dynamic simulations of selective self-diffusion of CH4/CO2/H2O/N2 in coal
NASA Astrophysics Data System (ADS)
Song, Y.; Jiang, B.; Li, F. L.
2017-06-01
The self-diffusion coefficients (D) of CH4/CO2/H2O/N2 at a relatively broad range of temperatures(298.15∼ 458.15K)and pressures (1∼6MPa) under the NPT, NPH, NVE, and NVT ensembles were obtained after the calculations of molecular mechanics(MM), annealing kinetics(AK), giant canonical Monte Carlo(GCMC), and molecular dynamics (MD) based on Wiser bituminous coal model (WM). The Ds of the adsorbates at the saturated adsorption configurations are D CH4
D Animation Reconstruction from Multi-Camera Coordinates Transformation
NASA Astrophysics Data System (ADS)
Jhan, J. P.; Rau, J. Y.; Chou, C. M.
2016-06-01
Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP) in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australiscoded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.
NASA Astrophysics Data System (ADS)
Jing, Lin; Su, Xingya; Zhao, Longmao
The dynamic compressive behavior of D1 railway wheel steel at high strain rates was investigated using a split Hopkinson pressure bar (SHPB) apparatus. Three types of specimens, which were derived from the different positions (i.e., the rim, web and hub) of a railway wheel, were tested over a wide range of strain rates from 10-3 s-1 to 2.4 × 103 s-1 and temperatures from 213 K to 973 K. Influences of the strain rate and temperature on flow stress were discussed, and rate- and temperature-dependent constitutive relationships were assessed by the Cowper-Symonds model, Johnson-Cook model and a physically-based model, respectively. The experimental results show that the compressive true stress versus true strain response of D1 wheel steel is strain rate-dependent, and the strain hardening rate during the plastic flow stage decreases with the elevation of strain rate. Besides, the D1 wheel steel displays obvious temperature-dependence, and the third-type strain aging (3rd SA) is occurred at the temperature region of 673-973 K at a strain rate of ∼1500 s-1. Comparisons of experimental results with theoretical predictions indicate that the physically-based model has a better prediction capability for the 3rd SA characteristic of the tested D1 wheel steel.
NASA Astrophysics Data System (ADS)
Shukla, Pramod
2011-01-01
In the context of Type IIB compactified on a large volume Swiss-Cheese orientifold in the presence of a mobile space-time filling D3-brane and stacks of fluxed D7-branes wrapping the "big" divisor Σ B of a Swiss-Cheese Calabi Yau in WCP 4[1, 1, 1, 6, 9], we explore various implications of moduli dynamics and discuss their couplings and decay into MSSM (-like) matter fields early in the history of universe to reach thermal equilibrium. Like finite temperature effects in O'KKLT, we observe that the local minimum of zero-temperature effective scalar potential is stable against any finite temperature corrections (up to two-loops) in large volume scenarios as well. Also we find that moduli are heavy enough to avoid any cosmological moduli problem.
Conformation of repaglinide: A solvent dependent structure
NASA Astrophysics Data System (ADS)
Chashmniam, Saeed; Tafazzoli, Mohsen
2017-09-01
Experimental and theoretical conformational study of repaglinide in chloroform and dimethyl sulfoxide was investigated. By applying potential energy scanning (PES) at B3LYP/6-311++g** and B3LYP-D3/6-311++g** level of theory on rotatable single bonds, four stable conformers (R1-R4) were identified. Spin-spin coupling constant values were obtained from a set of 2D NMR spectra (Hsbnd H COSY, Hsbnd C HMQC and Hsbnd C HMBC) and compared to its calculated values. Interestingly, from 1HNMR and 2D-NOESY NMR, it has been found that repaglinide structure is folded in CDCl3 and cause all single bonds to rotate at an extremely slow rate. On the other hand, in DMSO-d6, with strong solvent-solute intermolecular interactions, the single bonds rotate freely. Also, energy barrier and thermodynamic parameters for chair to chair interconversion was measured (13.04 kcal mol-1) in CDCl3 solvent by using temperature dynamic NMR.
The XTT Cell Proliferation Assay Applied to Cell Layers Embedded in Three-Dimensional Matrix
Huyck, Lynn; Ampe, Christophe
2012-01-01
Abstract Cell proliferation, a main target in cancer therapy, is influenced by the surrounding three-dimensional (3D) extracellular matrix (ECM). In vitro drug screening is, thus, optimally performed under conditions in which cells are grown (embedded or trapped) in dense 3D matrices, as these most closely mimic the adhesive and mechanical properties of natural ECM. Measuring cell proliferation under these conditions is, however, technically more challenging compared with two-dimensional (2D) culture and other “3D culture conditions,” such as growth on top of a matrix (pseudo-3D) or in spongy scaffolds with large pore sizes. Consequently, such measurements are only slowly applied on a wider scale. To advance this, we report on the equal quality (dynamic range, background, linearity) of measuring the proliferation of cell layers embedded in dense 3D matrices (collagen, Matrigel) compared with cells in 2D culture using the easy (one-step) and in 2D well-validated, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)-assay. The comparison stresses the differences in proliferation kinetics and drug sensitivity of matrix-embedded cells versus 2D culture. Using the specific cell-layer-embedded 3D matrix setup, quantitative measurements of cell proliferation and cell invasion are shown to be possible in similar assay conditions, and cytostatic, cytotoxic, and anti-invasive drug effects can thus be reliably determined and compared in physiologically relevant settings. This approach in the 3D matrix holds promise for improving early-stage, high-throughput drug screening, targeting either highly invasive or highly proliferative subpopulations of cancers or both. PMID:22574651
Diagnosis of fetal syndromes by three- and four-dimensional ultrasound: is there any improvement?
Barišić, Lara Spalldi; Stanojević, Milan; Kurjak, Asim; Porović, Selma; Gaber, Ghalia
2017-08-28
With all of our present knowledge, high technology diagnostic equipment, electronic databases and other available supporting resources, detection of fetal syndromes is still a challenge for healthcare providers in prenatal as well as in the postnatal period. Prenatal diagnosis of fetal syndromes is not straightforward, and it is a difficult puzzle that needs to be assembled and solved. Detection of one anomaly should always raise a suspicion of the existence of more anomalies, and can be a trigger to investigate further and raise awareness of possible syndromes. Highly specialized software systems for three- and four-dimensional ultrasound (3D/4D US) enabled detailed depiction of fetal anatomy and assessment of the dynamics of fetal structural and functional development in real time. With recent advances in 3D/4D US technology, antenatal diagnosis of fetal anomalies and syndromes shifted from the 2nd to the 1st trimester of pregnancy. It is questionable what can and should be done after the prenatal diagnosis of fetal syndrome. The 3D and 4D US techniques improved detection accuracy of fetal abnormalities and syndromes from early pregnancy onwards. It is not easy to make prenatal diagnosis of fetal syndromes, so tools which help like online integrated databases are needed to increase diagnostic precision. The aim of this paper is to present the possibilities of different US techniques in the detection of some fetal syndromes prenatally.
