Determination of adsorption parameters in numerical simulation for polymer flooding
NASA Astrophysics Data System (ADS)
Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu
2018-02-01
A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.
Mansouri, Hayet; Carmona, Rocio J; Gomis-Berenguer, Alicia; Souissi-Najar, Souad; Ouederni, Abdelmottaleb; Ania, Conchi O
2015-07-01
This work investigates the competitive adsorption under dynamic and equilibrium conditions of ibuprofen (IBU) and amoxicillin (AMX), two widely consumed pharmaceuticals, on nanoporous carbons of different characteristics. Batch adsorption experiments of pure components in water and their binary mixtures were carried out to measure both adsorption equilibrium and kinetics, and dynamic tests were performed to validate the simultaneous removal of the mixtures in breakthrough experiments. The equilibrium adsorption capacities evaluated from pure component solutions were higher than those measured in dynamic conditions, and were found to depend on the porous features of the adsorbent and the nature of the specific/dispersive interactions that are controlled by the solution pH, density of surface change on the carbon and ionization of the pollutant. A marked roll-up effect was observed for AMX retention on the hydrophobic carbons, not seen for the functionalized adsorbent likely due to the lower affinity of amoxicillin towards the carbon adsorbent. Dynamic adsorption of binary mixtures from wastewater of high salinity and alkalinity showed a slight increase in IBU uptake and a reduced adsorption of AMX, demonstrating the feasibility of the simultaneous removal of both compounds from complex water matrices. Copyright © 2014 Elsevier Inc. All rights reserved.
Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.
Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui
2012-01-01
A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.
[Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].
Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei
2016-04-15
To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.
NASA Astrophysics Data System (ADS)
Peng, Chenliang; Min, Fanfei; Liu, Lingyun
2017-12-01
The hydrophobic aggregation in cationic surfactant suspension is an effective method to enhance the dewatering of clay-rich tailing. The solution pH can affect the adsorption behavior of cationic surfactant on clay mineral. The effect of pH on the adsorption of dodecylamine (DDA) on montmorillonite was investigated by the sedimentation test and the characterization of flocs images, contact angle, adsorption quantity, and fourier transform infrared (FTIR) spectroscopy, as well as molecular dynamics (MD) simulation. It was found that DDA ions were adsorbed on montmorillonite basal surfaces mainly by physical adsorption, including the electrostatic attraction and hydrogen bonding. A certain number of neutral DDA molecules can favor the adsorption of DDA. At pH around 8, the effect of hydrophobic modification was the best because DDA molecules and ions form compact and well-organized monolayer. The MD simulation results were in good agreement with that of contact angle, adsorption quantity and FTIR.
Ren, Huixue; Gao, Zhimin; Wu, Daoji; Jiang, Jiahui; Sun, Youmin; Luo, Congwei
2016-02-10
Alginate-carboxymethyl cellulose (CMC) gel beads were prepared in this study using sodium alginate (SA) and sodium CMC through blending and cross-linking. The specific surface area and aperture of the prepared SA-CMC gel beads were tested. The SA-CMC structure was characterized and analyzed via infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Static adsorption experiment demonstrated that Pb(II) adsorption of SA-CMC exceeded 99% under the optimized conditions. In addition, experiments conducted under the same experimental conditions showed that the lead ion removal efficiency of SA-CMC was significantly higher than that of conventional adsorbents. The Pb(II) adsorption process of SA-CMC followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second-order rate equation. Pb(II) removal mechanisms of SA-CMC, including physical, chemical, and electrostatic adsorptions, were discussed based on microstructure analysis and adsorption kinetics. Chemical adsorption was the main adsorption method among these mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Han, Xiuli; Wang, Wei; Ma, Xiaojian
2011-01-01
The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble-Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g(-1) at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.
Adsorption and desorption for dynamics transport of hexavalent chromium Cr(Ⅵ) in soil column
NASA Astrophysics Data System (ADS)
Tong, J.
2017-12-01
Batch experiments have been carried out to study the adsorption of heavy metals in soils, and the migration and transformation of hexavalent chromium Cr(Ⅵ) in the soil of a vegetable base were studied by dynamic adsorption and desorption soil column experiments. The aim of this study was to investigate the effect of initial concentration and pH value on the adsorption process of Cr(Ⅵ). Breakthrough curve were used to evaluate the capacity of Cr(Ⅵ) adsorption in soil columns. The results show that the higher the initial concentration, the worse the adsorption capacity of Cr(Ⅵ). The adsorption of Cr(Ⅵ) was strongly sensitive to pH value. The capacity of Cr(Ⅵ) adsorption is maximized at very low pH value. This may be due to changes in pH that cause a series of complex reactions in Cr(Ⅵ). In a strongly acidic environment, the reaction of Cr(Ⅵ) with hydrogen ions is accompanied by the formation of Cr3+, which reacts with the soil free iron-aluminum oxide to produce hydroxide in the soil. The results of the desorption experiments indicate that Cr(Ⅵ) is more likely to leach from this soil, but if the eluent is strong acid solution, the leaching process will be slow and persistent. The program CXTFIT was used to fit the breakthrough curve to estimate parameters. The results of the calculation of the dispersion coefficient (D) can be obtained by this program. The two-site model fit the breakthrough curve data of Cr(Ⅵ) well, and the parameters calculated by CXTFIT can be used to explain the behavior of Cr(Ⅵ) migration and transformation in soil columns. When pH=2, the retardation factor (R) reach at 79.71 while the value of the R is generally around 10 in other experiments. The partitioning coefficient β shows that more than half of the adsorption sites are rate-limited in this adsorption process and non-equilibrium effects the Cr(Ⅵ) transport process in this soil.
Lu, Yuanjun; Lucier, Bryan E G; Zhang, Yue; Ren, Pengju; Zheng, Anmin; Huang, Yining
2017-02-22
Metal-organic frameworks (MOFs) are promising materials for carbon dioxide (CO 2 ) adsorption and storage; however, many details regarding CO 2 dynamics and specific adsorption site locations within MOFs remain unknown, restricting the practical uses of MOFs for CO 2 capture. The intriguing α-magnesium formate (α-Mg 3 (HCOO) 6 ) MOF can adsorb CO 2 and features a small pore size. Using an intertwined approach of 13 C solid-state NMR (SSNMR) spectroscopy, 1 H- 13 C cross-polarization SSNMR, and computational molecular dynamics (MD) simulations, new physical insights and a rich variety of information have been uncovered regarding CO 2 adsorption in this MOF, including the surprising suggestion that CO 2 motion is restricted at elevated temperatures. Guest CO 2 molecules undergo a combined localized rotational wobbling and non-localized twofold jumping between adsorption sites. MD simulations and SSNMR experiments accurately locate the CO 2 adsorption sites; the mechanism behind CO 2 adsorption is the distant interaction between the hydrogen atom of the MOF formate linker and a guest CO 2 oxygen atom, which are ca. 3.2 Å apart.
Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.
Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing
2018-05-15
The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.
Surface Curvature Relation to Protein Adsorption for Carbon-based Nanomaterials
NASA Astrophysics Data System (ADS)
Gu, Zonglin; Yang, Zaixing; Chong, Yu; Ge, Cuicui; Weber, Jeffrey K.; Bell, David R.; Zhou, Ruhong
2015-06-01
The adsorption of proteins onto carbon-based nanomaterials (CBNs) is dictated by hydrophobic and π-π interactions between aliphatic and aromatic residues and the conjugated CBN surface. Accordingly, protein adsorption is highly sensitive to topological constraints imposed by CBN surface structure; in particular, adsorption capacity is thought to increase as the incident surface curvature decreases. In this work, we couple Molecular Dynamics (MD) simulations with fluorescence spectroscopy experiments to characterize this curvature dependence in detail for the model protein bovine serum albumin (BSA). By studying BSA adsorption onto carbon nanotubes of increasing radius (featuring descending local curvatures) and a flat graphene sheet, we confirm that adsorption capacity is indeed enhanced on flatter surfaces. Naïve fluorescence experiments featuring multi-walled carbon nanotubes (MWCNTs), however, conform to an opposing trend. To reconcile these observations, we conduct additional MD simulations with MWCNTs that match those prepared in experiments; such simulations indicate that increased mass to surface area ratios in multi-walled systems explain the observed discrepancies. In reduction, our work substantiates the inverse relationship between protein adsorption capacity and surface curvature and further demonstrates the need for subtle consideration in experimental and simulation design.
Interaction of human adenoviruses and coliphages with kaolinite and bentonite.
Bellou, Maria I; Syngouna, Vasiliki I; Tselepi, Maria A; Kokkinos, Petros A; Paparrodopoulos, Spyros C; Vantarakis, Apostolos; Chrysikopoulos, Constantinos V
2015-06-01
Human adenoviruses (hAdVs) are pathogenic viruses responsible for public health problems worldwide. They have also been used as viral indicators in environmental systems. Coliphages (e.g., MS2, ΦX174) have also been studied as indicators of viral pollution in fecally contaminated water. Our objective was to evaluate the distribution of three viral fecal indicators (hAdVs, MS2, and ΦΧ174), between two different phyllosilicate clays (kaolinite and bentonite) and the aqueous phase. A series of static and dynamic experiments were conducted under two different temperatures (4, 25°C) for a time period of seven days. HAdV adsorption was examined in DNase I reaction buffer (pH=7.6, and ionic strength (IS)=1.4mM), whereas coliphage adsorption in phosphate buffered saline solution (pH=7, IS=2mM). Moreover, the effect of IS on hAdV adsorption under static conditions was evaluated. The adsorption of hAdV was assessed by real-time PCR and its infectivity was tested by cultivation methods. The coliphages MS2 and ΦΧ174 were assayed by the double-layer overlay method. The experimental results have shown that coliphage adsorption onto both kaolinite and bentonite was higher for the dynamic than the static experiments; whereas hAdV adsorption was lower under dynamic conditions. The adsorption of hAdV increased with decreasing temperature, contrary to the results obtained for the coliphages. This study examines the combined effect of temperature, agitation, clay type, and IS on hAdV adsorption onto clays. The results provide useful new information on the effective removal of viral fecal indicators (MS2, ΦX174 and hAdV) from dilute aqueous solutions by adsorption onto kaolinite and bentonite. Factors enabling enteric viruses to penetrate soils, groundwater and travel long distances within aquifers are important public health issues. Because the observed adsorption behavior of surrogate coliphages MS2 and ΦΧ174 is substantially different to that of hAdV, neither MS2 nor ΦΧ174 is recommended as a suitable model for adenovirus. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Terzyk, Artur P.; Gauden, Piotr A.; Zieliński, Wojciech; Furmaniak, Sylwester; Wesołowski, Radosław P.; Klimek, Kamil K.
2011-10-01
The results of 84 MD simulations showing the influence of porosity and carbon surface oxidation on adsorption of three organic compounds from aqueous solutions on carbons are reported. Based on a model of 'soft' activated carbon, three carbon structures with gradually changed microporosity were created. Next, different number of surface oxygen groups was introduced. We observe quantitative agreement between simulation and experiment i.e. the decrease in adsorption from benzene down to paracetamol. Simulation results clearly demonstrate that the balance between porosity and carbon surface chemical composition in organics adsorption on carbons, and the pore blocking determine adsorption properties of carbons.
Molecular dynamics study of the adsorption of anionic surfactant in a nonionic polymer brush.
Wang, Hua; Zhang, Heng; Yuan, Shiling; Liu, Chengbu; Xu, Zhen
2014-06-01
The adsorption of the anionic surfactant, sodium dodecylsulfate (SDS) in poly(ethylene oxide) (PEO) brush was studied by molecular dynamics simulations. Our simulations revealed that surfactant can adsorb in polymer brush as micellar aggregates and the polymer would reside at the hydrocarbon-water interface of SDS micelles. This association between surfactant and polymer was mainly driven by the hydrophobic interaction between the polymer and surfactant tails. In the simulation, with the increasing of surfactant concentration, a plateau value representing saturated adsorption was observed. The height of polymer brush was mainly affected by the adsorbed surfactant at low grafting density of polymer; however, it was primarily controlled by the grafting density at high grafting density. Our conclusions at the molecular level were in close agreement with experiment about the adsorption of surfactant in polymer brushes.
Toosi, Mohammad Reza; Emami, Mohammad Reza Sarmasti; Hajian, Sudeh
2018-05-11
MCM-41 mesopore was prepared by hydrothermal method and used for synthesis of polyaniline/MCM-41 nanocomposite via in situ polymerization. The nanocomposite was blended with polysulfone to prepare mixed matrix membrane in different content of nanocomposite by phase inversion method. Structural and surface properties of the samples were characterized by SEM, XRD, FTIR, AFM, TGA, BET, and zeta potential measurements. Effect of the nanocomposite content on the hydrophilicity, porosity, and permeability of the membrane was determined. Membrane performance was evaluated for removal of lead ions in dynamic filtration and static adsorption. The membranes were found as effective adsorptive filters for removal of lead ions via interactions between active sites of nanocomposite in membrane structure and lead ions during filtration. Results of batch experiments proved adsorptive mechanism of membranes for removal of lead ions with the maximum adsorption capacity of 19.6 mg/g.
Chang, E-E; Wan, Jan-Chi; Kim, Hyunook; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi
2015-01-01
The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K(ow). The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K(ow) was replaced by the one with larger K(ow). Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores.
Chang, E.-E.; Wan, Jan-Chi; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi
2015-01-01
The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K ow. The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K ow was replaced by the one with larger K ow. Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores. PMID:26078989
Al-Hamdani, Yasmine S; Rossi, Mariana; Alfè, Dario; Tsatsoulis, Theodoros; Ramberger, Benjamin; Brandenburg, Jan Gerit; Zen, Andrea; Kresse, Georg; Grüneis, Andreas; Tkatchenko, Alexandre; Michaelides, Angelos
2017-07-28
Molecular adsorption on surfaces plays an important part in catalysis, corrosion, desalination, and various other processes that are relevant to industry and in nature. As a complement to experiments, accurate adsorption energies can be obtained using various sophisticated electronic structure methods that can now be applied to periodic systems. The adsorption energy of water on boron nitride substrates, going from zero to 2-dimensional periodicity, is particularly interesting as it calls for an accurate treatment of polarizable electrostatics and dispersion interactions, as well as posing a practical challenge to experiments and electronic structure methods. Here, we present reference adsorption energies, static polarizabilities, and dynamic polarizabilities, for water on BN substrates of varying size and dimension. Adsorption energies are computed with coupled cluster theory, fixed-node quantum Monte Carlo (FNQMC), the random phase approximation, and second order Møller-Plesset theory. These wavefunction based correlated methods are found to agree in molecular as well as periodic systems. The best estimate of the water/h-BN adsorption energy is -107±7 meV from FNQMC. In addition, the water adsorption energy on the BN substrates could be expected to grow monotonically with the size of the substrate due to increased dispersion interactions, but interestingly, this is not the case here. This peculiar finding is explained using the static polarizabilities and molecular dispersion coefficients of the systems, as computed from time-dependent density functional theory (DFT). Dynamic as well as static polarizabilities are found to be highly anisotropic in these systems. In addition, the many-body dispersion method in DFT emerges as a particularly useful estimation of finite size effects for other expensive, many-body wavefunction based methods.
Arias Arias, Fabian E; Beneduci, Amerigo; Chidichimo, Francesco; Furia, Emilia; Straface, Salvatore
2017-08-01
WHO has declared mercury as one of the most dangerous pollutants for human health. Unfortunately, several cases of rivers and aquifers contaminated by mercury inevitably poses the problem on how to remediate them. Considerable efforts are being addressed to develop cost-effective methodologies, among which the use of low-cost adsorbing materials. In this paper, the adsorption performances of an alternative lignocellulosic material derived from the Spanish broom plant, are presented. This plant is widely diffused in the world and its usage for Hg(II) removal from water in real working conditions requires only minimal pretreatment steps. A thoroughly investigation on the kinetics and thermodynamics of Hg(II) adsorption on Spanish broom is presented, by using Hg(II) polluted aqueous solutions specifically prepared in order to simulate typical groundwater conditions. Several batch experiments, under static conditions, were carried out in order to evaluate the effect of pH, contact time, adsorbent dosage, initial concentration, temperature. A maximum adsorption capacity of 20 mg L -1 can be obtained at pH 5, following a pseudo second order kinetics. Moreover, adsorption experiments in dynamic conditions were carried out using Spanish broom filters. Interestingly, a systematic, unconventional double S-shape breakthrough curve was observed under different experimental conditions, revealing the occurrence of two adsorption processes with different time scales. This behavior has been fitted by a bimodal Thomas model which, unlike the single Thomas fitting, gives satisfactory results with the introduction of a new parameter related to the fraction of surface active sites involved in the adsorption processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry
NASA Astrophysics Data System (ADS)
Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek
Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.
Liu, Boyan; Dong, Beitao; Yuan, Xiaofan; Kuang, Qirong; Zhao, Qingsheng; Yang, Mei; Liu, Jie; Zhao, Bing
2016-01-01
A simple and efficient chromatographic method for separation of chlorogenic acid from Eupatorium adenophorum Spreng extract was developed. The adsorption properties of nine macroporous resins were evaluated. NKA-II resin showed much better adsorption/desorption properties. The adsorption of chlorogenic acid on NKA-II resin at 25°C was well fitted to Langmuir isotherm model and pseudo-second-order kinetic model. The dynamic adsorption and desorption experiments were carried out on columns packed with NKA-II resin to optimize the separation process. The content of chlorogenic acid in the product increased to 22.17%, with a recovery yield of 82.41%. Copyright © 2015 Elsevier B.V. All rights reserved.
Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na
2015-05-01
Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis.
Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu
2010-05-01
The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Wang, J.
2017-12-01
Characterizing the behavior of oil molecules in nanopore is vital to the understanding of geochemistry of hydrocarbon-bearing fluid in ultra-tight source rocks, such as shale. The heterogeneous nature of hydrocarbon system of nanoscale complicates experimental studies of oil / shale interfacial interaction. Therefore, to gain mechanistic understanding of the interplay of oil molecules in rock nanopore, molecular dynamics simulations have been applied to study the interactions of polar and non-polar oil on both calcite and kerogen surfaces. The effect of surface wetting, oil polarity, and temperature on the Gibbs free energy of adsorption have been investigated. The free energy, entropy, and enthalpy profiles have been calculated using advanced molecular dynamics method: umbrella sampling. In agreement with experiment, 1) surface with adsorbed water layer significantly reduces the oil adsorption energy on kerogen and turns the calcite surface to highly oil-repellent; 2) polar oil has overall stronger adsorption free energy than that of non-polar oil on both non-wetted calcite and kerogen surface; 3) organic interface (e.g. kerogen) exhibits stronger adsorption of oil molecules compared to inorganic one (e.g. calcite). The finding of this study indicates that oil displacement in nanopores can be enhanced by promoting the water adsorption on surface and reducing the polarity of oil on both inorganic and organic interfaces.
Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate
NASA Astrophysics Data System (ADS)
Li, Lixia; Hao, Haiqing; Yuan, Zhitao; Liu, Jiongtian
2017-10-01
Models of sodium oleate adsorption on siderite, hematite and quartz were investigated by molecular dynamic simulation, respectively. Surface energy was calculated to confirm the cleavage plan of hematite and quartz. Both natural cleavage plane of siderite and calculated plane were used to investigate the flotation of the three minerals. Based on the molecular simulation in solution with water as medium, adsorption quantity and interaction capability of oleate ions on the three minerals indicated that siderite could be collected efficiently by sodium oleate at neutral pH. Results of flotation experiments were further demonstrated by analysis of relative concentration of carbon atoms and oxygen atoms.
NASA Astrophysics Data System (ADS)
Ji, Ying-xue; Wang, Feng-he; Duan, Lun-chao; Zhang, Fan; Gong, Xue-dong
2013-11-01
The effect of temperature on the adsorption of sulfanilamide (SA) onto aluminum oxide was researched through batch adsorption experiments, and was then simulated using the molecular dynamics (MD) method. The results show that SA can be adsorbed effectively by the adsorbent of aluminum oxide due to their interactions between SA molecule and the surface of aluminum oxide crystal, and temperature is a key factor which influences the adsorption efficiency obviously. The removal ratio of SA at 298 K is the highest among the selected temperatures (293 K, 298 K, 303 K). MD simulations revealed the interactions between SA molecules and (0 1 2) surface of aluminum oxide crystal at molecular level. The SA molecule has clung to the (0 1 2) face of aluminum oxide crystal, and its structure is deformed during its combining process with the surface. Both binding energies (Eb) and deformation energies (ΔEdeform) in the SA-aluminum oxide system follow the same order as: SA-Al2O3 (298 K) > SA-Al2O3 (293 K) > SA-Al2O3 (303 K). Their deformation energies are far less than their non-bonding energies. Analysis of radial distribution functions (RDFs) indicates that SA can be adsorbed effectively by aluminum oxide crystal mainly through non-bond interactions. The simulation results agree well with the experimental results, which verify the rationality and reliability of the MD simulation. The further MD simulations provide theoretically optimal temperature (301 K) for the adsorption of SA onto aluminum oxide. The molecular dynamics simulation will be useful for better understanding the adsorption mechanism of antibiotics onto metal oxides, which will also be helpful for optimizing experimental conditions to improve the adsorptive removal efficiency of antibiotics.
Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul
2016-09-15
A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Yanyan; Gao, Baojiao; An, Fuqiang; Xu, Zeqing; Zhang, Tingting
2014-09-12
In this paper, on the basis of surface-initiated graft polymerization, a new surface molecular imprinting technique is established by molecular design. And molecularly imprinted polymer MIP-PMAA/SiO2 is successfully prepared with genistein as template. The adsorption and recognition characteristics of MIP-PMAA/SiO2 for genistein are studied in depth by using static method, dynamic method and competitive adsorption experiment. The experimental results show that MIP-PMAA/SiO2 possesses very strong adsorption affinity and specific recognition for genistein. The saturated adsorption capacity could reach to 0.36mmolg(-1). The selectivity coefficients relative to quercetin and rutin are 5.4 and 11.8, respectively. Besides, MIP-PMAA/SiO2 is regenerated easily and exhibits excellent reusability. Copyright © 2014 Elsevier B.V. All rights reserved.
Jiang, Yu Feng; Sun, Hang; Yves, Uwamungu J; Li, Hong; Hu, Xue Fei
2016-02-01
The primary objective of this study was to investigate the effect of biochar, produced from wheat residue at different temperatures, on the adsorption of diesel oil by loess soil. Kinetic and equilibrium data were processed to understand the adsorption mechanism of diesel by biochar-affected loess soil; dynamic and thermodynamic adsorption experiments were conducted to characterize this adsorption. The surface features and chemical structure of biochar, modified at varying pyrolytic temperatures, were investigated using surface scanning electron microscopy and Fourier transform infrared analysis. The kinetic data showed that the adsorption of diesel oil onto loess soil could be described by a pseudo-second-order kinetic model, with the rate-controlling step being intraparticle diffusion. However, in the presence of biochar, boundary layer control and intraparticle diffusion were both involved in the adsorption. Besides, the adsorption equilibrium data were well described by the Freundlich isothermal model. The saturated adsorption capacity weakened as temperature increased, suggesting a spontaneous exothermic process. Thermodynamic parameter analysis showed that adsorption was mainly a physical process and was enhanced by chemical adsorption. The adsorption capacity of loess soil for diesel oil was weakened with increasing pH. The biochar produced by pyrolytic wheat residue increased the adsorption behavior of petroleum pollutants in loess soil.
Cai, Haohao; Bao, Feng; Gao, Jie; Chen, Tao; Wang, Si; Ma, Rui
2015-01-01
New nano-sized carbon dioxide (CO2) adsorbents based on Halloysite nanotubes impregnated with polyethylenimine (PEI) were designed and synthesized, which were excellent adsorbents for the capture of CO2 at room temperature and had relatively high CO2 adsorption capacity. The prepared adsorbents were characterized by various techniques such as Fourier transform infrared spectrometry, gel permeation chromatography, dynamic light scattering, thermogravimetry, thermogravimetry-Fourier transform-infrared spectrometry, scanning electron microscopy and transmission electron microscopy. The adsorption characteristics and capacity were studied at room temperature, the highest CO2 adsorption capacity of 156.6 mg/g-PEI was obtained and the optimal adsorption capacity can reach a maximum value of 54.8 mg/g-adsorbent. The experiment indicated that this kind of adsorbent has a high stability at 80°C and PEI-impregnated adsorbents showed good reversibility and stability during cyclic adsorption-regeneration tests.
Hu, Jian-Long; Yang, Xiao-Song; Liu, Ting; Shao, Li-Nan; Zhang, Wang
2017-11-01
Polymer-supported hydrated iron(III) oxide (PHIO) was successfully applied as adsorbent for arsenic removal in a wastewater treatment plant in Nandan, China. The practical PHIO adsorbent samples (PHIO-P) were collected from the adsorption column of the wastewater treatment plant, and desorption experiments of the adsorbent were carried out. Our results showed that the formation of precipitates on the surface of PHIO-P might block the porous channel of the adsorbent and decrease its arsenic adsorption capacity. In the dynamic arsenic desorption experiment, the arsenic desorption equilibrium was achieved more quickly at decreasing desorption velocity, and higher arsenic desorption efficiency was obtained at increasing NaOH concentration in regenerant. It was found that the PHIO-P adsorbent could be well regenerated at 1.0 M NaOH solution and desorption velocity of 5 BV h -1 . Comparing with the raw adsorbent, the maximum arsenic adsorption capacity of PHIO-P decreased by 41.1% after practical running for 26 months. Additionally, the frequently used waste PHIO adsorbent could be treated as non-hazardous material in the arsenic-containing wastewater treatment process after long-time use.
Wang, Xiao-Ling; Qiao, Bin; Li, Song-Min; Li, Jian-Sheng
2016-03-01
The potential of natural Chinese zeolite to remove ammonium from rainfall runoff following urea applications to a paddy rice field is assessed in this study. Laboratory batch kinetic and isotherm experiments were carried out first to investigate the ammonium adsorption capacity of the natural zeolite. Field experiments using zeolite adsorption barriers installed at drain outlets in a paddy rice field were also carried out during natural rainfall events to evaluate the barrier's dynamic removal capacity of ammonium. The results demonstrate that the adsorption kinetics are accurately described by the Elovich model, with a coefficient of determination (R (2)) ranging from 0.9705 to 0.9709, whereas the adsorption isotherm results indicate that the Langmuir-Freundlich model provides the best fit (R (2) = 0.992) for the equilibrium data. The field experiments show that both the flow rate and the barrier volume are important controls on ammonium removal from rainfall runoff. A low flow rate leads to a higher ammonium removal efficiency at the beginning of the tests, while a high flow rate leads to a higher quantity of ammonium adsorbed over the entire runoff process.
Ou, Hongxiang; Chen, Qunhui; Pan, Jianming; Zhang, Yunlei; Huang, Yong; Qi, Xueyong
2015-05-30
Magnetic imprinted polymers (MIPs) were synthesized by Pickering emulsion polymerization and used to adsorb erythromycin (ERY) from aqueous solution. The oil-in-water Pickering emulsion was stabilized by chitosan nanoparticles with hydrophobic Fe3O4 nanoparticles as magnetic carrier. The imprinting system was fabricated by radical polymerization with functional and crosslinked monomer in the oil phase. Batches of static and dynamic adsorption experiments were conducted to analyze the adsorption performance on ERY. Isotherm data of MIPs well fitted the Freundlich model (from 15 °C to 35 °C), which indicated heterogeneous adsorption for ERY. The ERY adsorption capacity of MIPs was about 52.32 μmol/g at 15 °C. The adsorption kinetics was well described by the pseudo-first-order model, which suggested that physical interactions were primarily responsible for ERY adsorption. The Thomas model used in the fixed-bed adsorption design provided a better fit to the experimental data. Meanwhile, ERY exhibited higher affinity during adsorption on the MIPs compared with the adsorption capacity of azithromycin and chloramphenicol. The MIPs also exhibited excellent regeneration capacity with only about 5.04% adsorption efficiency loss in at least three repeated adsorption-desorption cycles. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular dynamics simulations of β2-microglobulin interaction with hydrophobic surfaces.
Dongmo Foumthuim, Cedrix J; Corazza, Alessandra; Esposito, Gennaro; Fogolari, Federico
2017-11-21
Hydrophobic surfaces are known to adsorb and unfold proteins, a process that has been studied only for a few proteins. Here we address the interaction of β2-microglobulin, a paradigmatic protein for the study of amyloidogenesis, with hydrophobic surfaces. A system with 27 copies of the protein surrounded by a model cubic hydrophobic box is studied by implicit solvent molecular dynamics simulations. Most proteins adsorb on the walls of the box without major distortions in local geometry, whereas free molecules maintain proper structures and fluctuations as observed in explicit solvent molecular dynamics simulations. The major conclusions from the simulations are as follows: (i) the adopted implicit solvent model is adequate to describe protein dynamics and thermodynamics; (ii) adsorption occurs readily and is irreversible on the simulated timescale; (iii) the regions most involved in molecular encounters and stable interactions with the walls are the same as those that are important in protein-protein and protein-nanoparticle interactions; (iv) unfolding following adsorption occurs at regions found to be flexible by both experiments and simulations; (v) thermodynamic analysis suggests a very large contribution from van der Waals interactions, whereas unfavorable electrostatic interactions are not found to contribute much to adsorption energy. Surfaces with different degrees of hydrophobicity may occur in vivo. Our simulations show that adsorption is a fast and irreversible process which is accompanied by partial unfolding. The results and the thermodynamic analysis presented here are consistent with and rationalize previous experimental work.
Unraveling the Dynamics of Aminopolymer/Silica Composites
Carrillo, Jan-Michael Y.; Sakwa-Novak, Miles A.; Holewinski, Adam; ...
2016-02-25
Branched poly(ethylenimine) (PEI) encapsulated within mesoporous silica (SBA-15), has proven to be an eective sorbent for developing carbon capture technologies. However, the structure-property correlations which govern their adsorptive properties is not well understood. By combining coarse-grained molecular dynamics simulations and neutron scattering experiments we are able to construct, and validate, a detailed model of the dynamics and morphology of the conned polymer within the mesoporous support. By varying the simulation properties we are able to probe, for the rst time, the direct relationship between the structure of the polymer and the non-monotonic dynamics of the polymer as a function ofmore » monomer concentration within an adsorbing cylindrical pore. Overall the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting enhanced carbon dioxide adsorption.« less
NASA Astrophysics Data System (ADS)
Komarneni, Mallikharjuna Rao
Surface science investigations of model catalysts have contributed significantly to heterogeneous catalysis over the past several decades. The unique properties of nanomaterials are being exploited in catalysis for the development of highly active and selective catalysts. Surface science investigations of model catalysts such as inorganic fullerene-like (IF) nanoparticles (NP), inorganic nanotubes (INT), and the oxide-supported nanoclusters are included in this dissertation. Thermal desorption spectroscopy and molecular beam scattering were respectively utilized to study the adsorption kinetics and dynamics of gas phase molecules on catalyst surfaces. In addition, ambient pressure kinetics experiments were performed to characterize the catalytic activity of hydrodesulfurization (HDS) nanocatalysts. The nanocatalysts were characterized with a variety of techniques, including Auger electron spectroscopy, x-ray photoelectron spectroscopy, electron microscopy, and x-ray diffraction. The adsorption kinetics studies of thiophene on novel HDS catalysts provided the first evidence for the presence of different adsorption sites on INT-WS2. Additionally, the adsorption sites on IF-MoS2 NP and silica-supported Mo clusters (Mo/silica) were characterized. Furthermore, the C-S bond activation energy of thiophene on Mo/silica was determined. These studies finally led to the fabrication of Ni/Co coated INT-WS2, which showed good catalytic activity towards HDS of thiophene. The studies of methanol synthesis catalysts include the adsorption kinetics and dynamics studies of CO and CO2 on Cu/silica and silica-supported EBL-fabricated Cu/CuOx nanoclusters. The adsorption dynamics of CO on Cu/silica are modeled within the frame work of the capture zone model (CZM), and the active sites of the silica-supported Au/Cu catalysts are successfully mapped. Studies on EBL model catalysts identify the rims of the CuOx nanoclusters as catalytically active sites. This observation has implications for new methanol catalyst design.
A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION
Finch, Craig; Clarke, Thomas; Hickman, James J.
2012-01-01
Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843
NASA Astrophysics Data System (ADS)
Esmaeilzadeh, Pouriya; Bahramian, Alireza; Fakhroueian, Zahra
The adsorption of surfactants at the solid-water interface is important for the control of wetting, lubrication, detergency and in mineral flotation.We have studied the adsorptions of different types of surfactants, cationic (Dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS) and non-anionic (lauryl alcohol-7 mole ethoxylate, LA7) on carbonate rock in presence of zirconium oxide spherical nanoparticles (17-19 nm). ZrO2 nanoparticles with tetrahedral structure have significant effect on adsorption of surfactants on the carbonate rock. We have used the measured conductivities to determine the rate of adsorption of surfactants at rock-water interfaces. The conductivity of DTAB in aqueous solutions containing calcite powder decreases more than the other surfactants in contact with ZrO2 nanoparticles. We have also investigated the adsorption of surfactants at the air-water interface. The presence of nanoparticles, as demonstrated by our experiments, enhances the surface activity and surface adsorption of the surfactants through electrostatic forces or formation of nanostructures. Dynamic light structuring data shows similar aggregation number of nanoparticles in presence of nanoparticles.
NASA Astrophysics Data System (ADS)
Joewondo, N.; Zhang, Y.; Prasad, M.
2016-12-01
Sequestration of carbon dioxide in shale has been a subject of interest as the result of the technological advancement in gas shale production. The process involves injection of CO2 to enhance methane recovery and storing CO2 in depleted shale reservoir at elevated pressures. To better understand both shale production and carbon storage one must study the physical phenomena acting at different scales that control the in situ fluid flow. Shale rocks are complex systems with heterogeneous structures and compositions. Pore structures of these systems are in nanometer scales and have significant gas storage capacity and surface area. Adsorption is prominent in nanometer sized pores due to the high attraction between gas molecules and the surface of the pores. Recent studies attempt to find correlation between storage capacity and the rock composition, particularly the clay content. This study, however, focuses on the study of supercritical adsorption of CO2 on pure clay sample. We have built an in-house manometric experimental setup that can be used to study both the equilibrium and kinetics of adsorption. The experiment is conducted at isothermal condition. The study of equilibrium of adsorption gives insight on the storage capacity of these systems, and the study of the kinetics of adsorption is essential in understanding the resistance to fluid transport. The diffusion coefficient, which can be estimated from the dynamic experimental results, is a parameter which quantify diffusion mobility, and is affected by many factors including pressure and temperature. The first part of this paper briefly discusses the study of both equilibrium and kinetics of the CO2 adsorption on illite. Both static and dynamic measurements on the system are compared to theoretical models available in the literature to estimate the storage capacity and the diffusion time constants. The main part of the paper discusses the effect of varying temperature on the static and dynamic experimental results.
Interaction of some extreme-pressure type lubricating compounds with an iron surface
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1973-01-01
An iron surface was exposed to the extreme-pressure type lubricant benzyl chloride, dichlorophenyl phosphine, dichlorophenyl phosphine sulfide, ophenyl phosphine oxide. Iron, in the sputter-cleaned state, was exposed to these materials statically and during dynamic friction experiments. With benzyl chloride only chlorine adsorbed to the surface, and with dichlorophenyl phosphine no adsorption occurred, while the addition of sulfur to that same molecular structure resulted in the promotion of carbon and chlorine adsorption. substitution of oxygen for sulfur in the dichlorobenzyl phosphine molecule resulted in carbon, chlorine, and oxygen adsorption. With none of the phosphorus containing molecules was phosphorus detected on the surface. Sliding in an atmosphere of benzyl chloride promoted adsorption of chlorine to the iron surface. Increases in load resulted in a decrease in the surface concentration of iron chloride.
Rezvani, Azita; Jahanshahi, Mohsen; Najafpour, Ghasem D
2014-02-28
Agarose-nickel (Ag-Ni) composite matrix was evaluated for its use in expanded bed adsorption (EBA). Bovine serum albumin (BSA) and lysozyme were used as model proteins in batch and column adsorption studies. Accordingly, Reactive Green 19 (RG19) dye-ligand was covalently immobilized onto the support matrix to prepare affinity adsorbent for protein adsorption. Results were then compared with data obtained from Streamline commercial matrix. In batch experiments RG19 derivatives of Ag-Ni (RG19-Ag-Ni) exhibited high adsorption rate; and also a higher binding capacity of BSA (31.4mg/ml adsorbent) was observed for Ag-Ni compared to the commercial adsorbent. More than 70% of the adsorption capacity was achieved within 30min which is a reasonable contact time for EBA operations. The equilibrium adsorption data well agreed with Langmuir isotherm model. The expanded bed adsorption studies showed a reasonable breakthrough behavior at high flow rates and a higher dynamic binding capacity (DBC) was obtained for novel matrix in compare to streamline at the same fluid velocity. DBC at 10% breakthrough reached 66% of the saturated adsorption capacity at the high flow velocity of 450cm/h which indicates the favorable column efficiency. Additionally, two different Ag-Ni size fractions (75-150 and 150-300μm) were examined to investigate the expanded bed performance dependency on the adsorbent particle size with respect to the hydrodynamic stability and adsorption properties using lysozyme as model protein. Interestingly, the small ones showed less axial dispersion coefficient (<1.0×10(-5)m(2)/s) which resulted in higher bed stability in high fluid viscosities. Overall, the adsorption experiments results demonstrated that small size fraction of Ag-Ni matrices acts more effectively for expanded bed adsorption of bio-molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Investigation of formaldehyde interaction with carbon nanotubes and quartz sand
NASA Astrophysics Data System (ADS)
Georgopoulou, Maria P.; Chrysikopoulos, Constantinos V.
2017-04-01
Assessment of the potential impact of synthetic carbon nanotubes on the fate and transport of common chemical contaminants (pesticides, pharmaceuticals, etc.) in groundwater systems is considered to be an increasingly important aspect of environmental research. This study investigates the interaction of formaldehyde with multi-walled carbon nanotubes (MWCNTs) and quartz sand under static and dynamic conditions. Due to polarity, formaldehyde, is expected to develop strong adsorptive interactions with carbon nanotubes. Several batch adsorption experiments were conducted in test tubes, under controlled conditions. Various initial formaldehyde solution concentration (2, 5, 8 ppm), contact times, and temperatures (8, 18, 25 °C) were considered. Supernatant liquid samples were collected at regular intervals, and centrifuged. Subsequently, the formaldehyde concentration in the supernatant was quantified indirectly, by derivatization with Nash reagent and subsequent measurement of the resulting complex using spectrophotometry in the visible spectral range. Experimental results suggested that formaldehyde has a low affinity for quartz sand, but an enhanced potential for adsorption onto carbon nanotubes. Formaldehyde adsorption onto both absorbents (quartz sand and MWCNTs) was more pronounced under dynamic than static conditions, probably, because agitation improves the mixing of the absorbent within the solution. Also, it was shown that the adsorption data were adequately described by the pseudo-second order kinetic model, suggesting that the primary adsorption mechanism was chemisorption, where two or more (sequential or parallel) processes (e.g. surface chemisorption, intraparticle diffusion) were taking place. Therefore, MWCNTs could be promising adsorbent materials for groundwater remediation.
NASA Astrophysics Data System (ADS)
Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.
2017-07-01
This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium ( q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (Δ G 0), enthalpy (Δ H 0) and entropy (Δ S 0) were determined and the positive value of (Δ H) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.
Molecular Simulations of Adsorption and Diffusion in Silicalite.
NASA Astrophysics Data System (ADS)
Snurr, Randall Quentin
The adsorption and diffusion of hydrocarbons in the zeolite silicalite have been studied using molecular simulations. The simulations use an atomistic description of zeolite/sorbate interactions and are based on principles of statistical mechanics. Emphasis was placed on developing new simulation techniques to allow complex systems relevant to industrial applications in catalysis and separations processes to be studied. Adsorption isotherms and heats of sorption for methane in silicalite were calculated from grand canonical Monte Carlo (GCMC) simulations and also from molecular dynamics (MD) simulations accompanied by Widom test particle insertions. Good agreement with experimental data from the literature was found. The adsorption thermodynamics of aromatic species in silicalite at low loading was predicted by direct evaluation of the configurational integrals. Good agreement with experiment was obtained for the Henry's constants and the heats of adsorption. Molecules were predicted to be localized in the channel intersections at low loading. At higher loading, conventional GCMC simulations were found to be infeasible. Several variations of the GCMC technique were developed incorporating biased insertion moves. These new techniques are much more efficient than conventional GCMC and allow for the prediction of adsorption isotherms of tightly-fitting aromatic molecules in silicalite. Our simulations when combined with experimental evidence of a phase change in the zeolite structure at intermediate loading provide an explanation of the characteristic steps seen in the experimental isotherms. A hierarchical atomistic/lattice model for studying these systems was also developed. The hierarchical model is more than an order of magnitude more efficient computationally than direct atomistic simulation. Diffusion of benzene in silicalite was studied using transition-state theory (TST). Such an approach overcomes the time-scale limitations of using MD simulations for studying sorbate dynamics. Predicted diffusion coefficients were found to be too low compared to experiment. This was attributed to the assumption of a rigid zeolite structure in the calculations and the use of a harmonic approximation for calculating the TST rate constants. Details of sorbate motion were also investigated.
Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivapragasam, Nilushni; Nayakasinghe, Mindika T.; Burghaus, Uwe, E-mail: uwe.burghaus@ndsu.edu
2016-07-15
Adsorption kinetics/dynamics of n-butane on graphene, physical vapor deposited on Ru(0001) (hereafter G/Ru), and bare Ru(0001) (hereafter Ru) are discussed. The chemical activity of the supported-graphene as well as the support was probed by thermal desorption spectroscopy (adsorption kinetics). In addition and to the best of our knowledge, for the first time, molecular beam scattering data of larger molecules were collected for graphene (probing the adsorption dynamics). Furthermore, samples were inspected by x-ray photoelectron spectroscopy and Auger electron spectroscopy. At the measuring conditions used here, n-butane adsorption kinetics/dynamics are molecular and nonactivated. Binding energies of butane on Ru and G/Rumore » are indistinguishable within experimental uncertainty. Thus, G/Ru is “kinetically transparent.” Initial adsorption probabilities, S{sub 0}, of n-butane decrease with increasing impact energy (0.76–1.72 eV) and are adsorption temperature independent for both Ru and G/Ru, again consistent with molecular adsorption. Also, S{sub 0} of Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “dynamically transparent.” Coverage dependent adsorption probabilities indicate precursor effects for graphene/Ru.« less
Zhang, Liyun; Xiao, Xiuchan; Yuan, Yuan; Guo, Yanzhi; Li, Menglong; Pu, Xuemei
2015-01-01
The enzyme immobilization has been adopted to enhance the activity and stability of enzymes in non-aqueous enzymatic catalysis. However, the activation and stabilization mechanism has been poorly understood on experiments. Thus, we used molecular dynamics simulation to study the adsorption of α-chymotrypsin (α-ChT) on carbon nanotube (CNT) in aqueous solution and heptane media. The results indicate that α-ChT has stronger affinity with CNT in aqueous solution than in heptane media, as confirmed by more adsorption atoms, larger contact area and higher binding free energies. Although the immobilization causes significant structure deviations from the crystal one, no significant changes in secondary structure of the enzyme upon adsorption are observed in the two media. Different from aqueous solution, the stabilization effects on some local regions far from the surface of CNT were observed in heptane media, in particular for S1 pocket, which should contribute to the preservation of specificity reported by experiments. Also, CNT displays to some extent stabilization role in retaining the catalytic H-bond network of the active site in heptane media, which should be associated with the enhanced activity of enzymes. The observations from the work can provide valuable information for improving the catalytic properties of enzymes in non-aqueous media. PMID:25787884
Single-polymer dynamics under constraints: scaling theory and computer experiment.
Milchev, Andrey
2011-03-16
The relaxation, diffusion and translocation dynamics of single linear polymer chains in confinement is briefly reviewed with emphasis on the comparison between theoretical scaling predictions and observations from experiment or, most frequently, from computer simulations. Besides cylindrical, spherical and slit-like constraints, related problems such as the chain dynamics in a random medium and the translocation dynamics through a nanopore are also considered. Another particular kind of confinement is imposed by polymer adsorption on attractive surfaces or selective interfaces--a short overview of single-chain dynamics is also contained in this survey. While both theory and numerical experiments consider predominantly coarse-grained models of self-avoiding linear chain molecules with typically Rouse dynamics, we also note some recent studies which examine the impact of hydrodynamic interactions on polymer dynamics in confinement. In all of the aforementioned cases we focus mainly on the consequences of imposed geometric restrictions on single-chain dynamics and try to check our degree of understanding by assessing the agreement between theoretical predictions and observations.
CH4 dissociation on Ru(0001): A view from both sides of the barrier
NASA Astrophysics Data System (ADS)
Mortensen, H.; Diekhöner, L.; Baurichter, A.; Luntz, A. C.
2002-04-01
This paper reports measurements of both dissociative adsorption on and associative desorption from CH4 on Ru(0001). We consider the former a view of dissociation from the front side of the barrier, while the latter is considered as a view of dissociation from the back side of the barrier. A combination of both previous and new molecular beam measurements of dissociative adsorption shows that S0 depends on all experimental variables (E, Tn, Ts and isotope) in a manner similar to other close-packed transition metals. The interpretation of this behavior in terms of a theoretical description of the dissociation is discussed critically, with special emphasis on insights from new theoretical studies. The energy-resolved desorption flux Df(E,Ts) is obtained in associative desorption experiments using the technique of laser assisted associative desorption (LAAD). Measurements at several Ts allow both a direct determination of the adiabatic barrier V*(0) and considerable insight into the dynamics of dissociation. The V*(0) obtained from Df(E,Ts) is in excellent agreement with density functional theory (DFT) calculations and with the value indirectly inferred from molecular beam experiments. The chief dynamic conclusion from an analysis of Df(E,Ts) is that both bending and stretching coordinates must be produced in associative desorption, although they are not populated statistically. The absence of an isotope effect in the shape of Df(E,Ts) argues against the importance of tunneling in the desorption/adsorption. When reactive fluxes are compared via detailed balance, both the molecular beam experiment and the LAAD experiment are in good agreement.
Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite.
Liu, Xinpeng; Wang, Rui
2017-03-15
In this work, 4A molecular sieve zeolite was synthesized from attapulgite (ATP) in different conditions and was applied initially for H 2 S removal. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra and N 2 adsorption/desorption. The effects of the synthesis condition and adsorption temperature were studied by dynamic adsorption experiment. The optimal adsorption temperature is 50°C. The H 2 S adsorption results have showed that the optimal synthesis conditions are as follows: the ratio of silicon to aluminum and ratio of sodium to silicon are both 1.5, the ratio of water to sodium is 30, crystallization temperature and crystallization time is 90°C, 4h, respectively. The breakthrough and saturation sulfur sorption capacities of zeolite synthesized under optimum conditions are up to nearly 10 and 15mg/g-sorbent, respectively, and the H 2 S removal rate is nearly 100%. The adsorption kinetics nonlinear fitting results show that the adsorption system follows Bingham model. These results indicate that 4A molecular sieve zeolite synthesized from attapulgite can be used for H 2 S removal promisingly. Copyright © 2016 Elsevier B.V. All rights reserved.
Bioadsorber efficiency, design, and performance forecasting for alachlor removal.
Badriyha, Badri N; Ravindran, Varadarajan; Den, Walter; Pirbazari, Massoud
2003-10-01
This study discusses a mathematical modeling and design protocol for bioactive granular activated carbon (GAC) adsorbers employed for purification of drinking water contaminated by chlorinated pesticides, exemplified by alachlor. A thin biofilm model is discussed that incorporates the following phenomenological aspects: film transfer from the bulk fluid to the adsorbent particles, diffusion through the biofilm immobilized on adsorbent surface, adsorption of the contaminant into the adsorbent particle. The modeling approach involved independent laboratory-scale experiments to determine the model input parameters. These experiments included adsorption isotherm studies, adsorption rate studies, and biokinetic studies. Bioactive expanded-bed adsorber experiments were conducted to obtain realistic experimental data for determining the ability of the model for predicting adsorber dynamics under different operating conditions. The model equations were solved using a computationally efficient hybrid numerical technique combining orthogonal collocation and finite difference methods. The model provided accurate predictions of adsorber dynamics for bioactive and non-bioactive scenarios. Sensitivity analyses demonstrated the significance of various model parameters, and focussed on enhancement in certain key parameters to improve the overall process efficiency. Scale-up simulation studies for bioactive and non-bioactive adsorbers provided comparisons between their performances, and illustrated the advantages of bioregeneration for enhancing their effective service life spans. Isolation of microbial species revealed that fungal strains were more efficient than bacterial strains in metabolizing alachlor. Microbial degradation pathways for alachlor were proposed and confirmed by the detection of biotransformation metabolites and byproducts using gas chromatography/mass spectrometry.
The Interactions Between Three Typical PPCPs and LDH
Li, Erwei; Liao, Libing; Lv, Guocheng; Li, Zhaohui; Yang, Chengxue; Lu, Yanan
2018-01-01
With a layered structure, layered double hydroxide (LDH) has potential applications in remediation of anionic contaminants, which has been a hot topic for recent years. In this study, a Cl type Mg-Al hydrotalcite (Cl-LDH) was prepared by a co-precipitation method. The adsorption process of three pharmaceuticals and personal care products (PPCPs) [tetracycline (TC), diclofenac sodium (DF), chloramphenicol (CAP)] by Cl-LDH was investigated by X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), BET, Fourier transform infrared (FTIR) spectroscopy, and molecular dynamics simulation. The results showed that the adsorption equilibrium of TC and DF could be reached in 120 min, and the maximum adsorption capacity of the TC and DF were 1.85 and 0.95 mmol/g, respectively. The isothermal adsorption model of TC was fitted with the Freundlich adsorption model, and the isothermal adsorption model of DF was fitted with the Langmuir adsorption model. The adsorption dynamics of TC and DF followed the pseudo-second-order model. The adsorption mechanisms of the three PPCPs into Cl-LDH were different based on the experimental results and molecular dynamics simulation. The TC adsorption on Cl-LDH was accompanied by the electrostatic interactions between the negative charge of TC and the positive charge of Cl-LDH. The uptake of DF was attributed to anion exchange and electrostatic interaction. Cl-LDH does not adsorb CAP due to no electrostatic interaction. The molecular dynamic simulation further confirmed different configurations of three selected PPCPs, which were ultimately responsible for the uptake of PPCPs on Cl-LDH. PMID:29556493
Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.
Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J
2013-02-15
The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Nabarlatz, Debora; de Celis, Jorge; Bonelli, Pablo; Cukierman, Ana Lea
2012-04-30
Vinal-derived Activated Carbon (VAC) developed by phosphoric acid activation of sawdust from Prosopis ruscifolia native wood was tested for the adsorption of Ni(II) ions from dilute solutions in both batch and dynamic modes, comparing it with a Commercial Activated Carbon (CAC). Batch experiments were performed to determine adsorption kinetics and equilibrium isotherms for both carbons. It was possible to remove near 6.55 mg Ni g(-1) VAC and 7.65 mg Ni g(-1) CAC after 5 h and 10 h contact time, respectively. A pseudo second order equation fitted well with the kinetics of the process, and Langmuir adsorption model was used to adjust the experimental results concerning the adsorption isotherm. The parameters obtained indicate a stronger interaction between sorbent and sorbate for VAC (K = 26.56 L mmol(-1)) than for CAC (K = 19.54 L mmol(-1)). Continuous experiments were performed in a fixed-bed column packed with the investigated carbons, evaluating the influence of operational parameters such as flow rate, bed height and feed concentration on the breakthrough curves obtained. The breakthrough occurred more slowly for low concentrations of the metal ion in the feed, low flow rates and high bed height. The breakthrough curves were properly represented by Hall's model for both carbon types. Regeneration of the vinal activated carbon in column was tested, obtaining the same breakthrough curve in a new cycle of use. Finally, vinal-derived activated carbon can effectively be used to treat wastewater having until 30 ppm Ni(II). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Androniuk, Iuliia; Landesman, Catherine; Henocq, Pierre; Kalinichev, Andrey G.
2017-06-01
As a first step in developing better molecular scale understanding of the effects of organic additives on the adsorption and mobility of radionuclides in cement under conditions of geological nuclear waste repositories, two complementary approaches, wet chemistry experiments and molecular dynamics (MD) computer simulations, were applied to study the sorption behaviour of two simple model systems: gluconate and uranyl on calcium silicate hydrate phases (C-S-H) - the principal mineral component of hardened cement paste (HCP). Experimental data on sorption and desorption kinetics and isotherms of adsorption for gluconate/C-S-H and U(VI)/C-S-H binary systems were collected and quantitatively analysed for C-S-H samples synthesised with various Ca/Si ratios (0.83, 1.0, 1.4) corresponding to various stages of HCP aging and degradation. Gluconate labelled with 14C isotope was used in order to improve the sensitivity of analytical detection technique (LSC) at particularly low concentrations (10-8-10-5 mol/L). There is a noticeable effect of Ca/Si ratio on the gluconate sorption on C-S-H, with stronger sorption at higher Ca/Si ratios. Sorption of organic anions on C-S-H is mediated by the presence of Ca2+ at the interface and strongly depends on the surface charge and Ca2+ concentration. In parallel, classical MD simulations of the same model systems were performed in order to identify specific surface sorption sites most actively involved in the sorption of gluconate and uranyl on C-S-H and to clarify molecular mechanisms of adsorption.
The interactions between three typical PPCPs and LDH
NASA Astrophysics Data System (ADS)
Li, Erwei; Liao, Libing; Lv, Guocheng; Li, Zhaohui; Yang, Chengxue; Lu, Yanan
2018-03-01
With a positively charged layered structure, layered double hydroxide has potential applications in remediation of anionic contaminants, which has been a hot topic for recent years. In this study, a Cl type Mg-Al hydrotalcite (Cl-LDH) was prepared by a co-precipitation method. The adsorption process of three pharmaceuticals and personal care products (PPCPs) (tetracycline (TC), diclofenac sodium (DF), chloramphenicol (CAP)) by Cl-LDH was investigated by X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), BET, FT-IR spectroscopy and molecular dynamics simulation. The results showed that the adsorption equilibrium of TC and DF could be reached in 120 min, and the maximum adsorption capacity of the Cl-LDH for TC and DF were 1.85 mmol/g and 0.95 mmol/g, respectively. The adsorption isothermal of TC was fitted with the Freundlich adsorption model, and the adsorption isothermal of DF was fitted with the Langmuir adsorption model. The adsorption dynamics of TC and DF followed the pseudo-second-order model. The adsorption mechanisms of the three PPCPs onto Cl-LDH were different based on the experimental results and molecular dynamics simulation. The TC adsorption on Cl-LDH was mainly driven by the electrostatic interactions between the negative charge of TC and the positive charge of Cl-LDH. The uptake of anionic DF was attributed both to ion exchange of DF for Cl- and the electrostatic interaction between the negatively charged DF and the positively charged structure layer of Cl-LDH. Cl-LDH does not adsorb the neutral CAP due to no electrostatic interaction. The molecular dynamic simulation further confirmed different configurations of the three selected PPCPs in the interlayer of Cl-LDH, which were responsible for the different uptake process of PPCPs on Cl-LDH.
Hassan, Asaad F; Hrdina, Radim
2018-04-01
Chitosan/nanohydroxyapatite composites based on scallop shells (CP12, CP14 and CP21) were prepared with different chitosan: nanohydroxyapatite ratios (1:2, 1:4 and 2:1, respectively). Nanohydroxyapatite (P), chitosan(C) and their composites were characterized by means of TGA, XRD, N 2 adsorption/desorption analysis, SEM, Zeta potential and FTIR. The BET surface area ranged between 189 and 512 m 2 /g. Static adsorption of Hg +2 was tested for the effect of adsorbent dosage, pH, time and initial Hg +2 concentrations indicating that maximum static adsorption capacity was confirmed by CP12 (111.6 mg/g). Static adsorption well fitted with Langmuir adsorption isotherm and Pseudo-second order kinetic models. CP12 was selected for dynamic adsorption of Hg +2 considering the effect of bed height, flow rate and the effect of Hg +2 concentrations. Maximum dynamic adsorption capacity was confirmed at bed height of 3 cm, 2.0 mL/min flow rate and 300 mg/L as Hg +2 concentration with breakthrough time (t b ) and exhaustion time (t e ) of 9 and 21 h. Yoon-Nelson and Thomas models best described the experimental Hg +2 breakthrough curve model. After static adsorption, EDTA solution confirmed the maximum desorption efficiency. The validity of CP12 was tested through three cycles of column dynamic adsorption-desorption. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantifying the value of information for uncertainty reduction in chemical EOR modeling
NASA Astrophysics Data System (ADS)
Leray, Sarah; Yeates, Christopher; Douarche, Frédéric; Roggero, Frédéric
2016-04-01
Reservoir modeling is a powerful tool to assess the technical and economic feasibility of chemical Enhanced Oil Recovery methods such as the joint injection of surfactant and polymer. Laboratory recovery experiments are usually undertaken on cores to understand recovery mechanisms and to estimate properties, that will be further used to build large scale models. To capture the different processes involved in chemical EOR, models are described by a large number of parameters which are basically only partially constrained by recovery experiments and additional characterizations, mainly because of cost and time restrictions or limited representativeness. Among the most uncertain properties, features the surfactant adsorption which cannot be straightforwardly derived from bulk or simplified dynamic measurements (e.g. single phase dynamic adsorption experiments). It is unfortunately critical for the economics of the process. Identifying the most informative observations (e.g. saturation scans, pressure differential, surfactant production, oil recovery) is of primary interest to compensate deficiency of some characterizations and improve models robustness and their predictive capability. Building a consistent set of recovery experiments that will allow to seize recovery mechanisms is critical as well. To address these inverse methodology issues, we create a synthetic numerical model with a well-defined set of parameter values, considered to be our reference case. This choice of model is based on a similar real data set and a broad literature review. It consists of a water-wet sandstone subject to typical surfactant-polymer injections. We first study the effect of a salinity gradient injected after a surfactant-polymer slug, as it is known to significantly improve oil recovery. We show that reaching optimal conditions of salinity gradient is a fragile balance between surfactant desorption and interfacial tension increase. This high dependence on surfactant adsorption properties indicates that two recovery tests with and without salinity gradient are of great interest for model inversion and characterization of surfactant adsorption. Second, we analyze our capacity to find again the reference model using an assisted history matching method to reproduce a set of synthetic core-scale experiments. To do so, we use the reference model over five configurations with respect to chemicals injection to provide baseline recovery data. Then, we consider some uncertainty on model parameters, regarding surfactant adsorption properties amongst others, leading to a total of twelve uncertain parameters. Finally, we extensively explore the parameter space to find several reasonable matches. We show that an additional sixth recovery experiment is necessary to fully constrain the model, and specifically characterize surfactant adsorption. We besides show that production data are not equally informative: pressure differential is for instance the less informative data while a saturation scan at the end of the polymer post-flush can greatly help in the inversion. The inverse methodology carried out here has also been successfully tested with a real set of coreflood experiments.
Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro
2018-02-06
In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.
Ajmal, Zeeshan; Muhmood, Atif; Usman, Muhammad; Kizito, Simon; Lu, Jiaxin; Dong, Renjie; Wu, Shubiao
2018-05-24
Dynamics of phosphate (PO 4 3- ) adsorption, desorption and regeneration characteristics of three lab-synthesized iron oxides, ferrihydrite (F), goethite (G), and magnetite (M) were evaluated in this study. Batch experiments were conducted to evaluate the impact of several adsorption parameters including adsorbent dosage, reaction time, temperature, pH, and ionic strength. The results showed that PO 4 3- adsorption increased with reaction time and temperature while it decreased with an increase in solution pH. Adsorption isotherm data exhibited good agreement with the Freundlich and Langmuir model with maximum monolayer adsorption capacities of 66.6 mg·g -1 (F), 57.8 mg·g -1 (M), and 50.5 mg·g -1 (G). A thermodynamics evaluation produced ΔG < 0, ΔH > 0, and ΔS > 0, demonstrating that PO 4 3- adsorption onto tested minerals is endothermic, spontaneous, and disordered. The PO 4 3- removal mostly occurred via electrostatic attraction between the sorbate and sorbent surfaces. Moreover, the PO 4 3- sorption was reversible and could be desorbed at varying rates in both neutral and alkaline environments. The good desorption capacity has practical benefits for potential regeneration and re-use of the saturated particles in wastewater treatment systems. Copyright © 2018 Elsevier Inc. All rights reserved.
Adsorption behavior of proteins on temperature-responsive resins.
