Karain, Wael I
2017-11-28
Proteins undergo conformational transitions over different time scales. These transitions are closely intertwined with the protein's function. Numerous standard techniques such as principal component analysis are used to detect these transitions in molecular dynamics simulations. In this work, we add a new method that has the ability to detect transitions in dynamics based on the recurrences in the dynamical system. It combines bootstrapping and recurrence quantification analysis. We start from the assumption that a protein has a "baseline" recurrence structure over a given period of time. Any statistically significant deviation from this recurrence structure, as inferred from complexity measures provided by recurrence quantification analysis, is considered a transition in the dynamics of the protein. We apply this technique to a 132 ns long molecular dynamics simulation of the β-Lactamase Inhibitory Protein BLIP. We are able to detect conformational transitions in the nanosecond range in the recurrence dynamics of the BLIP protein during the simulation. The results compare favorably to those extracted using the principal component analysis technique. The recurrence quantification analysis based bootstrap technique is able to detect transitions between different dynamics states for a protein over different time scales. It is not limited to linear dynamics regimes, and can be generalized to any time scale. It also has the potential to be used to cluster frames in molecular dynamics trajectories according to the nature of their recurrence dynamics. One shortcoming for this method is the need to have large enough time windows to insure good statistical quality for the recurrence complexity measures needed to detect the transitions.
Signal analysis techniques for incipient failure detection in turbomachinery
NASA Technical Reports Server (NTRS)
Coffin, T.
1985-01-01
Signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery were developed, implemented and evaluated. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques were implemented on a computer and applied to dynamic signals. A laboratory evaluation of the methods with respect to signal detection capability is described. Plans for further technique evaluation and data base development to characterize turbopump incipient failure modes from Space Shuttle main engine (SSME) hot firing measurements are outlined.
Matrix Perturbation Techniques in Structural Dynamics
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1973-01-01
Matrix perturbation are developed techniques which can be used in the dynamical analysis of structures where the range of numerical values in the matrices extreme or where the nature of the damping matrix requires that complex valued eigenvalues and eigenvectors be used. The techniques can be advantageously used in a variety of fields such as earthquake engineering, ocean engineering, aerospace engineering and other fields concerned with the dynamical analysis of large complex structures or systems of second order differential equations. A number of simple examples are included to illustrate the techniques.
Theoretical and software considerations for nonlinear dynamic analysis
NASA Technical Reports Server (NTRS)
Schmidt, R. J.; Dodds, R. H., Jr.
1983-01-01
In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1985-01-01
Pilot/vehicle analysis techniques for optimizing aircraft handling qualities are presented. The analysis approach considered is based on the optimal control frequency domain techniques. These techniques stem from an optimal control approach of a Neal-Smith like analysis on aircraft attitude dynamics extended to analyze the flared landing task. Some modifications to the technique are suggested and discussed. An in depth analysis of the effect of the experimental variables, such as prefilter, is conducted to gain further insight into the flared land task for this class of vehicle dynamics.
NASA Technical Reports Server (NTRS)
Ray, Ronald J.
1994-01-01
New flight test maneuvers and analysis techniques for evaluating the dynamic response of in-flight thrust models during throttle transients have been developed and validated. The approach is based on the aircraft and engine performance relationship between thrust and drag. Two flight test maneuvers, a throttle step and a throttle frequency sweep, were developed and used in the study. Graphical analysis techniques, including a frequency domain analysis method, were also developed and evaluated. They provide quantitative and qualitative results. Four thrust calculation methods were used to demonstrate and validate the test technique. Flight test applications on two high-performance aircraft confirmed the test methods as valid and accurate. These maneuvers and analysis techniques were easy to implement and use. Flight test results indicate the analysis techniques can identify the combined effects of model error and instrumentation response limitations on the calculated thrust value. The methods developed in this report provide an accurate approach for evaluating, validating, or comparing thrust calculation methods for dynamic flight applications.
Bhaduri, Anirban; Ghosh, Dipak
2016-01-01
The cardiac dynamics during meditation is explored quantitatively with two chaos-based non-linear techniques viz. multi-fractal detrended fluctuation analysis and visibility network analysis techniques. The data used are the instantaneous heart rate (in beats/minute) of subjects performing Kundalini Yoga and Chi meditation from PhysioNet. The results show consistent differences between the quantitative parameters obtained by both the analysis techniques. This indicates an interesting phenomenon of change in the complexity of the cardiac dynamics during meditation supported with quantitative parameters. The results also produce a preliminary evidence that these techniques can be used as a measure of physiological impact on subjects performing meditation. PMID:26909045
Bhaduri, Anirban; Ghosh, Dipak
2016-01-01
The cardiac dynamics during meditation is explored quantitatively with two chaos-based non-linear techniques viz. multi-fractal detrended fluctuation analysis and visibility network analysis techniques. The data used are the instantaneous heart rate (in beats/minute) of subjects performing Kundalini Yoga and Chi meditation from PhysioNet. The results show consistent differences between the quantitative parameters obtained by both the analysis techniques. This indicates an interesting phenomenon of change in the complexity of the cardiac dynamics during meditation supported with quantitative parameters. The results also produce a preliminary evidence that these techniques can be used as a measure of physiological impact on subjects performing meditation.
Methodologies for launcher-payload coupled dynamic analysis
NASA Astrophysics Data System (ADS)
Fransen, S. H. J. A.
2012-06-01
An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.
Limit Cycle Analysis Applied to the Oscillations of Decelerating Blunt-Body Entry Vehicles
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Queen, Eric M.
2008-01-01
Many blunt-body entry vehicles have nonlinear dynamic stability characteristics that produce self-limiting oscillations in flight. Several different test techniques can be used to extract dynamic aerodynamic coefficients to predict this oscillatory behavior for planetary entry mission design and analysis. Most of these test techniques impose boundary conditions that alter the oscillatory behavior from that seen in flight. Three sets of test conditions, representing three commonly used test techniques, are presented to highlight these effects. Analytical solutions to the constant-coefficient planar equations-of-motion for each case are developed to show how the same blunt body behaves differently depending on the imposed test conditions. The energy equation is applied to further illustrate the governing dynamics. Then, the mean value theorem is applied to the energy rate equation to find the effective damping for an example blunt body with nonlinear, self-limiting dynamic characteristics. This approach is used to predict constant-energy oscillatory behavior and the equilibrium oscillation amplitudes for the various test conditions. These predictions are verified with planar simulations. The analysis presented provides an overview of dynamic stability test techniques and illustrates the effects of dynamic stability, static aerodynamics and test conditions on observed dynamic motions. It is proposed that these effects may be leveraged to develop new test techniques and refine test matrices in future tests to better define the nonlinear functional forms of blunt body dynamic stability curves.
The Shock and Vibration Bulletin. Part 3. Dynamic Analysis, Design Techniques
1980-09-01
response at certain discrete frequen- nique for dynamic analysis was pioneered by cies, not over a random-frequence spectrum. Myklestad[l]. Later Pestel and...34Fundamentals of Vibra- v’ angle of rotation due to tion Analysis ," McGraw-Hill, New York, 1956. bending 2. E.C. Pestel and F.A. Leckie, "Matrix o’ angle of...Bulletin 50IC FILE COPY (Part 03ofP,) to THE SHOCK AND VIBRATION BULLETIN Part 3 Dynamic Analysis , Design Techniques IELECTE SEPTEMBER 1980 S NOV 1
Finite element modeling of truss structures with frequency-dependent material damping
NASA Technical Reports Server (NTRS)
Lesieutre, George A.
1991-01-01
A physically motivated modelling technique for structural dynamic analysis that accommodates frequency dependent material damping was developed. Key features of the technique are the introduction of augmenting thermodynamic fields (AFT) to interact with the usual mechanical displacement field, and the treatment of the resulting coupled governing equations using finite element analysis methods. The AFT method is fully compatible with current structural finite element analysis techniques. The method is demonstrated in the dynamic analysis of a 10-bay planar truss structure, a structure representative of those contemplated for use in future space systems.
Ali, S. J.; Kraus, R. G.; Fratanduono, D. E.; ...
2017-05-18
Here, we developed an iterative forward analysis (IFA) technique with the ability to use hydrocode simulations as a fitting function for analysis of dynamic compression experiments. The IFA method optimizes over parameterized quantities in the hydrocode simulations, breaking the degeneracy of contributions to the measured material response. Velocity profiles from synthetic data generated using a hydrocode simulation are analyzed as a first-order validation of the technique. We also analyze multiple magnetically driven ramp compression experiments on copper and compare with more conventional techniques. Excellent agreement is obtained in both cases.
Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results
NASA Astrophysics Data System (ADS)
Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.
2014-03-01
Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.
Nonlinear dynamic phase contrast microscopy for microfluidic and microbiological applications
NASA Astrophysics Data System (ADS)
Denz, C.; Holtmann, F.; Woerdemann, M.; Oevermann, M.
2008-08-01
In live sciences, the observation and analysis of moving living cells, molecular motors or motion of micro- and nano-objects is a current field of research. At the same time, microfluidic innovations are needed for biological and medical applications on a micro- and nano-scale. Conventional microscopy techniques are reaching considerable limits with respect to these issues. A promising approach for this challenge is nonlinear dynamic phase contrast microscopy. It is an alternative full field approach that allows to detect motion as well as phase changes of living unstained micro-objects in real-time, thereby being marker free, without contact and non destructive, i.e. fully biocompatible. The generality of this system allows it to be combined with several other microscope techniques such as conventional bright field or fluorescence microscopy. In this article we will present the dynamic phase contrast technique and its applications in analysis of micro organismic dynamics, micro flow velocimetry and micro-mixing analysis.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
Determination of dynamic fracture toughness using a new experimental technique
NASA Astrophysics Data System (ADS)
Cady, Carl M.; Liu, Cheng; Lovato, Manuel L.
2015-09-01
In other studies dynamic fracture toughness has been measured using Charpy impact and modified Hopkinson Bar techniques. In this paper results will be shown for the measurement of fracture toughness using a new test geometry. The crack propagation velocities range from ˜0.15 mm/s to 2.5 m/s. Digital image correlation (DIC) will be the technique used to measure both the strain and the crack growth rates. The boundary of the crack is determined using the correlation coefficient generated during image analysis and with interframe timing the crack growth rate and crack opening can be determined. A comparison of static and dynamic loading experiments will be made for brittle polymeric materials. The analysis technique presented by Sammis et al. [1] is a semi-empirical solution, however, additional Linear Elastic Fracture Mechanics analysis of the strain fields generated as part of the DIC analysis allow for the more commonly used method resembling the crack tip opening displacement (CTOD) experiment. It should be noted that this technique was developed because limited amounts of material were available and crack growth rates were to fast for a standard CTOD method.
Jiang, Yu; Zhang, Xiaogang; Zhang, Chao; Li, Zhixiong; Sheng, Chenxing
2017-04-01
Numerical modeling has been recognized as the dispensable tools for mechanical fault mechanism analysis. Techniques, ranging from macro to nano levels, include the finite element modeling boundary element modeling, modular dynamic modeling, nano dynamic modeling and so forth. This work firstly reviewed the progress on the fault mechanism analysis for gear transmissions from the tribological and dynamic aspects. Literature review indicates that the tribological and dynamic properties were separately investigated to explore the fault mechanism in gear transmissions. However, very limited work has been done to address the links between the tribological and dynamic properties and scarce researches have been done for coal cutting machines. For this reason, the tribo-dynamic coupled model was introduced to bridge the gap between the tribological and dynamic models in fault mechanism analysis for gear transmissions in coal cutting machines. The modular dynamic modeling and nano dynamic modeling techniques are expected to establish the links between the tribological and dynamic models. Possible future research directions using the tribo dynamic coupled model were summarized to provide potential references for researchers in the field.
The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics
1974-08-01
VIKING LANDER DYNAMICS 41 Mr. Joseph C. Pohlen, Martin Marietta Aerospace, Denver, Colorado Structural Dynamics PERFORMANCE OF STATISTICAL ENERGY ANALYSIS 47...aerospace structures. Analytical prediction of these environments is beyond the current scope of classical modal techniques. Statistical energy analysis methods...have been developed that circumvent the difficulties of high-frequency nodal analysis. These statistical energy analysis methods are evaluated
Alamdaran, Seyed Ali; Kazemi, Sahar; Parsa, Ali; Moghadam, Mohammad Hallaj; Feyzi, Ali; Mardani, Reza
2016-01-01
Background: Developmental dysplasia of hip (DDH) is a common childhood disorder, and ultrasonography examination is routinely used for screening purposes. In this study, we aimed to evaluate a modified combined static and dynamic ultrasound technique for the detection of DDH and to compare with the results of static and dynamic ultrasound techniques. Methods: In this cross-sectional study, during 2013- 2015, 300 high-risk infants were evaluated by ultrasound for DDH. Both hips were examined with three techniques: static, dynamic and single view static and dynamic technique. Statistical analysis was performed using SPSS version 11.5. Results: Patients aged 9 days to 83 weeks. 75% of the patients were 1 to 3 months old. Among 600 hip joints, about 5% were immature in static sonography and almost all of them were unstable in dynamic techniques. 0.3% of morphologically normal hips were unstable in dynamic sonography and 9% of unstable hips had normal morphology. The mean β angle differences in coronal view before and after stress maneuver was 14.43±5.47° in unstable hips. Single view static and dynamic technique revealed that all cases with acetabular dysplasia, instability and dislocation, except two dislocations, were detected by dynamic transverse view. For two cases, Ortolani maneuver showed femoral head reversibility in dislocated hips. Using single view static and dynamic technique was indicative and applicable for detection of more than 99% of cases. Conclusion: Single view static and dynamic technique not only is a fast and easy technique, but also it is of high diagnostic value in assessment of DDH. PMID:27847852
Extracting neuronal functional network dynamics via adaptive Granger causality analysis.
Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash
2018-04-24
Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kuangcai
The goal of this study is to help with future data analysis and experiment designs in rotational dynamics research using DIC-based SPORT technique. Most of the current studies using DIC-based SPORT techniques are technical demonstrations. Understanding the mechanisms behind the observed rotational behaviors of the imaging probes should be the focus of the future SPORT studies. More efforts are still needed in the development of new imaging probes, particle tracking methods, instrumentations, and advanced data analysis methods to further extend the potential of DIC-based SPORT technique.
A Categorization of Dynamic Analyzers
NASA Technical Reports Server (NTRS)
Lujan, Michelle R.
1997-01-01
Program analysis techniques and tools are essential to the development process because of the support they provide in detecting errors and deficiencies at different phases of development. The types of information rendered through analysis includes the following: statistical measurements of code, type checks, dataflow analysis, consistency checks, test data,verification of code, and debugging information. Analyzers can be broken into two major categories: dynamic and static. Static analyzers examine programs with respect to syntax errors and structural properties., This includes gathering statistical information on program content, such as the number of lines of executable code, source lines. and cyclomatic complexity. In addition, static analyzers provide the ability to check for the consistency of programs with respect to variables. Dynamic analyzers in contrast are dependent on input and the execution of a program providing the ability to find errors that cannot be detected through the use of static analysis alone. Dynamic analysis provides information on the behavior of a program rather than on the syntax. Both types of analysis detect errors in a program, but dynamic analyzers accomplish this through run-time behavior. This paper focuses on the following broad classification of dynamic analyzers: 1) Metrics; 2) Models; and 3) Monitors. Metrics are those analyzers that provide measurement. The next category, models, captures those analyzers that present the state of the program to the user at specified points in time. The last category, monitors, checks specified code based on some criteria. The paper discusses each classification and the techniques that are included under them. In addition, the role of each technique in the software life cycle is discussed. Familiarization with the tools that measure, model and monitor programs provides a framework for understanding the program's dynamic behavior from different, perspectives through analysis of the input/output data.
Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery
NASA Technical Reports Server (NTRS)
Coffin, Thomas; Jong, Jen-Yi
1986-01-01
An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.
Synthesis and Physical Properties of Poly(Perfluoroalkylether)Urethanes
1989-05-30
Differential scanning calorimetry and dynamic mechanical analysis showed that the incorporation of PFEG into the soft segment phase slightly enhanced...for all the polymers, using electron spectroscopy for chemical analysis (ESCA). The dynamic contact angle results indicate that the polymer surfaces...these polymers were evaluated by a variety of techniques. Differential scanning calorimetry and dynamic mechanical analysis showed that the
Time-dependent inertia analysis of vehicle mechanisms
NASA Astrophysics Data System (ADS)
Salmon, James Lee
Two methods for performing transient inertia analysis of vehicle hardware systems are developed in this dissertation. The analysis techniques can be used to predict the response of vehicle mechanism systems to the accelerations associated with vehicle impacts. General analytical methods for evaluating translational or rotational system dynamics are generated and evaluated for various system characteristics. The utility of the derived techniques are demonstrated by applying the generalized methods to two vehicle systems. Time dependent acceleration measured during a vehicle to vehicle impact are used as input to perform a dynamic analysis of an automobile liftgate latch and outside door handle. Generalized Lagrange equations for a non-conservative system are used to formulate a second order nonlinear differential equation defining the response of the components to the transient input. The differential equation is solved by employing the fourth order Runge-Kutta method. The events are then analyzed using commercially available two dimensional rigid body dynamic analysis software. The results of the two analytical techniques are compared to experimental data generated by high speed film analysis of tests of the two components performed on a high G acceleration sled at Ford Motor Company.
Moving Target Techniques: Leveraging Uncertainty for CyberDefense
2015-12-15
cyberattacks is a continual struggle for system managers. Attackers often need only find one vulnerability (a flaw or bug that an attacker can exploit...additional parsing code itself could have security-relevant software bugs . Dynamic Network Techniques in the dynamic network domain change the...evaluation of MT techniques can benefit from a variety of evaluation approaches, including abstract analysis, modeling and simulation, test bed
Hamiltonian Analysis of Subcritical Stochastic Epidemic Dynamics
2017-01-01
We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of the Hamiltonian system away from its deterministic subsystem. This yields a novel, general technique of approximation of the quasistationary distribution of stochastic epidemic and birth-death models and may lead to techniques for analysis of these models beyond the quasistationary distribution. For a classic SIS model, the approximation found for the quasistationary distribution is very similar to published approximations but not identical. For a birth-death process without depletion of susceptibles, the approximation is exact. Dynamics on the phase plane similar to those predicted by the Hamiltonian analysis are demonstrated in cross-sectional data from trachoma treatment trials in Ethiopia, in which declining prevalences are consistent with subcritical epidemic dynamics. PMID:28932256
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.
1991-01-01
Various computational fluid dynamic techniques are reviewed focusing on the Euler and Navier-Stokes solvers with a brief assessment of boundary layer solutions, and quasi-3D and quasi-viscous techniques. Particular attention is given to a pressure-based method, explicit and implicit time marching techniques, a pseudocompressibility technique for incompressible flow, and zonal techniques. Recommendations are presented with regard to the most appropriate technique for various flow regimes and types of turbomachinery, incompressible and compressible flows, cascades, rotors, stators, liquid-handling, and gas-handling turbomachinery.
Krstacic, Goran; Krstacic, Antonija; Smalcelj, Anton; Milicic, Davor; Jembrek-Gostovic, Mirjana
2007-04-01
Dynamic analysis techniques may quantify abnormalities in heart rate variability (HRV) based on nonlinear and fractal analysis (chaos theory). The article emphasizes clinical and prognostic significance of dynamic changes in short-time series applied on patients with coronary heart disease (CHD) during the exercise electrocardiograph (ECG) test. The subjects were included in the series after complete cardiovascular diagnostic data. Series of R-R and ST-T intervals were obtained from exercise ECG data after sampling digitally. The range rescaled analysis method determined the fractal dimension of the intervals. To quantify fractal long-range correlation's properties of heart rate variability, the detrended fluctuation analysis technique was used. Approximate entropy (ApEn) was applied to quantify the regularity and complexity of time series, as well as unpredictability of fluctuations in time series. It was found that the short-term fractal scaling exponent (alpha(1)) is significantly lower in patients with CHD (0.93 +/- 0.07 vs 1.09 +/- 0.04; P < 0.001). The patients with CHD had higher fractal dimension in each exercise test program separately, as well as in exercise program at all. ApEn was significant lower in CHD group in both RR and ST-T ECG intervals (P < 0.001). The nonlinear dynamic methods could have clinical and prognostic applicability also in short-time ECG series. Dynamic analysis based on chaos theory during the exercise ECG test point out the multifractal time series in CHD patients who loss normal fractal characteristics and regularity in HRV. Nonlinear analysis technique may complement traditional ECG analysis.
Campbell, Darren; Carnell, Sarah Maria; Eden, Russell John
2013-05-01
Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable.
Dynamics of aerospace vehicles
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1991-01-01
The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.
NASA Astrophysics Data System (ADS)
Jonker, C. M.; Snoep, J. L.; Treur, J.; Westerhoff, H. V.; Wijngaards, W. C. A.
Within the areas of Computational Organisation Theory and Artificial Intelligence, techniques have been developed to simulate and analyse dynamics within organisations in society. Usually these modelling techniques are applied to factories and to the internal organisation of their process flows, thus obtaining models of complex organisations at various levels of aggregation. The dynamics in living cells are often interpreted in terms of well-organised processes, a bacterium being considered a (micro)factory. This suggests that organisation modelling techniques may also benefit their analysis. Using the example of Escherichia coli it is shown how indeed agent-based organisational modelling techniques can be used to simulate and analyse E.coli's intracellular dynamics. Exploiting the abstraction levels entailed by this perspective, a concise model is obtained that is readily simulated and analysed at the various levels of aggregation, yet shows the cell's essential dynamic patterns.
SEM Analysis Techniques for LSI Microcircuits. Volume 2
1980-08-01
4~, 1 v’ ’ RADC-TR80-250, Vol 11 (of two), Final Technical -Report, Augut1980 SEM, ANALYSIS TECHNIQUES, FOR LSI MICROCIRCUITS: ’Martin...Bit Static ’RAM.. Volume II - 1024 Bit Stat’i RAM, 4096 Bit Dynamic RAM (SiGATE WOS,)., 4096 Bit -Dynamic RAM ( 1 2 L Bipolar)., ,Summary. RADC-TR-80-250...States, ithout.irst obtani an export nse, is a violation t Internatio 1 Tr ffic in A . eguiations. Such violation is subject o penalty of to 2 years impr
Static and dynamic stability analysis of the space shuttle vehicle-orbiter
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Cavin, R. K.; Erickson, L. L.
1978-01-01
The longitudinal static and dynamic stability of a Space Shuttle Vehicle-Orbiter (SSV Orbiter) model is analyzed using the FLEXSTAB computer program. Nonlinear effects are accounted for by application of a correction technique in the FLEXSTAB system; the technique incorporates experimental force and pressure data into the linear aerodynamic theory. A flexible Orbiter model is treated in the static stability analysis for the flight conditions of Mach number 0.9 for rectilinear flight (1 g) and for a pull-up maneuver (2.5 g) at an altitude of 15.24 km. Static stability parameters and structural deformations of the Orbiter are calculated at trim conditions for the dynamic stability analysis, and the characteristics of damping in pitch are investigated for a Mach number range of 0.3 to 1.2. The calculated results for both the static and dynamic stabilities are compared with the available experimental data.
NASA Astrophysics Data System (ADS)
de Oliveira, José Martins, Jr.; Mangini, F. Salvador; Carvalho Vila, Marta Maria Duarte; ViníciusChaud, Marco
2013-05-01
This work presents an alternative and non-conventional technique for evaluatingof physic-chemical properties of pharmaceutical dosage forms, i.e. we used computed tomography (CT) technique as a nondestructive technique to visualize internal structures of pharmaceuticals dosage forms and to conduct static and dynamical studies. The studies were conducted involving static and dynamic situations through the use of tomographic images, generated by the scanner at University of Sorocaba - Uniso. We have shown that through the use of tomographic images it is possible to conduct studies of porosity, densities, analysis of morphological parameters and performing studies of dissolution. Our results are in agreement with the literature, showing that CT is a powerful tool for use in the pharmaceutical sciences.
Advanced superposition methods for high speed turbopump vibration analysis
NASA Technical Reports Server (NTRS)
Nielson, C. E.; Campany, A. D.
1981-01-01
The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.
Investigation of Models and Estimation Techniques for GPS Attitude Determination
NASA Technical Reports Server (NTRS)
Garrick, J.
1996-01-01
Much work has been done in the Flight Dynamics Analysis Branch (FDAB) in developing algorithms to met the new and growing field of attitude determination using the Global Positioning SYstem (GPS) constellation of satellites. Flight Dynamics has the responsibility to investigate any new technology and incorporate the innovations in the attitude ground support systems developed to support future missions. The work presented here is an investigative analysis that will produce the needed adaptation to allow the Flight Dynamics Support System (FDSS) to incorporate GPS phase measurements and produce observation measurements compatible with the FDSS. A simulator was developed to produce the necessary measurement data to test the models developed for the different estimation techniques used by FDAB. This paper gives an overview of the current modeling capabilities of the simulator models and algorithms for the adaptation of GPS measurement data and results from each of the estimation techniques. Future analysis efforts to evaluate the simulator and models against inflight GPS measurement data are also outlined.
Sandmann, Michael; Schafberg, Michaela; Lippold, Martin; Rohn, Sascha
2018-04-19
Microalgae bear a great potential to produce lipids for biodiesel, feed, or even food applications. To understand the still not well-known single-cell dynamics during lipid production in microalgae, a novel single-cell analytical technology was applied to study a well-established model experiment. Multidimensional single-cell dynamics were investigated with a non-supervised image analysis technique that utilizes data from epi-fluorescence microscopy. Reliability of this technique was successfully proven via reference analysis. The technique developed was used to determine cell size, chlorophyll amount, neutral lipid amount, and deriving properties on a single-cellular level in cultures of the biotechnologically promising alga Acutodesmus obliquus. The results illustrated a high correlation between cell size and chlorophyll amount, but a very low and dynamic correlation between cell size, lipid amount, and lipid density. During growth conditions under nitrogen starvation, cells with low chlorophyll content tend to start the lipid production first and the cell suspension differentiated in two subpopulations with significantly different lipid contents. Such quantitative characterization of single-cell dynamics of lipid synthesizing algae was done for the first time and the potential of such simple technology is highly relevant to other biotechnological applications and to deeper investigate the process of microalgal lipid accumulation.