Structure and Dynamics of Cu3Au(001) Studied by Elastic and Inelastic Helium Atom Scattering
1990-01-01
longitudinal] decouple from the shear horizontal (SH) modes. Selection rules dictate that our experiment was sensitive only to sagittal modes...Hoffmann, E. Preu3, R. Franchy , H. lbach, Y. Chen, M. L. Xu, and S Y. Tong, preprint. 4. A. i. Taub, and R. L. Fleisher, Science 243, 616 (1989).: B. H. Kear... Franchy , and H. Ibach, Z. Phys. B-Condensed Matter 65, 71 (1986). 19. E. D. Hallman, Can. J. Phys. 52, 2235 (1974). 20. E. C. Svensson, E. D. Hallman
Al Hareri, M; Gavey, E L; Regier, J; Ras Ali, Z; Carlos, L D; Ferreira, R A S; Pilkington, M
2016-10-15
The first supramolecular cage formed by three benzo-15-crown-5 macrocycles encapsulating a [Dy(OH2)8](3+) guest cation is reported, with the Dy(iii) centre exhibiting local pseudo square antiprismatic D4d symmetry. The anisotropy barrier extracted from ac susceptibility studies, emission spectroscopy and ab initio calculations reveals that the second excited state Kramers doublet plays a key role in the magnetization dynamics due to the Ising character and near coparallel nature of the ground and first excited Kramers doublets.
NASA Astrophysics Data System (ADS)
Niu, Xuming; Sun, Zhigang; Song, Yingdong
2017-11-01
In this thesis, a double-scale model for 3 Dimension-4 directional(3D-4d) braided C/SiC composites(CMCs) has been proposed to investigate mechanical properties of it. The double-scale model involves micro-scale which takes fiber/matrix/porosity in fibers tows into consideration and the unit cell scale which considers the 3D-4d braiding structure. Basing on the Micro-optical photographs of composite, we can build a parameterized finite element model that reflects structure of 3D-4d braided composites. The mechanical properties of fiber tows in transverse direction are studied by combining the crack band theory for matrix cracking and cohesive zone model for interface debonding. Transverse tensile process of 3D-4d CMCs can be simulated by introducing mechanical properties of fiber tows into finite element of 3D-4d braided CMCs. Quasi-static tensile tests of 3D-4d braided CMCs have been performed with PWS-100 test system. The predicted tensile stress-strain curve by the double scale model finds good agreement with the experimental results.
Digital stereo-holographic microscopy for studying three-dimensional particle dynamics
NASA Astrophysics Data System (ADS)
Byeon, Hyeokjun; Go, Taesik; Lee, Sang Joon
2018-06-01
A digital stereo-holographic microscopy (DsHM) with two viewing angles is proposed to measure 3D information of microscale particles. This approach includes two volumetric recordings and numerical reconstruction, and it involves the combination of separately reconstructed holograms. The 3D positional information of a particle was determined by searching the center of the overlapped reconstructed volume. After confirming the proposed technique using static spherical particles, the 3D information of moving particles suspended in a Hagen-Poiseiulle flow was successfully obtained. Moreover, the 3D information of nonspherical particles, including ellipsoidal particles and red blood cells, were measured using the proposed technique. In addition to 3D positional information, the orientation and shape of the test samples were obtained from the plane images by slicing the overlapped volume perpendicular to the directions of the image recordings. This DsHM technique will be useful in analyzing the 3D dynamic behavior of various nonspherical particles, which cannot be measured by conventional digital holographic microscopy.
Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators
NASA Astrophysics Data System (ADS)
Peng, Xingyue
As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.
An Inducible Cytochrome P450 3A4-Dependent Vitamin D Catabolic Pathway
Wang, Zhican; Lin, Yvonne S.; Zheng, Xi Emily; Senn, Tauri; Hashizume, Takanori; Scian, Michele; Dickmann, Leslie J.; Nelson, Sidney D.; Baillie, Thomas A.; Hebert, Mary F.; Blough, David; Davis, Connie L.
2012-01-01
Vitamin D3 is critical for the regulation of calcium and phosphate homeostasis. In some individuals, mineral homeostasis can be disrupted by long-term therapy with certain antiepileptic drugs and the antimicrobial agent rifampin, resulting in drug-induced osteomalacia, which is attributed to vitamin D deficiency. We now report a novel CYP3A4-dependent pathway, the 4-hydroxylation of 25-hydroxyvitamin D3 (25OHD3), the induction of which may contribute to drug-induced vitamin D deficiency. The metabolism of 25OHD3 was fully characterized in vitro. CYP3A4 was the predominant source of 25OHD3 hydroxylation by human liver microsomes, with the formation of 4β,25-dihydroxyvitamin D3 [4β,25(OH)2D3] dominating (Vmax/Km = 0.85 ml · min−1 · nmol enzyme−1). 4β,25(OH)2D3 was found in human plasma at concentrations comparable to that of 1α,25-dihydroxyvitamin D3, and its formation rate in a panel of human liver microsomes was strongly correlated with CYP3A4 content and midazolam hydroxylation activity. Formation of 4β,25(OH)2D3 in primary human hepatocytes was induced by rifampin and inhibited by CYP3A4-specific inhibitors. Short-term treatment of healthy volunteers (n = 6) with rifampin selectively induced CYP3A4-dependent 4β,25(OH)2D3, but not CYP24A1-dependent 24R,25-dihydroxyvitamin D3 formation, and altered systemic mineral homeostasis. Our results suggest that CYP3A4-dependent 25OHD3 metabolism may play an important role in the regulation of vitamin D3 in vivo and in the etiology of drug-induced osteomalacia. PMID:22205755
Kozono, Naoya; Okada, Takamitsu; Takeuchi, Naohide; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Miake, Go; Nakanishi, Yoshitaka; Iwamoto, Yukihide
2017-07-01
The purpose of this study was to evaluate the kinematics of healthy shoulders during dynamic full axial rotation and scapular plane full abduction using three-dimensional (3D)-to-two-dimensional (2D) model-to-image registration techniques. Dynamic glenohumeral kinematics during axial rotation and scapular plane abduction were analysed in 10 healthy participants. Continuous radiographic images of axial rotation and scapular plane abduction were taken using a flat panel radiographic detector. The participants received a computed tomography scan to generate virtual digitally reconstructed radiographs. The density-based digitally reconstructed radiographs were then compared with the serial radiographic images acquired using image correlations. These 3D-to-2D model-to-image registration techniques determined the 3D positions and orientations of the humerus and scapula during dynamic full axial rotation and scapular plane full abduction. The humeral head centre translated an average of 2.5 ± 3.1 mm posteriorly, and 1.4 ± 1.0 mm superiorly in the early phase, then an average of 2.0 ± 0.8 mm inferiorly in the late phase during external rotation motion. The glenohumeral external rotation angle had a significant effect on the anterior/posterior (A/P) and superior/inferior (S/I) translation of the humeral head centre (both p < 0.05). 33.6 ± 15.6° of glenohumeral external rotation occurred during scapular plane abduction. The humeral head centre translated an average of 0.6 ± 0.9 mm superiorly in the early phase, then 1.7 ± 2.6 mm inferiorly in the late phase, and translated an average of 0.4 ± 0.5 mm medially in the early phase, then 1.6 ± 1.0 mm laterally in the late phase during scapular plane abduction. The humeral abduction angle had a significant effect on the S/I and lateral/medial (L/M) translation of the humeral head centre (both p < 0.05). This study investigated 3D translations of the humerus relative to the scapula: during scapular plane full abduction, the humerus rotated 33.6° externally relative to the scapula, and during external rotation motion in the adducted position, the humeral head centre translated an average of 2.5 mm posteriorly. Kinematic data will provide important insights into evaluating the kinematics of pathological shoulders. For clinical relevance, quantitative assessment of dynamic healthy shoulder kinematics might be a physiological indicator for the assessment of pathological shoulders.