Poplewska, Izabela; Muca, Renata; Strachota, Adam; Piątkowski, Wojciech; Antos, Dorota
2014-01-10
The adsorption behavior of proteins on thermo-responsible resins based on poly(N-isopropylacrylamide) and its copolymer containing an anionic co-monomer has been investigated. The influence of the polymer composition, i.e., the content of the co-monomer and crosslinker on the thermo-sensitivity of the protein adsorption has been quantified. The properties of ungrafted polymer as well grafted onto the agarose matrix have been analyzed and compared. Batch and dynamic (column) experiments have been performed to measure the adsorption equilibrium of proteins and to quantify the phase transition process. As model proteins lysozyme, lactoferrin, α-chymotrypsinogen A and ovalbumin have been used. The adsorption process was found to be governed by ionic interactions between the negatively charged surface of resin and the protein, which enabled separation of proteins differing in electrostatic charge. The interactions enhanced with increase of temperature. Decrease of temperature facilitated desorption of proteins and reduced the salt usage in the desorption buffer. Grafted polymers exhibited markedly higher mechanical stability and, however, weaker temperature response compared to the ungrafted ones. Copyright © 2013 Elsevier B.V. All rights reserved.
Biogas upgrading: optimal activated carbon properties for siloxane removal.
Cabrera-Codony, Alba; Montes-Morán, Miguel A; Sánchez-Polo, Manuel; Martín, Maria J; Gonzalez-Olmos, Rafael
2014-06-17
A total of 12 commercial activated carbons (ACs) have been tested for the removal of octamethylcyclotetrasiloxane (D4) in dynamic adsorption experiments using different carrier gases and D4 concentrations. Characterization of the ACs included several physical and chemical techniques. The D4 adsorption capacities were strongly related with the textural development of the ACs. Results showed that the optimum adsorbent for D4 is a wood-based chemically activated carbon, which rendered an adsorption capacity of 1732 ± 93 mg g(-1) using 1000 ppm (v/v) of D4 with dry N2 as the carrier gas. When the concentration of D4 was lowered to typical values found in biogas, the adsorption capacity was halved. The presence of major biogas compounds (i.e., CH4 and CO2) and humidity further reduced the D4 adsorption capacity. The polymerization of D4 over the surface of all ACs was found to be relevant after prolonged contact times. The extent of this phenomenon, which may negatively affect the thermal regeneration of the AC, correlated reasonably well with the presence of phenolic and carboxylic groups on the carbon surfaces.
Comment on "Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers"
NASA Astrophysics Data System (ADS)
Bonfanti, Matteo; Martinazzo, Rocco
2018-03-01
It is shown that the theoretical prediction of a transient magnetization in bilayer and multilayer graphene (M. Moaied et al., Phys. Rev. B 91, 155419 (2015), 10.1103/PhysRevB.91.155419) relies on an incorrect physical scenario for adsorption, namely, one in which H atoms adsorb barrierless on graphitic substrates and form a random adsorption pattern of monomers. Rather, according to experimental evidence, H atom sticking is an activated process, and adsorption is under kinetic control, largely ruled by a preferential sticking mechanism that leads to stable, nonmagnetic dimers at all but the smallest coverages (<0.004 ). Theory and experiments are reconciled by reconsidering the hydrogen atom adsorption energetics with the help of van der Waals-inclusive density functional calculations that properly account for the basis set superposition error. It is shown that today van der Waals-density functional theory predicts a shallow physisorption well that nicely agrees with available experimental data and suggests that the hydrogen atom adsorption barrier in graphene is 180 meV high, within ˜5 meV accuracy.
NASA Astrophysics Data System (ADS)
Majidi, R.; Karami, A. R.
2013-05-01
We have used molecular dynamics simulation to study helium adsorption capacity of carbon nanotube bundles with different diameters. Homogeneous carbon nanotube bundles of (8,8), (9,9), (10,10), (11,11), and (12,12) single walled carbon nanotubes have been considered. The results indicate that the exohedral adsorption coverage does not depend on the diameter of carbon nanotubes, while the endohedral adsorption coverage is increased by increasing the diameter.
Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments
NASA Technical Reports Server (NTRS)
LeVan, M. Douglas; Finn, John E.
1997-01-01
The goal of this research was to develop a dynamic model which can predict the effect of humidity swings on activated carbon adsorption beds used to remove trace contaminants from the atmosphere in spacecraft. Specifically, the model was to be incorporated into a computer simulation to predict contaminant concentrations exiting the bed as a function of time after a humidity swing occurs. Predicted breakthrough curves were to be compared to experimentally measured results. In all respects the research was successful. The two major aspects of this research were the mathematical model and the experiments. Experiments were conducted by Mr. Appel using a fixed-bed apparatus at NASA-Ames Research Center during the summers of 1994 and 1995 and during the first 8 months of 1996. Mr. Appel conducted most of his mathematical modeling work at the University of Virginia. The simulation code was used to predict breakthrough curves using adsorption equilibrium correlations developed previously by M. D. LeVan's research group at the University of Virginia. These predictions were compared with the experimental measurements, and this led to improvements in both the simulation code and the apparatus.
Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex
2012-06-15
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such proteins. Copyright © 2012 Elsevier Inc. All rights reserved.
Zhao, Xiaoyan; Zeng, Xiaolan; Qin, Yu; Li, Xiang; Zhu, Tianle; Tang, Xiaolong
2018-04-26
The adsorption performance of toluene and chlorobenzene on prepared coconut shell derived carbon (CDC) is investigated and compared with commercial activated carbon (CAC) by experiment and theory calculation. Textural properties of prepared adsorbents are characterized by N 2 adsorption, infrared spectra (FT-IR), Raman spectra and X-ray photoelectron spectra (XPS). Adsorption isotherms of toluene and chlorobenzene are obtained and fitted using structure optimizations, Grand Canonical Monte Carlo (GCMC) simulation and thermodynamic models. The results indicate that CDC shows better volatile organic compounds (VOCs) removal performance than CAC, and chlorobenzene is easily adsorbed than toluene. On the aspect of textural characteristics, CDC possesses more micropores ratio and narrower pore size distribution than CAC. Furthermore, amounts of electron-withdrawing carbonyl groups on the CAC surface reduce the electron density of adsorbents, thus weakening the interaction between VOCs and adsorbents. On the aspect of model fitting, the Yoon and Nelson (Y-N) and Dubinin-Astakhov (D-A) models can well describe the dynamic adsorption and the adsorption equilibrium of toluene and chlorobenzene on CDC respectively. It is believed that substituent groups of adsorbates, making the charge distribution deviate, lead to adsorption potentials of chlorobenzene larger than toluene. In general, both the pore structure and the surface property of adsorbents affect the VOCs adsorption behaviors on CDC. Copyright © 2018. Published by Elsevier Ltd.
Hao, Linlin; Wang, Peng; Valiyaveettil, Suresh
2017-01-01
For the first time, renewable and easy accessible pre-bleached spent coffee powder coated with polyethylenimine (PEI) and ferric ions (Coffee-PEI-Fe) was used for the successive adsorption of As(V), Cu(II) and P(V) ions from spiked water samples. Fully characterized coffee-PEI-Fe was employed for batch mode experiments. Kinetic regression analysis showed that the adsorption processes of As(V) and P(V) anions follows a pseudo-second-order model, while the adsorption of Cu(II) ions fit with a pseudo-first-order model. The maximum adsorption capacities estimated by Langmuir model for As(V), Cu(II) and P(V) ions were 83.3, 200.1, and 50.2 mg/g, respectively. The simulated results revealed that the internal diffusion is the rate-determining step for the adsorptions of As(V) and Cu(II) ions, while film diffusion is the mass transfer resistance for the adsorption of P(V) ions on the surface of coffee-PEI-Fe. The successive adsorptions of adsorbates were achieved through electrostatic attraction between adsorbent surface and adsorbates. The dynamic column adsorption behavior of the adsorbent was described by Thomas model, which showed a good agreement with the experimental values (qexp). The results presented in this paper could be used for developing efficient adsorbent from renewable materials for water purification. PMID:28220853
NASA Astrophysics Data System (ADS)
Hao, Linlin; Wang, Peng; Valiyaveettil, Suresh
2017-02-01
For the first time, renewable and easy accessible pre-bleached spent coffee powder coated with polyethylenimine (PEI) and ferric ions (Coffee-PEI-Fe) was used for the successive adsorption of As(V), Cu(II) and P(V) ions from spiked water samples. Fully characterized coffee-PEI-Fe was employed for batch mode experiments. Kinetic regression analysis showed that the adsorption processes of As(V) and P(V) anions follows a pseudo-second-order model, while the adsorption of Cu(II) ions fit with a pseudo-first-order model. The maximum adsorption capacities estimated by Langmuir model for As(V), Cu(II) and P(V) ions were 83.3, 200.1, and 50.2 mg/g, respectively. The simulated results revealed that the internal diffusion is the rate-determining step for the adsorptions of As(V) and Cu(II) ions, while film diffusion is the mass transfer resistance for the adsorption of P(V) ions on the surface of coffee-PEI-Fe. The successive adsorptions of adsorbates were achieved through electrostatic attraction between adsorbent surface and adsorbates. The dynamic column adsorption behavior of the adsorbent was described by Thomas model, which showed a good agreement with the experimental values (qexp). The results presented in this paper could be used for developing efficient adsorbent from renewable materials for water purification.
Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.
Ajmani, Gaurav S; Cho, Hyun-Hee; Abbott Chalew, Talia E; Schwab, Kellogg J; Jacangelo, Joseph G; Huang, Haiou
2014-08-01
Carbon nanotubes (CNTs) were investigated for their capability and mechanisms to simultaneously remove colloidal natural organic matter (NOM) and humic substances from natural surface water. Static removal testing was conducted via adsorption experiments while dynamic removal was evaluated by layering CNTs onto substrate membranes and filtering natural water through the CNT-layered membranes. Analyses of treated water samples showed that removal of humic substances occurred via adsorption under both static and dynamic conditions. Removal of colloidal NOM occurred at a moderate level of 36-66% in static conditions, independent of the specific surface area (SSA) of CNTs. Dynamic removal of colloidal NOM increased from approximately 15% with the unmodified membrane to 80-100% with the CNT-modified membranes. Depth filtration played an important role in colloidal NOM removal. A comparison of the static and dynamic removal of humic substances showed that equilibrium static removal was higher than dynamic (p < 0.01), but there was also a significant linear relationship between static and dynamic removal (p < 0.05). Accounting for contact time of CNTs with NOM during filtration, it appeared that CNT mat structure was an important determinant of removal efficiencies for colloidal NOM and humic substances during CNT membrane filtration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Peng-Cheng; Liu, Ying; Yi, Yue-Tao; Li, Hong-Juan; Fan, Ping; Xia, Chuan-Hai
2015-02-01
In the present study, a simple and efficient method for the preparative separation of 3-CQA from the extract of Helianthus tuberosus leaves with macroporous resins was studied. ADS-21 showed much higher adsorption capacity and better adsorption/desorption properties for 3-CQA among the tested resins. The adsorption of 3-CQA on ADS-21 resin at 25°C was fitted best to the Langmuir isotherm model and pseudo-second-order kinetic model. Dynamic adsorption/desorption experiments were carried out in a glass column packed with ADS-21 to optimise the separation process of 3-CQA from H. tuberosus leaves extract. After one treatment with ADS-21, the content of 3-CQA in the product was increased 5.42-fold, from 12.0% to 65.2%, with a recovery yield of 89.4%. The results demonstrated that the method was suitable for large-scale separation and manufacture of 3-CQA from H. tuberosus leaves. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microfluidic Dynamic Interfacial Tensiometry (μDIT).
Brosseau, Quentin; Vrignon, Jérémy; Baret, Jean-Christophe
2014-05-07
We designed, developed and characterized a microfluidic method for the measurement of surfactant adsorption kinetics via interfacial tensiometry on a microfluidic chip. The principle of the measurement is based on the deformability of droplets as a response to hydrodynamic forcing through a series of microfluidic expansions. We focus our analysis on one perfluoro surfactant molecule of practical interest for droplet-based microfluidic applications. We show that although the adsorption kinetics is much faster than the kinetics of the corresponding pendant drop experiment, our droplet-based microfluidic system has a sufficient time resolution to obtain quantitative measurement at the sub-second time-scale on nanoliter droplet volumes, leading to both a gain by a factor of ∼10 in time resolution and a downscaling of the measurement volumes by a factor of ∼1000 compared to standard techniques. Our approach provides new insight into the adsorption of surfactant molecules at liquid-liquid interfaces in a confined environment, relevant to emulsification, encapsulation and foaming, and the ability to measure adsorption and desorption rate constants.
Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A.R.
2017-01-01
The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects. PMID:28198376
Gao, Min; Huang, Wei; Liu, Chun-Zhao
2007-10-15
Scutellarin, a flavone glycoside, popularly used in the treatment of heart disease, has been efficiently separated using macroporous resins from crude extracts of Chinese medicinal plant Erigeron breviscapus (vant.) Hand. Mazz. HPD-800 resin offered the best adsorption and desorption capacity for scutellarin among the eight macroporous resins tested, and its adsorption data at 25 degrees C fit best to the Langmuir isotherm. The dynamic adsorption and desorption experiments have been carried out on a HPD-800 resin packed column to optimize the separation process of scutellarin from the crude extracts of E. breviscapus. After one run treatment with HPD-800 resin, the scutellarin content in the product was increased 15.69-fold from 2.61% to 40.96% with a recovery yield of 95.01%. The preparative separation process via adsorption-desorption method developed in this study provides a new approach for scale-up separation and purification of scutellarin for its wide pharmaceutical use.
Statistical inference in single molecule measurements of protein adsorption
NASA Astrophysics Data System (ADS)
Armstrong, Megan J.; Tsitkov, Stanislav; Hess, Henry
2018-02-01
Significant effort has been invested into understanding the dynamics of protein adsorption on surfaces, in particular to predict protein behavior at the specialized surfaces of biomedical technologies like hydrogels, nanoparticles, and biosensors. Recently, the application of fluorescent single molecule imaging to this field has permitted the tracking of individual proteins and their stochastic contribution to the aggregate dynamics of adsorption. However, the interpretation of these results is complicated by (1) the finite time available to observe effectively infinite adsorption timescales and (2) the contribution of photobleaching kinetics to adsorption kinetics. Here, we perform a protein adsorption simulation to introduce specific survival analysis methods that overcome the first complication. Additionally, we collect single molecule residence time data from the adsorption of fibrinogen to glass and use survival analysis to distinguish photobleaching kinetics from protein adsorption kinetics.
Modeling of adsorption dynamics at air-liquid interfaces using statistical rate theory (SRT).
Biswas, M E; Chatzis, I; Ioannidis, M A; Chen, P
2005-06-01
A large number of natural and technological processes involve mass transfer at interfaces. Interfacial properties, e.g., adsorption, play a key role in such applications as wetting, foaming, coating, and stabilizing of liquid films. The mechanistic understanding of surface adsorption often assumes molecular diffusion in the bulk liquid and subsequent adsorption at the interface. Diffusion is well described by Fick's law, while adsorption kinetics is less understood and is commonly described using Langmuir-type empirical equations. In this study, a general theoretical model for adsorption kinetics/dynamics at the air-liquid interface is developed; in particular, a new kinetic equation based on the statistical rate theory (SRT) is derived. Similar to many reported kinetic equations, the new kinetic equation also involves a number of parameters, but all these parameters are theoretically obtainable. In the present model, the adsorption dynamics is governed by three dimensionless numbers: psi (ratio of adsorption thickness to diffusion length), lambda (ratio of square of the adsorption thickness to the ratio of adsorption to desorption rate constant), and Nk (ratio of the adsorption rate constant to the product of diffusion coefficient and bulk concentration). Numerical simulations for surface adsorption using the proposed model are carried out and verified. The difference in surface adsorption between the general and the diffusion controlled model is estimated and presented graphically as contours of deviation. Three different regions of adsorption dynamics are identified: diffusion controlled (deviation less than 10%), mixed diffusion and transfer controlled (deviation in the range of 10-90%), and transfer controlled (deviation more than 90%). These three different modes predominantly depend on the value of Nk. The corresponding ranges of Nk for the studied values of psi (10(-2)
Comparison between different adsorption-desorption kinetics schemes in two dimensional lattice gas
NASA Astrophysics Data System (ADS)
Huespe, V. J.; Belardinelli, R. E.; Pereyra, V. D.; Manzi, S. J.
2017-12-01
Monte Carlo simulation is used to study the adsorption-desorption kinetics in the framework of the kinetic lattice-gas model. Three schemes of the so-called hard dynamics and five schemes of the so called soft dynamics were used for this purpose. It is observed that for the hard dynamic schemes, the equilibrium and non-equilibrium observable, such as adsorption isotherms, sticking coefficients, and thermal desorption spectra, have a normal or physical sustainable behavior. While for the soft dynamics schemes, with the exception of the transition state theory, the equilibrium and non-equilibrium observables have several problems.
Incipient triple point for adsorbed xenon monolayers: Pt(111) versus graphite substrates
NASA Astrophysics Data System (ADS)
Novaco, Anthony D.; Bruch, L. W.; Bavaresco, Jessica
2015-04-01
Simulation evidence of an incipient triple point is reported for xenon submonolayers adsorbed on the (111) surface of platinum. This is in stark contrast to the "normal" triple point found in simulations and experiments for xenon on the basal plane surface of graphite. The motions of the atoms in the surface plane are treated with standard 2D "NVE" molecular dynamics simulations using modern interactions. The simulation evidence strongly suggests an incipient triple point in the 120 -150 K range for adsorption on the Pt (111) surface while the adsorption on graphite shows a normal triple point at about 100 K.
Zhang, Yue; Lucier, Bryan E G; Fischer, Michael; Gan, Zhehong; Boyle, Paul D; Desveaux, Bligh; Huang, Yining
2018-03-25
Methane is a promising clean and inexpensive energy alternative to traditional fossil fuels, however, its low volumetric energy density at ambient conditions has made devising viable, efficient methane storage systems very challenging. Metal-organic frameworks (MOFs) are promising candidates for methane storage. In order to improve the methane storage capacity of MOFs, a better understanding of the methane adsorption, mobility, and host-guest interactions within MOFs must be realized. In this study, methane adsorption within α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , SIFSIX-3-Zn, and M-MOF-74 (M=Mg, Zn, Ni, Co) has been comprehensively examined. Single-crystal X-ray diffraction (SCXRD) experiments and DFT calculations of the methane adsorption locations were performed for α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , and SIFSIX-3-Zn. The SCXRD thermal ellipsoids indicate that methane possesses significant mobility at the adsorption sites in each system. 2 H solid-state NMR (SSNMR) experiments targeting deuterated CH 3 D guests in α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , SIFSIX-3-Zn, and MOF-74 yield an interesting finding: the 2 H SSNMR spectra of methane adsorbed in these MOFs are significantly influenced by the chemical shielding anisotropy in addition to the quadrupolar interaction. The chemical shielding anisotropy contribution is likely due mainly to the nuclear independent chemical shift effect on the MOF surfaces. In addition, the 2 H SSNMR results and DFT calculations strongly indicate that the methane adsorption strength is linked to the MOF pore size and that dispersive forces are responsible for the methane adsorption in these systems. This work lays a very promising foundation for future studies of methane adsorption locations and dynamics within adsorbent MOF materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitler, T. R.; Greathouse, J. A.; Cygan, R. T.
Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid inmore » its deprotonated form (DHNA –) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA – concentrations with Na + and Ca 2+ as counterions. The tendency of DHNA – ions to coordinate with divalent (Ca 2+) rather than monovalent (Na +) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca 2+ at deprotonated sites results in increased DHNA – adsorption. Divalent cations such as Ca 2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na + diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. As a result, a clear trend of decreased DHNA – adsorption is observed in the simulations as Ca 2+ is replaced by Na + for deprotonated surfaces, as would be expected for oil detachment from reservoir formations following a low-salinity flooding event.« less
Zeitler, T. R.; Greathouse, J. A.; Cygan, R. T.; ...
2017-10-05
Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid inmore » its deprotonated form (DHNA –) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA – concentrations with Na + and Ca 2+ as counterions. The tendency of DHNA – ions to coordinate with divalent (Ca 2+) rather than monovalent (Na +) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca 2+ at deprotonated sites results in increased DHNA – adsorption. Divalent cations such as Ca 2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na + diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. As a result, a clear trend of decreased DHNA – adsorption is observed in the simulations as Ca 2+ is replaced by Na + for deprotonated surfaces, as would be expected for oil detachment from reservoir formations following a low-salinity flooding event.« less
[Characteristic of ammonia nitrogen adsorption on karst underground river sediments].
Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui
2011-02-01
Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions and pollution history. The other reason maybe the article is lack of research on pH, salinity and others factors which may affect adsorption and desorption.
NASA Astrophysics Data System (ADS)
Sabio, E.; Zamora, F.; González, J. F.; García, C. M. González; Román, S.; Al-Kassir, A.
2006-06-01
The use of activated carbon for removing organic contaminants in fixed beds is increasing. This is a dynamic process in which the kinetics plays an important role. The aim of this paper is to get more insight into adsorption of p-nitrophenol (PNP) in activated carbon under equilibrium and dynamic conditions. Five commercial activated carbons were studied. The analysis carried out were PNP adsorption isotherms in aqueous solution at 20 °C, N 2 at 77 K isotherms, FT-IR and PNP adsorption under dynamic conditions. The results indicate that the external porous affinity toward the organic contaminants determines in large extent the adsorbents behaviour under dynamic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Lei; Shi, Zhenqing; Lu, Yang
Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all fourmore » metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.« less
Li, Jiwei; Ma, Jianwei; Chen, Shaojuan; Huang, Yudong; He, Jinmei
2018-08-01
The large-scale applications of lysozyme in the pharmaceutical industry and food industry require more efficient and cost-effective techniques for its separation/purification. In the present study, graphene oxide (GO) was encapsulated into environmentally benign sodium alginate (SA) to prepare a Ca 2+ crosslinked alginate/graphene oxide composite gel beads (Ca-SA/GO) which were then used to adsorb lysozyme from aqueous solutions. Compared with pure Ca 2+ crosslinked alginate gel beads (Ca-SA), the as-prepared Ca-SA/GO has a lower swelling degree, an improved gel stability in salt solutions, and a higher mechanical performance. This can be explained by the uniform distribution of GO sheets in the Ca-SA matrix and the existence of hydrogen bonding and high interfacial adhesion between GO filler and SA matrix demonstrated by SEM, FTIR, XRD, and TGA. Batch adsorption experiments found that the lysozyme adsorption capacity of Ca-SA/GO can reach 278.28 mg g -1 and it can be regenerated and reused at least 4 times. Moreover, in column adsorption, the Ca-SA/GO showed excellent dynamic adsorption property. With good stability, adsorption capacity, and regeneration ability, the Ca-SA/GO could be a promising adsorbent for lysozyme from aqueous solutions. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Peeler, David; Matysiak, Silvina
2013-03-01
Any inanimate object with an exposed surface bears the possibility of hosting a virus and may therefore be labeled a fomite. This research hopes to distinguish which chemical-physical differences in fomite surface and virus capsid protein characteristics cause variations in virus adsorption through an alignment of in silico molecular dynamics simulations with in vitro measurements. The impact of surface chemistry on the adsorption of the human norovirus (HNV)-surrogate calicivirus capsid protein 2MS2 has been simulated for monomer and trimer structures and is reported in terms of protein-self assembled monolayer (SAM) binding free energy. The coarse-grained MARTINI forcefield was used to maximize spatial and temporal resolution while minimizing computational load. Future work will investigate the FCVF5 and SMSVS4 calicivirus trimers and will extend beyond hydrophobic and hydrophilic SAM surface chemistry to charged SAM surfaces in varying ionic concentrations. These results will be confirmed by quartz crystal microbalance experiments conducted by Dr. Wigginton at the University of Michigan. This should provide a novel method for predicting the transferability of viruses that cannot be studied in vitro such as dangerous foodborne and nosocomially-acquired viruses like HNV.
Sorption Modeling and Verification for Off-Gas Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavlarides, Lawrence; Yiacoumi, Sotira; Tsouris, Costas
2016-12-20
This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on themore » active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection processes. These models were built on a numerical framework for solving conservation law problems in one-dimensional geometries such as spheres, cylinders, and lines. Coupled with the framework are specific models for adsorption in commercial adsorbents, such as zeolites and mordenites. Utilizing this modeling approach, the authors were able to accurately describe and predict adsorption kinetic data obtained from experiments at a variety of different temperatures and gas phase concentrations. A demonstration of how these models, and framework, can be used to simulate adsorption in fixed- bed columns is provided. The CO 2 absorption work involved modeling with supportive experimental information. A dynamic model was developed to simulate CO 2 absorption using high alkaline content water solutions. The model is based upon transient mass and energy balances for chemical species commonly present in CO 2 absorption. A computer code was developed to implement CO 2 absorption with a chemical reaction model. Experiments were conducted in a laboratory scale column to determine the model parameters. The influence of geometric parameters and operating variables on CO 2 absorption was studied over a wide range of conditions. Continuing work could employ the model to control column operation and predict the absorption behavior under various input conditions and other prescribed experimental perturbations. The value of the validated models and numerical frameworks developed in this project is that they can be used to predict the sorption behavior of off-gas evolved during the reprocessing of nuclear waste and thus reduce the cost of the experiments. They can also be used to design sorption processes based on concentration limits and flow-rates determined at the plant level.« less
He, Junyong; Li, Yulian; Cai, Xingguo; Chen, Kai; Zheng, Hejing; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai
2017-05-01
A biocompatible and uniquely defined hydroxyapatite (HAP) adsorption membrane with a sandwich structure was developed for the removal of organic micropollutants for the first time. Both the adsorption and membrane technique were used for the removal of organic micropollutants. The hydrophilicity and hydrophobicity of the HAP adsorbent and membrane were tunable by controlling the surface structure of HAP. The adsorption of organic micropollutants on the HAP adsorbent was studied in batch experiments. The adsorption process was fit with the Freundlich model, while the adsorption kinetics followed the pseudo-second-order model. The HAP membrane could remove organic micropollutants effectively by dynamic adsorption in both aqueous and ethanol solutions. The removal efficiencies of organic micropollutants depended on the solution composition, membrane thickness and hydrophilicity, flow rate, and the initial concentration of organic micropollutants. The adsorption capacities of the HAP membrane with a sandwich structure (membrane thickness was 0.3 mm) were 6700, 6510, 6310, 5960, 5490, 5230, 4980 and 4360 L m -2 for 1-naphthyl amine, 2-naphthol, bisphenol S, propranolol hydrochloride, metolachlor, ethinyl oestradiol, 2,4-dichlorophenol and bisphenol A, respectively, when the initial concentration was 3.0 mg L -1 . The biocompatible HAP adsorption membrane can be easily regenerated by methanol and was thus demonstrated to be a novel concept for the removal of organic micropollutants from both aqueous and organic solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Jae-Hyun; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo
2018-03-01
The aim of this study was to apply iron oxide nanoparticle-chitosan (ION-chitosan) composites to phosphate removal from natural water collected from the Seoho Stream in Suwon, Republic of Korea. Laboratory batch experiments showed that phosphate removal by the ION-chitosan composites was not sensitive to pH changes between pH values of 5.0 and 9.0. During six cycles of adsorption-desorption, the composites could be successfully regenerated with 5 mM NaOH solution and reused for phosphate removal. Laboratory fixed-bed column experiments (column height = 10 and 20 cm, inner diameter = 2.5 cm, flow rate = 8.18 and 16.36 mL/min) demonstrated that the composites could be successfully applied for phosphate removal under dynamic flow conditions. A pilot-scale field experiment was performed in a pilot plant, which was mainly composed of chemical reactor/dissolved air flotation and an adsorption tower, built nearby the Seoho Stream. The natural water was pumped from the Seoho Stream into the pilot plant, passed through the chemical reactor/dissolved air flotation process, and then introduced into the adsorption tower (height = 100 cm, inner diameter = 45 cm, flow rate = 7.05 ± 0.18 L/min) for phosphate removal via the composites (composite volume = 80 L, composite weight = 85.74 kg). During monitoring of the adsorption tower (33 days), the influent total phosphorus (T-P) concentration was in the range of 0.020-0.046 mgP/L, whereas the effluent T-P concentration was in the range of 0.010-0.028 mgP/L. The percent removal of T-P in the adsorption tower was 52.3% with a phosphate removal capacity of 0.059 mgP/g.
Liu, Yongfeng; Di, Duolong; Bai, Qingqing; Li, Jintian; Chen, Zhenbin; Lou, Song; Ye, Helin
2011-09-14
Preparative separation and purification of rebaudioside A from steviol glycosides using mixed-mode macroporous adsorption resins (MARs) were systematically investigated. Mixed-mode MARs were prepared by a physical blending method. By evaluation of the adsorption/desorption ratio and adsorption/desorption capacity of mixed-mode MARs with different proportions toward RA and ST, the mixed-mode MAR 18 was chosen as the optimum strategy. On the basis of the static tests, it was found that the experimental data fitted best to the pseudosecond-order kinetics and Temkin-Pyzhev isotherm. Furthermore, the dynamic adsorption/desorption experiments were performed on the mini column packed with mixed-mode MAR 18. After one run treatment, the purity of rebaudioside A in purified product increased from 40.77 to 60.53%, with a yield rate of 38.73% (W/W), and that in residual product decreased from 40.77 to 36.17%, with a recovery yield of 57.61% (W/W). The total recovery yield reached 96.34% (W/W). The results showed that this method could be utilized in large-scale production of rebaudioside A from steviol glycosides in industry.
Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol
2015-01-01
The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.
2014-01-01
Nylon 6 electrospun nanofibers mat was prepared via electrospinning for the removal of three estrogens, namely, diethylstilbestrol (DES), dienestrol (DS), and hexestrol (HEX) from aqueous solution. Static adsorption as well as the dynamic adsorption was evaluated by means of batch and dynamic disk flow mode, respectively. The kinetic study indicated that the adsorption of the target compounds could be well fitted by the pseudo-second-order equation, suggesting the intra-particle/membrane diffusion process as the rate-limiting step of the adsorption process. The adsorption equilibrium data were all fitted well to the Freundlich isotherm models, with a maximum adsorption capacity values in the range of 97.71 to 208.95 mg/g, which can be compared to or moderately higher than other sorbents published in the literatures. The dynamic disk mode studies indicated that the mean removal yields of three model estrogens were over 95% with a notable smaller amount of adsorbent (4 mg). Thermodynamic study revealed that the adsorption process was exothermic and spontaneous in nature. Desorption results showed that the adsorption capacity can remain up to 80% after seven times usage. It was suggested that Nylon 6 electrospun nanofibers mat has great potential as a novel effective sorbent material for estrogens removal. PMID:25114645
Mechanisms of Phosphorus Removal by Recycled Crushed Concrete.
Deng, Yihuan; Wheatley, Andrew
2018-02-17
Due to urbanisation, there are large amounts of waste concrete, particularly in rapidly industrialising countries. Currently, demolished concrete is mainly recycled as aggregate for reconstruction. This study has shown that larger sizes (2-5 mm) of recycled concrete aggregate (RCA) removed more than 90% of P from effluent when at pH 5. Analysis of the data, using equilibrium models, indicated a best fit with the Langmuir which predicated an adsorption capacity of 6.88 mg/g. Kinetic analysis indicated the equilibrium adsorption time was 12 h, with pseudo second-order as the best fit. The thermal dynamic tests showed that the adsorption was spontaneous and, together with the evidence from the sequential extraction and desorption experiments, indicated the initial mechanism was physical attraction to the surface followed by chemical reactions which prevented re-release. These results suggested that RCA could be used for both wastewater treatment and P recovery.
Mechanisms of Phosphorus Removal by Recycled Crushed Concrete
Wheatley, Andrew
2018-01-01
Due to urbanisation, there are large amounts of waste concrete, particularly in rapidly industrialising countries. Currently, demolished concrete is mainly recycled as aggregate for reconstruction. This study has shown that larger sizes (2–5 mm) of recycled concrete aggregate (RCA) removed more than 90% of P from effluent when at pH 5. Analysis of the data, using equilibrium models, indicated a best fit with the Langmuir which predicated an adsorption capacity of 6.88 mg/g. Kinetic analysis indicated the equilibrium adsorption time was 12 h, with pseudo second-order as the best fit. The thermal dynamic tests showed that the adsorption was spontaneous and, together with the evidence from the sequential extraction and desorption experiments, indicated the initial mechanism was physical attraction to the surface followed by chemical reactions which prevented re-release. These results suggested that RCA could be used for both wastewater treatment and P recovery. PMID:29462987
Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films.
Moringo, Nicholas A; Shen, Hao; Tauzin, Lawrence J; Wang, Wenxiao; Bishop, Logan D C; Landes, Christy F
2017-10-17
Tuning protein adsorption dynamics at polymeric interfaces is of great interest to many biomedical and material applications. Functionalization of polymer surfaces is a common method to introduce application-specific surface chemistries to a polymer interface. In this work, single-molecule fluorescence microscopy is utilized to determine the adsorption dynamics of lysozyme, a well-studied antibacterial protein, at the interface of polystyrene oxidized via UV exposure and oxygen plasma and functionalized by ligand grafting to produce varying degrees of surface hydrophilicity, surface roughness, and induced oxygen content. Single-molecule tracking indicates lysozyme loading capacities, and surface mobility at the polymer interface is hindered as a result of all functionalization techniques. Adsorption dynamics of lysozyme depend on the extent and the specificity of the oxygen functionalities introduced to the polystyrene surface. Hindered adsorption and mobility are dominated by hydrophobic effects attributed to water hydration layer formation at the functionalized polystyrene surfaces.
NASA Astrophysics Data System (ADS)
Muryanto, S.; Djatmiko Hadi, S.
2016-11-01
Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.
NASA Astrophysics Data System (ADS)
Nejad, Marjan A.; Mücksch, Christian; Urbassek, Herbert M.
2017-02-01
Adsorption of insulin on polar and nonpolar surfaces of crystalline SiO2 (cristobalite and α -quartz) is studied using molecular dynamics simulation. Acceleration techniques are used in order to sample adsorption phase space efficiently and to identify realistic adsorption conformations. We find major differences between the polar and nonpolar surfaces. Electrostatic interactions govern the adsorption on polar surfaces and can be described by the alignment of the protein dipole with the surface dipole; hence spreading of the protein on the surface is irrelevant. On nonpolar surfaces, on the other hand, van-der-Waals interaction dominates, inducing surface spreading of the protein.
[Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].
Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin
2013-12-01
Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.
Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel
2010-12-21
How does one design a surfactant mixture using a set of available surfactants such that it exhibits a desired adsorption kinetics behavior? The traditional approach used to address this design problem involves conducting trial-and-error experiments with specific surfactant mixtures. This approach is typically time-consuming and resource-intensive and becomes increasingly challenging when the number of surfactants that can be mixed increases. In this article, we propose a new theoretical framework to identify a surfactant mixture that most closely meets a desired adsorption kinetics behavior. Specifically, the new theoretical framework involves (a) formulating the surfactant mixture design problem as an optimization problem using an adsorption kinetics model and (b) solving the optimization problem using a commercial optimization package. The proposed framework aims to identify the surfactant mixture that most closely satisfies the desired adsorption kinetics behavior subject to the predictive capabilities of the chosen adsorption kinetics model. Experiments can then be conducted at the identified surfactant mixture condition to validate the predictions. We demonstrate the reliability and effectiveness of the proposed theoretical framework through a realistic case study by identifying a nonionic surfactant mixture consisting of up to four alkyl poly(ethylene oxide) surfactants (C(10)E(4), C(12)E(5), C(12)E(6), and C(10)E(8)) such that it most closely exhibits a desired dynamic surface tension (DST) profile. Specifically, we use the Mulqueen-Stebe-Blankschtein (MSB) adsorption kinetics model (Mulqueen, M.; Stebe, K. J.; Blankschtein, D. Langmuir 2001, 17, 5196-5207) to formulate the optimization problem as well as the SNOPT commercial optimization solver to identify a surfactant mixture consisting of these four surfactants that most closely exhibits the desired DST profile. Finally, we compare the experimental DST profile measured at the surfactant mixture condition identified by the new theoretical framework with the desired DST profile and find good agreement between the two profiles.
Adsorption orientations and immunological recognition of antibodies on graphene
NASA Astrophysics Data System (ADS)
Vilhena, J. G.; Dumitru, A. C.; Herruzo, Elena T.; Mendieta-Moreno, Jesús I.; Garcia, Ricardo; Serena, P. A.; Pérez, Rubén
2016-07-01
Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our MD results and the AFM images demonstrate that the IgG antibodies are strongly adsorbed, do not unfold, and retain their secondary and tertiary structures upon deposition. Statistical analysis of the AFM images shows that many of the antibodies adopt vertical orientations, even at very small coverages, which expose at least one Fab binding site for recognition events. Single molecule force spectroscopy experiments demonstrate the immunological response of the deposited antibodies by recognizing its specific antigens. The above properties together with the strong anchoring and preservation of the secondary structure, make graphene an excellent candidate for the development of immunosensors.Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our MD results and the AFM images demonstrate that the IgG antibodies are strongly adsorbed, do not unfold, and retain their secondary and tertiary structures upon deposition. Statistical analysis of the AFM images shows that many of the antibodies adopt vertical orientations, even at very small coverages, which expose at least one Fab binding site for recognition events. Single molecule force spectroscopy experiments demonstrate the immunological response of the deposited antibodies by recognizing its specific antigens. The above properties together with the strong anchoring and preservation of the secondary structure, make graphene an excellent candidate for the development of immunosensors. Electronic supplementary information (ESI) available: Further details concerning the experimental methods, the MD simulation protocols, and the characterization and stability of the different adsorption configurations. See DOI: 10.1039/C5NR07612A
Adsorption of VOCs on reduced graphene oxide.
Yu, Lian; Wang, Long; Xu, Weicheng; Chen, Limin; Fu, Mingli; Wu, Junliang; Ye, Daiqi
2018-05-01
A modified Hummer's method was adopted for the synthesis of graphene oxide (GO) and reduced graphene oxide (rGO). It was revealed that the modified method is effective for the production of GO and rGO from graphite. Transmission electron microscopy (TEM) images of GO and rGO showed a sheet-like morphology. Because of the presence of oxygenated functional groups on the carbon surface, the interlayer spacing of the prepared GO was higher than that of rGO. The presence of OH and CO groups in the Fourier transform infrared spectra (FTIR) spectrum and G-mode and 2D-mode in Raman spectra confirmed the synthesis of GO and rGO. rGO (292.6m 2 /g) showed higher surface area than that of GO (236.4m 2 /g). The prepared rGO was used as an adsorbent for benzene and toluene (model pollutants of volatile organic compounds (VOCs)) under dynamic adsorption/desorption conditions. rGO showed higher adsorption capacity and breakthrough times than GO. The adsorption capacity of rGO for benzene and toluene was 276.4 and 304.4mg/g, respectively. Desorption experiments showed that the spent rGO can be successfully regenerated by heating at 150.0°C. Its excellent adsorption/desorption performance for benzene and toluene makes rGO a potential adsorbent for VOC adsorption. Copyright © 2017. Published by Elsevier B.V.
A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption
Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; ...
2015-04-13
A flexible metal–organic framework (MOF) of [Zn 3(btca) 2(OH) 2]·(guest) n (H 2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N 2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highlymore » selective adsorption of CO 2/N 2, CO 2/Ar, and CO 2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less
Kor, Mohammad; Korczyk, Piotr M; Addai-Mensah, Jonas; Krasowska, Marta; Beattie, David A
2014-10-14
The adsorption of carboxymethylcellulose polymers on molybdenite was studied using spectroscopic ellipsometry and atomic force microscopy imaging with two polymers of differing degrees of carboxyl group substitution and at three different electrolyte conditions: 1 × 10(-2) M KCl, 2.76 × 10(-2) M KCl, and simulated flotation process water of multicomponent electrolyte content, with an ionic strength close to 2.76 × 10(-2) M. A higher degree of carboxyl substitution in the adsorbing polymer resulted in adsorbed layers that were thinner and with more patchy coverage; increasing the ionic strength of the electrolyte resulted in increased polymer layer thickness and coverage. The use of simulated process water resulted in the largest layer thickness and coverage for both polymers. The effect of the adsorbed polymer layer on bubble-particle attachment was studied with single bubble-surface collision experiments recorded with high-speed video capture and image processing and also with single mineral molybdenite flotation tests. The carboxymethylcellulose polymer with a lower degree of substitution resulted in almost complete prevention of wetting film rupture at the molybdenite surface under all electrolyte conditions. The polymer with a higher degree of substitution prevented rupture only when adsorbed from simulated process water. Molecular kinetic theory was used to quantify the effect of the polymer on the dewetting dynamics for collisions that resulted in wetting film rupture. Flotation experiments confirmed that adsorbed polymer layer properties, through their effect on the dynamics of bubble-particle attachment, are critical to predicting the effectiveness of polymers used to prevent mineral recovery in flotation.
Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.
Tóth, Blanka; Horvai, George
2012-01-01
Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.
Adsorption mechanism of cadmium on juniper bark and wood
Eun Woo Shin; K. G. Karthikeyan; Mandla A. Tshabalala
2007-01-01
In this study the capacity of sorbents prepared from juniper wood (JW) and bark (JB) to adsorb cadmium (Cd) from aqueous solutions at different pH values was compared. Adsorption behavior was characterized through adsorption kinetics, adsorption isotherms, and adsorption edge experiments. Results from kinetics and isotherm experiments showed that JB (76.3â91.6 lmol Cd...
The Evaluation of Foam Performance and Flooding Efficiency
NASA Astrophysics Data System (ADS)
Keliang, Wang; Yuhao, Chen; Gang, Wang; Gen, Li
2017-12-01
ROSS-Miles and spinning drop interfacial tensionmeter are used to select suitable foam system through foam composite index (FCI) and interfacial tension (IT). The selected foam system are taken to conduct further test. The further tests are evaluating the foam system resistance to adsorption with multi-round core flooding dynamic adsorption test and evaluating the performance of foam system with four kinds of different transport distance, quantitatively analyzing the foam system effective distance after dynamic adsorption. The result shows that the foaming ability and the mobilizing ability of the foam system decrease with the increase of the round of dynamic adsorption. As the transport distance increases, the foaming ability and the mobilizing ability of the foam system decrease. This result further reveals the flooding characteristics of nitrogen foam flooding, which provides a reference for the implementation of nitrogen foam flooding technology.
Adsorption behavior of acetone solvent at the HMX crystal faces: A molecular dynamics study.
Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Ma, Yiding; Kang, Ying; Ge, Zhongxue
2017-06-01
Molecular dynamics simulations have been performed to understand the adsorption behavior of acetone (AC) solvent at the three surfaces of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctan (HMX) crystal, i.e. (011), (110), and (020) faces. The simulation results show that the structural features and electrostatic potentials of crystal faces are determined by the HMX molecular packing, inducing distinct mass density distribution, dipole orientation, and diffusion of solvent molecules in the interfacial regions. The solvent adsorption is mainly governed by the van der Waals forces, and the crystal-solvent interaction energies among three systems are ranked as (020)≈(110)>(011). The adsorption sites for solvent incorporation at the crystal surface were found and visualized with the aid of occupancy analysis. A uniform arrangement of adsorption sites is observed at the rough (020) surface as a result of ordered adsorption motif. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamic technique for measuring adsorption in a gas chromatograph
NASA Technical Reports Server (NTRS)
Deuel, C. L.; Hultgren, N. W.; Mobert, M. L.
1973-01-01
Gas-chromatographic procedure, together with mathematical analysis of adsorption isotherm, allows relative surface areas and adsorptive powers for trace concentrations to be determined in a few minutes. Technique may be used to evaluate relative surface areas of different adsorbates, expressed as volume of adsorbent/gram of adsorbate, and to evaluate their relative adsorptive power.
NASA Astrophysics Data System (ADS)
Aristilde, L.
2009-12-01
A controlling factor in the fate of antibiotics in the environment is their sequestration in soil particles including clay minerals. Of special interest is the interlayer adsorption by smectite clays, which has been shown to influence both the bioavailability and persistence of antibiotics in the soil environment. However, the interlayer structures of the bound antibiotics, essential to an accurate understanding of the adsorption mechanisms, are not well understood. Molecular simulations of oxytetracycline (OTC) with a model montmorillonite (MONT) clay were performed to gain insights into these structures for tetracycline antibiotics. Monte Carlo simulations were used for explorations of the clay layer spacing required for the adsorption of the antibiotic under different hydration states of the clay interlayer; these preliminary results were validated with previous X-ray diffraction patterns obtained following sorption experiments of OTC with MONT. Molecular dynamics relaxation simulations were performed subsequently in order to obtain geometry-optimized structures of the binding conformations of the intercalated antibiotic in the model MONT layers. This study contributes to a mechanistic understanding of the factors controlling the interlayer adsorption of the tetracycline antibiotics by the expandable smectite clay minerals. Figure 1. Optimized Monte Carlo simulation cell of OTC in the interlayer of MONT: perspective side view (top) and bottom view (bottom).
Otalvaro, Julián Ortiz; Brigante, Maximiliano
2018-03-01
Interactions between pesticides (paraquat, glyphosate, 2,4-D, atrazine, and metsulfuron methyl) and soil organic and inorganic components have been studied in batch experiments by performing adsorption, dissolution, and chemical and photochemical degradation under different conditions. The obtained results confirm that the affinity of a pesticide to the solid surface depends on the nature of both and shows that each reactant strongly affects the mobility of the other one, e.g., anionic pesticides promote the dissolution of the solid humic acid but if this last is retained into the inorganic matrix enhances the adsorption of a cationic pesticide. Adsorption also seems to protect the bonded specie to be chemical degraded, such as shown in two pesticide/clay systems at constant pH. The use of mesoporous silicas could result in a good alternative for pesticide remediation. In fact, the solid shows high adsorption capacity towards paraquat and its modification with TiO 2 nanoparticles increases not only the pesticide adsorption but also seems to catalyze its degradation under UV light to less-toxic metabolites. UV-VIS spectroscopy was relevant and novel in such sense. Electrostatic interactions, hydrogen and coordinative bonds formations, surface complexations and hydrophobic associations play a key role in the fate of mentioned pesticides on soil and ground/surface water environments.
2018-01-01
This study compares the differences and similarities of two types of superplasticizers—NSF (Naphthalene Sulfonate Formaldehyde) and PCE (PolyCarboxylate Ester)—in fresh cement paste systems, in terms of adsorption, dynamic yield stress, and thixotropic index. Results show that with either NSF or PCE addition, the more superplasticizer is added, the more it is adsorbed and the more it remains in the interstitial pore solution. The dynamic yield stress and thixotropic index also decrease with increasing addition the amount of either superplasticizer. However, NSF is less efficient in decreasing the dynamic yield stress than PCE. More importantly, the decreasing patterns of dynamic yield stress and thixotropic index are different with NSF and PCE additions; this is tied to the adsorption and dispersing mechanisms of these two types of superplasticizers. PMID:29710782
Dukhin, S S; Kovalchuk, V I; Gochev, G G; Lotfi, M; Krzan, M; Malysa, K; Miller, R
2015-08-01
On the surface of bubbles rising in a surfactant solution the adsorption process proceeds and leads to the formation of a so called Rear Stagnant Cap (RSC). The larger this RSC is the stronger is the retardation of the rising velocity. The theory of a steady RSC and steady retarded rising velocity, which sets in after a transient stage, has been generally accepted. However, a non-steady process of bubble rising starting from the initial zero velocity represents an important portion of the trajectory of rising, characterized by a local velocity profile (LVP). As there is no theory of RSC growth for large Reynolds numbers Re » 1 so far, the interpretation of LVPs measured in this regime was impossible. It turned out, that an analytical theory for a quasi-steady growth of RSC is possible for small Marangoni numbers Ma « 1, i.e. when the RSC is almost completely compressed, which means a uniform surface concentration Γ(θ)=Γ(∞) within the RSC. Hence, the RSC angle ψ(t) is obtained as a function of the adsorption isotherm parameters and time t. From the steady velocity v(st)(ψ), the dependence of non-steady velocity on time is obtained by employing v(st)[ψ(t)] via a quasi-steady approximation. The measurement of LVP creates a promising new opportunity for investigation of the RSC dynamics and adsorption kinetics. While adsorption and desorption happen at the same localization in the classical methods, in rising bubble experiments desorption occurs mainly within RSC while adsorption on the mobile part of the bubble surface. The desorption flux from RSC is proportional to αΓ(∞), while it is usually αΓ. The adsorption flux at the mobile surface above RSC can be assumed proportional to βC0, while it is usually βC0(1-Γ/Γ(∞)). These simplifications may become favorable in investigations of the adsorption kinetics for larger molecules, in particular for globular proteins, which essentially stay at an interface once adsorbed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yongzhen; Zhang, Yan; Li, Sha; Liu, Xuguang; Xu, Bingshe
2012-06-01
Poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) was grafted on the surface of carbon microspheres (CMSs), which were modified in prior by a mixed acid (HNO3 and H2SO4) oxidation and 3-methacryloxypropyl trimethoxysilane silanization. Then, the molecularly imprinting polymerization was carried out towards the macromolecule PAMPS grafted on the surface of CMSs using dibenzothiophene (DBT) as template, ethylene dimethacrylate as cross-linking agent and (NH4)2S2O8 (APS) as initiator to prepare surface molecularly imprinted polymer (MIP-PAMPS/CMSs) for adsorbing DBT. The optimized conditions of grafting PAMPS, including AMPS dosage, APS content, reaction temperature and reaction time, were emphasized in this paper. The morphology of the samples was characterized by field emission scanning electron microscopy. The functional groups were analyzed qualitatively by Fourier transform infrared spectrometry. The grafting degree of PAMPS was investigated by thermogravimetry. The results show that the preferable AMPS dosage, APS content, reaction temperature and time were 5 g, 0.15 g, 70 °C and 12 h, respectively, for preparing PAMPS/CMSs composite on the basis of 1.0 g of silanized-CMSs. The absorbing characteristic of MIP-PAMPS/CMSs toward DBT was studied preliminarily with dynamic adsorption. In the experiment of dynamic adsorption, MIP-PAMPS/CMSs and non-imprinted polymer (NIP-PAMPS/CMSs) were compared with respect to their rapid adsorption in 1 mmol/L of DBT solution in n-hexane. When the first 1 mL of 1 mmol/L DBT solution was injected and flowed through a column packed with 0.1 g of MIP-PAMPS/CMSs, the content of DBT reduced to 0.265 mmol/L, that is, decreased significantly from 279 to 74 ppm. When 3 mL of DBT solution was flowed through the packed column, the adsorption of MIP-PAMPS/CMSs toward DBT reached saturation with the maximum adsorption amount of 1.38 × 10-2 mmol/g and the overall adsorption efficiency of 46%, while NIP-PAMPS/CMSs adsorbed only 1.66 × 10-3 mmol/g of DBT. It is suggested that the MIP-PAMPS/CMSs had much better adsorption property towards DBT than NIP-PAMPS/CMSs.
Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation
Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.
1993-01-01
The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at the highest As(V) adsorption density. The results suggest that the solid solution model proposed by Fox (1989, 1992) for control of arsenate and phosphate concentrations in natural waters may be invalid. ?? 1993.
Gomes, Pedro Ferreira; Loureiro, José Miguel; Rodrigues, Alírio E
2017-11-17
It is commonly accepted that efficient protein separation and purification to the desired level of purity is one bottleneck in pharmaceutical industries. MabDirect MM is a new type of mixed mode adsorbent, especially designed to operate in expanded bed adsorption (EBA) mode. In this study, equilibrium and kinetics experiments were carried out for the adsorption of Human Immunoglobulin G (hIgG) protein on this new adsorbent. The effects of ionic strength and pH are assessed. Langmuir isotherms parameters are obtained along with the estimation of the effective pore diffusion coefficient (D pe ) by fitting the batch adsorption kinetics experiments with the pore diffusion model. The maximum adsorption of the IgG protein on the MabDirect MM adsorbent, 149.7±7.1mg·g dry -1 , was observed from a pH 5.0 buffer solution without salt addition. Adding salt to the buffer solution, and/or increasing pH, decreases the adsorption capacity which is 4.7±0.4mg·g dry -1 for pH 7.0 with 0.4M NaCl in solution. Regarding the D pe estimation, a value of 15.4×10 -6 cm 2 ·min -1 was obtained for a pH 5.0 solution without salt. Increasing the salt concentration and/or the pH value will decrease the effective pore diffusion, the lowest D pe (0.16×10 -6 cm 2 ·min -1 ) value being observed for an IgG solution at pH 7.0 with 0.4M NaCl. Fixed bed experiments were conducted with the purpose to validate the equilibrium and kinetic parameters obtained in batch. For a feed concentration of 0.5 g·L -1 of IgG in pH 5.0 buffer solution with 0.4M NaCl, a dynamic binding capacity at 10% of breakthrough of 5.3mg·g wet -1 (15.4mg IgG ·mL resin -1 ) was obtained, representing 62% of the saturation capacity. As far as the authors know, this study is the first one concerning the adsorption of hIgG on this type of mixed mode chromatography adsorbent. Copyright © 2017 Elsevier B.V. All rights reserved.
Physico-chemical processes for landfill leachate treatment: Experiments and mathematical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, W.; Ngo, H.H.; Kim, S.H.
2008-07-01
In this study, the adsorption of synthetic landfill leachate onto four kinds of activated carbon has been investigated. From the equilibrium and kinetics experiments, it was observed that coal based PAC presented the highest organic pollutants removal efficiency (54%), followed by coal based GAC (50%), wood based GAC (33%) and wood based PAC (14%). The adsorption equilibrium of PAC and GAC was successfully predicted by Henry-Freundlich adsorption model whilst LDFA + Dual isotherm Kinetics model could describe well the batch adsorption kinetics. The flocculation and flocculation-adsorption experiments were also conducted. The results indicated that flocculation did not perform well onmore » organics removal because of the dominance of low molecular weight organic compounds in synthetic landfill leachate. Consequently, flocculation as pretreatment to adsorption and a combination of flocculation-adsorption could not improve much the organic removal efficiency for the single adsorption process.« less
NASA Astrophysics Data System (ADS)
Zhang, Liehui; Li, Jianchao; Jia, Du; Zhao, Yulong; Xie, Chunyu; Tao, Zhengwu
As one of the key status of gas in shale reservoir, adsorption gas accounts for considerable percentage of total gas amount. Due to the complexity and nanostructure of shale gas reservoir, it is very challenging to represent adsorption gas through traditional methods. However, the integration of the fractal theory and molecular dynamics (MD) simulation may provide a new perspective of understanding such nanostructure and the micro-phenomenon happening in it. The key purpose of this paper is to investigate the adsorption phenomenon in shale kerogen. By using MD simulation and grand canonical Monte Carlo (GCMC) algorithm, the adsorption of methane in 2, 5 and 10nm slit-like pores is simulated for different temperature and pressure status. According to the results, the average gas density in smaller pores is higher than that in bigger pores, and multilayer adsorption presents on some areas of pore surfaces. Then, the simulation results are analyzed using the multilayer fractal adsorption model. The analysis indicates that the number of adsorption layer increases with pressure increase: four-layer adsorption presents in 10nm pores while three-layer adsorption shows up in 2nm and 5nm pores due to pore volume limit. Fractal dimension of pore wall surface generated in this study is in the range of 2.31-2.63. Moreover, high temperature could decrease the adsorption behavior in reservoir condition.
Adsorption kinetic and desorption studies of Cd2+ on Multi-Carboxylic-Functionalized Silica Gel
NASA Astrophysics Data System (ADS)
Li, Min; Wei, Jian; Meng, Xiaojing; Wu, Zhuqiang; Liang, Xiuke
2018-01-01
In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed cadmium (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of cadmium (II) ion didn’t present an obvious decrease after five cycles.
Adsorption kinetic and desorption studies of Cu2+ on Multi-Carboxylic-Functionalized Silica Gel
NASA Astrophysics Data System (ADS)
Li, Min; Meng, Xiaojing; Liu, Yushuang; Hu, Xinju; Liang, Xiuke
2018-01-01
In the present study, the adsorption behavior of copper (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of copper (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed copper (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of copper (II) ion didn’t present an obvious decrease after five cycles.
Applying ACF to Desulfurization Process from Flue Gas
NASA Astrophysics Data System (ADS)
Liu, Yi; Zhang, Zhigang; Tang, Qiang; Cao, Zidong
2004-08-01
Inasmuch as the status of environmental pollution caused by SO2 is more and more serious and the policy of environmental protection is executed more and more strictly, desulfurization from flue gas (FGD) is introduced to a wide-spread field of national economy. By a comparison with lime-limestone method, the application of adsorption method in FGD is more effective in desulfurization and more adapted to the situation of our country in respect of its more valuable byproduct. However, the technique of adsorption method is limited by the large amount of adsorbent used. In this paper, activated carbon fiber (ACF) is proposed as a new type of adsorbent to apply in FGD. A series of experiments have been made in order to compare the performances between ACF and granular activated carbon (GAC) which has been mostly used. Experiments show that under the same working conditions ACF's adsorption capacity is 16.6 times as high as that of GAC, mass loss rate is 1/12 of GAC's, desorption efficiency of ACF can reach 99.9%. The theory of micropore adsorption dynamics is adopted to analyze the characteristics of both adsorbents. It is indicated that adsorbability and perfectibility of desorption are tightly related to the distribution of pores and the surface micromechanism of adsorbent surface. The accessibility of pores for specified adsorptive and the effects of capillary condensation are crucial factors to influence the process of FGD. According to the research of different adsorbents, conclusion can be drawn that ACF is a kind of good material with a strong selectivity for SO2. Compared with the traditional methods of FGD, the use of ACF can greatly economize the consumption of adsorbent and obviously reduce the introduction of new adsorbent, and at the same time keep down the equipment investment and operating cost.
Long, Zerong; Xu, Weiwei; Lu, Yi; Qiu, Hongdeng
2016-09-01
A new and facile rhodamine B (RhB)-imprinted polymer nanoshell coating for SiO2 nanoparticles was readily prepared by a combination of silica gel modification and molecular surface imprinting. The RhB-imprinted polymers (RhB-MIPs) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and UV-vis spectroscopy; the binding properties and selectivity of these MIPs were investigated in detail. The uniformly imprinted nanoparticles displayed a rather thin shell thickness (23nm) with highly effective recognition sites, showing homogenous distribution and monolayer adsorption. The maximum MIP adsorption capacity (Qm) was as high as 45.2mgg(-1), with an adsorption equilibrium time of about 15min at ambient temperature. Dynamic rebinding experiments showed that chemical adsorption is crucial for RhB binding to RhB-MIPs. The adsorption isotherm for RhB-MIPs binding could also be described by the Langmuir equation at different temperatures and pH values. Increasing temperature led to an enhanced Qm, a decreased dissociation constant (K'd), and a more negative free energy (ΔG), indicating that adsorption is favored at higher temperatures. Moreover, the adsorption capacity of RhB was remarkably affected by pH. At pH>7, the adsorption of RhB was driven by hydrogen bonding interactions, while at pH<7 electrostatic forces were dominant. Additionally, the MIPs also showed specific recognition of RhB from the standard mixture solution containing five structurally analogs. This method was also successfully employed to determine RhB content in red wine and beverages using three levels of spiking, with recoveries in the range of 91.6-93.1% and relative standard deviations lower than 4.1%. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egner, Timothy K.; Naik, Pranjali; Nelson, Nicholas C.
Engineering nanoparticle (NP) functions at the molecular level requires a detailed understanding of the dynamic processes occurring at the NP surface. Herein we show that a combination of dark-state exchange saturation transfer (DEST) and relaxation dispersion (RD) NMR experiments on gel-stabilized NP samples enables the accurate determination of the kinetics and thermodynamics of adsorption. We used the former approach to describe the interaction of cholic acid (CA) and phenol (PhOH) with ceria NPs with a diameter of approximately 200 nm. Whereas CA formed weak interactions with the NPs, PhOH was tightly bound to the NP surface. Interestingly, we found thatmore » the adsorption of PhOH proceeds via an intermediate, weakly bound state in which the small molecule has residual degrees of rotational diffusion. Here we believe the use of aqueous gels for stabilizing NP samples will increase the applicability of solution NMR methods to the characterization of nanomaterials.« less
Egner, Timothy K.; Naik, Pranjali; Nelson, Nicholas C.; ...