NASA Astrophysics Data System (ADS)
Donner, Reik; Balasis, Georgios; Stolbova, Veronika; Wiedermann, Marc; Georgiou, Marina; Kurths, Jürgen
2016-04-01
Magnetic storms are the most prominent global manifestations of out-of-equilibrium magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables can provide valuable insights into relevant physical processes as well as temporal scales associated with this phenomenon. In this work, we introduce several innovative data analysis techniques enabling a quantitative analysis of the Dst index non-stationary behavior. Using recurrence quantification analysis (RQA) and recurrence network analysis (RNA), we obtain a variety of complexity measures serving as markers of quiet- and storm-time magnetospheric dynamics. We additionally apply these techniques to the main driver of Dst index variations, the V BSouth coupling function and interplanetary medium parameters Bz and Pdyn in order to discriminate internal processes from the magnetosphere's response directly induced by the external forcing by the solar wind. The derived recurrence-based measures allow us to improve the accuracy with which magnetospheric storms can be classified based on ground-based observations. The new methodology presented here could be of significant interest for the space weather research community working on time series analysis for magnetic storm forecasts.
NASA Technical Reports Server (NTRS)
Hsieh, Shang-Hsien
1993-01-01
The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.
Visualization of system dynamics using phasegrams
Herbst, Christian T.; Herzel, Hanspeter; Švec, Jan G.; Wyman, Megan T.; Fitch, W. Tecumseh
2013-01-01
A new tool for visualization and analysis of system dynamics is introduced: the phasegram. Its application is illustrated with both classical nonlinear systems (logistic map and Lorenz system) and with biological voice signals. Phasegrams combine the advantages of sliding-window analysis (such as the spectrogram) with well-established visualization techniques from the domain of nonlinear dynamics. In a phasegram, time is mapped onto the x-axis, and various vibratory regimes, such as periodic oscillation, subharmonics or chaos, are identified within the generated graph by the number and stability of horizontal lines. A phasegram can be interpreted as a bifurcation diagram in time. In contrast to other analysis techniques, it can be automatically constructed from time-series data alone: no additional system parameter needs to be known. Phasegrams show great potential for signal classification and can act as the quantitative basis for further analysis of oscillating systems in many scientific fields, such as physics (particularly acoustics), biology or medicine. PMID:23697715
Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques
2018-04-30
Title: Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques Subject: Monthly Progress Report Period of...Resources: N/A TOTAL: $18,687 2 TECHNICAL STATUS REPORT Abstract The program goal is analysis of sea ice dynamical behavior using Koopman Mode Decompo...sition (KMD) techniques. The work in the program’s first month consisted of improvements to data processing code, inclusion of additional arctic sea ice
Review of Dynamic Modeling and Simulation of Large Scale Belt Conveyor System
NASA Astrophysics Data System (ADS)
He, Qing; Li, Hong
Belt conveyor is one of the most important devices to transport bulk-solid material for long distance. Dynamic analysis is the key to decide whether the design is rational in technique, safe and reliable in running, feasible in economy. It is very important to study dynamic properties, improve efficiency and productivity, guarantee conveyor safe, reliable and stable running. The dynamic researches and applications of large scale belt conveyor are discussed. The main research topics, the state-of-the-art of dynamic researches on belt conveyor are analyzed. The main future works focus on dynamic analysis, modeling and simulation of main components and whole system, nonlinear modeling, simulation and vibration analysis of large scale conveyor system.
Dynamical Analyses for Developmental Science: A Primer for Intrigued Scientists
ERIC Educational Resources Information Center
DiDonato, M. D.; England, D.; Martin, C. L.; Amazeen, P. G.
2013-01-01
Dynamical systems theory is becoming more popular in social and developmental science. However, unfamiliarity with dynamical analysis techniques remains an obstacle for developmentalists who would like to quantitatively apply dynamics in their own research. The goal of this article is to address this issue by clearly and simply presenting several…
Consideration of Dynamical Balances
NASA Technical Reports Server (NTRS)
Errico, Ronald M.
2015-01-01
The quasi-balance of extra-tropical tropospheric dynamics is a fundamental aspect of nature. If an atmospheric analysis does not reflect such balance sufficiently well, the subsequent forecast will exhibit unrealistic behavior associated with spurious fast-propagating gravity waves. Even if these eventually damp, they can create poor background fields for a subsequent analysis or interact with moist physics to create spurious precipitation. The nature of this problem will be described along with the reasons for atmospheric balance and techniques for mitigating imbalances. Attention will be focused on fundamental issues rather than on recipes for various techniques.
Testing all six person-oriented principles in dynamic factor analysis.
Molenaar, Peter C M
2010-05-01
All six person-oriented principles identified by Sterba and Bauer's Keynote Article can be tested by means of dynamic factor analysis in its current form. In particular, it is shown how complex interactions and interindividual differences/intraindividual change can be tested in this way. In addition, the necessity to use single-subject methods in the analysis of developmental processes is emphasized, and attention is drawn to the possibility to optimally treat developmental psychopathology by means of new computational techniques that can be integrated with dynamic factor analysis.
Segmentation of Unstructured Datasets
NASA Technical Reports Server (NTRS)
Bhat, Smitha
1996-01-01
Datasets generated by computer simulations and experiments in Computational Fluid Dynamics tend to be extremely large and complex. It is difficult to visualize these datasets using standard techniques like Volume Rendering and Ray Casting. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This thesis explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and from Finite Element Analysis.
An experiment on the dynamics of ion implantation and sputtering of surfaces
NASA Astrophysics Data System (ADS)
Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B.
2014-02-01
A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.
An experiment on the dynamics of ion implantation and sputtering of surfaces.
Wright, G M; Barnard, H A; Kesler, L A; Peterson, E E; Stahle, P W; Sullivan, R M; Whyte, D G; Woller, K B
2014-02-01
A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.
High dynamic range imaging by pupil single-mode filtering and remapping
NASA Astrophysics Data System (ADS)
Perrin, G.; Lacour, S.; Woillez, J.; Thiébaut, É.
2006-12-01
Because of atmospheric turbulence, obtaining high angular resolution images with a high dynamic range is difficult even in the near-infrared domain of wavelengths. We propose a novel technique to overcome this issue. The fundamental idea is to apply techniques developed for long baseline interferometry to the case of a single-aperture telescope. The pupil of the telescope is broken down into coherent subapertures each feeding a single-mode fibre. A remapping of the exit pupil allows interfering all subapertures non-redundantly. A diffraction-limited image with very high dynamic range is reconstructed from the fringe pattern analysis with aperture synthesis techniques, free of speckle noise. The performances of the technique are demonstrated with simulations in the visible range with an 8-m telescope. Raw dynamic ranges of 1:106 can be obtained in only a few tens of seconds of integration time for bright objects.
NASA Technical Reports Server (NTRS)
Sopher, R.; Hallock, D. W.
1985-01-01
A time history analysis for rotorcraft dynamics based on dynamical substructures, and nonstructural mathematical and aerodynamic components is described. The analysis is applied to predict helicopter ground resonance and response to rotor damage. Other applications illustrate the stability and steady vibratory response of stopped and gimballed rotors, representative of new technology. Desirable attributes expected from modern codes are realized, although the analysis does not employ a complete set of techniques identified for advanced software. The analysis is able to handle a comprehensive set of steady state and stability problems with a small library of components.
Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F; Perez, Danny
2017-10-21
Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.
NASA Astrophysics Data System (ADS)
Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F.; Perez, Danny
2017-10-01
Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.
Using dynamic mode decomposition for real-time background/foreground separation in video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven
The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.
NASA Dryden Flight Loads Laboratory
NASA Technical Reports Server (NTRS)
Horn, Tom
2008-01-01
This viewgraph presentation reviews the work of the Dryden Flight Loads Laboratory. The capabilities and research interests of the lab are: Structural, thermal, & dynamic analysis; Structural, thermal, & dynamic ground-test techniques; Advanced structural instrumentation; and Flight test support.
Coagulation dynamics of a blood sample by multiple scattering analysis
NASA Astrophysics Data System (ADS)
Faivre, Magalie; Peltié, Philippe; Planat-Chrétien, Anne; Cosnier, Marie-Line; Cubizolles, Myriam; Nougier, Christophe; Négrier, Claude; Pouteau, Patrick
2011-05-01
We report a new technique to measure coagulation dynamics on whole-blood samples. The method relies on the analysis of the speckle figure resulting from a whole-blood sample mixed with coagulation reagent and introduced in a thin chamber illuminated with a coherent light. A dynamic study of the speckle reveals a typical behavior due to coagulation. We compare our measured coagulation times to a reference method obtained in a medical laboratory.
An evaluation of dynamic mutuality measurements and methods in cyclic time series
NASA Astrophysics Data System (ADS)
Xia, Xiaohua; Huang, Guitian; Duan, Na
2010-12-01
Several measurements and techniques have been developed to detect dynamic mutuality and synchronicity of time series in econometrics. This study aims to compare the performances of five methods, i.e., linear regression, dynamic correlation, Markov switching models, concordance index and recurrence quantification analysis, through numerical simulations. We evaluate the abilities of these methods to capture structure changing and cyclicity in time series and the findings of this paper would offer guidance to both academic and empirical researchers. Illustration examples are also provided to demonstrate the subtle differences of these techniques.
NASA Technical Reports Server (NTRS)
Sevier, Abigail; Davis, David O.; Schoenenberger, Mark; Barnhart, Paul
2016-01-01
The implementation of a magnetic suspension system in the NASA Glenn Research Center (GRC) 225 cm2 Supersonic Wind Tunnel would be a powerful test technique that could accurately determine the dynamic stability of blunt body entry vehicles with no sting interference. This paper explores initial design challenges to be evaluated before implementation, including defining the lowest possible operating dynamic pressure and corresponding model size, developing a compatible video analysis technique, and incorporating a retractable initial support sting.
Estimation of Dynamical Parameters in Atmospheric Data Sets
NASA Technical Reports Server (NTRS)
Wenig, Mark O.
2004-01-01
In this study a new technique is used to derive dynamical parameters out of atmospheric data sets. This technique, called the structure tensor technique, can be used to estimate dynamical parameters such as motion, source strengths, diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. The fundamental algorithm will be extended to the analysis of multi- channel (e.g. multi trace gas) image sequences and to provide solutions to the extended aperture problem. In this study sensitivity studies have been performed to determine the usability of this technique for data sets with different resolution in time and space and different dimensions.
Fundamentals of quantitative dynamic contrast-enhanced MR imaging.
Paldino, Michael J; Barboriak, Daniel P
2009-05-01
Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.
An empirical comparison of a dynamic software testability metric to static cyclomatic complexity
NASA Technical Reports Server (NTRS)
Voas, Jeffrey M.; Miller, Keith W.; Payne, Jeffrey E.
1993-01-01
This paper compares the dynamic testability prediction technique termed 'sensitivity analysis' to the static testability technique termed cyclomatic complexity. The application that we chose in this empirical study is a CASE generated version of a B-737 autoland system. For the B-737 system we analyzed, we isolated those functions that we predict are more prone to hide errors during system/reliability testing. We also analyzed the code with several other well-known static metrics. This paper compares and contrasts the results of sensitivity analysis to the results of the static metrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertz, P.R.
Fluorescence spectroscopy is a highly sensitive and selective tool for the analysis of complex systems. In order to investigate the efficacy of several steady state and dynamic techniques for the analysis of complex systems, this work focuses on two types of complex, multicomponent samples: petrolatums and coal liquids. It is shown in these studies dynamic, fluorescence lifetime-based measurements provide enhanced discrimination between complex petrolatum samples. Additionally, improved quantitative analysis of multicomponent systems is demonstrated via incorporation of organized media in coal liquid samples. This research provides the first systematic studies of (1) multifrequency phase-resolved fluorescence spectroscopy for dynamic fluorescence spectralmore » fingerprinting of complex samples, and (2) the incorporation of bile salt micellar media to improve accuracy and sensitivity for characterization of complex systems. In the petroleum studies, phase-resolved fluorescence spectroscopy is used to combine spectral and lifetime information through the measurement of phase-resolved fluorescence intensity. The intensity is collected as a function of excitation and emission wavelengths, angular modulation frequency, and detector phase angle. This multidimensional information enhances the ability to distinguish between complex samples with similar spectral characteristics. Examination of the eigenvalues and eigenvectors from factor analysis of phase-resolved and steady state excitation-emission matrices, using chemometric methods of data analysis, confirms that phase-resolved fluorescence techniques offer improved discrimination between complex samples as compared with conventional steady state methods.« less
Performance Analysis of Garbage Collection and Dynamic Reordering in a Lisp System. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Llames, Rene Lim
1991-01-01
Generation based garbage collection and dynamic reordering of objects are two techniques for improving the efficiency of memory management in Lisp and similar dynamic language systems. An analysis of the effect of generation configuration is presented, focusing on the effect of a number of generations and generation capabilities. Analytic timing and survival models are used to represent garbage collection runtime and to derive structural results on its behavior. The survival model provides bounds on the age of objects surviving a garbage collection at a particular level. Empirical results show that execution time is most sensitive to the capacity of the youngest generation. A technique called scanning for transport statistics, for evaluating the effectiveness of reordering independent of main memory size, is presented.
McCarty, James; Parrinello, Michele
2017-11-28
In this paper, we combine two powerful computational techniques, well-tempered metadynamics and time-lagged independent component analysis. The aim is to develop a new tool for studying rare events and exploring complex free energy landscapes. Metadynamics is a well-established and widely used enhanced sampling method whose efficiency depends on an appropriate choice of collective variables. Often the initial choice is not optimal leading to slow convergence. However by analyzing the dynamics generated in one such run with a time-lagged independent component analysis and the techniques recently developed in the area of conformational dynamics, we obtain much more efficient collective variables that are also better capable of illuminating the physics of the system. We demonstrate the power of this approach in two paradigmatic examples.
NASA Astrophysics Data System (ADS)
McCarty, James; Parrinello, Michele
2017-11-01
In this paper, we combine two powerful computational techniques, well-tempered metadynamics and time-lagged independent component analysis. The aim is to develop a new tool for studying rare events and exploring complex free energy landscapes. Metadynamics is a well-established and widely used enhanced sampling method whose efficiency depends on an appropriate choice of collective variables. Often the initial choice is not optimal leading to slow convergence. However by analyzing the dynamics generated in one such run with a time-lagged independent component analysis and the techniques recently developed in the area of conformational dynamics, we obtain much more efficient collective variables that are also better capable of illuminating the physics of the system. We demonstrate the power of this approach in two paradigmatic examples.
Simulation of Neural Firing Dynamics: A Student Project.
ERIC Educational Resources Information Center
Kletsky, E. J.
This paper describes a student project in digital simulation techniques that is part of a graduate systems analysis course entitled Biosimulation. The students chose different simulation techniques to solve a problem related to the neuron model. (MLH)
Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Schmidt, D. K.
1985-01-01
Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.
Archetypes for Organisational Safety
NASA Technical Reports Server (NTRS)
Marais, Karen; Leveson, Nancy G.
2003-01-01
We propose a framework using system dynamics to model the dynamic behavior of organizations in accident analysis. Most current accident analysis techniques are event-based and do not adequately capture the dynamic complexity and non-linear interactions that characterize accidents in complex systems. In this paper we propose a set of system safety archetypes that model common safety culture flaws in organizations, i.e., the dynamic behaviour of organizations that often leads to accidents. As accident analysis and investigation tools, the archetypes can be used to develop dynamic models that describe the systemic and organizational factors contributing to the accident. The archetypes help clarify why safety-related decisions do not always result in the desired behavior, and how independent decisions in different parts of the organization can combine to impact safety.
The Recoverability of P-Technique Factor Analysis
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
2009-01-01
It seems that just when we are about to lay P-technique factor analysis finally to rest as obsolete because of newer, more sophisticated multivariate time-series models using latent variables--dynamic factor models--it rears its head to inform us that an obituary may be premature. We present the results of some simulations demonstrating that even…
Specialized data analysis of SSME and advanced propulsion system vibration measurements
NASA Technical Reports Server (NTRS)
Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi
1993-01-01
The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.
Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chiou, Jin-Chern
1990-01-01
Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.
Dynamic analysis for shuttle design verification
NASA Technical Reports Server (NTRS)
Fralich, R. W.; Green, C. E.; Rheinfurth, M. H.
1972-01-01
Two approaches that are used for determining the modes and frequencies of space shuttle structures are discussed. The first method, direct numerical analysis, involves finite element mathematical modeling of the space shuttle structure in order to use computer programs for dynamic structural analysis. The second method utilizes modal-coupling techniques of experimental verification made by vibrating only spacecraft components and by deducing modes and frequencies of the complete vehicle from results obtained in the component tests.
2001-10-25
Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for
Fuzzy CMAC With incremental Bayesian Ying-Yang learning and dynamic rule construction.
Nguyen, M N
2010-04-01
Inspired by the philosophy of ancient Chinese Taoism, Xu's Bayesian ying-yang (BYY) learning technique performs clustering by harmonizing the training data (yang) with the solution (ying). In our previous work, the BYY learning technique was applied to a fuzzy cerebellar model articulation controller (FCMAC) to find the optimal fuzzy sets; however, this is not suitable for time series data analysis. To address this problem, we propose an incremental BYY learning technique in this paper, with the idea of sliding window and rule structure dynamic algorithms. Three contributions are made as a result of this research. First, an online expectation-maximization algorithm incorporated with the sliding window is proposed for the fuzzification phase. Second, the memory requirement is greatly reduced since the entire data set no longer needs to be obtained during the prediction process. Third, the rule structure dynamic algorithm with dynamically initializing, recruiting, and pruning rules relieves the "curse of dimensionality" problem that is inherent in the FCMAC. Because of these features, the experimental results of the benchmark data sets of currency exchange rates and Mackey-Glass show that the proposed model is more suitable for real-time streaming data analysis.
Techniques for extracting single-trial activity patterns from large-scale neural recordings
Churchland, Mark M; Yu, Byron M; Sahani, Maneesh; Shenoy, Krishna V
2008-01-01
Summary Large, chronically-implanted arrays of microelectrodes are an increasingly common tool for recording from primate cortex, and can provide extracellular recordings from many (order of 100) neurons. While the desire for cortically-based motor prostheses has helped drive their development, such arrays also offer great potential to advance basic neuroscience research. Here we discuss the utility of array recording for the study of neural dynamics. Neural activity often has dynamics beyond that driven directly by the stimulus. While governed by those dynamics, neural responses may nevertheless unfold differently for nominally identical trials, rendering many traditional analysis methods ineffective. We review recent studies – some employing simultaneous recording, some not – indicating that such variability is indeed present both during movement generation, and during the preceding premotor computations. In such cases, large-scale simultaneous recordings have the potential to provide an unprecedented view of neural dynamics at the level of single trials. However, this enterprise will depend not only on techniques for simultaneous recording, but also on the use and further development of analysis techniques that can appropriately reduce the dimensionality of the data, and allow visualization of single-trial neural behavior. PMID:18093826
Data management system performance modeling
NASA Technical Reports Server (NTRS)
Kiser, Larry M.
1993-01-01
This paper discusses analytical techniques that have been used to gain a better understanding of the Space Station Freedom's (SSF's) Data Management System (DMS). The DMS is a complex, distributed, real-time computer system that has been redesigned numerous times. The implications of these redesigns have not been fully analyzed. This paper discusses the advantages and disadvantages for static analytical techniques such as Rate Monotonic Analysis (RMA) and also provides a rationale for dynamic modeling. Factors such as system architecture, processor utilization, bus architecture, queuing, etc. are well suited for analysis with a dynamic model. The significance of performance measures for a real-time system are discussed.
Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.
1991-01-01
The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.
NASA Astrophysics Data System (ADS)
Kaloop, Mosbeh R.; Yigit, Cemal O.; Hu, Jong W.
2018-03-01
Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10 Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.
NASA Technical Reports Server (NTRS)
Zimmerman, G. A.; Olsen, E. T.
1992-01-01
Noise power estimation in the High-Resolution Microwave Survey (HRMS) sky survey element is considered as an example of a constant false alarm rate (CFAR) signal detection problem. Order-statistic-based noise power estimators for CFAR detection are considered in terms of required estimator accuracy and estimator dynamic range. By limiting the dynamic range of the value to be estimated, the performance of an order-statistic estimator can be achieved by simpler techniques requiring only a single pass of the data. Simple threshold-and-count techniques are examined, and it is shown how several parallel threshold-and-count estimation devices can be used to expand the dynamic range to meet HRMS system requirements with minimal hardware complexity. An input/output (I/O) efficient limited-precision order-statistic estimator with wide but limited dynamic range is also examined.
Single-organelle tracking by two-photon conversion
NASA Astrophysics Data System (ADS)
Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Fukui, Kiichi; Shin-Ichi Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Isobe, Keisuke; Itoh, Kazuyoshi
2007-03-01
Spatial and temporal information about intracellular objects and their dynamics within a living cell are essential for dynamic analysis of such objects in cell biology. A specific intracellular object can be discriminated by photoactivatable fluorescent proteins that exhibit pronounced light-induced spectral changes. Here, we report on selective labeling and tracking of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. We performed selective labeling of a single mitochondrion in a living tobacco BY-2 cell using two-photon photoconversion of Kaede. Using this technique, we demonstrated that, in plants, the directed movement of individual mitochondria along the cytoskeletons was mediated by actin filaments, whereas microtubules were not required for the movement of mitochondria. This single-organelle labeling technique enabled us to track the dynamics of a single organelle, revealing the mechanisms involved in organelle dynamics. The technique has potential application in direct tracking of selective cellular and intracellular structures.
Scaling properties and symmetrical patterns in the epidemiology of rotavirus infection.
José, Marco V; Bishop, Ruth F
2003-01-01
The rich epidemiological database of the incidence of rotavirus, as a cause of severe diarrhoea in young children, coupled with knowledge of the natural history of the infection, can make this virus a paradigm for studies of epidemic dynamics. The cyclic recurrence of childhood rotavirus epidemics in unvaccinated populations provides one of the best documented phenomena in population dynamics. This paper makes use of epidemiological data on rotavirus infection in young children admitted to hospital in Melbourne, Australia from 1977 to 2000. Several mathematical methods were used to characterize the overall dynamics of rotavirus infections as a whole and individually as serotypes G1, G2, G3, G4 and G9. These mathematical methods are as follows: seasonal autoregressive integrated moving-average (SARIMA) models, power spectral density (PSD), higher-order spectral analysis (HOSA) (bispectrum estimation and quadratic phase coupling (QPC)), detrended fluctuation analysis (DFA), wavelet analysis (WA) and a surrogate data analysis technique. Each of these techniques revealed different dynamic aspects of rotavirus epidemiology. In particular, we confirm the existence of an annual, biannual and a quinquennial period but additionally we found other embedded cycles (e.g. ca. 3 years). There seems to be an overall unique geometric and dynamic structure of the data despite the apparent changes in the dynamics of the last years. The inherent dynamics seems to be conserved regardless of the emergence of new serotypes, the re-emergence of old serotypes or the transient disappearance of a particular serotype. More importantly, the dynamics of all serotypes is multiple synchronized so that they behave as a single entity at the epidemic level. Overall, the whole dynamics follow a scale-free power-law fractal scaling behaviour. We found that there are three different scaling regions in the time-series, suggesting that processes influencing the epidemic dynamics of rotavirus over less than 12 months differ from those that operate between 1 and ca. 3 years, as well as those between 3 and ca. 5 years. To discard the possibility that the observed patterns could be due to artefacts, we applied a surrogate data analysis technique which enabled us to discern if only random components or linear features of the incidence of rotavirus contribute to its dynamics. The global dynamics of the epidemic is portrayed by wavelet-based incidence analysis. The resulting wavelet transform of the incidence of rotavirus crisply reveals a repeating pattern over time that looks similar on many scales (a property called self-similarity). Both the self-similar behaviour and the absence of a single characteristic scale of the power-law fractal-like scaling of the incidence of rotavirus infection imply that there is not a universal inherently more virulent serotype to which severe gastroenteritis can uniquely be ascribed. PMID:14561323
Systems Theoretic Process Analysis Applied to an Offshore Supply Vessel Dynamic Positioning System
2016-06-01
additional safety issues that were either not identified or inadequately mitigated through the use of Fault Tree Analysis and Failure Modes and...Techniques ...................................................................................................... 15 1.3.1. Fault Tree Analysis...49 3.2. Fault Tree Analysis Comparison
Earth rotation, station coordinates and orbit determination from satellite laser ranging
NASA Astrophysics Data System (ADS)
Murata, Masaaki
The Project MERIT, a special program of international colaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis, has come to an end with great success. Its major objective was to evaluate the ultimate potential of space techniques such as VLBI and satellite laser ranging, in contrast with the other conventional techniques, in the determination of rotational dynamics of the earth. The National Aerospace Laboratory (NAL) has officially participated in the project as an associate analysis center for satellite laser technique for the period of the MERIT Main Campaign (September 1983-October 1984). In this paper, the NAL analysis center results are presented.
Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki
2014-09-01
Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.
Efficient dynamic events discrimination technique for fiber distributed Brillouin sensors.
Galindez, Carlos A; Madruga, Francisco J; Lopez-Higuera, Jose M
2011-09-26
A technique to detect real time variations of temperature or strain in Brillouin based distributed fiber sensors is proposed and is investigated in this paper. The technique is based on anomaly detection methods such as the RX-algorithm. Detection and isolation of dynamic events from the static ones are demonstrated by a proper processing of the Brillouin gain values obtained by using a standard BOTDA system. Results also suggest that better signal to noise ratio, dynamic range and spatial resolution can be obtained. For a pump pulse of 5 ns the spatial resolution is enhanced, (from 0.541 m obtained by direct gain measurement, to 0.418 m obtained with the technique here exposed) since the analysis is concentrated in the variation of the Brillouin gain and not only on the averaging of the signal along the time. © 2011 Optical Society of America
Lorido, Laura; Estévez, Mario; Ventanas, Sonia
2014-01-01
Although dynamic sensory techniques such as time-intensity (TI) have been applied to certain meat products, existing knowledge regarding the temporal sensory perception of muscle foods is still limited. The objective of the present study was to apply TI to the flavour and texture perception of three different Iberian meat products: liver pâté, dry-cured sausages ("salchichon") and dry-cured loin. Moreover, the advantages of using dynamic versus static sensory techniques were explored by subjecting the same products to a quantitative descriptive analysis (QDA). TI was a suitable technique to assess the impact of composition and structure of the three meat products on flavour and texture perception from a dynamic perspective. TI parameters extracted from the TI-curves and related to temporal perception enabled the detection of clear differences in sensory temporal perception between the meat products and provided additional insight on sensory perception compared to the conventional static sensory technique (QDA). © 2013.