3D time-lapse analysis of Rab11/FIP5 complex: spatiotemporal dynamics during apical lumen formation.
Mangan, Anthony; Prekeris, Rytis
2015-01-01
Fluorescent imaging of fixed cells grown in two-dimensional (2D) cultures is one of the most widely used techniques for observing protein localization and distribution within cells. Although this technique can also be applied to polarized epithelial cells that form three-dimensional (3D) cysts when grown in a Matrigel matrix suspension, there are still significant limitations in imaging cells fixed at a particular point in time. Here, we describe the use of 3D time-lapse imaging of live cells to observe the dynamics of apical membrane initiation site (AMIS) formation and lumen expansion in polarized epithelial cells.
3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics
NASA Astrophysics Data System (ADS)
Sison, Miguel; Chakrabortty, Sabyasachi; Extermann, Jérôme; Nahas, Amir; James Marchand, Paul; Lopez, Antonio; Weil, Tanja; Lasser, Theo
2017-02-01
We present a 3D time-lapse imaging method for monitoring mitochondrial dynamics in living HeLa cells based on photothermal optical coherence microscopy and using novel surface functionalization of gold nanoparticles. The biocompatible protein-based biopolymer coating contains multiple functional groups which impart better cellular uptake and mitochondria targeting efficiency. The high stability of the gold nanoparticles allows continuous imaging over an extended time up to 3000 seconds without significant cell damage. By combining temporal autocorrelation analysis with a classical diffusion model, we quantify mitochondrial dynamics and cast these results into 3D maps showing the heterogeneity of diffusion parameters across the whole cell volume.
NASA Astrophysics Data System (ADS)
Yaremchuk, Max; Martin, Paul; Beattie, Christopher
2017-09-01
Development and maintenance of the linearized and adjoint code for advanced circulation models is a challenging issue, requiring a significant proportion of total effort in operational data assimilation (DA). The ensemble-based DA techniques provide a derivative-free alternative, which appears to be competitive with variational methods in many practical applications. This article proposes a hybrid scheme for generating the search subspaces in the adjoint-free 4-dimensional DA method (a4dVar) that does not use a predefined ensemble. The method resembles 4dVar in that the optimal solution is strongly constrained by model dynamics and search directions are supplied iteratively using information from the current and previous model trajectories generated in the process of optimization. In contrast to 4dVar, which produces a single search direction from exact gradient information, a4dVar employs an ensemble of directions to form a subspace in order to proceed. In the earlier versions of a4dVar, search subspaces were built using the leading EOFs of either the model trajectory or the projections of the model-data misfits onto the range of the background error covariance (BEC) matrix at the current iteration. In the present study, we blend both approaches and explore a hybrid scheme of ensemble generation in order to improve the performance and flexibility of the algorithm. In addition, we introduce balance constraints into the BEC structure and periodically augment the search ensemble with BEC eigenvectors to avoid repeating minimization over already explored subspaces. Performance of the proposed hybrid a4dVar (ha4dVar) method is compared with that of standard 4dVar in a realistic regional configuration assimilating real data into the Navy Coastal Ocean Model (NCOM). It is shown that the ha4dVar converges faster than a4dVar and can be potentially competitive with 4dvar both in terms of the required computational time and the forecast skill.
New antagonists of LHRH. II. Inhibition and potentiation of LHRH by closely related analogues.
Bajusz, S; Csernus, V J; Janaky, T; Bokser, L; Fekete, M; Schally, A V
1988-12-01
Modifications of the previously described LHRH antagonists, [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Trp3, D-Cit6, D-Ala10]LHRH and the corresponding D-Hci6 analogue, have been made to alter the hydrophobicity of the N-terminal acetyl-tripeptide portion. Substitution of D-Trp3 with the less hydrophobic D-Pal(3) had only marginal effects on the antagonistic activities and receptor binding potencies of the D-Cit/D-Hci6 analogues, but it appeared to further improve the toxicity lowering effect of D-Cit/D-Hci6 substitution. Antagonists containing D-Pal(3)3 and D-Cit/D-Hci6 residues, i.e. [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Cit6, D-Ala10]LHRH (SB-75) and [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Hci6, D-Ala10]LHRH (SB-88), were completely free of the toxic effects, such as cyanosis and respiratory depression leading to death, which have been observed in rats with the D-Trp3, D-Arg6 antagonist and related antagonists. Replacement of the N-acetyl group with the hydrophilic carbamoyl group caused a slight decrease in antagonistic activities, particularly in vitro. Introduction of urethane type acyl group such as methoxycarbonyl (Moc) or t-butoxycarbonyl (Boc) led to analogues that showed LHRH-potentiating effect. The increase in potency induced by these analogues, e.g. [Moc-D-Nal(2)1, D-Phe(4Cl)2, D-Trp3, D-Cit6, D-Ala10]LHRH and [Boc-D-Phe1, D-Phe(4Cl)2, D-Pal(3)3, D-Cit6, D-Ala10]LHRH, was 170-260% and persisted for more than 2 h when studied in a superfused rat pituitary system.
3D change detection - Approaches and applications
NASA Astrophysics Data System (ADS)
Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter
2016-12-01
Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.
Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive
NASA Astrophysics Data System (ADS)
Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.
2012-03-01
High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.
Yoo, Byung-Kuk; Su, Zixue; Thomas, John Meurig; Zewail, Ahmed H.