2017-06-22
Engineering nanoparticle (NP) functions at the molecular level requires a detailed understanding of the dynamic processes occurring at the NP surface. Herein we show that a combination of dark-state exchange saturation transfer (DEST) and relaxation dispersion (RD) NMR experiments on gel-stabilized NP samples enables the accurate determination of the kinetics and thermodynamics of adsorption. We used the former approach to describe the interaction of cholic acid (CA) and phenol (PhOH) with ceria NPs with a diameter of approximately 200 nm. Whereas CA formed weak interactions with the NPs, PhOH was tightly bound to the NP surface. Interestingly, we found thatmore » the adsorption of PhOH proceeds via an intermediate, weakly bound state in which the small molecule has residual degrees of rotational diffusion. Here we believe the use of aqueous gels for stabilizing NP samples will increase the applicability of solution NMR methods to the characterization of nanomaterials.« less
Substrate structure and dynamics effect on sorption properties: Theory and experiment
NASA Astrophysics Data System (ADS)
Connolly, Matthew James
Adsorbent materials such as activated carbon and metal organic frameworks (MOFs) have received significant attention for their potential for storage of hydrogen and natural gas. Typically the adsorbent is assumed to consist of rigid slit- or cylindrical-shaped pores. Recent experimental adsorption measurements, however, suggest significant mechanical response breathing of the adsorbent in the presence of an adsorbate. In this thesis, I develop theoretical and computational models which predict high adsorbate densities in narrow carbon pores which give rise to a strong pressure on pore walls. I then present predictions of the mechanical response of the solid to this pressure, and the effect of this response on adsorption isotherms. Neutron scattering measurements of this mechanical response as well as the diffusion of the adsorbate in the breathing Graphene Oxide Framework (GOF) material is presented. In addition, calculations are presented which support a route toward enhancing the binding energy in carbonaceous adsorbates through boron doping via decaborane adsorption and subsequent decomposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annapureddy, HVR; Motkuri, RK; Nguyen, PTM
In this review, we describe recent efforts to systematically study nano-structured metal organic frameworks (MOFs), also known as metal organic heat carriers, with particular emphasis on their application in heating and cooling processes. We used both molecular dynamics and grand canonical Monte Carlo simulation techniques to gain a molecular-level understanding of the adsorption mechanism of gases in these porous materials. We investigated the uptake of various gases such as refrigerants R12 and R143a. We also evaluated the effects of temperature and pressure on the uptake mechanism. Our computed results compared reasonably well with available measurements from experiments, thus validating ourmore » potential models and approaches. In addition, we investigated the structural, diffusive and adsorption properties of different hydrocarbons in Ni-2(dhtp). Finally, to elucidate the mechanism of nanoparticle dispersion in condensed phases, we studied the interactions among nanoparticles in various liquids, such as n-hexane, water and methanol.« less
Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand.
Brown, Loren; Seaton, Kenneth; Mohseni, Ray; Vasiliev, Aleksey
2013-10-15
The objective of this work was the development of an efficient adsorbent for irreversible immobilization of heavy metals in contaminated soils. The adsorbent was prepared by pillaring of montmorillonite with silica followed by grafting of a chelate ligand on its surface. Obtained adsorbent was mesoporous with high content of adsorption sites. Its structure was studied by BET adsorption of N2, dynamic light scattering, and scanning electron microscopy. The adsorption capacity of the organoclay was measured by its mixing with contaminated kaolin and soil samples and by analysis of heavy metal contents in leachate. Deionized water and 50% acetic acid were used for leaching of metals from the samples. As it was demonstrated by the experiments, the adsorbent was efficient in immobilization of heavy metals not only in neutral aqueous media but also in the presence of weak acid. As a result, the adsorbent can be used for reduction of heavy metal leaching from contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.
Liao, Chenyi; Zhou, Jian
2014-06-05
The adsorption of basic fibroblast growth factor (bFGF) on the hydroxyapatite (001) surface was investigated by a combination of replica-exchange molecular dynamics (REMD) and conventional molecular dynamics (CMD) methods. In CMD, the protein cannot readily cross the surface water layer, whereas in REMD, the protein can cross the adsorption barrier from the surface water layer and go through weak, medium, then strong adsorption states with three energetically preferred configurations: heparin-binding-up (HP-up), heparin-binding-middle (HP-middle), and heparin-binding-down (HP-down). The HP-middle orientation, with the strongest adsorption energy (-1149 ± 40 kJ·mol(-1)), has the largest adsorption population (52.1-52.6%) and exhibits the largest conformational charge (RMSD of 0.26 ± 0.01 nm) among the three orientations. The HP-down and HP-up orientations, with smaller adsorption energies of -1022 ± 55 and -894 ± 70 kJ·mol(-1), respectively, have smaller adsorption populations of 27.4-27.7% and 19.7-20.5% and present smaller RMSD values of 0.21 ± 0.01 and 0.19 ± 0.01 nm, respectively. The convergent distribution indicates that nearly half of the population (in the HP-middle orientation) will support both FGF/FGFR and DGR-integrin signaling and another half (in the HP-up and HP-down orientations) will support DGR-integrin signaling. The major population (~80%) has the protein dipole directed outward. In the strong adsorption state, there are usually 2 to 3 basic residues that form the anchoring interactions of 210-332 kJ·mol(-1) per residue or that are accompanied by an acidic residue with an adsorption energy of ~207 kJ·mol(-1). Together, the major bound residues form a triangle or a quadrilateral on the surface and stabilize the adsorption geometrically, which indicates topologic matching between the protein and HAP surfaces.
Intensify dodecylamine adsorption on magnesite and dolomite surfaces by monohydric alcohols
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Wengang; Han, Cong; Wei, Dezhou
2018-06-01
The flotation of magnesite and dolomite were investigated with the presence of single dodecylamine (DDA) and combined mixtures of DDA and monohydric alcohols, respectively. The adsorption behavior of DDA, butanol, hexanol and octanol on the surface of the two minerals were shown by molecular dynamics simulation, and the results were corresponding with the analysis of zeta potential, measurements of the contact angle and adsorption. Flotation results indicated that part of DDA could be replaced by the three alcohols (butanol, hexanol, octanol) to get better flotation results. Molecular dynamics simulation and the results of zeta potential and contact angle measurements indicated that adsorption of DDA on mineral surfaces could be strengthened by monohydric alcohols.
Gao, Ningxuan; Wang, Yuehua; Jiao, Xinyao; Chou, Shurui; Li, Enhui; Li, Bin
2018-01-10
The aim of this study was the purification process of polyphenols from Aronia melanocarpa (chokeberry), and the purification parameters were optimised by adsorption and desorption tests. By comparing adsorption and desorption ability of polyphenols from chokeberry on six kinds of macroporous resin, XAD-7 resin was selected. Experiments prove that the best purification parameters of static adsorption and desorption were sample pH = 4.0 with 4 h of adsorption; and desorption solvent is 95% ethanol (pH = 7.0) with 2 h of desorption. The best dynamic parameters were 9.3 bed volume (BV) of sample loading amount at a feeding flow rate of 2 BV/h, and washing the column with 5.8 BV of water, followed by subsequent elution with an eluent volume of 5.0 mL at an elution flow rate of 2 BV/h. Next the antioxidant and antiproliferative activity of polyphenols from chokeberry, blueberries, haskap berries was studied on HepG2 human liver cancer cells. The results show that polyphenol from chokeberry has a strong antioxidant effect. Taking into account the content of polyphenols in fruit, polyphenols from chokeberry represent a very valuable natural antioxidant source with antiproliferative products.
Lin, Shangchao; Hilmer, Andrew J; Mendenhall, Jonathan D; Strano, Michael S; Blankschtein, Daniel
2012-05-16
Functionalization of single-walled carbon nanotubes (SWCNTs) using diazonium salts allows modification of their optical and electronic properties for a variety of applications, ranging from drug-delivery vehicles to molecular sensors. However, control of the functionalization process remains a challenge, requiring molecular-level understanding of the adsorption of diazonium ions onto heterogeneous, charge-mobile SWCNT surfaces, which are typically decorated with surfactants. In this paper, we combine molecular dynamics (MD) simulations, experiments, and equilibrium reaction modeling to understand and model the extent of diazonium functionalization of SWCNTs coated with various surfactants (sodium cholate, sodium dodecyl sulfate, and cetyl trimethylammonium bromide). We show that the free energy of diazonium adsorption, determined using simulations, can be used to rank surfactants in terms of the extent of functionalization attained following their adsorption on the nanotube surface. The difference in binding affinities between linear and rigid surfactants is attributed to the synergistic binding of the diazonium ion to the local "hot/cold spots" formed by the charged surfactant heads. A combined simulation-modeling framework is developed to provide guidance for controlling the various sensitive experimental conditions needed to achieve the desired extent of SWCNT functionalization.
Molecular Simulation of Cesium Adsorption at the Basal Surface of Phyllosilicate Minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerisit, Sebastien N.; Okumura, Masahiko; Rosso, Kevin M.
2016-08-16
A better understanding of the thermodynamics of radioactive cesium uptake at the surfaces of phyllosilicate minerals is needed to understand mechanisms of its selective adsorption and help guide the development of practical and inexpensive decontamination techniques. In this work, molecular dynamics simulations were carried out to determine the thermodynamics of adsorption of Cs + at the basal surface of six 2:1 phyllosilicate minerals, namely pyrophyllite, illite, muscovite, phlogopite, celadonite, and margarite. These minerals were selected to isolate the effects of the magnitude of the permanent layer charge (≤ 2), its location (tetrahedral versus octahedral sheet), and the structure of themore » octahedral sheet (dioctahedral versus trioctahedral). Good agreement was obtained with experiment in terms of the hydration free energy of Cs + and the structure and thermodynamics of Cs + adsorption at the muscovite basal surface, for which published data were available for comparison. With the exception of pyrophyllite, which did not exhibit an inner-sphere free energy minimum, all phyllosilicate minerals showed similar behavior with respect to Cs + adsorption; notably, Cs + adsorption was predominantly inner-sphere whereas outer-sphere adsorption was very weak with the simulations predicting the formation of an extended outer-sphere complex. For a given location of the layer charge, the free energy of adsorption as an inner-sphere complex was found to vary linearly with the magnitude of the layer charge. For a given location and magnitude of the layer charge, adsorption at phlogopite (trioctahedral sheet structure) was much less favorable than at muscovite (dioctahedral sheet structure) due to the electrostatic repulsion between the adsorbed Cs + and the hydrogen atom of the hydroxyl group directly below the six-membered siloxane ring cavity. For a given magnitude of the layer charge and structure of the octahedral sheet, adsorption at celadonite (layer charge located in the octahedral sheet) was favored over muscovite (layer charge located in the tetrahedral sheet) due to the increased distance with surface potassium ions.« less
Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter.
Guo, Junyu; Zhai, Zihan; Wang, Lei; Wang, Ziyuan; Wu, Jing; Zhang, Boya; Zhang, Jianbo
2017-06-01
Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m -3 ) was much higher than that in the particle phase (62 ± 8 pg m -3 ) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (-2.34, -1.25, and -0.15 kJ mol -1 at 293, 303, and 313 K, respectively), ΔH° (-34.34 kJ mol -1 ), and ΔS° (-109.22 J mol -1 K -1 ) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp).
Sun, Xiuquan; Wick, Collin D; Thallapally, Praveen K; McGrail, B Peter; Dang, Liem X
2011-03-31
Enhancing the efficiency of the Rankine cycle, which is utilized for multiple renewable energy sources, requires the use of a working fluid with a high latent heat of vaporization. To further enhance its latent heat, a working fluid can be placed in a metal organic heat carrier (MOHC) with a high heat of adsorption. One such material is Ni\\DOBDC, in which linear alkanes have a higher heat of adsorption than cyclic alkanes. We carried out molecular dynamics simulations to investigate the structural, diffusive, and adsorption properties of n-hexane and cyclohexane in Ni\\DOBDC. The strong binding for both n-hexane and cyclohexane with Ni\\DOBDC is attributed to the increase of the heat of adsorption observed in experiments. Our structural results indicate the organic linkers in Ni\\DOBDC are the primary binding sites for both n-hexane and cyclohexane molecules. However, at all temperatures and loadings examined in present work, n-hexane clearly showed stronger binding with Ni\\DOBDC than cyclohexane. This was found to be the result of the ability of n-hexane to reconfigure its structure to a greater degree than cyclohexane to gain more contacts between adsorbates and adsorbents. The geometry and flexibility of guest molecules were also related to their diffusivity in Ni\\DOBDC, with higher diffusion for flexible molecules. Because of the large pore sizes in Ni\\DOBDC, energetic effects were the dominant force for alkane adsorption and selectivity.
Hang, GuiYun; Yu, WenLi; Wang, Tao; Li, Zhen
2016-11-01
In order to determine the adsorption mechanism of water on the crystal surfaces of the explosive JOB-9003 and the effect of this adsorption on the sensitivity and detonation performance of this explosive, a model of the crystal of JOB-9003 was created in the software package Materials Studio (MS). The adsorption process was simulated, and molecular dynamics simulation was performed with the COMPASS force field in the NPT ensemble to calculate the sensitivity and detonation performance of the explosive. The results show that the maximum trigger bond length decreases whereas the interaction energy of the trigger bond and the cohesive energy density increase after adsorption, indicating that the sensitivity of JOB-9003 decreases. The results for the detonation performance show that the detonation pressure, detonation velocity, and detonation heat decrease upon the adsorption of water, thus illustrating that the detonation performance of JOB-9003 is degraded. In summary, the adsorption of water has a positive effect on the sensitivity and safety of the explosive JOB-9003 but a negative effect on its detonation performance.
Peptide adsorption on the hydrophobic surface: A free energy perspective
NASA Astrophysics Data System (ADS)
Sheng, Yuebiao; Wang, Wei; Chen, P.
2011-05-01
Protein adsorption is a very attractive topic which relates to many novel applications in biomaterials, biotechnology and nanotechnology. Ionic complementary peptides are a group of novel nano-biomaterials with many biomedical applications. In this work, molecular dynamics simulations of the ionic-complementary peptide EAK16-II on a hydrophobic graphite surface were performed under neutral, acidic and basic solution conditions. Adsorption free energy contour maps were obtained by analyzing the dynamical trajectories. Hydrophobic interactions were found to govern the adsorption of the first peptide molecule, and both hydrophobic and electrostatic interactions contributed to the adsorption of the second peptide molecule. Especially under acidic and basic solution conditions, interplay existed among chain-chain hydrophobic, chain-surface hydrophobic and chain-chain electrostatic interactions during the adsorption of the second peptide molecule. Non-charged residues were found to lie on the graphite surface, while charged residue side-chains oriented towards the solution after the peptide deposited on the surface. These results provide a basis for understanding peptide adsorption on the hydrophobic surface under different solution conditions, which is useful for novel applications such as bioactive implant devices and drug delivery material design.
Tracer adsorption in sand-tank experiments of saltwater up-coning
NASA Astrophysics Data System (ADS)
Jakovovic, Danica; Post, Vincent E. A.; Werner, Adrian D.; Männicke, Oliver; Hutson, John L.; Simmons, Craig T.
2012-01-01
SummaryThis study aims to substantiate otherwise unresolved double-peaked plumes produced in recent saltwater up-coning experiments (see Jakovovic et al. (2011), Numerical modelling of saltwater up-coning: Comparison with experimental laboratory observations, Journal of Hydrology 402, 261-273) through additional laboratory testing and numerical modelling. Laboratory experimentation successfully reproduced the double-peaked plume demonstrating that this phenomenon was not an experimental nuance in previous experiments. Numerical modelling by Jakovovic et al. (2011) was extended by considering adsorption effects, which were needed to explain the observed up-coning double peaks of both previous and current laboratory experiments. A linear adsorption isotherm was applied in predicting dye tracer (Rhodamine WT) behaviour in the sand-tank experiments using adsorption parameters obtained experimentally. The same adsorption parameters were tested on all laboratory experiments and it was found that adsorption had insignificant effect on experiments with high pumping rates. However, low pumping rates produced pronounced spatial velocity variations within the dense salt plume beneath the pumping well, with velocities within the plume increasing from the centre of the plume towards the interface. The dye tracer was retarded relative to the salt and was transported preferentially along the higher-velocity paths (i.e. along the edges of the salt plume) towards the well forming double-peaked up-coning patterns. This illustrates the sensitive adsorptive nature of Rhodamine WT and that care should be taken when it is used in similar sand-tank experiments. Observations from this study offer insight into the separation of chemicals in natural systems due to different adsorption characteristics and under conditions of density-dependent flow.
Promoting the Adsorption of Metal Ions on Kaolinite by Defect Sites: A Molecular Dynamics Study
Li, Xiong; Li, Hang; Yang, Gang
2015-01-01
Defect sites exist abundantly in minerals and play a crucial role for a variety of important processes. Here molecular dynamics simulations are used to comprehensively investigate the adsorption behaviors, stabilities and mechanisms of metal ions on defective minerals, considering different ionic concentrations, defect sizes and contents. Outer-sphere adsorbed Pb2+ ions predominate for all models (regular and defective), while inner-sphere Na+ ions, which exist sporadically only at concentrated solutions for regular models, govern the adsorption for all defective models. Adsorption quantities and stabilities of metal ions on kaolinite are fundamentally promoted by defect sites, thus explaining the experimental observations. Defect sites improve the stabilities of both inner- and outer-sphere adsorption, and (quasi) inner-sphere Pb2+ ions emerge only at defect sites that reinforce the interactions. Adsorption configurations are greatly altered by defect sites but respond weakly by changing defect sizes or contents. Both adsorption quantities and stabilities are enhanced by increasing defect sizes or contents, while ionic concentrations mainly affect adsorption quantities. We also find that adsorption of metal ions and anions can be promoted by each other and proceeds in a collaborative mechanism. Results thus obtained are beneficial to comprehend related processes for all types of minerals. PMID:26403873
Chen, Mingjun; Zheng, Ting; Wu, Chunya; Xing, Cheng
2014-09-01
The early adsorption stages of collagen onto nano-grooved rutile surface without hydroxylation were studied using molecular dynamics and steered MD simulations. On the basis of plane rutile (110), two kinds of models have been adopted: single groove and parallel grooves along [1-11] crystal orientation with various width dimensions. Initially, collagens were parallel or perpendicular to the groove orientation, respectively, in order to investigate the influence of groove width on collagen adsorption. The simulation result suggests that surface grooves could exert a strong effect on collagen adsorption: when collagen was parallel to the groove direction, adsorption was favored if the groove width matched well with the dimension of collagen. However, adsorption strength may decrease as the groove width expanded. As for the condition of collagen perpendicular to the groove orientation, collagen was difficult to bend and insert into grooves in the free adsorption procedure. But the steered MD simulation results reveal that more energy was consumed for collagen to insert into narrower grooves which may be interpreted as strong barrier for adsorption. We believe that adsorption will be favored if appropriate dimension match between dimension of collagen and the groove width was approached. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Lei; Li, Bao; Xia, Yangchao; Liu, Shengyu
2017-09-01
Lignite is an important and useful fossil fuel in the world and the strong hydrophilicity of it limits its applications. Surfactant adsorption on lignite is an effective way to make it hydrophobic. In this work, aiming to examine the effect of the degree of ethoxylation on the adsorption behavior of dodecyl poly ethoxylated surfactants on lignite and the wettability modification of modified lignite by surfactant adsorption, different combined systems formed by surfactants, water and a model surface of Wender lignite have been studied using molecular dynamics simulation. The adsorption configurations vary with the degree of ethoxylation. At the same adsorption amounts, increasing the degree of ethoxylation can make the adsorption layer more compactness and bring stronger adsorption strength. The results of binding energy and its components show that the adsorption of alkyl polyoxyethylene ethers surfactant on lignite is physically adsorbed rather than electrostatically or chemisorbed. Meanwhile, van der Waals interaction plays a dominant role in the adsorption. The addition of surfactant could reduce the possibility of the interaction between water and lignite. Compared to the original lignite, the interaction between them is weakened after surfactant adsorption in water/surfactant/lignite system, thus strengthening the hydrophobicity of lignite. Similar to the adsorption strength, hydrophobicity of modified lignite increases with the increase of the degree of ethoxylation. The lignite surface properties are changed due to surfactant adsorption by analyzing the compositions of interaction energy and the change of hydrogen bonds. Copyright © 2017 Elsevier Inc. All rights reserved.
Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties
Braun, Efrem; Carraro, Carlo; Smit, Berend
2017-01-01
Some nanoporous, crystalline materials possess dynamic constituents, for example, rotatable moieties. These moieties can undergo a conformation change in response to the adsorption of guest molecules, which qualitatively impacts adsorption behavior. We pose and solve a statistical mechanical model of gas adsorption in a porous crystal whose cages share a common ligand that can adopt two distinct rotational conformations. Guest molecules incentivize the ligands to adopt a different rotational configuration than maintained in the empty host. Our model captures inflections, steps, and hysteresis that can arise in the adsorption isotherm as a signature of the rotating ligands. The insights disclosed by our simple model contribute a more intimate understanding of the response and consequence of rotating ligands integrated into porous materials to harness them for gas storage and separations, chemical sensing, drug delivery, catalysis, and nanoscale devices. Particularly, our model reveals design strategies to exploit these moving constituents and engineer improved adsorbents with intrinsic thermal management for pressure-swing adsorption processes. PMID:28049851
Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties.
Simon, Cory M; Braun, Efrem; Carraro, Carlo; Smit, Berend
2017-01-17
Some nanoporous, crystalline materials possess dynamic constituents, for example, rotatable moieties. These moieties can undergo a conformation change in response to the adsorption of guest molecules, which qualitatively impacts adsorption behavior. We pose and solve a statistical mechanical model of gas adsorption in a porous crystal whose cages share a common ligand that can adopt two distinct rotational conformations. Guest molecules incentivize the ligands to adopt a different rotational configuration than maintained in the empty host. Our model captures inflections, steps, and hysteresis that can arise in the adsorption isotherm as a signature of the rotating ligands. The insights disclosed by our simple model contribute a more intimate understanding of the response and consequence of rotating ligands integrated into porous materials to harness them for gas storage and separations, chemical sensing, drug delivery, catalysis, and nanoscale devices. Particularly, our model reveals design strategies to exploit these moving constituents and engineer improved adsorbents with intrinsic thermal management for pressure-swing adsorption processes.
Molybdenum isotope fractionation during complexation with organic matter in the Critical Zone
NASA Astrophysics Data System (ADS)
King, E. K.; Pett-Ridge, J. C.; Perakis, S. S.
2016-12-01
Molybdenum (Mo) is a micronutrient and a redox sensitive trace metal that also forms strong complexes with organic matter (OM). The fractionation of Mo in sediments associated with adsorption onto both iron (Fe) and manganese (Mn) (oxyhydr)oxides under oxic conditions and sulfide phases under euxinic conditions has been used to constrain redox conditions in the ocean. Additionally, Mo isotope dynamics in terrestrial systems can shed light on the pedogenic mechanisms driving the riverine Mo isotopic composition and how atmospheric inputs alter the trace metal budget and isotopic composition of soils. As a result of these studies, it has been hypothesized that multiple mechanisms are responsible for fractionating Mo isotopes. In particular, Mo fractionation during adsorption onto OM is unknown, despite the fact this mechanism is 3x to more than 20x greater than adsorption onto Fe- and Mn- (oxyhydr)oxides across a range of soil types from Oregon, Iceland, and Hawaii1-3 (Marks et al., 2015; Siebert et al., 2015; King et al., 2016). In this study, we measured Mo adsorption and isotopic fractionation onto insolubilized humic acid (IHA), a proxy for OM, as a function of both adsorption time (2-170 h) and pH (2-7). Preliminary results suggest that for the time series experiment, Mo adsorption onto IHA increased from 35% to 64% and a plateau was reached after 24 hours. The average Mo isotope fractionation between the solution and the IHA was Δ98Mosolution-IHA = 1.8 ± 0.3‰. For the pH series experiment, the average Mo isotope fractionation was Δ98Mosolution-IHA = 2.0 ± 0.2‰. Next, we compared the Mo isotopic composition of foliage, O-horizon, and surface soil from 12 sites in the Oregon Coast Range to better understand the impact of OM on Mo isotope dynamics in natural samples. The potential isotopic offset between dissolved and adsorbed Mo onto OM is of the same order of magnitude and direction as fractionation onto Fe- and Mn- (oxyhydr)oxides such as ferrihydrite, hematite, and birnessite which have Δ98Mosolution-oxide values of 1.1‰, 2.2‰, and 1.8‰, respectively (Goldberg et al., 2009; Wasylenki et al., 2011). These results have important implications for the interpretation of the sedimentary Mo record, its use as a paleoredox tracer, and its potential to record changes in the terrestrial weathering environment.
Uma, Kasimayan; Pan, Guan-Ting; Yang, Thomas C-K
2017-06-02
Abst r act: Metal organic framework (MOF) of MIL-101(Cr)-Silica (SiO₂) composites with highly mesoporous and uniform dispersions were synthesized by a microwave-assisted hydrothermal method followed by the sol-gel technique. Water vapor adsorption experiments were conducted on the MIL-101(Cr)-SiO₂ composites for industrial adsorption chiller applications. The effects of MIL-101(Cr)-SiO₂ mixing ratios (ranging from 0% to 52%), the surface area and amount of Lewis and Brønsted sites were comprehensively determined through water vapor adsorption experiments and the adsorption mechanism is also explained. The BET and Langmuir results indicate that the adsorption isotherms associated with the various MIL-101(Cr)-SiO₂ ratios demonstrated Type I and IV adsorption behavior, due to the mesoporous structure of the MIL-101(Cr)-SiO₂. It was observed that the increase in the amount of Lewis and Brønsted sites on the MIL-101(Cr)-SiO₂ composites significantly improves the water vapor adsorption efficiency, for greater stability during the water vapor adsorption experiments.
Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl
2015-12-15
The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPA
Shen, Jia-Wei; Wu, Tao; Wang, Qi; Kang, Yu; Chen, Xin
2009-06-02
Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.
Dou, Baojuan; Li, Jinjun; Wang, Yufei; Wang, Hailin; Ma, Chunyan; Hao, Zhengping
2011-11-30
Hierarchically structured carbon-silica aerogel (CSA) composites were synthesized from cheap water glass precursors and granulated activated carbon via a post-synthesis surface modification with trimethylchlorosilane (TMCS) and a low-cost ambient pressure drying procedure. The resultant CSA composites possess micro/mesoporous structure and hydrophobic surface. The adsorption and desorption performance of benzene on carbon-silica aerogel composite (CSA-2) under static and dynamic conditions were investigated, comparing with pure silica aerogel (CSA-0) and microporous activated carbon (AC). It was found that CSA-2 has high affinity towards aromatic molecules and fast adsorption kinetics. Excellent performance of dynamic adsorption and desorption observed on CSA-2 is related to its higher adsorption capacity than CSA-0 and less mass transfer resistance than AC, arising from the well-developed microporosity and open foam mesostructure in the CSA composites. Copyright © 2011 Elsevier B.V. All rights reserved.
Parkes, Marie V; Greathouse, Jeffery A; Hart, David B; Gallis, Dorina F Sava; Nenoff, Tina M
2016-04-28
The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.
Kondo, Atsushi; Suzuki, Takayuki; Kotani, Ryosuke; Maeda, Kazuyuki
2017-05-23
A new 3D metal-organic framework (MOF), in which 2D layers are interlaced to form a 3D architecture, was synthesized by a reaction of Cu(BF 4 ) 2 and 1,3-bis(4-pyridyl)propane (bpp) in a water/1-hexanol solvent system, and the crystal structure of the MOF was successfully solved. The MOF is reversibly transformed to a 1D chain MOF, which shows gate adsorption properties. The dynamic transformation gives crystal size reduction resulting in a slight change in CO 2 adsorption isotherms. The 1D MOF shows selective adsorption/separation properties on benzene and its analogues with similar sizes and shapes (benzene, toluene, and cyclohexane).
Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments
NASA Technical Reports Server (NTRS)
LeVan, M. Douglas; Finn, John E.
1997-01-01
Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.
[Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].
Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li
2013-07-01
The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).
Borsoi-Ribeiro, Mariana; Bresolin, Igor Tadeu Lazzarotto; Vijayalakshmi, Mookambeswaran; Bueno, Sônia Maria Alves
2013-10-01
Iminodiacetic acid (IDA) and tris(2-aminoethyl)amine (TREN) chelating ligands were immobilized on poly(ethylene vinyl alcohol) (PEVA) hollow-fiber membranes after activation with epichlorohydrin or butanediol diglycidyl ether (bisoxirane). The affinity membranes complexed with Cu(II) were evaluated for adsorption of human immunoglobulin G (IgG). The effects of matrix activation and buffer system on adsorption of IgG were studied. Isotherms of batch IgG adsorption onto finely cut membranes showed that neither of the chelates, IDA-Cu(II) or TREN-Cu(II), had a Langmuirean behavior with negative cooperativity for IgG binding. A comparison of equilibrium and dynamic maximum capacities showed that the dynamic capacity for a mini-cartridge in a cross-flow filtration mode (52.5 and 298.4 mg g(-1) dry weight for PEVA-TREN-Cu(II) and PEVA-IDA-Cu(II), respectively) was somewhat higher than the equilibrium capacity (9.2 and 73.3 mg g(-1) dry weight for PEVA-TREN-Cu(II) and PEVA-IDA-Cu(II), respectively). When mini-cartridges were used, the dynamic adsorption capacity of IDA-Cu(II) was the same for both mini-cartridge and agarose gel. Copyright © 2013 John Wiley & Sons, Ltd.
A comparative study of fibrinogen adsorption onto metal oxide thin films
NASA Astrophysics Data System (ADS)
Silva-Bermudez, P.; Muhl, S.; Rodil, S. E.
2013-10-01
One of the first events occurring upon foreign material-biological medium contact is the adsorption of proteins, which evolution greatly determines the cells response to the material. Protein-surface interactions are a complex phenomenon driven by the physicochemical properties of the surface, protein(s) and liquid medium involve in the interaction. In this article the adsorption of fibrinogen (Fbg) onto Ta2O5, Nb2O5, TiO2 and ZrO2 thin films is reported. The adsorption kinetics and characteristics of the adsorbed fibrinogen layer were studied in situ using dynamic and spectroscopic ellipsometry. The films wettability, surface energy (γLW/AB) and roughness were characterized aiming to elucidate their correlations with Fbg adsorption. The adsorption rate changed accordingly to the film; the fastest adsorption rate and highest Fbg surface mass concentration (Γ) was observed on ZrO2. The hydrophobic/hydrophilic character of the oxide highly influenced Fbg adsorption. On Ta2O5, Nb2O5 and TiO2, which were either hydrophilic or in the breaking-point between hydrophilicity and hydrophobicity, Γ was correlated to the polar component of γLW/AB and roughness of the surface. On ZrO2, clearly hydrophobic, Γ increased significantly off the correlation observed for the other films. The results indicated different adsorption dynamics and orientations of the Fbg molecules dependent on the surface hydrophobic/hydrophilic character.
NASA Astrophysics Data System (ADS)
Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang
2018-05-01
Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.
A Simple Adsorption Experiment
ERIC Educational Resources Information Center
Guirado, Gonzalo; Ayllon, Jose A.
2011-01-01
The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…
NASA Astrophysics Data System (ADS)
Sauerwein, Meike; Hanke, Alexander; Kaiser, Klaus; Kalbitz, Karsten
2010-05-01
Effects of redox conditions on the adsorption of dissolved organic matter to soil minerals and differently aged paddy soils Meike Sauerwein1, Alexander Hanke2, Klaus Kaiser3, Karsten Kalbitz2 1) Dept. of Soil Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany, meike.sauerwein@gmail.com 2) Institute of ecosystem dynamics and biodiversity, University of Amsterdam, 1018 WV, Netherlands, a.hanke@uva.nl, k.kalbitz@uva.nl 3) Soil Sciences, Martin Luther University Halle, 06099 Halle, Germany, klaus.kaiser@landw.uni-halle.de Current knowledge on dissolved organic matter (DOM) in soils is based mainly on observations and experiments in aerobic environments. Adsorption to soil minerals is an important mechanism of DOM retention and stabilization against microbial decay under oxic conditions. Under anoxic conditions where hydrous iron oxides, the potential main adsorbents of DOM, possibly dissolve, the importance of adsorption seems questionable. Therefore, we studied the adsorption of DOM to selected soil minerals and to mineral soils under oxic and anoxic conditions. In detail, we tested the following hypotheses: 1. Minerals and soils adsorb less DOM under anoxic conditions than under oxic ones. 2. The reduced adsorption under anoxic conditions is result of the smaller adsorption to hydrous Fe oxides whereas adsorption to clay minerals and Al hydroxides is not sensitive to changes in redox conditions 3. DOM adsorption will increase with the number of redox cycles, thus time of soil formation, due to increasing contents of poorly crystalline Fe oxides. This will, however, cause a stronger sensitivity to redox changes as poor crystalline Fe oxides are more reactive. 4. Aromatic compounds, being preferentially adsorbed under oxic conditions, will be less strongly adsorbed under anoxic conditions. We chose paddy soils as models because their periodically and regular exposure to changing redox cycles, with anoxic conditions during the rice growing period and oxic conditions during harvest and growth of other crops. Soils of a unique chronosequence of paddy soils (50, 300, 700 and 2000 years) in China were studied in direct comparison to non-paddy soils of the same age. In additions, selected soil minerals (goethite, ferrihydrite, amorphous Al hydroxide, hydrobiotite, nontronite and ripodolite), differing in their response to changes in redox conditions, were studied in order to indentify those mineral constituents responsible for redox-induced changes in DOM adsorption to the test soils. The DOM for the adsorption was extracted from composted rice straw as a surrogate for DOM percolating in paddy soils. Batch adsorption experiments were carried out with DOM pre-incubated to give oxic and anoxic conditions and maintaining these redox conditions during the whole procedure. The redox potential resulting from anoxic pre-incubation was about 100 mV, thus in the range of Fe reduction. Besides of dissolved organic carbon (DOC), we determined changes in the composition of DOM by the specific UV absorbance. We also analyzed main cations, anions and redox-sensitive elements to give a comprehensive picture of the effects of changing redox conditions on the dynamics of organic C, N, P, S, Fe and Al. First results indicated indeed less adsorption of DOM to Fe oxides under anoxic than under oxic conditions, with a more pronounced effect for ferrihydrite than for goethite. Maximum adsorption of DOM was more than 50% larger under oxic than under anoxic conditions. The effect was less pronounced but still detectable for clay minerals such as hydrobiotite, nontronite, and ripodolite. The specific UV absorbance of DOM contact with minerals was 20-50% stronger under anoxic than under oxic conditions. These changes in DOM composition indicated that preferential adsorption of aromatic compounds might be limited to aerated soils. We conclude that adsorption, although less strong than under oxic conditions, is an important mechanism of DOM retention also under anoxic conditions. Decreasing amounts of adsorbed DOM and changes in its composition might result in a less effective sorptive stabilization against microbial decay under anoxic than under oxic conditions.
Yang, Pengjie; Zhou, Mingda; Zhou, Chengyun; Wang, Qian; Zhang, Fangfang; Chen, Jian
2015-02-01
A novel method to separate and purify tea seed polysaccharide and tea seed saponin from camellia cake extract by macroporous resin was developed. Among four kinds of resins (AB-8, NKA-9, XDA-6, and D4020) tested, AB-8 macroporous resin possessed optimal separating capacity for the two substances and thus was selected for the separation, in which deionized water was used to elute tea seed polysaccharide, 0.25% NaOH solution to remove the undesired pigments, and 90% ethanol to elute tea seed saponin. Further dynamic adsorption/desorption experiments on AB-8 resin-based column chromatography were conducted to obtain the optimal parameters. Under optimal dynamic adsorption and desorption conditions, 18.7 and 11.8% yield of tea seed polysaccharide and tea seed saponin were obtained with purities of 89.2 and 96.0%, respectively. The developed method provides a potential approach for the large-scale production of tea seed polysaccharide and tea seed saponin from camellia cake. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of polyethylene glycol on percolation dynamics of reverse microemulsions
NASA Astrophysics Data System (ADS)
Geethu, P. M.; Yadav, Indresh; Aswal, V. K.; Satapathy, D. K.
2018-04-01
We explore the influence of a hydrophilic polymer, polyethylene glycol (PEG), on the structure and the percolation dynamics of reverse microemulsions (ME) stabilized by an anionic surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate). The percolation transition of MEs is probed using dielectric relaxation spectroscopy (DRS). Notably, an increase in percolation temperature is observed by the incorporation of PEG-polymer into larger ME droplets which is explained by considering the model of polymer adsorption at surfactant-water interface. The stability of the droplet phase of microemulsion after the incorporation of PEG is confirmed by small-angle neutron scattering (SANS) experiment. Further, a net decrease in percolation transition temperature is observed with the addition of PEG polymer for smaller ME droplets and is discussed in relation with the destabilization of droplets owing to the polymer induced bridging and the associated clustering of droplets. We conjecture that the adsorption of PEG polymer chains at the surfactant-water interface as well as the PEG-induced bridging of droplets are due to the strong ion-dipole interaction between anionic head group of AOT surfactant and dipoles present in PEG polymer chains.
NASA Astrophysics Data System (ADS)
Abbaspour, M.; Akbarzadeh, H.; Banihashemi, S. Z.; Sotoudeh, A.
2018-02-01
We have calculated the zero equation of state of solid helium using a two-body Hartree-Fock dispersion (HFD)-like potential from molecular dynamics (MD) simulation. To take many-body forces into account, our simple and accurate empirical expression is used with the HFD-like potential without requiring an expensive three-body calculation. This potential model also includes the quantum effects for helium at low temperatures. The results indicate that our effective HFD-like potential improves the prediction of the classical two-body results to get better agreement with experiment than many other two-body and three-body potentials of helium reported in the literature. We have also simulated the adsorption and desorption processes of the (He)55, (He)147, (He)309, (He)561, and (He)923 icosahedral nanoclusters confined into the different armchair and zigzag CNTs from 0 to 50 K using our effective model. We have observed an interesting phenomenon at 0 K for helium. The nanoclusters adsorb to the inner CNT wall as a melting process. But, the heavier noble gas clusters (such as Ne and Xe) show the different behavior than the He clusters. They form a multilayered solid structure into the CNT at zero temperature and adsorb into the inner wall of the CNT at higher temperatures. Our results for He clusters show that the absolute value of the adsorption energy increases as the size of the nanocluster increases. The desorption process begins at a certain temperature and represents itself by a jump in the configurational energy values. We have also investigated the structural and dynamical properties of the confined helium nanoclusters during the adsorption and desorption processes at different temperatures.
Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies
Abu-Lail, Laila; Bergendahl, John A.; Thompson, Robert W.
2010-01-01
Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive-adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data. PMID:20153106
Uma, Kasimayan; Pan, Guan-Ting; Yang, Thomas C.-K.
2017-01-01
Metal organic framework (MOF) of MIL-101(Cr)-Silica (SiO2) composites with highly mesoporous and uniform dispersions were synthesized by a microwave-assisted hydrothermal method followed by the sol-gel technique. Water vapor adsorption experiments were conducted on the MIL-101(Cr)-SiO2 composites for industrial adsorption chiller applications. The effects of MIL-101(Cr)-SiO2 mixing ratios (ranging from 0% to 52%), the surface area and amount of Lewis and Brønsted sites were comprehensively determined through water vapor adsorption experiments and the adsorption mechanism is also explained. The BET and Langmuir results indicate that the adsorption isotherms associated with the various MIL-101(Cr)-SiO2 ratios demonstrated Type I and IV adsorption behavior, due to the mesoporous structure of the MIL-101(Cr)-SiO2. It was observed that the increase in the amount of Lewis and Brønsted sites on the MIL-101(Cr)-SiO2 composites significantly improves the water vapor adsorption efficiency, for greater stability during the water vapor adsorption experiments. PMID:28772969
Membrane surface engineering for protein separations: experiments and simulations.
Liu, Zizhao; Du, Hongbo; Wickramasinghe, S Ranil; Qian, Xianghong
2014-09-09
A bisphosphonate derived ligand was successfully synthesized and grafted from the surface of regenerated cellulose membrane using atom transfer radical polymerization (ATRP) for protein separations. This ligand has a remarkable affinity for arginine (Arg) residues on protein surface. Hydrophilic residues N-(2-hydroxypropyl) methacrylamide (HPMA) was copolymerized to enhance the flexibility of the copolymer ligand and further improve specific protein adsorption. The polymerization of bisphosphonate derivatives was successful for the first time using ATRP. Static and dynamic binding capacities were determined for binding and elution of Arg rich lysozyme. The interaction mechanism between the copolymer ligand and lysozyme was elucidated using classical molecular dynamics (MD) simulations.
NASA Technical Reports Server (NTRS)
Blumberg, Seth; Gajraj, Arivalagan; Pennington, Matthew W.; Meiners, Jens-Christian
2005-01-01
Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events.
Adsorption kinetics of alkanethiol-capped gold nanoparticles at the hexane-water interface
NASA Astrophysics Data System (ADS)
Ferdous, Sultana; Ioannidis, Marios A.; Henneke, Dale
2011-12-01
The pendant drop technique was used to characterize the adsorption behavior of n-dodecane-1-thiol and n-hexane-1-thiol-capped gold nanoparticles at the hexane-water interface. The adsorption process was studied by analyzing the dynamic interfacial tension versus nanoparticle concentration, both at early times and at later stages (i.e., immediately after the interface between the fluids is made and once equilibrium has been established). A series of gold colloids were made using nanoparticles ranging in size from 1.60 to 2.85 nm dissolved in hexane for the interfacial tension analysis. Following free diffusion of nanoparticles from the bulk hexane phase, adsorption leads to ordering and rearrangement of the nanoparticles at the interface and formation of a dense monolayer. With increasing interfacial coverage, the diffusion-controlled adsorption for the nanoparticles at the interface was found to change to an interaction-controlled assembly and the presence of an adsorption barrier was experimentally verified. At the same bulk concentration, different sizes of n-dodecane-1-thiol nanoparticles showed different absorption behavior at the interface, in agreement with the findings of Kutuzov et al. (Phys Chem Chem Phys 9:6351-6358, 2007). The experiments additionally demonstrated the important role played by the capping agent. At the same concentration, gold nanoparticles stabilized by n-hexane-1-thiol exhibited greater surface activity than gold nanoparticles of the same size stabilized by n-dodecane-1-thiol. These findings contribute to the design of useful supra-colloidal structures by the self-assembly of alkane-thiol-capped gold nanoparticles at liquid-liquid interfaces.
Wang, Xiaoting; Chen, Ying; Zheng, Yajun; Zhang, Zhiping
2017-07-08
The dynamic pore systems and high surface areas of flexible metal-organic framework materials make them excellent candidates to be used in different kinds of adsorption processes. However, the adsorption and desorption behaviors of therapeutic drugs on metal-organic frameworks in solution are not fully developed. Here, we systematically investigated the adsorption and desorption behaviors of a typical therapeutic drug, verapamil, over several Zr-based metal-organic frameworks [e.g., Zr-FUM, UiO-66(Zr), UiO-66(Zr)-NH₂ and UiO-66(Zr)-2COOH] as well as ZrO₂ in an acetonitrile solution by using paper spray mass spectrometry. In contrast to other materials, UiO-66(Zr)-2COOH demonstrated a superior adsorption performance to verapamil due to their strong acid-base and/or hydrogen-bond interactions, and the adsorption process fitted well with the pseudo-second-order kinetic model. As verapamil-adsorbed materials were used for desorption experiments, ZrO₂ demonstrated the most favorable desorption performance, whereas UiO-66(Zr)-2COOH yielded the poorest desorption capability. These Zr-based materials had also been coated at the surface with filter papers for the analysis of various drugs and proteins in the process of paper spray mass spectrometry. The results demonstrated that among the studied materials, ZrO₂-coated paper gave the most favorable desorption performance as a pure drug solution, whereas the paper from UiO-66(Zr) demonstrated the optimal capability in the analyses of therapeutic drugs in a complex matrix (e.g., blood) and a protein (e.g., myoglobin).
NASA Astrophysics Data System (ADS)
Sedghamiz, Tahereh; Bahrami, Maryam; Ghatee, Mohammad Hadi
2017-04-01
Adsorption of propranolol enantiomers on naturally chiral copper (Cu(3,1,17)S) and achiral copper (Cu(100)) surfaces were studied by molecular dynamics simulation to unravel the features of adsorbate-adsorbent enantioselectivity. Adsorption of S- and R-propranolol on Cu(3,1,17)S terraces (with 100 plane) leads mainly to endo- and exo-conformers, respectively. Simulated pair correlation function (g(r)) and mean square displacement (MSD) were analyzed to identify adsorption sites of enantiomers on Cu(3,1,17)S substrate surface, and their simulated binding energies were used to access the adsorption strength. According to (g(r)), R-propranolol adsorbs via naphtyl group while S-propranolol mainly adsorbs through chain group. R-enantiomer binds more tightly to the chiral substrate surface than S-enantiomer as indicated by a higher simulated binding energy by 2.74 kJ mol-1 per molecule. The difference in binding energies of propranolol enantiomers on naturally chiral Cu(3,1,17)S is almost six times larger than on the achiral Cu(100) surface, which substantiates the appreciably strong specific enantioselective adsorption on the former surface.
ERIC Educational Resources Information Center
Rybolt, Thomas R.; And Others
1988-01-01
Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)
Huston, Kyle J; Kiemen, Ashley; Larson, Ronald G
2018-06-12
Experiments have shown that relaxation of oil/water interfacial tension by adsorption of alkyl ethoxylate surfactants from water onto an oil droplet is delayed relative to diffusion-controlled adsorption. We examine possible causes of this delay, and we show that several are implausible. We find that re-dissolution of the surfactant in the oil droplet cannot explain the apparent interfacial resistance at short times, because the interface will preferentially fill before any such re-dissolution occurs. We also perform umbrella sampling with molecular dynamics simulation and do not find any evidence of a free energy barrier or low-diffusivity zone near the interface. Nor do we find evidence from simulation that pre-micellar aggregation slows diffusion enough to cause the observed resistance to interfacial adsorption. We are therefore unable to pinpoint the cause of the resistance, but we suggest that "dead time" associated with the experimental method could be responsible - specifically a local depletion of surfactant by the ejected droplet when creating the fresh interface between the oil and water.
NASA Astrophysics Data System (ADS)
Neff, H.; Laborde, H. M.; Lima, A. M. N.
2016-11-01
An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.
Dynamics of Potassium Release and Adsorption on Rice Straw Residue
Li, Jifu; Lu, Jianwei; Li, Xiaokun; Ren, Tao; Cong, Rihuan; Zhou, Li
2014-01-01
Straw application can not only increase crop yields, improve soil structure and enrich soil fertility, but can also enhance water and nutrient retention. The aim of this study was to ascertain the relationships between straw decomposition and the release-adsorption processes of K+. This study increases the understanding of the roles played by agricultural crop residues in the soil environment, informs more effective straw recycling and provides a method for reducing potassium loss. The influence of straw decomposition on the K+ release rate in paddy soil under flooded condition was studied using incubation experiments, which indicated the decomposition process of rice straw could be divided into two main stages: (a) a rapid decomposition stage from 0 to 60 d and (b) a slow decomposition stage from 60 to 110 d. However, the characteristics of the straw potassium release were different from those of the overall straw decomposition, as 90% of total K was released by the third day of the study. The batches of the K sorption experiments showed that crop residues could adsorb K+ from the ambient environment, which was subject to decomposition periods and extra K+ concentration. In addition, a number of materials or binding sites were observed on straw residues using IR analysis, indicating possible coupling sites for K+ ions. The aqueous solution experiments indicated that raw straw could absorb water at 3.88 g g−1, and this rate rose to its maximum 15 d after incubation. All of the experiments demonstrated that crop residues could absorb large amount of aqueous solution to preserve K+ indirectly during the initial decomposition period. These crop residues could also directly adsorb K+ via physical and chemical adsorption in the later period, allowing part of this K+ to be absorbed by plants for the next growing season. PMID:24587364
Dynamics of potassium release and adsorption on rice straw residue.
Li, Jifu; Lu, Jianwei; Li, Xiaokun; Ren, Tao; Cong, Rihuan; Zhou, Li
2014-01-01
Straw application can not only increase crop yields, improve soil structure and enrich soil fertility, but can also enhance water and nutrient retention. The aim of this study was to ascertain the relationships between straw decomposition and the release-adsorption processes of K(+). This study increases the understanding of the roles played by agricultural crop residues in the soil environment, informs more effective straw recycling and provides a method for reducing potassium loss. The influence of straw decomposition on the K(+) release rate in paddy soil under flooded condition was studied using incubation experiments, which indicated the decomposition process of rice straw could be divided into two main stages: (a) a rapid decomposition stage from 0 to 60 d and (b) a slow decomposition stage from 60 to 110 d. However, the characteristics of the straw potassium release were different from those of the overall straw decomposition, as 90% of total K was released by the third day of the study. The batches of the K sorption experiments showed that crop residues could adsorb K(+) from the ambient environment, which was subject to decomposition periods and extra K(+) concentration. In addition, a number of materials or binding sites were observed on straw residues using IR analysis, indicating possible coupling sites for K(+) ions. The aqueous solution experiments indicated that raw straw could absorb water at 3.88 g g(-1), and this rate rose to its maximum 15 d after incubation. All of the experiments demonstrated that crop residues could absorb large amount of aqueous solution to preserve K(+) indirectly during the initial decomposition period. These crop residues could also directly adsorb K(+) via physical and chemical adsorption in the later period, allowing part of this K(+) to be absorbed by plants for the next growing season.
Study on Adsorption of Chromium (VI) by Activated Carbon from Cassava Sludge
NASA Astrophysics Data System (ADS)
Yang, Jinhui; Li, Chuanshu; Yang, Bin; Kang, Sijun; Zhang, Zhen
2018-03-01
In this paper, a new type of adsorbent prepared by waste sludge from alcohol production industry was used to adsorb Cr (VI) in activated carbon from cassava sludge. A series of static adsorption experiments were carried out on the initial concentration of solution Cr (VI), pH value of solution, adsorption time and dosage of adsorbent. The results of single factor experiments show that the removal rate of Cr (VI) increases with the initial concentration of Cr(VI), while the adsorption amount is opposite. When the pH value of the solution is low, the adsorption effect of activated carbon is better.The adsorption time should be controlled within 40-60min. When the activated carbon dosage is increased, the removal rate increases but the adsorption capacity decreases.
Dynamic Asphaltene-Stearic Acid Competition at the Oil-Water Interface.
Sauerer, Bastian; Stukan, Mikhail; Buiting, Jan; Abdallah, Wael; Andersen, Simon
2018-05-15
Interfacial tension (IFT) is one of the major parameters which govern the fluid flow in oil production and recovery. This paper investigates the interfacial activity of different natural surfactants found in crude oil. The main objective was to better understand the competition between carboxylic acids and asphaltenes on toluene/water interfaces. Dynamic IFT was measured for water-in-oil pendant drops contrary to most studies using oil-in-water drops. Stearic acid (SA) was used as model compound for surface-active carboxylic acids in crude. The influence of concentration of these species on dynamic IFT between model oil and deionized water was examined. The acid concentrations were of realistic values (total acid number 0.1 to 2 mg KOH/g oil) while asphaltene concentrations were low and set between 10 and 100 ppm. In mixtures, the initial surface pressure was entirely determined by the SA content while asphaltenes showed a slow initial diffusion to the interface followed by increased adsorption at longer times. The final surface pressure was higher for asphaltenes compared to SA, but for binaries, the final surface pressure was always lower than the sum of the individuals. At high SA concentration, surface pressures of mixtures were dominated entirely by the SA, although, Langmuir isotherm analysis shows that asphaltenes bind to the interface 200-250 times stronger than SA. The surface area/molecule for both SA and asphaltenes were found to be larger than the values reported in recent literature. Various approaches to dynamic surface adsorption were tested, showing that apparent diffusivity of asphaltenes is very low, in agreement with other works. Hence, the adsorption is apparently under barrier control. A possible hypothesis is that at the initial phase of the experiment and at lower concentration of asphaltenes, the interface is occupied by stearic acid molecules forming a dense layer of hydrocarbon chains that may repel the asphaltenes.
Laboratory investigations of the physics of steam flow in a porous medium
Herkelrath, W.N.; Moench, A.F.
1982-01-01
Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used extensively in modeling pressure-transient behavior in vapor-dominated geothermal systems. Transient, superheated steam-flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure, and then making a step increase in pressure at one end of the sample, while monitoring the pressure-transient breakthrough at the other end. It was found in experiments run at 100?, 125?, and 146?C that the time required for steam-pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10 to 25 times longer than predicted by theory. It is hypothesized that the delay in the steam-pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10?C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. For simplicity, this function was assumed to be in equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved. The experiments support the hypothesis that adsorption of steam can strongly influence steam pressure-transient behavior in porous media; the results suggest that the modified steam-flow theory, which includes steam adsorption terms, should be used in modeling steam flow in vapor-dominated geothermal systems.
NASA Astrophysics Data System (ADS)
He, Cunxue; Zhang, Heng; Lin, Cunguo; Wang, Li; Yuan, Shiling
2017-05-01
The adhesion of marine life would produce a certain degree of corrosion effect on the hull surface. Shellfish organisms, such as barnacles and mussels, were always used to research the impediment of coating material to protein adsorption. In this work, the adsorbed behaviors of mussel protein on the PDMS and C7F16-SAM surfaces were explored by molecular dynamics (MD) simulations. Simulation results showed that protein was strongly adsorbed onto the hydrophobic surface, as reflected by the large interaction energy; while the adsorption onto the hydrophilic PDMS surface was weak due to two strongly adhered water layers.
Parkes, Marie V.; Greathouse, Jeffery A.; Hart, David B.; ...
2016-04-04
The separation of oxygen from nitrogen using metal–organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O 2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O 2 and N 2 in the M 2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. Lastly, this unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize themore » process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.« less
Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.
Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B
2005-06-01
This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.
Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R
2009-01-01
The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.
Metal-organic frameworks with high capacity and selectivity for harmful gases
Britt, David; Tranchemontagne, David; Yaghi, Omar M.
2008-01-01
Benchmarks have been established for the performance of six metal-organic frameworks (MOFs) and isoreticular MOFs (IRMOFs, which have the same underlying topology as MOF-5), MOF-5, IRMOF-3, MOF-74, MOF-177, MOF-199, and IRMOF-62, as selective adsorbents for eight harmful gases: sulfur dioxide, ammonia, chlorine, tetrahydrothiophene, benzene, dichloromethane, ethylene oxide, and carbon monoxide. Kinetic breakthrough measurements are used to determine the calculated dynamic adsorption capacity of each “benchmark” MOF for each gas. The capacity of each MOF is compared to that of a sample of Calgon BPL activated carbon. We find that pore functionality plays a dominant role in determining the dynamic adsorption performance of MOFs. MOFs featuring reactive functionality outperform BPL carbon in all but one case and exhibit high dynamic adsorption capacities up to 35% by weight. PMID:18711128
Rojewska, Monika; Prochaska, Krystyna; Olejnik, Anna; Rychlik, Joanna
2014-07-01
The main aim of our study was analysis of adsorption dynamics of mixtures containing quaternary derivatives of lysosomotropic substance (QDLS). Two types of equimolar mixtures were considered: the ones containing two derivatives of lysosomotropic substances (DMALM-12 and DMGM-12) as well as the catanionic mixtures i.e. the systems containing QDLS and DBSNa. Dynamic surface tension measurements of surfactant mixtures were made. The results suggested that the diffusivity of the mixed system could be treated as the average value of rates of diffusion of individual components, micelles and ion pairs, which are present in the mixtures studied. Moreover, an attempt was made to explain the influence of the presence of micelles in the mixtures on their adsorption dynamics. The compounds examined show interesting biological properties which can be useful, especially for drug delivery in medical treatment. In vitro cytotoxic activities of the mixtures studied towards human cancer cells were evaluated. Most of the mixtures showed a high antiproliferative potential, especially the ones containing DMALM-12. Each cancer cell line used demonstrated different sensitivity to the same dose of the mixtures tested. Copyright © 2014 Elsevier B.V. All rights reserved.
Hard versus soft dynamics for adsorption-desorption kinetics: Exact results in one-dimension.
Manzi, S J; Huespe, V J; Belardinelli, R E; Pereyra, V D
2009-11-01
The adsorption-desorption kinetics is discussed in the framework of the kinetic lattice-gas model. The master equation formalism has been introduced to describe the evolution of the system, where the transition probabilities are written as an expansion of the occupation configurations of all neighboring sites. Since the detailed balance principle determines half of the coefficients that arise from the expansion, it is necessary to introduce ad hoc, a dynamic scheme to get the rest of them. Three schemes of the so-called hard dynamics, in which the probability of transition from single site cannot be factored into a part which depends only on the interaction energy and one that only depends on the field energy, and five schemes of the so-called soft dynamics, in which this factorization is possible, were introduced for this purpose. It is observed that for the hard dynamic schemes, the equilibrium and nonequilibrium observables, such as adsorption isotherms, sticking coefficients, and thermal desorption spectra, have a normal or physical sustainable behavior. While for the soft dynamics schemes, with the exception of the transition state theory, the equilibrium and nonequilibrium observables have several problems. Some of them can be regarded as abnormal behavior.
Wang, Xiaoting; Chen, Ying; Zheng, Yajun
2017-01-01
The dynamic pore systems and high surface areas of flexible metal–organic framework materials make them excellent candidates to be used in different kinds of adsorption processes. However, the adsorption and desorption behaviors of therapeutic drugs on metal–organic frameworks in solution are not fully developed. Here, we systematically investigated the adsorption and desorption behaviors of a typical therapeutic drug, verapamil, over several Zr-based metal–organic frameworks [e.g., Zr-FUM, UiO-66(Zr), UiO-66(Zr)-NH2 and UiO-66(Zr)-2COOH] as well as ZrO2 in an acetonitrile solution by using paper spray mass spectrometry. In contrast to other materials, UiO-66(Zr)-2COOH demonstrated a superior adsorption performance to verapamil due to their strong acid-base and/or hydrogen-bond interactions, and the adsorption process fitted well with the pseudo-second-order kinetic model. As verapamil-adsorbed materials were used for desorption experiments, ZrO2 demonstrated the most favorable desorption performance, whereas UiO-66(Zr)-2COOH yielded the poorest desorption capability. These Zr-based materials had also been coated at the surface with filter papers for the analysis of various drugs and proteins in the process of paper spray mass spectrometry. The results demonstrated that among the studied materials, ZrO2-coated paper gave the most favorable desorption performance as a pure drug solution, whereas the paper from UiO-66(Zr) demonstrated the optimal capability in the analyses of therapeutic drugs in a complex matrix (e.g., blood) and a protein (e.g., myoglobin). PMID:28773131
Xu, Longhua; Tian, Jia; Wu, Houqin; Deng, Wei; Yang, Yaohui; Sun, Wei; Gao, Zhiyong; Hu, Yuehua
2017-11-01
The anisotropic adsorption of sodium oleate (NaOL) on feldspar surfaces was investigated to elucidate the different flotation properties of feldspar particles of four different size ranges. Microflotation experiments showed that the feldspar flotation recovery of particles with sizes spanning different ranges decreased in the order 0-19>19-38>45-75>38-45μm. Zeta potential and FTIR measurements showed that NaOL was chemically adsorbed on the Al sites of the feldspar surface. The anisotropic surface energies and broken bond densities estimated by density functional theory calculations showed that, although feldspar mostly exposed (010) and (001) surfaces, only the (001) surfaces contained the Al sites needed for NaOL adsorption. The interaction energies calculated by molecular dynamics simulations confirmed the more favorable NaOL adsorption on (001) than (010) surfaces, which may represent the main cause for the anisotropic NaOL adsorption on feldspar particles of different sizes. SEM measurements showed that the main exposed surfaces on coarse and fine feldspar particles were the side (010) and basal (001) ones, respectively. A higher fraction of Al-rich (001) surfaces is exposed on fine feldspar particles, resulting in better floatability compared with coarse particles. XPS and adsorption measurements confirmed that the Al content on the feldspar surface varied with the particle size, explaining the different NaOL flotation of feldspar particles of different sizes. Therefore, the present results suggest that coarsely ground ore should be used for the separation of feldspar gangue minerals. Further improvements in the flotation separation of feldspar from associated valuable minerals can be achieved through selective comminution or grinding processes favoring the exposure of (010) surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
[Virus adsorption from batch experiments as influenced by air-water interface].
Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji
2007-12-01
The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.
NASA Astrophysics Data System (ADS)
Mojica-Sepulveda, Ruth Dary; Mendoza-Herrera, Luís Joaquín; Grumel, Eduardo; Soria, Delia Beatriz; Cabello, Carmen Inés; Trivi, Marcelo
2018-07-01
Adsorption phenomena have several technological applications such as desiccants, catalysts, and separation of gases. Their uses depend on the textural properties of the solid adsorbent and the type of the adsorbed liquid or gas. Therefore, it is important to determine these properties. The most common measurement methods are physicochemical based on adsorption of N2 to determine the surface area and the distribution of pores size. However these techniques present certain limitations for microporous materials. In this paper we propose the use of the Dynamic Laser Speckle (DLS) technique to measure the hygroscopic capacity of a microporous natural zeolite and their modified forms. This new approach based on the adsorption of water by solids allows determine their specific surface area (S). To test the DLS results, we compared the obtained S values to those calculated by different conventional isotherms using the N2 adsorption-desorption method.
A supramolecular strategy for self-mobile adsorption sites in affinity membrane.
Lin, Ligang; Dong, Meimei; Liu, Chunyu; Wei, Chenjie; Wang, Yuanyuan; Sun, Hui; Ye, Hui
2014-09-01
Disclosed here is the design of a novel supramolecular membrane with self-mobile adsorption sites for biomolecules purification. In the 3D micropore channels of membrane matrix, the ligands are conjugated onto the cyclic compounds in polyrotaxanes for protein adsorption. During membrane filtration, the adsorption sites can rotate and/or slide along the axial chain, which results in the enhanced adsorption capacity. The excellent performance of supra-molecular membrane is related with the dynamic working manner of adsorption sites, which plays a crucial role on avoiding spatial mismatching and short-circuit effect. The supra-molecular strategy described here has general suggestions for the "sites" involved technologies such as catalysis, adsorption, and sensors, which is of broad interest. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Dynamic Surface Tension of Water
2017-01-01
The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments. PMID:28301160
The Dynamic Surface Tension of Water.
Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel
2017-04-06
The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m -1 ) than under equilibrium conditions (∼72 mN m -1 ) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.
Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.
Lee, Seo-Yun; Choi, Hee-Jeong
2018-03-01
The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hu, Sihai; Wu, Yaoguo; Yi, Na; Zhang, Shuai; Zhang, Yuanjing; Xin, Xu
2017-09-01
Dissolved organic matter (DOM), as the most active organic carbon in the soil, has a coherent affinity with heavy metals from inherent and exogenous sources. Although the important roles of DOM in the adsorption of heavy metals in soil have previously been demonstrated, the heterogeneity and variability of the chemical constitution of DOM impede the investigation of its effects on heavy metal adsorption onto soil under natural conditions. Fresh DOM (FDOM) and degraded DOM (DDOM) from sugarcane rind were prepared, and their chemical properties were measured by Fourier-transform infrared spectrometry (FTIR), excitation-emission matrix (EEM) fluorescence spectroscopes, nuclear magnetic resonance (NMR), and molecular weight distribution (MWD). They were also used in batch experiments to evaluate their effects on the adsorption of Cu(II) onto farmland red soil. Based on our results, the chemical structure and composition of DDOM greatly varied; compared with FDOM, the C/O ratio (from 24.0 to 9.6%) and fluorescence index (FI) (from 1.4 to 1.0) decreased, and high molecular weight (>10 kDa) compounds increased from 23.18 to 70.51%, while low molecular weight (<3 kDa) compounds decreased from 56.13 to 12.13%; aromaticity and humification degree were markedly enhanced. The discrepancy of FDOM and DDOM in terms of chemical properties greatly influenced Cu(II) adsorption onto red soil by affecting DOM-Cu(II) complex capacity. The FDOM inhibited the adsorption of Cu(II), while DDOM promoted adsorption, which was significantly influenced by soil pH. Maximum adsorption capacity (Q m ) was 0.92 and 5.76 mg g -1 in the presence of FDOM and DDOM, respectively. The adsorption process with DDOM could be better described by the Langmuir model, while that with FDOM was better described by the Freundlich model. The impacts caused by the dynamic changes of the chemical properties of DOM under natural conditions should therefore be considered in the risk assessment and remediation of soils contaminated with heavy metals.
NASA Astrophysics Data System (ADS)
Normile, H.; Papelis, C.; Kibbey, T. C. G.
2015-12-01
The focus of this work was on investigating how dynamic rates of evaporation affect the fate and transport of pharmaceutical compounds in unsaturated porous media. The environmental processes of saturation and evaporation control local concentrations of contaminants in pore water of porous media. Specifically, the rate of evaporation can affect the identity and extent of solid formation of a pharmaceutical compound. A range of experiments with different evaporation rates were conducted on sand columns saturated with a solution of ciprofloxacin, a fluoroquinolone antibiotic. Experiments were designed to simulate increased and decreased pore-water concentrations of a compound due to evaporation and resaturation, respectively. Results suggest that varied rates of evaporation cause differences in compound adsorption behavior. This result has significant implications for understanding fate and transport within the unsaturated zone. Preliminary models exploring the impact on contaminant mobility are discussed.
Method and means for dynamic measurement of rates of adsorption from solutions
Slomka, Bogdan J.; Buttermore, William H.
1992-05-05
A method and apparatus for dynamic measurement of rates of absorption from solutions. The method has the advantage of avoiding the use of solvent normally used to establish a baseline. The method involves pre-evacuating the adsorbent contained in an adsorbent cell and thereafter rapidly contacting the adsorbent with analytical solution, all without prior exposure of adsorbent to pure solvent. The result is a sharp characteristic adsorption line.
NASA Astrophysics Data System (ADS)
Fan, Yaming; Zhuo, Yuqun; Li, Liangliang
2017-10-01
SeO2 adsorption mechanisms on CaO surface were firstly investigated by both density functional theory (DFT) calculations and adsorption experiments. Adsorption of multiple SeO2 on the CaO (001) surface was investigated using slab model. Based on the results of adsorption energy and surface property, a double-layer adsorption mechanisms were proposed. In experiments, the SeO2 adsorption products were prepared in a U-shaped quartz reactor at 200 °C. The surface morphology was investigated by field emission scanning electron microscopy (FE-SEM). The superficial and total SeO2 mass fractions were measured by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The surface valence state and bulk structure are determined by XPS and X-Ray Diffraction (XRD). The experimental results are in good agreement with the DFT results. In conclusion, the fundamental SeO2 chemisorption mechanisms on CaO surface were suggested.
Study on adsorption properties of synthetic materials on marine emulsified oil
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Peng, Shitao; Wang, Xiaoli; Zhou, Ran; Luo, Lei
2018-02-01
As an effective measure for marine oil spill recovery, adsorption treatment can be adopted in areas where mechanical recovery is not applicable. This experiment is mainly aimed at studying the adsorption properties of synthetic materials on emulsified oil. The emulsified oil was prepared by simulating the emulsification process of marine oil spill via a wave-current flume, and the adsorption weights of synthetic materials on emulsified oil were obtained by performing a field adsorption experiment. Polypropylene, nano-polypropylene and hydrophobic melamine sponge were tested by adsorbing a variety of emulsified oils according to the Adsorption Property Test Method (Version F-726) defined by ASTM. Their adsorption weights on emulsified oil (with initial thickness of 5 mm and water content of 20.86%) are 5.42 g/g, 23.5 g/g and 82.15g/g, respectively, which, compared with that on gear oil in the initial state, are respective decreases of 46.39%, 19.88% and 11.84%, demonstrating obvious decreases in their adsorption performances.
Utesch, Tillmann; Daminelli, Grazia; Mroginski, Maria Andrea
2011-11-01
Bone morphogenetic protein-2 (BMP-2) plays a crucial role in osteoblast differentiation and proliferation. Its effective therapeutic use for ectopic bone and cartilage regeneration depends, among other factors, on the interaction with the carrier at the implant site. In this study, we used classical molecular dynamics (MD) and a hybrid approach of steered molecular dynamics (SMD) combined with MD simulations to investigate the initial stages of the adsorption of BMP-2 when approaching two implant surfaces, hydrophobic graphite and hydrophilic titanium dioxide rutile. Surface adsorption was evaluated for six different orientations of the protein, two end-on and four side-on, in explicit water environment. On graphite, we observed a weak but stable adsorption. Depending on the initial orientation, hydrophobic patches as well as flexible loops of the protein were involved in the interaction with graphite. On the contrary, BMP-2 adsorbed only loosely to hydrophilic titanium dioxide. Despite a favorable interaction energy between protein and the TiO(2) surface, the rapid formation of a two-layer water structure prevented the direct interaction between protein and titanium dioxide. The first water adlayer had a strong repulsive effect on the protein, while the second attracted the protein toward the surface. For both surfaces, hydrophobic graphite and hydrophilic titanium dioxide, denaturation of BMP-2 induced by adsorption was not observed on the nanosecond time scale.
NASA Astrophysics Data System (ADS)
Sun, Fei; Gao, Jihui; Liu, Xin; Tang, Xiaofan; Wu, Shaohua
2015-12-01
For the aim to break through the long-term roadblock to porous carbon based SO2 removal technology, typical coal-based activated cokes differing in terms of surface area, pore configuration and surface functional properties, were employed to investigate the SO2 removal dynamics. Among the employed activated cokes, the one with a hierarchically porous structure greatly enhanced the SO2 removal dynamics under the simulated flue gas compositions. More detailedly, SO2 separate adsorption property under normal temperature and pressure evidenced that monolayer SO2 molecules anchoring on micropore surface is the main adsorption pattern. The catalytic oxidation of SO2 follows the Eley-Rideal mechanism by which SO2 was firstly oxidized by molecular oxygen into SO3 which could depart partially to release the active sites for further adsorption. For the role of hierarchical pore configuration, it was proposed that micropores serve as gas adsorption and reaction accommodation, meso-/macropores act as byproduct H2SO4 transport and buffing reservoirs, which may in turn gives rise to the recovery of active sites in micropores and guarantees the continuous proceeding of sulfur-containing species transformation in the micropores. The present results suggest that pore configuration or interconnecting pattern, but not mere surface area or pore volume, should be favourably considered for optimizing heterogeneous gas-solid adsorption and reaction.
Adsorption of Cd (II) on Modified Granular Activated Carbons: Isotherm and Column Study.
Rodríguez-Estupiñán, Paola; Erto, Alessandro; Giraldo, Liliana; Moreno-Piraján, Juan Carlos
2017-12-20
In this work, equilibrium and dynamic adsorption tests of cadmium Cd (II) on activated carbons derived from different oxidation treatments (with either HNO₃, H₂O₂, or NaOCl, corresponding to GACoxN, GACoxP, and GACoxCl samples) are presented. The oxidation treatments determined an increase in the surface functional groups (mainly the acidic ones) and a decrease in the pH PZC (except for the GACoxCl sample). A slight alteration of the textural parameters was also observed, which was more significant for the GACoxCl sample, in terms of a decrease of both Brunauer-Emmett-Teller ( BET ) surface area and micropore volume. Adsorption isotherms were determined for all the adsorbents and a significant increase in the adsorption performances of the oxidized samples with respect to the parent material was observed. The performances ranking was GACoxCl > GACoxP > GACoxN > GAC, likely due to the chemical surface properties of the adsorbents. Dynamic tests in a fixed bed column were carried out in terms of breakthrough curves at constant Cd inlet concentration and flow rate. GACoxCl and GACoxN showed a significantly higher value of the breakpoint time, likely due to the higher adsorption capacity. Finally, the dynamic tests were analyzed in light of a kinetic model. In the adopted experimental conditions, the results showed that mass transfer is controlled by internal pore diffusion, in which surface diffusion plays a major role.
Pb2+ and Zn2+ adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand
Coston, J.A.; Fuller, C.C.; Davis, J.A.
1995-01-01
Pb2+ and Zn2+ adsorption was studied in batch experiments with material collected from a shallow, unconfined aquifer of glacial outwash sand and gravel in Falmouth, Massachusetts, USA. The aquifer solids contain primarily quartz with minor amounts of alkali feldspars and ferromagnetic minerals. Pb2+ and Zn2+ adsorption experiments with various grain size and mineral fractions of the aquifer solids showed that: 1) Zn2+ adsorption was independent of grain size, but Pb2+ was preferentially adsorbed by the <64 ??m size fraction and 2) Pb2+ adsorption decreased after removal of the paramagnetic, Fe-bearing mineral fraction, but Zn2+ adsorption was unaffected. Pb2+ and Zn2+ adsorption on mineral separates from the aquifer material compared with metal adsorption on a purified quartz powder indicated that adsorption of both metal ions was dominated by coatings on the quartz fraction of the sediment. Characterization of the coatings by AES, SEM-EDS, and TOF-SIMS demonstrated that the natural quartz grains were extensively coated with Al- and Fe-bearing minerals of variable composition. -from Authors
Implementation of ferric hydroxide-based media for removal of toxic metalloids
NASA Astrophysics Data System (ADS)
Szlachta, Małgorzata; Wójtowicz, Patryk
2017-11-01
Effective removal of inorganic arsenic species is possible by application of the sorption technique with the use of iron-based sorbents. This study investigates the removal of arsenic(III) and arsenic(V) from an aqueous solution by application of a granular ferric hydroxide-based sorbent. The performance of tested media was evaluated based on the batch and fixed-bed adsorption studies. The efficiency of the process was determined with various treatment times, adsorbent doses, initial concentrations of arsenic and various solution temperatures. The obtained adsorption data were fitted with pseudo-first and second-order kinetic models and Langmuir and Freundlich isotherm equations. It was observed that the overall arsenite removal was lower when compared to the arsenate, and all tested operating parameters influenced the process efficiency. The experiments under dynamic conditions showed high treatment capacity and stability of tested adsorbent over a long period of time.
Molecular simulations of a CO2/CO mixture in MIL-127
NASA Astrophysics Data System (ADS)
Chokbunpiam, Tatiya; Fritzsche, Siegfried; Parasuk, Vudhichai; Caro, Jürgen; Assabumrungrat, Suttichai
2018-03-01
Adsorption and diffusion of an equimolar feed mixture of CO2 and CO in MIL-127 at three different temperatures and pressures up to 12 bar were investigated by molecular simulations. The adsorption was simulated using Gibbs-Ensemble Monte Carlo (GEMC). The structure of the adsorbed phase and the diffusion in the MIL were investigated using Molecular Dynamics (MD) simulations. The adsorption selectivity of MIL-127 for CO2 over CO at 233 K was about 15. When combining adsorption and diffusion selectivities, a membrane selectivity of about 12 is predicted. For higher temperatures, both adsorption and diffusion selectivity are found to be smaller.
Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?
NASA Astrophysics Data System (ADS)
Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.
2015-12-01
Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and DON than soils from 0-3 cm depth. For example, at 80 mg/L DOC, the >3-10 layer adsorbed 11.37 mg total N (TN)/g dry soil whereas the 0-3 layer adsorbed 2.13 mg TN/g dry soil. This project will also consider the effects of soil texture, soil C and N content, and Al and Fe oxide and hydroxide content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chen-Guang; Lash Miller Chemical Laboratories, Department of Chemistry and Institute of Optical Sciences, University of Toronto, Toronto, Ontario M5S 3H6; Huang, Kai, E-mail: khuang@chem.utoronto.ca, E-mail: wji@ruc.edu.cn
During the dissociative adsorption on a solid surface, the substrate usually participates in a passive manner to accommodate fragments produced upon the cleavage of the internal bond(s) of a (transient) molecular adsorbate. This simple picture, however, neglects the flexibility of surface atoms. Here, we report a Density Functional Theory study to revisit our early studies of the dissociative adsorption of CH{sub 3}X (X = Br and Cl) on Si(100). We have identified a new reaction pathway, which involves a flip of a silicon dimer; this new pathway agrees better with experiments. For our main exemplar of CH{sub 3}Br, insights havemore » been gained using a simple model that involves a three-atom reactive center, Br-C-Si. When the silicon dimer flips, the interaction between C and Si in the Br-C-Si center is enhanced, evident in the increased energy-split of the frontier orbitals. We also examine how the dissociation dynamics of CH{sub 3}Br is altered on a heterodimer (Si-Al, Si-P, and Si-Ge) in a Si(100) surface. In each case, we conclude, on the basis of computed reaction pathways, that no heterodimer flipping is involved before the system transverses the transition state to dissociative adsorption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monazam, Esmail R.; Breault, Ronald W.; Fauth, Daniel J.
Thermogravimetric analysis was employed to investigate the CO 2 and H 2O adsorption rates and water vapor equilibrium on anhydrous and pre-hydrate linear polyethylenimine (LPEI) sorbent impregnated within a commercially functional CARiACT G10 (HPV) silica support. Water vapor experiments utilizing specific humidity of 2%, 8%, and 16% in contact with an anhydrous PEI sorbent resulted in proportional quantities of water vapor uptake. Subsequently, both anhydrous and pre-hydrated PEI-impregnated sorbents were made available to identical humidified gaseous streams containing a CO 2 concentration of 10% at 60oC. CO 2 capacity increased dramatically in the presence of different levels of humidity. Variousmore » kinetic models were systematically employed to interpret the experimental data including single and multiple-step models. The rate data was best represented by a reaction mechanism pathway involving the interplay of CO 2 with PEI-impregnated sorbents exhibited a quick adsorption phase followed by a slow approach to equilibrium. Moreover, a phenomenological rate model was developed to describe the dynamic H 2O and CO 2 uptakes at specific humidity levels studied. The kinetic study showed good agreement with experimental data. Furthermore, the effects observed during the adsorption and hydration are shown to be complementary to known chemical and physical transformations within the polyethylenimine’s macromolecule.« less
Surface-Bound Casein Modulates the Adsorption and Activity of Kinesin on SiO2 Surfaces
Ozeki, Tomomitsu; Verma, Vivek; Uppalapati, Maruti; Suzuki, Yukiko; Nakamura, Mikihiko; Catchmark, Jeffrey M.; Hancock, William O.
2009-01-01
Abstract Conventional kinesin is routinely adsorbed to hydrophilic surfaces such as SiO2. Pretreatment of surfaces with casein has become the standard protocol for achieving optimal kinesin activity, but the mechanism by which casein enhances kinesin surface adsorption and function is poorly understood. We used quartz crystal microbalance measurements and microtubule gliding assays to uncover the role that casein plays in enhancing the activity of surface-adsorbed kinesin. On SiO2 surfaces, casein adsorbs as both a tightly bound monolayer and a reversibly bound second layer that has a dissociation constant of 500 nM and can be desorbed by washing with casein-free buffer. Experiments using truncated kinesins demonstrate that in the presence of soluble casein, kinesin tails bind well to the surface, whereas kinesin head binding is blocked. Removing soluble casein reverses these binding profiles. Surprisingly, reversibly bound casein plays only a moderate role during kinesin adsorption, but it significantly enhances kinesin activity when surface-adsorbed motors are interacting with microtubules. These results point to a model in which a dynamic casein bilayer prevents reversible association of the heads with the surface and enhances association of the kinesin tail with the surface. Understanding protein-surface interactions in this model system should provide a framework for engineering surfaces for functional adsorption of other motor proteins and surface-active enzymes. PMID:19383474
Monazam, Esmail R.; Breault, Ronald W.; Fauth, Daniel J.; ...
2017-07-20
Thermogravimetric analysis was employed to investigate the CO 2 and H 2O adsorption rates and water vapor equilibrium on anhydrous and pre-hydrate linear polyethylenimine (LPEI) sorbent impregnated within a commercially functional CARiACT G10 (HPV) silica support. Water vapor experiments utilizing specific humidity of 2%, 8%, and 16% in contact with an anhydrous PEI sorbent resulted in proportional quantities of water vapor uptake. Subsequently, both anhydrous and pre-hydrated PEI-impregnated sorbents were made available to identical humidified gaseous streams containing a CO 2 concentration of 10% at 60oC. CO 2 capacity increased dramatically in the presence of different levels of humidity. Variousmore » kinetic models were systematically employed to interpret the experimental data including single and multiple-step models. The rate data was best represented by a reaction mechanism pathway involving the interplay of CO 2 with PEI-impregnated sorbents exhibited a quick adsorption phase followed by a slow approach to equilibrium. Moreover, a phenomenological rate model was developed to describe the dynamic H 2O and CO 2 uptakes at specific humidity levels studied. The kinetic study showed good agreement with experimental data. Furthermore, the effects observed during the adsorption and hydration are shown to be complementary to known chemical and physical transformations within the polyethylenimine’s macromolecule.« less
Retention and transport of mecoprop on acid sandy-loam soils
NASA Astrophysics Data System (ADS)
Paradelo Núñez, Remigio; Conde Cid, Manuel; Abad, Elodie Martin; Fernández Calviño, David; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel
2017-04-01
Interaction with soil components is one of the key processes governing the fate of agrochemicals in the environment. In this work, we have studied the adsorption/desorption and transport of mecoprop in four acid sandy-loam soils with different organic matter contents. Kinetics of adsorption and adsorption/desorption at equilibrium have been studied in batch experiments, whereas transport was studied in laboratory columns. Adsorption and desorption are linear or nearly-linear. The kinetics of mecoprop adsorption are relatively fast in all cases (less than 24 h). Adsorption and desorption were adequately described by the linear and Freundlich models, with KF values that ranged from 0.7 to 8.8 Ln µmol1-n kg-1 and KD values from 0.3 to 3.6 L kg-1. High desorption percentages (>50%) were found, indicative of a high reversibility of the adsorption process. The results of the transport experiments showed that the retention of mecoprop by soil was very low (less than 6.2%). The retention of mecoprop by the soils in all experiments increased with organic matter content. Overall, it was observed that mecoprop was weakly adsorbed by the soils, what would result in a high risk of leaching of this compound.
Zhang, Ling; Wang, Yong; Jin, SuWan; Lu, QunZan; Ji, Jiang
2017-10-01
The adsorption of sulfadiazine from water by expanded graphite (EG), a low cost and environmental-friendly adsorbent, was investigated. Several adsorption parameters (including the initial sulfadiazine concentration, contact time, pH of solution, ionic strength and temperature) were studied. Results of equilibrium experiments indicated that adsorption of sulfadiazine onto EG were better described by the Langmuir and Tempkin models than by the Freundlich model. The maximum adsorption capacity is calculated to be 16.586 mg/g at 298 K. The kinetic data were analyzed by pseudo-first-order, pseudo-second-order and intraparticle models. The results indicated that the adsorption process followed pseudo-second-order kinetics and may be controlled by two steps. Moreover, the pH significantly influenced the adsorption process, with the relatively high adsorption capacity at pH 2-10. The electrostatic and hydrophobic interactions are manifested to be two main mechanisms for sulfadiazine adsorption of EG. Meanwhile, the ionic concentration of Cl - slightly impacted the removal of sulfadiazine. Results of thermodynamics analysis showed spontaneous and exothermic nature of sulfadiazine adsorption on EG. In addition, regeneration experiments imply that the saturated EG could be reused for sulfadiazine removal by immersing sodium hydroxide.
NASA Astrophysics Data System (ADS)
Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike
2018-01-01
We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a loop (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the loop-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the loop-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (loop-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the loop-stretch and the loop adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.
Park, Jae Hyeon; Sut, Tun Naw; Jackman, Joshua A; Ferhan, Abdul Rahim; Yoon, Bo Kyeong; Cho, Nam-Joon
2017-03-29
Understanding the physicochemical factors that influence protein adsorption onto solid supports holds wide relevance for fundamental insights into protein structure and function as well as for applications such as surface passivation. Ionic strength is a key parameter that influences protein adsorption, although how its modulation might be utilized to prepare well-coated protein adlayers remains to be explored. Herein, we investigated how ionic strength can be utilized to control the adsorption and passivation properties of bovine serum albumin (BSA) on silica surfaces. As protein stability in solution can influence adsorption kinetics, the size distribution and secondary structure of proteins in solution were first characterized by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and circular dichroism (CD) spectroscopy. A non-monotonic correlation between ionic strength and protein aggregation was observed and attributed to colloidal agglomeration, while the primarily α-helical character of the protein in solution was maintained in all cases. Quartz crystal microbalance-dissipation (QCM-D) experiments were then conducted in order to track protein adsorption onto silica surfaces as a function of ionic strength, and the measurement responses indicated that total protein uptake at saturation coverage is lower with increasing ionic strength. In turn, the QCM-D data and the corresponding Voigt-Voinova model analysis support that the surface area per bound protein molecule is greater with increasing ionic strength. While higher protein uptake under lower ionic strengths by itself did not result in greater surface passivation under subsequent physiologically relevant conditions, the treatment of adsorbed protein layers with a gluteraldehyde cross-linking agent stabilized the bound protein in this case and significantly improved surface passivation. Collectively, our findings demonstrate that ionic strength modulation influences BSA adsorption uptake on account of protein spreading and can be utilized in conjunction with covalent cross-linking strategies to prepare well-coated protein adlayers for improved surface passivation.
Sabzian, M; Nasrabadi, M N; Haji-Hosseini, M
2018-10-01
The dynamic adsorption of xenon on molecular sieve packed columns was investigated. The modified Wheeler-Jonas equation was used to describe adsorption parameters such as adsorption capacity and adsorption rate coefficient. Different experimental conditions were accomplished to study their effects and to touch appropriate adsorbing circumstances. Respectable consistency was reached between experimental and modeled values. A purification and analysis setup was developed for radioactive xenon gas determination. Standard sample analysis results approved acceptable quantification accuracy. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono
2018-04-01
The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.
A Photochemical Reactor for the Study of Kinetics and Adsorption Phenomena
ERIC Educational Resources Information Center
Poce-Fatou, J. A.; Gil, M. L. A.; Alcantara, R.; Botella, C.; Martin, J.
2004-01-01
The interaction between light and matter is examined with the help of a photochemical experiment. This experiment is useful for the investigation of heterogeneous catalysis, semiconductor properties and adsorption phenomena.
Zhang, Tiantian; Wei, Tao; Han, Yuanyuan; Ma, Heng; Samieegohar, Mohammadreza; Chen, Ping-Wei; Lian, Ian; Lo, Yu-Hwa
2016-11-23
Protein-ligand interaction detection without disturbances (e.g., surface immobilization, fluorescent labeling, and crystallization) presents a key question in protein chemistry and drug discovery. The emergent technology of transient induced molecular electronic spectroscopy (TIMES), which incorporates a unique design of microfluidic platform and integrated sensing electrodes, is designed to operate in a label-free and immobilization-free manner to provide crucial information for protein-ligand interactions in relevant physiological conditions. Through experiments and theoretical simulations, we demonstrate that the TIMES technique actually detects protein-ligand binding through signals generated by surface electric polarization. The accuracy and sensitivity of experiments were demonstrated by precise measurements of dissociation constant of lysozyme and N -acetyl-d-glucosamine (NAG) ligand and its trimer, NAG 3 . Computational fluid dynamics (CFD) computation is performed to demonstrate that the surface's electric polarization signal originates from the induced image charges during the transition state of surface mass transport, which is governed by the overall effects of protein concentration, hydraulic forces, and surface fouling due to protein adsorption. Hybrid atomistic molecular dynamics (MD) simulations and free energy computation show that ligand binding affects lysozyme structure and stability, producing different adsorption orientation and surface polarization to give the characteristic TIMES signals. Although the current work is focused on protein-ligand interactions, the TIMES method is a general technique that can be applied to study signals from reactions between many kinds of molecules.
Adsorption of Amelogenin onto Self-Assembled and Fluoroapatite Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasevich, Barbara J.; Lea, Alan S.; Bernt, William
Abstract. The interactions of proteins at surfaces are of great importance to biomineralizaton processes and to the development and function of biomaterials. Amelogenin is a unique biomineralization protein because it self-assembles to form supramolecular structures called “nanospheres,” spherical aggregates of monomers that are 20-60 nm in diameter. Although the nanosphere quaternary structure has been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is also of great interest because the surface structure is critical to its function. We report studies of the adsorption of the amelogenin onto self-assembled monolayers (SAMs) with COOH and CH3 end group functionality andmore » single crystal fluoroapatite (FAP). Dynamic light scattering (DLS) experiments showed that the solutions contained nanospheres and aggregates of nanospheres. Protein adsorption onto the various substrates was evidenced by null ellipsometry, x-ray photoelectron spectroscopy (XPS), and external reflectance Fourier transform infrared spectroscopy (ERFTIR). Although only nanospheres were observed in solution, ellipsometry and atomic force microscopy (AFM) indicated that the protein adsorbates were much smaller structures than the original nanospheres, from monomers to small oligomers in size. Monomer adsorption was promoted onto the CH3 surfaces and small oligomer adsorption was promoted onto the COOH and FAP substrates. In some cases, remnants of the original nanospheres adsorbed as multilayers on top of the underlying subnanosphere layers. This work suggests that amelogenin can adsorb by the “shedding” or disassembling of substructures from the nanospheres onto substrates and indicates that amelogenin may have a range of possible quaternary structures depending on whether it is in solution or interacting with surfaces.« less
Method and means for dynamic measurement of rates of adsorption from solutions
Slomka, B.J.; Buttermore, W.H.
1992-05-05
A method and apparatus are described for the dynamic measurement of rates of absorption from solutions. The method has the advantage of avoiding the use of solvent normally used to establish a baseline. The method involves pre-evacuating the adsorbent contained in an adsorbent cell and thereafter rapidly contacting the adsorbent with analytical solution, all without prior exposure of adsorbent to pure solvent. The result is a sharp characteristic adsorption line. 5 figs.
Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.
Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi
2009-05-30
Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.
NASA Astrophysics Data System (ADS)
Kong, Xiang-Ping; Wang, Juan
2016-12-01
The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with ;upright; hydrogen and bidentate complex on site of two oxygens (one with ;upright; hydrogen and one with ;lying; hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with ;lying; hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.
He, Meng; Zhang, Wei; Cao, Xiaoqiang; You, Xiaofang; Li, Lin
2018-01-01
Experimental and computational simulation methods are used to investigate the adsorption behavior of the surfactant nonylphenol ethoxylate (NPEO10), which contains 10 ethylene oxide groups, on the lignite surface. The adsorption of NPEO10 on lignite follow a Langmuir-type isotherm. The thermodynamic parameters of the adsorption process show that the whole process is spontaneous. X-ray photoelectron spectroscopic (XPS) analysis indicates that a significant fraction of the oxygen-containing functional groups on the lignitic surface were covered by NPEO10. Molecular dynamics (MD) simulations show that the NPEO10 molecules were found to adsorb at the water-coal interface. Moreover, polar interactions are the main effect in the adsorption process. The density distributions of coal, NPEO10, and water molecules along the Z axis show that the remaining hydrophobic portions of the surfactant extend into the solution, creating a more hydrophobic coal surface that repels water molecules. The negative interaction energy calculated from the density profiles of the head and tail groups along the three spatial directions between the surfactant and the lignitic surface suggest that the adsorption process is spontaneous. The self-diffusion coefficients show that the presence of NPEO10 causes higher water mobility by improving the hydrophobicity of lignite. PMID:29389899
Elsaidi, Sameh K; Mohamed, Mona H; Simon, Cory M; Braun, Efrem; Pham, Tony; Forrest, Katherine A; Xu, Wenqian; Banerjee, Debasis; Space, Brian; Zaworotko, Michael J; Thallapally, Praveen K
2017-03-01
Dynamic and flexible metal-organic frameworks (MOFs) that respond to external stimuli, such as stress, light, heat, and the presence of guest molecules, hold promise for applications in chemical sensing, drug delivery, gas separations, and catalysis. A greater understanding of the relationship between flexible constituents in MOFs and gas adsorption may enable the rational design of MOFs with dynamic moieties and stimuli-responsive behavior. Here, we detail the effect of subtle structural changes upon the gas sorption behavior of two "SIFSIX" pillared square grid frameworks, namely SIFSIX-3-M (M = Ni, Fe). We observe a pronounced inflection in the Xe adsorption isotherm in the Ni variant. With evidence from X-ray diffraction studies, density functional theory, and molecular simulations, we attribute the inflection to a disordered to ordered transition of the rotational configurations of the pyrazine rings induced by sorbate-sorbent interactions. We also address the effect of cage size, temperature, and sorbate on the guest-induced ring rotation and the adsorption isotherms. The absence of an inflection in the Xe adsorption isotherm in SIFSIX-3-Fe and in the Kr, N 2 , and CO 2 adsorption isotherms in SIFSIX-3-Ni suggest that the inflection is highly sensitive to the match between the size of the cage and the guest molecule.
NASA Astrophysics Data System (ADS)
Cai, Lu; Lv, Wenzhen; Zhu, Hong; Xu, Qun
2016-07-01
The mechanism of the adsorption of pyrene-polyethylene (Py-PE) onto ultrathin single-walled carbon nanotube (SWNT) was studied by using all-atom molecular dynamics (MD) simulations. We found that solvent polarity and pyrene group are two critical factors in the Py-PE decoration on ultrathin SWNT. Combined MD simulations with free energy calculations, our results indicate that larger solvent polarity can decrease the contribution of conformation entropy, but contributes little to the interaction energy, moreover, larger SWNT diameter can decrease the contribution of conformation entropy but lead to the increasing of the interaction energy. In polar organic solvent (N, N-Dimethylacetamide), the pyrene group plays a key role in the adsorption of Py-PE onto ultrathin SWNT, not only facilitates the spontaneous adsorption of Py-PE onto ultrathin SWNT, but also helps to form compact structure between themselves in the final adsorption states. While in aqueous solution, pyrene group no longer works as an anchor, but still affects a lot to the final adsorption conformation. Our present work provides detailed theoretical clue to understand the noncovalent interaction between aromatic segment appended polymer and ultrathin SWNT, and helps to explore the potential application of ultrathin SWNT in the fields of hybrid material, biomedical and electronic materials.
Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M
2016-03-18
Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. Copyright © 2016 Elsevier B.V. All rights reserved.
Surface charge effects in protein adsorption on nanodiamonds
NASA Astrophysics Data System (ADS)
Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.
2015-03-01
Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids. Electronic supplementary information (ESI) available: The FTIR spectrum of nanodiamonds, QCM-D profiles of 50 nm nanodiamond adsorption on silica surfaces, QCM-D profiles of protein desorption after rinsing with water (rinsing experiment) and the full FTIR spectrum of proteins before and after adsorption on ND particles. See DOI: 10.1039/c5nr00250h
Johir, M A H; Pradhan, M; Loganathan, P; Kandasamy, J; Vigneswaran, S
2016-02-01
Excessive phosphate in wastewater should be removed to control eutrophication of water bodies. The potential of employing amorphous zirconium (Zr) hydroxide to remove phosphate from synthetic wastewater was studied in batch adsorption experiments and in a submerged membrane filtration adsorption hybrid (MFAH) reactor. The adsorption data satisfactorily fitted to Langmuir, pseudo-first order and pseudo-second order models. Langmuir adsorption maxima at 22 °C and pHs of 4.0, 7.1, and 10.0 were 30.40, 18.50, and 19.60 mg P/g, respectively. At pH 7.1 and temperatures of 40 °C and 60 °C, they were 43.80 and 54.60 mg P/g, respectively. The thermodynamic parameters, ΔG° and ΔS° were negative and ΔH° was positive. FTIR, zeta potential and competitive phosphate, sulphate and nitrate adsorption data showed that the mechanism of phosphate adsorption was inner-sphere complexation. In the submerged MFAH reactor experiment, when Zr hydroxide was added at doses of 1-5 g/L once only at the start of the experiment, the removal of phosphate from 3 L of wastewater containing 10 mg P/L declined after 5 h of operation. However, when Zr hydroxide was repeatedly added at 5 g/L dose every 24 h, satisfactory removal of phosphate was maintained for 3 days. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dopierala, Katarzyna; Prochaska, Krystyna
2010-04-22
Dynamics of adsorption in micellar and non micellar solutions of derivatives of lysosomotropic substances was studied. The following compounds were considered in our research work: alkyl N,N-dimethyl-alaninates methobromides (DMALM-n), alkyl N,N-dimethylglycinates methobromides (DMGM-n), fatty acids N,N-dimethylaminoethylesters methobromides (DMM-n), fatty acids N,N-dimethylaminopropylesters methobromides (DMPM-n), fatty acids 1-dimethylamino-2-propyl methobromides (DMP(2)M-n), and derivatives of aminoesters with double alkyl chains (M(2)M-n). The examined compounds show interesting biological properties which can be useful, especially in medicine. The exact mechanism of interaction of such compounds with biological membrane is not fully known. However, it is supposed that the presence of micelles has an important role in biological systems. In this paper we show the results of dynamic surface tension measurements in solutions containing the investigated compounds at concentrations above and below cmc. Moreover, we analyzed the influence of the chemical structure of molecules on the diameters of the micelles formed in the solutions. It was found that adsorption dynamics for the studied compounds is strongly affected by the chemical structure of the considered derivatives, especially by the presence of the ester bond, linearity of the molecule, as well as its hydrophobicity. The obtained results show that the structure of the bromide M(2)M-n with two short hydrocarbon chains favors a faster and more efficient adsorption of the molecules at the air/water interface, compared with compounds having one long alkyl chain. Moreover, the double chained derivatives of the M(2)M-n type do not form typical spherical micelles but bilayer structures probably exist in these solutions. The micelles present in the solutions influence the dynamics of adsorption drastically. Moreover, the obtained results indicated that the compounds with especially high biological activity form rather small aggregates. Copyright 2010 Elsevier B.V. All rights reserved.
Dynamic Monte Carlo Simulations of Phase Ordering in Br Electrosorption on Ag(100)
NASA Astrophysics Data System (ADS)
Mitchell, S. J.; Brown, G.; Rikvold, P. A.
2000-03-01
We study the dynamics of Br electrosorption on single-crystal Ag(100) by Monte Carlo simulation. The system has a second-order phase transition from a low-coverage disordered phase at more negative potentials to a doubly degenerate c(2× 2) ordered phase at more positive potentials.(B.M. Ocko, et al.), Phys. Rev. Lett. 79, 1511 (1997). Effective lateral interactions were estimated by fitting equilibrium Monte Carlo isotherms to experiments. These are well described by nearest-neighbor exclusion and repulsive 1/r^3 interactions.(M.T.M. Koper, J. Electroanal. Chem. 450), 189 (1997). Considering adsorption/desorption and diffusion with barriers estimated from ab-initio calculations,(A. Ignaczak and J.A.N.F. Gomes, J. Electroanal. Chem. 420), 71 (1997). we simulate the time dependent Br coverage, order parameter, and x-ray scattering intensity following sudden potential steps across the phase boundary. For steps far into the ordered phase, dynamical scaling is observed. For smaller steps, the dynamics are more complicated. We also analyze hysteresis in a simulated cyclic-voltammetry experiment. Movies at http://www.scri.fsu.edu/ ~mitchell/.
Chen, Linjiang; Mowat, John P S; Fairen-Jimenez, David; Morrison, Carole A; Thompson, Stephen P; Wright, Paul A; Düren, Tina
2013-10-23
Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO2 at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2(1)/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.
The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes
ERIC Educational Resources Information Center
Neumann, M. G.
1976-01-01
Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)
Study of lysozyme mobility and binding free energy during adsorption on a graphene surface
NASA Astrophysics Data System (ADS)
Nakano, C. Masato; Ma, Heng; Wei, Tao
2015-04-01
Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the other hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.
Adsorption of polymethacrylic acid from aqueous solutions on disperse titanium dioxide
NASA Astrophysics Data System (ADS)
Yaremko, Z. M.; Tkachenko, N. G.; Fedushinskaya, L. B.
2011-10-01
The state of macromolecules of polymethacrylic acid adsorbed on the surface of disperse titanium dioxide was assessed using a combination of the differential concentration approach to the determination of adsorption and methods for determining the size of disperse adsorbents by dynamic light scattering and sedimentation analysis in the field of centrifugal forces. Three sections were found on the isotherm of adsorption: in the first, isolated islands of adsorbed macromolecules formed; in the second, layers of macromolecules with a different degree of deformation were observed; in the third, determining the adsorption of macromolecules is complicated by other accompanying processes, and assessing the state of macromolecules in the adsorption layer becomes difficult.
Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene.
Holmberg, Maria; Hansen, Thomas Steen; Lind, Johan Ulrik; Hjortø, Gertrud Malene
2012-04-01
In this study we compare histidine-tagged and native proteins with regards to adsorption properties. We observe significantly increased adsorption of proteins with an incorporated polyhistidine amino acid motif (HIS-tag) onto tissue culture polystyrene (TCPS) compared to similar proteins without a HIS-tag. The effect is not observed on polystyrene (PS). Adsorption experiments have been performed at physiological pH (7.4) and the effect was only observed for the investigated proteins that have pI values below or around 7.4. Competitive adsorption experiments with imidazole and ethylenediaminetetraacetic acid (EDTA), as well as adsorption performed at different pH and ionic strength indicates that the high adsorption is caused by electrostatic interaction between negatively charged carboxylate groups on the TCPS surface and positively charged histidine residues in the proteins. Pre-adsorption of bovine serum albumin (BSA) does not decrease the adsorption of HIS-tagged proteins onto TCPS. Our findings identify a potential problem in using HIS-tagged signalling molecule in assays with cells cultured on TCPS, since the concentration of the molecule in solution might be affected and this could critically influence the assay outcome. Copyright © 2011 Elsevier B.V. All rights reserved.
The adsorption of amino acids and cations onto goethite: a prebiotic chemistry experiment.
Farias, Ana Paula S F; Carneiro, Cristine E A; de Batista Fonseca, Inês C; Zaia, Cássia T B V; Zaia, Dimas A M
2016-06-01
Few prebiotic chemistry experiments have assessed the adsorption of biomolecules by iron oxide-hydroxides. The present work investigated the effects of cations in artificial seawaters on the adsorption of Gly, α-Ala and β-Ala onto goethite, and vice versa. Goethite served to concentrate K and Mg cations from solution; these effects could have played important roles in peptide nucleoside formation. Goethite showed low adsorption of Gly and α-Ala. On the other hand, β-Ala (a non-protein amino acid) was highly adsorbed by goethite. Because Gly and α-Ala are the most common amino acids in living beings, and iron oxide-hydroxides are widespread on Earth, additional iron oxides should be studied. Increased ionic strength in artificial seawaters decreased the adsorption of amino acids by goethite. Because Na was highly abundant in the artificial seawater, it showed the highest effect on amino acid adsorption. β-Ala increased the adsorption of K and Ca by goethite, this effect could have been important for peptide synthesis.
Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.
Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi
2009-07-15
The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.
Onaizi, Sagheer A
2018-03-01
The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.
Liquid-Phase Adsorption Fundamentals.
ERIC Educational Resources Information Center
Cooney, David O.
1987-01-01
Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)
2-Hydroxypropyltrimethylammonium xylan adsorption onto rod-like cellulose nanocrystal.
Sim, Jae Hyun; Dong, Shuping; Röemhild, Katrin; Kaya, Abdulaziz; Sohn, Daewon; Tanaka, Keiji; Roman, Maren; Heinze, Thomas; Esker, Alan R
2015-02-15
Chemical incompatibility and relatively weak interaction between lignocellulosic fibers and synthetic polymers have made studies of wood fiber-thermoplastic composite more challenging. In this study, adsorption of 2-hydroxypropyltrimethylammonium xylans onto rod-like cellulose nanocrystals are investigated by zeta-potential measurements, and polarized and depolarized dynamic light scattering as a factor for better understanding of lignocellulosic fibers and cellulose nanocrystals. Zeta-potential measurements show xylan derivative adsorption onto cellulose nanocrystals. Decay time distributions of the ternary system and binary system from dynamic light scattering show that aggregates exist in the binary system and they disappear in the ternary system. At low 2-hydroxypropyltrimethylammonium xylan concentrations relative to that of cellulose nanocrystal, xylan derivatives adsorbed onto some of the cellulose nanocrystal. Hence, more xylan derivatives adsorbed onto cellulose nanocrystal increased with increasing xylan derivative concentration. Also, the concentration dependence of the ratio of the rotational diffusion coefficient to the translational diffusion coefficient revealed a strong adsorptive interaction between xylan derivatives and the cellulose nanocrystals. Copyright © 2014 Elsevier Inc. All rights reserved.
Ajori, S; Ansari, R; Darvizeh, M
2016-03-01
The adsorption of biomolecules on the walls of carbon nanotubes (CNTs) in an aqueous environment is of great importance in the field of nanobiotechnology. In this study, molecular dynamics (MD) simulations were performed to understand the mechanical vibrational behavior of single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) under the physical adsorption of four important biomolecules (L-alanine, guanine, thymine, and uracil) in vacuum and an aqueous environment. It was observed that the natural frequencies of these CNTs in vacuum reduce under the physical adsorption of biomolecules. In the aqueous environment, the natural frequency of each pure CNT decreased as compared to its natural frequency in vacuum. It was also found that the frequency shift for functionalized CNTs as compared to pure CNTs in the aqueous environment was dependent on the radius and the number of walls of the CNT, and could be positive or negative.
Gil, Mélodie; Avila-Salas, Fabian; Santos, Leonardo S; Iturmendi, Nerea; Moine, Virginie; Cheynier, Véronique; Saucier, Cédric
2017-12-06
Polyvinylpolypyrrolidone (PVPP) is a fining agent polymer used in winemaking to adjust rosé wine color and to prevent organoleptic degradations by reducing polyphenol content. The impact of this polymer on color parameters and polyphenols of rosé wines was investigated, and the binding specificity of polyphenols toward PVPP was determined. Color measured by colorimetry decreased after treatment, thus confirming the adsorption of anthocyanins and other pigments. Phenolic composition was determined before and after fining by targeted polyphenomics (Ultra Performance Liquid Chromatography (UPLC)-Electrospray Ionization(ESI)-Mass Spectrometry (MS/MS)). MS analysis showed adsorption differences among polyphenol families. Flavonols (42%) and flavanols (64%) were the most affected. Anthocyanins were not strongly adsorbed on average (12%), but a specific adsorption of coumaroylated anthocyanins was observed (37%). Intermolecular interactions were also studied using molecular dynamics simulations. Relative adsorptions of flavanols were correlated with the calculated interaction energies. The specific affinity of coumaroylated anthocyanins toward PVPP was also well explained by the molecular modeling.
Qi, Pengfei; Pichler, Thomas
2016-02-01
Antimony (Sb) is a naturally occurring element of growing environmental concern whose toxicity, adsorption behavior and other chemical properties are similar to that of arsenic (As). However, less is known about Sb compared to As. Individual and simultaneous adsorption experiments with Sb(III) and Sb(V) were conducted in batch mode with focus on the Sb speciation of the remaining liquid phase during individual Sb(III) adsorption experiments. The simultaneous adsorption and oxidation of Sb(III) was confirmed by the appearance of Sb(V) in the solution at varying Fe/Sb ratios (500, 100 and 8) and varying pH values (3.8, 7 and 9). This newly formed Sb(V) was subsequently removed from solution at a Fe/Sb ratio of 500 or at a pH of 3.8. However, more or less only Sb(V) was observed in the liquid phase at the end of the experiments at lower Fe/Sb ratios and higher pH, indicating that competition took place between the newly formed Sb(V) and Sb(III), and that Sb(III) outcompeted Sb(V). This was independently confirmed by simultaneous adsorption experiments of Sb(III) and Sb(V) in binary systems. Under such conditions, the presence of Sb(V) had no influence on the adsorption of Sb(III) while Sb(V) adsorption was significantly inhibited by Sb(III) over a wide pH range (4-10). Thus, in the presence of ferrihydrite and under redox conditions, which allow the presence of both Sb species, Sb(V) should be the dominant species in aquatic environments, since Sb(III) is adsorbed preferentially and at the same time oxidized to Sb(V). Copyright © 2015 Elsevier Ltd. All rights reserved.
Rivera-Utrilla, J; Prados-Joya, G; Sánchez-Polo, M; Ferro-García, M A; Bautista-Toledo, I
2009-10-15
The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.
Protein adsorption in microengraving immunoassays.
Song, Qing
2015-10-16
Microengraving is a novel immunoassay for characterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales and determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 10⁴-10⁵ single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample.
Protein Adsorption in Microengraving Immunoassays
Song, Qing
2015-01-01
Microengraving is a novel immunoassay forcharacterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales τD and τK determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when C0* is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 104–105 single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample. PMID:26501282
Cougnaud, A; Faur, C; Le Cloirec, P
2005-08-01
The adsorption of pesticides (atrazin, atrazin-desethyl and triflusulfuron-methyl) from aqueous solution is performed by activated carbon fibers (ACF) and granular activated carbons (GAC) in static and dynamic reactors, in order to study the co-influence of adsorbent and adsorbate characteristics on the adsorption mechanisms. First, mono-component adsorption equilibrium is carried out in a batch reactor for a wide range of concentrations (from 5 microg 1(-1) to 21.4 mg 1(-1)). Classic models, like Freundlich and Langmuir equations, are applied: the maximum adsorption capacities are high, ranging between 63 and 509 mg g(-1). The comparison of single-solute isotherms tends to confirm the decisive role of the adsorbent properties in the adsorption capacity of pesticides by the activated carbons: the performance of ACF is significantly higher than that of GAC due to a narrower pore size distribution of fibers in the area of micropores. Furthermore, their small diameter (10 microm compared with 1 mm for grains) enables faster adsorption kinetics because of the larger surface area exposed to the fluid. The influence of adsorbate size is also demonstrated. A multiple linear regression enables the co-influence of adsorbent and adsorbate properties to be quantified, a relationship being assessed between Langmuir maximum adsorption capacity and pesticide molecular weight and adsorbent diameter (R2 = 0.90). Secondly, the adsorption of the three pesticides is studied in a dynamic reactor: in this case, the influence of operating conditions (inlet concentration C0, flow velocity U0) is also taken into account. As the initial concentration or flow velocity decreases, the column performance significantly improves. Both operating factors are included in a multiple linear regression (R2 = 0.91) used to predict saturation adsorption capacity, with molecular weight and particle diameter being again designed as influent explicative variables.
NASA Astrophysics Data System (ADS)
Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.
2015-12-01
In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.
Chen, Rongzhi; Zhang, Zhenya; Yang, Yingnan; Lei, Zhongfang; Chen, Nan; Guo, Xu; Zhao, Chao; Sugiura, Norio
2011-01-15
Ferric-impregnated volcanic ash (FVA) which consisted mainly of different forms of iron and aluminum oxide minerals was developed for arsenate (V) removal from an aqueous medium. The adsorption experiments were conducted in both DI water samples and actual water (Lake Kasumigaura, Japan) to investigate the effects of solution mineralization degree on the As(V) removal. Kinetic and equilibrium studies conducted in actual water revealed that the mineralization of water greatly elevated the As(V) adsorption on FVA. The experiment performed in DI water indicated that the existence of multivalence metallic cations significantly enhanced the As(V) adsorption ability, whereas competing anions such as fluoride and phosphate greatly decreased the As(V) adsorption. It is suggested that FVA is a cost-effective adsorbent for As(V) removal in low-level phosphate and fluoride solution. It was important to conduct the batch experiment using the actual water to investigate the arsenic removal on adsorbents. Copyright © 2010 Elsevier Inc. All rights reserved.
[Denitrification water treatment with zeolite composite filter by intermittent operation].
Qing, Cheng-Song; Bao, Tao; Chen, Tian-Hu; Chen, Dong; Xie, Jing-Jing
2012-12-01
The zeolite composite filters (ZCF) with the size of4-8 mm were prepared using raw zeolite (0.15-0.18 mm) as the main material and the cement as binder. After a combination of material characterizations, such as the void fraction, apparent density, compression strength and surface area, the optimal prepared conditions of composite filters were obtained as follow: weight ratio of m (zeolite): m (cement) = 7 : 3, curing for 15 d under the moisture condition and ambient temperature. Through upflow low-concentration ammonia nitrogen wastewater, ZCF filled in the experimental column was hung with the biological membrane. Thus, intermittent dynamic experiments were conducted, the intermittent operation cycle included adsorption, biological regeneration and drip washing. Until concentration of ammonia nitrogen was more than 2 mg x L(-1) of effluent standards, water in experiment column was firstly emptied, and then blast biological regeneration was conducted. After the filters were bathed with water, the zeolite adsorption-biological regeneration cycle was performed repeatedly. The experimental results show that under conditions of 24 h blast and 5 d of continuous operation period, ammonia nitrogen removal rate is up to 87.6% on average, total nitrogen removal rate reaches 51.2% on average.
Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite
NASA Astrophysics Data System (ADS)
Yu, Song; Yan-ming, Zhu; Wu, Li
2017-02-01
The microscopic mechanism of interactions between CH4 and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, 13C NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH4 is conducted. A saturated state is reached after absorbing 17 CH4s per coal vitrinite molecule. CH4 is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top < Bond < Center, Up < Down. The order of average RDF better reflects the adsorption ability and that of [-COOH] is lower than those of [sbnd Cdbnd O] and [Csbnd Osbnd C]. CH4 distributed in the distance of 0.99-16 Å to functional groups in the type of monolayer adsorption and the average distance order manifest as [sbnd Cdbnd O] (1.64 Å) < [Csbnd Osbnd C] (1.89 Å) < [sbnd COOH] (3.78 Å) < [-CH3] (4.11 Å) according to the average RDF curves. CH4 enriches around [sbnd Cdbnd O] and [Csbnd O-C] whereas is rather dispersed about [-COOH] and [CH3]. Simulation and experiment data are both in strong agreement with the Langmuir and D-A isothermal adsorption model and the D-A model fit better than Langmuir model. Preferential adsorption sites and orientations in vitrinite are identical to those of graphite/graphene. However, the energy of the most preferential location is much lower than that of graphite/graphene. CH4 is more easily absorbed on the surface of vitrinite. Adsorbability varies considerably at different adsorption locations and sites on the surface of vitrinite. Crystal parameter of vitrinite is a = b = c = 15.8 Å and majority of its micropores are blow 15.8 Å, indicating that the vitrinite have the optimum adsorption aperture. It can explain its higher observed adsorption capacities for CH4 compared with graphite/graphene.
Nuclear quantum effects on adsorption of H 2 and isotopologues on metal ions
Savchenko, Ievgeniia; Gu, Bing; Heine, Thomas; ...
2017-01-03
The nuclear quantum effects on the zero-point energy (ZPE), influencing adsorption of Hmore » $$_2$$ and isotopologues on metal ions, are examined in this study using normal mode analysis of ab initio electronic structure results for complexes with 17 metal cations. To estimate for the anharmonicity, a nuclear wavepacket dynamics on the ground state electronic potential energy surfaces (PES) have been employed for complexes of Li$^+$ and Cu$$^{+2}$$ with H$$_2$$, D$$_2$$, HD. The dynamics analysis shows that incorporation of the PES anharmonicity changes the ZPE by up to 9%. Finally, the lightest metallic nuclei, Li and Be, are found to be the most 'quantum'. The largest selectivity in adsorption is predicted for Cu, Ni and Co ions.« less
NASA Astrophysics Data System (ADS)
Villafañe-Barajas, Saúl A.; Baú, João Paulo T.; Colín-García, María; Negrón-Mendoza, Alicia; Heredia-Barbero, Alejandro; Pi-Puig, Teresa; Zaia, Dimas A. M.
2018-02-01
Any proposed model of Earth's primitive environments requires a combination of geochemical variables. Many experiments are prepared in aqueous solutions and in the presence of minerals. However, most sorption experiments are performed in distilled water, and just a few in seawater analogues, mostly inconsistent with a representative primitive ocean model. Therefore, it is necessary to perform experiments that consider the composition and concentration of dissolved salts in the early ocean to understand how these variables could have affected the absorption of organic molecules into minerals. In this work, the adsorption of adenine, adenosine, and 5'AMP onto Na+montmorillonite was studied using a primitive ocean analog (4.0 Ga) from experimental and computational approaches. The order of sorption of the molecules was: 5'AMP > adenine > adenosine. Infrared spectra showed that the interaction between these molecules and montmorillonite occurs through the NH2 group. In addition, electrostatic interaction between negatively charged montmorillonite and positively charge N1 of these molecules could occur. Results indicate that dissolved salts affect the sorption in all cases; the size and structure of each organic molecule influence the amount sorbed. Specifically, the X-ray diffraction patterns show that dissolved salts occupy the interlayer space in Na-montmorillonite and compete with organic molecules for available sites. The adsorption capacity is clearly affected by dissolved salts in thermodynamic terms as deduced by isotherm models. Indeed, molecular dynamic models suggest that salts are absorbed in the interlamellar space and can interact with oxygen atoms exposed in the edges of clay or in its surface, reducing the sorption of the organic molecules. This research shows that the sorption process could be affected by high concentration of salts, since ions and organic molecules may compete for available sites on inorganic surfaces. Salt concentration in primitive oceans may have strongly affected the sorption, and hence the concentration processes of organic molecules on minerals.
Study of lysozyme mobility and binding free energy during adsorption on a graphene surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, C. Masato; Ma, Heng; Wei, Tao, E-mail: twei@lamar.edu
Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the othermore » hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.« less
NASA Astrophysics Data System (ADS)
Bigui, Wei; Xiaofei, Zhu; Xiabing, Cheng
2017-12-01
Graphene oxide (GO) is an excellent absorbent for heavy ion from wastewater, but it is hard to separate from water. To improve the adsorption capacity and separation performance of GO to nickel-containing wastewater, a composite magnetic GO-ATP adsorbent (MGA) was prepared by magnetizing GO and attapulgite (ATP) using ferroferric oxide and then carrying out hydrothermal reaction. The adsorption capacity and mechanism of MGA were investigated based on Ni2+ as targeted pollutant. Experimental results showed that the pH value significantly affects the removal rate of Ni2+, which is mainly due to that OH- in wastewater reacts with Ni2+, resulting in sediment that leads to the increase of removal rate. MGA can achieve max adsorption capacity of Ni2+ to 190.8 mg/g at pH = 5, and the adsorption process was mainly determined by chemical adsorption, which was in line with pseudo-secondary dynamics model. The adsorption was basically homogeneous monolayer adsorption with heat release, which was more agree with Langmuir adsorption isotherm equation. the adsorption process of Ni2+ by MGA. The adsorption process was a spontaneous process and an exothermic reaction. It can be confirmed that the prepared MGA adsorbent can realize slurry separation using magnetic separation principle and has high adsorption capacity to Ni2+.
Raghunath, Sharista; Anand, K; Gengan, R M; Nayunigari, Mithil Kumar; Maity, Arjun
2016-12-01
In this article, adsorption and kinetic studies were carried out on three textile dyes, namely Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145). The dyes studied in a mixture were adsorbed under various conditions onto PRO-BEN, a bentonite modified with a new cationic proline polymer (l-proline-epichlorohydrin polymer). The proline polymer was characterized by 1 H NMR, Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and TEM. The PRO-BEN composite was characterized by FT-IR, dynamic light scattering (DLS) (zeta potential), TEM imaging, SEM/EDX and X-ray photoelectron spectroscopy (characterize the binding energy). During adsorption studies, factors involving pH, temperature, the initial concentrations of the dyes and the quantity of PRO-BEN used during adsorption were established. The results revealed that the adsorption mechanism was categorized by the Langmuir type 1 isotherm. The adsorption data followed the pseudo-second order kinetic model. The intraparticle diffusion model indicated that adsorption did not only depend on the intraparticle diffusion of the dyes. The thermodynamic parameters verified that the adsorption process was spontaneous and exothermic. The Gibbs free energy values indicated that physisorption had occurred. Successful adsorption of dyes from an industrial effluent was achieved. Desorption studies concluded that PRO-BEN desorbed the dyes better than alumina. This can thereby be viewed as a recyclable remediation material. The PRO-BEN composite could be a cost efficient alternative towards the removal of organic dyes in wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiaoxu, SUN; Jin, XU; Xingyu, LI
2017-12-01
In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.
Colloid-Facilitated Transport of 137Cs in Fracture-Fill Material. Experiments and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William
2015-10-29
In this study, we demonstrate how a combination of batch sorption/desorption experiments and column transport experiments were used to effectively parameterize a model describing the colloid-facilitated transport of Cs in the Grimsel granodiorite/FFM system. Cs partition coefficient estimates onto both the colloids and the stationary media obtained from the batch experiments were used as initial estimates of partition coefficients in the column experiments, and then the column experiment results were used to obtain refined estimates of the number of different sorption sites and the adsorption and desorption rate constants of the sites. The desorption portion of the column breakthrough curvesmore » highlighted the importance of accounting for adsorption-desorption hysteresis (or a very nonlinear adsorption isotherm) of the Cs on the FFM in the model, and this portion of the breakthrough curves also dictated that there be at least two different types of sorption sites on the FFM. In the end, the two-site model parameters estimated from the column experiments provided excellent matches to the batch adsorption/desorption data, which provided a measure of assurance in the validity of the model.« less
Adsorption of methanol molecule on graphene: Experimental results and first-principles calculations
NASA Astrophysics Data System (ADS)
Zhao, X. W.; Tian, Y. L.; Yue, W. W.; Chen, M. N.; Hu, G. C.; Ren, J. F.; Yuan, X. B.
2018-04-01
Adsorption properties of methanol molecule on graphene surface are studied both theoretically and experimentally. The adsorption geometrical structures, adsorption energies, band structures, density of states and the effective masses are obtained by means of first-principles calculations. It is found that the electronic characteristics and conductivity of graphene are sensitive to the methanol molecule adsorption. After adsorption of methanol molecule, bandgap appears. With the increasing of the adsorption distance, the bandgap, adsorption energy and effective mass of the adsorption system decreased, hence the resistivity of the system decreases gradually, these results are consistent with the experimental results. All these calculations and experiments indicate that the graphene-based sensors have a wide range of applications in detecting particular molecules.
Liu, Na; Yu, Linling; Sun, Yan
2015-07-24
In the previous studies on protein adsorption to poly(ethylenimine) (PEI)-grafted Sepharose FF resins, a critical ionic capacity (600mmol/L) of PEI-Sepharose resins was found for the adsorption of bovine serum albumin (BSA), above which both protein capacity and uptake rate increased drastically. In this work, the influence of counterions on the PEI-Sepharose resin with an ionic capacity of 683mmol/L (FF-PEI-L680) was investigated with sodium salts of SCN(-), Cl(-), HPO4(2-) and SO4(2-). Linear gradient elution, batch adsorption and breakthrough experiments showed that counterion preference, effective pore diffusion coefficient (De) and dynamic binding capacity (DBC) values increased in the order of SCN(-), Cl(-), HPO4(2-) and SO4(2-), while static adsorption capacity decreased in this order. It is considered that higher counterion preference of the ion exchange groups resulted in lower protein binding strength and adsorption capacity, while the De value increased due to the enhanced "chain delivery" effect (a kind of surface diffusion). Besides, the DBC value was mainly dependent on De value. In particular, SO4(2-) was the most favorable counterion for the PEI-Sepharose resin, which gave rise to the highest De value (De/D0=1.17, D0 is protein diffusivity in free solution) and DBC value (118mg/mL at a residence time of 2min). Moreover, the effects of counterions on BSA adsorption to DEAE Sepharose FF and Q Sepharose FF, which were non-grafted resins, were also studied for comparisons. It was found that the counterion preferences of the two non-grafted resins were different from each other and also different from that of FF-PEI-L680. The different counterion preferences were attributed to the differences in the ion-exchange ligand chemistries. In addition, the De values for DEAE Sepharose FF and Q Sepharose FF kept unchanged. The low counterion sensitivity of De values could be interpreted as the lack of "chain delivery" effect for the non-grafted resins. The results indicate that protein adsorption and chromatographic performance with PEI-Sepharose can be improved by proper counterions. For the four counterions tested, SO4(2-) was the most favorable for providing the best adsorption and elution outcomes with FF-PEI-L680. Copyright © 2015 Elsevier B.V. All rights reserved.
Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G
2011-07-01
Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shindel, Matthew M.
Developing processes to fabricate inorganic architectures with designer functionalities at increasingly minute length-scales is of chief concern in the fields of nanotechnology and nanoscience. This enterprise requires assembly mechanisms with the capacity to tailor both the spatial arrangement and material composition of a system's constituent building blocks. To this end, significant advances can be made by turning to biology, as the natural world has evolved the ability to generate intricate nanostructures, which can potentially be employed as templates for inorganic nanosystems. We explore this biotemplating methodology using two-dimensional streptavidin crystals, investigating the ability of the protein lattice to direct the assembly of ordered metallic nanoparticle arrays. We demonstrate that the adsorption of nanoparticles on the protein monolayer can be induced through both electrostatic and molecular recognition (ligand-receptor) interactions. Furthermore, the dynamics of adsorption can be modulated through both environmental factors (e.g. pH), and by tailoring particle surface chemistry. When the characteristic nanoparticle size is on the order of the biotemplate's unit-cell dimension, electrostatically-mediated adsorption occurs in a site-specific manner. The nanoparticles exhibit a pronounced preference for adhering to the areas between protein molecules. The two-dimensional structure of the resultant nanoparticle ensemble consequently conforms to that of the underlying protein crystal. Through theoretical calculations, simulation and experiment, we show that interparticle spacing in the templated array is influenced by the screened-coulombic repulsion between particles, and can thus be tuned by controlling ionic strength during deposition. Templating ordered nanoparticle arrays via ligand-receptor mediated adsorption, and the constrained growth of metallic nanoparticles directly on the protein lattice from ionic precursors are also examined. Overall, this work demonstrates that the streptavidin crystal system possesses unique utility for nanoscale, directed-assembly applications.
Li, Feng; Du, Ping; Chen, Wei; Zhang, Shusheng
2007-03-07
A new porous sorbent for wastewater treatment of metal ions was synthesized by covalent grafting of molecularly imprinted organic-inorganic hybrid on silica gel. With sucrose and polyethylene glycol 4000 (PEG 4000) being synergic imprinting molecules, covalent surface coating on silica gel was achieved by using polysaccharide-incorporated sol-gel process starting from the functional biopolymer, chitosan and an inorganic epoxy-precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS) at room temperature. The prepared porous sorbent was characterized by using simultaneous thermogravimetry and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), nitrogen adsorption porosimetry measurement and X-ray diffraction (XRD). Copper ion, Cu(2+), was chosen as the model metal ion to evaluate the effectiveness of the new biosorbent in wastewater treatment. The influence of epoxy-siloxane dose, buffer pH and co-existed ions on Cu(2+) adsorption was assessed through batch experiments. The imprinted composite sorbent offered a fast kinetics for the adsorption of Cu(2+). The uptake capacity of the sorbent imprinted by two pore-building components was higher than those imprinted with only a single component. The dynamic adsorption in column underwent a good elimination of Cu(2+) in treating electric plating wastewater. The prepared composite sorbent exhibited high reusability. Easy preparation of the described porous composite sorbent, absence of organic solvents, cost-effectiveness and high stability make this approach attractive in biosorption.
Manz, Katherine E; Haerr, Gregory; Lucchesi, Jessica; Carter, Kimberly E
2016-12-01
The objective of this study was to understand the adsorption ability of a surfactant and a non-surfactant chemical additive used in hydraulic fracturing onto shale and GAC. Experiments were performed at varying temperatures and sodium chloride concentrations to establish these impacts on the adsorption of the furfural (a non-surfactant) and 2-Butoxyethanol (2-BE) (a surfactant). Experiments were carried out in continuously mixed batch experiments with Langmuir and Freundlich isotherm modeling. The results of the experiments showed that adsorption of these compounds onto shale does not occur, which may allow these compounds to return to the surface in flowback and produced waters. The adsorption potential for these chemicals onto GAC follows the assumptions of the Langmuir model more strongly than those of the Freundlich model. The results show uptake of furfural and 2-BE occurs within 23 h in the presence of DI water, 0.1 mol L -1 sodium chloride, and in lab synthesized hydraulic fracturing brine. Based on the data, 83% of the furfural and 62% of the 2-BE was adsorbed using GAC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determination of adsorption and desorption of DNA molecules on freshwater and marine sediments.
Xue, J; Feng, Y
2018-06-01
Free DNA and its adsorption by sediment in the aquatic environment lead to ambiguity in the identification of recent faecal pollution sources. The goal of this study was to understand the mechanisms of DNA adsorption and desorption on aquatic sediment under various conditions using quantitative polymerase chain reaction (qPCR). Both raw sewage (RS) DNA and purified PCR product (PPP) were used in adsorption and desorption experiments; autoclaved freshwater and marine sediments served as sorbents. Thirty-six hours were needed for adsorption to reach equilibrium. More DNA was adsorbed on both sediments in stream water than in 5 mmol l -1 NaCl and DNA adsorption increased in the presence of Ca 2+ and Mg 2+ . Successive desorption experiments showed that between 5% and 22% of adsorbed DNA was desorbed. Organic matter and clay played a significant role in determining the DNA adsorption capacity on sediment. The data suggest the presence of multilayer adsorption. DNA molecules on sediments were mostly adsorbed through ligand binding rather than electrostatic binding. Quantitative polymerase chain reaction assays provide a better way to investigate the DNA adsorption and desorption mechanisms by sediment. DNA desorption can potentially complicate the outcomes of microbial source tracking studies. © 2018 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Li, Min; Meng, Xiaojing; Yuan, Jinhai; Deng, Wenwen; Liang, Xiuke
2018-01-01
In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of various experimental parameters such as pH value, contact time and initial concentration on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. Equilibrium isotherms for the adsorption of cadmium (II) ion were analyzed by Freundlich and Langmuir isotherm models, the results indicate that Langmuir isotherm model was found to be credible to express the data for cadmium (II) ion from aqueous solution onto the SG-MCF. Various thermodynamics parameters of the adsorption process, including free energy of adsorption (ΔG0 ), the enthalpy of adsorption (ΔH0 ) and standard entropy changes (ΔS0 ), were calculated to predict the nature of adsorption. The positive value of the enthalpy change and the negative value of free energy change indicate that the process is endothermic and spontaneous process.
NO adsorption on ice at low concentrations
Richard A. Sommerfeld; Martha H. Conklin; S. Kay Laird
1992-01-01
To better understand the properties of ice surfaces at different temperatures, the adsorption of a relatively insoluble gas, NO, was studied using a continuous-flow column experiment. Adsorption isotherms for NO on the surface of ice were measured for a temperature range of-1 to -70°C and a concentration range of 10 to 250 ppbv. Very little adsorption was measured;...
Kooh, Muhammad Raziq Rahimi; Lim, Linda B L; Lim, Lee Hoon; Dahri, Muhammad Khairud
2016-02-01
This study investigated the potential of untreated Azolla pinnata (AP) to remove toxic rhodamine B (RB) dye. The effects of adsorbent dosage, pH, ionic strength, contact time, and concentration were studied. Experiments involving the effects of pH and ionic strength indicated that hydrophobic-hydrophobic interactions might be the dominant force of attraction for the RB-AP adsorption system. The kinetics modelling of the kinetics experiment showed that pseudo-second-order best represented the adsorption process. The Weber-Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limiting step, while the Boyd model suggested that film diffusion might be rate-limiting. The adsorption isotherm model, Langmuir, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 72.2 and 199.7 mg g(-1) at 25 and 65 °C, respectively. Thermodynamics study indicates spontaneity, endothermic and physisorption-dominant adsorption process. The adsorbents were regenerated to satisfactory level with distilled water, HNO3 and NaOH. Pre-treatment of adsorbent with oxalic acid, citric acid, NaOH, HCl and phosphoric acid was investigated but the adsorption capacity was less than the untreated AP.
Factors influencing antibiotics adsorption onto engineered adsorbents.
Xia, Mingfang; Li, Aimin; Zhu, Zhaolian; Zhou, Qin; Yang, Weiben
2013-07-01
The study evaluated the adsorption of two antibiotics by four engineered adsorbents (hypercrosslinked resin MN-202, macroporous resin XAD-4, activated carbon F-400, and multi-walled carbon nanotubes (MWCNT)) from aqueous solutions. The dynamic results demonstrated the dominant influence of pore size in adsorption. The adsorption amounts of antibiotics on XAD-4 were attributed to the hydrophobic effect, whereas steric hindrance or micropore-filling played a main role in the adsorption of antibiotics by F-400 because of its high microporosity. Aside from F-400, similar patterns of pH-dependent adsorption were observed, implying the importance of antibiotic molecular forms to the adsorption process for adsorbents. Increasing the ionic concentration with CaC12 produced particular adsorption characteristics on MWCNT at pH 2.0 and F-400 at pH 8.0, which were attributed to the highly available contact surfaces and molecular sieving, respectively. Its hybrid characteristics incorporating a considerable portion of mesopores and micropores made hypercross linked MN-202 a superior antibiotic adsorbent with high adsorption capacity. Furthermore, the adsorption capacity of MWCNT on the basis of surface area was more advantageous than that of the other adsorbents because MWCNT has a much more compact molecular arrangement.
Chen, Dan; Zhou, Jun; Wang, Hongyu; Yang, Kai
2018-01-01
There is an increasing need to explore effective and clean approaches for hazardous contamination removal from wastewaters. In this work, a novel bead adsorbent, polyvinyl alcohol-graphene oxide (PVA-GO) macroporous hydrogel bead was prepared as filter media for p-nitrophenol (PNP), dye methylene blue (MB), and heavy metal U(VI) removal from aqueous solution. Batch and fixed-bed column experiments were carried out to evaluate the adsorption capacities of PNP, MB, and U(VI) on this bead. From batch experiments, the maximum adsorption capacities of PNP, MB, and U(VI) reached 347.87, 422.90, and 327.55 mg/g. From the fixed-bed column experiments, the adsorption capacities of PNP, MB, and U(VI) decreased with initial concentration increasing from 100 to 400 mg/L. The adsorption capacities of PNP, MB, and U(VI) decreased with increasing flow rate. Also, the maximum adsorption capacity of PNP decreased as pH increased from 3 to 9, while MB and U(VI) presented opposite tendencies. Furthermore, the bed depth service Time (BDST) model showed good linear relationships for the three ions' adsorption processes in this fixed-bed column, which indicated that the BDST model effectively evaluated and optimized the adsorption process of PVA-GO macroporous hydrogel bead in fixed-bed columns for hazardous contaminant removal from wastewaters.
Dong, Zhen; Zhao, Long
2018-06-01
Combining the advantages of both cellulose and ionic liquid, ionic liquid functionalized cellulose (ILFC) as adsorbent was prepared through radiation grafting glycidyl methacrylate onto cellulose microsphere following by reaction with ionic liquid 1-aminopropyl-3-methyl imidazolium nitrate. Its adsorption properties towards Cr(VI) were investigated in batch and column experiments. In batch experiments, the adsorption kinetics was well fitted with pseudo-second-order mode with equilibrium time of 2 h and the adsorption capacity reached 181.8 mg/g at pH 2 calculated from Langmuir model. In fixed column, both Yoon-Nelson and Thomas models gave satisfactory fit to experimental data and breakthrough curves, and equilibrium adsorption capacity calculated by Thomas model was 161.0 mg/g. Moreover, ILFC exhibited high selectivity towards Cr(VI) even in synthetic chrome-plating wastewater. Besides, adsorption/desorption test revealed ILFC can be regenerated and reused several times without obvious decrease in adsorbed amount. The adsorption process was demonstrated to anion exchange-reduction mechanism via XPS analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T
2018-05-10
The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.
Latour, Robert A
2015-03-01
The Langmuir adsorption isotherm provides one of the simplest and most direct methods to quantify an adsorption process. Because isotherm data from protein adsorption studies often appear to be fit well by the Langmuir isotherm model, estimates of protein binding affinity have often been made from its use despite that fact that none of the conditions required for a Langmuir adsorption process may be satisfied for this type of application. The physical events that cause protein adsorption isotherms to often provide a Langmuir-shaped isotherm can be explained as being due to changes in adsorption-induced spreading, reorientation, clustering, and aggregation of the protein on a surface as a function of solution concentration in contrast to being due to a dynamic equilibrium adsorption process, which is required for Langmuir adsorption. Unless the requirements of the Langmuir adsorption process can be confirmed, fitting of the Langmuir model to protein adsorption isotherm data to obtain thermodynamic properties, such as the equilibrium constant for adsorption and adsorption free energy, may provide erroneous values that have little to do with the actual protein adsorption process, and should be avoided. In this article, a detailed analysis of the Langmuir isotherm model is presented along with a quantitative analysis of the level of error that can arise in derived parameters when the Langmuir isotherm is inappropriately applied to characterize a protein adsorption process. © 2014 Wiley Periodicals, Inc.
Abstractive dissociation of oxygen over Al(111): a nonadiabatic quantum model.
Katz, Gil; Kosloff, Ronnie; Zeiri, Yehuda
2004-02-22
The dissociation of oxygen on a clean aluminum surface is studied theoretically. A nonadiabatic quantum dynamical model is used, based on four electronically distinct potential energy surfaces characterized by the extent of charge transfer from the metal to the adsorbate. A flat surface approximation is used to reduce the computation complexity. The conservation of the helicopter angular momentum allows Boltzmann averaging of the outcome of the propagation of a three degrees of freedom wave function. The dissociation event is simulated by solving the time-dependent Schrödinger equation for a period of 30 femtoseconds. As a function of incident kinetic energy, the dissociation yield follows the experimental trend. An attempt at simulation employing only the lowest adiabatic surface failed, qualitatively disagreeing with both experiment and nonadiabatic calculations. The final products, adsorptive dissociation and abstractive dissociation, are obtained by carrying out a semiclassical molecular dynamics simulation with surface hopping which describes the back charge transfer from an oxygen atom negative ion to the surface. The final adsorbed oxygen pair distribution compares well with experiment. By running the dynamical events backward in time, a correlation is established between the products and the initial conditions which lead to their production. Qualitative agreement is thus obtained with recent experiments that show suppression of abstraction by rotational excitation. (c) 2004 American Institute of Physics.
Alzheimer Abeta(1-42) monomer adsorbed on the self-assembled monolayers.
Wang, Qiuming; Zhao, Jun; Yu, Xiang; Zhao, Chao; Li, Lingyan; Zheng, Jie
2010-08-03
Amyloid-beta (Abeta) peptide aggregation on the cell membranes is a key pathological event responsible for neuron cell death in Alzheimer's disease (AD). We present a collection of molecular docking and molecular dynamics simulations to study the conformational dynamics and adsorption behavior of Abeta monomer on the self-assembled monolayer (SAM), in comparison to Abeta structure in bulk solution. Two distinct Abeta conformations (i.e., alpha-helix and beta-hairpin) are selected as initial structures to mimic different adsorption states, whereas four SAM surfaces with different end groups in hydrophobicity and charge distribution are used to examine the effect of surface chemistry on Abeta structure and adsorption. Simulation results show that alpha-helical monomer displays higher structural stability than beta-hairpin monomer on all SAMs, suggesting that the preferential conformation of Abeta monomer could be alpha-helical or random structure when bound to surfaces. Structural stability and adsorption behavior of Abeta monomer on the SAMs originates from competitive interactions between Abeta and SAM and between SAM and interfacial water, which involve the conformation of Abeta, the surface chemistry of SAM, and the structure and dynamics of interfacial waters. The relative net binding affinity of Abeta with the SAMs is in the favorable order of COOH-SAM > NH(2)-SAM > CH(3)-SAM > OH-SAM, highlighting the importance of electrostatic and hydrophobic interactions for driving Abeta adsorption at the SAMs, but both interactions contribute differently to each Abeta-SAM complex. This work provides parallel insights into the understanding of Abeta structure and aggregation on cell membrane.
Laboratory investigations of steam flow in a porous medium
Herkelrath, W.N.; Moench, A.F.; O'Neal, II
1983-01-01
Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used in modeling pressure transient behavior in vapor dominated geothermal systems. Transient, superheated steam flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure and then making a step increase in pressure at one end of the sample while monitoring the pressure transient breakthrough at the other end. It was found in experiments run at 100°, 125°, and 146°C that the time required for steam pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10–25 times longer than predicted by conventional superheated steam flow theory. It is hypothesized that the delay in the steam pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10°C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. This function was assumed to be an equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved.
Thi Hoa Mai, Nguyen; Postma, Dieke; Thi Kim Trang, Pham; Jessen, Søren; Hung Viet, Pham; Larsen, Flemming
2016-01-01
The adsorption of arsenic onto aquifer sediment from the Red River floodplain, Vietnam, was determined in a series of batch experiments. Due to water supply pumping, river water infiltrates into the aquifer at the field site and has leached the uppermost aquifer sediments. The leached sediments, remain anoxic but contain little reactive arsenic and iron, and are used in our experiments. The adsorption and desorption experiments were carried out by addition or removal of arsenic from the aqueous phase in sediment suspensions under strictly anoxic conditions. Also the effects of HCO3, Fe(II), PO4 and Si on arsenic adsorption were explored. The results show much stronger adsorption of As(V) as compared to As(III), full reversibility for As(III) adsorption and less so for As(V). The presence or absence of HCO3 did not influence arsenic adsorption. Fe(II) enhanced As(V) sorption but did not influence the adsorption of As(III) in any way. During simultaneous adsorption of As(III) and Fe(II), As(III) was found to be fully desorbable while Fe(II) was completely irreversibly adsorbed and clearly the two sorption processes are uncoupled. Phosphate was the only solute that significantly could displace As(III) from the sediment surface. Compiling literature data on arsenic adsorption to aquifer sediment in Vietnam and Bangladesh revealed As(III) isotherms to be almost identical regardless of the nature of the sediment or the site of sampling. In contrast, there was a large variation in As(V) adsorption isotherms between studies. A tentative conclusion is that As(III) and As(V) are not adsorbing onto the same sediment surface sites. The adsorption behavior of arsenic onto aquifer sediments and synthetic Fe-oxides is compared. Particularly, the much stronger adsorption of As(V) than of As(III) onto Red River as well as on most Bangladesh aquifer sediments, indicates that the perception that arsenic, phosphate and other species compete for the same surface sites of iron oxides in sediments with properties similar to those of, for example a synthetic goethite, probably is not correct. A simple two-component Langmuir adsorption model was constructed to quantitatively describe the reactive transport of As(III) and PO4 in the aquifer. PMID:27867209
Grosjean, Benoit; Pean, Clarisse; Siria, Alessandro; Bocquet, Lydéric; Vuilleumier, Rodolphe; Bocquet, Marie-Laure
2016-11-17
Recent nanofluidic experiments revealed strongly different surface charge measurements for boron-nitride (BN) and graphitic nanotubes when in contact with saline and alkaline water (Nature 2013, 494, 455-458; Phys. Rev. Lett. 2016, 116, 154501). These observations contrast with the similar reactivity of a graphene layer and its BN counterpart, using density functional theory (DFT) framework, for intact and dissociative adsorption of gaseous water molecules. Here we investigate, by DFT in implicit water, single and multiple adsorption of anionic hydroxide on single layers. A differential adsorption strength is found in vacuum for the first ionic adsorption on the two materials-chemisorbed on BN while physisorbed on graphene. The effect of implicit solvation reduces all adsorption values, resulting in a favorable (nonfavorable) adsorption on BN (graphene). We also calculate a pK a ≃ 6 for BN in water, in good agreement with experiments. Comparatively, the unfavorable results for graphene in water echo the weaker surface charge measurements but point to an alternative scenario.
The enrichment of chlorogenic acid from Eucommia ulmoides leaves extract by mesoporous carbons.
Qin, Guotong; Ma, Jing; Wei, Wei; Li, Jaja; Yue, Fangqing
2018-06-15
Herein, we report an efficient separation and enrichment method for chlorogenic acid from crude extracts of Eucommia ulmoides leaves using carbon adsorbents. The effects of the pore structure of the carbon adsorbents on the adsorption capacity were studied. Of the four adsorbents investigated, mesoporous carbon (MC3) showed the highest adsorption capacity (294 mg/g of carbon) for chlorogenic acid due to its high mesopore volume. The static adsorption of CGA on carbon can be accurately described using the Freundlich equation. The kinetics of adsorption follow a pseudo-second-order process. External mass transfer was the controlling step of the adsorption process. Dynamic adsorption on MC3 demonstrated that chlorogenic acid began to break through after 28 bed volumes of extract was loaded. This mesoporous carbon-treatment procedure is safe, economic and has the potential to be scaled up for commercial application. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jelinek, R.; Oezkar, S.; Malek, A.
1993-01-27
[sup 23]Na double-rotation NMR (DOR) provides site-specific structural and dynamical information on guest-host interactions within sodium zeolite Y pores. Quantitative adsorption of H[sub 2]O, PMe[sub 3], and Mo(CO)[sub 6] guests affects both the positions and line shapes of the [sup 23]Na resonances from specific extraframework Na[sup +] sites. The evolution of the [sup 23]Na DOR spectra with the progressive introduction of guest molecules allows one to probe direct solvation' effects involving the Na[sup +] cations in the larger supercages, as well as indirect effects on the Na[sup +] cations in adjacent smaller sodalite cavities. [sup 23]Na DOR experiments conducted atmore » two magnetic field strengths confirm that PMe[sub 3] coadsorption in 8[l brace]Mo(CO)[sub 6][r brace],16[l brace]PMe[sub 3][r brace]-Na[sub 56]Y, and PMe[sub 3] ligand-substitution in 8[l brace]cis-Mo(CO)[sub 4](PMe[sub 3])[sub 2][r brace]-Na[sub 56]Y give rise to progressive deshielding and enhanced quadrupolar interactions of the anchoring Na[sup +] cations in the [alpha]-cages, relative to those of the starting material, 8[l brace]Mo(CO)[sub 6][r brace]-Na[sub 56]Y. Spin-lattice relaxation measurements indicate that adsorption of PMe[sub 3] facilitates an increased motion of the Na[sup +] cations and/or guest species inside the [alpha]-cages. 22 refs., 6 figs., 1 tab.« less
Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.
2004-01-01
A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.
Manjunath, S V; Kumar, S Mathava; Ngo, Huu Hao; Guo, Wenshan
2017-12-06
Metronidazole (MNZ) removal by two adsorbents, i.e., concrete-containing graphene (CG) and powder-activated carbon (PAC), was investigated via batch-mode experiments and the outcomes were used to analyze the kinetics, equilibrium and thermodynamics of MNZ adsorption. MNZ sorption on CG and PAC has followed the pseudo-second-order kinetic model, and the thermodynamic parameters revealed that MNZ adsorption was spontaneous on PAC and non-spontaneous on CG. Subsequently, two-parameter isotherm models, i.e., Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Elovich models, were applied to evaluate the MNZ adsorption capacity. The maximum MNZ adsorption capacities ([Formula: see text]) of PAC and CG were found to be between 25.5-32.8 mg/g and 0.41-0.002 mg/g, respectively. Subsequently, the effects of pH, temperature and adsorbent dosage on MNZ adsorption were evaluated by a central composite design (CCD) approach. The CCD experiments have pointed out the complete removal of MNZ at a much lower PAC dosage by increasing the system temperature (i.e., from 20°C to 40°C). On the other hand, a desorption experiment has shown 3.5% and 1.7% MNZ removal from the surface of PAC and CG, respectively, which was insignificant compared to the sorbed MNZ on the surface by adsorption. The overall findings indicate that PAC and CG with higher graphene content could be useful in MNZ removal from aqueous systems.
NASA Astrophysics Data System (ADS)
Sánchez, Mirna L.; Giménez, Claudia Y.; Delgado, Juan F.; Martínez, Leandro J.; Grasselli, Mariano
2017-12-01
Novel chromatographic materials for protein purification with high adsorption capacity and fouling resistance are highly demanded to improve downstream processes. Here, we describe a novel adsorptive material based on reticulated polyurethane foam (rPUF) coated with a functional hydrogel layer. rPUF provides physical rigidity through its macroscopic structure, whereas the hydrogel layer provides capacity to adsorb proteins by specific interactions. The hydrogel coating process was performed by the dip-coating method, using a polyvinyl alcohol (PVA) solution. The PVA hydrogel was linked to the rPUF material by using a radiation-induced crosslinking process in aqueous ethanol solution. The ethanol in the solvent mixture allowed a balance between PVA swelling and PVA dissolution during the irradiation step. The resulting material showed higher thermal stability than the non-irradiated one. In addition, a simultaneous radiation-induced grafting polymerization (SRIGP) was done by simple addition of glycidyl methacrylate monomer into the irradiation solution. In a further step, sulfonic ligands were included specifically in the hydrogel layer, which contained around 200% of PVA respect to the original rPUF. Materials were characterized by FT-IR, thermogravimetric analysis, SEM microscopy and EDX analysis. The cation-exchange rPUF material was functionally characterized by the Langmuir isotherm and a dynamic adsorption experiment to analyze the chromatographic properties for protein purification processes.
Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won
2015-09-14
The adsorption mechanism for the N719 dye on a TiO2 electrode was examined by the kinetic and diffusion models (pseudo-first order, pseudo-second order, and intra-particle diffusion models). Among these methods, the observed adsorption kinetics are well-described using the pseudo-second order model. Moreover, the film diffusion process was the main controlling step of adsorption, which was analysed using a diffusion-based model. The photodynamic properties in dye-sensitized solar cells (DSSCs) were investigated using time-resolved transient absorption techniques. The photodynamics of the oxidized N719 species were shown to be dependent on the adsorption time, and also the adsorbed concentration of N719. The photovoltaic parameters (Jsc, Voc, FF and η) of this DSSC were determined in terms of the dye adsorption amounts. The solar cell performance correlates significantly with charge recombination and dye regeneration dynamics, which are also affected by the dye adsorption amounts. Therefore, the photovoltaic performance of this DSSC can be interpreted in terms of the adsorption kinetics and the photodynamics of oxidized N719.
Pentaethylenehexamine-Loaded Hierarchically Porous Silica for CO2 Adsorption
Ji, Changchun; Huang, Xin; Li, Lei; Xiao, Fukui; Zhao, Ning; Wei, Wei
2016-01-01
Recently, amine-functionalized materials as a prospective chemical sorbent for post combustion CO2 capture have gained great interest. However, the amine grafting for the traditional MCM-41, SBA-15, pore-expanded MCM-41 or SBA-15 supports can cause the pore volume and specific surface area of sorbents to decrease, significantly affecting the CO2 adsorption-desorption dynamics. To overcome this issue, hierarchical porous silica with interparticle macropores and long-range ordering mesopores was prepared and impregnated with pentaethylenehexamine. The pore structure and amino functional group content of the modified silicas were analyzed by scanning electron microscope, transmission electron microscope, N2 adsorption, X-ray powder diffraction, and Fourier transform infrared spectra. Moreover, the effects of the pore structure as well as the amount of PEHA loading of the samples on the CO2 adsorption capacity were investigated in a fixed-bed adsorption system. The CO2 adsorption capacity reached 4.5 mmol CO2/(g of adsorbent) for HPS−PEHA-70 at 75 °C. Further, the adsorption capacity for HPS-PEHA-70 was steady after a total of 15 adsorption-desorption cycles. PMID:28773956
Oulad-Zian, Youssef; Sanchez-Valencia, Juan R; Parra-Barranco, Julian; Hamad, Said; Espinos, Juan P; Barranco, Angel; Ferrer, Javier; Coll, Mariona; Borras, Ana
2015-08-04
In this article we present the preactivation of TiO2 and ITO by UV irradiation under ambient conditions as a tool to enhance the incorporation of organic molecules on these oxides by evaporation at low pressures. The deposition of π-stacked molecules on TiO2 and ITO at controlled substrate temperature and in the presence of Ar is thoroughly followed by SEM, UV-vis, XRD, RBS, and photoluminescence spectroscopy, and the effect is exploited for the patterning formation of small-molecule organic nanowires (ONWs). X-ray photoelectron spectroscopy (XPS) in situ experiments and molecular dynamics simulations add critical information to fully elucidate the mechanism behind the increase in the number of adsorption centers for the organic molecules. Finally, the formation of hybrid organic/inorganic semiconductors is also explored as a result of the controlled vacuum sublimation of organic molecules on the open thin film microstructure of mesoporous TiO2.
Levine, Zachary A; Rapp, Michael V; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H; Mittal, Jeetain; Waite, J Herbert; Israelachvili, Jacob N; Shea, Joan-Emma
2016-04-19
Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.
Molecular Dynamics Simulations and XAFS (MD-XAFS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenter, Gregory K.; Fulton, John L.
2017-01-20
MD-XAFS (Molecular Dynamics X-ray Adsorption Fine Structure) makes the connection between simulation techniques that generate an ensemble of molecular configurations and the direct signal observed from X-ray measurement.
Influence of the extent of disruption of Bakers' yeast on protein adsorption in expanded beds.
Balasundaram, B; Harrison, S T L
2008-02-01
Expanded bed adsorption chromatography is used to capture the protein product of interest from a crude biological suspension directly, thereby eliminating the need for the removal of the cell debris. While this technique may replace three or four unit operations in a typical downstream process for biological product recovery, the adsorption process is influenced by the interaction between the microbial cells or cell debris and the adsorbent as well as the presence of contaminating solutes. The influence of the extent and nature of disruption of Bakers' yeast on the adsorption of the total soluble protein and alpha-glucosidase was investigated in this study. Two different techniques were used for cell disruption: high pressure homogenisation and hydrodynamic cavitation. Two different adsorbents were chosen: anionic Streamline DEAE and cationic Streamline SP. The settled bed height and the superficial velocity were constant across all experiments. The feedstock was characterised in terms of viscosity, pH, conductivity, particle size distribution of the cell debris and the extent of protein and alpha-glucosidase released. The performance of the adsorption process was found to be influenced by the electrostatic interactions of cell debris with the anionic adsorbent Streamline DEAE and the intraparticle diffusional resistance inside the pores of the adsorbent matrix. The increase in the intensity of disruption resulted in an increase in the dynamic binding capacity (10% feed) of both the total soluble protein and the alpha-glucosidase. However, the increase in the DBC of protein and alpha-glucosidase were not proportional. The amount of protein that could be adsorbed per ml of adsorbent from the samples subjected to a lower intensity of disruption was found to exceed that obtained at a higher disruption intensity on increasing the volume of feed suggesting multilayer adsorption. In this case, selective adsorption of the model protein alpha-glucosidase was reduced, illustrating the compromise of maximising protein recovery through non-specific binding. The study illustrates the need for an interrogation of the intensity of disruption needed and a rigorous understanding of the influence of cell debris and adsorbent-protein interaction, in optimising the selective recovery of intracellular products by EBA.
Geitner, Nicholas K; Zhao, Weilu; Ding, Feng; Chen, Wei; Wiesner, Mark R
2017-08-01
Nanoscale particles have the potential to modulate the transport, lifetimes, and ultimate uptake of pesticides that may otherwise be bound to agricultural soils. Engineered nanoparticles provide a unique platform for studying these interactions. In this study, we utilized discrete molecular dynamics (DMD) as a screening tool for examining nanoparticle-pesticide adsorptive interactions. As a proof-of-concept, we selected a library of 15 pesticides common in the United States and 4 nanomaterials with likely natural or incidental sources, and simulated all possible nanoparticle-pesticide pairs. The resulting adsorption coefficients derived from DMD simulations ranged over several orders of magnitude, and in many cases were significantly stronger than pesticide adsorption on clay surfaces, highlighting the significance of specific nanoscale phases as a preferential media with which pesticides may associate. Binding was found to be significantly enhanced by the capacity to form hydrogen bonds with slightly hydroxylated fullerols, highlighting the importance of considering the precise nature of weathered nanomaterials as opposed to pristine precursors. Results were compared to experimental adsorption studies using selected pesticides, with a Pearson correlation coefficient of 0.97.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, James W.; Liu, Da-Jiang
We develop statistical mechanical models amenable to analytic treatment for the dissociative adsorption of O2 at hollow sites on fcc(100) metal surfaces. The models incorporate exclusion of nearest-neighbor pairs of adsorbed O. However, corresponding simple site-blocking models, where adsorption requires a large ensemble of available sites, exhibit an anomalously fast initial decrease in sticking. Thus, in addition to blocking, our models also incorporate more facile adsorption via orientational steering and funneling dynamics (features supported by ab initio Molecular Dynamics studies). Behavior for equilibrated adlayers is distinct from those with finite adspecies mobility. We focus on the low-temperature limited-mobility regime wheremore » analysis of the associated master equations readily produces exact results for both short- and long-time behavior. Kinetic Monte Carlo simulation is also utilized to provide a more complete picture of behavior. These models capture both the initial decrease and the saturation of the experimentally observed sticking versus coverage, as well as features of non-equilibrium adlayer ordering as assessed by surface-sensitive diffraction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, James W.; Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011; Liu, Da-Jiang
We develop statistical mechanical models amenable to analytic treatment for the dissociative adsorption of O{sub 2} at hollow sites on fcc(100) metal surfaces. The models incorporate exclusion of nearest-neighbor pairs of adsorbed O. However, corresponding simple site-blocking models, where adsorption requires a large ensemble of available sites, exhibit an anomalously fast initial decrease in sticking. Thus, in addition to blocking, our models also incorporate more facile adsorption via orientational steering and funneling dynamics (features supported by ab initio Molecular Dynamics studies). Behavior for equilibrated adlayers is distinct from those with finite adspecies mobility. We focus on the low-temperature limited-mobility regimemore » where analysis of the associated master equations readily produces exact results for both short- and long-time behavior. Kinetic Monte Carlo simulation is also utilized to provide a more complete picture of behavior. These models capture both the initial decrease and the saturation of the experimentally observed sticking versus coverage, as well as features of non-equilibrium adlayer ordering as assessed by surface-sensitive diffraction.« less
Kinetic Study of Adsorption Processes in Solution: An Undergraduate Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Casado, Julio; And Others
1985-01-01
Background information, apparatus needed, procedures used, and results obtained are provided for a simple kinetic method for the monitoring of adsorption processes. The method, which involved adsorption of crystal violet onto activated carbon, is suitable for classroom and/or research purposes. (JN)
Rother, Gernot; Müter, Dirk; Bock, Henry; ...
2017-03-27
Adsorption of a short-chain nonionic amphiphile (C 6E 3) at the surface of mesoporous silica glass (CPG-10) was studied by a combination of adsorption measurements and mesoscale simulations. Adsorption measurements covering a wide composition range of the C 6E 3 + water system show that no adsorption occurs up to the critical micelle concentration (cmc), at which a sharp increase of adsorption is observed that is attributed to ad-micelle formation at the pore walls. Intriguingly, as the concentration is increased further, the surface excess of the amphiphile begins to decrease and eventually becomes negative, which corresponds to preferential adsorption ofmore » water rather than amphiphile at high amphiphile concentrations. The existence of such a surface-azeotropic point has not previously been reported in the surfactant adsorption field. Dissipative particle dynamics (DPD) simulations were performed to reveal the structural origin of this transition from aggregative adsorption to surface depletion. Finally, the simulations indicate that this transition can be attributed to the repulsive interaction between head groups, causing amphiphilic depletion in the region around the corona of the surface micelles.« less
Investigation of Dynamic Oxygen Adsorption in Molten Solder Jetting Technology
NASA Technical Reports Server (NTRS)
Megaridis, Constantine M.; Bellizia, Giulio; McNallan, Michael; Wallace, David B.
2003-01-01
Surface tension forces play a critical role in fluid dynamic phenomena that are important in materials processing. The surface tension of liquid metals has been shown to be very susceptible to small amounts of adsorbed oxygen. Consequently, the kinetics of oxygen adsorption can influence the capillary breakup of liquid-metal jets targeted for use in electronics assembly applications, where low-melting-point metals (such as tin-containing solders) are utilized as an attachment material for mounting of electronic components to substrates. By interpreting values of surface tension measured at various surface ages, adsorption and diffusion rates of oxygen on the surface of the melt can be estimated. This research program investigates the adsorption kinetics of oxygen on the surface of an atomizing molten-metal jet. A novel oscillating capillary jet method has been developed for the measurement of dynamic surface tension of liquids, and in particular, metal melts which are susceptible to rapid surface degradation caused by oxygen adsorption. The experimental technique captures the evolution of jet swells and necks continuously along the jet propagation axis and is used in conjunction with an existing linear, axisymmetric, constant-property model to determine the variation of the instability growth rate, and, in turn, surface tension of the liquid as a function of surface age measured from the exit orifice. The conditions investigated so far focus on a time window of 2-4ms from the jet orifice. The surface properties of the eutectic 63%Sn-37%Pb solder alloy have been investigated in terms of their variation due to O2 adsorption from a N2 atmosphere containing controlled amounts of oxygen (from 8 ppm to 1000 ppm). The method performed well for situations where the oxygen adsorption was low in that time window. The value of surface tension for the 63Sn-37Pb solder in pure nitrogen was found to be 0.49 N/m, in good agreement with previously published work. A characteristic time of O(1ms) or less was determined for the molten-metal surface to be saturated by oxygen at 1000 ppm concentration in N2.
Mechanism of tyramine adsorption on Ca-montmorillonite.
Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui
2018-06-10
Tyramine (TY) adsorption on a Ca-montmorillonite (SAz-2) was investigated with batch experiments and complementary analyses utilizing ultra-high performance liquid chromatography, ion chromatography, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetry (TG). The adsorption reached equilibrium in 8 h, complying with the pseudo-second-order rate equation, and came to an adsorption capacity of 682 mmol kg -1 at pH 6-8.1, utilizing the Langmuir isotherm model. The adsorption of TY and desorption of exchangeable cations exhibited a linear relationship with a slope of 0.9, implying that the adsorption was largely influenced by a cation exchange mechanism. The effective adsorption was further verified by the characteristic TY bands in the FTIR spectra and the signals of mass loss due to TY decomposition in the TG measurements of the clay after adsorption experiments. Intercalation of hydrated TY into the clay interlayer was confirmed by XRD and TG analyses of the heated samples loaded with TY. The adsorption reached only 0.57 cation exchange capacity of the clay which was probably limited by the low charge density of TY as compared to the negative charge density of the clay surface and by the steric effects arising from the hydration of TY that increased its molecular size. Adsorption of TY on montmorillonite can make TY more resistant to thermal decomposition and possibly better preserved in aquatic and soil environments. Copyright © 2018 Elsevier B.V. All rights reserved.
Kinoshita, Koji; Parra, Elisa; Needham, David
2017-02-15
Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain "dead time" at initial measurement. These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the "micropipette interfacial area-expansion method" was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion controlled molecular adsorption at the air-water interfaces. To validate the new technique, the diffusion coefficient of 1-Octanol in water was investigated with existing models: the Ward Tordai model for the long time adsorption regime (1-100s), and the Langmuir and Frumkin adsorption isotherm models for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2±0.8×10 -6 cm 2 /s, showed excellent agreement with the result from an alternative method, "single microdroplet catching method", to measure the diffusion coefficient from diffusion-controlled microdroplet dissolution, 7.3±0.1×10 -6 cm 2 /s. These new techniques for determining adsorption and diffusion coefficients can apply for a range of surface active molecules, especially the less-characterized ionic surfactants, and biological compounds such as lipids, peptides, and proteins. Copyright © 2016 Elsevier Inc. All rights reserved.
Adsorption equilibrium and dynamics of gasoline vapors onto polymeric adsorbents.
Jia, Lijuan; Yu, Weihua; Long, Chao; Li, Aimin
2014-03-01
The emission of gasoline vapors is becoming a significant environmental problem especially for the population-dense area and also results in a significant economic loss. In this study, adsorption equilibrium and dynamics of gasoline vapors onto macroporous and hypercrosslinked polymeric resins at 308 K were investigated and compared with commercial activated carbon (NucharWV-A 1100). The results showed that the equilibrium and breakthrough adsorption capacities of virgin macroporous and hypercrosslinked polymeric resins were lower than virgin-activated carbon. Compared with origin adsorbents, however, the breakthrough adsorption capacities of the regenerated activated carbon for gasoline vapors decreased by 58.5 % and 61.3 % when the initial concentration of gasoline vapors were 700 and 1,400 mg/L, while those of macroporous and hypercrosslinked resins decreased by 17.4 % and 17.5 %, and 46.5 % and 45.5 %, respectively. Due to the specific bimodal property in the region of micropore (0.5-2.0 nm) and meso-macropore (30-70 nm), the regenerated hypercrosslinked polymeric resin exhibited the comparable breakthrough adsorption capacities with the regenerated activated carbon at the initial concentration of 700 mg/L, and even higher when the initial concentration of gasoline vapors was 1,400 mg/L. In addition, 90 % of relative humidity had ignorable effect on the adsorption of gasoline vapors on hypercrosslinked polymeric resin. Taken together, it is expected that hypercrosslinked polymeric adsorbent would be a promising adsorbent for the removal of gasoline vapors from gas streams.
Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent
NASA Astrophysics Data System (ADS)
Liu, Yun-Hai; Wang, You-Qun; Zhang, Zhi-Bin; Cao, Xiao-Hong; Nie, Wen-Bin; Li, Qin; Hua, Rong
2013-05-01
In this study, a low-cost and high-efficient carbonaceous adsorbent (HTC-COOH) with carboxylic groups was developed for U(VI) removal from aqueous solution compared with the pristine hydrothermal carbon (HTC). The structure and chemical properties of resultant adsorbents were characterized by Scanning electron microscope (SEM), N2 adsorption-desorption, Fourier transform-infrared spectra (FT-IR) and acid-base titration. The key factors (solution pH, contact time, initial U(VI) concentrations and temperature) affected the adsorption of U(VI) on adsorbents were investigated using batch experiments. The adsorption of U(VI) on HTC and HTC-COOH was pH-dependent, and increased with temperature and initial ion concentration. The adsorption equilibrium of U(VI) on adsorbents was well defined by the Langmuir isothermal equation, and the monolayer adsorption capacity of HTC-COOH was found to be 205.8 mg/g. The kinetics of adsorption was very in accordance with the pseudo-second-order rate model. The adsorption processes of U(VI) on HTC and HTC-COOH were endothermic and spontaneous in nature according to the thermodynamics of adsorption. Furthermore, HTC-COOH could selectively adsorption of U(VI) in aqueous solution containing co-existing ions (Mg2+, Co2+, Ni2+, Zn2+ and Mn2+). From the results of the experiments, it is found that the HTC-COOH is a potential adsorbent for effective removal of U(VI) from polluted water.
Adsorption and desorption of heavy metals in soils are primary factors that influence their bioavailability and mobility in the soil profile. To examine the characteristics of nickel (Ni) adsorption-desorption in soils, kinetic batch experiments were carried out followed by Ni re...
Adsorption of phenolic compound by aged-refuse.
Xiaoli, Chai; Youcai, Zhao
2006-09-01
The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.
Li, Yi-Qun; Xu, Li; Zhu, Hua-Xu; Tang, Zhi-Shu; Li, Bo; Pan, Yong-Lan; Yao, Wei-Wei; Fu, Ting-Ming; Guo, Li-Wei
2017-10-01
In order to explore the adsorption characteristics of proteins on the membrane surface and the effect of protein solution environment on the permeation behavior of berberine, berberine and proteins were used as the research object to prepare simulated solution. Low field NMR, static adsorption experiment and membrane separation experiment were used to study the interaction between the proteins and ceramic membrane or between the proteins and berberine. The static adsorption capacity of proteins, membrane relative flux, rejection rate of proteins, transmittance rate of berberine and the adsorption rate of proteins and berberine were used as the evaluation index. Meanwhile, the membrane resistance distribution, the particle size distribution and the scanning electron microscope (SEM) were determined to investigate the adsorption characteristics of proteins on ceramic membrane and the effect on membrane separation process of berberine. The results showed that the ceramic membrane could adsorb the proteins and the adsorption model was consistent with Langmuir adsorption model. In simulating the membrane separation process, proteins were the main factor to cause membrane fouling. However, when the concentration of proteins was 1 g•L⁻¹, the proteins had no significant effect on membrane separation process of berberine. Copyright© by the Chinese Pharmaceutical Association.
Influence of Inorganic Ions on Aggregation and Adsorption Behaviors of Human Adenovirus
In this study, we investigated the influence of inorganic ions on the aggregation and deposition (adsorption) behavior of human adenovirus (HAdV). Experiments were conducted to determine the surface charge and size of HAdV and viral adsorption capacity of sand in different salt c...
Schmidt, Michael P; Martínez, Carmen Enid
2016-08-09
Protein adsorption onto clay minerals is a process with wide-ranging impacts on the environmental cycling of nutrients and contaminants. This process is influenced by kinetic and conformational factors that are often challenging to probe in situ. This study represents an in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic investigation of the adsorption of a model protein (bovine serum albumin (BSA)) onto a clay mineral (montmorillonite) at four concentrations (1.50, 3.75, 7.50, and 15.0 μM) under environmentally relevant conditions. At all concentrations probed, FTIR spectra show that BSA readily adsorbs onto montmorillonite. Adsorption kinetics follow an Elovich model, suggesting that primary limitations on adsorption rates are surface-related heterogeneous energetic restrictions associated with protein rearrangement and lateral protein-protein interaction. BSA adsorption onto montmorillonite fits the Langmuir model, yielding K = 5.97 × 10(5) M(-1). Deconvolution and curve fitting of the amide I band at the end of the adsorption process (∼120 min) shows a large extent of BSA unfolding upon adsorption at 1.50 μM, with extended chains and turns increasing at the expense of α-helices. At higher concentrations/surface coverages, BSA unfolding is less pronounced and a more compact structure is assumed. Two-dimensional correlation spectroscopic (2D-COS) analysis reveals three different pathways corresponding to adsorbed conformations. At 1.50 μM, adsorption increases extended chains, followed by a loss in α-helices and a subsequent increase in turns. At 3.75 μM, extended chains decrease and then aggregated strands increase and side chains decrease, followed by a decrease in turns. With 7.50 and 15.0 μM BSA, the loss of side-chain vibrations is followed by an increase in aggregated strands and a subsequent decrease in turns and extended chains. Overall, the BSA concentration and resultant surface coverage have a profound impact on the dynamics of BSA adsorption onto montmorillonite. These results enhance our understanding of the molecular-level protein dynamics and stabilization of organic matter at mineral surfaces.
Optimization of polyphenol removal from kiwifruit juice using a macroporous resin.
Gao, Zhenpeng; Yu, Zhifang; Yue, Tianli; Quek, Siew Young
2017-06-01
The separation of polyphenols from kiwifruit juice is essential for enhancing sensory properties and prevent the browning reaction in juice during processing and storage. The present study investigated the dynamic adsorption and desorption of polyphenols in kiwifruit juice using AB-8 resin. The model obtained could be successfully applied to predict the experimental results of dynamic adsorption capacity (DAC) and dynamic desorption quantity (DDQ). The results showed that dynamic adsorption of polyphenols could be optimised in a juice concentration of 19 °Brix, with a feed flow-rate of 1.3 mL min -1 and a feed volume of 7 bed volume (BV). The optimum conditions for dynamic desorption of polyphenols from the AB-8 resin were an ethanol concentration of 43% (v/v), an elute flow-rate of 2.2 mL min -1 and an elute volume of 3 BV. The optimized DAC value was 3.16 g of polyphenols kg -1 resin, whereas that for DDQ was 917.5 g kg -1 , with both values being consistent with the predicted values generated by the regression models. The major polyphenols in the dynamic desorption solution consisted of seven compositions. The present study could be scaled-up using a continuous column system for industrial application, thus contributing to the improved flavor and color of kiwifruit juice. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hyung, Hoon; Kim, Jae-Hong
2008-06-15
The effect of natural organic matter (NOM) characteristics and water quality parameters on NOM adsorption to multiwalled carbon nanotubes (MWNT) was investigated. Isotherm experiment results were fitted well with a modified Freundlich isotherm model that took into account the heterogeneous nature of NOM. The preferential adsorption of the higher molecular weight fraction of NOM was observed by size exclusion chromatographic analysis. Experiments performed with various NOM samples suggested that the degree of NOM adsorption varied greatly depending on the type of NOM and was proportional to the aromatic carbon content of NOM. The NOM adsorption to MWNT was also dependent on water quality parameters: adsorption increased as pH decreased and ionic strength increased. As a result of NOM adsorption to MWNT, a fraction of MWNT formed a stable suspension in water and the concentration of MWNT suspension depended on the amount of NOM adsorbed per unit mass of MWNT. The amount of MWNT suspended in water was also affected by ionic strength and pH. The findings in this study suggested that the fate and transport of MWNT in natural systems would be largely influenced by NOM characteristics and water quality parameters.
Effects of Cabin Upsets on Adsorption Columns for Air Revitalization
NASA Technical Reports Server (NTRS)
LeVan, Douglas
1999-01-01
The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.
Zeng, Yan-jun; Zhou, Zhi-jun; Zhao, Qiu-xiang
2015-06-01
Adsorption and desorption experiments, pot experiments and characterization test were performed to investigate the immobilization effect and mechanism of the smectite-OR-SH compound for reducing cadmium uptake by plants in contaminated soils. The results showed that the saturated adsorption capacity for the adsorption of Cd2+ on smectite raised distinctly after functionalized. The adsorption of Cd2+ on smectite-OR-SH compound was very stable and it was difficult for Cd2+ to be desorbed from it. Crop yields promoted differently in original soil, Cd 3 mg x kg(-1) soil and Cd 10 mg x kg(-1) soil after adding the smectite-OR-SH compound. And the cadmium content of the cabbage reduced 61.00%, 62.10% and 83.73% respectively compare with the control. Characterization test analysis showed that Cd was adsorbed by the compound successfully and ligand interaction occurred between Cd and the thiol group. Floc amount on the compound surface increased correspondingly. In addition to electrostatic adsorption, ion exchange and hydroxyl ligand adsorption, the reaction mechanism of smectite-OR-SH compound with Cd was mainly sulfhydryl ligand adsorption.
Xu, Jiafang; Li, Liwen; Liu, Jinxiang; Wang, Xiaopu; Yan, Youguo; Zhang, Jun
2018-03-28
The inhibition properties of kinetic hydrate inhibitor (KHI) molecules on the dynamic growth of a hydrate/water interface are investigated by using molecular dynamics simulations. The shape of the hydrate interface is transformed from laminar to funnel by PVCaps. Results indicate that the inhibition effects not only depend on the adsorption capacity which was believed to determine inhibition, but also on the fact that PVCaps must have some non-binding-hydrate sites that don't tend to combine with hydrate. By observing the time evolution of the distance between each component of PVCaps and hydrate, the heterocyclic ring of PVCaps mainly contributes to adsorption and can preferentially adjust itself to come into contact with a hydrate semi-large-cage. The distance between the amide of PVCaps and hydrate is about 4 Å and exceeds the range of a general hydrogen bond (3.5 Å), which proves that the non-binding-hydrate sites of PVCaps exist. On the other hand, the amide of PVCaps is at the intersection of the solid-liquid interface but has no adsorption affinity for hydrate, so this adsorption pattern indicates that the PVCaps at the hydrate interface are not stable. Due to this unstable adsorption, a repeated hydrate destruction phenomenon was revealed by the identification algorithm of hydrate and the calculation of the local number density of methane. The statistical evolution of water rings further proved the existence of non-binding-hydrate sites in PVCaps and the inhibition mechanism to destroy the hydrate cages by PVCaps. This unstable adsorption mechanism may shed light on the development of novel efficient KHIs.
Zhao, Jun; Wang, Qiuming; Liang, Guizhao; Zheng, Jie
2011-12-20
Accumulation of small soluble oligomers of amyloid-β (Aβ) in the human brain is thought to play an important pathological role in Alzheimer's disease. The interaction of these Aβ oligomers with cell membrane and other artificial surfaces is important for the understanding of Aβ aggregation and toxicity mechanisms. Here, we present a series of exploratory molecular dynamics (MD) simulations to study the early adsorption and conformational change of Aβ oligomers from dimer to hexamer on three different self-assembled monolayers (SAMs) terminated with CH(3), OH, and COOH groups. Within the time scale of MD simulations, the conformation, orientation, and adsorption of Aβ oligomers on the SAMs is determined by complex interplay among the size of Aβ oligomers, the surface chemistry of the SAMs, and the structure and dynamics of interfacial waters. Energetic analysis of Aβ adsorption on the SAMs reveals that Aβ adsorption on the SAMs is a net outcome of different competitions between dominant hydrophobic Aβ-CH(3)-SAM interactions and weak CH(3)-SAM-water interactions, between dominant electrostatic Aβ-COOH-SAM interactions and strong COOH-SAM-water interactions, and between comparable hydrophobic and electrostatic Aβ-OH-SAM interactions and strong OH-SAM-water interactions. Atomic force microscopy images also confirm that all of three SAMs can induce the adsorption and polymerization of Aβ oligomers. Structural analysis of Aβ oligomers on the SAMs shows a dramatic increase in structural stability and β-sheet content from dimer to trimer, suggesting that Aβ trimer could act as seeds for Aβ polymerization on the SAMs. This work provides atomic-level understanding of Aβ peptides at interface. © 2011 American Chemical Society
Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System.
Qu, Yatian; Campbell, Patrick G; Hemmatifar, Ali; Knipe, Jennifer M; Loeb, Colin K; Reidy, John J; Hubert, Mckenzie A; Stadermann, Michael; Santiago, Juan G
2018-01-11
We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.
Dynamic Cooperation of Hydrogen Binding and π Stacking in ssDNA Adsorption on Graphene Oxide.
Xu, Zhen; Lei, Xiaoling; Tu, Yusong; Tan, Zhi-Jie; Song, Bo; Fang, Haiping
2017-09-21
Functional nanoscale structures consisting of a DNA molecule coupled to graphene or graphene oxide (GO) have great potential for applications in biosensors, biomedicine, nanotechnology, and materials science. Extensive studies using the most sophisticated experimental techniques and theoretical methods have still not clarified the dynamic process of single-stranded DNA (ssDNA) adsorbed on GO surfaces. Based on a molecular dynamics simulation, this work shows that an ssDNA segment could be stably adsorbed on a GO surface through hydrogen bonding and π-π stacking interactions, with preferential binding to the oxidized rather than to the unoxidized region of the GO surface. The adsorption process shows a dynamic cooperation adsorption behavior; the ssDNA segment first captures the oxidized groups of the GO surface by hydrogen bonding interaction, and then the configuration relaxes to maximize the π-π stacking interactions between the aromatic rings of the nucleobases and those of the GO surface. We attributed this behavior to the faster forming hydrogen bonding interaction compared to π-π stacking; the π-π stacking interaction needs more relaxation time to regulate the configuration of the ssDNA segment to fit the aromatic rings on the GO surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hughes, Zak E; Kochandra, Raji; Walsh, Tiffany R
2017-04-18
The adsorption of three homo-tripeptides, HHH, YYY, and SSS, at the aqueous Au interface is investigated, using molecular dynamics simulations. We find that consideration of surface facet effects, relevant to experimental conditions, opens up new questions regarding interpretations of current experimental findings. Our well-tempered metadynamics simulations predict the rank ordering of the tripeptide binding affinities at aqueous Au(111) to be YYY > HHH > SSS. This ranking differs with that obtained from existing experimental data which used surface-immobilized Au nanoparticles as the target substrate. The influence of Au facet on these experimental findings is then considered, via our binding strength predictions of the relevant amino acids at aqueous Au(111) and Au(100)(1 × 1). The Au(111) interface supports an amino acid ranking of Tyr > HisA ≃ HisH > Ser, matching that of the tripeptides on Au(111), while the ranking on Au(100) is HisA > Ser ≃ Tyr ≃ HisH, with only HisA showing non-negligible binding. The substantial reduction in Tyr amino acid affinity for Au(100) vs Au(111) offers one possible explanation for the experimentally observed weaker adsorption of YYY on the nanoparticle-immobilized substrate compared with HHH. In a separate set of simulations, we predict the structures of the adsorbed tripeptides at the two aqueous Au facets, revealing facet-dependent differences in the adsorbed conformations. Our findings suggest that Au facet effects, where relevant, may influence the adsorption structures and energetics of biomolecules, highlighting the possible influence of the structural model used to interpret experimental binding data.
[Effect of humic acids on migration and transformation of NH4(+) -N in saturated aquifer].
Meng, Qing-Jun; Zhang, Yan; Feng, Qi-Yan; Zhang, Shuang-Sheng
2011-11-01
Isothermal adsorption experiment was used to study the adsorbing process of NH4(+) -N in quartz sands under the conditions with and without humic acid; the Langmuir and Freundlich equations were used to fit the absorption result and the maximum adsorption capacity of NH4(+) -N by quarts sands was calculated. Through the soil column experiments, the concentration of NH4(+) -N, NO3(-) -N and NO2(-) -N in effluent water in the tested soil column was investigated, and the effect of humic acid on migration and transformation of NH4(+) -N in saturated aquifer was analyzed, and Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equation were applied to fit the kinetic processes. The results showed that both Langmuir and Freundlich models can well describe the isothermal adsorption process of NH4(+) -N on the surface of quartz sands, which means that NH4(+) -N adsorbed by the quartz sand was mainly in the form of monolayer adsorption. The humic acid could increase the adsorption capacity of NH4(+) -N on quartz sand, and the saturated adsorption capacity was 0.354 mg x g(-1) under the condition with humic acid and 0.205 mg x g(-1) with the absence of humic acid. The experiment indicated that humic acid increased the adsorption capacity of NH4(+) -N on the surface of quartz sand by increasing adsorption space in the initial stage. After saturation, humic acid influenced the migration and transformation of NH4(+) -N to NO3(-) -N and NO2(-) -N probably through providing carbon source and energy for microorganisms such as nitrifying bacteria and then resulting in lower NH4(+) -N concentration in effluent water. Both Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equations can well describe the process of NH4(+) -N adsorption kinetics on quartz sand (R2 = 0.997 7 and R2 = 0.998 1 with humic acid; R2 = 0.992 3 and R2 = 0.994 4 without humic acid), indicating that this process was chemical adsorption. By comparing the adsorption rate coefficient of Two-step Adsorption Kinetics Rate Equation k3 (0.247 and 0.143, respectively) and k4 (0.006 27 and 0.001 7) between the treatments with and without humic acid, it can be referred that NH4(+) -N was non-orientated adsorption on active points of the quartz sand at the initial stage, and the humic acid could increase the equilibrium adsorption quantity(q(e)) of NH4(+) -N on quartz sands.
Adsorption of arsenic from aqueous solution using magnetic graphene oxide
NASA Astrophysics Data System (ADS)
Sherlala, A. I. A.; Raman, A. A.; Bello, M. M.
2017-06-01
A binary of graphene oxide (GO) and iron oxide (IO) was prepared and used for the removal of arsenic from aqueous solution. The synthesized compound was characterized using XRD analysis. The prepared composite was used for the adsorption of arsenic from aqueous solution. Central Composite Design was used to design the adsorption experiments and to investigate the effects of operational parameters (initial concentration of arsenic, adsorbent dosage, pH and time) on the adsorption capacity and efficiency. The adsorbent shows a high adsorption capacity for the arsenic. The adsorption efficiency ranges between 33.2 % and 99.95 %. The most significant factors affecting the adsorption capacity were found to be the initial concentration of arsenic and the adsorbent dosage. The initial pH of the solution slightly affects the adsorption capacity, with the maximum adsorption capacity occurring around pH 6 - 7. Thus, the developed adsorbent has a potential for effective removal of arsenic from aqueous solution.
The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...
Role of organic matter on boron adsorption-desorption hysteresis of soils
USDA-ARS?s Scientific Manuscript database
In this study we evaluated the boron (B) adsorption/desorption reaction in six soils and examined the extent to which organic matter content, as well as incubation time affected B release. Six soils varying in initial pH, clay content, and were selected for the study. Adsorption experiments were c...
Polyethylenimine-magadiite layered silicate sorbent for CO2 capture.
Vieira, Rômulo B; Pastore, Heloise O
2014-02-18
This paper describes the preparation of a Layered Silicate Sorbent (LSS) for CO2 capture using the layered silicate magadiite and organo-magadiite modified with polyethylenimine (PEI). The sorbents were characterized and revealed the presence of PEI as well as its interaction with CO2 at low temperatures. The thermal stability of sorbents was confirmed by thermogravimetry experiments, and the adsorption capacity was evaluated by CO2-TPD experiments. Two kinds of PEI are present in the sorbent, one exposed PEI layer that is responsible for higher CO2 adsorption because its sites are external and another one, bulky PEI, capable of low CO2 adsorption due to the internal position of sites. The contribution of the exposed PEI layer may be increased by a previous exchange of CTA(+), but the presence of the surfactant decreased the total adsorption capacity. MAG-PEI25 reached a maximum adsorption capacity of 6.11 mmol g(-1) at 75 °C for 3 h of adsorption and showed a kinetic desorption of around 15 min at 150 °C.
Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: Experiments and modeling
Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.