The Shock and Vibration Bulletin. Part 2. Structural Analysis, Design Techniques
1973-06-01
FLOATING SHOCK PLATFORM SUBJECTED TO UNDERWATER EXPLOSIONS R. P. Brooks, and B. C, McNalght Naval Air Engineering Center Philadelphia, Pa, A lumped...Lohwasser, Air Force Flight Dynamics Laboratory, Wright -Patterson APB, Ohio AN ALGORITHM FOR SEMI-INVERSE ANALYSIS OF NONLINEAR DYNAMIC SYSTEMS ... 65 R...MATHEMATICAL MODEL OF A TYPICAL.FOATING SHOCK PLATFORM SSUBJECTED TO-UNDERWATE- EXPLOSIONS .......... ...................... 143 R. P. Brooks and B. C
Spain, Seth M; Miner, Andrew G; Kroonenberg, Pieter M; Drasgow, Fritz
2010-08-06
Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of analyzing momentary work behavior using experience sampling methods. The article also examines a previously unused set of methods for analyzing data produced by experience sampling. These methods are known collectively as multiway component analysis. Two archetypal techniques of multimode factor analysis, the Parallel factor analysis and the Tucker3 models, are used to analyze data from Miner, Glomb, and Hulin's (2010) experience sampling study of work behavior. The efficacy of these techniques for analyzing experience sampling data is discussed as are the substantive multimode component models obtained.
Erem, B; Hyde, D E; Peters, J M; Duffy, F H; Brooks, D H; Warfield, S K
2015-04-01
The dynamical structure of the brain's electrical signals contains valuable information about its physiology. Here we combine techniques for nonlinear dynamical analysis and manifold identification to reveal complex and recurrent dynamics in interictal epileptiform discharges (IEDs). Our results suggest that recurrent IEDs exhibit some consistent dynamics, which may only last briefly, and so individual IED dynamics may need to be considered in order to understand their genesis. This could potentially serve to constrain the dynamics of the inverse source localization problem.
Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code
NASA Astrophysics Data System (ADS)
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.
2017-10-01
A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.
Rigatelli, Gianluca; Dell'Avvocata, Fabio; Zuin, Marco; Giatti, Sara; Duong, Khanh; Pham, Trung; Tuan, Nguyen Si; Vassiliev, Dobrin; Daggubati, Ramesh; Nguyen, Thach
2017-12-01
Provisional and culotte are the most commonly used techniques in left main (LM) stenting. The impact of different post-dilation techniques on fluid dynamic of LM bifurcation has not been yet investigated. The aim of this study is to evaluate, by means of computational fluid dynamic analysis (CFD), the impact of different post-dilation techniques including proximal optimization technique (POT), kissing balloon (KB), POT-Side-POT and POT-KB-POT, 2-steps Kissing (2SK) and Snuggle Kissing balloon (SKB) on flow dynamic profile after LM provisional or culotte stenting. We considered an LM-LCA-LCX bifurcation reconstructed after reviewing 100 consecutive patients (mean age 71.4 ± 9.3 years, 49 males) with LM distal disease. The diameters of LAD and LCX were modelled according to the Finnet's law as following: LM 4.5 mm, LAD 3.5 mm, LCX 2.75 mm, with bifurcation angle set up at 55°. Xience third-generation stent (Abbot Inc., USA) was reconstructed and virtually implanted in provisional/cross-over and culotte fashion. POT, KB, POT-side-POT, POT-KB-POT, 2SK and SKB were virtually applied and analyzed in terms of the wall shear stress (WSS). Analyzing the provisional stenting, the 2SK and KB techniques had a statistically significant lower impact on the WSS at the carina, while POT seemed to obtain a neutral effect. In the wall opposite to the carina, the more physiological profile has been obtained by KB and POT with higher WSS value and smaller surface area of the lower WSS. In culotte stenting, at the carina, POT-KB-POT and 2SK had a very physiological profile; while at the wall opposite to the carina, 2SK and POT-KB-POT decreased significantly the surface area of the lower WSS compared to the other techniques. From the fluid dynamic point of view in LM provisional stenting, POT, 2SK and KB showed a similar beneficial impact on the bifurcation rheology, while in LM culotte stenting, POT-KB-POT and 2SK performed slightly better than the other techniques, probably reflecting a better strut apposition.
CFD application to subsonic inlet airframe integration. [computational fluid dynamics (CFD)
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1988-01-01
The fluid dynamics of curved diffuser duct flows of military aircraft is discussed. Three-dimensional parabolized Navier-Stokes analysis, and experiment techniques are reviewed. Flow measurements and pressure distributions are shown. Velocity vectors, and the effects of vortex generators are considered.
Bat Dynamics of Female Fast Pitch Softball Batters.
ERIC Educational Resources Information Center
Messier, Stephen P.; Owen, Marjorie G.
1984-01-01
Female fast pitch softball batters served in an examination of the dynamic characteristics of the bat during the swing through the use of three-dimensional cinematographic analysis techniques. These results were compared with those from previous studies of baseball batting. Findings are listed. (Author/DF)
NASA Astrophysics Data System (ADS)
Yin, Jiuxun; Denolle, Marine A.; Yao, Huajian
2018-01-01
We develop a methodology that combines compressive sensing backprojection (CS-BP) and source spectral analysis of teleseismic P waves to provide metrics relevant to earthquake dynamics of large events. We improve the CS-BP method by an autoadaptive source grid refinement as well as a reference source adjustment technique to gain better spatial and temporal resolution of the locations of the radiated bursts. We also use a two-step source spectral analysis based on (i) simple theoretical Green's functions that include depth phases and water reverberations and on (ii) empirical P wave Green's functions. Furthermore, we propose a source spectrogram methodology that provides the temporal evolution of dynamic parameters such as radiated energy and falloff rates. Bridging backprojection and spectrogram analysis provides a spatial and temporal evolution of these dynamic source parameters. We apply our technique to the recent 2015 Mw 8.3 megathrust Illapel earthquake (Chile). The results from both techniques are consistent and reveal a depth-varying seismic radiation that is also found in other megathrust earthquakes. The low-frequency content of the seismic radiation is located in the shallow part of the megathrust, propagating unilaterally from the hypocenter toward the trench while most of the high-frequency content comes from the downdip part of the fault. Interpretation of multiple rupture stages in the radiation is also supported by the temporal variations of radiated energy and falloff rates. Finally, we discuss the possible mechanisms, either from prestress, fault geometry, and/or frictional properties to explain our observables. Our methodology is an attempt to bridge kinematic observations with earthquake dynamics.
ERIC Educational Resources Information Center
Navarro, Juan-Jose; Mora, Joaquin
2011-01-01
The renewed interest in the dynamic assessment of specific domains has led to reconsideration of this theory and the technique's contribution to the learning-teaching process. In this article, we analyze some elements concerning the internal structure of a dynamic assessment device of processes involved in reading tasks, establishing some of the…
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Schmidt, D. S.
1985-01-01
As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.
Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography
NASA Astrophysics Data System (ADS)
Hahn, Bernadette N.
2017-12-01
A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Putt, C. W.; Giamati, C. C.
1981-01-01
Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.
New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Lung, Shun-Fat
2017-01-01
A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.
1990-01-01
critical examination of the rotary-balance techniques used in the AGARD community for the analysis of high-angle-of-attack dynamic behavior of aircraft. It...aircraft. It was felt that sudi a critical examination should encompass both the experimental techniques used to obtain rotary-flow aerodynamic data and the...monitor the vibrational and critical structural characteristies of the apparatus and tunnel support system. Many of these systems are integrated directly
Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane
NASA Technical Reports Server (NTRS)
Gera, Joseph; Bosworth, John T.
1987-01-01
This paper describes some novel flight tests and analysis techniques in the flight dynamics and handling qualities area. These techniques were utilized during the initial flight envelope clearance of the X-29A aircraft and were largely responsible for the completion of the flight controls clearance program without any incidents or significant delays. The resulting open-loop and closed-loop frequency responses and the time history comparison using flight and linear simulation data are discussed.
Mor-Avi, Victor; Lang, Roberto M; Badano, Luigi P; Belohlavek, Marek; Cardim, Nuno Miguel; Derumeaux, Genevieve; Galderisi, Maurizio; Marwick, Thomas; Nagueh, Sherif F; Sengupta, Partho P; Sicari, Rosa; Smiseth, Otto A; Smulevitz, Beverly; Takeuchi, Masaaki; Thomas, James D; Vannan, Mani; Voigt, Jens-Uwe; Zamorano, Jose Luis
2011-03-01
Echocardiographic imaging is ideally suited for the evaluation of cardiac mechanics because of its intrinsically dynamic nature. Because for decades, echocardiography has been the only imaging modality that allows dynamic imaging of the heart, it is only natural that new, increasingly automated techniques for sophisticated analysis of cardiac mechanics have been driven by researchers and manufacturers of ultrasound imaging equipment. Several such techniques have emerged over the past decades to address the issue of reader's experience and inter-measurement variability in interpretation. Some were widely embraced by echocardiographers around the world and became part of the clinical routine, whereas others remained limited to research and exploration of new clinical applications. Two such techniques have dominated the research arena of echocardiography: (1) Doppler-based tissue velocity measurements, frequently referred to as tissue Doppler or myocardial Doppler, and (2) speckle tracking on the basis of displacement measurements. Both types of measurements lend themselves to the derivation of multiple parameters of myocardial function. The goal of this document is to focus on the currently available techniques that allow quantitative assessment of myocardial function via image-based analysis of local myocardial dynamics, including Doppler tissue imaging and speckle-tracking echocardiography, as well as integrated back- scatter analysis. This document describes the current and potential clinical applications of these techniques and their strengths and weaknesses, briefly surveys a selection of the relevant published literature while highlighting normal and abnormal findings in the context of different cardiovascular pathologies, and summarizes the unresolved issues, future research priorities, and recommended indications for clinical use.
Mor-Avi, Victor; Lang, Roberto M; Badano, Luigi P; Belohlavek, Marek; Cardim, Nuno Miguel; Derumeaux, Geneviève; Galderisi, Maurizio; Marwick, Thomas; Nagueh, Sherif F; Sengupta, Partho P; Sicari, Rosa; Smiseth, Otto A; Smulevitz, Beverly; Takeuchi, Masaaki; Thomas, James D; Vannan, Mani; Voigt, Jens-Uwe; Zamorano, José Luis
2011-03-01
Echocardiographic imaging is ideally suited for the evaluation of cardiac mechanics because of its intrinsically dynamic nature. Because for decades, echocardiography has been the only imaging modality that allows dynamic imaging of the heart, it is only natural that new, increasingly automated techniques for sophisticated analysis of cardiac mechanics have been driven by researchers and manufacturers of ultrasound imaging equipment.Several such technique shave emerged over the past decades to address the issue of reader's experience and inter measurement variability in interpretation.Some were widely embraced by echocardiographers around the world and became part of the clinical routine,whereas others remained limited to research and exploration of new clinical applications.Two such techniques have dominated the research arena of echocardiography: (1) Doppler based tissue velocity measurements,frequently referred to as tissue Doppler or myocardial Doppler, and (2) speckle tracking on the basis of displacement measurements.Both types of measurements lend themselves to the derivation of multiple parameters of myocardial function. The goal of this document is to focus on the currently available techniques that allow quantitative assessment of myocardial function via image-based analysis of local myocardial dynamics, including Doppler tissue imaging and speckle-tracking echocardiography, as well as integrated backscatter analysis. This document describes the current and potential clinical applications of these techniques and their strengths and weaknesses,briefly surveys a selection of the relevant published literature while highlighting normal and abnormal findings in the context of different cardiovascular pathologies, and summarizes the unresolved issues, future research priorities, and recommended indications for clinical use.
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Dean, M. W.; Malatino, R.
1974-01-01
The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.
FAST: A multi-processed environment for visualization of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin
1991-01-01
Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.
Using Movies to Analyse Gene Circuit Dynamics in Single Cells
Locke, James CW; Elowitz, Michael B
2010-01-01
Preface Many bacterial systems rely on dynamic genetic circuits to control critical processes. A major goal of systems biology is to understand these behaviours in terms of individual genes and their interactions. However, traditional techniques based on population averages wash out critical dynamics that are either unsynchronized between cells or driven by fluctuations, or ‘noise,’ in cellular components. Recently, the combination of time-lapse microscopy, quantitative image analysis, and fluorescent protein reporters has enabled direct observation of multiple cellular components over time in individual cells. In conjunction with mathematical modelling, these techniques are now providing powerful insights into genetic circuit behaviour in diverse microbial systems. PMID:19369953
1986-08-01
each subsystem wist include more than a set of rigid body and normal modes to properly represent the dynamics of the entire system. Various types of...MCM 1 AUGMENTATION HETNO-MrifaOII FIELD TflACKER »f Tl BASIC EXPERIMENT Figure 3. Dynamics augmentation experiment. i i mnc...Villeurbanne - France Today the dynamic behavior of rotors must be predicted with the greatest care. This work deals with the influence of disc flexi
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.
1982-01-01
Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.
Man-machine analysis of translation and work tasks of Skylab films
NASA Technical Reports Server (NTRS)
Hosler, W. W.; Boelter, J. G.; Morrow, J. R., Jr.; Jackson, J. T.
1979-01-01
An objective approach to determine the concurrent validity of computer-graphic models is real time film analysis. This technique was illustrated through the procedures and results obtained in an evaluation of translation of Skylab mission astronauts. The quantitative analysis was facilitated by the use of an electronic film analyzer, minicomputer, and specifically supportive software. The uses of this technique for human factors research are: (1) validation of theoretical operator models; (2) biokinetic analysis; (3) objective data evaluation; (4) dynamic anthropometry; (5) empirical time-line analysis; and (6) consideration of human variability. Computer assisted techniques for interface design and evaluation have the potential for improving the capability for human factors engineering.
Dynamical analysis of the global business-cycle synchronization
2018-01-01
This paper reports the dynamical analysis of the business cycles of 12 (developed and developing) countries over the last 56 years by applying computational techniques used for tackling complex systems. They reveal long-term convergence and country-level interconnections because of close contagion effects caused by bilateral networking exposure. Interconnectivity determines the magnitude of cross-border impacts. Local features and shock propagation complexity also may be true engines for local configuration of cycles. The algorithmic modeling proves to represent a solid approach to study the complex dynamics involved in the world economies. PMID:29408909
Dynamical analysis of the global business-cycle synchronization.
Lopes, António M; Tenreiro Machado, J A; Huffstot, John S; Mata, Maria Eugénia
2018-01-01
This paper reports the dynamical analysis of the business cycles of 12 (developed and developing) countries over the last 56 years by applying computational techniques used for tackling complex systems. They reveal long-term convergence and country-level interconnections because of close contagion effects caused by bilateral networking exposure. Interconnectivity determines the magnitude of cross-border impacts. Local features and shock propagation complexity also may be true engines for local configuration of cycles. The algorithmic modeling proves to represent a solid approach to study the complex dynamics involved in the world economies.
Satellite orbit computation methods
NASA Technical Reports Server (NTRS)
1977-01-01
Mathematical and algorithmical techniques for solution of problems in satellite dynamics were developed, along with solutions to satellite orbit motion. Dynamical analysis of shuttle on-orbit operations were conducted. Computer software routines for use in shuttle mission planning were developed and analyzed, while mathematical models of atmospheric density were formulated.
Towards Effective Clustering Techniques for the Analysis of Electric Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh
2013-11-30
Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques onmore » two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.« less
Principal Component Analysis in the Spectral Analysis of the Dynamic Laser Speckle Patterns
NASA Astrophysics Data System (ADS)
Ribeiro, K. M.; Braga, R. A., Jr.; Horgan, G. W.; Ferreira, D. D.; Safadi, T.
2014-02-01
Dynamic laser speckle is a phenomenon that interprets an optical patterns formed by illuminating a surface under changes with coherent light. Therefore, the dynamic change of the speckle patterns caused by biological material is known as biospeckle. Usually, these patterns of optical interference evolving in time are analyzed by graphical or numerical methods, and the analysis in frequency domain has also been an option, however involving large computational requirements which demands new approaches to filter the images in time. Principal component analysis (PCA) works with the statistical decorrelation of data and it can be used as a data filtering. In this context, the present work evaluated the PCA technique to filter in time the data from the biospeckle images aiming the reduction of time computer consuming and improving the robustness of the filtering. It was used 64 images of biospeckle in time observed in a maize seed. The images were arranged in a data matrix and statistically uncorrelated by PCA technique, and the reconstructed signals were analyzed using the routine graphical and numerical methods to analyze the biospeckle. Results showed the potential of the PCA tool in filtering the dynamic laser speckle data, with the definition of markers of principal components related to the biological phenomena and with the advantage of fast computational processing.
Dynamic modulus estimation and structural vibration analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, A.
1998-11-18
Often the dynamic elastic modulus of a material with frequency dependent properties is difficult to estimate. These uncertainties are compounded in any structural vibration analysis using the material properties. Here, different experimental techniques are used to estimate the properties of a particular elastomeric material over a broad frequency range. Once the properties are determined, various structures incorporating the elastomer are analyzed by an interactive finite element method to determine natural frequencies and mode shapes. Then, the finite element results are correlated with results obtained by experimental modal analysis.
Subsynchronous instability of a geared centrifugal compressor of overhung design
NASA Technical Reports Server (NTRS)
Hudson, J. H.; Wittman, L. J.
1980-01-01
The original design analysis and shop test data are presented for a three stage (poster) air compressor with impellers mounted on the extensions of a twin pinion gear, and driven by an 8000 hp synchronous motor. Also included are field test data, subsequent rotor dynamics analysis, modifications, and final rotor behavior. A subsynchronous instability existed on a geared, overhung rotor. State-of-the-art rotor dynamics analysis techniques provided a reasonable analytical model of the rotor. A bearing modification arrived at analytically eliminated the instability.
A method for the analysis of nonlinearities in aircraft dynamic response to atmospheric turbulence
NASA Technical Reports Server (NTRS)
Sidwell, K.
1976-01-01
An analytical method is developed which combines the equivalent linearization technique for the analysis of the response of nonlinear dynamic systems with the amplitude modulated random process (Press model) for atmospheric turbulence. The method is initially applied to a bilinear spring system. The analysis of the response shows good agreement with exact results obtained by the Fokker-Planck equation. The method is then applied to an example of control-surface displacement limiting in an aircraft with a pitch-hold autopilot.
A modeling technique for STOVL ejector and volume dynamics
NASA Technical Reports Server (NTRS)
Drummond, C. K.; Barankiewicz, W. S.
1990-01-01
New models for thrust augmenting ejector performance prediction and feeder duct dynamic analysis are presented and applied to a proposed Short Take Off and Vertical Landing (STOVL) aircraft configuration. Central to the analysis is the nontraditional treatment of the time-dependent volume integrals in the otherwise conventional control-volume approach. In the case of the thrust augmenting ejector, the analysis required a new relationship for transfer of kinetic energy from the primary flow to the secondary flow. Extraction of the required empirical corrections from current steady-state experimental data is discussed; a possible approach for modeling insight through Computational Fluid Dynamics (CFD) is presented.
A VLF-based technique in applications to digital control of nonlinear hybrid multirate systems
NASA Astrophysics Data System (ADS)
Vassilyev, Stanislav; Ulyanov, Sergey; Maksimkin, Nikolay
2017-01-01
In this paper, a technique for rigorous analysis and design of nonlinear multirate digital control systems on the basis of the reduction method and sublinear vector Lyapunov functions is proposed. The control system model under consideration incorporates continuous-time dynamics of the plant and discrete-time dynamics of the controller and takes into account uncertainties of the plant, bounded disturbances, nonlinear characteristics of sensors and actuators. We consider a class of multirate systems where the control update rate is slower than the measurement sampling rates and periodic non-uniform sampling is admitted. The proposed technique does not use the preliminary discretization of the system, and, hence, allows one to eliminate the errors associated with the discretization and improve the accuracy of analysis. The technique is applied to synthesis of digital controller for a flexible spacecraft in the fine stabilization mode and decentralized controller for a formation of autonomous underwater vehicles. Simulation results are provided to validate the good performance of the designed controllers.
Evaluation of Ares-I Control System Robustness to Uncertain Aerodynamics and Flex Dynamics
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; VanTassel, Chris; Bedrossian, Nazareth; Hall, Charles; Spanos, Pol
2008-01-01
This paper discusses the application of robust control theory to evaluate robustness of the Ares-I control systems. Three techniques for estimating upper and lower bounds of uncertain parameters which yield stable closed-loop response are used here: (1) Monte Carlo analysis, (2) mu analysis, and (3) characteristic frequency response analysis. All three methods are used to evaluate stability envelopes of the Ares-I control systems with uncertain aerodynamics and flex dynamics. The results show that characteristic frequency response analysis is the most effective of these methods for assessing robustness.
Two-photon imaging and analysis of neural network dynamics
NASA Astrophysics Data System (ADS)
Lütcke, Henry; Helmchen, Fritjof
2011-08-01
The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, L; Ziemer, B; Sadeghi, B
Purpose: To evaluate the accuracy of dynamic CT myocardial perfusion measurement using first pass analysis (FPA) and maximum slope models. Methods: A swine animal model was prepared by percutaneous advancement of an angioplasty balloon into the proximal left anterior descending (LAD) coronary artery to induce varying degrees of stenosis. Maximal hyperaemia was achieved in the LAD with an intracoronary adenosine drip (240 µg/min). Serial microsphere and contrast (370 mg/mL iodine, 30 mL, 5mL/s) injections were made over a range of induced stenoses, and dynamic imaging was performed using a 320-row CT scanner at 100 kVp and 200 mA. The FPAmore » CT perfusion technique was used to make vessel-specific myocardial perfusion measurements. CT perfusion measurements using the FPA and maximum slope models were validated using colored microspheres as the reference gold standard. Results: Perfusion measurements using the FPA technique (P-FPA) showed good correlation with minimal offset when compared to perfusion measurements using microspheres (P- Micro) as the reference standard (P -FPA = 0.96 P-Micro + 0.05, R{sup 2} = 0.97, RMSE = 0.19 mL/min/g). In contrast, the maximum slope model technique (P-MS) was shown to underestimate perfusion when compared to microsphere perfusion measurements (P-MS = 0.42 P -Micro −0.48, R{sup 2} = 0.94, RMSE = 3.3 mL/min/g). Conclusion: The results indicate the potential for significant improvements in accuracy of dynamic CT myocardial perfusion measurement using the first pass analysis technique as compared with the standard maximum slope model.« less
An investigation of dynamic-analysis methods for variable-geometry structures
NASA Technical Reports Server (NTRS)
Austin, F.
1980-01-01
Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.
Novel numerical techniques for magma dynamics
NASA Astrophysics Data System (ADS)
Rhebergen, S.; Katz, R. F.; Wathen, A.; Alisic, L.; Rudge, J. F.; Wells, G.
2013-12-01
We discuss the development of finite element techniques and solvers for magma dynamics computations. These are implemented within the FEniCS framework. This approach allows for user-friendly, expressive, high-level code development, but also provides access to powerful, scalable numerical solvers and a large family of finite element discretisations. With the recent addition of dolfin-adjoint, FeniCS supports automated adjoint and tangent-linear models, enabling the rapid development of Generalised Stability Analysis. The ability to easily scale codes to three dimensions with large meshes, and/or to apply intricate adjoint calculations means that efficiency of the numerical algorithms is vital. We therefore describe our development and analysis of preconditioners designed specifically for finite element discretizations of equations governing magma dynamics. The preconditioners are based on Elman-Silvester-Wathen methods for the Stokes equation, and we extend these to flows with compaction. Our simulations are validated by comparison of results with laboratory experiments on partially molten aggregates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Vramori; Sarma, Bornali; Sarma, Arun
Recurrence is an ubiquitous feature which provides deep insights into the dynamics of real dynamical systems. A suitable tool for investigating recurrences is recurrence quantification analysis (RQA). It allows, e.g., the detection of regime transitions with respect to varying control parameters. We investigate the complexity of different coexisting nonlinear dynamical regimes of the plasma floating potential fluctuations at different magnetic fields and discharge voltages by using recurrence quantification variables, in particular, DET, L{sub max}, and Entropy. The recurrence analysis reveals that the predictability of the system strongly depends on discharge voltage. Furthermore, the persistent behaviour of the plasma time seriesmore » is characterized by the Detrended fluctuation analysis technique to explore the complexity in terms of long range correlation. The enhancement of the discharge voltage at constant magnetic field increases the nonlinear correlations; hence, the complexity of the system decreases, which corroborates the RQA analysis.« less
Gain in computational efficiency by vectorization in the dynamic simulation of multi-body systems
NASA Technical Reports Server (NTRS)
Amirouche, F. M. L.; Shareef, N. H.
1991-01-01
An improved technique for the identification and extraction of the exact quantities associated with the degrees of freedom at the element as well as the flexible body level is presented. It is implemented in the dynamic equations of motions based on the recursive formulation of Kane et al. (1987) and presented in a matrix form, integrating the concepts of strain energy, the finite-element approach, modal analysis, and reduction of equations. This technique eliminates the CPU intensive matrix multiplication operations in the code's hot spots for the dynamic simulation of the interconnected rigid and flexible bodies. A study of a simple robot with flexible links is presented by comparing the execution times on a scalar machine and a vector-processor with and without vector options. Performance figures demonstrating the substantial gains achieved by the technique are plotted.
Application of a system modification technique to dynamic tuning of a spinning rotor blade
NASA Technical Reports Server (NTRS)
Spain, C. V.
1987-01-01
An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.