2016-01-01
Understanding the dynamical nature of the catalytic active site embedded in complex systems at the atomic level is critical to developing efficient photocatalytic materials. Here, we report, using 4D ultrafast electron microscopy, the spatiotemporal behaviors of titanium and oxygen in a titanosilicate catalytic material. The observed changes in Bragg diffraction intensity with time at the specific lattice planes, and with a tilted geometry, provide the relaxation pathway: the Ti4+=O2− double bond transformation to a Ti3+−O1− single bond via the individual atomic displacements of the titanium and the apical oxygen. The dilation of the double bond is up to 0.8 Å and occurs on the femtosecond time scale. These findings suggest the direct catalytic involvement of the Ti3+−O1− local structure, the significance of nonthermal processes at the reactive site, and the efficient photo-induced electron transfer that plays a pivotal role in many photocatalytic reactions. PMID:26729878
Yang, Xiaoqing; Liu, Anran; Zhao, Yuewu; Lu, Huijia; Zhang, Yuanjian; Wei, Wei; Li, Ying; Liu, Songqin
2015-10-28
We report a general method for the fabrication of three-dimensional (3D) macroporous graphene/conducting polymer modified electrode and nitrogen-doped graphene modified electrode. This method involves three consecutive steps. First, the 3D macroporous graphene (3D MG) electrode was fabricated electrochemically by reducing graphene oxide dispersion on different conducting substrates and used hydrogen bubbles as the dynamic template. The morphology and pore size of 3D MG could be governed by the use of surfactants and the dynamics of bubble generation and departure. Second, 3D macroporous graphene/polypyrrole (MGPPy) composites were constructed via directly electropolymerizing pyrrole monomer onto the networks of 3D MG. Due to the benefit of the good conductivity of 3D MG and pseudocapacitance of PPy, the composites manifest outstanding area specific capacitance of 196 mF cm(-2) at a current density of 1 mA cm(-2). The symmetric supercapacitor device assembled by the composite materials had a good capacity property. Finally, the nitrogen-doped MGPPy (N-MGPPy or MGPPy-X) with 3D macroporous nanostructure and well-regulated nitrogen doping was prepared via thermal treatment of the composites. The resultant N-MGPPy electrode was explored as a good electrocatalyst for the oxygen reduction reaction (ORR) with the current density value of 5.56 mA cm(-2) (-0.132 V vs Ag/AgCl). Moreover, the fuel tolerance and durability under the electrochemical environment of the N-MGPPy catalyst were found to be superior to the Pt/C catalyst.
Hernández-Pérez, María; Puig, Josep; Blasco, Gerard; Pérez de la Ossa, Natalia; Dorado, Laura; Dávalos, Antoni; Munuera, Josep
2016-02-01
Contrary to usual static vascular imaging techniques, contrast-enhanced dynamic magnetic resonance angiography (dMRA) enables dynamic study of cerebral vessels. We evaluated dMRA ability to assess arterial occlusion, cerebral hemodynamics, and collateral circulation in acute ischemic stroke. Twenty-five acute ischemic stroke patients with proximal anterior circulation occlusion underwent dMRA on a 3T scanner within 12 hours of symptoms onset. Diffusion weighted imaging, Tmax6 s lesion volumes and hypoperfusion intensity ratio as volume of Tmax>6 s/volume of Tmax>10 s were measured. Site and grade of occlusion (Thrombolysis in Myocardial Infarction criteria) were evaluated on time-of-flight MRA and dMRA. Leptomeningeal collaterality (American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology [ASITN/SIR] Scale) and asymmetries in venous clearance were assessed exclusively on dMRA. Collateral filling was dichotomized into incomplete (ASITN/SIR 0-2) or complete (ASITN/SIR 3-4). On dMRA, site of occlusion was M1 in 21 patients, tandem internal carotid artery/M1 in 2 and tandem internal carotid artery/terminal internal carotid artery in 2 patients. Three tandem occlusions were not detected on time-of-flight-MRA. All patients had Thrombolysis in Myocardial Infarction 0 to 1 on time-of-flight-MRA, but three of them had Thrombolysis in Myocardial Infarction 2 on dMRA. Complete collateral filling (n=12, 48%) was associated with smaller diffusion weighted imaging lesion volume (P=0.039), smaller hypoperfused volume (P=0.018), and lower hypoperfusion intensity ratio (P=0.006). Patients with symmetrical clearance of transverse sinuses (52%) were more likely to have complete collateral filling (P=0.015). As a fast, direct, feasible, noninvasive, and reliable method to assess site of occlusion, collateral circulation and hemodynamic alterations, dMRA provides profound insights in acute stroke. © 2015 American Heart Association, Inc.
Moore, Brian C J; Stone, Michael A; Füllgrabe, Christian; Glasberg, Brian R; Puria, Sunil
2008-12-01
It is possible for auditory prostheses to provide amplification for frequencies above 6 kHz. However, most current hearing-aid fitting procedures do not give recommended gains for such high frequencies. This study was intended to provide information that could be useful in quantifying appropriate high-frequency gains, and in establishing the population of hearing-impaired people who might benefit from such amplification. The study had two parts. In the first part, wide-bandwidth recordings of normal conversational speech were obtained from a sample of male and female talkers. The recordings were used to determine the mean spectral shape over a wide frequency range, and to determine the distribution of levels (the speech dynamic range) as a function of center frequency. In the second part, audiometric thresholds were measured for frequencies of 0.125, 0.25, 0.5, 1, 2, 3, 4, 6, 8, 10, and 12.5 kHz for both ears of 31 people selected to have mild or moderate cochlear hearing loss. The hearing loss was never greater than 70 dB for any frequency up to 4 kHz. The mean spectrum level of the speech fell progressively with increasing center frequency above about 0.5 kHz. For speech with an overall level of 65 dB SPL, the mean 1/3-octave level was 49 and 37 dB SPL for center frequencies of 1 and 10 kHz, respectively. The dynamic range of the speech was similar for center frequencies of 1 and 10 kHz. The part of the dynamic range below the root-mean-square level was larger than reported in previous studies. The mean audiometric thresholds at high frequencies (10 and 12.5 kHz) were relatively high (69 and 77 dB HL, respectively), even though the mean thresholds for frequencies below 4 kHz were 41 dB HL or better. To partially restore audibility for a hearing loss of 65 dB at 10 kHz would require an effective insertion gain of about 36 dB at 10 kHz. With this gain, audibility could be (partly) restored for 25 of the 62 ears assessed.
Harada, Hitoshi; Kanaji, Shingo; Hasegawa, Hiroshi; Yamamoto, Masashi; Matsuda, Yoshiko; Yamashita, Kimihiro; Matsuda, Takeru; Oshikiri, Taro; Sumi, Yasuo; Nakamura, Tetsu; Suzuki, Satoshi; Kakeji, Yoshihiro
2018-03-30
Recently, several new imaging technologies, such as three-dimensional (3D)/high-definition (HD) stereovision and high-resolution two-dimensional (2D)/4K monitors, have been introduced in laparoscopic surgery. However, it is still unclear whether these technologies actually improve surgical performance. Participants were 11 expert laparoscopic surgeons. We designed three laparoscopic suturing tasks (task 1: simple suturing, task 2: knotting thread in a small box, and task 3: suturing in a narrow space) in training boxes. Performances were recorded by an optical position tracker. All participants first performed each task five times consecutively using a conventional 2D/HD monitor. Then they were randomly divided into two groups: six participants performed the tasks using 3D/HD before using 2D/4K; the other five participants performed the tasks using a 2D/4K monitor before the 3D/HD monitor. After the trials, we evaluated the performance scores (operative time, path length of forceps, and technical errors) and compared performance scores across all monitors. Surgical performances of participants were ranked in decreasing order: 3D/HD, 2D/4K, and 2D/HD using the total scores for each task. In task 1 (simple suturing), some surgical performances using 3D/HD were significantly better than those using 2D/4K (P = 0.017, P = 0.033, P = 0.492 for operative time, path length, and technical errors, respectively). On the other hand, with operation in narrow spaces such as in tasks 2 and 3, performances using 2D/4K were not inferior to 3D/HD performances. The high-resolution images from the 2D/4K monitor may enhance depth perception in narrow spaces and may complement stereoscopic vision almost as well as using 3D/HD. Compared to a 2D/HD monitor, a 3D/HD monitor improved the laparoscopic surgical technique of expert surgeons more than a 2D/4K monitor. However, the advantage of 2D/4K high-resolution images may be comparable to a 3D/HD monitor especially in narrow spaces.
Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars
Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho
2015-01-01
In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629
Quaternion-valued echo state networks.
Xia, Yili; Jahanchahi, Cyrus; Mandic, Danilo P
2015-04-01
Quaternion-valued echo state networks (QESNs) are introduced to cater for 3-D and 4-D processes, such as those observed in the context of renewable energy (3-D wind modeling) and human centered computing (3-D inertial body sensors). The introduction of QESNs is made possible by the recent emergence of quaternion nonlinear activation functions with local analytic properties, required by nonlinear gradient descent training algorithms. To make QENSs second-order optimal for the generality of quaternion signals (both circular and noncircular), we employ augmented quaternion statistics to introduce widely linear QESNs. To that end, the standard widely linear model is modified so as to suit the properties of dynamical reservoir, typically realized by recurrent neural networks. This allows for a full exploitation of second-order information in the data, contained both in the covariance and pseudocovariances, and a rigorous account of second-order noncircularity (improperness), and the corresponding power mismatch and coupling between the data components. Simulations in the prediction setting on both benchmark circular and noncircular signals and on noncircular real-world 3-D body motion data support the analysis.
Graph-based retrospective 4D image construction from free-breathing MRI slice acquisitions
NASA Astrophysics Data System (ADS)
Tong, Yubing; Udupa, Jayaram K.; Ciesielski, Krzysztof C.; McDonough, Joseph M.; Mong, Andrew; Campbell, Robert M.
2014-03-01
4D or dynamic imaging of the thorax has many potential applications [1, 2]. CT and MRI offer sufficient speed to acquire motion information via 4D imaging. However they have different constraints and requirements. For both modalities both prospective and retrospective respiratory gating and tracking techniques have been developed [3, 4]. For pediatric imaging, x-ray radiation becomes a primary concern and MRI remains as the de facto choice. The pediatric subjects we deal with often suffer from extreme malformations of their chest wall, diaphragm, and/or spine, as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort. Moreover, we are interested in the mechanical function of their thorax in its natural form in tidal breathing. Therefore free-breathing MRI acquisition is the ideal modality of imaging for these patients. In our set up, for each coronal (or sagittal) slice position, slice images are acquired at a rate of about 200-300 ms/slice over several natural breathing cycles. This produces typically several thousands of slices which contain both the anatomic and dynamic information. However, it is not trivial to form a consistent and well defined 4D volume from these data. In this paper, we present a novel graph-based combinatorial optimization solution for constructing the best possible 4D scene from such data entirely in the digital domain. Our proposed method is purely image-based and does not need breath holding or any external surrogates or instruments to record respiratory motion or tidal volume. Both adult and children patients' data are used to illustrate the performance of the proposed method. Experimental results show that the reconstructed 4D scenes are smooth and consistent spatially and temporally, agreeing with known shape and motion of the lungs.
NASA Astrophysics Data System (ADS)
García Juan, David; Delattre, Bénédicte M. A.; Trombella, Sara; Lynch, Sean; Becker, Matthias; Choi, Hon Fai; Ratib, Osman
2014-03-01
Musculoskeletal disorders (MSD) are becoming a big healthcare economical burden in developed countries with aging population. Classical methods like biopsy or EMG used in clinical practice for muscle assessment are invasive and not accurately sufficient for measurement of impairments of muscular performance. Non-invasive imaging techniques can nowadays provide effective alternatives for static and dynamic assessment of muscle function. In this paper we present work aimed toward the development of a generic data structure for handling n-dimensional metabolic and anatomical data acquired from hybrid PET/MR scanners. Special static and dynamic protocols were developed for assessment of physical and functional images of individual muscles of the lower limb. In an initial stage of the project a manual segmentation of selected muscles was performed on high-resolution 3D static images and subsequently interpolated to full dynamic set of contours from selected 2D dynamic images across different levels of the leg. This results in a full set of 4D data of lower limb muscles at rest and during exercise. These data can further be extended to a 5D data by adding metabolic data obtained from PET images. Our data structure and corresponding image processing extension allows for better evaluation of large volumes of multidimensional imaging data that are acquired and processed to generate dynamic models of the moving lower limb and its muscular function.
Four new triterpene saponins from the seeds of Aesculus chinensis.
Zhao, Jing; Yang, Xiu-Wei
2003-09-01
Two pairs of new geometrically isomeric triterpenoid saponins were isolated from the seeds of Aesculus chinensis and characterized as 28-acetyl-21-tigloylprotoaescigenin 3-O-[beta-D-xylopyranosyl (1 --> 2)] [beta-D-glucopyranosyl (1 --> 4)] [beta-D-glucopyranosiduronic acid (isoescin IIa, 1) and 28-acetyl-21-angeloylprotoaescigenin 3-O-[-beta-D-xylopyranosyl (1 --> 2)] [beta-D-glucopyranosyl (1 --> 4)] beta-D-glucopyranosiduronic acid (isoescin IIb, 2); 28-acetyl-21-tigloylbarringtogenol C 3-O-[beta-D-galactopyranosyl (1 --> 2)] [beta-D-glucopyranosyl (1 --> 4)] beta-D-glucopyranosiduronic acid (isoescin IIIa, 3) and 28-acetyl-21-angeloylbarringtogenol C 3-O-[beta-D-galactopyranosyl (1 --> 2)] [beta-D-glucopyranosyl (1 --> 4)] beta-D-glucopyranosiduronic acid (isoescin IIIb, 4). Their structures were established on the basis of spectroscopic and chemical evidence.