2016-08-03
The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag 0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag 0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodinemore » adsorption was through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag 0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016« less
The studies on gas adsorption properties of MIL-53 series MOFs materials
NASA Astrophysics Data System (ADS)
Jiao, Yuqiu; Li, Zhenyu; Ma, Yue; Zhou, Guanggang; Wang, Shuangxi; Lu, Guiwu
2017-08-01
Molecular dynamics (MD), grand canonical Monte Carlo (GCMC) and ideal adsorbed solution theory (IAST) were used to study the structures and gas adsorption properties of MIL-53(M)[M=Cr, Fe, Sc, Al] metal organic framework (MOF) materials. The results show that the volumes of those MOF materials increase significantly at high temperature. By analyzing the adsorption isotherms, we found that the temperature had a paramount effect on the gas adsorption behaviors of these MOF materials. For MIL-53(Cr), the orders of the quantities of adsorbed gases were CH4>N2>CO2>H2S, CH4>H2S>CO2>N2 and CH4>CO2>H2S>N2 at 100K, 293K and 623K, respectively. We also calculated the adsorption of several combinations of two gases by MIL-53(Cr) at 293K, the results indicate that the material had selective adsorption of CH4 over CO2, H2S and N2. Our calculations provide microscopic insights into the gas adsorption performances of these MOFs and may further guide the practice of gas separation.
Molecular simulation of hydrophobin adsorption at an oil-water interface.
Cheung, David L
2012-06-12
Hydrophobins are small, amphiphilic proteins expressed by strains of filamentous fungi. They fulfill a number of biological functions, often related to adsorption at hydrophobic interfaces, and have been investigated for a number of applications in materials science and biotechnology. In order to understand the biological function and applications of these proteins, a microscopic picture of the adsorption of these proteins at interfaces is needed. Using molecular dynamics simulations with a chemically detailed coarse-grained potential, the behavior of typical hydrophobins at the water-octane interface is studied. Calculation of the interfacial adsorption strengths indicates that the adsorption is essentially irreversible, with adsorption strengths of the order of 100 k(B)T (comparable to values determined for synthetic nanoparticles but significantly larger than small molecule surfactants and biomolecules). The protein structure at the interface is unchanged at the interface, which is consistent with the biological function of these proteins. Comparison of native proteins with pseudoproteins that consist of uniform particles shows that the surface structure of these proteins has a large effect on the interfacial adsorption strengths, as does the flexibility of the protein.
NASA Astrophysics Data System (ADS)
Liu, Chaojun; Liang, Xiaoyi; Liu, Xiaojun; Wang, Qin; Zhan, Liang; Zhang, Rui; Qiao, Wenming; Ling, Licheng
2008-08-01
Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH 3 (NH 3-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N 2 adsorption, pH PZC (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH 3-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH 3-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH PZC, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.
U(VI) adsorption on aquifer sediments at the Hanford Site.
Um, Wooyong; Serne, R Jeffrey; Brown, Christopher F; Last, George V
2007-08-15
Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.
Cd(II) removal on surface-modified activated carbon: equilibrium, kinetics and mechanism.
Liang, Jianjun; Liu, Meiling; Zhang, Yufei
2016-10-01
Commercial pulverous activated carbon (AC-0) was modified through two steps: oxidize AC-0 acid firstly, impregnate it with iron using ferric chloride secondly. Orthogonal experiment was conducted then to prepare modified activated carbon with high Cd(II) adsorption capacity (ACNF). Batch adsorption experiments were undertaken to determine the adsorption characteristics of Cd(II) from aqueous solution onto AC-0 and ACNF and the effect of pH, contact time and initial Cd(II) concentration. The results indicate that: the adsorption behavior of Cd(II) on ACNF can be well fitted with Langmuir model, and the maximum adsorption capacity of ACNF was 2.3 times higher than that of AC-0, supporting a monolayer coverage of Cd(II) on the surface. The kinetics of the adsorption process can be described by pseudo-second-order rate equation very well, and the adsorption capacity increased from 0.810 mg/g to 0.960 mg/g after modification. Compared with AC-0, the kinetic parameters of ACNF showed a higher adsorption rate through the aqueous solution to the solid surface and a lower intraparticle diffusion rate. Surface modification resulted in a lower Brunauer-Emmett-Teller (BET) surface area and pore size because of the collapse and blockage of pores, according to the X-ray diffraction (XRD) analysis, while the total number of surface oxygen acid groups increased, and this was supposed to contribute to the enhanced adsorption capacity of modified activated carbon.
Arsenate adsorption mechanisms at the allophane - Water interface
Arai, Y.; Sparks, D.L.; Davis, J.A.
2005-01-01
We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]0 from 50 to 1000 ??M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline AI-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO42-) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The innersphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments. ?? 2005 American Chemical Society.
Real-time single-molecule observations of proteins at the solid-liquid interface
NASA Astrophysics Data System (ADS)
Langdon, Blake Brianna
Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the surface for longer time intervals. Surface chemistry and surface spatial heterogeneity (i.e. surface sites with different binding strengths) were shown to influence adsorption, desorption, and interfacial protein-protein associations. For example, faster protein diffusion on hydrophobic surfaces increased protein-protein associations and, at higher protein surface coverage, led to proteins remaining on hydrophobic surfaces longer than on hydrophilic surfaces. Ultimately these studies suggested that surface properties (chemistry, heterogeneity) influence not only protein-surface interactions but also interfacial mobility and protein-protein associations, implying that surfaces that better control protein adsorption can be designed by accounting for these processes.
Experimental study of Human Adenoviruses interactions with clays
NASA Astrophysics Data System (ADS)
Bellou, Maria; Syngouna, Vasiliki; Paparrodopoulos, Spyros; Vantarakis, Apostolos; Chrysikopoulos, Constantinos
2014-05-01
Clays are used to establish low permeability liners in landfills, sewage lagoons, water retention ponds, golf course ponds, and hazardous waste sites. Human adenoviruses (HAdVs) are waterborne viruses which have been used as viral indicators of fecal pollution. The objective of this study was to investigate the survival of HAdV in static and dynamic clay systems. The clays used as a model were crystalline aluminosilicates: kaolinite and bentonite. The adsorption and survival of HAdVs onto these clays were characterized at two different controlled temperatures (4 and 25o C) under static and dynamic batch conditions. Control tubes, in the absence of clay, were used to monitor virus inactivation due to factors other than adsorption to clays (e.g. inactivation or sorption onto the tubes walls). For both static and dynamic batch experiments, samples were collected for a maximum period of seven days. This seven day time - period was determined to be sufficient for the virus-clay systems to reach equilibrium. To infer the presence of infectious HAdV particles, all samples were treated with Dnase and the extraction of viral nucleid acid was performed using a commercial viral RNA kit. All samples were analyzed by Real - Time PCR which was used to quantify viral particles in clays. Samples were also tested for virus infectivity by A549 cell cultures. Exposure time intervals in the range of seven days (0.50-144 hours) resulted in a load reduction of 0.74 to 2.96 logs for kaolinite and a reduction of 0.89 to 2.92 for bentonite. Furthermore, virus survival was higher onto bentonite than kaolinite (p
Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes.
Malek, Kourosh; Sahimi, Muhammad
2010-01-07
Silicon carbide nanotubes (SiCNTs) are new materials with excellent properties, such as high thermal stability and mechanical strength, which are much improved over those of their carboneous counterparts, namely, carbon nanotubes (CNTs). Gas separation processes at high temperatures and pressures may be improved by developing mixed-matrix membranes that contain SiCNTs. Such nanotubes are also of interest in other important processes, such as hydrogen production and its storage, as well as separation by supercritical adsorption. The structural parameters of the nanotubes, i.e., their diameter, curvature, and chirality, as well as the interaction strength between the gases and the nanotubes' walls, play a fundamental role in efficient use of the SiCNTs in such processes. We employ molecular dynamics simulations in order to examine the adsorption and diffusion of N(2), H(2), CO(2), CH(4), and n-C(4)H(10) in the SiCNTs, as a function of the pressure and the type of the nanotubes, namely, the zigzag, armchair, and chiral tubes. The simulations indicate the strong effect of the nanotubes' chirality and curvature on the pressure dependence of the adsorption isotherms and the self-diffusivities. Detailed comparison is made between the results and those for the CNTs. In particular, we find that the adsorption capacity of the SiCNTs for hydrogen is higher than the CNTs' under the conditions that we have studied.
Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes
NASA Astrophysics Data System (ADS)
Malek, Kourosh; Sahimi, Muhammad
2010-01-01
Silicon carbide nanotubes (SiCNTs) are new materials with excellent properties, such as high thermal stability and mechanical strength, which are much improved over those of their carboneous counterparts, namely, carbon nanotubes (CNTs). Gas separation processes at high temperatures and pressures may be improved by developing mixed-matrix membranes that contain SiCNTs. Such nanotubes are also of interest in other important processes, such as hydrogen production and its storage, as well as separation by supercritical adsorption. The structural parameters of the nanotubes, i.e., their diameter, curvature, and chirality, as well as the interaction strength between the gases and the nanotubes' walls, play a fundamental role in efficient use of the SiCNTs in such processes. We employ molecular dynamics simulations in order to examine the adsorption and diffusion of N2, H2, CO2, CH4, and n-C4H10 in the SiCNTs, as a function of the pressure and the type of the nanotubes, namely, the zigzag, armchair, and chiral tubes. The simulations indicate the strong effect of the nanotubes' chirality and curvature on the pressure dependence of the adsorption isotherms and the self-diffusivities. Detailed comparison is made between the results and those for the CNTs. In particular, we find that the adsorption capacity of the SiCNTs for hydrogen is higher than the CNTs' under the conditions that we have studied.
NASA Astrophysics Data System (ADS)
Li, Hui; Li, Gui; Li, Zhiping; Lu, Cuimei; Li, Yanan; Tan, Xianzhou
2013-01-01
Surface imprinting chlorogenic acid (CGA) on nano-TiO2 particles as sacrificial support material was successfully performed by using 4-vinylpyridine (4-VP) as functional monomer to obtain a hollow CGA-imprinted polymer (H-MIP1). Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM) were utilized for structurally characterizing the polymers obtained and adsorption dynamics and thermodynamic behavior investigated according to different models. Binding selectivity, adsorption capacity and the reusability for this H-MIP1 were also evaluated. This hollow CGA imprinted polymer shows rapid binding dynamics and higher binding capability toward the template molecules. The pseudo first-order kinetic model was shown best to describe the binding process of CGA on the H-MIP1 and Langmuir isotherm model best to fit the experimental adsorption isotherm data. Through adsorption isotherms at different temperatures, thermodynamic parameter values were obtained. Selectivity coefficients for the H-MIP1 toward the template were 2.209, 3.213, 1.746 and 2.353 relative to CA, VA, PCA and GA, respectively. This H-MIP1 was also indicated with a good imprint effect and a high capability to capture CGA from methanol extract of Eucommia ulmoides (E. ulmoides) leaves. Additionally, a good reusability for this imprinted polymer was exhibited during repeated adsorption-desorption use.
Chemo-mechanical coupling in kerogen gas adsorption/desorption.
Ho, Tuan Anh; Wang, Yifeng; Criscenti, Louise J
2018-05-09
Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH4 and CO2 adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration.
Colloidal Particle Adsorption at Water-Water Interfaces with Ultralow Interfacial Tension
NASA Astrophysics Data System (ADS)
Keal, Louis; Colosqui, Carlos E.; Tromp, R. Hans; Monteux, Cécile
2018-05-01
Using fluorescence confocal microscopy we study the adsorption of single latex microparticles at a water-water interface between demixing aqueous solutions of polymers, generally known as a water-in-water emulsion. Similar microparticles at the interface between molecular liquids have exhibited an extremely slow relaxation preventing the observation of expected equilibrium states. This phenomenon has been attributed to "long-lived" metastable states caused by significant energy barriers Δ F ˜γ Ad≫kBT induced by high interfacial tension (γ ˜10-2 N /m ) and nanoscale surface defects with characteristic areas Ad≃10 - 30 nm2 . For the studied water-water interface with ultralow surface tension (γ ˜10-4 N /m ) we are able to characterize the entire adsorption process and observe equilibrium states prescribed by a single equilibrium contact angle independent of the particle size. Notably, we observe crossovers from fast initial dynamics to slower kinetic regimes analytically predicted for large surface defects (Ad≃500 nm2). Moreover, particle trajectories reveal a position-independent damping coefficient that is unexpected given the large viscosity contrast between phases. These observations are attributed to the remarkably diffuse nature of the water-water interface and the adsorption and entanglement of polymer chains in the semidilute solutions. This work offers some first insights on the adsorption dynamics or kinetics of microparticles at water-water interfaces in biocolloidal systems.
Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wenge; Pan, Haihua; Zhang, Zhisen
Here, we show the chiral recognition and separation of aspartic acid (Asp) enantiomers by achiral brushite due to the asymmetries of their dynamical steps in its nonequilibrium states. Growing brushite has a higher adsorption affinity to d-Asp, while l-Asp is predominant on the dissolving brushite surface. Microstructural characterization reveals that chiral selection is mainly attributed to brushite [101] steps, which exhibit two different configurations during crystal growth and dissolution, respectively, with each preferring a distinct enantiomer due to this asymmetry. Because these transition step configurations have different stabilities, they subsequently result in asymmetric adsorption. Furthermore, by varying free energy barriersmore » through solution thermodynamic driving force (i.e., supersaturation), the dominant nonequilibrium intermediate states can be switched and chiral selection regulated. This finding highlights that the dynamic steps can be vital for chiral selection, which may provide a potential pathway for chirality generation through the dynamic nature.« less
Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite
Jiang, Wenge; Pan, Haihua; Zhang, Zhisen; ...
2017-06-15
Here, we show the chiral recognition and separation of aspartic acid (Asp) enantiomers by achiral brushite due to the asymmetries of their dynamical steps in its nonequilibrium states. Growing brushite has a higher adsorption affinity to d-Asp, while l-Asp is predominant on the dissolving brushite surface. Microstructural characterization reveals that chiral selection is mainly attributed to brushite [101] steps, which exhibit two different configurations during crystal growth and dissolution, respectively, with each preferring a distinct enantiomer due to this asymmetry. Because these transition step configurations have different stabilities, they subsequently result in asymmetric adsorption. Furthermore, by varying free energy barriersmore » through solution thermodynamic driving force (i.e., supersaturation), the dominant nonequilibrium intermediate states can be switched and chiral selection regulated. This finding highlights that the dynamic steps can be vital for chiral selection, which may provide a potential pathway for chirality generation through the dynamic nature.« less
Werner, Albert; Blaschke, Tim; Hasse, Hans
2012-08-07
Adsorption of native as well as mono-, di-, and tri-PEGylated lysozyme on Toyopearl PPG-600M, a mildly hydrophobic resin is studied by isothermal titration calorimetry and by independent adsorption equilibrium measurements in sodium phosphate buffer at pH 7.0 and 25 °C. For PEGylation two different PEG sizes are used (5 and 10 kDa) which leads to six different forms of PEGylated lysozyme all of which are systematically studied. Additionally, the adsorption of five pure PEGs is explored. The ammonium sulfate concentration is varied from 600 to 1200 mM. The molar enthalpy of adsorption Δh(p)(ads) is determined from the calorimetric and the adsorption equilibrium data. It is found to be endothermic in all experiments. The comparison of the adsorption of different PEGylated forms shows that the adsorption of PEGylated lysozyme is driven by the adsorption of the PEG chain. The results provide insight into the adsorption mechanisms of polymer-modified proteins on hydrophobic chromatographic resins.
Study on kinetics of adsorption of humic acid modified by ferric chloride on U(VI)
NASA Astrophysics Data System (ADS)
Zhang, Y. Y.; Lv, J. W.; Song, Y.; Dong, X. J.; Fang, Q.
2017-11-01
In order to reveal the adsorption mechanism of the ferric chloride modified humic acid on uranium, the influence of pH value and contact time of adsorption on uranium was studied through a series of batch experiments. Meanwhile, the adsorption kinetics was analyzed with pseudo-first order kinetic model and pseudo-second order kinetic model. The results show that adsorption is affected by the pH value of the solution and by contract time, and the best condition for adsorption on uranium is at pH=5 and the adsorption equilibrium time is about 80 min. Kinetics of HA-Fe adsorption on uranium accords with pseudo-second order kinetic model. The adsorption is mainly chemical adsorption, and complexes were produced by the reaction between uranium ions and the functional groups on the surface of HA-Fe, which can provide reference for further study of humic acid effecting on the migration of U(VI) in soil.
Kubiak-Ossowska, Karina; Mulheran, Paul A; Nowak, Wieslaw
2014-08-21
The mechanism of human fibronectin adhesion synergy region (known as integrin binding region) in repeat 9 (FN(III)9) domain adsorption at pH 7 onto various and contrasting model surfaces has been studied using atomistic molecular dynamics simulations. We use an ionic model to mimic mica surface charge density but without a long-range electric field above the surface, a silica model with a long-range electric field similar to that found experimentally, and an Au {111} model with no partial charges or electric field. A detailed description of the adsorption processes and the contrasts between the various model surfaces is provided. In the case of our model silica surface with a long-range electrostatic field, the adsorption is rapid and primarily driven by electrostatics. Because it is negatively charged (-1e), FN(III)9 readily adsorbs to a positively charged surface. However, due to its partial charge distribution, FN(III)9 can also adsorb to the negatively charged mica model because of the absence of a long-range repulsive electric field. The protein dipole moment dictates its contrasting orientation at these surfaces, and the anchoring residues have opposite charges to the surface. Adsorption on the model Au {111} surface is possible, but less specific, and various protein regions might be involved in the interactions with the surface. Despite strongly influencing the protein mobility, adsorption at these model surfaces does not require wholesale FN(III)9 conformational changes, which suggests that the biological activity of the adsorbed protein might be preserved.
Ion counting in supercapacitor electrodes using NMR spectroscopy.
Griffin, John M; Forse, Alexander C; Wang, Hao; Trease, Nicole M; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P
2014-01-01
(19)F NMR spectroscopy has been used to study the local environments of anions in supercapacitor electrodes and to quantify changes in the populations of adsorbed species during charging. In the absence of an applied potential, anionic species adsorbed within carbon micropores (in-pore) are distinguished from those in large mesopores and spaces between particles (ex-pore) by a characteristic nucleus-independent chemical shift (NICS). Adsorption experiments and two-dimensional exchange experiments confirm that anions are in dynamic equilibrium between the in- and ex-pore environments with an exchange rate in the order of tens of Hz. (19)F in situ NMR spectra recorded at different charge states reveal changes in the intensity and NICS of the in-pore resonances, which are interpreted in term of changes in the population and local environments of the adsorbed anions that arise due to the charge-storage process. A comparison of the results obtained for a range of electrolytes reveals that several factors influence the charging mechanism. For a tetraethylammonium tetrafluoroborate electrolyte, positive polarisation of the electrode is found to proceed by anion adsorption at a low concentration, whereas increased ion exchange plays a more important role for a high concentration electrolyte. In contrast, negative polarization of the electrode proceeds by cation adsorption for both concentrations. For a tetrabutylammonium tetrafluoroborate electrolyte, anion expulsion is observed in the negative charging regime; this is attributed to the reduced mobility and/or access of the larger cations inside the pores, which forces the expulsion of anions in order to build up ionic charge. Significant anion expulsion is also observed in the negative charging regime for alkali metal bis(trifluoromethane)sulfonimide electrolytes, suggesting that more subtle factors also affect the charging mechanism.
NASA Astrophysics Data System (ADS)
Mikutta, Robert; Lorenz, Dennis; Guggenberger, Georg; Haumaier, Ludwig; Freund, Anja
2014-11-01
Ferric oxyhydroxides play an important role in controlling the bioavailability of oxyanions such as arsenate and phosphate in soil. Despite this, little is known about the properties and reactivity of Fe(III)-organic matter phases derived from adsorption (reaction of organic matter (OM) to post-synthesis Fe oxide) versus coprecipitation (formation of Fe oxides in presence of OM). Coprecipitates and adsorption complexes were synthesized at pH 4 using two natural organic matter (NOM) types extracted from forest floor layers (Oi and Oa horizon) of a Haplic Podzol. Iron(III) coprecipitates were formed at initial molar metal-to-carbon (M/C) ratios of 1.0 and 0.1 and an aluminum (Al)-to-Fe(III) ratio of 0.2. Sample properties were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, dynamic light scattering, and electrophoretic mobility measurements. Arsenic [As(V)] adsorption to Fe-OM phases was studied in batch experiments (168 h, pH 4, 100 μM As). The organic carbon (OC) contents of the coprecipitates (82-339 mg g-1) were higher than those of adsorption complexes (31 and 36 mg g-1), leading to pronounced variations in specific surface area (9-300 m2 g-1), average pore radii (1-9 nm), and total pore volumes (11-374 mm3 g-1) but being independent of the NOM type or the presence of Al. The occlusion of Fe solids by OM (XPS surface concentrations: 60-82 atom% C) caused comparable pHPZC (1.5-2) of adsorption complexes and coprecipitates. The synthesis conditions resulted in different Fe-OM association modes: Fe oxide particles in 'M/C 0.1' coprecipitates covered to a larger extent the outermost aggregate surfaces, for some 'M/C 1.0' coprecipitates OM effectively enveloped the Fe oxides, while OM in the adsorption complexes primarily covered the outer aggregate surfaces. Despite of their larger OC contents, adsorption of As(V) was fastest to coprecipitates formed at low Fe availability (M/C 0.1) and facilitated by desorption of weakly bonded OC and disaggregation. In contrast, 'M/C 1.0' coprecipitates showed a comparable rate of As uptake as the adsorption complexes. While small mesopores (2-10 nm) promoted the fast As uptake particularly to 'M/C 0.1' coprecipitates, the presence of micropores (<2 nm) appeared to impair As desorption. This study shows that the environmental reactivity of poorly crystalline Fe(III) oxides in terrestrial and aquatic systems can largely vary depending on the formation conditions. Carbon-rich Fe phases precipitated at low M/C ratios may play a more important role in oxyanion immobilization and Fe and C cycling than phases formed at higher M/C ratios or respective adsorption complexes.
A study of metal ion adsorption at low suspended-solid concentrations
Chang, Cecily C.Y.; Davis, J.A.; Kuwabara, J.S.
1987-01-01
A procedure for conducting adsorption studies at low suspended solid concentrations in natural waters (<50 mg l-1) is described. Methodological complications previously associated with such experiments have been overcome. Adsorption of zinc ion onto synthetic colloidal titania (TiO2) was studied as a function of pH, supporting electrolyte (NaCl) concentration (0??1-0??002 m) and particle concentration (2-50 mg l-1). The lack of success of the Davis Leckie site bonding model in describing Zn(II) adsorption emphasizes the need for further studies of adsorption at low suspended-solid concentrations. ?? 1987.
Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis
NASA Astrophysics Data System (ADS)
Deng, Liping; Zhu, Xiaobin; Su, Yingying; Su, Hua; Wang, Xinting
2008-02-01
The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.
NASA Astrophysics Data System (ADS)
Thees, Michael; Roth, Connie
How the glass transition and physical aging in thin films change with confinement is nontrival, with studies in the literature showing that these effects can be modified by various factors including chain adsorption to substrate interfaces and addition of diluents. Some studies indicate that addition of plasticizer appears to eliminate confinement effects such as Tg gradients and possibly impacts chain adsorption to substrates. In contrast, how plasticizer affects physical aging in glassy polymers has been largely unexplored experimentally, despite various theoretical and simulation efforts. Previously we have shown that for neat polystyrene (PS) films, with molecular weights MW < 3000 kg/mol, physical aging rates in thin films decrease with decreasing film thickness consistent with expectations from local Tg gradients. However, we have recently found that for very high molecular weights, MW > 7000 kg/mol, the physical aging rate in thin films was more bulk like, suggesting a diminished gradient in dynamics related to chain connectivity and possibly chain adsorption to the substrate interface. Here, we explore how the addition of dioctyl phthalate (DOP) plasticizer to PS can alter the physical aging rate of thin films and possibly modify the adsorbed layer.
Dynamics, Stability, and Adsorption States of Water on Oxidized RuO 2 (110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Manh-Thuong; Mu, Rentao; Cantu, David C.
Identifying and understanding how excess oxygen atoms affect the adsorption of water on metal oxides is crucial for their use in water splitting. Here, by means of high-resolution scanning tunneling microscopy and density-functional calculations, we show that excess oxygen atoms on the stoichiometric RuO2(110) significantly change the clustering, conformation, and deprotonation equilibrium of adsorbed water. We considered two reactive scenarios during which the stoichiometric surface was exposed to: (i) first to oxygen followed by water, and (ii) first to water followed by oxygen. In both cases the [OH-OH] complex on Ru rows is the dominant species, showing a significant differencemore » from water-only adsorption on the stoichiometric surface in which the [OH-H2O] species is found to be prevalent. Surface reactivity at almost full O coverage is also addressed; there we show that site selectivity of the surface for H adsorption and dissociation of H2O is hindered, notwithstanding the increase of the dynamical motion of both species. We found that the work function of RuO2 can serve as a descriptor for the reactivity of this surface to water and its constituents.« less
Molecular dynamics simulations of cesium adsorption on illite nanoparticles.
Lammers, Laura N; Bourg, Ian C; Okumura, Masahiko; Kolluri, Kedarnath; Sposito, Garrison; Machida, Masahiko
2017-03-15
The charged surfaces of micaceous minerals, especially illite, regulate the mobility of the major radioisotopes of Cs ( 134 Cs, 135 Cs, 137 Cs) in the geosphere. Despite the long history of Cs adsorption studies, the nature of the illite surface sites remains incompletely understood. To address this problem, we present atomistic simulations of Cs competition with Na for three candidate illite adsorption sites - edge, basal plane, and interlayer. Our simulation results are broadly consistent with affinities and selectivities that have been inferred from surface complexation models. Cation exchange on the basal planes is thermodynamically ideal, but exchange on edge surfaces and within interlayers shows complex, thermodynamically non-ideal behavior. The basal planes are weakly Cs-selective, while edges and interlayers have much higher affinity for Cs. The dynamics of NaCs exchange are rapid for both cations on the basal planes, but considerably slower for Cs localized on edge surfaces. In addition to new insights into Cs adsorption and exchange with Na on illite, we report the development of a methodology capable of simulating fully-flexible clay mineral nanoparticles with stable edge surfaces using a well-tested interatomic potential model. Copyright © 2016 Elsevier Inc. All rights reserved.
Adsorption isotherm, adsorption kinetics and column breakthrough experiments evaluating trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) were conducted in the presence and absence of silica nanoparticles (SiO2 NPs). Zeta potential of the SiO
Garten, Matthias; Prévost, Coline; Cadart, Clotilde; Gautier, Romain; Bousset, Luc; Melki, Ronald; Bassereau, Patricia; Vanni, Stefano
2015-06-28
Alpha-synuclein (AS) is a synaptic protein that is directly involved in Parkinson's disease due to its tendency to form protein aggregates. Since AS aggregation can be dependent on the interactions between the protein and the cell plasma membrane, elucidating the membrane binding properties of AS is of crucial importance to establish the molecular basis of AS aggregation into toxic fibrils. Using a combination of in vitro reconstitution experiments based on Giant Unilamellar Vesicles (GUVs), confocal microscopy and all-atom molecular dynamics simulations, we have investigated the membrane binding properties of AS, with a focus on the relative contribution of hydrophobic versus electrostatic interactions. In contrast with previous observations, we did not observe any binding of AS to membranes containing the ganglioside GM1, even at relatively high GM1 content. AS, on the other hand, showed a stronger affinity for neutral flat membranes consisting of methyl-branched lipids. To rationalize these results, we used all-atom molecular dynamics simulations to investigate the influence of methyl-branched lipids on interfacial membrane properties. We found that methyl-branched lipids promote the membrane adsorption of AS by creating shallow lipid-packing defects to a larger extent than polyunsaturated and monounsaturated lipids. Our findings suggest that methyl-branched lipids may constitute a remarkably adhesive substrate for peripheral proteins that adsorb on membranes via hydrophobic insertions.
Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions.
Rivera-Utrilla, J; Sánchez-Polo, M
2003-08-01
The adsorption of Cr(III) in aqueous solution was investigated on a series of ozonised activated carbons, analysing the effect of oxygenated surface groups on the adsorption process. A study was carried out to determine the adsorption isotherms and the influence of the pH on the adsorption of this metal. The adsorption capacity and affinity of the adsorbent for Cr(III) increased with the increase in oxygenated acid groups on the surface of the activated carbon. These findings imply that electrostatic-type interactions predominate in the adsorption process, although the adsorption of Cr(III) on the original (basic) carbon indicates that other forces also participate in the adsorption process. Thus, the ionic exchange of protons in the -Cpi-H3O(+) interaction for Cr(III) accounts for the adsorption of cationic species in basic carbons with positive charge density. Study of the influence of pH on the adsorption of Cr(III) showed that, in each system, the maximum adsorption occurred when the charge of the carbon surface was opposite that of the species of Cr(III) present at the pH of the experiment. These results confirmed that electrostatic interactions predominate in the adsorption process.
Ionic Adsorption and Desorption of CNT Nanoropes
Shang, Jun-Jun; Yang, Qing-Sheng; Yan, Xiao-Hui; He, Xiao-Qiao; Liew, Kim-Meow
2016-01-01
A nanorope is comprised of several carbon nanotubes (CNTs) with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment. PMID:28335306
Lakshmanan, Shyam; Murugesan, Thanapalan
2016-12-01
Activated carbon from coconut shell was used to investigate the adsorption of chlorate from a chlor-alkali plant's brine stream. The effect of pH, flowrate, chlorate and chloride concentration on the breakthrough curves were studied in small-scale column trials. The results obtained show enhanced adsorption at low flowrates, higher chlorate concentrations, and at a pH of 10. These studies show that introducing an activated carbon adsorption column just before the saturator would remove sufficient quantities of chlorate to allow more of the chlor-alkali plant's brine stream to be reused. From column dynamic studies, the Thomas model showed close approximation when the chlorate in the effluent was higher than breakthrough concentrations and there was close correlation at high influent concentration. The q o (maximum adsorption capacity) values were close to those obtained experimentally, indicating close representation of the breakthrough curve by the Thomas model.
Ionic Adsorption and Desorption of CNT Nanoropes.
Shang, Jun-Jun; Yang, Qing-Sheng; Yan, Xiao-Hui; He, Xiao-Qiao; Liew, Kim-Meow
2016-09-28
A nanorope is comprised of several carbon nanotubes (CNTs) with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.
Cryogenic adsorption of nitrogen on activated carbon: Experiment and modeling
NASA Astrophysics Data System (ADS)
Zou, Long-Hui; Liu, Hui-Ming; Gong, Ling-Hui
2018-03-01
A cryo-sorption device was built based on a commercial gas sorption analyzer with its sample chamber connected to the 2nd stage of the Gifford-McMahon (GM) cryocooler (by SUMITOMO Corporation), which could provide the operation temperature ranging from 4.5 K to 300 K; The nitrogen adsorption isotherms ranging from 95 to 160 K were obtained by volumetric method on the PICATIF activated carbon. Isosteric heat of adsorption was calculated using the Clausius-Clapeyron equation and was around 8 kJ/mol. Conventional isotherm models and the artificial neural network (ANN) were applied to analyze the adsorption data, the Dual-site Langmuir and the Toth equation turned out to be the most suitable empirical isotherm model; Adsorption equilibrium data at some temperature was used to train the neural network and the rest was used to validate and predict, it turned out that the accuracy of the prediction by the ANN increased with increasing hidden-layer, and it was within ±5% for the three-hidden-layer ANN, and it showed better performance than the conventional isotherm model; Considering large time consumption and complexity of the adsorption experiment, the ANN method can be applied to get more adsorption data based on the already known experimental data.
A quantitative speciation model for the adsorption of organic pollutants on activated carbon.
Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M
2013-01-01
Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.
Cruz, G J F; Gómez, M M; Solis, J L; Rimaycuna, J; Solis, R L; Cruz, J F; Rathnayake, B; Keiski, R L
2018-05-01
Composite material (AC-ZnO) was prepared by growing ZnO nanoparticles during the production of biomass based-activated carbon (AC) via the incorporation of zinc acetate in the process. Comprehensive analyses confirmed the presence of ZnO nanoparticles over the AC surface and described the particular nature of the composite adsorbent. Methylene blue (MB) equilibrium data fitted the Dubinin-Radushkevich model. The MB adsorption capacity was higher for the bare activated carbons (197.9-188.7 mg/g) than the activated carbons with ZnO nanoparticles (137.6-149.7 mg/g). The adsorption of the MB on the adsorbents is physical because the mean adsorption energy (E) is between 1.76 and 2.00 kJ/mol. Experiments that combine adsorption and photocatalysis were carried out with different loads of adsorbents and with and without UV-light exposure. Photocatalytic activity was identified mostly at the first stage of the adsorption process and, in the case of experiments with less load of the composite AC-ZnO, because the light obstruction effect of the activated carbon is more for higher loads. The ZnO grown over AC improves the adsorption of cations such as Pb, Al and Fe in aqueous phase (polluted river water) and provides antibacterial capacity against Escherichia coli and Salmonella typhimurium.
NASA Astrophysics Data System (ADS)
Yao, Qingxu; Xu, Peng; Huo, Yonggang; Shang, Aiguo; Yu, Fengmei
2018-01-01
Dithiocarbamate grafted silica gel (DTC-SiO2) was prepared following two simple reaction steps. The properties of the composite were characterized by FTIR, SEM and element analysis. Its ability to remove Co2+ ions in aqueous solution with low concentration was also studied by static adsorption experiments. The effects of pH value in solution, contact time and temperature were investigated. The results show that the DTC-SiO2 exhibits excellent adsorption property for Co2+. The adsorption kinetics could be well described by pseudo-second-order model and the adsorption isotherms could be depicted by both Freundlich and Dubinin-Radushkevich models. The adsorption process belongs to chemisorption. The slightly influence of common interfering metal ions (Na+, K+, Ca2+ and Mg2+) on the adsorption capacity revealing the synthesized DTC-SiO2 performs excellent selective adsorption to Co2+.
Navia, R; Inostroza, X; Diez, M C; Lorber, K E
2006-05-01
An irrigation process through volcanic soil columns was evaluated for bleached Kraft mill effluent pollutants retention. The system was designed to remove color and phenolic compounds and a simple kinetic model for determining the global mass transfer coefficient and the adsorption rate constant was used. The results clearly indicate that the global mass transfer coefficient values (K(c)a) and the adsorption rate constants are higher for the irrigation processes onto acidified soil. This means that the pretreatment of washing the volcanic soil with an acid solution has a positive effect on the adsorption rate for both pollutant groups. The enhanced adsorption capacity is partially explained by the activation of the metal oxides present in the soil matrix during the acid washing process. Increasing the flow rate from 1.5 to 2.5 ml/min yielded higher (K(c)a) values and adsorption rate constants for both pollutant groups. For instance, regarding color adsorption onto acidified soil, there is an increment of 43% in the (K(c)a) value for the experiment with a flow rate of 2.5 ml/min. Increasing the porosity of the column from 0.55 to 0.59, yielded a decrease in the (K(c)a) values for color and phenolic compounds adsorption processes. Onto natural soil for example, these decreases reached 21% and 24%, respectively. Therefore, the (K(c)a) value is dependent on both the liquid-phase velocity (external resistance) and the soil fraction in the column (internal resistance); making forced convection and diffusion to be the main transport mechanisms involved in the adsorption process. Analyzing the adsorption rate constants (K(c)a)/m, phenolic compounds and color adsorption rates onto acidified soil of 2.25 x 10(-6) and 2.62 x 10(-6) l/mg min were achieved for experiment 1. These adsorption rates are comparable with other adsorption systems and adsorbent materials.
NASA Astrophysics Data System (ADS)
Ferdous, Sultana; Ioannidis, Marios A.; Henneke, Dale E.
2012-05-01
The effects of temperature, pH and sodium chloride (NaCl) concentration on the equilibrium and dynamic interfacial tension (IFT) of 4.4-nm gold nanoparticles capped with n-dodecanethiol at hydrocarbon-water interfaces was studied. The pendant drop technique was used to study the adsorption properties of these nanoparticles at the hexane-water and nonane-water interfaces. The physical size of the gold nanoparticles was determined by TEM image analysis. The interfacial properties of mixtures of these nanoparticles, having different sizes and capping agents, were then studied. The addition of NaCl was found to cause a decrease of the equilibrium and dynamic IFT greater than that which accompanies the adsorption of nanoparticles at the interface in the absence of NaCl. Although IFT values for acidic and neutral conditions were found to be similar, a noticeable decrease in the IFT was found for more basic conditions. Increasing the temperature of the system was found to cause an increase in both dynamic and equilibrium IFT values. These findings have implications for the self-assembly of functionalized gold nanoparticles at liquid-liquid interfaces.
Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion.
Zou, Ruyi; Li, Pei-Zhou; Zeng, Yong-Fei; Liu, Jia; Zhao, Ruo; Duan, Hui; Luo, Zhong; Wang, Jin-Gui; Zou, Ruqiang; Zhao, Yanli
2016-05-01
A highly porous metal-organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2 (COO)4 ) and tetrameric (Zn4 (O)(CO2 )6 ), is successfully assembled by the reaction of a tricarboxylate ligand with Zn(II) ion. Subsequently, single-crystal-to-single-crystal metal cation exchange using the constructed MOF is investigated, and the results show that Cu(II) and Co(II) ions can selectively be introduced into the MOF without compromising the crystallinity of the pristine framework. This metal cation-exchangeable MOF provides a useful platform for studying the metal effect on both gas adsorption and catalytic activity of the resulted MOFs. While the gas adsorption experiments reveal that Cu(II) and Co(II) exchanged samples exhibit comparable CO2 adsorption capability to the pristine Zn(II) -based MOF under the same conditions, catalytic investigations for the cycloaddition reaction of CO2 with epoxides into related carbonates demonstrate that Zn(II) -based MOF affords the highest catalytic activity as compared with Cu(II) and Co(II) exchanged ones. Molecular dynamic simulations are carried out to further confirm the catalytic performance of these constructed MOFs on chemical fixation of CO2 to carbonates. This research sheds light on how metal exchange can influence intrinsic properties of MOFs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fainerman, V B; Lotfi, M; Javadi, A; Aksenenko, E V; Tarasevich, Yu I; Bastani, D; Miller, R
2014-11-04
The influence of the addition of the nonionic surfactants dodecyl dimethyl phosphine oxide (C12DMPO), tetradecyl dimethyl phosphine oxide (C14DMPO), decyl alcohol (C10OH), and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the surface tension is studied. It is shown that a significant decrease of the water/air surface tension occurs for all the surfactants studied at very low concentrations (10(-5)-10(-3) mmol/L). All measurements were performed with the buoyant bubble profile method. The dynamics of the surface tension was simulated using the Fick and Ward-Tordai equations. The calculation results agree well with the experimental data, indicating that the equilibration times in the system studied do not exceed 30 000 s, while the time required to attain the equilibrium on a plane surface is by one order of magnitude higher. To achieve agreement between theory and experiment for the mixtures, a supposition was made about the influence of the concentration of nonionic surfactant on the adsorption activity of the protein. The adsorption isotherm equation of the protein was modified accordingly, and this corrected model agrees well with all experimental data.
Adsorption of soft and hard proteins onto OTCEs under the influence of an external electric field.
Benavidez, Tomás E; Torrente, Daniel; Marucho, Marcelo; Garcia, Carlos D
2015-03-03
The adsorption behavior of hard and soft proteins under the effect of an external electric field was investigated by a combination of spectroscopic ellipsometry and molecular dynamics (MD) simulations. Optically transparent carbon electrodes (OTCE) were used as conductive, sorbent substrates. Lysozyme (LSZ) and ribonuclease A (RNase A) were selected as representative hard proteins, whereas myoglobin (Mb), α-lactalbumin (α-LAC), bovine serum albumin (BSA), glucose oxidase (GOx), and immunoglobulin G (IgG) were selected to represent soft proteins. In line with recent publications from our group, the experimental results revealed that while the adsorption of all investigated proteins can be enhanced by the potential applied to the electrode, the effect is more pronounced for hard proteins. In contrast with the incomplete monolayers formed at open-circuit potential, the application of +800 mV to the sorbent surface induced the formation of multiple layers of protein. These results suggest that this effect can be related to the intrinsic polarizability of the protein (induction of dipoles), the resulting surface accessible solvent area (SASA), and structural rearrangements induced upon the incorporation on the protein layer. The described experiments are critical to understand the relationship between the structure of proteins and their tendency to form (under electric stimulation) layers with thicknesses that greatly surpass those obtained at open-circuit conditions.
Stern Layer Structure and Energetics at Mica-Water Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourg, Ian C.; Lee, Sang Soo; Fenter, Paul
2017-04-11
The screening of surface charge by dissolved ions at solid liquid interfaces in the region of interfacial fluid known as the electrical double layer (EDL)-plays a recurrent role in surface science, from ion adsorption to colloidal mechanics to the transport properties of nanoporous media. A persistent unknown in theories of EDL-related phenomena is the structure of the Stern layer, the near-surface portion of the EDL where water molecules and adsorbed ions form specific short-range interactions with surface atoms. Here, we describe a set of synchrotron X-ray reflectivity (XRR) experiments and molecular dynamics (MD) simulations carried out under identical conditions formore » a range of 0.1 M alkali chloride (Li-, Na-, K-, Rb-, or CsCl) solutions on the basal surface of muscovite mica, a mineral isostructural to phyllosilicate clay minerals and one of the most widely studied reference surfaces in interfacial science. Our XRR and MD simulation results provide a remarkably consistent view of the structure and energetics of the Stern layer, with some discrepancy on the fraction of the minor outer-sphere component of Rb and on the adsorption energetics of Li. The results of both techniques, along with surface complexation model calculations, provide insight into the sensitivity of water structure and ion adsorption to surface topography and the type of adsorbed counterion.« less
Decomposition of algal lipids in clay-enriched marine sediment under oxic and anoxic conditions
NASA Astrophysics Data System (ADS)
Lü, Dongwei; Song, Qian; Wang, Xuchen
2010-01-01
A series of laboratory incubation experiments were conducted to examine the decomposition of algal organic matter in clay-enriched marine sediment under oxic and anoxic conditions. During the 245-day incubation period, changes in the concentrations of TOC, major algal fatty acid components (14:0, 16:0, 16:1, 18:1 and 20:5), and n-alkanes (C16-C23) were quantified in the samples. Our results indicate that the organic matters were degraded more rapidly in oxic than anoxic conditions. Adsorption of fatty acids onto clay minerals was a rapid and reversible process. Using a simple G model, we calculated the decomposition rate constants for TOC, n-alkanes and fatty acids which ranged from 0.017-0.024 d-1, 0.049-0.103 d-1 and 0.011 to 0.069 d-1, respectively. Algal organic matter degraded in two stages characterized by a fast and a slow degradation processes. The addition of clay minerals montmorillonite and kaolinite to the sediments showed significant influence affecting the decomposition processes of algal TOC and fatty acids by adsorption and incorporation of the compounds with clay particles. Adsorption/association of fatty acids by clay minerals was rapid but appeared to be a slow reversible process. In addition to the sediment redox and clay influence, the structure of the compounds also played important roles in affecting their degradation dynamic in sediments.
Adsorption of Soft and Hard Proteins onto OTCEs under the influence of an External Electric Field
Benavidez, Tomás E.; Torrente, Daniel; Marucho, Marcelo; Garcia, Carlos D.
2015-01-01
The adsorption behavior of hard and soft proteins under the effect of an external electric field was investigated by a combination of spectroscopic ellipsometry and molecular dynamics (MD) simulations. Optically transparent carbon electrodes (OTCE) were used as conductive, sorbent substrates. Lysozyme (LSZ) and ribonuclease A (RNase A) were selected as representative hard proteins whereas myoglobin (Mb), α-lactalbumin (α-LAC), bovine serum albumin (BSA), glucose oxidase (GOx), and immunoglobulin G (IgG) were selected to represent soft proteins. In line with recent publications from our group, the experimental results revealed that while the adsorption of all investigated proteins can be enhanced by the potential applied to the electrode, the effect is more pronounced for hard proteins. In contrast with the incomplete monolayers formed at open-circuit potential, the application of +800mV to the sorbent surface induced the formation of multiple layers of protein. These results also suggest that this effect can be related to the intrinsic polarizability of the protein (induction of dipoles), the resulting surface accessible solvent area (SASA), and structural rearrangements induced upon the incorporation on the protein layer. The described experiments are critical to understand the relationship between the structure of proteins and their tendency to form (under electric stimulation) layers with thicknesses that greatly surpass those obtained at open-circuit conditions. PMID:25658387
Adsorption of emerging contaminant metformin using graphene oxide.
Zhu, Shuai; Liu, Yun-Guo; Liu, Shao-Bo; Zeng, Guang-Ming; Jiang, Lu-Hua; Tan, Xiao-Fei; Zhou, Lu; Zeng, Wei; Li, Ting-Ting; Yang, Chun-Ping
2017-07-01
The occurrence of emerging contaminants in our water resources poses potential threats to the livings. Due to the poor treatment in wastewater management, treatment technologies are needed to effectively remove these products for living organism safety. In this study, Graphene oxide (GO) was tested for the first time for its capacity to remove a kind of emerging wastewater contaminants, metformin. The research was conducted by using a series of systematic adsorption and kinetic experiments. The results indicated that GO could rapidly and efficiently reduce the concentration of metformin, which could provide a solution in handling this problem. The uptake of metformin on the graphene oxide was strongly dependent on temperature, pH, ionic strength, and background electrolyte. The adsorption kinetic experiments revealed that almost 80% removal of metformin was achieved within 20 min for all the doses studied, corresponding to the relatively high k 1 (0.232 min -1 ) and k 2 (0.007 g mg -1 min -1 ) values in the kinetic models. It indicated that the highest adsorption capacity in the investigated range (q m ) of GO for metformin was at pH 6.0 and 288 K. Thermodynamic study indicated that the adsorption was a spontaneous (ΔG 0 < 0) and exothermic (ΔH 0 < 0) process. The adsorption of metformin increased when the pH values changed from 4.0 to 6.0, and decreased adsorption were observed at pH 6.0-11.0. GO still exhibited excellent adsorption capacity after several desorption/adsorption cycles. Besides, both so-called π-π interactions and hydrogen bonds might be mainly responsible for the adsorption of metformin onto GO. Copyright © 2017 Elsevier Ltd. All rights reserved.
Single-Molecule Probing of Adsorption and Diffusion on Silica Surfaces
NASA Astrophysics Data System (ADS)
Wirth, Mary J.; Legg, Michael A.
2007-05-01
Single-molecule spectroscopy has emerged as a valuable tool in probing kinetics and dynamic equilibria in adsorption because advances in instrumentation and technology have enabled researchers to obtain high signal-to-noise ratios for common dyes at room temperature. Single-molecule spectroscopy was applied to the study of an important problem in chromatography: peak broadening and asymmetry in the chromatograms of pharmaceuticals, peptides, and proteins. Using DiI, a cationic dye that exhibits the same problematic chromatographic behavior, investigators showed that the adsorption sites that cause chromatographic problems are located at defects on the silica crystal surface.
The dynamic adsorption characteristics of phenol by granular activated carbon.
Namane, A; Hellal, A
2006-09-01
The objective of the present work is to determine the operating conditions of an activated carbon filter, based on the characteristics of breakthrough curves. For this we apply the technical developed by Mickaels for the ionic exchange and applied by Luchkis for the adsorption, and which is the mass transfer zone. To reach our goal, an evaluation of the operating conditions (height of the bed, flow and concentration of effluent) on the characteristics of the mass transfer zone was made and an explanation of the mechanism of adsorption was given. Thereafter a modeling of the experimental results was done.
Adsorption of xenon on vicinal copper and platinum surfaces
NASA Astrophysics Data System (ADS)
Baker, Layton
The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms adsorbed at step edges (on the platinum surfaces). The results herein provide several novel observations regarding the adsorptive behavior of xenon on vicinal copper and platinum surfaces.
Stang, Christoph; Bakanov, Nikita; Schulz, Ralf
2016-01-01
Knowledge on the dynamics and the durability of the processes governing the mitigation of pesticide loads by aquatic vegetation in vegetated streams, which are characterized by dynamic discharge regimes and short chemical residence times, is scarce. In a static long-term experiment (48 h), the dissipation of five pesticides from the aqueous phase followed a biphasic pattern in the presence of aquatic macrophytes. A dynamic concentration decrease driven by sorption to the macrophytes ranged from 8.3 to 60.4% for isoproturon and bifenox, respectively, within the first 2 h of exposure. While the aqueous concentrations of imidacloprid, isoproturon, and tebufenozide remained constant thereafter, the continuous but decelerated concentration decrease of difenoconazole and bifenox in the water-macrophyte systems used here was assumed to be attributed to macrophyte-induced degradation processes. In addition, a semi-static short-term experiment was conducted, where macrophytes were transferred to uncontaminated medium after 2 h of exposure to simulate a transient pesticide peak. In the first part of the experiment, adsorption to macrophytes resulted in partitioning coefficients (logK D_Adsorp) ranging from 0.2 for imidacloprid to 2.2 for bifenox. One hour after the macrophytes were transferred to the uncontaminated medium, desorption of the compounds from the macrophytes resulted in a new phase equilibrium and K D_Desorp values of 1.46 for difenoconazole and 1.95 for bifenox were determined. A correlation analysis revealed the best match between the compound affinity to adsorb to macrophytes (expressed as K D_Adsorp) and their soil organic carbon-water partitioning coefficient (K OC) compared to their octanol-water partitioning coefficient (K OW) or a mathematically derived partitioning coefficient.
Formation of Manganese Oxide Coatings onto Sand for Adsorption of Trace Metals from Groundwater.
Tilak, A S; Ojewole, S; Williford, C W; Fox, G A; Sobecki, T M; Larson, S L
2013-11-01
Manganese oxide (MnO) occurs naturally in soil and has a high affinity for trace metals adsorption. In this work, we quantified the factors (pH; flow rate; use of oxidants such as bleach, HO, and O; initial Mn(II) concentrations; and two types of geologic media) affecting MnO coatings onto Ottawa and aquifer sand using batch and column experiments. The batch experiments consisted of manual and automated titration, and the column experiments mimicked natural MnO adsorption and oxidation cycles as a strategy for in situ adsorption. A Pb solution of 50 mg L was passed through MnO-coated sand at a flow rate of 4 mL min to determine its adsorption capacity. Batch experimental results showed that MnO coatings increased from pH 6 to 8, with maximum MnO coating occurring at pH 8. Regarding MnO coatings, bleach and O were highly effective compared with HO. The Ottawa sand had approximately twice the MnO coating of aquifer sand. The sequential increase in initial Mn(II) concentrations on both sands resulted in incremental buildup of MnO. The automated procedure enhanced MnO coatings by 3.5 times compared with manual batch experiments. Column results showed that MnO coatings were highly dependent on initial Mn(II) and oxidant concentrations, pH, flow rate, number of cycles (h), and the type of geologic media used. Manganese oxide coating exceeded 1700 mg kg for Ottawa sand and 130 mg kg for aquifer sand. The Pb adsorption exceeded 2200 mg kg for the Ottawa sand and 300 mg kg for the aquifer sand. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Shipley, Heather J; Engates, Karen E; Grover, Valerie A
2013-03-01
Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.
Effect of pH and Electrolytes on Adsorption of 2,4-D onto Kaolinite
NASA Astrophysics Data System (ADS)
Sharma, A.; Kawamoto, K.; Komatsu, T.; Moldrup, P.
2006-12-01
The fate and transport of pesticides in soil can be greatly influenced by adsorption onto clay minerals such as kaolinite. The ionic pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) is one of the most commonly used herbicides. The purpose of this study is to investigate the effect of electrolytes and pH on the adsorption of 2,4- D onto kaolinite. The adsorption coefficient (Kd) of 2,4-D on two types of kaolinite was measured in batch experiments using water and 4 different electrolytes (0.005M CaSO4, 0.005M CaCl2, 0.01M KCl, and 0.01M NaCl). The experiments were carried out with 0.5 g kaolinite at a solid:liquid ratio of 1:20 and at different pH (1.9-6.3). The pH of the solution was controlled by addition of 0.2N of HCl. X-ray diffraction analysis of both kaolinite with and without adsorbed 2,4-D was also done to understand the location of 2,4-D adsorption. The effects of pH and electrolytes on Kd were compared and possible adsorption mechanisms were revealed for 2,4-D adsorption onto the two different types of kaolinite. The results implied that 2,4-D adsorption was higher for an electrolyte solution with monovalent cation than with divalent cation for one type of kaolinite, while no such trend was observed for the other kaolinite. The adsorption of 2,4-D increased significantly with decreasing pH for both types of kaolinite.
Saha, Dipendu; Orkoulas, Gerassimos; Yohannan, Samuel; Ho, Hoi Chun; Cakmak, Ercan; Chen, Jihua; Ozcan, Soydan
2017-04-26
In this work, nanoporous boron nitride sample was synthesized with a Brunauer-Emmett-Teller (BET) surface area of 1360 m 2 /g and particle size 5-7 μm. The boron nitride was characterized with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electron microscopy (TEM and SEM). Thermogravimetric analysis (TGA) under nitrogen and air and subsequent analysis with XPS and XRD suggested that its structure is stable in air up to 800 °C and in nitrogen up to 1050 °C, which is higher than most of the common adsorbents reported so far. Nitrogen and hydrocarbon adsorption at 298 K and pressure up to 1 bar suggested that all hydrocarbon adsorption amounts were higher than that of nitrogen and the adsorbed amount of hydrocarbon increases with an increase in its molecular weight. The kinetics of adsorption data suggested that adsorption becomes slower with the increase in molecular weight of hydrocarbons. The equilibrium data suggested that that boron nitride is selective to paraffins in a paraffin-olefin mixture and hence may act as an "olefin generator". The ideal adsorbed solution theory (IAST)-based selectivity for CH 4 /N 2 , C 2 H 6 /CH 4 , and C 3 H 8 /C 3 H 6 was very high and probably higher than the majority of adsorbents reported in the literature. IAST-based calculations were also employed to simulate the binary mixture adsorption data for the gas pairs of CH 4 /N 2 , C 2 H 6 /CH 4 , C 2 H 6 /C 2 H 4 , and C 3 H 8 /C 3 H 6 . Finally, a simple mathematical model was employed to simulate the breakthrough behavior of the above-mentioned four gas pairs in a dynamic column experiment. The overall results suggest that nanoporous boron nitride can be used as a potential adsorbent for light hydrocarbon separation.
Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil-Water Interfaces.
Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; York, David W; Reichert, Matthew D; Anna, Shelly L; Walker, Lynn M; Williams, Richard A; Biggs, Simon R
2016-05-03
The influence of particle adsorption on liquid/liquid interfacial tension is not well understood, and much previous research has suggested conflicting behaviors. In this paper we investigate the surface activity and adsorption kinetics of charge stabilized and pH-responsive polymer stabilized colloids at oil/water interfaces using two tensiometry techniques: (i) pendant drop and (ii) microtensiometer. We found, using both techniques, that charge stabilized particles had little or no influence on the (dynamic) interfacial tension, although dense silica particles affected the "apparent" measured tension in the pendent drop, due to gravity driven elongation of the droplet profile. Nevertheless, this apparent change additionally allowed the study of adsorption kinetics, which was related qualitatively between particle systems by estimated diffusion coefficients. Significant and real interfacial tension responses were measured using ∼53 nm core-shell latex particles with a pH-responsive polymer stabilizer of poly(methyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (pMMA-b-pDMAEMA) diblock copolymer. At pH 2, where the polymer is strongly charged, behavior was similar to that of the bare charge-stabilized particles, showing little change in the interfacial tension. At pH 10, where the polymer is discharged and poorly soluble in water, a significant decrease in the measured interfacial tension commensurate with strong adsorption at the oil-water interface was seen, which was similar in magnitude to the surface activity of the free polymer. These results were both confirmed through droplet profile and microtensiometry experiments. Dilational elasticity measurements were also performed by oscillation of the droplet; again, changes in interfacial tension with droplet oscillation were only seen with the responsive particles at pH 10. Frequency sweeps were performed to ascertain the dilational elasticity modulus, with measured values being significantly higher than previously reported for nanoparticle and surfactant systems, and similar in magnitude to protein stabilized droplets.
Baptista, R P; Santos, A M; Fedorov, A; Martinho, J M G; Pichot, C; Elaïssari, A; Cabral, J M S; Taipa, M A
2003-05-08
The adsorption of a recombinant cutinase from Fusarium solani pisi onto the surface of 100 nm diameter poly(methyl methacrylate) (PMMA) latex particles was evaluated. Adsorption of cutinase is a fast process since more than 70% of protein molecules are adsorbed onto PMMA at time zero of experiment, irrespective of the tested conditions. A Langmuir-type model fitted both protein and enzyme activity isotherms at 25 degrees C. Gamma(max) increased from 1.1 to 1.7 mg m(-2) and U(max) increased from 365 to 982 U m(-2) as the pH was raised from 4.5 to 9.2, respectively. A decrease (up to 50%) in specific activity retention was observed at acidic pH values (pH 4.5 and 5.2) while almost no inactivation (eta(act) congruent with 87-94%) was detected upon adsorption at pH 7.0 and 9.2. Concomitantly, far-UV circular dichroism (CD) spectra evidenced a reduction in the alpha-helical content of adsorbed protein at acidic pH values while at neutral and alkaline pH the secondary structure of adsorbed cutinase was similar to that of native protein. Fluorescence anisotropy decays showed the release of some constraints to the local motion of the Trp69 upon protein adsorption at pH 8.0, probably due to the disruption of the tryptophan-alanine hydrogen bond when the tryptophan interacts with the PMMA surface. Structural data associated with activity measurements at pH 7.0 and 9.2 showed that cutinase adsorbs onto PMMA particles in an end-on orientation with active site exposed to solvent and full integrity of cutinase secondary structure. Hydrophobic interactions are likely the major contribution to the adsorption mechanism at neutral and alkaline pH values, and a higher amount of protein is adsorbed to PMMA particles with increasing temperature at pH 9.2. The maximum adsorption increased from 88 to 140 mg cutinase per g PMMA with temperature raising from 25 to 50 degrees C, at pH 9.2.
Salama, Ahmed
2018-01-01
A novel superadsorbent anionic hydrogel was synthesized by grafting of poly (3-sulfopropyl methacrylate), P(SPMA), onto carboxymethyl cellulose (CMC). CMC-g-P(SPMA) superadsorbent hydrogel was applied as an efficient and sustainable adsorbent to remove methylene blue (MB) from waste water. Batch adsorption experiments showed that the solution pH had an obvious effect on the adsorption capacity with an optimal sorption pH at 6. The CMC-g-P(SPMA) hydrogel had rapid adsorption kinetics for MB and the adsorption equilibrium reached within 40min. The adsorption kinetics were more accurately described by pseudo second-order model and the Langmuir-fitted adsorption isotherms revealed a maximum capacity of 1675mg/g. The current anionic hydrogel is reusable as the adsorption capacity remained at 89% level after five adsorption-desorption cycles. CMC-g-P(SPMA) hydrogel was presented as a sustainable promising adsorbent with high adsorption capacity and good regenerability for effective cationic dyes removal. Copyright © 2017 Elsevier B.V. All rights reserved.
The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization
Ding, Yi; Liu, Le; Fang, Yaowei; Zhang, Xu; Lyu, Mingsheng; Wang, Shujun
2018-01-01
We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH). We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, and the maximum dextranase adsorption uptake was 1.38 mg/g (416.67 U/mg); histidine and phenylalanine could affect the adsorption. A histidine tag could be added to the protein to increase the adsorption significantly. The performance features and mechanism were investigated with X-ray diffraction patterns (XRD) and Fourier transform infrared spectra (FTIR). The protein could affect the crystal structure of LDH, and the enzyme was adsorbed on the LDH surface. The main interactions between the protein and LDH were electrostatic and hydrophobic. Histidine and phenylalanine could significantly affect the adsorption. The hexagonal morphology of LDH was not affected after adsorption. PMID:29562655
ERIC Educational Resources Information Center
Smith, Merry K.; Angle, Samantha R.; Northrop, Brian H.
2015-01-01
?-Cyclodextrin can assemble in the presence of KOH or RbOH into metal-organic frameworks (CD-MOFs) with applications in gas adsorption and environmental remediation. Crystalline CD-MOFs are grown by vapor diffusion and their reversible adsorption of CO[subscript 2](g) is analyzed both qualitatively and quantitatively. The experiment can be…
Phosphorus recovery using pelletized adsorptive materials ...
Phosphorous (P) is one of the essential nutrients for growth and is generally the most limiting nutrient since, it cannot be fixed from the atmosphere. Methods for recovering phosphorous from water systems already exist, but advances are being made to find a more economic, efficient, effective and easy to use method that can allow for reuse of the recovered P. One area of study is in adsorption, which involves finding the best material for adsorption of phosphorous from water and for releasing it back into the environment through desorption or leaching. The goal of this research was to first optimize the capacity for a pelletized adsorptive material that was synthesized with varying amounts of a binder material from 0-20 % and then to study recovering the phosphate for reuse. The pelletized materials were studied through kinetics experiments as well as isotherm experiments to gain insight into the adsorption capacity and mechanism. Following successful adsorption, a simple leaching study was conducted to see how much phosphate would be released back into water without any added desorption aid. Desorption was then studied by changing the pH of solution. Presenting my thesis work with a poster at ACS.
Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.
Sulaymon, Abbas H; Ahmed, Kawther W
2008-01-15
For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.
Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils
Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping
2017-01-01
The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities (qm) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g−1, respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g−1, respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation. PMID:28644399
Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils.
Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping
2017-06-23
The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities ( q m ) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g -1 , respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g -1 , respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation.
Pauchard, Vincent; Rane, Jayant P; Banerjee, Sanjoy
2014-11-04
In previous studies, the adsorption kinetics of asphaltenes at the water-oil interface were interpreted utilizing a Langmuir equation of state (EOS) based on droplet expansion experiments.1-3 Long-term adsorption kinetics followed random sequential adsorption (RSA) theory predictions, asymptotically reaching ∼85% limiting surface coverage, which is similar to limiting random 2D close packing of disks. To extend this work beyond this slow adsorption process, we performed rapid contractions and contraction-expansions of asphaltene-laden interfaces using the pendant drop experiment to emulate a Langmuir trough. This simulates the rapid increase in interfacial asphaltene concentration that occurs during coalescence events. For the contraction of droplets aged in asphaltene solutions, deviation from the EOS consistently occurs at a surface pressure value ∼21 mN/m corresponding to a surface coverage ∼80%. At this point droplets lose the shape required for validity of the Laplace-Young equation, indicating solidlike surface behavior. On further contraction wrinkles appear, which disappear when the droplet is held at constant volume. Surface pressure also decreases down to an equilibrium value near that measured for slow adsorption experiments. This behavior appears to be due to a transition to a glassy interface on contraction past the packing limit, followed by relaxation toward equilibrium by desorption at constant volume. This hypothesis is supported by cycling experiments around the close-packed limit where the transition to and from a solidlike state appears to be both fast and reversible, with little hysteresis. Also, the soft glass rheology model of Sollich is shown to capture previously reported shear behavior during adsorption. The results suggest that the mechanism by which asphaltenes stabilize water-in-oil emulsions is by blocking coalescence due to rapid formation of a glassy interface, in turn caused by interfacial asphaltenes rapidly increasing in concentration beyond the glass transition point.
Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria
Navarrete, Jesica U.; Borrok, David M.; Viveros, Marian; Ellzey, Joanne T.
2011-01-01
Copper isotopes may prove to be a useful tool for investigating bacteria–metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ65Cu) to investigate Cu–bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5–6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ65Cusolution–solid = δ65Cusolution – δ65Cusolid) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to –0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ65Cusolution–solid ranging from ~+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu machinery is shared by fungi, plants, and higher organisms, the influence of biological processes on the δ65Cu of natural waters and soils is probably considerable. PMID:21785492
NASA Astrophysics Data System (ADS)
Valentini, Paolo; Schwartzentruber, Thomas E.; Cozmuta, Ioana
2011-12-01
Atomic-level Grand Canonical Monte Carlo (GCMC) simulations equipped with a reactive force field (ReaxFF) are used to study atomic oxygen adsorption on a Pt(111) surface. The off-lattice GCMC calculations presented here rely solely on the interatomic potential and do not necessitate the pre-computation of surface adlayer structures and their interpolation. As such, they provide a predictive description of adsorbate phases. In this study, validation is obtained with experimental evidence (steric heats of adsorption and isotherms) as well as DFT-based state diagrams available in the literature. The ReaxFF computed steric heats of adsorption agree well with experimental data, and this study clearly shows that indirect dissociative adsorption of O2 on Pt(111) is an activated process at non-zero coverages, with an activation energy that monotonically increases with coverage. At a coverage of 0.25 ML, a highly ordered p(2 × 2) adlayer is found, in agreement with several low-energy electron diffraction observations. Isotherms obtained from the GCMC simulations compare qualitatively and quantitatively well with previous DFT-based state diagrams, but are in disagreement with the experimental data sets available. ReaxFF GCMC simulations at very high coverages show that O atoms prefer to bind in fcc hollow sites, at least up to 0.8 ML considered in the present work. At moderate coverages, little to no disorder appears in the Pt lattice. At high coverages, some Pt atoms markedly protrude out of the surface plane. This observation is in qualitative agreement with recent STM images of an oxygen covered Pt surface. The use of the GCMC technique based on a transferable potential is particularly valuable to produce more realistic systems (adsorbent and adsorbate) to be used in subsequent dynamical simulations (Molecular Dynamics) to address recombination reactions (via either Eley-Rideal or Langmuir-Hinshelwood mechanisms) on variously covered surfaces. By using GCMC and Molecular Dynamics simulations, the ReaxFF force field can be a valuable tool for understanding heterogeneous catalysis on a solid surface. Finally, the use of a reactive potential is a necessary requirement to investigate problems where dissociative adsorption occurs, as typical of many important catalytic processes.
Removal of phthalate esters from aqueous solutions by chitosan bead.
Chen, Chih-Yu; Chung, Ying-Chien
2006-01-01
Removal of phthalate esters (PAEs) by chitosan bead in aqueous solution was studied. The adsorption isotherms of PAEs by chitosan bead were well described by Freundlich isotherm equations. Results of kinetic experiments indicated that diheptyl phthalate (DHpP) had the highest adsorption capacity (1.52 mg/g) among six PAEs in our research. PAE adsorption efficiency by chitosan bead was examined in both batch and continuous systems, and DHpP attained 74.9% recovery efficiency from chitosan bead by shaking with an equal volume mixture of methanol and water. The recovered chitosan bead was reusable as an adsorbent. The influences of temperature, pH, Ca+2, and NaCl on PAE adsorption were also evaluated to determine performance in different water environments (e.g., groundwater, surface water, and sea water). The results showed that PAE adsorption decreased as temperature increased. From pH experiments it appeared that pH 8.0 was optimal for adsorption. The effect of Ca+2 showed that adsorption efficiency did not change by increasing the concentrations of Ca+2 until 400 mg/L. NaCl coexistence showed an insignificant effect on PAE adsorption. Furthermore, the chitosan bead was also applied to treating the discharge of a plastics plant, and the treatment results resembled those of a laboratory continuous system. This is the first report to use chitosan bead as an adsorbent to adsorb phthalate esters from aqueous solution. These results indicate that the application of chitosan bead is feasible in the aqueous environments of Taiwan.
α-keratin/Alginate Biosorbent for Removal of Methylene Blue on Aqueous Solution in a Batch System
NASA Astrophysics Data System (ADS)
Fadillah, G.; Putri, E. N. K.; Febrianastuti, S.; Munawaroh, H.; Purnawan, C.; Wahyuningsih, S.
2018-03-01
Methylene Blue (MB) is a cationic dyes which is commonly used in textile industries for coloring agent. The precence of MB in water caused some negative effect on the environment and human health. Many common technologies such as membrane filtration, electrophoresis and adsorption have been widely empolyed for removal of MB in water, but the adsorption technique still has advantages than the others. In this study, removal of MB used a biosorbent α-keratin/alginate (KA). The biosorbent KA was prepared by using the encapsulation technique in CaCl2 2 % (w/v) solution. The biosorbent was characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The effect of composition of α-keratin and alginate, the pH of solution and contact time on the adsorption were investigated. The optimum adsorption of MB in aqueous solution was found at the composition of α-keratin and alginate of 1:2 (w/w), the pH at 5.0 and contact time at 4 hours. The adsorption of MB on KA biosorbent was comparatively higher than α-keratin and alginate only. Adsorption of MB dyes in aqueous solution followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second order kinetics.
Modeling pH-Responsive Adsorption of Polyelectrolytes at Oil-Water Interfaces
NASA Astrophysics Data System (ADS)
Qin, Shiyi; Yong, Xin
We use dissipative particle dynamics (DPD) to discover the interfacial adsorption of pH-responsive polyelectrolytes in oil-water binary systems under different pH values. The electrostatic interactions between charged beads and the dielectric discontinuity across the interface are modeled by exploiting a modified Particle-Particle-Particle-Mesh (PPPM) method, which uses an iterative method to solve the Poisson equation on a uniform grid. We first model the adsorption behavior of a single linear polyelectrolyte from the aqueous phase. The Henderson-Hasselbalch equation describes the relation between pH and the degree of ionization of the modeled polyelectrolytes. Through changing the degree of ionization, we explore the influence of pH on the adsorption behavior and show that the electrostatic interactions significantly modulate the adsorption. Time evolutions of the position and conformation of the polyelectrolytes and the variation in the oil-water surface tension will be measured to characterize the adsorption behavior. Furthermore, we model the pH-dependent adsorption behavior of polyelectrolytes with more complicated structures, namely, branched polyelectrolytes with hydrophobic backbones and hydrophilic side chains. We also find that the addition of salts in the medium and the lengths of the backbone and ionized side chain affect the adsorption. This research supported by the American Chemical Society Petroleum Research Fund (Award 56884-DNI9).
NASA Astrophysics Data System (ADS)
Zhang, Bin; Kang, Jianting; Kang, Tianhe
2018-05-01
CH4 adsorption isotherms of kaolinite with moisture contents ranging from 0 to 5 wt% water, the effects of water on maximum adsorption capacity, kaolinite swelling, and radial distribution function were modelled by the implementing combined Monte Carlo (MC) and molecular dynamics (MD) simulations at 293.15 K (20 °C) and a pressure range of 1-20 MPa. The simulation results showed that the absolute adsorption of CH4 on both dry and moist kaolinite followed a Langmuir isotherm within the simulated pressure range, and both the adsorption capacity and the rate of CH4 adsorption decreased with the water content increases. The adsorption isosteric heats of CH4 on kaolinite decreased linearly with increasing water content, indicating that at higher water contents, the interaction energy between the CH4 and kaolinite was weaker. The interaction between kaolinite and water dominates and was the main contributing factor to kaolinite clay swelling. Water molecules were preferentially adsorbed onto oxygen and hydrogen atoms in kaolinite, while methane showed a tendency to be adsorbed only onto oxygen. The simulation results of our study provide the quantitative analysis of effect of water on CH4 adsorption capacity, adsorption rate, and interaction energy from a microscopic perspective. We hope that our study will contribute to the development of strategies for the further exploration of coal bed methane and shale gas.
Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin
2016-02-01
Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulation and Experimental Study of Metal Organic Frameworks Used in Adsorption Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenks, Jeromy J.; Motkuri, Radha K.; TeGrotenhuis, Ward
2016-10-11
Metal-organic frameworks (MOFs) have recently attracted enormous interest over the past few years in energy storage and gas separation, yet there have been few reports for adsorption cooling applications. Adsorption cooling technology is an established alternative to mechanical vapor compression refrigeration systems and is an excellent alternative in industrial environments where waste heat is available. We explored the use of MOFs that have very high mass loading and relatively low heats of adsorption, with certain combinations of refrigerants to demonstrate a new type of highly efficient adsorption chiller. Computational fluid dynamics combined with a system level lumped-parameter model have beenmore » used to project size and performance for chillers with a cooling capacity ranging from a few kW to several thousand kW. These systems rely on stacked micro/mini-scale architectures to enhance heat and mass transfer. Recent computational studies of an adsorption chiller based on MOFs suggests that a thermally-driven coefficient of performance greater than one may be possible, which would represent a fundamental breakthrough in performance of adsorption chiller technology. Presented herein are computational and experimental results for hydrophyilic and fluorophilic MOFs.« less
Levine, Zachary A.; Rapp, Michael V.; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H.; Mittal, Jeetain; Waite, J. Herbert; Israelachvili, Jacob N.; Shea, Joan-Emma
2016-01-01
Translating sticky biological molecules—such as mussel foot proteins (MFPs)—into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue’s molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces. PMID:27036002
Molecularly imprinted composite cryogel for albumin depletion from human serum.
Andaç, Müge; Baydemir, Gözde; Yavuz, Handan; Denizli, Adil
2012-11-01
A new composite protein-imprinted macroporous cryogel was prepared for depletion of albumin from human serum prior to use in proteom applications. Polyhydroxyethyl-methacylate-based molecularly imprinted polymer (MIP) composite cryogel was prepared with high gel fraction yields up to 83%, and its morphology and porosity were characterized by Fourier transform infrared, scanning electron microscopy, swelling studies, flow dynamics, and surface area measurements. Selective binding experiments were performed in the presence of competitive proteins human transferrin (HTR) and myoglobin (MYB). MIP composite cryogel exhibited a high binding capacity and selectivity for human serum albumin (HSA) in the presence of HTR and MYB. The competitive adsorption amount for HSA in MIP composite cryogel is 722.1 mg/dL in the presence of competitive proteins (HTR and MYB). MIP composite cryogel column was successfully applied in the fast protein liquid chromatography system for selective depletion of albumin in human serum. The depletion ratio was highly increased by embedding beads into cryogel (85%). Finally, MIP composite cryogel can be reused many times with no apparent decrease in HSA adsorption capacity. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan
2014-02-01
Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.
Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G
2010-11-01
In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface. Copyright (c) 2010 Elsevier B.V. All rights reserved.
He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin
2017-06-22
For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future development. Copyright © 2017 Elsevier B.V. All rights reserved.
Molino, Paul J; Higgins, Michael J; Innis, Peter C; Kapsa, Robert M I; Wallace, Gordon G
2012-06-05
Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to characterize the adsorption of the model proteins, bovine serum albumin (BSA) and fibronectin (FN), to polypyrrole doped with dextran sulfate (PPy-DS) as a function of DS loading and surface roughness. BSA adsorption was greater on surfaces of increased roughness and was above what could be explained by the increase in surface area alone. Furthermore, the additional mass adsorbed on the rough films was concomitant with an increase in the rigidity of the protein layer. Analysis of the dynamic viscoelastic properties of the protein adlayer reveal BSA adsorption on the rough films occurs in two phases: (1) arrival and initial adsorption of protein to the polymer surface and (2) postadsorption molecular rearrangement to a more dehydrated and compact conformation that facilitates further recruitment of protein to the polymer interface, likely forming a multilayer. In contrast, FN adsorption was independent of surface roughness. However, films prepared from solutions containing the highest concentration of DS (20 mg/mL) demonstrated both an increase in adsorbed mass and adlayer viscoelasticity. This is attributed to the higher DS loading in the conducting polymer film resulting in presentation of a more hydrated molecular structure indicative of a more unfolded and bioactive conformation. Modulating the redox state of the PPy-DS polymers was shown to modify both the adsorbed mass and viscoelastic nature of FN adlayers. An oxidizing potential increased both the total adsorbed mass and the adlayer viscoelasticity. Our findings demonstrate that modification of polymer physicochemical and redox condition alters the nature of protein-polymer interaction, a process that may be exploited to tailor the bioactivity of protein through which interactions with cells and tissues may be controlled.
Molecular dynamics study of oil adsorption on the rock surface in presence of silica nanoparticles
NASA Astrophysics Data System (ADS)
Salehzadeh, Jamal; Tohidi, Zahra; Jafari, Arezou
2018-01-01
Despite the increasing applications of nanoparticles in enhanced oil recovery (EOR), there is not enough information about the mechanisms and microscopic aspects of nanoparticles' effects. Therefore, in this research, molecular dynamics simulation is used to provide the molecular-scale insight for investigation of the silica nanoparticles effects on the oil adsorption on calcite surface for the first time. The surface interacts with the mixture of heptane and decane as the oil phase with mole ratio of 1/2 and silica nanoparticles are dispersed in distilled water with concentration of 7000 ppm. Based on the simulation results, by using nanoparticles surface adsorption behavior have been changed to hydrophilic and the oil molecules departed from the calcite. This result is based on the oil-calcite binding energy calculation which is decreased from 5224 kcal/mol to 3278 kcal/mol by using silica nanoparticles. In addition, calculation of radial distribution functions showed that after adding silica nanoparticles, the picks fall which means increasing in average distance between oil and calcite surface.
Structure and Dynamics of Water Confined in Imogolite Nanotubes.
Scalfi, Laura; Fraux, Guillaume; Boutin, Anne; Coudert, François-Xavier
2018-06-12
We have studied the properties of water adsorbed inside nanotubes of hydrophilic imogolite, an aluminum silicate clay mineral, by means of molecular simulations. We used a classical force field to describe the water and the flexible imogolite nanotube and validated it against the data obtained from first-principles molecular dynamics. With it, we observe a strong structuration of the water confined in the nanotube, with specific adsorption sites and a distribution of hydrogen bond patterns. The combination of number of adsorption sites, their geometry, and the preferential tetrahedral hydrogen bonding pattern of water leads to frustration and disorder. We further characterize the dynamics of the water, as well as the hydrogen bonds formed between water molecules and the nanotube, which is found to be more than 1 order of magnitude longer than water-water hydrogen bonds.
Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian
2017-05-01
Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.
Yabushita, Mizuho; Li, Peng; Durkin, Kathleen A; Kobayashi, Hirokazu; Fukuoka, Atsushi; Farha, Omar K; Katz, Alexander
2017-05-02
The molecular origins of adsorption of lignin-derived phenolics to metal-organic framework NU-1000 are investigated from aqueous solution as well as in competitive mode with glucose present in the same aqueous mixture. A comparison of adsorption equilibrium constants (K ads ) for phenolics functionalized with either carboxylic acid or aldehyde substituents demonstrated only a slight increase (less than a factor of 6) for the former according to both experiments and calculations. This small difference in K ads between aldehyde and carboxylic-acid substituted adsorbates is consistent with the pyrene unit of NU-1000 as the adsorption site, rather than the zirconia nodes, while at saturation coverage, the adsorption capacity suggests multiple guests per pyrene. Experimental standard free energies of adsorption directly correlated with the molecular size and electronic structure calculations confirmed this direct relationship, with the pyrene units as adsorption site. The underlying origins of this relationship are grounded in noncovalent π-π interactions as being responsible for adsorption, the same interactions present in the condensed phase of the phenolics, which to a large extent govern their heat of vaporization. Thus, NU-1000 acts as a preformed aromatic cavity for driving aromatic guest adsorption from aqueous solution and does so specifically without causing detectable glucose adsorption from aqueous solution, thereby achieving complete glucose-phenolics separations. The reusability of NU-1000 during an adsorption/desorption cycle was good, even with some of the phenolic compounds with greatest affinity not easiliy removed with water and ethanol washes at room temperature. A competitive adsorption experiment gave an upper bound for K ads for glucose of at most 0.18 M -1 , which can be compared with K ads for the phenolics investigated here, which fell in the range of 443-42 639 M -1 . The actual value of K ads for glucose may be much closer to zero given the lack of observed glucose uptake with NU-1000 as adsorbent.
Carbon dioxide adsorption in Brazilian coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose Luciano Soares; Andre L.B. Oberziner; Humberto J. Jose
Carbon dioxide (CO{sub 2}) is one of the most important greenhouse gases. In the period between 1980 and 1998, CO{sub 2} emissions increased more than 21% and projections suggest that the emissions will continue to increase globally by 2.2% between 2000 and 2020 and 3.3% in the developed countries. The sequestration of CO{sub 2} in deep unminable coal beds is one of the more promising of several methods of geological sequestration that are currently being investigated. CO{sub 2} can adsorb onto coal, and there are several studies demonstrating that CO{sub 2} dissolves in coals and swells them. At very lowmore » pressures (P {lt} 1 bar), CO{sub 2} dissolution does not seem to be a problem; however, high pressures are necessary for CO{sub 2} sequestration (P {gt} 50 bar). In this study, we evaluated the kinetics and equilibrium of sorption of CO{sub 2} on Brazilian coals at low pressures. The adsorption equilibrium isotherm at room temperature (30{sup o}C) was measured through the static method. The results showed that the Freundlich model or the Langmuir model is suitable to describe the equilibrium experimental results. The CO{sub 2} adsorption capacity of Brazilian coals are in the range of 0.089-0.186 mmol CO{sub 2}/g, which are typical values for coals with high ash content. The dynamics of adsorption in a fixed-bed column that contains granular coal (particle sizes of 0.8, 2.4, and 4.8 mm) showed that the adsorption rate is fast and a mathematical model was developed to describe the CO{sub 2} dynamics of the adsorption in a fixed-bed column. The linear driving force (LDF) was used to describe the rate of adsorption and the mass-transfer constants of the LDF model (K{sub s}) are in the range of 1.0-2.0 min{sup -1}. 29 refs., 5 figs., 3 tabs.« less
Sun, Lijun; Liu, Dongjie; Sun, Jiaojiao; Yang, Xingbin; Fu, Minghai; Guo, Yurong
2017-09-01
The method for separating and purifying chlorogenic acid (CA), epicatechin (EC), hyperoside (HY) and phlorizin (PH) simutaneously from young Qinguan apples by successive use of X-5 and polyamide resins has been developed in this study. The order of adsorption capacities of X-5 for the four phenolics was PH>HY>EC>CA, and the adsorption equilibriums of the four phenolics onto X-5 resin conformed to Langmuir isotherms preferentially. The adsorption kinetics of EC and CA onto X-5 conformed to the pseudo-first-order model, while that of HY and PH accorded with the pseudo-second-order model. Interestingly, the values of equilibrium adsorption capacities (Q e ) calculated in the preferential kinetics models were closer to that of theoretical maximum adsorption capacities (Q 0 ) calculated by Langmuir isotherms. Through dynamic adsorption and desorption using X-5 and polyamide resins with ethanol solution as strippant, CA, EC, HY and PH were obtained with purities of 96.21%, 95.34%, 95.36% and 97.36%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Durán-Álvarez, Agustín; Maldonado-Domínguez, Mauricio; González-Antonio, Oscar; Durán-Valencia, Cecilia; Romero-Ávila, Margarita; Barragán-Aroche, Fernando; López-Ramírez, Simón
2016-03-22
The adsorption of surfactants (DTAB, SDS, and CAPB) at the calcite-water interface was studied through surface zeta potential measurements and multiscale molecular dynamics. The ground-state polarization of surfactants proved to be a key factor for the observed behavior; correlation was found between adsorption and the hard or soft charge distribution of the amphiphile. SDS exhibits a steep aggregation profile, reaching saturation and showing classic ionic-surfactant behavior. In contrast, DTAB and CAPB featured diversified adsorption profiles, suggesting interplay between supramolecular aggregation and desorption from the solid surface and alleviating charge buildup at the carbonate surface when bulk concentration approaches CMC. This manifests as an adsorption profile with a fast initial step, followed by a metastable plateau and finalizing with a sharp decrease and stabilization of surface charge. Suggesting this competition of equilibria, elicited at the CaCO3 surface, this study provides atomistic insight into the adsorption mechanism for ionic surfactants on calcite, which is in accordance with experimental evidence and which is a relevant criterion for developing enhanced oil recovery processes.
NASA Astrophysics Data System (ADS)
Celis-Cornejo, C. M.; Garnica Mantilla, M. M.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E.
2016-08-01
The analysis of the inhibitory effect of nitrogenated compounds on the hydroprocessing and hydropurification of oil derived fuels is important to produce cleaner fuels. In this work, density functional theory calculations were performed to investigate the effect of the nitrogen containing molecules on the adsorption of Polynuclear Aromatic Hydrocarbons (PAHs). Mordenite was chosen as a zeolitic structure for simulating a Bronsted acid site. The character of the acid site was confirmed by both a vibrational frequency calculation and a Bader charge analysis. From the adsorption calculations, it was found that the adsorption energy of PAHs increases with the number of aromatic rings in the structure. Also, the nitrogen containing species possibly inhibit more extensively two and three rings PAHs because of their lower adsorption energies. Finally, it was observed that the nitrogen species tend to drag the proton from the mordenite acid site. This explains the inhibitory effect in the adsorption of PAHs and contributes to understanding the dynamics of hydrocarbon hydroprocessing in refineries.
Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.
Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Hadibarata, Tony; Yusop, Zulkifli
2016-08-01
Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.
Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal
2015-01-01
Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.
The electronic and optical properties of Cs adsorbed GaAs nanowires via first-principles study
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-07-01
In this study, we investigate the Cs adsorption mechanism on (110) surface of zinc-blende GaAs nanowire. The adsorption energy, work function, dipole moment, geometric structure, Mulliken charge distribution, charge transfer index, band structures, density of state and optical properties of Cs adsorption structures are calculated utilizing first-principles method based on density function theory. Total-energy calculations show that all the adsorption energies are negative, indicating that Cs adsorption process is exothermic and Cs covered GaAs nanowires are stable. The work function of nanowire surface has an obvious decrease after Cs adsorption. Besides, the ionization of nanowire surface is enhanced as well. More importantly, Cs adsorption contributes to a lower side shift of bands near Fermi level, and the corresponding band gap disappears. Additionally, the absorption peak and energy loss function after Cs adsorption are far higher than those before adsorption, implying better light absorption characteristic of nanowire surface after Cs adsorption. These theoretical calculations can directly guide the Cs activation experiment for negative electron affinity GaAs nanowire, and also lay a foundation for the further study of Cs/O co-adsorption on the nanowire surface.
Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon.
Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju
2007-10-15
We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.
ERIC Educational Resources Information Center
Lee, Chi-Feng; You, Pei-Yun; Lin, Ying-Chiao; Hsu, Tsai-Ling; Cheng, Pi-Yun; Wu, Yu-Xuan; Tseng, Chi-Shun; Chen, Sheng-Wen; Chang, Huey-Por; Lin, Yang-Wei
2015-01-01
The proposed experiment can help students to understand the factors involved in the stability of gold nanoparticles (Au NPs) by exploring the adsorption interaction between Au NPs and various substances. The students in this study found that the surface plasmon resonance band of Au NP solutions underwent a red shift (i.e., from 520 to 650 nm)…
Effect of biochar amendment on tylosin adsorption-desorption and transport in two different soils
Chang Yoon Jeong; Jim J. Wang; Syam K. Dodla; Thomas L. Eberhardt; Les Groom
2012-01-01
The role of biochar as a soil amendment on the adsorption¨C desorption and transport of tylosin, a macrolide class of veterinary antibiotic, is little known. In this study, batch and column experiments were conducted to investigate the adsorption kinetics and transport of tylosin in forest and agricultural corn field soils amended with hardwood and softwood biochars....
2015-03-26
by low, direct current voltage, which are consistent with portable power sources such as batteries or photovoltaic cells (Crystal IS 2013...of Methylene Blue Adsorption on Power Output .................23 vii UV LED Quartz Lens Adsorption Experiment...29 Effect of Methylene Blue Adsorption on Power Output ............................................29 Figure 5 - Percent reduction of
Soy-based Polymers for Surface Modification and Interactions with Lignocellulosic Materials
NASA Astrophysics Data System (ADS)
Salas Araujo, Carlos Luis
Recent environmental concerns about the use of synthetic materials that are often used to maintain our quality of life has triggered a significant amount of research to develop new technologies and to adopt sustainable, bio-based materials. Cellulose, lignin and other plant-derived macromolecules including proteins from soybeans have witnessed recent, renewed interest by the industrial and scientific communities. For example, soybean proteins have been proposed for a variety of applications, including wood adhesives, bio-plastics, composites and functional materials that may include synthetic polymers. Despite its importance in such systems or materials, very little is known about the fundamental nature of the interactions between soy proteins and other polymers. Therefore, this work addresses this issue by a systematic investigation of the interactions between soy proteins with the two most abundant macromolecules in the biosphere, namely, cellulose and lignin and with the most widely used synthetic polymer, polypropylene (PP). The adsorption of the main soy protein globulins, glycinin (11S) and beta-conglycinin (7S), was studied by using ultrathin films of cellulose, lignin and PP (as well as reference silica and organic self-assembled monolayers (SAMs) surfaces) that were used as substrates. The extent and dynamics of adsorption was monitored by using quartz crystal microgravimetry with dissipation (QCM-D), surface plasmon resonance (SPR) as well as complementary techniques including circular dichroism (CD) and atomic force microscopy (AFM). QCM-D experiments indicated that soy protein adsorption was strongly affected by changes in the physicochemical environment. An increased adsorption of glycinin on silica (by 13%) and cellulose (by 89%) was observed with the increased ionic strength of the aqueous solution, from 0 to 0.1 M NaCl. This highlights the relevance of electrostatic interactions in the adsorption process. In contrast, the adsorption of beta-conglycinin was reduced (by 25 and 57 % on silica and cellulose, respectively). Similarly, the addition of 10 mM of 2-mercaptoethanol (a denaturing agent) reduced the mass adsorbed for both proteins. The amounts of 11S and 7S adsorbed on lignin and self-assembled 1-dodecanethiol monolayers were higher when the protein was in the native state if compared to that after chemical denaturation (by using urea and 2-mercaptoethanol). Urea-denatured proteins adsorbed more extensively onto the hydrophobic SAM monolayes. The reduction in water contact angle after protein adsorption (≈40° and 35° for native 11S and 7S, respectively) suggests strong nonspecific interactions between the protein and the substrates, favoring conformational changes at the interface that contribute to exposure and rearrangement of hydrophobic and hydrophilic amino acid residues. The adsorption on polypropylene thin films and nonwovens of different grades of soy proteins in their native as well as thermally-denatured states, including purified glycinin and beta-conglycinin as well as commercial soy flour and isolate was investigated at 25 °C in PBS buffer (pH 7.4). It was found that application of a primer layer of a cationic surfactant, dioctadecyldimethylammonium bromide (DODA) dramatically enhanced protein adsorption, which resulted in fully wettable systems. Fluorescence imaging experiments with tagged proteins confirmed the contribution of a fully-covering layer facilitated by the cationic surfactant pre-treatment. Furthermore, complementary wicking tests indicated that the nonwoven fabrics absorbed a significant amount of water (≈25 times their weight) when the fibers carried pre-adsorbed proteins.
Interplay of polyelectrolytes with different adsorbing surfaces
NASA Astrophysics Data System (ADS)
Xie, Feng
We study the adsorption of polyelectrolytes from solution onto different adsorbing surfaces, focusing on the electrostatic interactions. Measurements of the surface excess, fractional ionization of chargeable groups, segmental orientation, and adsorption kinetics were made using Fourier transform infrared spectroscopy in the mode of attenuated total reflection. Different adsorbing surfaces, from single solid surfaces, solid surfaces modified with adsorbed polymer layer, to fluid-like surfaces-biomembranes were adopted. Both atomic force microscopy (AFM) and fluorescent techniques were employed to investigate the fluid-like surfaces in the absence and in the presence of polyelectrolytes. The work focuses on three primary issues: (i) the charge regulation of weak polyelectrolytes on both homogeneous and heterogeneous surfaces, (ii) the dynamics of adsorption when the surface possesses reciprocal mobility, i.e., biomembrane surface, and (iii) the structural and dynamical properties of the fluid-like surfaces interacting with polyelectrolytes. We find that the ionization of chargeable groups in weak polyelectrolytes is controlled by the charge balance between the adsorbates and the surfaces. A new interpretation of ionization in the adsorbed layer provides a new insight into the fundamental problem of whether ions of opposite charge associate or remain separate. Bjerrum length is found to be a criterion for the onset of surface ionization suppression, which helps to predict and control the conformation transition of proteins. In addition to the effect of different surfaces on the adsorption behavior of polyelectrolytes, we also focused on the response of the surfaces to the adsorbates. Chains that encountered sparsely-covered surfaces spread to maximize the number of segment-surface contacts at rates independent of the molar mass. Surface reconstruction rather than molar mass of the adsorbing molecules appeared to determine the rate of spreading. This contrasts starkly with traditional polymer adsorption onto surfaces whose structure is "frozen" and unresponsive. Finally, preliminary studies on dynamical properties of biomembrane surfaces interacting with polyelectrolytes are presented, using fluorescence correlation spectroscopy (FCS). The significance is to characterize domains induced by polyelectrolyte binding.
Cosensitized Porphyrin System for High-Performance Solar Cells with TOF-SIMS Analysis.
Wu, Wenjun; Xiang, Huaide; Fan, Wei; Wang, Jinglin; Wang, Haifeng; Hua, Xin; Wang, Zhaohui; Long, Yitao; Tian, He; Zhu, Wei-Hong
2017-05-17
To date, development of organic sensitizers has been predominately focused on light harvesting, highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels, and the electron transferring process. In contrast, their adsorption mode as well as the dynamic loading behavior onto nanoporous TiO 2 is rarely considered. Herein, we have employed the time-of-flight secondary ion mass spectrometry (TOF-SIMS) to gain insight into the competitive dye adsorption mode and kinetics in the cosensitized porphyrin system. Using novel porphyrin dye FW-1 and D-A-π-A featured dye WS-5, the different bond-breaking mode in TOF-SIMS and dynamic dye-loading amount during the coadsorption process are well-compared with two different anchoring groups, such as benzoic acid and cyanoacrylic acid. With the bombardment mode in TOF-SIMS spectra, we have speculated that the cyano group grafts onto nanoporous TiO 2 as tridentate binding for the common anchoring unit of cyanoacrylic acid and confirmed it through extensive first-principles density functional theory calculation by anchoring either the carboxyl or cyano group, which shows that the cyano group can efficiently participate in the adsorption of the WS-5 molecule onto the TiO 2 nanocrystal. The grafting reinforcement interaction between the cyano group and TiO 2 in WS-5 can well-explain the rapid adsorption characteristics. A strong coordinate bond between the lone pair of electrons on the nitrogen or oxygen atom and the Lewis acid sites of TiO 2 can increase electron injection efficiencies with respect to those from the bond between the benzoic acid group and the Brønsted acid sites of the TiO 2 surface. Upon optimization of the coadsorption process with dye WS-5, the photoelectric conversion efficiency based on porphyrin dye FW-1 is increased from 6.14 to 9.72%. The study on the adsorption dynamics of organic sensitizers with TOF-SIMS analysis might provide a new venue for improvement of cosensitized solar cells.
NASA Astrophysics Data System (ADS)
Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li
2018-03-01
A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.
Liu, Xin; Zhang, Lingfan
2015-08-01
In this present study, a new chitosan bead modified with titanium ions (TiCB) was prepared and employed for the adsorption of vanadium ions from aqueous solutions. Batch adsorption experiments were performed to research the effect of various factors, including pH, temperature, contact time and initial concentration of vanadium(V) ions. The adsorption of vanadium was followed by the pseudo second-order kinetic and the Langmuir isotherm model, with a remarkable maximum adsorption capacity of 210 mg/g. The analysis of thermodynamic parameters (ΔG°, ΔH° and ΔS°) revealed that the nature of adsorption was feasible, spontaneous (ΔG°<0) and endothermic (ΔH°>0) process. FTIR, EDS, EMI and XPS studies suggested that the mechanisms of adsorption were possibly attributed to electrostatic attraction, ligand-exchange and redox reaction between TiCB and vanadium ions. Copyright © 2015 Elsevier B.V. All rights reserved.
Improving lead adsorption through chemical modification of wheat straw by lactic acid
NASA Astrophysics Data System (ADS)
Mu, Ruimin; Wang, Minxiang; Bu, Qingwei; Liu, Dong; Zhao, Yanli
2018-01-01
This work describes the creation of a new cellulosic material derived from wheat straw modified by lactic acid for adsorption of lead in aqueous solution, called 0.3LANS (the concentration of the lactic acid were 0.3mol/L). Batch experiments were conducted to study the effects of initial pH value, contact time, adsorbent dose, initial concentration and temperature. Fourier transform infrared (FTIR), Elemental analysis, BET surface area and Scanning electron micrographs (SEM) analysis were used to investigate the chemical modification. Adsorption isotherm models namely, Langmuir, Freundlich were used to analyse the equilibrium data, and the Langmuir isotherm model provided the best correlation, means that the adsorption was chemical monolayer adsorption and the adsorption capacity qm was increased with increasing temperature, and reached 51.49mg/g for 0.3LANS at 35°C, showing adsorption was exothermic.
Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks
NASA Astrophysics Data System (ADS)
Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.
2016-01-01
Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes.
Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks
Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.
2016-01-01
Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes. PMID:26796523
NASA Astrophysics Data System (ADS)
Ebrahimi-Gatkash, Mehdi; Younesi, Habibollah; Shahbazi, Afsaneh; Heidari, Ava
2017-07-01
In the present study, amino-functionalized Mobil Composite Material No. 41 (MCM-41) was used as an adsorbent to remove nitrate anions from aqueous solutions. Mono-, di- and tri-amino functioned silicas (N-MCM-41, NN-MCM-41 and NNN-MCM-41) were prepared by post-synthesis grafting method. The samples were characterized by means of X-ray powder diffraction, FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy and nitrogen adsorption-desorption. The effects of pH, initial concentration of anions, and adsorbent loading were examined in batch adsorption system. Results of adsorption experiments showed that the adsorption capacity increased with increasing adsorbent loading and initial anion concentration. It was found that the Langmuir mathematical model indicated better fit to the experimental data than the Freundlich. According to the constants of the Langmuir equation, the maximum adsorption capacity for nitrate anion by N-MCM-41, NN-MCM-41 and NNN-MCM-41 was found to be 31.68, 38.58 and 36.81 mg/g, respectively. The adsorption kinetics were investigated with pseudo-first-order and pseudo-second-order model. Adsorption followed the pseudo-second-order rate kinetics. The coefficients of determination for pseudo-second-order kinetic model are >0.99. For continuous adsorption experiments, NNN-MCM-41 adsorbent was used for the removal of nitrate anion from solutions. Breakthrough curves were investigated at different bed heights, flow rates and initial nitrate anion concentrations. The Thomas and Yan models were utilized to calculate the kinetic parameters and to predict the breakthrough curves of different bed height. Results from this study illustrated the potential utility of these adsorbents for nitrate removal from water solution.
Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes.
Patiño, Yolanda; Díaz, Eva; Ordóñez, Salvador; Gallegos-Suarez, Esteban; Guerrero-Ruiz, Antonio; Rodríguez-Ramos, Inmaculada
2015-10-01
Adsorption of three representative emerging pollutants - 1,8-dichlorooctane, nalidixic acid and 2-(4-methylphenoxy)ethanol- on different carbon nanotubes was studied in order to determine the influence of the morphological and chemical properties of the materials on their adsorption properties. As adsorbents, multiwall carbon nanotubes (MWCNTs) without functionalization and with oxygen or nitrogen surface groups, as well as carbon nanotubes doped with nitrogen were used. The adsorption was studied in aqueous phase using batch adsorption experiments, results being fitted to both Langmuir and Freundlich models. The adsorption capacity is strongly dependent on both the hydrophobicity of the adsorbates and the morphology of the adsorbents. Thermodynamic parameters were determined observing strong interactions between the aromatic rings of the emerging pollutant and the nitrogen modified adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Potentiostatic current and galvanostatic potential oscillations during electrodeposition of cadmium.
López-Sauri, D A; Veleva, L; Pérez-Ángel, G
2015-09-14
Cathodic current and potential oscillations were observed during electrodeposition of cadmium from a cyanide electrolyte on a vertical platinum electrode, in potentiostatic and galvanostatic experiments. Electrochemical impedance spectroscopy experiments revealed a region of negative real impedance in a range of non-zero frequencies, in the second descending branch with a positive slope of the N-shape current-potential curve. This kind of dynamical behaviour is characteristic of the HN-NDR oscillators (oscillators with the N-Shape current-potential curve and hidden negative differential resistance). The oscillations could be mainly attributed to the changes in the real active cathodic area, due to the adsorption of hydrogen molecules and their detachment from the surface. The instabilities of the electrochemical processes were characterized by time series, Fast Fourier Transforms and 2-D phase portraits showing quasi-periodic oscillations.
Desulfurization by MOFs as Sorbents for Thiophene Sulfides
NASA Astrophysics Data System (ADS)
Xin, Chunling; Wang, Suqing
2018-01-01
Metal-organic frameworks UMCM-150 [Cu3(BHTC)2] and its heterobimetallic analogue Co1Cu2(BHTC)2 based on an asymmetrical ligand, biphenyl-3,4’,5-tricarboxylate (H3BHTC), were studied for desulfurization of model oils. The adsorption experiments were conducted under room temperature and atmospheric pressure. The total sulfur concentration of model oils was 250 ppmw determined by WK-2D coulomb integrated micro-analyzer through adding benzothiophene (BT) and dibenzothiophene (DBT) into liquid alkanes. Adsorptive desulfurization experiments were conducted in a consecutive fixed bed adsorption system. The results indicate that Cu3(BHTC)2 has a higher sulfur-capacity than Co1Cu2(BHTC)2. Taking DBT as an example, Cu3(BHTC)2 and Co1Cu2(BHTC)2 have breakthrough adsorption capacities of 10.6 and 5.8 g S/kg of sorbent for model oils.
Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis.
Deng, Liping; Su, Yingying; Su, Hua; Wang, Xinting; Zhu, Xiaobin
2007-05-08
Biosorption is an effective method to remove heavy metals from wastewater. In this work, adsorption features of Cladophora fascicularis were investigated as a function of time, initial pH, initial Pb(II) concentrations, temperature and co-existing ions. Kinetics and equilibria were obtained from batch experiments. The biosorption kinetics followed the pseudo-second order model. Adsorption equilibria were well described by the Langmuir and Freundlich isotherm models. The maximum adsorption capacity was 198.5 mg/g at 298K and pH 5.0. The adsorption processes were endothermic and the biosorption heat was 29.6 kJ/mol. Desorption experiments indicated that 0.01 mol/L Na(2)EDTA was an efficient desorbent for the recovery of Pb(II) from biomass. IR spectrum analysis suggested amido or hydroxy, CO and C-O could combine intensively with Pb(II).
Xue, Maoqiang; Ling, Yisheng; Wu, Guisen; Liu, Xin; Ge, Dongtao; Shi, Wei
2013-01-01
Microporous anodic aluminum oxide (AAO) membranes were modified by 3-glycidoxypropyltrimethoxysilane to produce terminal epoxy groups. These were used to covalently link hydroxyethyl celluloses (HEC) to amplify reactive groups of AAO membrane. The hydroxyl groups of HEC-AAO composite membrane were further modified with 1,4-butanediol diglycidyl ether to link arginine as an affinity ligand. The contents of HEC and arginine of arginine-immobilized HEC-AAO membrane were 52.1 and 19.7mg/g membrane, respectively. As biomedical adsorbents, the arginine-immobilized HEC-AAO membranes were tested for bilirubin removal. The non-specific bilirubin adsorption on the unmodified HEC-AAO composite membranes was 0.8mg/g membrane. Higher bilirubin adsorption values, up to 52.6mg/g membrane, were obtained with the arginine-immobilized HEC-AAO membranes. Elution of bilirubin showed desorption ratio was up to 85% using 0.3M NaSCN solution as the desorption agent. Comparisons equilibrium and dynamic capacities showed that dynamic capacities were lower than the equilibrium capacities. In addition, the adsorption mechanism of bilirubin and the effects of temperature, initial concentration of bilirubin, albumin concentration and ionic strength on adsorption were also investigated. Copyright © 2012 Elsevier B.V. All rights reserved.
Adsorption equilibrium and dynamics of toluene vapors onto three kinds of silica gels
NASA Astrophysics Data System (ADS)
Yan, K. L.; Wang, Q.
2018-01-01
The benzene is the representative of VOCs and widely exists in the industrial waste gas. In this study, adsorption equilibrium and dynamics of toluene vapors at five initial concentrations (1.39 g·m-3, 5.12 g·m-3, 8.38 g·m-3, 15.6 g·m-3, 21.3 g·m-3) onto three kinds of silica gels (GA, GB and GC) were investigated and compared. The experimental results showed that GA has the rich microporous and mesoporous distributions, and the larger surface area and microporous volume than GB and GC. It can be clearly seen that the order of the adsorption rate of adsorbents on the silica gels samples is GA, GB and GC. Due to the suitable pore distribution in the region of micropore and mesopore (1-4 nm), GA exhibits the comparable breakthrough adsorption capacities with GB and GC for a given initial concentration. Moreover, the experimental data were fitted to the Langmuir and Freundlich models, respectively. The Freundlich isotherms correlated with the experimental data presented a better fitting than Langmuir model. Taken together, it is expected that GA silica gel would be a promising adsorbent for the removal of toluene vapors from gas streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayathri Devi, V.; Sircar, A.; Sarkar, B.
One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption massmore » transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)« less
Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite
Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Cygan, Randall T.
2014-02-05
Anthropogenic activities have led to an increased concentration of uranium on the Earth’s surface and potentially in the subsurface with the development of nuclear waste repositories. Uranium is soluble in groundwater, and its mobility is strongly affected by the presence of clay minerals in soils and in subsurface sediments. We use molecular dynamics simulations to probe the adsorption of aqueous uranyl (UO 2 2+) ions onto the basal surface of muscovite, a suitable proxy for typically ultrafine-grained clay phases. Model systems include the competitive adsorption between potassium counterions and aqueous ions (0.1 M and 1.0 M UO 2Cl 2 ,more » 0.1 M NaCl). We find that for systems with potassium and uranyl ions present, potassium ions dominate the adsorption phenomenon. Potassium ions adsorb entirely as inner-sphere complexes associated with the ditrigonal cavity of the basal surface. Uranyl ions adsorb in two configurations when it is the only ion species present, and in a single configuration in the presence of potassium. Finally, the majority of adsorbed uranyl ions are tilted less than 45° relative to the muscovite surface, and are associated with the Si 4Al 2 rings near aluminum substitution sites.« less
Urbina-Villalba, German
2009-03-01
The first algorithm for Emulsion Stability Simulations (ESS) was presented at the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseño de Procesos [Luis, J.; García-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion Stability In: Equifase 99. Libro de Actas, 1(st) Ed., Tojo J., Arce, A., Eds.; Solucion's: Vigo, Spain, 1999; Volume 2, pp. 364-369]. The former version of the program consisted on a minor modification of the Brownian Dynamics algorithm to account for the coalescence of drops. The present version of the program contains elaborate routines for time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening.
NASA Astrophysics Data System (ADS)
Xu, Wanzhen; Zhang, Xiaoming; Huang, Weihong; Luan, Yu; Yang, Yanfei; Zhu, Maiyong; Yang, Wenming
2017-12-01
In this work, the molecular imprinted polymers were synthesized with the low monomer concentrations for dibutyl phthalate (DBP). The polymers were prepared over carboxyl-modified silica nanoparticle, which used methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker agent and azoisobutyronitrile as the initiator in the process of preparation. Various measures were used to characterize the structure and morphology in order to get the optimal polymer. The characterization results show that the optimal polymer has suitable features for further adsorption process. And adsorption capacity experiments were evaluated to analyze its adsorption performance, through adsorption isotherms/kinetics, selectivity adsorption and desorption and regeneration experiments. These results showed that the molecular imprinted polymers had a short equilibrium time about 60 min and high stability with 88% after six cycles. Furthermore, the molecular imprinted polymers were successfully applied to remove dibutyl phthalate. The concentration range was 5.0-30.0 μmol L-1, and the limit of detection was 0.06 μmol L-1 in tap water samples.
Water structuring and collagen adsorption at hydrophilic and hydrophobic silicon surfaces.
Cole, Daniel J; Payne, Mike C; Ciacchi, Lucio Colombi
2009-12-28
The adsorption of a collagen fragment on both a hydrophobic, hydrogen-terminated and a hydrophilic, natively oxidised Si surface is investigated using all-atom molecular dynamics. While favourable direct protein-surface interactions via localised contact points characterise adhesion to the hydrophilic surface, evenly spread surface/molecule contacts and stabilisation of the helical structure occurs upon adsorption on the hydrophobic surface. In the latter case, we find that adhesion is accompanied by a mutual fit between the hydrophilic/hydrophobic pattern within the protein and the layered water structure at the solid/liquid interface, which may provide an additional driving force to the classic hydrophobic effect.
Nuclear quantum effects on adsorption of H2 and isotopologues on metal ions
NASA Astrophysics Data System (ADS)
Savchenko, Ievgeniia; Gu, Bing; Heine, Thomas; Jakowski, Jacek; Garashchuk, Sophya
2017-02-01
The nuclear quantum effects on the zero-point energy (ZPE), influencing adsorption of H2 and isotopologues on metal ions, are examined using normal mode analysis of ab initio electronic structure results for complexes with 17 metal cations. The lightest metallic nuclei, Li and Be, are found to be the most 'quantum'. The largest selectivity in adsorption is predicted for Cu, Ni and Co ions. Analysis of the nuclear wavepacket dynamics on the ground state electronic potential energy surfaces (PES) performed for complexes of Li+ and Cu+2 with H2/D2/HD shows that the PES anharmonicity changes the ZPE by up to 9%.
Schwan, Adrian L.; Singh, Suneel P.; Davy, Jason A.; Waring, Alan J.; Gordon, Larry M.; Walther, Frans J.; Wang, Zhengdong; Notter, Robert H.
2012-01-01
This paper reports the chemical synthesis and purification of a novel phospholipase-resistant C16:0, C16:1 diether phosphonoglycerol with structural analogy to ester-linked anionic phosphatidylglycerol (PG) in endogenous pulmonary surfactant. This diether phosphonoglycerol (PG 1) is studied for phospholipase A2 (PLA2) resistance and for surface activity in synthetic exogenous surfactants combined with Super Mini-B (S-MB) peptide and DEPN-8, a previously-reported diether phosphonolipid analog of dipalmitoyl phosphatidylcholine (DPPC, the major zwitterionic phospholipid in native lung surfactant). Activity experiments measured both adsorption and dynamic surface tension lowering due to the known importance of these surface behaviors in lung surfactant function in vivo. Synthetic surfactants containing 9 : 1 DEPN-8:PG 1 + 3% S-MB were resistant to degradation by PLA2 in chromatographic studies, while calf lung surfactant extract (CLSE, the substance of the bovine clinical surfactant Infasurf®) was significantly degraded by PLA2. The 9 : 1 DEPN-8:PG 1 + 3% S-MB mixture also had small but consistent increases in both adsorption and dynamic surface tension lowering ability compared to DEPN-8 + 3% S-MB. Consistent with these surface activity increases, molecular dynamics simulations using Protein Modeller, GROMACS force-field, and PyMOL showed that bilayers containing DPPC and palmitoyl-oleoyl-PC (POPC) as surrogates of DEPN-8 and PG 1 were penetrated to a greater extent by S-MB peptide than bilayers of DPPC alone. These results suggest that PG 1 or related anionic phosphono-PG analogs may have functional utility in phospholipase-resistant synthetic surfactants targeting forms of acute pulmonary injury where endogenous surfactant becomes dysfunctional due to phospholipase activity in the innate inflammatory response. PMID:22530092
Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.
2011-01-01
In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.
Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.
2011-01-01
In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.
Adsorption and Retardation of PFASs in Soil
NASA Astrophysics Data System (ADS)
Chen, W.; Yan, N.; Fu, X.; Carroll, K. C.; Holguin, F. O. O.; Brusseau, M. L.
2017-12-01
Per- and poly-fluorinated alkyl substances (PFASs) are emerging contaminants of concern that are present in the subsurface at numerous military and industrial facilities. Knowledge of the retention behavior of these compounds in the subsurface environment is critical for effective risk characterization and remediation. The objective of this research is to investigate the role of adsorption at the air-water interface on PFAS retention in vadose-zone systems. Surface tensions were measured for select PFAS to determine interfacial adsorption coefficients. Column experiments were conducted to characterize retardation and transport under saturated and unsaturated flow conditions. The impact of soil properties and groundwater constituents on surface tension, solid-phase adsorption, and interfacial adsorption was investigated.
NASA Astrophysics Data System (ADS)
You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin
2018-07-01
Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.
Volatile organic compound adsorption in a gas-solid fluidized bed.
Ng, Y L; Yan, R; Tsen, L T S; Yong, L C; Liu, M; Liang, D T
2004-01-01
Fluidization finds many process applications in the areas of catalytic reactions, drying, coating, combustion, gasification and microbial culturing. This work aims to compare the dynamic adsorption characteristics and adsorption rates in a bubbling fluidized bed and a fixed bed at the same gas flow-rate, gas residence time and bed height. Adsorption with 520 ppm methanol and 489 ppm isobutane by the ZSM-5 zeolite of different particle size in the two beds enabled the differentiation of the adsorption characteristics and rates due to bed type, intraparticle mass transfer and adsorbate-adsorbent interaction. Adsorption of isobutane by the more commonly used activated carbon provided the comparison of adsorption between the two adsorbent types. With the same gas residence time of 0.79 seconds in both the bubbling bed and fixed bed of the same bed size of 40 mm diameter and 48 mm height, the experimental results showed a higher rate of adsorption in the bubbling bed as compared to the fixed bed. Intraparticle mass transfer and adsorbent-adsorbate interaction played significant roles in affecting the rate of adsorption, with intraparticle mass transfer being more dominant. The bubbling bed was observed to have a steeper decline in adsorption rate with respect to increasing outlet concentration compared to the fixed bed. The adsorption capacities of zeolite for the adsorbates studied were comparatively similar in both beds; fluidizing, and using smaller particles in the bubbling bed did not increase the adsorption capacity of the ZSM-5 zeolite. The adsorption capacity of activated carbon for isobutane was much higher than the ZSM-5 zeolite for isobutane, although at a lower adsorption rate. Fourier transform infra-red (FTIR) spectroscopy was used as an analytical tool for the quantification of gas concentration. Calibration was done using a series of standards prepared by in situ dilution with nitrogen gas, based on the ideal gas law and relating partial pressure to gas concentration. Concentrations up to 220 ppm for methanol and 75 ppm for isobutane were prepared using this method.
[Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].
Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng
2012-09-01
Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.
NASA Astrophysics Data System (ADS)
Xiao, HuiFang; Huang, Bin; Yao, Ge; Kang, WenBin; Gong, Sheng; Pan, Hai; Cao, Yi; Wang, Jun; Zhang, Jian; Wang, Wei
2018-03-01
Understanding the processes of protein adsorption/desorption on nanoparticles' surfaces is important for the development of new nanotechnology involving biomaterials; however, an atomistic resolution picture for these processes and for the simultaneous protein conformational change is missing. Here, we report the adsorption of protein GB1 on a polystyrene nanoparticle surface using atomistic molecular dynamic simulations. Enabled by metadynamics, we explored the relevant phase space and identified three protein states, each involving both the adsorbed and desorbed modes. We also studied the change of the secondary and tertiary structures of GB1 during adsorption and the dominant interactions between the protein and surface in different adsorption stages. The results we obtained from simulation were found to be more adequate and complete than the previous one. We believe the model presented in this paper, in comparison with the previous ones, is a better theoretical model to understand and explain the experimental results.
Yang, Fengjian; Yang, Lei; Wang, Wenjie; Liu, Yang; Zhao, Chunjian; Zu, Yuangang
2012-01-01
In order to screen a suitable resin for the preparative simultaneous separation and purification of syringin, eleutheroside E and isofraxidin from Acanthopanax senticosus, the adsorption and desorption properties of 17 widely used commercial macroporous resins were evaluated. According to our results, HPD100C, which adsorbs by the molecular tiers model, was the best macroporous resin, offering higher adsorption and desorption capacities and higher adsorption speed for syringin, eleutheroside E and isofraxidin than other resins. Dynamic adsorption and desorption tests were carried out to optimize the process parameters. The optimal conditions were as follows: for adsorption, processing volume: 24 BV, flow rate: 2 BV/h; for desorption, ethanol–water solution: 60:40 (v/v), eluent volume: 4 BV, flow rate: 3 BV/h. Under the above conditions, the contents of syringin, eleutheroside E and isofraxidin increased 174-fold, 20-fold and 5-fold and their recoveries were 80.93%, 93.97% and 93.79%, respectively. PMID:22942746
NASA Astrophysics Data System (ADS)
Bhattacharyya, Dhiman; Depci, Tolga; Prisbrey, Keith; Miller, Jan D.
Despite tremendous developments in industrial use of activated carbon (AC) for gold adsorption, specific aurodicyanide [Au(CN)2-] adsorption sites on the carbon have intrigued researchers. The graphitic structure of AC has been well established. Previously radiochemical and now, XPS and Raman characterizations have demonstrated higher site-specific gold adsorption on graphitic edges. Morphological characterizations have revealed the presence of slit-pores (5-10 Å). Molecular-dynamics-simulation (MDS) performed on graphitic slit-pores illustrated gold-cyanide ion-pair preferentially adsorbs on edges. Ab-initio simulations predicted lower barrier for electron sharing in pores with aurodic yanide, indicating tighter bonding than graphitic surface and was well supported by Gibbs energy calculations too. Interaction energy as function of the separation distance indicated tighter bonding of gold cyanide to the graphite edges than water molecules. Selective adsorption of aurodicyanide ion-pair seems to be related to low polarity of gold complex and its accommodation at graphitic edges.
Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump
NASA Astrophysics Data System (ADS)
Kowalska, Kinga; Ambrożek, Bogdan
2017-12-01
The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling
Using adaptive-mesh refinement in SCFT simulations of surfactant adsorption
NASA Astrophysics Data System (ADS)
Sides, Scott; Kumar, Rajeev; Jamroz, Ben; Crockett, Robert; Pletzer, Alex
2013-03-01
Adsorption of surfactants at interfaces is relevant to many applications such as detergents, adhesives, emulsions and ferrofluids. Atomistic simulations of interface adsorption are challenging due to the difficulty of modeling the wide range of length scales in these problems: the thin interface region in equilibrium with a large bulk region that serves as a reservoir for the adsorbed species. Self-consistent field theory (SCFT) has been extremely useful for studying the morphologies of dense block copolymer melts. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. However, even SCFT methods can be difficult to apply to systems in which small spatial regions might require finer resolution than most of the simulation grid (eg. interface adsorption and confinement). We will present results on interface adsorption simulations using PolySwift++, an object-oriented, polymer SCFT simulation code aided by the Tech-X Chompst library that enables via block-structured AMR calculations with PETSc.
Ozboyaci, M; Kokh, D B; Wade, R C
2016-04-21
The addition of three N-terminal histidines to β-lactamase inhibitor protein was shown experimentally to increase its binding potency to an Au(111) surface substantially but the binding mechanism was not resolved. Here, we propose a complete adsorption mechanism for this fusion protein by means of a multi-scale simulation approach and free energy calculations. We find that adsorption is a three-step process: (i) recognition of the surface predominantly by the histidine fusion peptide and formation of an encounter complex facilitated by a reduced dielectric screening of water in the interfacial region, (ii) adsorption of the protein on the surface and adoption of a specific binding orientation, and (iii) adaptation of the protein structure on the metal surface accompanied by induced fit. We anticipate that the mechanistic features of protein adsorption to an Au(111) surface revealed here can be extended to other inorganic surfaces and proteins and will therefore aid the design of specific protein-surface interactions.
Wester, Maarten; Simonis, Frank; Gerritsen, Karin G; Boer, Walther H; Wodzig, Will K; Kooman, Jeroen P; Joles, Jaap A
2013-09-01
Continuous dialysis could provide benefit by constant removal of potassium and phosphate. This study investigates the suitability of specific potassium and phosphate sorbents for incorporation in an extracorporeal device by capacity and regenerability testing. Capacity testing was performed in uraemic plasma. Regenerability was tested for potassium sorbents, with adsorption based on cationic exchange for sodium, with 0.1 M and 1.0 M NaCl. To regenerate phosphate sorbents, with adsorption based on anionic exchange, 0.1 M and 1.0 M NaHCO3 and NaOH were used. Subsequently, sodium polystyrene divinylbenzene sulphonate (RES-A) and iron oxide hydroxide (FeOOH) beads were incorporated in a cartridge for testing in bovine blood using a recirculating blood circuit and a dialysis circuit separated by a high-flux dialyzer (dynamic setup). Preloading was tested to assess whether this could limit calcium and magnesium adsorption. In the batch-binding assays, zirconium phosphate most potently adsorbed potassium (0.44 ± 0.05 mmol/g) and RES-A was the best regenerable potassium sorbent (92.9 ± 5.7% with 0.1 M NaCl). Zirconium oxide hydroxide (ZIR-hydr) most potently adsorbed phosphate (0.23 ± 0.05 mmol/g) and the polymeric amine sevelamer carbonate was the best regenerable sorbent (85.7 ± 5.2% with 0.1 M NaHCO3). In the dynamic setup, a potassium adsorption of 10.72 ± 2.06 mmol in 3 h was achieved using 111 g of RES-A and a phosphate adsorption of 4.73 ± 0.53 mmol in 3 h using 55 g of FeOOH. Calcium and magnesium preloading was shown to reduce the net adsorption in 3 h from 3.57 ± 0.91 to -0.29 ± 1.85 and 1.02 ± 0.05 to -0.31 ± 0.18 mmol, respectively. RES-A and FeOOH are suitable, regenerizable sorbents for potassium and phosphate removal in dialysate regeneration. Use of zirconium carbonate and ZIR-hydr may further increase phosphate adsorption, but may compromise sorbent regenerability. Use of polymeric amines for phosphate adsorption may enhance sorbent regenerability. Calcium and magnesium preloading considerably reduced net adsorption of these ions.