Symbolic dynamics techniques for complex systems: Application to share price dynamics
NASA Astrophysics Data System (ADS)
Xu, Dan; Beck, Christian
2017-05-01
The symbolic dynamics technique is well known for low-dimensional dynamical systems and chaotic maps, and lies at the roots of the thermodynamic formalism of dynamical systems. Here we show that this technique can also be successfully applied to time series generated by complex systems of much higher dimensionality. Our main example is the investigation of share price returns in a coarse-grained way. A nontrivial spectrum of Rényi entropies is found. We study how the spectrum depends on the time scale of returns, the sector of stocks considered, as well as the number of symbols used for the symbolic description. Overall our analysis confirms that in the symbol space transition probabilities of observed share price returns depend on the entire history of previous symbols, thus emphasizing the need for a modelling based on non-Markovian stochastic processes. Our method allows for quantitative comparisons of entirely different complex systems, for example the statistics of symbol sequences generated by share price returns using 4 symbols can be compared with that of genomic sequences.
Baden, Craig; Whitley, Alexander; López-Araujo, Javier; Popple, Richard; Duan, Jun; Kim, Robert
2016-01-01
Aim To report outcomes for patients with para-aortic lymph node positive cervical cancer treated with a dynamic field-matching technique. Background PET staging of cervical cancer has increased identification of patients with para-aortic lymph node metastasis. IMRT enables dose escalation in this area, but matching IMRT fields with traditional whole pelvis fields presents a challenge. Materials and methods From 2003 to 2012, 20 patients with cervical cancer and para-aortic lymph node metastasis were treated utilizing the dynamic field-matching technique. As opposed to single-isocenter half-beam junction techniques, this technique employs wedge-shaped dose junctions for the abutment of fields. We reviewed the records of all patients who completed treatment with the technique and abstracted treatment, toxicity, and disease-related outcome data for analysis. Results Median prescribed dose to the whole pelvis field was 45 Gy and para-aortic IMRT field 50.4 Gy. All but 3 patients underwent HDR (13 pts) or LDR (4 pts) brachytherapy. All patients developed lower GI toxicity; 10 grade 1, 9 grade 2, and 1 grade 4 (enterovaginal fistula). Median DFS was 12.4 months with 1 and 2-year DFS 60.0% and 38.1%. One-year OS was 83.7% and 2-year OS, 64.4%. A total of 10 patients developed recurrence; none occurred at the matched junction. Conclusions The dynamic field-matching technique provides a means for joining conventional whole pelvis fields and para-aortic IMRT fields that substantially reduces dose deviations at the junction due to field mismatch. Treatment with the dynamic matching technique is simple, effective, and tolerated with no apparent increase in toxicity. PMID:26900356
Preliminary shuttle structural dynamics modeling design study
NASA Technical Reports Server (NTRS)
1972-01-01
The design and development of a structural dynamics model of the space shuttle are discussed. The model provides for early study of structural dynamics problems, permits evaluation of the accuracy of the structural and hydroelastic analysis methods used on test vehicles, and provides for efficiently evaluating potential cost savings in structural dynamic testing techniques. The discussion is developed around the modes in which major input forces and responses occur and the significant structural details in these modes.
NASA Astrophysics Data System (ADS)
Martel, Anne L.
2004-04-01
In order to extract quantitative information from dynamic contrast-enhanced MR images (DCE-MRI) it is usually necessary to identify an arterial input function. This is not a trivial problem if there are no major vessels present in the field of view. Most existing techniques rely on operator intervention or use various curve parameters to identify suitable pixels but these are often specific to the anatomical region or the acquisition method used. They also require the signal from several pixels to be averaged in order to improve the signal to noise ratio, however this introduces errors due to partial volume effects. We have described previously how factor analysis can be used to automatically separate arterial and venous components from DCE-MRI studies of the brain but although that method works well for single slice images through the brain when the blood brain barrier technique is intact, it runs into problems for multi-slice images with more complex dynamics. This paper will describe a factor analysis method that is more robust in such situations and is relatively insensitive to the number of physiological components present in the data set. The technique is very similar to that used to identify spectral end-members from multispectral remote sensing images.
Lee, Jihoon; Fredriksson, David W.; DeCew, Judson; Drach, Andrew; Yim, Solomon C.
2018-01-01
This study provides an engineering approach for designing an aquaculture cage system for use in constructed channel flow environments. As sustainable aquaculture has grown globally, many novel techniques have been introduced such as those implemented in the global Atlantic salmon industry. The advent of several highly sophisticated analysis software systems enables the development of such novel engineering techniques. These software systems commonly include three-dimensional (3D) drafting, computational fluid dynamics, and finite element analysis. In this study, a combination of these analysis tools is applied to evaluate a conceptual aquaculture system for potential deployment in a power plant effluent channel. The channel is supposedly clean; however, it includes elevated water temperatures and strong currents. The first portion of the analysis includes the design of a fish cage system with specific net solidities using 3D drafting techniques. Computational fluid dynamics is then applied to evaluate the flow reduction through the system from the previously generated solid models. Implementing the same solid models, a finite element analysis is performed on the critical components to assess the material stresses produced by the drag force loads that are calculated from the fluid velocities. PMID:29897954
Analysis, simulation and visualization of 1D tapping via reduced dynamical models
NASA Astrophysics Data System (ADS)
Blackmore, Denis; Rosato, Anthony; Tricoche, Xavier; Urban, Kevin; Zou, Luo
2014-04-01
A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately predicting some important aspects of the motion of a vertical column comprised of a large number of particles subjected to gravity and periodic vertical tapping. This model is investigated first as a continuous dynamical system using analytical, simulation and visualization techniques. Then, by employing an approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions to chaotic motion along with other properties. The predictions of the analysis are then compared-primarily qualitatively-with visualization and simulation results of the reduced continuous model, and ultimately with simulations of the complete system dynamics.
Calculation of three-dimensional, inviscid, supersonic, steady flows
NASA Technical Reports Server (NTRS)
Moretti, G.
1981-01-01
A detailed description of a computational program for the evaluation of three dimensional supersonic, inviscid, steady flow past airplanes is presented. Emphasis was put on how a powerful, automatic mapping technique is coupled to the fluid mechanical analysis. Each of the three constituents of the analysis (body geometry, mapping technique, and gas dynamical effects) was carefully coded and described. Results of computations based on sample geometrics and discussions are also presented.
Analysis of the stochastic excitability in the flow chemical reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashkirtseva, Irina
2015-11-30
A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.
Analysis of the stochastic excitability in the flow chemical reactor
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina
2015-11-01
A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.
The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight.
Taha, Haithem E; Tahmasian, Sevak; Woolsey, Craig A; Nayfeh, Ali H; Hajj, Muhammad R
2015-01-05
Because of the relatively high flapping frequency associated with hovering insects and flapping wing micro-air vehicles (FWMAVs), dynamic stability analysis typically involves direct averaging of the time-periodic dynamics over a flapping cycle. However, direct application of the averaging theorem may lead to false conclusions about the dynamics and stability of hovering insects and FWMAVs. Higher-order averaging techniques may be needed to understand the dynamics of flapping wing flight and to analyze its stability. We use second-order averaging to analyze the hovering dynamics of five insects in response to high-amplitude, high-frequency, periodic wing motion. We discuss the applicability of direct averaging versus second-order averaging for these insects.
Flexible aircraft dynamic modeling for dynamic analysis and control synthesis
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1989-01-01
The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.
Fluorescence Fluctuation Approaches to the Study of Adhesion and Signaling
Bachir, Alexia I.; Kubow, Kristopher E.; Horwitz, Alan R.
2013-01-01
Cell–matrix adhesions are large, multimolecular complexes through which cells sense and respond to their environment. They also mediate migration by serving as traction points and signaling centers and allow the cell to modify the surroucnding tissue. Due to their fundamental role in cell behavior, adhesions are germane to nearly all major human health pathologies. However, adhesions are extremely complex and dynamic structures that include over 100 known interacting proteins and operate over multiple space (nm–µm) and time (ms–min) regimes. Fluorescence fluctuation techniques are well suited for studying adhesions. These methods are sensitive over a large spatiotemporal range and provide a wealth of information including molecular transport dynamics, interactions, and stoichiometry from a single time series. Earlier chapters in this volume have provided the theoretical background, instrumentation, and analysis algorithms for these techniques. In this chapter, we discuss their implementation in living cells to study adhesions in migrating cells. Although each technique and application has its own unique instrumentation and analysis requirements, we provide general guidelines for sample preparation, selection of imaging instrumentation, and optimization of data acquisition and analysis parameters. Finally, we review several recent studies that implement these techniques in the study of adhesions. PMID:23280111
Connection between optimal control theory and adiabatic-passage techniques in quantum systems
NASA Astrophysics Data System (ADS)
Assémat, E.; Sugny, D.
2012-08-01
This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.
The numerical dynamic for highly nonlinear partial differential equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1992-01-01
Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.
Fixed gain and adaptive techniques for rotorcraft vibration control
NASA Technical Reports Server (NTRS)
Roy, R. H.; Saberi, H. A.; Walker, R. A.
1985-01-01
The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.
NASA Astrophysics Data System (ADS)
Piniotis, George; Gikas, Vassilis; Mpimis, Thanassis; Perakis, Harris
2016-03-01
This paper presents the dynamic testing of a roadway, single-span, cable-stayed bridge for a sequence of static load and ambient vibration monitoring scenarios. Deck movements were captured along both sideways of the bridge using a Digital Image Correlation (DIC) and a Ground-based Microwave Interfererometer (GBMI) system. Cable vibrations were measured at a single point location on each of the six cables using the GBMI technique. Dynamic testing involves three types of analyses; firstly, vibration analysis and modal parameter estimation (i. e., natural frequencies and modal shapes) of the deck using the combined DIC and GBMI measurements. Secondly, dynamic testing of the cables is performed through vibration analysis and experimental computation of their tension forces. Thirdly, the mechanism of cable-deck dynamic interaction is studied through their Power Spectra Density (PSD) and the Short Time Fourier Transform (STFT) analyses. Thereby, the global (deck and cable) and local (either deck or cable) bridge modes are identified, serving a concrete benchmark of the current state of the bridge for studying the evolution of its structural performance in the future. The level of synergy and complementarity between the GBMI and DIC techniques for bridge monitoring is also examined and assessed.
Dynamic Stall Characteristics of Drooped Leading Edge Airfoils
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen
2000-01-01
Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.
Leveraging natural dynamical structures to explore multi-body systems
NASA Astrophysics Data System (ADS)
Bosanac, Natasha
Multi-body systems have become the target of an increasing number of mission concepts and observations, supplying further information about the composition, origin and dynamical environment of bodies within the solar system and beyond. In many of these scenarios, identification and characterization of the particular solutions that exist in a circular restricted three-body model is valuable. This insight into the underlying natural dynamical structures is achieved via the application of dynamical systems techniques. One application of such analysis is trajectory design for CubeSats, which are intended to explore cislunar space and other planetary systems. These increasingly complex mission objectives necessitate innovative trajectory design strategies for spacecraft within our solar system, as well as the capability for rapid and well-informed redesign. Accordingly, a trajectory design framework is constructed using dynamical systems techniques and demonstrated for the Lunar IceCube mission. An additional application explored in this investigation involves the motion of an exoplanet near a binary star system. Due to the strong gravitational field near a binary star, physicists have previously leveraged these systems as testbeds for examining the validity of gravitational and relativistic theories. In this investigation, a preliminary analysis into the effect of an additional three-body interaction on the dynamical environment near a large mass ratio binary system is conducted. As demonstrated through both of these sample applications, identification and characterization of the natural particular solutions that exist within a multi-body system supports a well-informed and guided analysis.
Overview of Fluid Dynamics Activities at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa W.; Wang, Ten-See
1999-01-01
Since its inception 40 years ago, Marshall Space Flight Center (MSFC) has had the need to maintain and advance state-of-the-art flow analysis and cold-flow testing capability to support its roles and missions. This overview discusses the recent organizational changes that have occurred at MSFC with emphasis on the resulting three groups that form the core of fluid dynamics expertise at MSFC: the Fluid Physics and Dynamics Group, the Applied Fluid Dynamics Analysis Group, and the Experimental Fluid Dynamics Group. Recently completed activities discussed include the analysis and flow testing in support of the Fastrac engine design, the X-33 vehicle design, and the X34 propulsion system design. Ongoing activities include support of the RLV vehicle design, Liquid Fly Back Booster aerodynamic configuration definition, and RLV focused technologies development. Other ongoing activities discussed are efforts sponsored by the Center Director's Discretionary Fund (CDDF) to develop an advanced incompressible flow code and to develop optimization techniques. Recently initiated programs and their anticipated required fluid dynamics support are discussed. Based on recent experiences and on the anticipated program needs, required analytical and experimental technique improvements are presented. Due to anticipated budgetary constraints, there is a strong need to leverage activities and to pursue teaming arrangements in order to advance the state-of-the-art and to adequately support concept development. Throughout this overview there is discussion of the lessons learned and of the capabilities demonstrated and established in support of the hardware development programs.
Consistent Principal Component Modes from Molecular Dynamics Simulations of Proteins.
Cossio-Pérez, Rodrigo; Palma, Juliana; Pierdominici-Sottile, Gustavo
2017-04-24
Principal component analysis is a technique widely used for studying the movements of proteins using data collected from molecular dynamics simulations. In spite of its extensive use, the technique has a serious drawback: equivalent simulations do not afford the same PC-modes. In this article, we show that concatenating equivalent trajectories and calculating the PC-modes from the concatenated one significantly enhances the reproducibility of the results. Moreover, the consistency of the modes can be systematically improved by adding more individual trajectories to the concatenated one.
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Grafton, S. B.; Lutze, F. H.
1981-01-01
The test capabilities of the Stability Wind Tunnel of the Virginia Polytechnic Institute and State University are described, and calibrations for curved and rolling flow techniques are given. Oscillatory snaking tests to determine pure yawing derivatives are considered. Representative aerodynamic data obtained for a current fighter configuration using the curved and rolling flow techniques are presented. The application of dynamic derivatives obtained in such tests to the analysis of airplane motions in general, and to high angle of attack flight conditions in particular, is discussed.
Data-Driven Model Reduction and Transfer Operator Approximation
NASA Astrophysics Data System (ADS)
Klus, Stefan; Nüske, Feliks; Koltai, Péter; Wu, Hao; Kevrekidis, Ioannis; Schütte, Christof; Noé, Frank
2018-06-01
In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis, dynamic mode decomposition, and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods.
NASA Astrophysics Data System (ADS)
Digman, Michelle
Fluorescence fluctuation spectroscopy has evolved from single point detection of molecular diffusion to a family of microscopy imaging correlation tools (i.e. ICS, RICS, STICS, and kICS) useful in deriving spatial-temporal dynamics of proteins in living cells The advantage of the imaging techniques is the simultaneous measurement of all points in an image with a frame rate that is increasingly becoming faster with better sensitivity cameras and new microscopy modalities such as the sheet illumination technique. A new frontier in this area is now emerging towards a high level of mapping diffusion rates and protein dynamics in the 2 and 3 dimensions. In this talk, I will discuss the evolution of fluctuation analysis from the single point source to mapping diffusion in whole cells and the technology behind this technique. In particular, new methods of analysis exploit correlation of molecular fluctuations originating from measurement of fluctuation correlations at distant points (pair correlation analysis) and methods that exploit spatial averaging of fluctuations in small regions (iMSD). For example the pair correlation fluctuation (pCF) analyses done between adjacent pixels in all possible radial directions provide a window into anisotropic molecular diffusion. Similar to the connectivity atlas of neuronal connections from the MRI diffusion tensor imaging these new tools will be used to map the connectome of protein diffusion in living cells. For biological reaction-diffusion systems, live single cell spatial-temporal analysis of protein dynamics provides a mean to observe stochastic biochemical signaling in the context of the intracellular environment which may lead to better understanding of cancer cell invasion, stem cell differentiation and other fundamental biological processes. National Institutes of Health Grant P41-RRO3155.
2013-01-01
Methods for analysis of network dynamics have seen great progress in the past decade. This article shows how Dynamic Network Logistic Regression techniques (a special case of the Temporal Exponential Random Graph Models) can be used to implement decision theoretic models for network dynamics in a panel data context. We also provide practical heuristics for model building and assessment. We illustrate the power of these techniques by applying them to a dynamic blog network sampled during the 2004 US presidential election cycle. This is a particularly interesting case because it marks the debut of Internet-based media such as blogs and social networking web sites as institutionally recognized features of the American political landscape. Using a longitudinal sample of all Democratic National Convention/Republican National Convention–designated blog citation networks, we are able to test the influence of various strategic, institutional, and balance-theoretic mechanisms as well as exogenous factors such as seasonality and political events on the propensity of blogs to cite one another over time. Using a combination of deviance-based model selection criteria and simulation-based model adequacy tests, we identify the combination of processes that best characterizes the choice behavior of the contending blogs. PMID:24143060
NASA Astrophysics Data System (ADS)
Yang, Shuangming; Wei, Xile; Deng, Bin; Liu, Chen; Li, Huiyan; Wang, Jiang
2018-03-01
Balance between biological plausibility of dynamical activities and computational efficiency is one of challenging problems in computational neuroscience and neural system engineering. This paper proposes a set of efficient methods for the hardware realization of the conductance-based neuron model with relevant dynamics, targeting reproducing the biological behaviors with low-cost implementation on digital programmable platform, which can be applied in wide range of conductance-based neuron models. Modified GP neuron models for efficient hardware implementation are presented to reproduce reliable pallidal dynamics, which decode the information of basal ganglia and regulate the movement disorder related voluntary activities. Implementation results on a field-programmable gate array (FPGA) demonstrate that the proposed techniques and models can reduce the resource cost significantly and reproduce the biological dynamics accurately. Besides, the biological behaviors with weak network coupling are explored on the proposed platform, and theoretical analysis is also made for the investigation of biological characteristics of the structured pallidal oscillator and network. The implementation techniques provide an essential step towards the large-scale neural network to explore the dynamical mechanisms in real time. Furthermore, the proposed methodology enables the FPGA-based system a powerful platform for the investigation on neurodegenerative diseases and real-time control of bio-inspired neuro-robotics.
NASA Technical Reports Server (NTRS)
Wohlen, R. L.
1976-01-01
Techniques are presented for the solution of structural dynamic systems on an electronic digital computer using FORMA (FORTRAN Matrix Analysis). FORMA is a library of subroutines coded in FORTRAN 4 for the efficient solution of structural dynamics problems. These subroutines are in the form of building blocks that can be put together to solve a large variety of structural dynamics problems. The obvious advantage of the building block approach is that programming and checkout time are limited to that required for putting the blocks together in the proper order.
Development of High Speed Imaging and Analysis Techniques Compressible Dynamics Stall
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.; Davis, Sanford S. (Technical Monitor)
1996-01-01
Dynamic stall has limited the flight envelope of helicopters for many years. The problem has been studied in the laboratory as well as in flight, but most research, even in the laboratory, has been restricted to surface measurement techniques such as pressure transducers or skin friction gauges, except at low speed. From this research, it became apparent that flow visualization tests performed at Mach numbers representing actual flight conditions were needed if the complex physics associated with dynamic stall was to be properly understood. However, visualization of the flow field during compressible conditions required carefully aligned and meticulously reconstructed holographic interferometry. As part of a long-range effort focused on exposing of the physics of compressible dynamic stall, a research wind tunnel was developed at NASA Ames Research Center which permits visual access to the full flow field surrounding an oscillating airfoil during compressible dynamic stall. Initially, a stroboscopic schlieren technique was used for visualization of the stall process, but the primary research tool has been point diffraction interferometry(PDI), a technique carefully optimized for use in th is project. A review of the process of development of PDI will be presented in the full paper. One of the most valuable aspects of PDI is the fact that interferograms are produced in real time on a continuous basis. The use of a rapidly-pulsed laser makes this practical; a discussion of this approach will be presented in the full paper. This rapid pulsing(up to 40,000 pulses/sec) produces interferograms of the rapidly developing dynamic stall field in sufficient resolution(both in space and time) that the fluid physics of the compressible dynamic stall flowfield can be quantitatively determined, including the gradients of pressure in space and time. This permits analysis of the influence of the effect of pitch rate, Mach number, Reynolds number, amplitude of oscillation, and other parameters on the dynamic stall process. When interferograms can be captured in real time, the potential for real-time mapping of a developing unsteady flow such as dynamic stall becomes a possibility. This has been achieved in the present case through the use of a high-speed drum camera combined with electronic circuitry which has resulted in a series of interferograms obtained during a single cycle of dynamic stall; images obtained at the rate of 20 KHz will be presented as a part of the formal presentation. Interferometry has been available for a long time; however, most of its use has been limited to visualization. The present research has focused on use of interferograms for quantitative mapping of the flow over oscillating airfoils. Instantaneous pressure distributions can now be obtained semi-automatically, making practical the analysis of the thousands of interferograms that are produced in this research. A review of the techniques that have been developed as part of this research effort will be presented in the final paper.
Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures.
Costa, Madalena D; Peng, Chung-Kang; Goldberger, Ary L
2008-06-01
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools--multiscale entropy and multiscale time irreversibility--are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs.
Multiscale Analysis of Heart Rate Dynamics: Entropy and Time Irreversibility Measures
Peng, Chung-Kang; Goldberger, Ary L.
2016-01-01
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and nonequilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools— multiscale entropy and multiscale time irreversibility—are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs. PMID:18172763
Sensitivity analysis of automatic flight control systems using singular value concepts
NASA Technical Reports Server (NTRS)
Herrera-Vaillard, A.; Paduano, J.; Downing, D.
1985-01-01
A sensitivity analysis is presented that can be used to judge the impact of vehicle dynamic model variations on the relative stability of multivariable continuous closed-loop control systems. The sensitivity analysis uses and extends the singular-value concept by developing expressions for the gradients of the singular value with respect to variations in the vehicle dynamic model and the controller design. Combined with a priori estimates of the accuracy of the model, the gradients are used to identify the elements in the vehicle dynamic model and controller that could severely impact the system's relative stability. The technique is demonstrated for a yaw/roll damper stability augmentation designed for a business jet.
Protein Analysis by Dynamic Light Scattering: Methods and Techniques for Students
ERIC Educational Resources Information Center
Lorber, Bernard; Fischer, Frederic; Bailly, Marc; Roy, Herve; Kern, Daniel
2012-01-01
Dynamic light scattering (DLS) analyses are routinely used in biology laboratories to detect aggregates in macromolecular solutions, to determine the size of proteins, nucleic acids, and complexes or to monitor the binding of ligands. This article is written for graduate and undergraduate students with access to DLS and for faculty members who…
Stochastic dynamic analysis of marine risers considering Gaussian system uncertainties
NASA Astrophysics Data System (ADS)
Ni, Pinghe; Li, Jun; Hao, Hong; Xia, Yong
2018-03-01
This paper performs the stochastic dynamic response analysis of marine risers with material uncertainties, i.e. in the mass density and elastic modulus, by using Stochastic Finite Element Method (SFEM) and model reduction technique. These uncertainties are assumed having Gaussian distributions. The random mass density and elastic modulus are represented by using the Karhunen-Loève (KL) expansion. The Polynomial Chaos (PC) expansion is adopted to represent the vibration response because the covariance of the output is unknown. Model reduction based on the Iterated Improved Reduced System (IIRS) technique is applied to eliminate the PC coefficients of the slave degrees of freedom to reduce the dimension of the stochastic system. Monte Carlo Simulation (MCS) is conducted to obtain the reference response statistics. Two numerical examples are studied in this paper. The response statistics from the proposed approach are compared with those from MCS. It is noted that the computational time is significantly reduced while the accuracy is kept. The results demonstrate the efficiency of the proposed approach for stochastic dynamic response analysis of marine risers.
Middle Atmosphere Program. Handbook for MAP, volume 9
NASA Technical Reports Server (NTRS)
Bowhill, S. A. (Editor); Edwards, B. (Editor)
1983-01-01
The term Mesosphere-Stratosphere-Troposphere radar (MST) was invented to describe the use of a high power radar transmitter together with a large vertically, or near vertically, pointing antenna to study the dynamics and structure of the atmosphere from about 10 to 100 km, using the very weak coherently scattered radiation returned from small scale irregularities in refractive index. Nine topics were addressed including: meteorological and dynamic requirements for MST radar networks; interpretation of radar returns for clear air; techniques for the measurement of horizontal and vertical velocities; techniques for studying gravity waves and turbulence; capabilities and limitations of existing MST radar; design considerations for high power VHF radar transceivers; optimum radar antenna configurations; and data analysis techniques.
Dynamic Photorefractive Memory and its Application for Opto-Electronic Neural Networks.
NASA Astrophysics Data System (ADS)
Sasaki, Hironori
This dissertation describes the analysis of the photorefractive crystal dynamics and its application for opto-electronic neural network systems. The realization of the dynamic photorefractive memory is investigated in terms of the following aspects: fast memory update, uniform grating multiplexing schedules and the prevention of the partial erasure of existing gratings. The fast memory update is realized by the selective erasure process that superimposes a new grating on the original one with an appropriate phase shift. The dynamics of the selective erasure process is analyzed using the first-order photorefractive material equations and experimentally confirmed. The effects of beam coupling and fringe bending on the selective erasure dynamics are also analyzed by numerically solving a combination of coupled wave equations and the photorefractive material equation. Incremental recording technique is proposed as a uniform grating multiplexing schedule and compared with the conventional scheduled recording technique in terms of phase distribution in the presence of an external dc electric field, as well as the image gray scale dependence. The theoretical analysis and experimental results proved the superiority of the incremental recording technique over the scheduled recording. Novel recirculating information memory architecture is proposed and experimentally demonstrated to prevent partial degradation of the existing gratings by accessing the memory. Gratings are circulated through a memory feed back loop based on the incremental recording dynamics and demonstrate robust read/write/erase capabilities. The dynamic photorefractive memory is applied to opto-electronic neural network systems. Module architecture based on the page-oriented dynamic photorefractive memory is proposed. This module architecture can implement two complementary interconnection organizations, fan-in and fan-out. The module system scalability and the learning capabilities are theoretically investigated using the photorefractive dynamics described in previous chapters of the dissertation. The implementation of the feed-forward image compression network with 900 input and 9 output neurons with 6-bit interconnection accuracy is experimentally demonstrated. Learning of the Perceptron network that determines sex based on input face images of 900 pixels is also successfully demonstrated.
The edge of chaos: A nonlinear view of psychoanalytic technique.