2012-01-01
Background A subarachnoid hemorrhage (SAH) due to the rupture of a cerebral aneurysm (CA) is a devastating event associated with high rates of mortality. Magnetic resonance angiography (MRA), as a noninvasive technique, is typically used initially. The object of our study is to evaluate the feasibility of 4D time-resolved MRA with keyhole (4D-TRAK) for the diagnostic accuracy and reliability of the detection and characterization of cerebral aneurysms (CAs), with a comparison of 3D time-of-flight MRA (3D-TOF-MRA) by using DSA as a reference. Methods 3D-TOF-MRA, 4D-TRAK and 3D-DSA were performed sequentially in 52 patients with suspected CAs. 4D-TRAK was acquired using a combination of sensitivity encoding (SENSE) and CE timing robust angiography (CENTRA) k-space sampling techniques at a contrast dose of 10 ml at 3 T. Accuracy, sensitivity, specificity of 4D-TRAK and 3D-TOF-MRA were calculated and compared for the detection of CAs on patient-based and aneurysm-based evaluation using 3D-DSA as a reference. Results The overall image quality of 4D-TRAK with a contrast dose of 10 ml was in the diagnostic range but still cannot be compared with that of 3D-TOF-MRA. In 52 patients with suspected CAs, fifty-eight CAs were confirmed on 3D-DSA finally. Fifty-one (with 2 false-positives and 9 false-negatives) and 58 (with 1 false-positive and 1 false-negative) CAs were visualized on 4D-TRAK and 3D-TOF-MRA, respectively. Accuracy, sensitivity and specificity on patient-based evaluation of 4D-TRAK and 3D-TOF-MRA were 92.31%, 93.33%, 85.71% and 98.08%, 100%, 85.71%, respectively, and 74.07%, 75.00%, 66.67% and 96.30%, 95.83%, 100% on aneurysm-based evaluation in patients with multiple CAs, respectively. Subgroup analysis revealed that for 19 very small CAs (maximal diameter <3 mm, measured on 3D-DSA), 9 were missed on 4D-TRAK and 1 on 3D-TOF-MRA (P = 0.008). However, for 39 CAs with maximal diameter ≥ 3 mm, the diagnostic accuracy is equally (39 on 4D-TRAK vs. 39 on 3D-TOF-MRA) (P = 1). In four larger CAs with maximal diameter ≥ 10 mm, 4D-TRAK provided a better characterization of morphology than 3D-TOF-MRA. Conclusion 4D-TRAK at a lower contrast dose of 10 ml with a combination of SENSE and CENTRA at 3 T could provide similar diagnostic accuracy rate for CAs with maximal diameter ≥ 3 mm, and a better characterization of morphology for larger CAs with maximal diameter ≥ 10 mm compared to 3D-TOF-MRA. However, further study is still needed to improve the “vascular edge” artifact and the compromise in spatial resolution in depiction of CAs with maximal diameter<3 mm. PMID:22784396
Wu, Qian; Li, Ming-Hua
2012-07-06
A subarachnoid hemorrhage (SAH) due to the rupture of a cerebral aneurysm (CA) is a devastating event associated with high rates of mortality. Magnetic resonance angiography (MRA), as a noninvasive technique, is typically used initially. The object of our study is to evaluate the feasibility of 4D time-resolved MRA with keyhole (4D-TRAK) for the diagnostic accuracy and reliability of the detection and characterization of cerebral aneurysms (CAs), with a comparison of 3D time-of-flight MRA (3D-TOF-MRA) by using DSA as a reference. 3D-TOF-MRA, 4D-TRAK and 3D-DSA were performed sequentially in 52 patients with suspected CAs. 4D-TRAK was acquired using a combination of sensitivity encoding (SENSE) and CE timing robust angiography (CENTRA) k-space sampling techniques at a contrast dose of 10 ml at 3 T. Accuracy, sensitivity, specificity of 4D-TRAK and 3D-TOF-MRA were calculated and compared for the detection of CAs on patient-based and aneurysm-based evaluation using 3D-DSA as a reference. The overall image quality of 4D-TRAK with a contrast dose of 10 ml was in the diagnostic range but still cannot be compared with that of 3D-TOF-MRA. In 52 patients with suspected CAs, fifty-eight CAs were confirmed on 3D-DSA finally. Fifty-one (with 2 false-positives and 9 false-negatives) and 58 (with 1 false-positive and 1 false-negative) CAs were visualized on 4D-TRAK and 3D-TOF-MRA, respectively. Accuracy, sensitivity and specificity on patient-based evaluation of 4D-TRAK and 3D-TOF-MRA were 92.31%, 93.33%, 85.71% and 98.08%, 100%, 85.71%, respectively, and 74.07%, 75.00%, 66.67% and 96.30%, 95.83%, 100% on aneurysm-based evaluation in patients with multiple CAs, respectively. Subgroup analysis revealed that for 19 very small CAs (maximal diameter <3 mm, measured on 3D-DSA), 9 were missed on 4D-TRAK and 1 on 3D-TOF-MRA (P = 0.008). However, for 39 CAs with maximal diameter ≥ 3 mm, the diagnostic accuracy is equally (39 on 4D-TRAK vs. 39 on 3D-TOF-MRA) (P = 1). In four larger CAs with maximal diameter ≥ 10 mm, 4D-TRAK provided a better characterization of morphology than 3D-TOF-MRA. 4D-TRAK at a lower contrast dose of 10 ml with a combination of SENSE and CENTRA at 3 T could provide similar diagnostic accuracy rate for CAs with maximal diameter ≥ 3 mm, and a better characterization of morphology for larger CAs with maximal diameter ≥ 10 mm compared to 3D-TOF-MRA. However, further study is still needed to improve the "vascular edge" artifact and the compromise in spatial resolution in depiction of CAs with maximal diameter<3 mm.
Fermiology and electron dynamics of trilayer nickelate La 4Ni 3O 10
Li, Haoxiang; Zhou, Xiaoqing; Nummy, Thomas; ...
2017-09-26
Layered nickelates have the potential for exotic physics similar to high T C superconducting cuprates as they have similar crystal structures and these transition metals are neighbors in the periodic table. Here we present an angle-resolved photoemission spectroscopy (ARPES) study of the trilayer nickelate La 4Ni 3O 10 revealing its electronic structure and correlations, finding strong resemblances to the cuprates as well as a few key differences. We find a large hole Fermi surface that closely resembles the Fermi surface of optimally hole-doped cuprates, including its d x2-y2 orbital character, hole filling level, and strength of electronic correlations. However, inmore » contrast to cuprates, La 4Ni 3O 10 has no pseudogap in the d x2-y2 band, while it has an extra band of principally d 3z2-r2 orbital character, which presents a low temperature energy gap. Furthermore, these aspects drive the nickelate physics, with the differences from the cuprate electronic structure potentially shedding light on the origin of superconductivity in the cuprates.« less
Lee, Ho-Joon; Son, Myung Jin; Ahn, Jiwon; Oh, Soo Jin; Lee, Mihee; Kim, Ansoon; Jeung, Yun-Ji; Kim, Han-Gyeul; Won, Misun; Lim, Jung Hwa; Kim, Nam-Soon; Jung, Cho-Rock; Chung, Kyung-Sook
2017-12-01
Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D microenvironment. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. Additionally, recent advances in the stem-cell technologies have made the development of 3D organoid possible, and thus, our study also provides further contribution to the development of physiologically relevant stem-cell-based 3D tissues that provide an elasticity-based predefined biomimetic 3D microenvironment. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus
2017-10-01
We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile robust tracking programs handling these concerns and providing a powerful post-processing option are significantly limited. Solution method: UmUTracker is a multi-functional tool to extract particle positions from long video sequences acquired with either light microscopy or digital holographic microscopy. The program provides an easy-to-use graphical user interface (GUI) for both tracking and post-processing that does not require any programming skills to analyze data from particle tracking experiments. UmUTracker first conduct automatic 2D particle detection even under noisy conditions using a novel circle detector based on the isosceles triangle sampling technique with a multi-scale strategy. To reduce the computational load for 3D tracking, it uses an efficient implementation of the Rayleigh-Sommerfeld light propagation model. To analyze and visualize the data, an efficient data analysis step, which can for example show 4D flow visualization using 3D trajectories, is included. Additionally, UmUTracker is easy to modify with user-customized modules due to the object-oriented programming style Additional comments: Program obtainable from https://sourceforge.net/projects/umutracker/
Introducing a Public Stereoscopic 3D High Dynamic Range (SHDR) Video Database
NASA Astrophysics Data System (ADS)
Banitalebi-Dehkordi, Amin
2017-03-01
High dynamic range (HDR) displays and cameras are paving their ways through the consumer market at a rapid growth rate. Thanks to TV and camera manufacturers, HDR systems are now becoming available commercially to end users. This is taking place only a few years after the blooming of 3D video technologies. MPEG/ITU are also actively working towards the standardization of these technologies. However, preliminary research efforts in these video technologies are hammered by the lack of sufficient experimental data. In this paper, we introduce a Stereoscopic 3D HDR database of videos that is made publicly available to the research community. We explain the procedure taken to capture, calibrate, and post-process the videos. In addition, we provide insights on potential use-cases, challenges, and research opportunities, implied by the combination of higher dynamic range of the HDR aspect, and depth impression of the 3D aspect.