Adsorption of Poly(methyl methacrylate) on Concave Al2O3 Surfaces in Nanoporous Membranes
Nunnery, Grady; Hershkovits, Eli; Tannenbaum, Allen; Tannenbaum, Rina
2009-01-01
The objective of this study was to determine the influence of polymer molecular weight and surface curvature on the adsorption of polymers onto concave surfaces. Poly(methyl methacrylate) (PMMA) of various molecular weights was adsorbed onto porous aluminum oxide membranes having various pore sizes, ranging from 32 to 220 nm. The surface coverage, expressed as repeat units per unit surface area, was observed to vary linearly with molecular weight for molecular weights below ~120 000 g/mol. The coverage was independent of molecular weight above this critical molar mass, as was previously reported for the adsorption of PMMA on convex surfaces. Furthermore, the coverage varied linearly with pore size. A theoretical model was developed to describe curvature-dependent adsorption by considering the density gradient that exists between the surface and the edge of the adsorption layer. According to this model, the density gradient of the adsorbed polymer segments scales inversely with particle size, while the total coverage scales linearly with particle size, in good agreement with experiment. These results show that the details of the adsorption of polymers onto concave surfaces with cylindrical geometries can be used to calculate molecular weight (below a critical molecular weight) if pore size is known. Conversely, pore size can also be determined with similar adsorption experiments. Most significantly, for polymers above a critical molecular weight, the precise molecular weight need not be known in order to determine pore size. Moreover, the adsorption developed and validated in this work can be used to predict coverage also onto surfaces with different geometries. PMID:19415910
Optimization of Porous Pellets for Phosphate Recovery ...
The poster presents the preliminary adsorption experiment showing that phosphate concentration is decreasing over time as well as presenting the kinetics models that best fit the data collected over 25 days. The purpose of this project is to find a better material for adsorption of phosphate from water treatment facilities. The material is made into pellets which allow for adsorption and are easier to remove from the system when capacity is reached.
Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media.
Lyu, Ying; Brusseau, Mark L; Chen, Wei; Yan, Ni; Fu, Xiaori; Lin, Xueyu
2018-06-26
Miscible-displacement experiments are conducted with perfluorooctanoic acid (PFOA) to determine the contribution of adsorption at the air-water interface to retention during transport in water-unsaturated porous media. Column experiments were conducted with two sands of different diameter at different PFOA input concentrations, water saturations, and pore-water velocities to evaluate the impact of system variables on retardation. The breakthrough curves for unsaturated conditions exhibited greater retardation than those obtained for saturated conditions, demonstrating the significant impact of air-water interfacial adsorption on PFOA retention. Retardation was greater for lower water saturations and smaller grain diameter, consistent with the impact of system conditions on the magnitude of air-water interfacial area in porous media. Retardation was greater for lower input concentrations of PFOA for a given water saturation, consistent with the nonlinear nature of surfactant fluid-fluid interfacial adsorption. Retardation factors predicted using independently determined parameter values compared very well to the measured values. The results showed that adsorption at the air-water interface is a significant source of retention for PFOA, contributing approximately 50-75% of total retention, for the test systems. The significant magnitude of air-water interfacial adsorption measured in this work has ramifications for accurate determination of PFAS migration potential in vadose zones.
ERIC Educational Resources Information Center
Martins, Angela; Nunes, Nelson
2015-01-01
In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…
A pressure-amplifying framework material with negative gas adsorption transitions.
Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M; Zander, Stefan; Pillai, Renjith S; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan
2016-04-21
Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.
PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted.more » Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42 days. The amount of biomass increase retained by the adsorbent in the dark flume was only a quarter of that observed in the light-exposed flume. Biofouling in sunlit surface seawater has the potential to reduce uranium adsorption capacity by ~30% after 42 days of exposure. Minimal or no adsorption loss due to biofouling occurred in the dark flume exposure. Attempts to assess time series measurements of uranium adsorption capacity using “snips” off a master braid are fraught with problems due to the inability to easily determine the mass of the adsorbent material when the biofouling is present. The ability to determine the adsorption of biogenically important trace elements (e.g. Fe, Mn, Zn, Cu, and Sr) on biofouled adsorbents is also problematic.« less
Gomes, Diego E B; Lins, Roberto D; Pascutti, Pedro G; Lei, Chenghong; Soares, Thereza A
2010-01-14
The enzyme organophosphorous hydrolase (OPH) catalyzes the hydrolysis of a wide variety of organophosphorous compounds with high catalytic efficiency and broad substrate specificity. The immobilization of OPH in functionalized mesoporous silica (FMS) surfaces increases significantly its catalytic specific activity, as compared to the enzyme in solution, with important applications for the detection and decontamination of insecticides and chemical warfare agents. Experimental measurements of immobilization efficiency as a function of the charge and coverage percentage of different functional groups have been interpreted as electrostatic forces being the predominant interactions underlying the adsorption of OPH onto FMS surfaces. Explicit solvent molecular dynamics simulations have been performed for OPH in bulk solution and adsorbed onto two distinct interaction potential models of the FMS functional groups to investigate the relative contributions of nonbonded interactions to the conformational dynamics and adsorption of the protein. Our results support the conclusion that electrostatic interactions are responsible for the binding of OPH to the FMS surface. However, these results also show that van der Waals forces are detrimental for interfacial adhesion. In addition, it is found that OPH adsorption onto the FMS models favors a protein conformation whose active site is fully accessible to the substrate, in contrast to the unconfined protein.
Benni, Safiya; Avramoglou, Thierry; Hlawaty, Hanna; Mora, Laurence
2014-01-01
Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte's multilayer (PEM) films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE) as polycation and dextran sulphate (DS) as polyanion. One film was composed with 4 bilayers of (DEAE-DS)4 and was labeled D-. The other film was the same as D- but with an added terminal layer of DEAE polycation: (DEAE-DS)4-DEAE (labeled D+). The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA) and atomic force microscopy (AFM). Human endothelial cell (HUVEC) adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA). Our results showed that the endothelial cell response was optimal for films composed of DS as external layer. Fibronectin was found to be the only protein to exhibit a reversible change in conformation after desorption test. This behavior was only observed for (DEAE-DS)4 films. (DEAE-DS)4 films could enhance HUVEC proliferation in agreement with fibronectin ability to easily change from conformation.
Benni, Safiya; Mora, Laurence
2014-01-01
Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte's multilayer (PEM) films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE) as polycation and dextran sulphate (DS) as polyanion. One film was composed with 4 bilayers of (DEAE-DS)4 and was labeled D−. The other film was the same as D− but with an added terminal layer of DEAE polycation: (DEAE-DS)4-DEAE (labeled D+). The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA) and atomic force microscopy (AFM). Human endothelial cell (HUVEC) adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA). Our results showed that the endothelial cell response was optimal for films composed of DS as external layer. Fibronectin was found to be the only protein to exhibit a reversible change in conformation after desorption test. This behavior was only observed for (DEAE-DS)4 films. (DEAE-DS)4 films could enhance HUVEC proliferation in agreement with fibronectin ability to easily change from conformation. PMID:25276808
Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber
Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao
2015-01-01
The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265
Rivera-Utrilla, José; Gómez-Pacheco, Carla V; Sánchez-Polo, Manuel; López-Peñalver, Jesús J; Ocampo-Pérez, Raúl
2013-12-15
The objective of this study was to analyze the behavior of activated carbons with different chemical and textural natures in the adsorption of three tetracyclines (TCs) (tetracycline, oxytetracycline, and chlortetracycline). We also assessed the influence of the solution pH and ionic strength on the adsorption of these compounds and studied their removal by the combined use of microorganisms and activated carbon (bioadsorption). Sludge-derived materials were also used to remove TC from water. The capacity of these materials to adsorb TC was very high and was much greater than that of commercial activated carbon. This elevated adsorption capacity (512.1-672.0 mg/g) is explained by the high tendency of TC to form complex ions with some of the metal ions present in these materials. The medium pH and presence of electrolytes considerably affected TCs adsorption on commercial activated carbon. These results indicate that electrostatic adsorbent-adsorbate interactions play an important role in TC adsorption processes when conducted at pH values that produce TC deprotonation. The presence of bacteria during the TCs adsorption process decreases their adsorption/bioadsorption on the commercial activated carbon, weakening interactions between the adsorbate and the microfilm formed on the carbon surface. The adsorptive capacity was considerably lower in dynamic versus static regime, attributable to problems of TC diffusion into carbon pores and the shorter contact time between adsorbate and adsorbent. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.
2018-05-01
High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.
NASA Astrophysics Data System (ADS)
Dang, Yong; Zhao, Lianming; Lu, Xiaoqing; Xu, Jing; Sang, Pengpeng; Guo, Sheng; Zhu, Houyu; Guo, Wenyue
2017-11-01
The CO2/CH4 adsorption behaviors in brown coal at the temperatures of 298, 313, and 373 K and in the pressure range of 0.005-10 MPa were investigated by molecular dynamics (MD), density functional theory (DFT), and grand canonical Monte Carlo (GCMC) simulations. The absolute adsorption isotherms of single-component CH4 and CO2 exhibit type-I Langmuir adsorption behavior showing a negative influence of temperature. For the binary CO2/CH4 mixture, brown coal shows super high selectivity of CO2 over CH4 at pressures below 0.2 MPa, which then decreases quickly and finally tends to be constant when the pressure increases. The high competitive adsorption of CO2 originates from the effects of (i) the large electrostatic contributions, (ii) the conducive micropore environment with pore sizes below 0.56 nm, and (iii) the stronger adsorption of CO2 with respect to CH4. These effects are strengthened by the high-density oxygen-containing, pyridine, and thiophene functional groups contained in brown coal, which provide abundant and strong adsorption sites for CO2, but show weaker affinity to CH4. Furthermore, the influence of various nitrogen- and sulfur-containing functional groups on the CO2 adsorption capacity was also investigated. The results indicate that the basicity of the oxygen- and nitrogen-containing groups has a large influence on the CO2 adsorption, while for the sulfur functional groups the determining factor is the polarity.
Activated Carbon Preparation and Modification for Adsorption
NASA Astrophysics Data System (ADS)
Cao, Yuhe
Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon. The adsorption capacities of these active carbon samples were almost three times that of zeolite. However, the un-modified active carbon had the highest adsorption capacity for butanol vapor (259.6 mg g-1), compared to 222.4 mg g-1 after 10% H2O2 hydrothermal treatment. Both modified and un-modified active carbon can be easily regenerated for repeatable adsorption by heating to 150 °C. Therefore, surface oxygen groups significantly reduced the adsorption capacity of active carbons for butanol vapor. In addition, original active carbon and AC samples modified by nitric acid hydrothermal modification were assessed for their ability to adsorb butanol vapor. The specific surface area and oxygen-containing functional groups of AC were tested before and after modification. The adsorption capacity of unmodified AC samples were the highest. Hydrothermal oxidation of AC with HNO3 increased the surface oxygen content, Brunauer-Emmett-Teller (BET) surface area, micropore, mesopore and total pore volume of AC. Although the pore structure and specific surface area were greatly improved after hydrothermal oxidization with 4 M HNO3, the increased oxygen on the surface of AC decreased the dynamic adsorption capacity. In order to get high adsorption capacity adsorbents, we used corn stalk as precursor to fabricate porous carbon. ACs were prepared through chemical activation of biochar from whole corn stalk (WCS) and corn stalk pith (CSP) at varying temperatures using potassium hydroxide as the activating agent. ACs were characterized via pore structural analysis and scanning electron microscopy (SEM). These adsorbents were then assessed for their adsorption capacity for butanol vapor. It was found that WCS activated at 900 °C for 1 h (WCS-900) had optimal butanol adsorption characteristics. The BET surface area and total pore volume of the WCS-900 were 2330 m2 g-1 and 1.29 cm3 g-1, respectively. The dynamic adsorption capacity of butanol vapor was 410.0 mg g-1, a 185.1 % increase compared to charcoal-based commercial AC (143.8 mg g -1). Based on the adsorption experiments of butanol vapor, we found the chemical properties of the AC surface play an important role in adsorbing molecules. The adsorption of creatinine on active carbons was also studied, which is a toxic compound generated by human. High levels of creatinine in the blood stream is normally caused by malfunction or failure of the kidneys. Activated carbons is taken by the patients orally to reduce creatinine level. In order to figure out whether chemical modification could increase the adsorption capacity of creatinine, AC samples modified by nitric acid hydrothermal modification were assessed for their ability to adsorb creatinine. The pore structure and surface properties of the AC samples were characterized by N 2 adsorption, temperature programmed desorption (TPD), Fourier Transform Infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). It indicated that 4M HNO3 hydrothermal modification with 180 °C was an efficient method in improvement of the creatinine adsorption. The improved adsorption capacity can be attributed mainly to an increase in the acidic oxygen-containing functional groups. The adsorption of creatinine over AC may involve an interaction with the acidic oxygen-containing groups on AC. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherm and isotherm constants. Equilibrium data fitted very well to the Freundlich model in the entire saturation range (3.58-59.08 mg L-1 ). The maximum adsorption capacities of AC modified with 180 °C is 62.5 mg g-1 according to the Langmuir model. Pseudo first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicates that the chemical adsorption was the rate-limiting step, instead of mass transfer. (Abstract shortened by ProQuest.).
Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface.
Hua, Xiaoqing; Bevan, Michael A; Frechette, Joelle
2018-04-24
Nanoparticles (NPs) can add functionality (e.g., catalytic, optical, rheological) to an oil-water interface. Adsorption of ∼10 nm NPs can be reversible; however, the mechanisms for adsorption and its effects on surface pressure remain poorly understood. Here we demonstrate how the competitive reversible adsorption of NPs and surfactants at fluid interfaces can lead to independent control of both the adsorbed amount and surface pressure. In contrast to prior work, both species investigated (NPs and surfactants) interact reversibly with the interface and without the surface active species binding to NPs. Independent measurements of the adsorption and surface pressure isotherms allow determination of the equation of state (EOS) of the interface under conditions where the NPs and surfactants are both in dynamic equilibrium with the bulk phase. The adsorption and surface pressure measurements are performed with gold NPs of two different sizes (5 and 10 nm), at two pH values, and across a wide concentration range of surfactant (tetrapentylammonium, TPeA + ) and NPs. We show that free surface active ions compete with NPs for the interface and give rise to larger surface pressures upon the adsorption of NPs. Through a competitive adsorption model, we decouple the contributions of NPs wetting at the interface and their surface activity on the measured surface pressure. We also demonstrate reversible control of adsorbed amount via changes in the surfactant concentration or the aqueous phase pH.
Amiri, Mohammad Javad; Abedi-Koupai, Jahangir; Eslamian, Saeid
2017-07-01
In this research, ostrich bone ash (OBA) was modified with nanoscale zerovalent iron (nZVI) particles and applied as a novel composite adsorbent (OBA/nZVI) for dynamic adsorption/reduction of Hg(II) and Pb(II) ions in a fixed-bed column system. Entrapment of nZVI in OBA beads barricades the particles from oxidation and aggregation. The dynamic behavior of metal ions removal by OBA/nZVI was assessed as a function of inlet flow rates, bed height, initial pollutants concentration and pH. The synthesized OBA/nZVI composite was characterized by several physicochemical techniques. Increase in pH and bed height and decrease in flow rates and initial metal concentration resulted in delay of breakthrough time. OBA breakthrough profile is sharper than the OBA/nZVI breakthrough curve for both metal ions and the breakthrough times increase in the order OBA/nZVI-Hg(II) > OBA/nZVI-Pb(II) > OBA-Pb(II) > OBA-Hg(II). Based on the experiment results, redox reaction is expected to occur to a certain extent, as the standard reduction potentials of Hg(II) and Pb(II) are more than that of Fe(II). From a practical point of view, the OBA/nZVI could be applied as a material to remove Hg(II) and Pb(II) ions from natural surface and ground water with a pH value of 5-9.
Adsorption of pharmaceuticals onto trimethylsilylated mesoporous SBA-15.
Bui, Tung Xuan; Pham, Viet Hung; Le, Son Thanh; Choi, Heechul
2013-06-15
The adsorption of a complex mixture of 12 selected pharmaceuticals to trimethylsilylated mesoporous SBA-15 (TMS-SBA-15) has been investigated by batch adsorption experiments. The adsorption of pharmaceuticals to TMS-SBA-15 was highly dependent on the solution pH and pharmaceutical properties (i.e., hydrophobicity (logKow) and acidity (pKa)). Good log-log linear relationships between the adsorption (Kd) and pH-dependent octanol-water coefficients (Kow(pH)) were then established among the neutral, anionic, and cationic compounds, suggesting hydrophobic interaction as a primary driving force in the adsorption. In addition, the neutral species of each compound accounted for a major contribution to the overall compound adsorption onto TMS-SBA-15. The adsorption kinetics of pharmaceuticals was evaluated by the nonlinear first-order and pseudo-second-order models. The first-order model gave a better fit for five pharmaceuticals with lower adsorption capacity, whereas the pseudo-second-order model fitted better for seven pharmaceuticals having higher adsorption capacity. In the same group of properties, pharmaceuticals having higher adsorption capacity exhibited faster adsorption rates. The rate-limiting steps for adsorption of pharmaceuticals onto TMS-SBA-15 are boundary layer diffusion and intraparticle diffusion including diffusion in mesopores and micropores. In addition, the adsorption of pharmaceuticals to TMS-SBA-15 was not influenced by the change of initial pharmaceutical concentration (10-100μgL(-1)) and the presence of natural organic matter. Copyright © 2013 Elsevier B.V. All rights reserved.
Adsorption of Acid Blue 25 dye by bentonite and surfactant modified bentonite
NASA Astrophysics Data System (ADS)
Jeeva, Mark; Wan Zuhairi, W. Y.
2018-04-01
Adsorption of Acid Blue (AB 25) from water via batch adsorption experiments onto Na-Bentonite (NB) and CTAB-modified bentonite (CTAB-Ben) was investigated. Studies concerning the factors influencing the adsorption capacities of NB and CTAB-Ben, such as initial dye concentration, adsorbent dosage, pH, contact time and temperature were investigated and discussed. The results revealed that CTAB-modified bentonite demonstrated high adsorption capacities toward acid dyes, while NB exhibited sorption capacities lower than CTAB-Ben. The maximum adsorption efficiency was found to be 50% at an AB 25 concentration of 50 mg/L, adsorbent dosage of 1.8 g/L, reaction time of 90 min and equilibrium pH of 11. The results of isotherm study fit the Langmuir and Freundlich models (R2 > 0.93) and (R2 > 0.9) respectively.
Yang, Xiaoxia; Li, Yanhui; Du, Qiuju; Sun, Jiankun; Chen, Long; Hu, Song; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua
2015-09-01
Novel anionic polyacrylamide/graphene oxide aerogels were prepared by a freeze drying method and used to remove basic fuchsin from aqueous solutions. These aerogels were sponge-like solid with lightweight, fluffy and porous structure. The batch adsorption experiments were carried out to study the effect of various parameters, such as the solution pH, adsorbent dose, contact time and temperature on adsorption properties of basic fuchsin onto anionic polyacrylamide/graphene oxide aerogels. The kinetics of adsorption corresponded to the pseudo-second-order kinetic model. The Langmuir adsorption isotherm was suitable to describe the equilibrium adsorption process. The maximum adsorption capacity was up to 1034.3 mg/g, which indicated that anionic polyacrylamide/graphene oxide aerogels were promising adsorbents for removing dyes pollutants from aqueous solution. Copyright © 2015 Elsevier Inc. All rights reserved.
Removal of dieldrin from aqueous solution by a novel triolein-embedded composite adsorbent.
Ru, Jia; Liu, Huijuan; Qu, Jiuhui; Wang, Aimin; Dai, Ruihua
2007-03-06
In this study, a novel triolein-embedded activated carbon composite adsorbent (CA-T) was prepared and applied for the adsorption and removal of dieldrin from aqueous systems. Experiments were carried out to investigate the adsorption behavior of dieldrin on CA-T, including adsorption isotherms, adsorption kinetics, the influence of initial concentration, temperature, shaking speed, pH and the addition of humic acid (HA) on adsorption. The adsorption isotherms accorded with Freundlich equation. Three kinetics models, including pseudo-first-order, pseudo-second-order and intraparticle diffusion models, were used to fit the experimental data. By comparing the correlation coefficients, it was found that both pseudo-second-order and intraparticle diffusion models were used to well describe the adsorption of dieldrin on CA-T. The addition of HA had little effect on dieldrin adsorption by CA-T. Results indicated that CA-T appeared to be a promising adsorbent for removing lipophilic dieldrin in trace amount, which was advantageous over pure granular activated carbon (GAC). The adsorption rate increased with increasing shaking speed, initial concentration and temperature, and remained almost unchanged in the pH range of 4-8. Thermodynamic calculations indicated that the adsorption reaction was spontaneous with a high affinity and the adsorption was an endothermic reaction.
Zhao, Yongliang; Feng, Yanhui; Zhang, Xinxin
2016-09-06
The adsorption and diffusion of the CO2-CH4 mixture in coal and the underlying mechanisms significantly affect the design and operation of any CO2-enhanced coal-bed methane recovery (CO2-ECBM) project. In this study, bituminous coal was fabricated based on the Wiser molecular model and its ultramicroporous parameters were evaluated; molecular simulations were established through Grand Canonical Monte Carlo (GCMC) and Molecular Dynamic (MD) methods to study the effects of temperature, pressure, and species bulk mole fraction on the adsorption isotherms, adsorption selectivity, three distinct diffusion coefficients, and diffusivity selectivity of the binary mixture in the coal ultramicropores. It turns out that the absolute adsorption amount of each species in the mixture decreases as temperature increases, but increases as its own bulk mole fraction increases. The self-, corrected, and transport diffusion coefficients of pure CO2 and pure CH4 all increase as temperature or/and their own bulk mole fractions increase. Compared to CH4, the adsorption and diffusion of CO2 are preferential in the coal ultramicropores. Adsorption selectivity and diffusivity selectivity were simultaneously employed to reveal that the optimal injection depth for CO2-ECBM is 800-1000 m at 308-323 K temperature and 8.0-10.0 MPa.
Bovine serum albumin adsorption on titania surfaces and its relation to wettability aspects.
Valagão Amadeu do Serro, A P; Fernandes, A C; de Jesus Vieira Saramago, B; Norde, W
1999-09-05
The adsorption of bovine serum albumin (BSA) from sodium chloride solution and Hanks' balanced salt solution (HBSS) onto TiO2-silicon surfaces is studied by reflectometry in stagnation point flow. The results are compared with those obtained by dynamic contact-angle (DCA) analysis of titanium substrates. The adsorption isotherms show that the adsorbed amount of protein always is lower in HBSS, that is, in the presence of calcium and phosphate ions. This may be related to the increase in surface hydrophilicity caused by these ions, as suggested by the authors in previous works. The rate of adsorption also is lower in HBSS solutions. Comparison of the initial adsorption rates with the rate of mass transfer to the surface reveals that in both solvents only a small fraction of the protein that arrives at the surface adsorbs onto it. Electrostatic and/or conformational effects can explain the energy barrier to adsorption. The DCA analysis of high concentration (4 mg/mL) protein solutions shows a strong reduction of the contact-angle hysteresis, both in HBSS and in NaCl solutions, which confirms that the immediate adsorption of the protein to the surface forms a stable, hydrophilic film. Copyright 1999 John Wiley & Sons, Inc.
Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.
Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki
2015-09-23
The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.
Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi
2017-09-19
Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.
CO2 Fluxes Monitoring at the Level of Field Agroecosystem in Moscow Region of Russia
NASA Astrophysics Data System (ADS)
Meshalkina, Joulia; Mazirov, Ilya; Samardzic, Miljan; Yaroslavtsev, Alexis; Valentini, Riccardo; Vasenev, Ivan
2014-05-01
The Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. The eddy covariance technique is a statistical method to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The major assumption of the metod is that measurements at a point can represent an entire upwind area. Eddy covariance researches, which could be considered as repeated for the same area, are very rare. The research has been carried out on the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow, Russia) in 2013 under the support of RF Government grant No. 11.G34.31.0079. Arable derno-podzoluvisls have around 1 The results have shown high daily and seasonal dynamic of agroecosystem CO2 emission. Sowing activates soil microbiological activity and the average soil CO2 emission and adsorption are rising at the same time. CO2 streams are intensified after crop emerging from values of 3 to 7 μmol/s-m2 for emission, and from values of 5 to 20 μmol/s-m2 for adsorption. Stabilization of the flow has come at achieving plants height of 10-12 cm. The vegetation period is characterized by high average soil CO2 emission and adsorption at the same time, but the adsorption is significantly higher. The resulted CO2 absorption during the day is approximately 2-5 times higher than emissions at night. For example, in mid-June, the absorption value was about 0.45 mol/m2 during the day-time, and the emission value was about 0.1 mol/m2 at night. After harvesting CO2 emission is becoming essentially higher than adsorption. Autumn and winter data are fluctuate around zero, but for some periods a small predominance of CO2 emissions over the absorption may be observed. The daily dynamics of CO2 emissions depends on the air temperature with the correlation coefficient changes between 0.4 and 0.8. Crop stage, agrotechnological operation and soil moisture has stronger influence on the seasonal dynamics of soil and agroecosystem CO2 emissions. Obtained unique for Russian agriculture data are very useful for land-use practices environmental assessment, for soil organic carbon dynamics analysis and agroecological evaluation, and for food C-footprint calculation. Their system analysis together with the nearest forest eddy covariance stations helps us to understand better the land-use change impact on the GHG fluxes dynamics and ecosystem services.
Arsenic(V) Removal in Wetland Filters Treating Drinking Water with Different Substrates and Plants.
Wu, Min; Li, Qingyun; Tang, Xianqiang; Huang, Zhuo; Lin, Li; Scholz, Miklas
2014-05-01
Constructed wetlands are an attractive choice for removing arsenic (As) within water resources used for drinking water production. The role of substrate and vegetation in As removal processes is still poorly understood. In this study, gravel, zeolite (microporous aluminosilicate mineral), ceramsite (lightweight expanded clay aggregate) and manganese sand were tested as prospective substrates while aquatic Juncus effuses (Soft Rush or Common Rush) and terrestrial Pteris vittata L. (Chinese Ladder Brake; known as As hyperaccumulator) were tested as potential wetland plants. Indoor batch adsorption experiments combined with outdoor column experiments were conducted to assess the As removal performances and process mechanisms. Batch adsorption results indicated that manganese sand had the maximum As(V) adsorption rate of 4.55 h -1 and an adsorption capacity of 42.37 μg/g compared to the other three aggregates. The adsorption process followed the pseudo-first-order kinetic model and Freundlich isotherm equations better than other kinetic and isotherm models. Film-diffusion was the rate-limiting step. Mean adsorption energy calculation results indicated that chemical forces, particle diffusion and physical processes dominated As adsorption to manganese sand, zeolite and gravel, respectively. During the whole running period, manganese sand-packed wetland filters were associated with constantly 90% higher As(V) reduction of approximate 500 μg/L influent loads regardless if planted or not. The presence of P. vittata contributed to no more than 13.5% of the total As removal. In contrast, J. effuses was associated with a 24% As removal efficiency.
Gruszkiewicz, M.S.; Naney, M.T.; Blencoe, J.G.; Cole, D.R.; Pashin, J.C.; Carroll, R.E.
2009-01-01
Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45-150????m, 1-2??mm, and 5-10??mm) of crushed coal were performed at 40????C and 35????C over a pressure range of 1.4-6.9??MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45-150????m size fraction compared to the two coarser fractions. ?? 2008 Elsevier B.V.
Greathouse, J. A.; Cygan, R. T.; Fredrich, J. T.; ...
2017-09-28
Molecular simulations of the adsorption of representative organic molecules onto the basal surfaces of various clay minerals were used to assess the mechanisms of enhanced oil recovery associated with salinity changes and water flooding. Simulations at the density functional theory (DFT) and classical levels provide insights into the molecular structure, binding energy, and interfacial behavior of saturate, aromatic, and resin molecules near clay mineral surfaces. Periodic DFT calculations reveal binding geometries and ion pairing mechanisms at mineral surfaces while also providing a basis for validating the classical force field approach. Through classical molecular dynamics simulations, the influence of aqueous cationsmore » at the interface and the role of water solvation are examined to better evaluate the dynamical nature of cation-organic complexes and their co-adsorption onto the clay surfaces. The extent of adsorption is controlled by the hydrophilic nature and layer charge of the clay mineral. All organic species studied showed preferential adsorption on hydrophobic mineral surfaces. However, the anionic form of the resin (decahydro-2-naphthoic acid)—expected to be prevalent at near-neutral pH conditions in petroleum reservoirs—readily adsorbs to the hydrophilic kaolinite surface through a combination of cation pairing and hydrogen bonding with surface hydroxyl groups. Analysis of cation-organic pairing in both the adsorbed and desorbed states reveals a strong preference for organic anions to coordinate with divalent calcium ions rather than monovalent sodium ions, lending support to current theories regarding low-salinity water flooding.« less
Huang, Pei-Hsing; Hung, Shang-Chao; Huang, Ming-Yueh
2014-08-07
Formaldehyde exposure has been associated with several human cancers, including leukemia and nasopharyngeal carcinoma, motivating the present investigation on the microscopic adsorption behaviors of formaldehyde in multi-component-mixture-filled micropores. Molecular dynamics (MD) simulation was used to investigate the liquid-vapor interaction and adsorption of formaldehyde, oxocarbons, and water in graphitic slit pores. The effects of the slit width, system temperature, concentration, and the constituent ratio of the mixture on the diffusion and adsorption properties are studied. As a result of interactions between the components, the z-directional self-diffusivity (D(z)) in the mixture substantially decreased by about one order of magnitude as compared with that of pure (single-constituent) adsorbates. When the concentration exceeds a certain threshold, the D(z) values dramatically decrease due to over-saturation inducing barriers to diffusion. The binding energy between the adsorbate and graphite at the first adsorption monolayer is calculated to be 3.99, 2.01, 3.49, and 2.67 kcal mol(-1) for CO2, CO, CH2O, and H2O, respectively. These values agree well with those calculated using the density functional theory coupled cluster method and experimental results. A low solubility of CO2 in water and water preferring to react with CH2O, forming hydrated methanediol clusters, are observed. Because the cohesion in a hydrated methanediol cluster is much higher than the adhesion between clusters and the graphitic surface, the hydrated methanediol clusters were hydrophobic, exhibiting a large contact angle on graphite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greathouse, J. A.; Cygan, R. T.; Fredrich, J. T.
Molecular simulations of the adsorption of representative organic molecules onto the basal surfaces of various clay minerals were used to assess the mechanisms of enhanced oil recovery associated with salinity changes and water flooding. Simulations at the density functional theory (DFT) and classical levels provide insights into the molecular structure, binding energy, and interfacial behavior of saturate, aromatic, and resin molecules near clay mineral surfaces. Periodic DFT calculations reveal binding geometries and ion pairing mechanisms at mineral surfaces while also providing a basis for validating the classical force field approach. Through classical molecular dynamics simulations, the influence of aqueous cationsmore » at the interface and the role of water solvation are examined to better evaluate the dynamical nature of cation-organic complexes and their co-adsorption onto the clay surfaces. The extent of adsorption is controlled by the hydrophilic nature and layer charge of the clay mineral. All organic species studied showed preferential adsorption on hydrophobic mineral surfaces. However, the anionic form of the resin (decahydro-2-naphthoic acid)—expected to be prevalent at near-neutral pH conditions in petroleum reservoirs—readily adsorbs to the hydrophilic kaolinite surface through a combination of cation pairing and hydrogen bonding with surface hydroxyl groups. Analysis of cation-organic pairing in both the adsorbed and desorbed states reveals a strong preference for organic anions to coordinate with divalent calcium ions rather than monovalent sodium ions, lending support to current theories regarding low-salinity water flooding.« less
NASA Astrophysics Data System (ADS)
Roccatano, Danilo; Sarukhanyan, Edita; Zangi, Ronen
2017-02-01
Peptides are versatile molecules with applications spanning from biotechnology to nanomedicine. They exhibit a good capability to unbundle carbon nanotubes (CNT) by improving their solubility in water. Furthermore, they are a powerful drug delivery system since they can easily be uptaken by living cells, and their high surface-to-volume ratio facilitates the adsorption of molecules of different natures. Therefore, understanding the interaction mechanism between peptides and CNT is important for designing novel therapeutical agents. In this paper, the mechanisms of the adsorption of antimicrobial peptide Cecropin A-Magainin 2 (CA-MA) on a graphene nanosheet (GNS) and on an ultra-short single-walled CNT are characterized using molecular dynamics simulations. The results show that the peptide coats both GNS and CNT surfaces through preferential contacts with aromatic side chains. The peptide packs compactly on the carbon surfaces where the polar and functionalizable Lys side chains protrude into the bulk solvent. It is shown that the adsorption is strongly correlated to the loss of the peptide helical structure. In the case of the CNT, the outer surface is significantly more accessible for adsorption. Nevertheless when the outer surface is already covered by other peptides, a spontaneous diffusion, via the amidated C-terminus into the interior of the CNT, was observed within 150 ns of simulation time. We found that this spontaneous insertion into the CNT interior can be controlled by the polarity of the entrance rim. For the positively charged CA-MA peptide studied, hydrogenated and fluorinated rims, respectively, hinder and promote the insertion.
Time dependent wettability of graphite upon ambient exposure: The role of water adsorption
NASA Astrophysics Data System (ADS)
Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo
2014-08-01
We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ˜68° to ˜90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene).
Time dependent wettability of graphite upon ambient exposure: The role of water adsorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan
We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmedmore » by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene)« less
Tabelin, Carlito Baltazar; Sasaki, Ryosuke; Igarashi, Toshifumi; Park, Ilhwan; Tamoto, Shuichi; Arima, Takahiko; Ito, Mayumi; Hiroyoshi, Naoki
2017-12-01
Predicting the fates of arsenic (As) and selenium (Se) in natural geologic media like rocks and soils necessitates the understanding of how their various oxyanionic species behave and migrate under dynamic conditions. In this study, geochemical factors and processes crucial in the leaching and transport of arsenite (As III ), arsenate (As V ), selenite (Se IV ) and selenate (Se VI ) in tunnel-excavated rocks of marine origin were investigated using microscopic/extraction techniques, column experiments, dissolution-precipitation kinetics and one-dimensional reactive transport modeling. The results showed that evaporite salts were important because aside from containing As and Se, they played crucial roles in the evolution of pH and concentrations of coexisting ions, both of which had strong effects on adsorption-desorption reactions of As and Se species with iron oxyhydroxide minerals/phases. The observed leaching trends of As V , As III , Se IV and Se VI were satisfactorily simulated by one-dimensional reactive transport models, which predict that preferential adsorptions of As V and Se IV were magnified by geochemical changes in the columns due to water flow. Moreover, our results showed that migrations of As III , Se IV and Se VI could be predicted adequately by 1D solute transport with simple activity-K' d approach, but surface complexation was more reliable to simulate adsorption-desorption behavior of As V . Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
López-Ortiz, C. M.; Boluda-Botella, N.; Prats-Rico, D.; Sentana-Gadea, I.
2018-02-01
Coastal areas submitted to seawater intrusion and with discharges from urban and industrial wastewaters, municipal landfill leachates, rivers, recreational waters and other sources are sensitive to be polluted with parabens. Understanding the fate of these compounds in environmental studies, it requires previously the knowledge of the reactive processes in controlled conditions. In this research, laboratory columns experiments were carried out with a group of parabens (methyl-, ethyl-, propyl- and butylparaben) and their main degradation compound (4-hydroxybenzoic acid) to study mainly the dynamic sorption processes in different aquifer materials (100% sand and heterogeneous: 81% sand, 9% silt and 10% clay) and with fresh and sea waters, the end members of seawater intrusions. To the column hydrodynamic characterization, tracer assays with increase and decrease of salinity were performed, to obtain the mean residence time of each column and other transport parameters which allow us to compare parabens' sorption in different conditions. The results of the adsorption and desorption of parabens in the sand column demonstrated be fast and simultaneous, with a short delay and without influence of the water salinity. Very different results were found in the column experiments with heterogeneous material, where the presence of clay and organic matter increase the time of adsorption/desorption as the length of the alkyl chain paraben increased, according with their hydrophobicity. It should be noted that despite the quick desorption of the major quantities of parabens, the elution of their trace concentrations was very slow (for the seawater, the buthylparaben required a dimensionless time of 800). Planning the restoration of a coastal aquifer with freshwater, and in the conditions of the studied sand column experiment, it will need a dimensionless time of 160. However, it is necessary to take into account that the studied parabens and 4-hydroxybenzoic acid are biodegradable substances, as can be seen in long term experiments, when bacterial proliferation could occur, despite starting the experiment under sterile conditions.
Self similarities in desalination dynamics and performance using capacitive deionization.
Ramachandran, Ashwin; Hemmatifar, Ali; Hawks, Steven A; Stadermann, Michael; Santiago, Juan G
2018-09-01
Charge transfer and mass transport are two underlying mechanisms which are coupled in desalination dynamics using capacitive deionization (CDI). We developed simple reduced-order models based on a mixed reactor volume principle which capture the coupled dynamics of CDI operation using closed-form semi-analytical and analytical solutions. We use the models to identify and explore self-similarities in the dynamics among flow rate, current, and voltage for CDI cell operation including both charging and discharging cycles. The similarity approach identifies the specific combination of cell (e.g. capacitance, resistance) and operational parameters (e.g. flow rate, current) which determine a unique effluent dynamic response. We here demonstrate self-similarity using a conventional flow between CDI (fbCDI) architecture, and we hypothesize that our similarity approach has potential application to a wide range of designs. We performed an experimental study of these dynamics and used well-controlled experiments of CDI cell operation to validate and explore limits of the model. For experiments, we used a CDI cell with five electrode pairs and a standard flow between (electrodes) architecture. Guided by the model, we performed a series of experiments that demonstrate natural response of the CDI system. We also identify cell parameters and operation conditions which lead to self-similar dynamics under a constant current forcing function and perform a series of experiments by varying flowrate, currents, and voltage thresholds to demonstrate self-similarity. Based on this study, we hypothesize that the average differential electric double layer (EDL) efficiency (a measure of ion adsorption rate to EDL charging rate) is mainly dependent on user-defined voltage thresholds, whereas flow efficiency (measure of how well desalinated water is recovered from inside the cell) depends on cell volumes flowed during charging, which is determined by flowrate, current and voltage thresholds. Results of experiments strongly support this hypothesis. Results show that cycle efficiency and salt removal for a given flowrate and current are maximum when average EDL and flow efficiencies are approximately equal. We further explored a range of CC operations with varying flowrates, currents, and voltage thresholds using our similarity variables to highlight trade-offs among salt removal, energy, and throughput performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gao, Yaohuan; Deshusses, Marc A
2011-12-01
The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed
NASA Astrophysics Data System (ADS)
Hassan, Safia; Yasin, Tariq; Imran, Zahid; Batool, Syeda Sitwat
2018-02-01
In present study, series of gamma irradiated poly(acrylic acid)/Penytriethoxytrisilane (PTES) based hydrogels were synthesized. The hydrogels were used for the adsorption of Cu2+ from the aqueous solution. Batch adsorption experiments were performed by varying contact time (0-10 hours), pH value (2-6), hydrogels weight (15-155 mg) and initial Cu2+ concentration (0.003-90 mg/L). The results indicated that lowering the gamma irradiation dose (30-15 kGy) and PTES amount (1.65-0.83 μmol) into hydrogel polymeric networks, improved the initial rate of adsorption and final adsorption capacity of hydrogel for Cu2+. AA40/15 had 143.4mg/g Cu2+ adsorption capacity higher than AA80/30 which is 106.0mg/g. Hydrogels exhibited maximum o adsorption capacity for Cu2+ within a wide pH range. All adsorption data was described by the pseudo—first order and second order kinetic model equations and isotherm data by Langmuir model. FTIR spectra analysis before and after adsorption of Cu2+ on the AA hydrogels gave detail analysis of adsorption mechanism. The behavior of adsorption expressed that the enhanced adsorption capacity was due to the porous structure and e presence of functional groups onto surface of adsorbate. It is expected this polymeric hydrogel has potential to work as alternative biomedical sorbents and environmental use as pH altered.
2017-01-01
The drying of dichloromethane with a molecular sieve 3A packed bed process is modeled and experimentally verified. In the process, the dichloromethane is dried in the liquid phase and the adsorbent is regenerated by water desorption with dried dichloromethane product in the vapor phase. Adsorption equilibrium experiments show that dichloromethane does not compete with water adsorption, because of size exclusion; the pure water vapor isotherm from literature provides an accurate representation of the experiments. The breakthrough curves are adequately described by a mathematical model that includes external mass transfer, pore diffusion, and surface diffusion. During the desorption step, the main heat transfer mechanism is the condensation of the superheated dichloromethane vapor. The regeneration time is shortened significantly by external bed heating. Cyclic steady-state experiments demonstrate the feasibility of this novel, zero-emission drying process. PMID:28539701
PHOSPHORUS SORPTION DYNAMICS IN SOILS AND COUPLING WITH SURFACE AND PORE WATER IN RIVERINE WETLANDS
Adsorption to soils is one of the dominant mechanisms of P storage in wetlands. We examined P sorption dynamics in soils collected at 12 sample points with diverse hydrology, geomorphic position, mineralogy, and plant communities in two riverine wetlands in northern Minnesota and...
Adsorption of charged albumin subdomains on a graphite surface.
Raffaini, Giuseppina; Ganazzoli, Fabio
2006-03-01
We report some new molecular dynamics simulation results about the adsorption on a hydrophobic graphite surface of two albumin subdomains, each formed by three different alpha-helices, considering the correctly charged side groups at pH = 7 instead of the neutral ones as done in our previous exploratory paper (Raffaini and Ganazzoli, Langmuir 2003;19:3403-3412). We find that the presence of charges affects somewhat the initial adsorption stage on the electrostatically neutral surface, but not the final one. Thus, we recover the result that a monolayer of aminoacids is eventually formed, with a rough parallelism of distant strands to optimize both the intramolecular and the surface interactions. This feature is consistent with the adsorption on the hydrophobic surface being driven by dispersion forces only, and with the "soft" nature of albumin. Additional optimizations of the final monolayer carried out at pH = 3 and 11 do not modify appreciably this picture, suggesting that adsorption on graphite is basically independent of pH. The enhanced hydration of the final adsorption state due to the (delocalized) charges of the side groups is also discussed in comparison with similar results of the neutralized subdomains. (c) 2005 Wiley Periodicals, Inc.
Song, Xianyu; Zhao, Shuangliang; Fang, Shenwen; Ma, Yongzhang; Duan, Ming
2016-11-08
The dissipative particle dynamics (DPD) method is used to investigate the adsorption behavior of PEO-PPO-PEO triblock copolymers at the liquid/solid interface. The effect of molecular architecture on the self-assembled monolayer adsorption of PEO-PPO-PEO triblock copolymers on hydrophobic surfaces is elucidated by the adsorption process, film properties, and adsorption morphologies. The adsorption thicknesses on hydrophobic surfaces and the diffusion coefficient as well as the aggregation number of Pluronic copolymers in aqueous solution observed in our simulations agree well with previous experimental and numerical observations. The radial distribution function revealed that the ability of self-assembly on hydrophobic surfaces is P123 > P84 > L64 > P105 > F127, which increased with the EO ratio of the Pluronic copolymers. Moreover, the shape parameter and the degree of anisotropy increase with increasing molecular weight and mole ratio of PO of the Pluronic copolymers. Depending on the conformation of different Pluronic copolymers, the morphology transition of three regimes on hydrophobic surfaces is present: mushroom or hemisphere, progressively semiellipsoid, and rectangle brush regimes induced by decreasing molecular weight and mole ratio of EO of Pluronic copolymers.
Adsorption and catalytic properties of sulfated aluminum oxide modified with cobalt ions
NASA Astrophysics Data System (ADS)
Lanin, S. N.; Bannykh, A. A.; Vlasenko, E. V.; Krotova, I. N.; Obrezkov, O. N.; Shilina, M. I.
2017-01-01
The adsorption properties of sulfated aluminum oxide (9% SO 4 2- /γ-Al2O3) and a cobalt-containing composite (0.5%Co/SO 4 2- /γ-Al2O3) based on it are studied via dynamic sorption. The adsorption isotherms of such test adsorbates as n-hydrocarbons (C6-C8), benzene, ethylbenzene, chloroform, and diethyl ether are measured, and their isosteric heats of adsorption are calculated. It is shown that the surface sulfation of aluminum oxide substantially improves its electron-accepting properties, and so the catalytic activity of SO 4 2- /γ-Al2O3 in the liquid-phase alkylation of benzene with octene-1 at temperatures of 25-120°C is one order of magnitude higher than for the initial aluminum oxide. It is established that additional modification of sulfated aluminum oxide with cobalt ions increases the activity of this catalyst by 2-4 times. It is shown that adsorption sites capable of strong specific adsorption with both donating (aromatics, diethyl ether chemosorption) and accepting molecules (chloroform) form on the surface of sulfated γ-Al2O3 promoted by cobalt salt.
ADSORPTION OF CADMIUM ONTO DIFFERENT FRACTIONS OF BIOSOLID-AMENDED SOILS
We hypothesized not only organic but also inorganic fraction in biosolids controls the metal availability in soil systems. To test this hypothesis we conducted Cd adsorption experiments on different fractions of biosolids, biosolid amended soils, and unamended soils. Soils were c...
Surface functional groups in capacitive deionization with porous carbon electrodes
NASA Astrophysics Data System (ADS)
Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team
2017-11-01
Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.
Adsorption of heavy metals by road deposited solids.
Gunawardana, Chandima; Goonetilleke, Ashantha; Egodawatta, Prasanna
2013-01-01
The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb, for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments, confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electronegativity and high charge density of trivalent cation (Cr(3+)). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.
Activated adsorption of methane on clean and oxygen-modified Pt?111? and Pd?110?
NASA Astrophysics Data System (ADS)
Valden, M.; Pere, J.; Hirsimäki, M.; Suhonen, S.; Pessa, M.
1997-04-01
Activated adsorption of CH 4 on clean and oxygen modified Pt{111} and Pd{110} has been studied using molecular beam surface scattering. The absolute dissociation probability of CH 4 was measured as a function of the incident normal energy ( E) and the surface temperature ( Ts). The results from clean Pt{111} and Pd{110} are consistent with a direct dissociation mechanism. The dissociative chemisorption dynamics of CH 4 is addressed by using quantum mechanical and statistical models. The influence of adsorbed oxygen on the dissociative adsorption of CH 4 on both Pt{111} and Pd{110} shows that the dissociation probability decreases linearly with increasing oxygen coverage.
Babaei, Hasan; McGaughey, Alan J H; Wilmer, Christopher E
2018-01-24
Methane adsorption into the metal-organic framework (MOF) HKUST-1 and the resulting heat generation and dissipation are investigated using molecular dynamics simulations. Transient simulations reveal that thermal transport in the MOF occurs two orders of magnitude faster than gas diffusion. A large thermal resistance at the MOF-gas interface (equivalent to 127 nm of bulk HKUST-1), however, prevents fast release of the generated heat. The mass transport resistance at the MOF-gas interface is equivalent to 1 nm of bulk HKUST-1 and does not present a bottleneck in the adsorption process. These results provide important insights into the application of MOFs for gas storage applications.
Smith, Rose-Michelle; Sayen, Stéphanie; Nuns, Nicolas; Berrier, Elise; Guillon, Emmanuel
2018-05-23
The bioavailability of pharmaceuticals is governed by their sorption in soils/sediments, as the retention processes determine their concentration in surface- and ground-water. The adsorption of these contaminants can involve various solid components such as organic matter, clays and metallic oxides, and their distribution among these solid components depends on contaminant and solid properties. In this paper we studied the adsorption of the pharmaceutical propranolol - a beta-blocker - on eight different solids (six soils, one sediment and one kaolinite-based sample) by batch experiments. The influence of contact time, propranolol concentration and pH was considered, as well as the presence of copper(II). The investigated solids displayed a wide variability in terms of CEC (cationic exchange capacity) and organic carbon and carbonates contents. The influence of pH was negligible in the pH range from 5.5 to 8.6. The adsorbed amounts were greatly dependent on the solid and two groups of solids were evidenced: three soils of high CEC and organic carbon contents which retained high amounts of propranolol, and three soils, the sediment and the kaolinite-based sample (low CEC and organic carbon content) displaying a low adsorption capacity for the beta-blocker. A linear model enabling the determination of the sorption parameters K d and K oc was pertinent to describe the adsorption isotherms but the K oc values showed a great variability. It was shown that organic carbon content alone could not explain propranolol adsorption. The CEC value was identified as influent parameter and a simple empirical model was proposed to describe propranolol adsorption. At microscopic and molecular scales, ToF-SIMS experiments indicated (i) a decrease of potassium on the surface upon propranolol adsorption with a distribution of the beta-blocker similarly to alumino-silicates, iron and organic carbon on the surface confirming a cation exchange mechanism and (ii) the absence of degradation products and copper-propranolol complexes. Copyright © 2018. Published by Elsevier B.V.
Crowding-facilitated macromolecular transport in attractive micropost arrays.
Chien, Fan-Tso; Lin, Po-Keng; Chien, Wei; Hung, Cheng-Hsiang; Yu, Ming-Hung; Chou, Chia-Fu; Chen, Yeng-Long
2017-05-02
Our study of DNA dynamics in weakly attractive nanofabricated post arrays revealed crowding enhances polymer transport, contrary to hindered transport in repulsive medium. The coupling of DNA diffusion and adsorption to the microposts results in more frequent cross-post hopping and increased long-term diffusivity with increased crowding density. We performed Langevin dynamics simulations and found maximum long-term diffusivity in post arrays with gap sizes comparable to the polymer radius of gyration. We found that macromolecular transport in weakly attractive post arrays is faster than in non-attractive dense medium. Furthermore, we employed hidden Markov analysis to determine the transition of macromolecular adsorption-desorption on posts and hopping between posts. The apparent free energy barriers are comparable to theoretical estimates determined from polymer conformational fluctuations.
Adsorption Behavior of Selective Recognition Functionalized Biochar to Cd(II) in Wastewater
Zhang, Shiqiu; Yang, Xue; Liu, Le; Ju, Meiting; Zheng, Kui
2018-01-01
Biochar is an excellent absorbent for most heavy metal ions and organic pollutants with high specific surface area, strong aperture structure, high stability, higher cation exchange capacity and rich surface functional groups. To improve the selective adsorption capacity of biochar to designated heavy metal ions, biochar prepared by agricultural waste is modified via Ionic-Imprinted Technique. Fourier transform infrared (FT-IR) spectra analysis and X-ray photoelectron spectroscopy (XPS) analysis of imprinted biochar (IB) indicate that 3-Mercaptopropyltrimethoxysilane is grafted on biochar surface through Si–O–Si bonds. The results of adsorption experiments indicate that the suitable pH range is about 3.0–8.0, the dosage is 2.0 g·L−1, and the adsorption equilibrium is reached within 960 min. In addition, the data match pseudo-second-order kinetic model and Langmuir model well. The computation results of adsorption thermodynamics and stoichiometric displacement theory of adsorption (SDT-A) prove that the adsorption process is spontaneous and endothermic. Finally, IB possesses a higher selectivity adsorption to Cd(II) and a better reuse capacity. The functionalized biochar could solidify designated ions stably. PMID:29443954
Wei, Shaochen; Li, Dongtian; Huang, Zhe; Huang, Yaqin; Wang, Feng
2013-04-01
A hierarchical porous carbon obtained from pig bone (HPC) was utilized as the adsorbent for removal of Cr(VI) from aqueous solution. The effects of solution pH value, concentration of Cr(VI), and adsorption temperature on the removal of Cr(VI) were investigated. The experimental data of the HPC fitted well with the Langmuir isotherm and its adsorption kinetic followed pseudo-second order model. Compared with a commercial activated carbon adsorbent (Norit CGP), the HPC showed an high adsorption capability for Cr(VI). The maximum Cr(VI) adsorption capacity of the HPC was 398.40 mg/g at pH 2. It is found that a part of the Cr(VI) was reduced to Cr(III) on the adsorbent surface from desorption experiment data. The regeneration showed adsorption capacity of the HPC can still achieve 92.70 mg/g even after fifth adsorption cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J
2004-09-01
The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.
Zhang, Yue; Pan, Kang; Zhong, Qixin
2013-09-25
Removing annatto from cheese whey without bleaching has potential to improve whey protein quality. In this work, the potential of two activated carbon products and multiwalled carbon nanotubes (CNT) was studied for extracting annatto (norbixin) in aqueous solutions. Batch adsorption experiments were studied for the effects of solution pH, adsorbent mass, contact duration, and ionic strength. The equilibrium adsorption data were observed to fit both Langmuir and Freundlich isotherm models. The thermodynamic parameters estimated from adsorption isotherms demonstrated that the adsorption of norbixin on three adsorbents is exothermic, and the entropic contribution differs with adsorbent structure. The adsorption kinetics, with CNT showing a higher rate than activated carbon, followed the pseudo first order and second order rate expressions and demonstrated the significance of intraparticle diffusion. Electrostatic interactions were observed to be significant in the adsorption. The established adsorption parameters may be used in the dairy industry to decolorize cheese whey without applying bleaching agents.
NASA Astrophysics Data System (ADS)
Xu, J. J.; Guo, M. L.; Chen, Q. G.; Lian, Z. Y.; Wei, W. J.; Luo, Z. W.; Xie, G.; Chen, H. N.; Dong, K.
2017-08-01
Active macromolecular free radicals were generated on polypropylene (PP) fibers surfaces by argon (Ar) plasma irradiation, then, PP surface modified fibers (PP-g-St fibers) were prepared by in-situ grafting reaction of styrene monomers (St). Effects of reaction parameters on grafting percentage were studied and adsorption capacities of PP-g-St fibers for benzene, toluene and xylene (BTX) were evaluated. Afterwards, regeneration adsorption efficiencies after maximum adsorption were explored. The results indicated that the optimum input power, irradiation time and grafting reaction time are 90 W, 3 min and 3 h respectively and the grafting percentage of St reached 5.7 %. The adsorption capacities of PP-g-St fibers towards toluene and xylene emulsions and solutions in water increased by 336.89 % and 344.57 % respectively, compared to pristine PP fibers. In addition, regeneration adsorption efficiencies of modified fibers remained > 90 % after six cycles of regeneration-adsorption experiments, which showed excellent regeneration ability.
NASA Astrophysics Data System (ADS)
Regti, Abdelmajid; Laamari, My Rachid; Stiriba, Salah-Eddine; El Haddad, Mohammadine
2017-11-01
In this study, the adsorption potential of activated carbon prepared from Ziziphus mauritiana nuts for the removal of methylene blue (MB) from aqueous solution has been investigated using batch mode experiments. The effects of some operating parameters on the removal dye such as, initial pH (2-12), temperature (298-328 K), initial MB concentration (20-100 mg L-1), and contact time (5-70 min) were investigated. Adsorption kinetic showed that the rate adsorption followed the pseudo-second-order kinetic model. Four adsorption isotherms models were applied to experimental equilibrium data (Langmuir, Freundlich, Redlich-Peterson, and Fritz-Schlunder) and the different constants were calculated using non-linear equations models. Fritz-Schlunder model was found the best one to describe the adsorption process which suggests that the adsorption of MB onto activated carbon derived from Ziziphus mauritiana is heterogeneous with a multilayer. Thermodynamic adsorption showed that the process was endothermic and spontaneous in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sava Gallis, Dorina F.; Ermanoski, Ivan; Greathouse, Jeffrey A.
Here, we present a combined experimental and Grand Canonical Monte Carlo (GCMC) modeling study on the adsorption of iodine in three classes of nanoporous materials: activated charcoals, zeolites, and metal–organic frameworks (MOFs). Iodine adsorption profiles were measured for the first time in situ, with a uniquely designed sorption apparatus. It was determined that pore size and pore environment are responsible for a dynamic adsorption profile, correlated with distinct pressure ranges. At pressures below 0.3 atm, iodine adsorption is governed by a combination of small pores and extra-framework components (e.g., Ag+ ions in the zeolite mordenite). At regimes above 0.3 atm,more » the amount of iodine gas stored relates with an increase in pore size and specific surface area. GCMC results validate the trends noted experimentally and in addition provide a measure of the strength of the adsorbate–adsorbent interactions in these materials.« less
Feng, Li; Zhang, Shengtao; Qiang, Yujie; Xu, Yue; Guo, Lei; Madkour, Loutfy H; Chen, Shijin
2018-06-19
The anticorrosion effect of thiazolyl blue (MTT) for copper in 3% NaCl at 298 K was researched by electrochemical methods, scanning electron-microscopy (SEM), and atomic force microscopy (AFM). The results reveal that MTT can protect copper efficiently, with a maximum efficiency of 95.7%. The corrosion inhibition mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectral (FT-IR), and theoretical calculation. The results suggest that the MTT molecules are adsorbed on metal surface forming a hydrophobic protective film to prevent copper corrosion. It also indicates that the MTT and copper form covalent bonds. The molecular dynamic simulation further gives the evidence for adsorption. The adsorption isotherm studies demonstrate that a spontaneous, mixed physical and chemical adsorption occurs, which obeys Langmuir adsorption isotherm. The present research can help us better understand the corrosion inhibition process and improve it.
Polycyclic Aromatic Hydrocarbons Adsorption onto Graphene: A DFT and AIMD Study.
Li, Bing; Ou, Pengfei; Wei, Yulan; Zhang, Xu; Song, Jun
2018-05-03
Density functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations were performed to understand graphene and its interaction with polycyclic aromatic hydrocarbons (PAHs) molecules. The adsorption energy was predicted to increase with the number of aromatic rings in the adsorbates, and linearly correlate with the hydrophobicity of PAHs. Additionally, the analysis of the electronic properties showed that PAHs behave as mild n-dopants and introduce electrons into graphene; but do not remarkably modify the band gap of graphene, indicating that the interaction between PAHs and graphene is physisorption. We have also discovered highly sensitive strain dependence on the adsorption strength of PAHs onto graphene surface. The AIMD simulation indicated that a sensitive and fast adsorption process of PAHs can be achieved by choosing graphene as the adsorbent. These findings are anticipated to shed light on the future development of graphene-based materials with potential applications in the capture and removal of persistent aromatic pollutants.
Tuning Adsorption Duration To Control the Diffusion of a Nanoparticle in Adsorbing Polymers.
Cao, Xue-Zheng; Merlitz, Holger; Wu, Chen-Xu
2017-06-15
Controlling the nanoparticle (NP) diffusion in polymers is a prerequisite to obtain polymer nanocomposites (PNCs) with desired dynamical and rheological properties and to achieve targeted delivery of nanomedicine in biological systems. Here we determine the suppression mechanism of direct NP-polymer attraction to hamper the NP mobility in adsorbing polymers and then quantify the dependence of the effective viscosity η eff felt by the NP on the adsorption duration τ ads of polymers on the NP using scaling theory analysis and molecular dynamics simulations. We propose and confirm that participation of adsorbed chains in the NP motion break up at time intervals beyond τ ads due to the rearrangement of polymer segments at the NP surface, which accounts for the onset of Fickian NP diffusion on a time scale of t ≈ τ ads . We develop a power law, η eff ∼ (τ ads ) ν , where ν is the scaling exponent of the dependence of polymer coil size on the chain length, which leads to a theoretical basis for the design of PNCs and nanomedicine with desired applications through tuning the polymer adsorption duration.
Adsorption of GA module onto graphene and graphene oxide: A molecular dynamics simulation study
NASA Astrophysics Data System (ADS)
Chen, Junlang; Wang, Xiaogang; Dai, Chaoqing; Chen, Shude; Tu, Yusong
2014-08-01
Using all-atom molecular dynamics (MD) simulation, we have investigated the adsorption of protein GA module (GA53) onto graphene oxide (GO), compared with similar adsorption onto pristine graphene (PG). We find that: (1) the protein GA53 can be easily and firmly adsorbed onto the surface of GO and PG, but the binding sites are not specific; the main difference is that the secondary structure of GA53 can be well preserved in protein-GO system, while GA53 will partially lose its secondary structure after adsorbed on PG. (2) in protein-GO system, hydroxyl and epoxy groups increase the distance between protein and GO, which weaken their vdW interactions, meanwhile, hydrogen bonds and electrostatic interactions enhance their binding affinity. In protein-PG system, strong vdW interactions between residues of GA53 and PG have destroyed its secondary structure. (3) π-π stacking interactions still exist between aromatic residues and both the basal plane of GO and PG. In comparison with PG, our results suggest that GO presents better biocompatibility to preserve protein secondary structure when simultaneously absorbing protein.
Critical conditions of polymer adsorption and chromatography on non-porous substrates.
Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V
2016-07-15
We present a novel thermodynamic theory and Monte Carlo simulation model for adsorption of macromolecules to solid surfaces that is applied for calculating the chain partition during separation on chromatographic columns packed with non-porous particles. We show that similarly to polymer separation on porous substrates, it is possible to attain three chromatographic modes: size exclusion chromatography at very weak or no adsorption, liquid adsorption chromatography when adsorption effects prevail, and liquid chromatography at critical conditions that occurs at the critical point of adsorption. The main attention is paid to the analysis of the critical conditions, at which the retention is chain length independent. The theoretical results are verified with specially designed experiments on isocratic separation of linear polystyrenes on a column packed with non-porous particles at various solvent compositions. Without invoking any adjustable parameters related to the column and particle geometry, we describe quantitatively the observed transition between the size exclusion and adsorption separation regimes upon the variation of solvent composition, with the intermediate mode occurring at a well-defined critical point of adsorption. A relationship is established between the experimental solvent composition and the effective adsorption potential used in model simulations. Copyright © 2016 Elsevier Inc. All rights reserved.