Galatzer-Levy, Robert M
2016-04-01
The field of nonlinear dynamics (or chaos theory) provides ways to expand concepts of psychoanalytic process that have implications for the technique of psychoanalysis. This paper describes how concepts of "the edge of chaos," emergence, attractors, and coupled oscillators can help shape analytic technique resulting in an approach to doing analysis which is at the same time freer and more firmly based in an enlarged understanding of the ways in which psychoanalysis works than some current recommendation about technique. Illustrations from a lengthy analysis of an analysand with obsessive-compulsive disorder show this approach in action. Copyright © 2016 Institute of Psychoanalysis.
Parameter sensitivity analysis for pesticide impacts on honeybee colonies
We employ Monte Carlo simulation and linear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed that simulate hive population trajectories, taking into account queen strength, foraging success, weather, colo...
Sobol’ sensitivity analysis for stressor impacts on honeybee colonies
We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather...
NASA Technical Reports Server (NTRS)
DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.
1999-01-01
Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.
Dell’Avvocata, Fabio; Zuin, Marco; Giatti, Sara; Duong, Khanh; Pham, Trung; Tuan, Nguyen Si; Vassiliev, Dobrin; Daggubati, Ramesh; Nguyen, Thach
2017-01-01
Abstract Background and Objectives Provisional and culotte are the most commonly used techniques in left main (LM) stenting. The impact of different post-dilation techniques on fluid dynamic of LM bifurcation has not been yet investigated. The aim of this study is to evaluate, by means of computational fluid dynamic analysis (CFD), the impact of different post-dilation techniques including proximal optimization technique (POT), kissing balloon (KB), POT-Side-POT and POT–KB-POT, 2-steps Kissing (2SK) and Snuggle Kissing balloon (SKB) on flow dynamic profile after LM provisional or culotte stenting. Methods We considered an LM-LCA-LCX bifurcation reconstructed after reviewing 100 consecutive patients (mean age 71.4 ± 9.3 years, 49 males) with LM distal disease. The diameters of LAD and LCX were modelled according to the Finnet’s law as following: LM 4.5 mm, LAD 3.5 mm, LCX 2.75 mm, with bifurcation angle set up at 55°. Xience third-generation stent (Abbot Inc., USA) was reconstructed and virtually implanted in provisional/cross-over and culotte fashion. POT, KB, POT-side-POT, POT-KB-POT, 2SK and SKB were virtually applied and analyzed in terms of the wall shear stress (WSS). Results Analyzing the provisional stenting, the 2SK and KB techniques had a statistically significant lower impact on the WSS at the carina, while POT seemed to obtain a neutral effect. In the wall opposite to the carina, the more physiological profile has been obtained by KB and POT with higher WSS value and smaller surface area of the lower WSS. In culotte stenting, at the carina, POT-KB-POT and 2SK had a very physiological profile; while at the wall opposite to the carina, 2SK and POT–KB-POT decreased significantly the surface area of the lower WSS compared to the other techniques. Conclusion From the fluid dynamic point of view in LM provisional stenting, POT, 2SK and KB showed a similar beneficial impact on the bifurcation rheology, while in LM culotte stenting, POT-KB-POT and 2SK performed slightly better than the other techniques, probably reflecting a better strut apposition. PMID:29340277
Dynamic malware analysis using IntroVirt: a modified hypervisor-based system
NASA Astrophysics Data System (ADS)
White, Joshua S.; Pape, Stephen R.; Meily, Adam T.; Gloo, Richard M.
2013-05-01
In this paper, we present a system for Dynamic Malware Analysis which incorporates the use of IntroVirt™. IntroVirt is an introspective hypervisor architecture and infrastructure that supports advanced analysis techniques for stealth-malwareanalysis. This system allows for complete guest monitoring and interaction, including the manipulation and blocking of system calls. IntroVirt is capable of bypassing virtual machine detection capabilities of even the most sophisticated malware, by spoofing returns to system call responses. Additional fuzzing capabilities can be employed to detect both malware vulnerabilities and polymorphism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prentice, H. J.; Proud, W. G.
2006-07-28
A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical andmore » numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses.« less
Chronological protein synthesis in regenerating rat liver.
He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng
2015-07-01
Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1986-01-01
The topics of research in this program include pilot/vehicle analysis techniques, identification of pilot dynamics, and control and display synthesis techniques for optimizing aircraft handling qualities. The project activities are discussed. The current technical activity is directed at extending and validating the active display synthesis procedure, and the pilot/vehicle analysis of the NLR rate-command flight configurations in the landing task. Two papers published by the researchers are attached as appendices.
The effect of moisture on the dynamic thermomechanical properties of a graphite/epoxy composite
NASA Technical Reports Server (NTRS)
Sykes, G. F.; Burks, H. D.; Nelson, J. B.
1977-01-01
A study has been made of the effect of moisture absorption on the dynamic thermomechanical properties of a graphite/epoxy composite recently considered for building primary aircraft structures. Torsional braid analysis (TBA) and thermomechanical analysis (TMA) techniques were used to measure changes in the glass transition temperature (Tg) and the initial softening temperature (heat distortion temperature, HDT) of T-300/5209 graphite/epoxy composites exposed to room temperature water soak.
Sojoudi, Alireza; Goodyear, Bradley G
2016-12-01
Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Magnetic fabric constraints of the emplacement of igneous intrusions
NASA Astrophysics Data System (ADS)
Maes, Stephanie M.
Fabric analysis is critical to evaluating the history, kinematics, and dynamics of geological deformation. This is particularly true of igneous intrusions, where the development of fabric is used to constrain magmatic flow and emplacement mechanisms. Fabric analysis was applied to three mafic intrusions, with different tectonic and petrogenetic histories, to study emplacement and magma flow: the Insizwa sill (Mesozoic Karoo Large Igneous Province, South Africa), Sonju Lake intrusion (Proterozoic Midcontinent Rift, Minnesota, USA), and Palisades sill (Mesozoic rift basin, New Jersey, USA). Multiple fabric analysis techniques were used to define the fabric in each intrusive body. Using digital image analysis techniques on multiple thin sections, the three-dimensional shape-preferred orientation (SPO) of populations of mineral phases were calculated. Low-field anisotropy of magnetic susceptibility (AMS) measurements were used as a proxy for the mineral fabric of the ferromagnetic phases (e.g., magnetite). In addition, a new technique---high-field AMS---was used to isolate the paramagnetic component of the fabric (e.g., silicate fabric). Each fabric analysis technique was then compared to observable field fabrics as a framework for interpretation. In the Insizwa sill, magnetic properties were used to corroborate vertical petrologic zonation and distinguish sub-units within lithologically defined units. Abrupt variation in magnetic properties provides evidence supporting the formation of the Insizwa sill by separate magma intrusions. Low-field AMS fabrics in the Sonju Lake intrusion exhibit consistent SW-plunging lineations and SW-dipping foliations. These fabric orientations provide evidence that the cumulate layers in the intrusion were deposited in a dynamic environment, and indicate magma flowed from southwest to northeast, parallel to the pre-existing rift structures. In the Palisades sill, the magnetite SPO and low-field AMS lineation have developed orthogonal to the plagioclase SPO and high-field AMS lineation. Magma flow in the Palisades magmatic system is interpreted to have originated from a point source feeder. Low-field AMS records the flow direction, whereas high-field AMS records extension within the igneous sheet. The multiple fabric analysis techniques presented in this dissertation have advanced our understanding of the development of fabric and its relationship to internal structure, emplacement, and magma dynamics in mafic igneous systems.
Novel Framework for Reduced Order Modeling of Aero-engine Components
NASA Astrophysics Data System (ADS)
Safi, Ali
The present study focuses on the popular dynamic reduction methods used in design of complex assemblies (millions of Degrees of Freedom) where numerous iterations are involved to achieve the final design. Aerospace manufacturers such as Rolls Royce and Pratt & Whitney are actively seeking techniques that reduce computational time while maintaining accuracy of the models. This involves modal analysis of components with complex geometries to determine the dynamic behavior due to non-linearity and complicated loading conditions. In such a case the sub-structuring and dynamic reduction techniques prove to be an efficient tool to reduce design cycle time. The components whose designs are finalized can be dynamically reduced to mass and stiffness matrices at the boundary nodes in the assembly. These matrices conserve the dynamics of the component in the assembly, and thus avoid repeated calculations during the analysis runs for design modification of other components. This thesis presents a novel framework in terms of modeling and meshing of any complex structure, in this case an aero-engine casing. In this study the affect of meshing techniques on the run time are highlighted. The modal analysis is carried out using an extremely fine mesh to ensure all minor details in the structure are captured correctly in the Finite Element (FE) model. This is used as the reference model, to compare against the results of the reduced model. The study also shows the conditions/criteria under which dynamic reduction can be implemented effectively, proving the accuracy of Criag-Bampton (C.B.) method and limitations of Static Condensation. The study highlights the longer runtime needed to produce the reduced matrices of components compared to the overall runtime of the complete unreduced model. Although once the components are reduced, the assembly run is significantly. Hence the decision to use Component Mode Synthesis (CMS) is to be taken judiciously considering the number of iterations that may be required during the design cycle.
NASA Astrophysics Data System (ADS)
Fein, Howard
2003-09-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as critical operational parameters of turbine structural components or unit turbine components fabricated from advanced and exotic new materials or using new fabrication methods. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects.
Construction of dynamic stochastic simulation models using knowledge-based techniques
NASA Technical Reports Server (NTRS)
Williams, M. Douglas; Shiva, Sajjan G.
1990-01-01
Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).
Bioimaging of cells and tissues using accelerator-based sources.
Petibois, Cyril; Cestelli Guidi, Mariangela
2008-07-01
A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 mum) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.
Reconsideration of dynamic force spectroscopy analysis of streptavidin-biotin interactions.
Taninaka, Atsushi; Takeuchi, Osamu; Shigekawa, Hidemi
2010-05-13
To understand and design molecular functions on the basis of molecular recognition processes, the microscopic probing of the energy landscapes of individual interactions in a molecular complex and their dependence on the surrounding conditions is of great importance. Dynamic force spectroscopy (DFS) is a technique that enables us to study the interaction between molecules at the single-molecule level. However, the obtained results differ among previous studies, which is considered to be caused by the differences in the measurement conditions. We have developed an atomic force microscopy technique that enables the precise analysis of molecular interactions on the basis of DFS. After verifying the performance of this technique, we carried out measurements to determine the landscapes of streptavidin-biotin interactions. The obtained results showed good agreement with theoretical predictions. Lifetimes were also well analyzed. Using a combination of cross-linkers and the atomic force microscope that we developed, site-selective measurement was carried out, and the steps involved in bonding due to microscopic interactions are discussed using the results obtained by site-selective analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Christopher A.
In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulatemore » the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less
DOT National Transportation Integrated Search
1975-07-01
The describing function method of analysis is applied to investigate the influence of parametric variations on wheelset critical velocity. In addition, the relationship between the amplitude of sustained lateral oscillations and critical speed is der...
Dynamic technique for measuring adsorption in a gas chromatograph
NASA Technical Reports Server (NTRS)
Deuel, C. L.; Hultgren, N. W.; Mobert, M. L.
1973-01-01
Gas-chromatographic procedure, together with mathematical analysis of adsorption isotherm, allows relative surface areas and adsorptive powers for trace concentrations to be determined in a few minutes. Technique may be used to evaluate relative surface areas of different adsorbates, expressed as volume of adsorbent/gram of adsorbate, and to evaluate their relative adsorptive power.
Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti
2017-08-11
In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.
Signal classification using global dynamical models, Part II: SONAR data analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kremliovsky, M.; Kadtke, J.
1996-06-01
In Part I of this paper, we described a numerical method for nonlinear signal detection and classification which made use of techniques borrowed from dynamical systems theory. Here in Part II of the paper, we will describe an example of data analysis using this method, for data consisting of open ocean acoustic (SONAR) recordings of marine mammal transients, supplied from NUWC sources. The purpose here is two-fold: first to give a more operational description of the technique and provide rules-of-thumb for parameter choices; and second to discuss some new issues raised by the analysis of non-ideal (real-world) data sets. Themore » particular data set considered here is quite non-stationary, relatively noisy, is not clearly localized in the background, and as such provides a difficult challenge for most detection/classification schemes. {copyright} {ital 1996 American Institute of Physics.}« less
Krivov, Sergei V
2011-07-01
Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game--the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.
NASA Astrophysics Data System (ADS)
Krivov, Sergei V.
2011-07-01
Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game—the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.
Brinberg, Miriam; Fosco, Gregory M; Ram, Nilam
2017-12-01
Family systems theorists have forwarded a set of theoretical principles meant to guide family scientists and practitioners in their conceptualization of patterns of family interaction-intra-family dynamics-that, over time, give rise to family and individual dysfunction and/or adaptation. In this article, we present an analytic approach that merges state space grid methods adapted from the dynamic systems literature with sequence analysis methods adapted from molecular biology into a "grid-sequence" method for studying inter-family differences in intra-family dynamics. Using dyadic data from 86 parent-adolescent dyads who provided up to 21 daily reports about connectedness, we illustrate how grid-sequence analysis can be used to identify a typology of intrafamily dynamics and to inform theory about how specific types of intrafamily dynamics contribute to adolescent behavior problems and family members' mental health. Methodologically, grid-sequence analysis extends the toolbox of techniques for analysis of family experience sampling and daily diary data. Substantively, we identify patterns of family level microdynamics that may serve as new markers of risk/protective factors and potential points for intervention in families. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Satellite-enhanced dynamical downscaling for the analysis of extreme events
NASA Astrophysics Data System (ADS)
Nunes, Ana M. B.
2016-09-01
The use of regional models in the downscaling of general circulation models provides a strategy to generate more detailed climate information. In that case, boundary-forcing techniques can be useful to maintain the large-scale features from the coarse-resolution global models in agreement with the inner modes of the higher-resolution regional models. Although those procedures might improve dynamics, downscaling via regional modeling still aims for better representation of physical processes. With the purpose of improving dynamics and physical processes in regional downscaling of global reanalysis, the Regional Spectral Model—originally developed at the National Centers for Environmental Prediction—employs a newly reformulated scale-selective bias correction, together with the 3-hourly assimilation of the satellite-based precipitation estimates constructed from the Climate Prediction Center morphing technique. The two-scheme technique for the dynamical downscaling of global reanalysis can be applied in analyses of environmental disasters and risk assessment, with hourly outputs, and resolution of about 25 km. Here the satellite-enhanced dynamical downscaling added value is demonstrated in simulations of the first reported hurricane in the western South Atlantic Ocean basin through comparisons with global reanalyses and satellite products available in ocean areas.
Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report
NASA Technical Reports Server (NTRS)
Ahmad, Shahid
1991-01-01
An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons with available analytical and numerical results, the stability and high accuracy of these dynamic analysis techniques are established.
NASA Astrophysics Data System (ADS)
Ushakov, A. A.; Chizhov, P. A.; Bukin, V. V.; Garnov, S. V.; Savel'ev, A. B.
2018-05-01
Two 2D techniques for visualising the field of pulsed THz radiation ('shadow' and 'interferometric'), which are based on the linear electro-optical effect with application of a ZnTe detector crystal 1 × 1 cm in size, are compared. The noise level and dynamic range for the aforementioned techniques are analysed and their applicability limits are discussed.
A comparison of dynamic and static economic models of uneven-aged stand management
Robert G. Haight
1985-01-01
Numerical techniques have been used to compute the discrete-time sequence of residual diameter distributions that maximize the present net worth (PNW) of harvestable volume from an uneven-aged stand. Results contradicted optimal steady-state diameter distributions determined with static analysis. In this paper, optimality conditions for solutions to dynamic and static...
Techniques of data analysis and presentation for planners of the metropolitan environment
Joelee Normand
1977-01-01
Relationships between the characteristics of the physical environment of a metropolitan area and the activities of its human inhabitants can be used to predict probable future dynamic trends, both demographic and environmental. Using simple linear regression, we were able to highlight several dynamic features of the metropolitan area of Tulsa, Oklahoma. Computer movies...
NASA Technical Reports Server (NTRS)
Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.; Pappa, Richard S.
2003-01-01
Photogrammetry has proven to be a valuable tool for static and dynamic profiling of membrane based inflatable and ultra-lightweight space structures. However, the traditional photogrammetric targeting techniques used for solid structures, such as attached retro-reflective targets and white-light dot projection, have some disadvantages and are not ideally suited for measuring highly transparent or reflective membrane structures. In this paper, we describe a new laser-induced fluorescence based target generation technique that is more suitable for these types of structures. We also present several examples of non-contact non-invasive photogrammetric measurements of laser-dye doped polymers, including the dynamic measurement and modal analysis of a 1m-by-1m aluminized solar sail style membrane.
On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system
NASA Astrophysics Data System (ADS)
Hajipour, Ahamad; Hajipour, Mojtaba; Baleanu, Dumitru
2018-05-01
This manuscript mainly focuses on the construction, dynamic analysis and control of a new fractional-order financial system. The basic dynamical behaviors of the proposed system are studied such as the equilibrium points and their stability, Lyapunov exponents, bifurcation diagrams, phase portraits of state variables and the intervals of system parameters. It is shown that the system exhibits hyperchaotic behavior for a number of system parameters and fractional-order values. To stabilize the proposed hyperchaotic fractional system with uncertain dynamics and disturbances, an efficient adaptive sliding mode controller technique is developed. Using the proposed technique, two hyperchaotic fractional-order financial systems are also synchronized. Numerical simulations are presented to verify the successful performance of the designed controllers.
Real-time open-loop frequency response analysis of flight test data
NASA Technical Reports Server (NTRS)
Bosworth, J. T.; West, J. C.
1986-01-01
A technique has been developed to compare the open-loop frequency response of a flight test aircraft real time with linear analysis predictions. The result is direct feedback to the flight control systems engineer on the validity of predictions and adds confidence for proceeding with envelope expansion. Further, gain and phase margins can be tracked for trends in a manner similar to the techniques used by structural dynamics engineers in tracking structural modal damping.
SAINT: A combined simulation language for modeling man-machine systems
NASA Technical Reports Server (NTRS)
Seifert, D. J.
1979-01-01
SAINT (Systems Analysis of Integrated Networks of Tasks) is a network modeling and simulation technique for design and analysis of complex man machine systems. SAINT provides the conceptual framework for representing systems that consist of discrete task elements, continuous state variables, and interactions between them. It also provides a mechanism for combining human performance models and dynamic system behaviors in a single modeling structure. The SAINT technique is described and applications of the SAINT are discussed.
Aluas, Mihaela; Filip, Claudiu
2005-05-01
A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.
Splash Dynamics of Falling Surfactant-Laden Droplets
NASA Astrophysics Data System (ADS)
Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo
2017-11-01
Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.
NASA Technical Reports Server (NTRS)
Ozguven, H. Nevzat
1991-01-01
A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the nonlinear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the 'static transmission error method' developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.
Geomagnetic field models for satellite angular motion studies
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.
2018-03-01
Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.
NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch
NASA Technical Reports Server (NTRS)
Gilligan, Eric
2014-01-01
Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.
Transient analysis techniques in performing impact and crash dynamic studies
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Winter, R.
1989-01-01
Because of the emphasis being placed on crashworthiness as a design requirement, increasing demands are being made by various organizations to analyze a wide range of complex structures that must perform safely when subjected to severe impact loads, such as those generated in a crash event. The ultimate goal of crashworthiness design and analysis is to produce vehicles with the ability to reduce the dynamic forces experienced by the occupants to specified levels, while maintaining a survivable envelope around them during a specified crash event. DYCAST is a nonlinear structural dynamic finite element computer code that started from the plans systems of a finite element program for static nonlinear structural analysis. The essential features of DYCAST are outlined.
Valero, E; Sanz, J; Martínez-Castro, I
2001-06-01
Direct thermal desorption (DTD) has been used as a technique for extracting volatile components of cheese as a preliminary step to their gas chromatographic (GC) analysis. In this study, it is applied to different cheese varieties: Camembert, blue, Chaumes, and La Serena. Volatiles are also extracted using other techniques such as simultaneous distillation-extraction and dynamic headspace. Separation and identification of the cheese components are carried out by GC-mass spectrometry. Approximately 100 compounds are detected in the examined cheeses. The described results show that DTD is fast, simple, and easy to automate; requires only a small amount of sample (approximately 50 mg); and affords quantitative information about the main groups of compounds present in cheeses.
NASA Astrophysics Data System (ADS)
Zhang, Ji; Ding, Mingyue; Yuchi, Ming; Hou, Wenguang; Ye, Huashan; Qiu, Wu
2010-03-01
Factor analysis is an efficient technique to the analysis of dynamic structures in medical image sequences and recently has been used in contrast-enhanced ultrasound (CEUS) of hepatic perfusion. Time-intensity curves (TICs) extracted by factor analysis can provide much more diagnostic information for radiologists and improve the diagnostic rate of focal liver lesions (FLLs). However, one of the major drawbacks of factor analysis of dynamic structures (FADS) is nonuniqueness of the result when only the non-negativity criterion is used. In this paper, we propose a new method of replace-approximation based on apex-seeking for ambiguous FADS solutions. Due to a partial overlap of different structures, factor curves are assumed to be approximately replaced by the curves existing in medical image sequences. Therefore, how to find optimal curves is the key point of the technique. No matter how many structures are assumed, our method always starts to seek apexes from one-dimensional space where the original high-dimensional data is mapped. By finding two stable apexes from one dimensional space, the method can ascertain the third one. The process can be continued until all structures are found. This technique were tested on two phantoms of blood perfusion and compared to the two variants of apex-seeking method. The results showed that the technique outperformed two variants in comparison of region of interest measurements from phantom data. It can be applied to the estimation of TICs derived from CEUS images and separation of different physiological regions in hepatic perfusion.
Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges
NASA Technical Reports Server (NTRS)
Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam
2014-01-01
As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements into a real-time simulation capability, generating techniques for uncertainty modeling that draw data from multiple modeling sources, and providing a unified database model that includes nominal plus increments for each flight condition. This paper presents status of testing in the BR&T water tunnel and analysis of the resulting data and efforts to characterize these data using alternative modeling methods. Program challenges and issues are also presented.
Multifractality and heteroscedastic dynamics: An application to time series analysis
NASA Astrophysics Data System (ADS)
Nascimento, C. M.; Júnior, H. B. N.; Jennings, H. D.; Serva, M.; Gleria, Iram; Viswanathan, G. M.
2008-01-01
An increasingly important problem in physics concerns scale invariance symmetry in diverse complex systems, often characterized by heteroscedastic dynamics. We investigate the nature of the relationship between the heteroscedastic and fractal aspects of the dynamics of complex systems, by analyzing the sensitivity to heteroscedasticity of the scaling properties of weakly nonstationary time series. By using multifractal detrended fluctuation analysis, we study the singularity spectra of currency exchange rate fluctuations, after partially or completely eliminating n-point correlations via data shuffling techniques. We conclude that heteroscedasticity can significantly increase multifractality and interpret these findings in the context of self-organizing and adaptive complex systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, L; Ziemer, B; Lipinski, J
Purpose: To evaluate the accuracy of a low-dose, first-pass-analysis (FPA) dynamic computed tomography angiography and perfusion (CTAP) technique, for whole-organ anatomical and functional assessment of coronary artery disease (CAD). Methods: An angioplasty balloon was advanced into the left anterior descending (LAD) coronary artery of five swine (35–45 kg) to induce several levels of stenosis at maximal hyperemia (intracoronary adenosine, 240 µg/min). Reference fluorescence microspheres and intravenous contrast (370 mg/mL iodine, 25 mL, 7 mL/s) were injected centrally and dynamic imaging was performed using a 320-slice CT scanner at 100 kVp and 200 mA. Twenty volume scans were acquired per stenosismore » level to capture complete aortic and myocardial enhancement curves, but only two volume scans were used for whole-organ dynamic FPA CTAP measurement. All CTAP measurements in the LAD were compared to the reference microsphere perfusion measurements using linear regression, concordance correlation, and Bland-Altman analysis. Results: The result of dynamic FPA CTAP measurement in the LAD was in good agreement with the reference microsphere perfusion measurement (P-CTAP = 1.01 P-MICRO + 0.16, R{sup 2} = 0.95). The root mean square error (RMSE) and difference (RMSD) of measurement were 0.51 mL/min/g and 0.47 mL/min/g, respectively. Bland-Altman analysis demonstrated negligible systematic measurement bias. Additionally, the concordance correlation coefficient (CCC) was found to be ρ = 0.97, indicating excellent agreement between dynamic FPA CTAP measurement and the reference microsphere perfusion measurement. Lastly, the effective dose of the proposed technique using the “simulated” two-volume scan CTAP acquisition protocol was 2.6 mSv; much lower than the ∼10 mSv effective dose of current dynamic CTP techniques alone. Conclusion: The results indicate the potential for significant improvements in CAD assessment through low-dose, quantitative dynamic FPA CTAP. Such improvements are afforded through whole-organ CT scanning technology, and have the potential to improve patient outcomes and lead to healthier patient lives. Conflict of Interest (only if applicable): Grant funding from Toshiba America Medical Systems.« less
Overview of Dynamic Test Techniques for Flight Dynamics Research at NASA LaRC (Invited)
NASA Technical Reports Server (NTRS)
Owens, D. Bruce; Brandon, Jay M.; Croom, Mark A.; Fremaux, C. Michael; Heim, Eugene H.; Vicroy, Dan D.
2006-01-01
An overview of dynamic test techniques used at NASA Langley Research Center on scale models to obtain a comprehensive flight dynamics characterization of aerospace vehicles is presented. Dynamic test techniques have been used at Langley Research Center since the 1920s. This paper will provide a partial overview of the current techniques available at Langley Research Center. The paper will discuss the dynamic scaling necessary to address the often hard-to-achieve similitude requirements for these techniques. Dynamic test techniques are categorized as captive, wind tunnel single degree-of-freedom and free-flying, and outside free-flying. The test facilities, technique specifications, data reduction, issues and future work are presented for each technique. The battery of tests conducted using the Blended Wing Body aircraft serves to illustrate how the techniques, when used together, are capable of characterizing the flight dynamics of a vehicle over a large range of critical flight conditions.