Synchrotron X-ray imaging of pulmonary alveoli in respiration in live intact mice.
Chang, Soeun; Kwon, Namseop; Kim, Jinkyung; Kohmura, Yoshiki; Ishikawa, Tetsuya; Rhee, Chin Kook; Je, Jung Ho; Tsuda, Akira
2015-03-04
Despite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement. Previous studies have been therefore limited to alveoli at lung apices or subpleural alveoli under open thorax conditions. Here we report direct and real-time visualization of alveoli of live intact mice during respiration using tracking X-ray microscopy. Our studies, for the first time, determine the alveolar size of normal mice in respiration without positive end expiratory pressure as 58 ± 14 (mean ± s.d.) μm on average, accurately measured in the lung bases as well as the apices. Individual alveoli of normal lungs clearly show heterogeneous inflation from zero to ~25% (6.7 ± 4.7% (mean ± s.d.)) in size. The degree of inflation is higher in the lung bases (8.7 ± 4.3% (mean ± s.d.)) than in the apices (5.7 ± 3.2% (mean ± s.d.)). The fraction of the total tidal volume allocated for alveolar inflation is 34 ± 3.8% (mean ± s.e.m). This study contributes to the better understanding of alveolar dynamics and helps to develop potential treatment options for pulmonary diseases.
NASA Astrophysics Data System (ADS)
Kipnusu, Wycliffe K.; Elsayed, Mohamed; Krause-Rehberg, Reinhard; Kremer, Friedrich
2017-05-01
Glassy dynamics of polymethylphenylsiloxane (PMPS) is studied by broadband dielectric spectroscopy in one-dimensional (1D) and two-dimensional (2D) nanometric confinement; the former is realized in thin polymer layers having thicknesses down to 5 nm, and the latter in unidirectional (thickness 50 μm) nanopores with diameters varying between 4 and 8 nm. Based on the dielectric measurements carried out in a broad spectral range at widely varying temperatures, glassy dynamics is analyzed in detail in 1D and in 2D confinements with the following results: (i) the segmental dynamics (dynamic glass transition) of PMPS in 1D confinement down to thicknesses of 5 nm is identical to the bulk in the mean relaxation rate and the width of the relaxation time distribution function; (ii) additionally a well separated surface induced relaxation is observed, being assigned to adsorption and desorption processes of polymer segments with the solid interface; (iii) in 2D confinement with native inner pore walls, the segmental dynamics shows a confinement effect, i.e., the smaller the pores are, the faster the segmental dynamics; on silanization, this dependence on the pore diameter vanishes, but the mean relaxation rate is still faster than in 1D confinement; (iv) in a 2D confinement, a pronounced surface induced relaxation process is found, the strength of which increases with the decreasing pore diameter; it can be fully removed by silanization of the inner pore walls; (v) the surface induced relaxation depends on its spectral position only negligibly on the pore diameter; (vi) comparing 1D and 2D confinements, the segmental dynamics in the latter is by about two orders of magnitude faster. All these findings can be comprehended by considering the density of the polymer; in 1D it is assumed to be the same as in the bulk, hence the dynamic glass transition is not altered; in 2D it is reduced due to a frustration of packaging resulting in a higher free volume, as proven by ortho-positronium annihilation lifetime spectroscopy.
Buyanghuanwu Tang therapy for neonatal rats with hypoxic ischemic encephalopathy
Liu, Xiyao; Min, Yue; Gu, Weiwang; Wang, Yujue; Tian, Yuguang
2015-01-01
Background: Neonatal hypoxic-ischemic encephalopathy (HIE) is a clinical syndrome manifested by neurological symptoms in the first days of life in term infants. Purpose: To investigate the therapy effect of Buyanghuanwu Tang (BYHWT), a decoction with 7 herbal ingredients, on neonatal rats with hypoxic ischemic encephalopathy (HIE) and its mechanism. Methods: 50 3-week male Sprague-Dawley rats were divided into normal control group, model group, BYHWT 1d group, BYHWT 3d group and BYHWT 7d group, 10 rats in each group. The HIE model of was established in later 4 groups. The later 3 groups were treated with BYHWT for 1, 3 and 7 days, respectively, and the normal control group and model group were treated with PBS. The Morris water maze test and dynamic 18F-FDG-PET/CT imaging were performed. The changes of hippocampal tissue observed by histopathologic examination, and the expressions of JNK1/JNK2 and TNF-α protein were observed western blotting. Results: Compared with model group, the impaired performance on distance and latency parameters was mitigated in BYHWT 1d group, BYHWT 3d group and BYHWT 7d group (P < 0.01), the FDG uptake was decreased in BYHWT 3d group and BYHWT 7d group, the apoptotic cells and inflammatory cells were significantly decreased in BYHWT 3d group and BYHWT 7d group, and the expressions of JNK1/JNK2 and TNF-α protein were significantly decreased in BYHWT 7d group (P < 0.05). Conclusion: BYHWT can delay the HIE onset and preserve the motor function, primarily by regulating inflammation, apoptosis and inhibition by mediating JNK signaling. PMID:26770451
Noninvasive Optoelectronic Assessment of Induced Sagittal Imbalance Using the Vicon System.