New technique for simulation of optical fiber amplifiers control schemes in dynamic WDM systems
NASA Astrophysics Data System (ADS)
Freitas, Marcio; Klein, Jackson; Givigi, Sidney, Jr.; Calmon, Luiz C.
2005-04-01
One topic that has attracted attention is related to the behavior of the optical amplifiers under dynamic conditions, specifically because amplifiers working in a saturated condition produce power transients in all-optical reconfigurable WDM networks, e.g. adding/dropping channels. The goal of this work is to introduce the multiwavelength time-driven simulations technique, capable of simulation and analysis of transient effects in all-optical WDM networks with optical amplifiers, and allow the use of control schemes to avoid or minimize the impacts of transient effects in the system performance.
Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane
NASA Technical Reports Server (NTRS)
Gera, Joseph; Bosworth, John T.
1987-01-01
Novel flight test and analysis techniques in the flight dynamics and handling qualities area are described. These techniques were utilized at NASA Ames-Dryden during the initial flight envelope clearance of the X-29A aircraft. It is shown that the open-loop frequency response of an aircraft with highly relaxed static stability can be successfully computed on the ground from telemetry data. Postflight closed-loop frequency response data were obtained from pilot-generated frequency sweeps and it is found that the current handling quality requirements for high-maneuverability aircraft are generally applicable to the X-29A.
NASA Technical Reports Server (NTRS)
Rheinfurth, M. H.; Wilson, H. B.
1991-01-01
The monograph was prepared to give the practicing engineer a clear understanding of dynamics with special consideration given to the dynamic analysis of aerospace systems. It is conceived to be both a desk-top reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject. Beginning with the basic concepts of kinematics and dynamics, the discussion proceeds to treat the dynamics of a system of particles. Both classical and modern formulations of the Lagrange equations, including constraints, are discussed and applied to the dynamic modeling of aerospace structures using the modal synthesis technique.
Khruschev, S S; Abaturova, A M; Diakonova, A N; Fedorov, V A; Ustinin, D M; Kovalenko, I B; Riznichenko, G Yu; Rubin, A B
2015-01-01
The application of Brownian dynamics for simulation of transient protein-protein interactions is reviewed. The review focuses on theoretical basics of Brownian dynamics method, its particular implementations, advantages and drawbacks of the method. The outlook for future development of Brownian dynamics-based simulation techniques is discussed. Special attention is given to analysis of Brownian dynamics trajectories. The second part of the review is dedicated to the role of Brownian dynamics simulations in studying photosynthetic electron transport. Interactions of mobile electron carriers (plastocyanin, cytochrome c6, and ferredoxin) with their reaction partners (cytochrome b6f complex, photosystem I, ferredoxin:NADP-reductase, and hydrogenase) are considered.
Exaggerated heart rate oscillations during two meditation techniques.
Peng, C K; Mietus, J E; Liu, Y; Khalsa, G; Douglas, P S; Benson, H; Goldberger, A L
1999-07-31
We report extremely prominent heart rate oscillations associated with slow breathing during specific traditional forms of Chinese Chi and Kundalini Yoga meditation techniques in healthy young adults. We applied both spectral analysis and a novel analytic technique based on the Hilbert transform to quantify these heart rate dynamics. The amplitude of these oscillations during meditation was significantly greater than in the pre-meditation control state and also in three non-meditation control groups: i) elite athletes during sleep, ii) healthy young adults during metronomic breathing, and iii) healthy young adults during spontaneous nocturnal breathing. This finding, along with the marked variability of the beat-to-beat heart rate dynamics during such profound meditative states, challenges the notion of meditation as only an autonomically quiescent state.
Generalized simulation technique for turbojet engine system analysis
NASA Technical Reports Server (NTRS)
Seldner, K.; Mihaloew, J. R.; Blaha, R. J.
1972-01-01
A nonlinear analog simulation of a turbojet engine was developed. The purpose of the study was to establish simulation techniques applicable to propulsion system dynamics and controls research. A schematic model was derived from a physical description of a J85-13 turbojet engine. Basic conservation equations were applied to each component along with their individual performance characteristics to derive a mathematical representation. The simulation was mechanized on an analog computer. The simulation was verified in both steady-state and dynamic modes by comparing analytical results with experimental data obtained from tests performed at the Lewis Research Center with a J85-13 engine. In addition, comparison was also made with performance data obtained from the engine manufacturer. The comparisons established the validity of the simulation technique.
Astephen, J L; Deluzio, K J
2005-02-01
Osteoarthritis of the knee is related to many correlated mechanical factors that can be measured with gait analysis. Gait analysis results in large data sets. The analysis of these data is difficult due to the correlated, multidimensional nature of the measures. A multidimensional model that uses two multivariate statistical techniques, principal component analysis and discriminant analysis, was used to discriminate between the gait patterns of the normal subject group and the osteoarthritis subject group. Nine time varying gait measures and eight discrete measures were included in the analysis. All interrelationships between and within the measures were retained in the analysis. The multidimensional analysis technique successfully separated the gait patterns of normal and knee osteoarthritis subjects with a misclassification error rate of <6%. The most discriminatory feature described a static and dynamic alignment factor. The second most discriminatory feature described a gait pattern change during the loading response phase of the gait cycle. The interrelationships between gait measures and between the time instants of the gait cycle can provide insight into the mechanical mechanisms of pathologies such as knee osteoarthritis. These results suggest that changes in frontal plane loading and alignment and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis gait patterns. Subsequent investigations earlier in the disease process may suggest the importance of these factors to the progression of knee osteoarthritis.
NASA Astrophysics Data System (ADS)
Alves de Mesquita, Jayme; Lopes de Melo, Pedro
2004-03-01
Thermally sensitive devices—thermistors—have usually been used to monitor sleep-breathing disorders. However, because of their long time constant, these devices are not able to provide a good characterization of fast events, like hypopneas. Nasal pressure recording technique (NPR) has recently been suggested to quantify airflow during sleep. It is claimed that the short time constants of the devices used to implement this technique would allow an accurate analysis of fast abnormal respiratory events. However, these devices present errors associated with nonlinearities and acoustic resonance that could reduce the diagnostic value of the NPR. Moreover, in spite of the high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this work was twofold: (1) describe the development of a flexible NPR device and (2) evaluate the performance of this device when compared to pneumotachographs (PNTs) and thermistors. After the design details are described, the system static accuracy is evaluated by a comparative analysis with a PNT. This analysis revealed a significant reduction (p<0.001) of the static error when system nonlinearities were reduced. The dynamic performance of the NPR system was investigated by frequency response analysis and time constant evaluations and the results showed that the developed device response was as good as PNT and around 100 times faster (τ=5,3 ms) than thermistors (τ=512 ms). Experimental results obtained in simulated clinical conditions and in a patient are presented as examples, and confirmed the good features achieved in engineering tests. These results are in close agreement with physiological fundamentals, supplying substantial evidence that the improved dynamic and static characteristics of this device can contribute to a more accurate implementation of medical research projects and to improve the diagnoses of sleep-breathing disorders.
NASA Astrophysics Data System (ADS)
Martinet, L.; Mayor, M.
The basic problems and analysis techniques in examining the morphology, dynamics, and interactions between star systems, galaxies, and galactic clusters are detailed. Attention is devoted to the dynamics of hot stellar systems, with note taken of the derivation and application of the Vlasov equation, Jean's theorem, and the virial equations. Observations of galactic structure and dynamics are reviewed, and consideration is directed toward environmental influences on galactic structure. For individual items see A84-15503 to A84-15505
Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †
Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco
2016-01-01
Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394
Papaleo, Elena
2015-01-01
In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.
Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2011-01-01
This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.
Quantitative fluorescence correlation spectroscopy on DNA in living cells
NASA Astrophysics Data System (ADS)
Hodges, Cameron; Kafle, Rudra P.; Meiners, Jens-Christian
2017-02-01
FCS is a fluorescence technique conventionally used to study the kinetics of fluorescent molecules in a dilute solution. Being a non-invasive technique, it is now drawing increasing interest for the study of more complex systems like the dynamics of DNA or proteins in living cells. Unlike an ordinary dye solution, the dynamics of macromolecules like proteins or entangled DNA in crowded environments is often slow and subdiffusive in nature. This in turn leads to longer residence times of the attached fluorophores in the excitation volume of the microscope and artifacts from photobleaching abound that can easily obscure the signature of the molecular dynamics of interest and make quantitative analysis challenging.We discuss methods and procedures to make FCS applicable to quantitative studies of the dynamics of DNA in live prokaryotic and eukaryotic cells. The intensity autocorrelation is computed function from weighted arrival times of the photons on the detector that maximizes the information content while simultaneously correcting for the effect of photobleaching to yield an autocorrelation function that reflects only the underlying dynamics of the sample. This autocorrelation function in turn is used to calculate the mean square displacement of the fluorophores attached to DNA. The displacement data is more amenable to further quantitative analysis than the raw correlation functions. By using a suitable integral transform of the mean square displacement, we can then determine the viscoelastic moduli of the DNA in its cellular environment. The entire analysis procedure is extensively calibrated and validated using model systems and computational simulations.
Constellation Coverage Analysis
NASA Technical Reports Server (NTRS)
Lo, Martin W. (Compiler)
1997-01-01
The design of satellite constellations requires an understanding of the dynamic global coverage provided by the constellations. Even for a small constellation with a simple circular orbit propagator, the combinatorial nature of the analysis frequently renders the problem intractable. Particularly for the initial design phase where the orbital parameters are still fluid and undetermined, the coverage information is crucial to evaluate the performance of the constellation design. We have developed a fast and simple algorithm for determining the global constellation coverage dynamically using image processing techniques. This approach provides a fast, powerful and simple method for the analysis of global constellation coverage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Chang; Jans, Hans; McEwan, Sandy
2014-08-15
In this work, a class of non-negative matrix factorization (NMF) technique known as alternating non-negative least squares, combined with the projected gradient method, is used to analyze twenty-five [{sup 11}C]-DTBZ dynamic PET/CT brain data. For each subject, a two-factor model is assumed and two factors representing the striatum (factor 1) and the non-striatum (factor 2) tissues are extracted using the proposed NMF technique and commercially available factor analysis software “Pixies”. The extracted factor 1 and 2 curves represent the binding site of the radiotracer and describe the uptake and clearance of the radiotracer by soft tissues in the brain, respectively.more » The proposed NMF technique uses prior information about the dynamic data to obtain sample time-activity curves representing the striatum and the non-striatum tissues. These curves are then used for “warm” starting the optimization. Factor solutions from the two methods are compared graphically and quantitatively. In healthy subjects, radiotracer uptake by factors 1 and 2 are approximately 35–40% and 60–65%, respectively. The solutions are also used to develop a factor-based metric for the detection of early, untreated Parkinson's disease. The metric stratifies healthy subjects from suspected Parkinson's patients (based on the graphical method). The analysis shows that both techniques produce comparable results with similar computational time. The “semi-automatic” approach used by the NMF technique allows clinicians to manually set a starting condition for “warm” starting the optimization in order to facilitate control and efficient interaction with the data.« less
NASA Astrophysics Data System (ADS)
Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.
2011-04-01
The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.
Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental approaches
NASA Astrophysics Data System (ADS)
Doedel, Eusebius J.; Panayotaros, Panayotis; Lambruschini, Carlos L. Pando
2016-11-01
This special issue contains a concise account of significant research results presented at the international workshop on Advanced Computational and Experimental Techniques in Nonlinear Dynamics, which was held in Cusco, Peru in August 2015. The meeting gathered leading experts, as well as new researchers, who have contributed to different aspects of Nonlinear Dynamics. Particularly significant was the presence of many active scientists from Latin America. The topics covered in this special issue range from advanced numerical techniques to novel physical experiments, and reflect the present state of the art in several areas of Nonlinear Dynamics. It contains seven review articles, followed by twenty-one regular papers that are organized in five categories, namely (1) Nonlinear Evolution Equations and Applications, (2) Numerical Continuation in Self-sustained Oscillators, (3) Synchronization, Control and Data Analysis, (4) Hamiltonian Systems, and (5) Scaling Properties in Maps.
Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho
2006-12-01
A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.
Quantitative imaging of heterogeneous dynamics in drying and aging paints
van der Kooij, Hanne M.; Fokkink, Remco; van der Gucht, Jasper; Sprakel, Joris
2016-01-01
Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing dynamics is, however, intrinsically difficult because the dynamics are typically heterogeneous and span a wide range of time scales. Moreover, the high turbidity of paints precludes conventional imaging techniques from reaching deep inside the paint. To address these challenges, we apply a scattering technique, Laser Speckle Imaging, as a versatile and quantitative tool to elucidate the internal dynamics, with microscopic resolution and spanning seven decades of time. We present a toolbox of data analysis and image processing methods that allows a tailored investigation of virtually any turbid dispersion, regardless of the geometry and substrate. Using these tools we watch a variety of paints dry and age with unprecedented detail. PMID:27682840
NASA Astrophysics Data System (ADS)
Geza, N.; Yushin, V.
2007-12-01
Instant variations of the velocities and attenuation of seismic waves in a friable medium subjected to dynamic loading have been studied by new experimental techniques using a powerful seismic vibrator. The half-space below the operating vibrator baseplate was scanned by high-frequency elastic waves, and the recorded fluctuations were exposed to a stroboscopic analysis. It was found that the variations of seismic velocities and attenuation are synchronous with the external vibrational load but have phase shift from it. Instant variations of the seismic waves parameters depend on the magnitude and absolute value of deformation, which generally result in decreasing of the elastic-wave velocities. New experimental techniques have a high sensitivity to the dynamic disturbance in the medium and allow one to detect a weak seismic boundaries. The relaxation process after dynamic vibrational loading were investigated and the results of research are presented.
A dynamical systems model for nuclear power plant risk
NASA Astrophysics Data System (ADS)
Hess, Stephen Michael
The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of these models. Details of the development of the mathematical risk model are presented. This includes discussion of the processes included in the model and the identification of significant interprocess interactions. This is followed by analysis of the model that demonstrates that its dynamical evolution displays characteristics that have been observed at commercially operating plants. The model is analyzed using the previously described techniques from dynamical systems theory. From this analysis, several significant insights are obtained with respect to the effective control of nuclear safety risk. Finally, we present conclusions and recommendations for further research.
Knowledge Management for the Analysis of Complex Experimentation.
ERIC Educational Resources Information Center
Maule, R.; Schacher, G.; Gallup, S.
2002-01-01
Describes a knowledge management system that was developed to help provide structure for dynamic and static data and to aid in the analysis of complex experimentation. Topics include quantitative and qualitative data; mining operations using artificial intelligence techniques; information architecture of the system; and transforming data into…
A program to form a multidisciplinary data base and analysis for dynamic systems
NASA Technical Reports Server (NTRS)
Taylor, L. W.; Suit, W. T.; Mayo, M. H.
1984-01-01
Diverse sets of experimental data and analysis programs have been assembled for the purpose of facilitating research in systems identification, parameter estimation and state estimation techniques. The data base analysis programs are organized to make it easy to compare alternative approaches. Additional data and alternative forms of analysis will be included as they become available.
Higher-Order Hurst Signatures: Dynamical Information in Time Series
NASA Astrophysics Data System (ADS)
Ferenbaugh, Willis
2005-10-01
Understanding and comparing time series from different systems requires characteristic measures of the dynamics embedded in the series. The Hurst exponent is a second-order dynamical measure of a time series which grew up within the blossoming fractal world of Mandelbrot. This characteristic measure is directly related to the behavior of the autocorrelation, the power-spectrum, and other second-order things. And as with these other measures, the Hurst exponent captures and quantifies some but not all of the intrinsic nature of a series. The more elusive characteristics live in the phase spectrum and the higher-order spectra. This research is a continuing quest to (more) fully characterize the dynamical information in time series produced by plasma experiments or models. The goal is to supplement the series information which can be represented by a Hurst exponent, and we would like to develop supplemental techniques in analogy with Hurst's original R/S analysis. These techniques should be another way to plumb the higher-order dynamics.
A modal analysis of flexible aircraft dynamics with handling qualities implications
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
A multivariable modal analysis technique is presented for evaluating flexible aircraft dynamics, focusing on meaningful vehicle responses to pilot inputs and atmospheric turbulence. Although modal analysis is the tool, vehicle time response is emphasized, and the analysis is performed on the linear, time-domain vehicle model. In evaluating previously obtained experimental pitch tracking data for a family of vehicle dynamic models, it is shown that flexible aeroelastic effects can significantly affect pitch attitude handling qualities. Consideration of the eigenvalues alone, of both rigid-body and aeroelastic modes, does not explain the simulation results. Modal analysis revealed, however, that although the lowest aeroelastic mode frequency was still three times greater than the short-period frequency, the rigid-body attitude response was dominated by this aeroelastic mode. This dominance was defined in terms of the relative magnitudes of the modal residues in selected vehicle responses.
Actuation for simultaneous motions and constraining efforts: an open chain example
NASA Astrophysics Data System (ADS)
Perreira, N. Duke
1997-06-01
A brief discussion on systems where simultaneous control of forces and velocities are desirable is given and an example linkage with revolute and prismatic joint is selected for further analysis. The Newton-Euler approach for dynamic system analysis is applied to the example to provide a basis of comparison. Gauge invariant transformations are used to convert the dynamic equations into invariant form suitable for use in a new dynamic system analysis method known as the motion-effort approach. This approach uses constraint elimination techniques based on singular value decompositions to recast the invariant form of dynamic system equations into orthogonal sets of motion and effort equations. Desired motions and constraining efforts are partitioned into ideally obtainable and unobtainable portions which are then used to determine the required actuation. The method is applied to the example system and an analytic estimate to its success is made.
Liao, David; Tlsty, Thea D
2014-08-06
Failure to understand evolutionary dynamics has been hypothesized as limiting our ability to control biological systems. An increasing awareness of similarities between macroscopic ecosystems and cellular tissues has inspired optimism that game theory will provide insights into the progression and control of cancer. To realize this potential, the ability to compare game theoretic models and experimental measurements of population dynamics should be broadly disseminated. In this tutorial, we present an analysis method that can be used to train parameters in game theoretic dynamics equations, used to validate the resulting equations, and used to make predictions to challenge these equations and to design treatment strategies. The data analysis techniques in this tutorial are adapted from the analysis of reaction kinetics using the method of initial rates taught in undergraduate general chemistry courses. Reliance on computer programming is avoided to encourage the adoption of these methods as routine bench activities.
Handling Dynamic Weights in Weighted Frequent Pattern Mining
NASA Astrophysics Data System (ADS)
Ahmed, Chowdhury Farhan; Tanbeer, Syed Khairuzzaman; Jeong, Byeong-Soo; Lee, Young-Koo
Even though weighted frequent pattern (WFP) mining is more effective than traditional frequent pattern mining because it can consider different semantic significances (weights) of items, existing WFP algorithms assume that each item has a fixed weight. But in real world scenarios, the weight (price or significance) of an item can vary with time. Reflecting these changes in item weight is necessary in several mining applications, such as retail market data analysis and web click stream analysis. In this paper, we introduce the concept of a dynamic weight for each item, and propose an algorithm, DWFPM (dynamic weighted frequent pattern mining), that makes use of this concept. Our algorithm can address situations where the weight (price or significance) of an item varies dynamically. It exploits a pattern growth mining technique to avoid the level-wise candidate set generation-and-test methodology. Furthermore, it requires only one database scan, so it is eligible for use in stream data mining. An extensive performance analysis shows that our algorithm is efficient and scalable for WFP mining using dynamic weights.
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee
2015-03-01
Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.
NASA Astrophysics Data System (ADS)
Kwon, Kibum
A dynamic analysis of the interaction between a crack and an auxetic (negative Poisson ratio)/non-auxetic inclusion is presented. The two most important fracture parameters, namely the stress intensity factors and the T-stress are analyzed by using the symmetric Galerkin boundary element method in the Laplace domain for three different models of crack-inclusion interaction. To investigate the effects of auxetic inclusions on the fracture behavior of composites reinforced by this new type of material, comparisons of the dynamic stress intensity factors and the dynamic T-stress are made between the use of auxetic inclusions as opposed to the use of traditional inclusions. Furthermore, the technique presented in this research can be employed to analyze for the interaction between a crack and a cluster of auxetic/non-auxetic inclusions. Results from the latter models can be employed in crack growth analysis in auxetic-fiber-reinforced composites.
NASA Astrophysics Data System (ADS)
Rahmes, Mark; Yates, J. Harlan; Allen, Josef DeVaughn; Kelley, Patrick
2007-04-01
High resolution Digital Surface Models (DSMs) may contain voids (missing data) due to the data collection process used to obtain the DSM, inclement weather conditions, low returns, system errors/malfunctions for various collection platforms, and other factors. DSM voids are also created during bare earth processing where culture and vegetation features have been extracted. The Harris LiteSite TM Toolkit handles these void regions in DSMs via two novel techniques. We use both partial differential equations (PDEs) and exemplar based inpainting techniques to accurately fill voids. The PDE technique has its origin in fluid dynamics and heat equations (a particular subset of partial differential equations). The exemplar technique has its origin in texture analysis and image processing. Each technique is optimally suited for different input conditions. The PDE technique works better where the area to be void filled does not have disproportionately high frequency data in the neighborhood of the boundary of the void. Conversely, the exemplar based technique is better suited for high frequency areas. Both are autonomous with respect to detecting and repairing void regions. We describe a cohesive autonomous solution that dynamically selects the best technique as each void is being repaired.
Determination of the smoke-plume heights and their dynamics with ground-based scanning LIDAR
V. Kovalev; A. Petkov; C. Wold; S. Urbanski; W. M. Hao
2015-01-01
Lidar-data processing techniques are analyzed, which allow determining smoke-plume heights and their dynamics and can be helpful for the improvement of smoke dispersion and air quality models. The data processing algorithms considered in the paper are based on the analysis of two alternative characteristics related to the smoke dispersion process: the regularized...
G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien
2015-01-01
Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...
Chaos in plasma simulation and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, C.; Newman, D.E.; Sprott, J.C.
1993-09-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFPmore » dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less
Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky
2014-06-01
To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.
Vibration Transmission through Rolling Element Bearings in Geared Rotor Systems
1990-11-01
147 4.8 Concluding Remarks ........................................................... 153 V STATISTICAL ENERGY ANALYSIS ............................................ 155...and dynamic finite element techniques are used to develop the discrete vibration models while statistical energy analysis method is used for the broad...bearing system studies, geared rotor system studies, and statistical energy analysis . Each chapter is self sufficient since it is written in a
Simplified Dynamic Analysis of Grinders Spindle Node
NASA Astrophysics Data System (ADS)
Demec, Peter
2014-12-01
The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.
Doellinger, Michael; Lohscheller, Joerg; McWhorter, Andrew; Kunduk, Melda
2009-03-01
We investigate the potential of high-speed digital imaging technique (HSI) and the phonovibrogram (PVG) analysis in normal vocal fold dynamics by studying the effects of continuous voice use (vocal loading) during the workday. One healthy subject was recorded at sustained phonation 13 times within 2 consecutive days in the morning before and in the afternoon after vocal loading, respectively. Vocal fold dynamics were extracted and visualized by PVGs. The characteristic PVG patterns were extracted representing vocal fold vibration types. The parameter values were then analyzed by statistics regarding vocal load, left-right PVG asymmetries, anterior-posterior PVG asymmetries, and opening-closing differences. For the first time, the direct impact of vocal load could be determined by analyzing vocal fold dynamics. For same vocal loading conditions, equal dynamical behavior of the vocal folds were confirmed. Comparison of recordings performed in the morning with the recordings after work revealed significant changes in vibration behavior, indicating impact of occurring vocal load. Left-right asymmetries in vocal fold dynamics were found confirming earlier assumptions. Different dynamics between opening and closing procedure as well as for anterior and posterior parts were found. Constant voice usage stresses the vocal folds even in healthy subjects and can be detected by applying the PVG technique. Furthermore, left-right PVG asymmetries do occur in healthy voice to a certain extent. HSI in combination with PVG analysis seems to be a promising tool for investigation of vocal fold fatigue and pathologies resulting in small forms of dynamical changes.
NASA Astrophysics Data System (ADS)
Le Rouzic, J.; Delobelle, P.; Vairac, P.; Cretin, B.
2009-10-01
In this article the dynamic mechanical characterization of PDMS and SU8 resin using dynamic mechanical analysis, nanoindentation and the scanning microdeformation microscope have been presented. The methods are hereby explained, extended for viscoelastic behaviours, and their compatibility underlined. The storage and loss moduli of these polymers over a wide range of frequencies (from 0.01 Hz to somekHz) have been measured. These techniques are shown fairly matching and the two different viscoelastic behaviours of these two polymers have been exhibited. Indeed, PDMS shows moduli which still increase at 5kHz whereas SU8 ones decrease much sooner. From a material point of view, the Havriliak and Negami model to estimate instantaneous, relaxed moduli and time constant of these materials has been identified.
Applying Score Analysis to a Rehearsal Pedagogy of Expressive Performance
ERIC Educational Resources Information Center
Byo, James L.
2014-01-01
The discoveries of score analysis (e.g., minor seventh chord, ostinato, phrase elision, melodic fragment, half cadence) are more than just compositional techniques or music vocabulary. They are sounds--fascinating, storytelling, dynamic modes of expression--that when approached as such enrich the rehearsal experience. This article presents a…
Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara
2004-01-23
High concentration capacity headspace techniques (headspace solid-phase microextraction (HS-SPME) and headspace sorptive extraction (HSSE)) are a bridge between static and dynamic headspace, since they give high concentration factors as does dynamic headspace (D-HS), and are as easy to apply and as reproducible as static headspace (S-HS). In 2000, Chromtech (Idstein, Germany) introduced an inside-needle technique for vapour and liquid sampling, solid-phase dynamic extraction (SPDE), also known as "the magic needle". In SPDE, analytes are concentrated on a 50 microm film of polydimethylsiloxane (PDMS) and activated carbon (10%) coated onto the inside wall of the stainless steel needle (5 cm) of a 2.5 ml gas tight syringe. When SPDE is used for headspace sampling (HS-SPDE), a fixed volume of the headspace of the sample under investigation is sucked up an appropriate number of times with the gas tight syringe and an analyte amount suitable for a reliable GC or GC-MS analysis accumulates in the polymer coating the needle wall. This article describes the preliminary results of both a study on the optimisation of sampling parameters conditioning HS-SPDE recovery, through the analysis of a standard mixture of highly volatile compounds (beta-pinene, isoamyl acetate and linalool) and of the HS-SPDE-GC-MS analyses of aromatic plants and food matrices. This study shows that HS-SPDE is a successful technique for HS-sampling with high concentration capability, good repeatability and intermediate precision, also when it is compared to HS-SPME.