Ould-Slimane, Mourad; Latrobe, Charles; Michelin, Paul; Chastan, Nathalie; Dujardin, Franck; Roussignol, Xavier; Gauthé, Rémi
2017-06-01
Spinal diseases often induce gait disorders with multifactorial origins such as lumbar pain, radicular pain, neurologic complications, or spinal deformities. However, radiography does not permit an analysis of spinal dynamics; therefore, sagittal balance dynamics during gait remain largely unexplored. This prospective and controlled pilot study assessed the Vicon system for detecting sagittal spinopelvic imbalance, to determine the correlations between optoelectronic and radiographic parameters. Reversible anterior sagittal imbalance was induced in 24 healthy men using a thoracolumbar corset. Radiographic, optoelectronic, and comparative analyses were conducted. Corset wearing induced significant variations in radiographic parameters indicative of imbalance; the mean C7-tilt and d/D ratio increased by 15° ± 7.4° and 359%, respectively, whereas the mean spinosacral angle decreased by 16.8° ± 8° (all P < 0.001). The Vicon system detected the imbalance; the mean spinal angle increased by 15.4° ± 5.6° (P < 0.01), the mean floor projection of the C7S1 vector (C7'S1') increased by 126.3 ± 51.9 mm (P < 0.001), and the mean C7-T10-S1 angle decreased by 9.8° ± 3° (P < 0.001). Variations in C7'S1' were significantly correlated with d/D ratio (ρ = 0.58; P < 0.05) and C7-tilt (ρ = 0.636; P < 0.05) variations. Corset wearing induced radiographically confirmed anterior sagittal imbalance detected using the Vicon system. Optoelectronic C7'S1' correlated with radiographic C7-tilt and d/D ratio. Copyright © 2017 Elsevier Inc. All rights reserved.
Three dimensional Lagrangian structures in the Antarctic Polar Vortex.
NASA Astrophysics Data System (ADS)
Mancho, Ana M.; Garcia-Garrido, Victor J.; Curbelo, Jezabel; Niang, Coumba; Mechoso, Carlos R.; Wiggins, Stephen
2017-04-01
Dynamical systems theory has supported the description of transport processes in fluid dynamics. For understanding trajectory patterns in chaotic advection the geometrical approach by Poincaré seeks for spatial structures that separate regions corresponding to qualitatively different types of trajectories. These structures have been referred to as Lagrangian Coherent Structures (LCS), which typically in geophysical flows are well described under the approach of incompressible 2D flows. Different tools have been used to visualize LCS. In this presentation we use Lagrangian Descriptors [1,2,3,4] (function M) for visualizing 3D Lagrangian structures in the atmosphere, in particular in the Antarctic Polar Vortex. The function M is computed in a fully 3D incompressible flow obtained from data provided by the European Centre for Medium-Range Weather Forecast and it is represented in 2D surfaces. We discuss the findings during the final warming that took place in the spring of 1979 [5]. This research is supported by MINECO grant MTM2014-56392-R. Support is acknowledged also from CSIC grant COOPB20265, U.S. NSF grant AGS-1245069 and ONR grant No. N00014- 01-1-0769. C. Niang acknowledges Fundacion Mujeres por Africa and ICMAT Severo Ochoa project SEV-2011-0087 for financial support. [1] C. Mendoza, A. M. Mancho. The hidden geometry of ocean flows. Physical Review Letters 105 (2010), 3, 038501-1-038501-4. [2] A. M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza. Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems. Communications in Nonlinear Science and Numerical Simulation. 18 (2013) 3530-3557. [3] C. Lopesino, F. Balibrea-Iniesta, S. Wiggins and A. M. Mancho. Lagrangian descriptors for two dimensional, area preserving autonomous and nonautonomous maps. Communications in Nonlinear Science and Numerical Simulations, 27 (2015) (1-3), 40-51. [4] C. Lopesino, F. Balibrea-Iniesta, V. J. García-Garrido, S. Wiggins, and A. M. Mancho, A. M. A theoretical framework for lagrangian descriptors. International Journal of Bifurcation and Chaos (2017) to appear. [5] The three-dimensional Lagrangian geometry of the Antarctic Polar Vortex circulation. Preprint.
Holographic three-dimensional telepresence using large-area photorefractive polymer.
Blanche, P-A; Bablumian, A; Voorakaranam, R; Christenson, C; Lin, W; Gu, T; Flores, D; Wang, P; Hsieh, W-Y; Kathaperumal, M; Rachwal, B; Siddiqui, O; Thomas, J; Norwood, R A; Yamamoto, M; Peyghambarian, N
2010-11-04
Holography is a technique that is used to display objects or scenes in three dimensions. Such three-dimensional (3D) images, or holograms, can be seen with the unassisted eye and are very similar to how humans see the actual environment surrounding them. The concept of 3D telepresence, a real-time dynamic hologram depicting a scene occurring in a different location, has attracted considerable public interest since it was depicted in the original Star Wars film in 1977. However, the lack of sufficient computational power to produce realistic computer-generated holograms and the absence of large-area and dynamically updatable holographic recording media have prevented realization of the concept. Here we use a holographic stereographic technique and a photorefractive polymer material as the recording medium to demonstrate a holographic display that can refresh images every two seconds. A 50 Hz nanosecond pulsed laser is used to write the holographic pixels. Multicoloured holographic 3D images are produced by using angular multiplexing, and the full parallax display employs spatial multiplexing. 3D telepresence is demonstrated by taking multiple images from one location and transmitting the information via Ethernet to another location where the hologram is printed with the quasi-real-time dynamic 3D display. Further improvements could bring applications in telemedicine, prototyping, advertising, updatable 3D maps and entertainment.
A Novel Method for Dynamic Short-Beam Shear Testing of 3D Woven Composites
2011-08-11
specimen was homogenized as an orthotropic elastic material with properties given in Table 1 [38]. The use of fully elastic model removes any material...impact event however after approximately 0.5 mm of deflection, equilibrium is reached. It is observed from Fig. 4(d) that equilibrium is never fully ...The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
Hierarchical Organization for Large, Dynamic Radio Networks.
1988-01-01
January 1985. [3] N. Shacharm and J. Tornow . Future Directions in Packet Radio Technology. In - Proc. of IEEE INFOCOM, Washington, D.C., 1985. [4] J.J...Freeman and Company, 1979. [7] J. Jubin and J. Tornow . The DARPA Packet Radio Network Protocols. Proceed- inga of the IEEE, 75(1):21-32, January 1987... Tornow . Future Directions in Packet Radio Technology. In Proc. of IEEE INFOCOM, Washington, D.C., 1985. [28] N. Shacham and J. Westcott. Future
Inconsistency of topologically massive hypergravity
NASA Technical Reports Server (NTRS)
Aragone, C.; Deser, S.
1985-01-01
The coupled topologically massive spin-5/2 gravity system in D = 3 dimensions whose kinematics represents dynamical propagating gauge invariant massive spin-5/2 and spin-2 excitations, is shown to be inconsistent, or equivalently, not locally hypersymmetric. In contrast to D = 4, the local constraints on the system arising from failure of the fermionic Bianchi identities do not involve the 'highest spin' components of the field, but rather the auxiliary spinor required to construct a consistent massive model.