Dynamic full field OCT: metabolic contrast at subcellular level (Conference Presentation)
NASA Astrophysics Data System (ADS)
Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, Claude A.
2016-03-01
Cells shape or density is an important marker of tissues pathology. However, individual cells are difficult to observe in thick tissues frequently presenting highly scattering structures such as collagen fibers. Endogenous techniques struggle to image cells in these conditions. Moreover, exogenous contrast agents like dyes, fluorophores or nanoparticles cannot always be used, especially if non-invasive imaging is required. Scatterers motion happening down to the millisecond scale, much faster than the still and highly scattering structures (global motion of the tissue), allowed us to develop a new approach based on the time dependence of the FF-OCT signals. This method reveals hidden cells after a spatiotemporal analysis based on singular value decomposition and wavelet analysis concepts. It does also give us access to local dynamics of imaged scatterers. This dynamic information is linked with the local metabolic activity that drives these scatterers. Our technique can explore subcellular scales with micrometric resolution and dynamics ranging from the millisecond to seconds. By this mean we studied a wide range of tissues, animal and human in both normal and pathological conditions (cancer, ischemia, osmotic shock…) in different organs such as liver, kidney, and brain among others. Different cells, undetectable with FF-OCT, were identified (erythrocytes, hepatocytes…). Different scatterers clusters express different characteristic times and thus can be related to different mechanisms that we identify with metabolic functions. We are confident that the D-FFOCT, by accessing to a new spatiotemporal metabolic contrast, will be a leading technique on tissue imaging and for better medical diagnosis.
Towards a Certified Lightweight Array Bound Checker for Java Bytecode
NASA Technical Reports Server (NTRS)
Pichardie, David
2009-01-01
Dynamic array bound checks are crucial elements for the security of a Java Virtual Machines. These dynamic checks are however expensive and several static analysis techniques have been proposed to eliminate explicit bounds checks. Such analyses require advanced numerical and symbolic manipulations that 1) penalize bytecode loading or dynamic compilation, 2) complexify the trusted computing base. Following the Foundational Proof Carrying Code methodology, our goal is to provide a lightweight bytecode verifier for eliminating array bound checks that is both efficient and trustable. In this work, we define a generic relational program analysis for an imperative, stackoriented byte code language with procedures, arrays and global variables and instantiate it with a relational abstract domain as polyhedra. The analysis has automatic inference of loop invariants and method pre-/post-conditions, and efficient checking of analysis results by a simple checker. Invariants, which can be large, can be specialized for proving a safety policy using an automatic pruning technique which reduces their size. The result of the analysis can be checked efficiently by annotating the program with parts of the invariant together with certificates of polyhedral inclusions. The resulting checker is sufficiently simple to be entirely certified within the Coq proof assistant for a simple fragment of the Java bytecode language. During the talk, we will also report on our ongoing effort to scale this approach for the full sequential JVM.
CSM solutions of rotating blade dynamics using integrating matrices
NASA Technical Reports Server (NTRS)
Lakin, William D.
1992-01-01
The dynamic behavior of flexible rotating beams continues to receive considerable research attention as it constitutes a fundamental problem in applied mechanics. Further, beams comprise parts of many rotating structures of engineering significance. A topic of particular interest at the present time involves the development of techniques for obtaining the behavior in both space and time of a rotor acted upon by a simple airload loading. Most current work on problems of this type use solution techniques based on normal modes. It is certainly true that normal modes cannot be disregarded, as knowledge of natural blade frequencies is always important. However, the present work has considered a computational structural mechanics (CSM) approach to rotor blade dynamics problems in which the physical properties of the rotor blade provide input for a direct numerical solution of the relevant boundary-and-initial-value problem. Analysis of the dynamics of a given rotor system may require solution of the governing equations over a long time interval corresponding to many revolutions of the loaded flexible blade. For this reason, most of the common techniques in computational mechanics, which treat the space-time behavior concurrently, cannot be applied to the rotor dynamics problem without a large expenditure of computational resources. By contrast, the integrating matrix technique of computational mechanics has the ability to consistently incorporate boundary conditions and 'remove' dependence on a space variable. For problems involving both space and time, this feature of the integrating matrix approach thus can generate a 'splitting' which forms the basis of an efficient CSM method for numerical solution of rotor dynamics problems.
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
NASA Astrophysics Data System (ADS)
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; Lane, J. Matthew D.
2018-05-01
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; ...
2018-05-04
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael
2017-04-15
Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan
2009-01-01
The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.
The dynamic volume changes of polymerising polymethyl methacrylate bone cement.
Muller, Scott D; Green, Sarah M; McCaskie, Andrew W
2002-12-01
The Swedish hip register found an increased risk of early revision of vacuum-mixed cemented total hip replacements. The influence of cement mixing technique on the dynamic volume change in polymerising PMMA is not well understood and may be relevant to this observation. Applying Archimedes' principle, we have investigated the dynamic volume changes in polymerising cement and determined the influence of mixing technique. All specimens showed an overall volume reduction: hand-mixed 3.4% and vacuum-mixed 6.0%. Regression analysis of sectional porosity and volume reduction showed a highly significant relationship. Hand-mixed porous cement showed a transient volume increase before solidification. However, vacuum-mixed cement showed a progressive volume reduction throughout polymerisation. Transient expansion of porous cement occurs at the critical time of micro-interlock formation, possibly improving fixation. Conversely, progressive volume reduction of vacuum-mixed cement throughout the formation of interlock may damage fixation. Stable fixation of vacuum-mixed cement may depend on additional techniques to offset the altered volumetric behaviour of vacuum-mixed cement.
Rizkalla, Amin S; Jones, Derek W
2004-02-01
The purpose of this study was to evaluate and compare the indentation fracture toughness, true hardness and dynamic elastic moduli for 14 commercial dental porcelain materials. The specimens were fired according to manufacturer instructions. The density of the specimens (n=3) was measured by means of the water displacement technique. Dynamic Young's shear and bulk moduli and Poisson's ratio (n=3) were measured using a non-destructive ultrasonic technique using 10 MHz lithium niobate crystals. The true hardness (n=3) was measured using a Knoop indenter and the fracture toughness (n=3) was determined using a Vickers indenter and a Tukon hardness tester. Statistical analysis of the data was conducted using ANOVA and a Student-Newman-Keuls (SNK) rank order multiple comparative test. The SNK rank test analysis for the mean dynamic Young's modulus and fracture toughness was able to separate 14 dental porcelain materials into seven and nine groups, respectively, at p=0.05. The elastic moduli, true hardness and indentation fracture toughness for opaque porcelains were significantly higher than incisal; and body materials at p=0.05. The indentation fracture toughness and the ultrasonic test methods exhibit lower coefficient of variation compared to conventional methods and have considerable advantage for ceramic dental materials in that only small specimens are required to produce an acceptable number of data for statistical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hramov, Alexander E.; Saratov State Technical University, Politechnicheskaja str., 77, Saratov 410054; Koronovskii, Alexey A.
2012-08-15
The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum ofmore » the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.« less
NASA Astrophysics Data System (ADS)
Fan, X.; Chen, L.; Ma, Z.
2010-12-01
Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.
Miyazaki, Ryoji; Myougo, Naomi; Mori, Hiroyuki; Akiyama, Yoshinori
2018-01-12
Many proteins form multimeric complexes that play crucial roles in various cellular processes. Studying how proteins are correctly folded and assembled into such complexes in a living cell is important for understanding the physiological roles and the qualitative and quantitative regulation of the complex. However, few methods are suitable for analyzing these rapidly occurring processes. Site-directed in vivo photo-cross-linking is an elegant technique that enables analysis of protein-protein interactions in living cells with high spatial resolution. However, the conventional site-directed in vivo photo-cross-linking method is unsuitable for analyzing dynamic processes. Here, by combining an improved site-directed in vivo photo-cross-linking technique with a pulse-chase approach, we developed a new method that can analyze the folding and assembly of a newly synthesized protein with high spatiotemporal resolution. We demonstrate that this method, named the pulse-chase and in vivo photo-cross-linking experiment (PiXie), enables the kinetic analysis of the formation of an Escherichia coli periplasmic (soluble) protein complex (PhoA). We also used our new technique to investigate assembly/folding processes of two membrane complexes (SecD-SecF in the inner membrane and LptD-LptE in the outer membrane), which provided new insights into the biogenesis of these complexes. Our PiXie method permits analysis of the dynamic behavior of various proteins and enables examination of protein-protein interactions at the level of individual amino acid residues. We anticipate that our new technique will have valuable utility for studies of protein dynamics in many organisms. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Efficient computational nonlinear dynamic analysis using modal modification response technique
NASA Astrophysics Data System (ADS)
Marinone, Timothy; Avitabile, Peter; Foley, Jason; Wolfson, Janet
2012-08-01
Generally, structural systems contain nonlinear characteristics in many cases. These nonlinear systems require significant computational resources for solution of the equations of motion. Much of the model, however, is linear where the nonlinearity results from discrete local elements connecting different components together. Using a component mode synthesis approach, a nonlinear model can be developed by interconnecting these linear components with highly nonlinear connection elements. The approach presented in this paper, the Modal Modification Response Technique (MMRT), is a very efficient technique that has been created to address this specific class of nonlinear problem. By utilizing a Structural Dynamics Modification (SDM) approach in conjunction with mode superposition, a significantly smaller set of matrices are required for use in the direct integration of the equations of motion. The approach will be compared to traditional analytical approaches to make evident the usefulness of the technique for a variety of test cases.
Localized analysis of paint-coat drying using dynamic speckle interferometry
NASA Astrophysics Data System (ADS)
Sierra-Sosa, Daniel; Tebaldi, Myrian; Grumel, Eduardo; Rabal, Hector; Elmaghraby, Adel
2018-07-01
The paint-coating is part of several industrial processes, including the automotive industry, architectural coatings, machinery and appliances. These paint-coatings must comply with high quality standards, for this reason evaluation techniques from paint-coatings are in constant development. One important factor from the paint-coating process is the drying, as it has influence on the quality of final results. In this work we present an assessment technique based on the optical dynamic speckle interferometry, this technique allows for the temporal activity evaluation of the paint-coating drying process, providing localized information from drying. This localized information is relevant in order to address the drying homogeneity, optimal drying, and quality control. The technique relies in the definition of a new temporal history of the speckle patterns to obtain the local activity; this information is then clustered to provide a convenient indicative of different drying process stages. The experimental results presented were validated using the gravimetric drying curves
Parameter Estimation in Atmospheric Data Sets
NASA Technical Reports Server (NTRS)
Wenig, Mark; Colarco, Peter
2004-01-01
In this study the structure tensor technique is used to estimate dynamical parameters in atmospheric data sets. The structure tensor is a common tool for estimating motion in image sequences. This technique can be extended to estimate other dynamical parameters such as diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. As a test scenario this technique will be applied to modeled dust data. In this case vertically integrated dust concentrations were used to derive wind information. Those results can be compared to the wind vector fields which served as input to the model. Based on this analysis, a method to compute atmospheric data parameter fields will be presented. .
A controls engineering approach for analyzing airplane input-output characteristics
NASA Technical Reports Server (NTRS)
Arbuckle, P. Douglas
1991-01-01
An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.
ON IDENTIFIABILITY OF NONLINEAR ODE MODELS AND APPLICATIONS IN VIRAL DYNAMICS
MIAO, HONGYU; XIA, XIAOHUA; PERELSON, ALAN S.; WU, HULIN
2011-01-01
Ordinary differential equations (ODE) are a powerful tool for modeling dynamic processes with wide applications in a variety of scientific fields. Over the last 2 decades, ODEs have also emerged as a prevailing tool in various biomedical research fields, especially in infectious disease modeling. In practice, it is important and necessary to determine unknown parameters in ODE models based on experimental data. Identifiability analysis is the first step in determing unknown parameters in ODE models and such analysis techniques for nonlinear ODE models are still under development. In this article, we review identifiability analysis methodologies for nonlinear ODE models developed in the past one to two decades, including structural identifiability analysis, practical identifiability analysis and sensitivity-based identifiability analysis. Some advanced topics and ongoing research are also briefly reviewed. Finally, some examples from modeling viral dynamics of HIV, influenza and hepatitis viruses are given to illustrate how to apply these identifiability analysis methods in practice. PMID:21785515
Numerical solution of quadratic matrix equations for free vibration analysis of structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1975-01-01
This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.
Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite
NASA Technical Reports Server (NTRS)
Gullahorn, G. E.
1984-01-01
The effects of a tethered satellite system's internal dynamics on the subsatellite were calculated including both overall motions (libration and attitude oscillations) and internal tether oscillations. The SKYHOOK tether simulation program was modified to operate with atmospheric density variations and to output quantities of interest. Techniques and software for analyzing the results were developed including noise spectral analysis. A program was begun for computing a stable configuration of a tether system subject to air drag. These configurations will be of use as initial conditions for SKYHOOK and, through linearized analysis, directly for stability and dynamical studies. A case study in which the subsatellite traverses an atmospheric density enhancement confirmed some theoretical calculations, and pointed out some aspects of the interaction with the tether system dynamics.
Chemical Dynamics of nano-Aluminum and Iodine Based Oxidizers
NASA Astrophysics Data System (ADS)
Little, Brian; Ridge, Claron; Overdeep, Kyle; Slizewski, Dylan; Lindsay, Michael
2017-06-01
As observed in previous studies of nanoenergetic powder composites, micro/nano-structural features such as particle morphology and/or reactant spatial distance are expected to strongly influence properties that govern the combustion behavior of energetic materials (EM). In this study, highly reactive composites containing crystalline iodine (V) oxide or iodate salts with nano-sized aluminum (nAl) were blended by two different processing techniques and then collected as a powder for characterization. Physiochemical techniques such as thermal gravimetric analysis, calorimetry, X-ray diffraction, electron microscopy, high speed photography, pressure profile analysis, temperature programmed reactions, and spectroscopy were employed to characterize these EM with emphasis on correlating the chemical reactivity with inherent structural features and variations in stoichiometry. This work is a continuation of efforts to probe the chemical dynamics of nAl-iodine based composites.
Youker, Robert T.; Teng, Haibing
2014-01-01
Abstract. Quantitative analysis of protein complex stoichiometries and mobilities are critical for elucidating the mechanisms that regulate cellular pathways. Fluorescence fluctuation spectroscopy (FFS) techniques can measure protein dynamics, such as diffusion coefficients and formation of complexes, with extraordinary precision and sensitivity. Complete calibration and characterization of the microscope instrument is necessary in order to avoid artifacts during data acquisition and to capitalize on the full capabilities of FFS techniques. We provide an overview of the theory behind FFS techniques, discuss calibration procedures, provide protocols, and give practical considerations for performing FFS experiments. One important parameter recovered from FFS measurements is the relative molecular brightness that can correlate with oligomerization. Three methods for measuring molecular brightness (fluorescence correlation spectroscopy, photon-counting histogram, and number and brightness analysis) recover similar values when measuring samples under ideal conditions in vitro. However, examples are given illustrating that these different methods used for calculating molecular brightness of fluorescent molecules in cells are not always equivalent. Methods relying on spot measurements are more prone to bleaching and movement artifacts that can lead to underestimation of brightness values. We advocate for the use of multiple FFS techniques to study molecular brightnesses to overcome and compliment limitations of individual techniques. PMID:25260867
Multimodal biophotonic workstation for live cell analysis.
Esseling, Michael; Kemper, Björn; Antkowiak, Maciej; Stevenson, David J; Chaudet, Lionel; Neil, Mark A A; French, Paul W; von Bally, Gert; Dholakia, Kishan; Denz, Cornelia
2012-01-01
A reliable description and quantification of the complex physiology and reactions of living cells requires a multimodal analysis with various measurement techniques. We have investigated the integration of different techniques into a biophotonic workstation that can provide biological researchers with these capabilities. The combination of a micromanipulation tool with three different imaging principles is accomplished in a single inverted microscope which makes the results from all the techniques directly comparable. Chinese Hamster Ovary (CHO) cells were manipulated by optical tweezers while the feedback was directly analyzed by fluorescence lifetime imaging, digital holographic microscopy and dynamic phase-contrast microscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sheppard, Adrian; Latham, Shane; Middleton, Jill; Kingston, Andrew; Myers, Glenn; Varslot, Trond; Fogden, Andrew; Sawkins, Tim; Cruikshank, Ron; Saadatfar, Mohammad; Francois, Nicolas; Arns, Christoph; Senden, Tim
2014-04-01
This paper reports on recent advances at the micro-computed tomography facility at the Australian National University. Since 2000 this facility has been a significant centre for developments in imaging hardware and associated software for image reconstruction, image analysis and image-based modelling. In 2010 a new instrument was constructed that utilises theoretically-exact image reconstruction based on helical scanning trajectories, allowing higher cone angles and thus better utilisation of the available X-ray flux. We discuss the technical hurdles that needed to be overcome to allow imaging with cone angles in excess of 60°. We also present dynamic tomography algorithms that enable the changes between one moment and the next to be reconstructed from a sparse set of projections, allowing higher speed imaging of time-varying samples. Researchers at the facility have also created a sizeable distributed-memory image analysis toolkit with capabilities ranging from tomographic image reconstruction to 3D shape characterisation. We show results from image registration and present some of the new imaging and experimental techniques that it enables. Finally, we discuss the crucial question of image segmentation and evaluate some recently proposed techniques for automated segmentation.
An investigation into NVC characteristics of vehicle behaviour using modal analysis
NASA Astrophysics Data System (ADS)
Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini
2017-03-01
NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.
Proceedings of Damping 1993, volume 3
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93, held 24-26 February 1993 in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; Marine structures; and commercial products; defense applications; and payoffs of vibration suppression.
Proceedings of Damping 1993, volume 1
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93 held 24-26 February, 1993, in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; application to aircraft; space structures; marine structures; commercial products; defense applications; and payoffs of vibration suppression.
Ramirez-San-Juan, J C; Mendez-Aguilar, E; Salazar-Hermenegildo, N; Fuentes-Garcia, A; Ramos-Garcia, R; Choi, B
2013-01-01
Laser Speckle Contrast Imaging (LSCI) is an optical technique used to generate blood flow maps with high spatial and temporal resolution. It is well known that in LSCI, the speckle size must exceed the Nyquist criterion to maximize the speckle's pattern contrast. In this work, we study experimentally the effect of speckle-pixel size ratio not only in dynamic speckle contrast, but also on the calculation of the relative flow speed for temporal and spatial analysis. Our data suggest that the temporal LSCI algorithm is more accurate at assessing the relative changes in flow speed than the spatial algorithm.
Design techniques for low-voltage analog integrated circuits
NASA Astrophysics Data System (ADS)
Rakús, Matej; Stopjaková, Viera; Arbet, Daniel
2017-08-01
In this paper, a review and analysis of different design techniques for (ultra) low-voltage integrated circuits (IC) are performed. This analysis shows that the most suitable design methods for low-voltage analog IC design in a standard CMOS process include techniques using bulk-driven MOS transistors, dynamic threshold MOS transistors and MOS transistors operating in weak or moderate inversion regions. The main advantage of such techniques is that there is no need for any modification of standard CMOS structure or process. Basic circuit building blocks like differential amplifiers or current mirrors designed using these approaches are able to operate with the power supply voltage of 600 mV (or even lower), which is the key feature towards integrated systems for modern portable applications.
Development and evaluation of the impulse transfer function technique
NASA Technical Reports Server (NTRS)
Mantus, M.
1972-01-01
The development of the test/analysis technique known as the impulse transfer function (ITF) method is discussed. This technique, when implemented with proper data processing systems, should become a valuable supplement to conventional dynamic testing and analysis procedures that will be used in the space shuttle development program. The method can relieve many of the problems associated with extensive and costly testing of the shuttle for transient loading conditions. In addition, the time history information derived from impulse testing has the potential for being used to determine modal data for the structure under investigation. The technique could be very useful in determining the time-varying modal characteristics of structures subjected to thermal transients, where conventional mode surveys are difficult to perform.
High speed digital holographic interferometry for hypersonic flow visualization
NASA Astrophysics Data System (ADS)
Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.
2013-06-01
Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.
Computational Fluid Dynamics Analysis Success Stories of X-Plane Design to Flight Test
NASA Technical Reports Server (NTRS)
Cosentino, Gary B.
2008-01-01
Examples of the design and flight test of three true X-planes are described, particularly X-plane design techniques that relied heavily on computational fluid dynamics(CFD) analysis. Three examples are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and the X-48B Blended Wing Body Demonstrator Aircraft. An overview is presented of the uses of CFD analysis, comparison and contrast with wind tunnel testing, and information derived from CFD analysis that directly related to successful flight test. Lessons learned on the proper and improper application of CFD analysis are presented. Highlights of the flight-test results of the three example X-planes are presented. This report discusses developing an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the areas in which CFD analysis does and does not perform well during this process is presented. How wind tunnel testing complements, calibrates, and verifies CFD analysis is discussed. Lessons learned revealing circumstances under which CFD analysis results can be misleading are given. Strengths and weaknesses of the various flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed.
NASA Astrophysics Data System (ADS)
Uritskaya, Olga Y.
2005-05-01
Results of fractal stability analysis of daily exchange rate fluctuations of more than 30 floating currencies for a 10-year period are presented. It is shown for the first time that small- and large-scale dynamical instabilities of national monetary systems correlate with deviations of the detrended fluctuation analysis (DFA) exponent from the value 1.5 predicted by the efficient market hypothesis. The observed dependence is used for classification of long-term stability of floating exchange rates as well as for revealing various forms of distortion of stable currency dynamics prior to large-scale crises. A normal range of DFA exponents consistent with crisis-free long-term exchange rate fluctuations is determined, and several typical scenarios of unstable currency dynamics with DFA exponents fluctuating beyond the normal range are identified. It is shown that monetary crashes are usually preceded by prolonged periods of abnormal (decreased or increased) DFA exponent, with the after-crash exponent tending to the value 1.5 indicating a more reliable exchange rate dynamics. Statistically significant regression relations (R=0.99, p<0.01) between duration and magnitude of currency crises and the degree of distortion of monofractal patterns of exchange rate dynamics are found. It is demonstrated that the parameters of these relations characterizing small- and large-scale crises are nearly equal, which implies a common instability mechanism underlying these events. The obtained dependences have been used as a basic ingredient of a forecasting technique which provided correct in-sample predictions of monetary crisis magnitude and duration over various time scales. The developed technique can be recommended for real-time monitoring of dynamical stability of floating exchange rate systems and creating advanced early-warning-system models for currency crisis prevention.
Integrated dynamic analysis simulation of space stations with controllable solar array
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.
On the coherency of dynamic load estimates for vehicles on flexible structures
NASA Astrophysics Data System (ADS)
Mitra, Mainak; Gordon, Timothy
2014-05-01
This paper develops a novel form of a well-known signal processing technique, so as to be applicable to the interaction between a heavy truck and a supporting bridge structure. Motivated by the problem of structural health monitoring of bridges, a new modal coherency function is defined. This relates the input action of moving wheel loads to the dynamic response of the bridge, including the effects of unevenness of the road surface and the vertical dynamics of the truck suspension. The analysis here is specifically aimed at future experimental testing - the validation of axle load estimators obtained from sensors on the truck. It is applicable even when no independent 'ground truth' for the dynamic loads is available. The approach can be more widely used in the analysis of dynamic interactions involving suspended moving loads on deformable structures, e.g. for structural vibrations due to high-speed trains.
Advances in numerical and applied mathematics
NASA Technical Reports Server (NTRS)
South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)
1986-01-01
This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.
3D time-lapse analysis of Rab11/FIP5 complex: spatiotemporal dynamics during apical lumen formation.
Mangan, Anthony; Prekeris, Rytis
2015-01-01
Fluorescent imaging of fixed cells grown in two-dimensional (2D) cultures is one of the most widely used techniques for observing protein localization and distribution within cells. Although this technique can also be applied to polarized epithelial cells that form three-dimensional (3D) cysts when grown in a Matrigel matrix suspension, there are still significant limitations in imaging cells fixed at a particular point in time. Here, we describe the use of 3D time-lapse imaging of live cells to observe the dynamics of apical membrane initiation site (AMIS) formation and lumen expansion in polarized epithelial cells.
Lean and Efficient Software: Whole-Program Optimization of Executables
2015-09-30
libraries. Many levels of library interfaces—where some libraries are dynamically linked and some are provided in binary form only—significantly limit...software at build time. The opportunity: Our objective in this project is to substantially improve the performance, size, and robustness of binary ...executables by using static and dynamic binary program analysis techniques to perform whole-program optimization directly on compiled programs
NASA Technical Reports Server (NTRS)
Chin, J.; Barbero, P.
1975-01-01
The revision of an existing digital program to analyze the stability of models mounted on a two-cable mount system used in a transonic dynamics wind tunnel is presented. The program revisions and analysis of an active feedback control system to be used for controlling the free-flying models are treated.
Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.
1998-01-01
This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.
A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines
NASA Astrophysics Data System (ADS)
Pennacchi, P.; Borghesani, P.; Chatterton, S.
2015-08-01
Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system.
Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis
Steele, Joe; Bastola, Dhundy
2014-01-01
Modern sequencing and genome assembly technologies have provided a wealth of data, which will soon require an analysis by comparison for discovery. Sequence alignment, a fundamental task in bioinformatics research, may be used but with some caveats. Seminal techniques and methods from dynamic programming are proving ineffective for this work owing to their inherent computational expense when processing large amounts of sequence data. These methods are prone to giving misleading information because of genetic recombination, genetic shuffling and other inherent biological events. New approaches from information theory, frequency analysis and data compression are available and provide powerful alternatives to dynamic programming. These new methods are often preferred, as their algorithms are simpler and are not affected by synteny-related problems. In this review, we provide a detailed discussion of computational tools, which stem from alignment-free methods based on statistical analysis from word frequencies. We provide several clear examples to demonstrate applications and the interpretations over several different areas of alignment-free analysis such as base–base correlations, feature frequency profiles, compositional vectors, an improved string composition and the D2 statistic metric. Additionally, we provide detailed discussion and an example of analysis by Lempel–Ziv techniques from data compression. PMID:23904502
Stability analysis and wave dynamics of an extended hybrid traffic flow model
NASA Astrophysics Data System (ADS)
Wang, Yu-Qing; Zhou, Chao-Fan; Li, Wei-Kang; Yan, Bo-Wen; Jia, Bin; Wang, Ji-Xin
2018-02-01
The stability analysis and wave dynamic properties of an extended hybrid traffic flow model, WZY model, are intensively studied in this paper. The linear stable condition obtained by the linear stability analysis is presented. Besides, by means of analyzing Korteweg-de Vries equation, we present soliton waves in the metastable region. Moreover, the multiscale perturbation technique is applied to derive the traveling wave solution of the model. Furthermore, by means of performing Darboux transformation, the first-order and second-order doubly-periodic solutions and rational solutions are presented. It can be found that analytical solutions match well with numerical simulations.
Transonic Free-To-Roll Analysis of the F/A-18E and F-35 Configurations
NASA Technical Reports Server (NTRS)
Owens, D. Bruce; McConnell, Jeffrey K.; Brandon, Jay M.; Hall, Robert M.
2004-01-01
The free-to-roll technique is used as a tool for predicting areas of uncommanded lateral motions. Recently, the NASA/Navy/Air Force Abrupt Wing Stall Program extended the use of this technique to the transonic speed regime. Using this technique, this paper evaluates various wing configurations on the pre-production F/A-18E aircraft and the Joint Strike Fighter (F-35) aircraft. The configurations investigated include leading and trailing edge flap deflections, fences, leading edge flap gap seals, and vortex generators. These tests were conducted in the NASA Langley 16-Foot Transonic Tunnel. The analysis used a modification of a figure-of-merit developed during the Abrupt Wing Stall Program to discern configuration effects. The results showed how the figure-of-merit can be used to schedule wing flap deflections to avoid areas of uncommanded lateral motion. The analysis also used both static and dynamic wind tunnel data to provide insight into the uncommanded lateral behavior. The dynamic data was extracted from the time history data using parameter identification techniques. In general, modifications to the pre-production F/A-18E resulted in shifts in angle-of-attack where uncommanded lateral activity occurred. Sealing the gap between the inboard and outboard leading-edge flaps on the Navy version of the F-35 eliminated uncommanded lateral activity or delayed the activity to a higher angle-of-attack.
A multitechnique evaluation of topical corticosteroid treatment.
Josse, G; Rouvrais, C; Mas, A; Haftek, M; Delalleau, A; Ferraq, Y; Ossant, F; George, J; Lagarde, J M; Schmitt, A M
2009-02-01
Corticosteroids are widely prescribed for systemic or local treatment of inflammatory autoimmune disorders. Long-term therapy is associated with side effects and causes cutaneous atrophy of the epidermis and the dermis. The present study aims to evaluate with several noninvasive techniques, the skin modifications observed during corticosteroids treatment. The potential of skin mechanical measurement and ultrasound radio frequency (RF) signal analysis are proposed as new measures more closely related to the functional impairments. Thirteen young healthy women volunteers had two applications per day on one arm of topical Clobetasol propionate 0.05% for 28 days, and they were followed for 28 days more. Skin modifications were studied by high-frequency ultrasound imaging, ultrasound RF signal analysis, optical coherence tomography and by the suction test. For all the techniques, a statistically significant change is observed with treatment. Large variations, around 30%, are observed for all techniques, but less for ultrasound imaging (10%). Dermis and epidermis thickness presented stable measurements on the nontreated zone. At the end of the study, measures returned to normal. The dynamic is mainly observed within the first 14 days of treatment and within the first 14 days after its cessation. Similar dynamics of skin modification during corticosteroid treatment was observed with very different techniques. Moreover, the potential of RF ultrasound analysis and mechanical skin measurement for characterizing skin structural and functional impairments has been evaluated.
Rodríguez-Arias, Miquel Angel; Rodó, Xavier
2004-03-01
Here we describe a practical, step-by-step primer to scale-dependent correlation (SDC) analysis. The analysis of transitory processes is an important but often neglected topic in ecological studies because only a few statistical techniques appear to detect temporary features accurately enough. We introduce here the SDC analysis, a statistical and graphical method to study transitory processes at any temporal or spatial scale. SDC analysis, thanks to the combination of conventional procedures and simple well-known statistical techniques, becomes an improved time-domain analogue of wavelet analysis. We use several simple synthetic series to describe the method, a more complex example, full of transitory features, to compare SDC and wavelet analysis, and finally we analyze some selected ecological series to illustrate the methodology. The SDC analysis of time series of copepod abundances in the North Sea indicates that ENSO primarily is the main climatic driver of short-term changes in population dynamics. SDC also uncovers some long-term, unexpected features in the population. Similarly, the SDC analysis of Nicholson's blowflies data locates where the proposed models fail and provides new insights about the mechanism that drives the apparent vanishing of the population cycle during the second half of the series.
NASA Technical Reports Server (NTRS)
McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.
2012-01-01
This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.
Variable diffusion in stock market fluctuations
NASA Astrophysics Data System (ADS)
Hua, Jia-Chen; Chen, Lijian; Falcon, Liberty; McCauley, Joseph L.; Gunaratne, Gemunu H.
2015-02-01
We analyze intraday fluctuations in several stock indices to investigate the underlying stochastic processes using techniques appropriate for processes with nonstationary increments. The five most actively traded stocks each contains two time intervals during the day where the variance of increments can be fit by power law scaling in time. The fluctuations in return within these intervals follow asymptotic bi-exponential distributions. The autocorrelation function for increments vanishes rapidly, but decays slowly for absolute and squared increments. Based on these results, we propose an intraday stochastic model with linear variable diffusion coefficient as a lowest order approximation to the real dynamics of financial markets, and to test the effects of time averaging techniques typically used for financial time series analysis. We find that our model replicates major stylized facts associated with empirical financial time series. We also find that ensemble averaging techniques can be used to identify the underlying dynamics correctly, whereas time averages fail in this task. Our work indicates that ensemble average approaches will yield new insight into the study of financial markets' dynamics. Our proposed model also provides new insight into the modeling of financial markets dynamics in microscopic time scales.
The role of computerized symbolic manipulation in rotorcraft dynamics analysis
NASA Technical Reports Server (NTRS)
Crespo Da Silva, Marcelo R. M.; Hodges, Dewey H.
1986-01-01
The potential role of symbolic manipulation programs in development and solution of the governing equations for rotorcraft dynamics problems is discussed and illustrated. Nonlinear equations of motion for a helicopter rotor blade represented by a rotating beam are developed making use of the computerized symbolic manipulation program MACSYMA. The use of computerized symbolic manipulation allows the analyst to concentrate on more meaningful tasks, such as establishment of physical assumptions, without being sidetracked by the tedious and trivial details of the algebraic manipulations. Furthermore, the resulting equations can be produced, if necessary, in a format suitable for numerical solution. A perturbation-type solution for the resulting dynamical equations is shown to be possible with a combination of symbolic manipulation and standard numerical techniques. This should ultimately lead to a greater physical understanding of the behavior of the solution than is possible with purely numerical techniques. The perturbation analysis of the flapping motion of a rigid rotor blade in forward flight is presented, for illustrative purposes, via computerized symbolic manipulation with a method that bypasses Floquet theory.
[3-D echocardiography: new developments and future prospects].
Müller, Silvana; Bartel, Thomas; Pachinger, Otmar; Erbel, Raimund
2002-05-01
Due to limitations in transthoracic and occasionally transesophageal 2-D echocardiography with respect to volumetric analysis and morphologic and functional assessment in patients with congenital malformations and valvular heart disease, additional diagnostic tools have been established. In parallel with the rapid evolution in computer technology, 3-D echocardiography has grown into a well-developed technique, such as volume-rendered 3-D reconstruction, capable of displaying dynamic morphology depicting depth of the structures, their attachment, and spatial relation to the surrounding tissue. Nevertheless, the complexity of data acquisition and data processing required for adequate dynamic 3-D echocardiographic imaging and volumetric analysis does not allow to use this approach routinely. The commonly used dynamic 3-D echocardiography means off-line computer-assisted image reconstruction from a series of cross-sectional echocardiographic images using currently available transesophageal and transthoracic transducers. Alternatively, real-time 3-D echocardiography based on novel matrix, phased-array transducer technology has been introduced. Although this technique can be easily combined with any routine examination, its clinical use is limited because of a lower image quality in comparison with dynamic 3-D echocardiography. Up to now, there is no transesophageal approach available using real-time 3-D echocardiography. Recently, dynamic 3-D echocardiographic technique has matured noticeably. Beside the well-known sequential scanning, which is characterized by a fixed probe and patient in space and predetermined motion of the transducer, the freehand scanning using an electromagnetic location system has found its way to clinical environment. The main advantage of this technique is that the transducer can be freely moved by the examiner and, thus, the data set acquired within a routine examination. Also 3-D rendering and display have been developed further. In this respect, especially the "real-time rendering mode" allowing the reconstructed 3-D image to be animated and moved in space and to look at it from different perspectives has gained increasing acceptance. In valvular heart disease, reconstructive surgical treatment is aspired. 3-D echocardiographic imaging is the only technique providing "surgical views" prior to opening the heart. It is capable of distinguishing particular destructive substructures of the valves and the valvular apparatus. Especially in mitral valvular reconstruction, it is of clinical importance to achieve optimal surgical results. With respect to volumetric and mass analysis, 3-D echocardiography is more accurate and reproducible in comparison with conventional 2-D analysis. It provides data independent of geometric assumptions, what may considerably influence the results in the presence of wall motion abnormalities, especially in aneurysmatic ventricles. Volumetric analysis of the aneurysmal portion may also be helpful prior to surgical resection. 3-D echocardiography can also be recommended as a valuable additional approach to atrial septal defect (ASD), corrected transposition of the great arteries, cor triatriatum, and, within limits, to ventricular septal defect (VSD) as well. Especially with respect to ASD and VSD, the potential significance of 3-D echocardiography prior to device closure is emphasized. At present, its additional information in decision-making and the increasing number of clinical cases that can be addressed and answered already justify the clinical use of this technique.
Application of largest Lyapunov exponent analysis on the studies of dynamics under external forces
NASA Astrophysics Data System (ADS)
Odavić, Jovan; Mali, Petar; Tekić, Jasmina; Pantić, Milan; Pavkov-Hrvojević, Milica
2017-06-01
Dynamics of driven dissipative Frenkel-Kontorova model is examined by using largest Lyapunov exponent computational technique. Obtained results show that besides the usual way where behavior of the system in the presence of external forces is studied by analyzing its dynamical response function, the largest Lyapunov exponent analysis can represent a very convenient tool to examine system dynamics. In the dc driven systems, the critical depinning force for particular structure could be estimated by computing the largest Lyapunov exponent. In the dc+ac driven systems, if the substrate potential is the standard sinusoidal one, calculation of the largest Lyapunov exponent offers a more sensitive way to detect the presence of Shapiro steps. When the amplitude of the ac force is varied the behavior of the largest Lyapunov exponent in the pinned regime completely reflects the behavior of Shapiro steps and the critical depinning force, in particular, it represents the mirror image of the amplitude dependence of critical depinning force. This points out an advantage of this technique since by calculating the largest Lyapunov exponent in the pinned regime we can get an insight into the dynamics of the system when driving forces are applied. Additionally, the system is shown to be not chaotic even in the case of incommensurate structures and large amplitudes of external force, which is a consequence of overdampness of the model and the Middleton's no passing rule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atzeni, Simone; Ahn, Dong; Gopalakrishnan, Ganesh
2017-01-12
Archer is built on top of the LLVM/Clang compilers that support OpenMP. It applies static and dynamic analysis techniques to detect data races in OpenMP programs generating a very low runtime and memory overhead. Static analyses identify data race free OpenMP regions and exclude them from runtime analysis, which is performed by ThreadSanitizer included in LLVM/Clang.
ProteinAC: a frequency domain technique for analyzing protein dynamics
NASA Astrophysics Data System (ADS)
Bozkurt Varolgunes, Yasemin; Demir, Alper
2018-03-01
It is widely believed that the interactions of proteins with ligands and other proteins are determined by their dynamic characteristics as opposed to only static, time-invariant processes. We propose a novel computational technique, called ProteinAC (PAC), that can be used to analyze small scale functional protein motions as well as interactions with ligands directly in the frequency domain. PAC was inspired by a frequency domain analysis technique that is widely used in electronic circuit design, and can be applied to both coarse-grained and all-atom models. It can be considered as a generalization of previously proposed static perturbation-response methods, where the frequency of the perturbation becomes the key. We discuss the precise relationship of PAC to static perturbation-response schemes. We show that the frequency of the perturbation may be an important factor in protein dynamics. Perturbations at different frequencies may result in completely different response behavior while magnitude and direction are kept constant. Furthermore, we introduce several novel frequency dependent metrics that can be computed via PAC in order to characterize response behavior. We present results for the ferric binding protein that demonstrate the potential utility of the proposed techniques.
Experimental comparison of manufacturing techniques of toughened and nanoreinforced polyamides
NASA Astrophysics Data System (ADS)
Siengchin, S.; Bergmann, C.; Dangtungee, R.
2011-11-01
Composites consisting of polyamide-6 (PA-6), nitrile rubber (NBR), and sodium fluorohectorite (FH) or alumina silicate (Sungloss; SG) were produced by different techniques with latex precompounding. Their tensile and thermomechanical properties were determined by using tensile tests and a dynamic-mechanical analysis, performed at various temperatures. The PA-6/NBR composite systems produced by the direct melt compounding outperformed those obtained by using the masterbatch technique with respect to the strength and ductility, but the latter ones had a higher storage modulus.
Tools for Large-Scale Mobile Malware Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierma, Michael
Analyzing mobile applications for malicious behavior is an important area of re- search, and is made di cult, in part, by the increasingly large number of appli- cations available for the major operating systems. There are currently over 1.2 million apps available in both the Google Play and Apple App stores (the respec- tive o cial marketplaces for the Android and iOS operating systems)[1, 2]. Our research provides two large-scale analysis tools to aid in the detection and analysis of mobile malware. The rst tool we present, Andlantis, is a scalable dynamic analysis system capa- ble of processing over 3000more » Android applications per hour. Traditionally, Android dynamic analysis techniques have been relatively limited in scale due to the compu- tational resources required to emulate the full Android system to achieve accurate execution. Andlantis is the most scalable Android dynamic analysis framework to date, and is able to collect valuable forensic data, which helps reverse-engineers and malware researchers identify and understand anomalous application behavior. We discuss the results of running 1261 malware samples through the system, and provide examples of malware analysis performed with the resulting data. While techniques exist to perform static analysis on a large number of appli- cations, large-scale analysis of iOS applications has been relatively small scale due to the closed nature of the iOS ecosystem, and the di culty of acquiring appli- cations for analysis. The second tool we present, iClone, addresses the challenges associated with iOS research in order to detect application clones within a dataset of over 20,000 iOS applications.« less
NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.
NASA Astrophysics Data System (ADS)
Tolstikov, Vladimir V.
Analysis of the metabolome with coverage of all of the possibly detectable components in the sample, rather than analysis of each individual metabolite at a given time, can be accomplished by metabolic analysis. Targeted and/or nontargeted approaches are applied as needed for particular experiments. Monitoring hundreds or more metabolites at a given time requires high-throughput and high-end techniques that enable screening for relative changes in, rather than absolute concentrations of, compounds within a wide dynamic range. Most of the analytical techniques useful for these purposes use GC or HPLC/UPLC separation modules coupled to a fast and accurate mass spectrometer. GC separations require chemical modification (derivatization) before analysis, and work efficiently for the small molecules. HPLC separations are better suited for the analysis of labile and nonvolatile polar and nonpolar compounds in their native form. Direct infusion and NMR-based techniques are mostly used for fingerprinting and snap phenotyping, where applicable. Discovery and validation of metabolic biomarkers are exciting and promising opportunities offered by metabolic analysis applied to biological and biomedical experiments. We have demonstrated that GC-TOF-MS, HPLC/UPLC-RP-MS and HILIC-LC-MS techniques used for metabolic analysis offer sufficient metabolome mapping providing researchers with confident data for subsequent multivariate analysis and data mining.
NASA Astrophysics Data System (ADS)
Larsen, J. D.; Schaap, M. G.
2013-12-01
Recent advances in computing technology and experimental techniques have made it possible to observe and characterize fluid dynamics at the micro-scale. Many computational methods exist that can adequately simulate fluid flow in porous media. Lattice Boltzmann methods provide the distinct advantage of tracking particles at the microscopic level and returning macroscopic observations. While experimental methods can accurately measure macroscopic fluid dynamics, computational efforts can be used to predict and gain insight into fluid dynamics by utilizing thin sections or computed micro-tomography (CMT) images of core sections. Although substantial effort have been made to advance non-invasive imaging methods such as CMT, fluid dynamics simulations, and microscale analysis, a true three dimensional image segmentation technique has not been developed until recently. Many competing segmentation techniques are utilized in industry and research settings with varying results. In this study lattice Boltzmann method is used to simulate stokes flow in a macroporous soil column. Two dimensional CMT images were used to reconstruct a three dimensional representation of the original sample. Six competing segmentation standards were used to binarize the CMT volumes which provide distinction between solid phase and pore space. The permeability of the reconstructed samples was calculated, with Darcy's Law, from lattice Boltzmann simulations of fluid flow in the samples. We compare simulated permeability from differing segmentation algorithms to experimental findings.
The NASTRAN theoretical manual
NASA Technical Reports Server (NTRS)
1981-01-01
Designed to accommodate additions and modifications, this commentary on NASTRAN describes the problem solving capabilities of the program in a narrative fashion and presents developments of the analytical and numerical procedures that underlie the program. Seventeen major sections and numerous subsections cover; the organizational aspects of the program, utility matrix routines, static structural analysis, heat transfer, dynamic structural analysis, computer graphics, special structural modeling techniques, error analysis, interaction between structures and fluids, and aeroelastic analysis.
Satellite Dynamic Damping via Active Force Control Augmentation
NASA Astrophysics Data System (ADS)
Varatharajoo, Renuganth
2012-07-01
An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC technique. Keywords: Satellite, Dynamic Damping, Attitude Control, AFC Technique,
Sandra, Koen; Moshir, Mahan; D'hondt, Filip; Verleysen, Katleen; Kas, Koen; Sandra, Pat
2008-04-15
Sample complexity and dynamic range constitute enormous challenges in proteome analysis. The back-end technology in typical proteomics platforms, namely mass spectrometry (MS), can only tolerate a certain complexity, has a limited dynamic range per spectrum and is very sensitive towards ion suppression. Therefore, component overlap has to be minimized for successful mass spectrometric analysis and subsequent protein identification and quantification. The present review describes the advances that have been made in liquid-based separation techniques with focus on the recent developments to boost the resolving power. The review is divided in two parts; the first part deals with unidimensional liquid chromatography and the second part with bi- and multidimensional liquid-based separation techniques. Part 1 mainly focuses on reversed-phase HPLC due to the fact that it is and will, in the near future, remain the technique of choice to be hyphenated with MS. The impact of increasing the column length, decreasing the particle diameter, replacing the traditional packed beds by monolithics, amongst others, is described. The review is complemented with data obtained in the laboratories of the authors.
Beam position monitor engineering
NASA Astrophysics Data System (ADS)
Smith, Stephen R.
1997-01-01
The design of beam position monitors often involves challenging system design choices. Position transducers must be robust, accurate, and generate adequate position signal without unduly disturbing the beam. Electronics must be reliable and affordable, usually while meeting tough requirements on precision, accuracy, and dynamic range. These requirements may be difficult to achieve simultaneously, leading the designer into interesting opportunities for optimization or compromise. Some useful techniques and tools are shown. Both finite element analysis and analytic techniques will be used to investigate quasi-static aspects of electromagnetic fields such as the impedance of and the coupling of beam to striplines or buttons. Finite-element tools will be used to understand dynamic aspects of the electromagnetic fields of beams, such as wake fields and transmission-line and cavity effects in vacuum-to-air feedthroughs. Mathematical modeling of electrical signals through a processing chain will be demonstrated, in particular to illuminate areas where neither a pure time-domain nor a pure frequency-domain analysis is obviously advantageous. Emphasis will be on calculational techniques, in particular on using both time domain and frequency domain approaches to the applicable parts of interesting problems.
Proceedings of Damping 1993, volume 2
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93, held 24-26 Feb. 1993 in San Francisco. The subjects included the following: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; marine structures; and commercial products; defense applications; and payoffs of vibration suppression.
Application of a novel new multispectral nanoparticle tracking technique
NASA Astrophysics Data System (ADS)
McElfresh, Cameron; Harrington, Tyler; Vecchio, Kenneth S.
2018-06-01
Fast, reliable, and accurate particle size analysis techniques must meet the demands of evolving industrial and academic research in areas of functionalized nanoparticle synthesis, advanced materials development, and other nanoscale enabled technologies. In this study a new multispectral particle tracking analysis (m-PTA) technique enabled by the ViewSizer™ 3000 (MANTA Instruments, USA) was evaluated using solutions of monomodal and multimodal gold and polystyrene latex nanoparticles, as well as a spark eroded polydisperse 316L stainless steel nanopowder, and large (non-Brownian) borosilicate particles. It was found that m-PTA performed comparably to the DLS in evaluation of monomodal particle size distributions. When measuring bimodal, trimodal and polydisperse solutions, the m-PTA technique overwhelmingly outperformed traditional dynamic light scattering (DLS) in both peak detection and relative particle concentration analysis. It was also observed that the m-PTA technique is less susceptible to large particle overexpression errors. The ViewSizer™ 3000 was also found to be successful in accurately evaluating sizes and concentrations of monomodal and bimodal sinking borosilicate particles.
Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente
2016-05-01
Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.
Musical structure analysis using similarity matrix and dynamic programming
NASA Astrophysics Data System (ADS)
Shiu, Yu; Jeong, Hong; Kuo, C.-C. Jay
2005-10-01
Automatic music segmentation and structure analysis from audio waveforms based on a three-level hierarchy is examined in this research, where the three-level hierarchy includes notes, measures and parts. The pitch class profile (PCP) feature is first extracted at the note level. Then, a similarity matrix is constructed at the measure level, where a dynamic time warping (DTW) technique is used to enhance the similarity computation by taking the temporal distortion of similar audio segments into account. By processing the similarity matrix, we can obtain a coarse-grain music segmentation result. Finally, dynamic programming is applied to the coarse-grain segments so that a song can be decomposed into several major parts such as intro, verse, chorus, bridge and outro. The performance of the proposed music structure analysis system is demonstrated for pop and rock music.
Fire-protection research for energy technology: Fy 80 year end report
NASA Astrophysics Data System (ADS)
Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.
1981-05-01
This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.
A Proposed Data Fusion Architecture for Micro-Zone Analysis and Data Mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin McCarthy; Milos Manic
Data Fusion requires the ability to combine or “fuse” date from multiple data sources. Time Series Analysis is a data mining technique used to predict future values from a data set based upon past values. Unlike other data mining techniques, however, Time Series places special emphasis on periodicity and how seasonal and other time-based factors tend to affect trends over time. One of the difficulties encountered in developing generic time series techniques is the wide variability of the data sets available for analysis. This presents challenges all the way from the data gathering stage to results presentation. This paper presentsmore » an architecture designed and used to facilitate the collection of disparate data sets well suited to Time Series analysis as well as other predictive data mining techniques. Results show this architecture provides a flexible, dynamic framework for the capture and storage of a myriad of dissimilar data sets and can serve as a foundation from which to build a complete data fusion architecture.« less
Scale-up of ecological experiments: Density variation in the mobile bivalve Macomona liliana
Schneider, Davod C.; Walters, R.; Thrush, S.; Dayton, P.
1997-01-01
At present the problem of scaling up from controlled experiments (necessarily at a small spatial scale) to questions of regional or global importance is perhaps the most pressing issue in ecology. Most of the proposed techniques recommend iterative cycling between theory and experiment. We present a graphical technique that facilitates this cycling by allowing the scope of experiments, surveys, and natural history observations to be compared to the scope of models and theory. We apply the scope analysis to the problem of understanding the population dynamics of a bivalve exposed to environmental stress at the scale of a harbour. Previous lab and field experiments were found not to be 1:1 scale models of harbour-wide processes. Scope analysis allowed small scale experiments to be linked to larger scale surveys and to a spatially explicit model of population dynamics.
NASA Astrophysics Data System (ADS)
Tanaka, Rie; Matsuda, Hiroaki; Sanada, Shigeru
2017-03-01
The density of lung tissue changes as demonstrated on imagery is dependent on the relative increases and decreases in the volume of air and lung vessels per unit volume of lung. Therefore, a time-series analysis of lung texture can be used to evaluate relative pulmonary function. This study was performed to assess a time-series analysis of lung texture on dynamic chest radiographs during respiration, and to demonstrate its usefulness in the diagnosis of pulmonary impairments. Sequential chest radiographs of 30 patients were obtained using a dynamic flat-panel detector (FPD; 100 kV, 0.2 mAs/pulse, 15 frames/s, SID = 2.0 m; Prototype, Konica Minolta). Imaging was performed during respiration, and 210 images were obtained over 14 seconds. Commercial bone suppression image-processing software (Clear Read Bone Suppression; Riverain Technologies, Miamisburg, Ohio, USA) was applied to the sequential chest radiographs to create corresponding bone suppression images. Average pixel values, standard deviation (SD), kurtosis, and skewness were calculated based on a density histogram analysis in lung regions. Regions of interest (ROIs) were manually located in the lungs, and the same ROIs were traced by the template matching technique during respiration. Average pixel value effectively differentiated regions with ventilatory defects and normal lung tissue. The average pixel values in normal areas changed dynamically in synchronization with the respiratory phase, whereas those in regions of ventilatory defects indicated reduced variations in pixel value. There were no significant differences between ventilatory defects and normal lung tissue in the other parameters. We confirmed that time-series analysis of lung texture was useful for the evaluation of pulmonary function in dynamic chest radiography during respiration. Pulmonary impairments were detected as reduced changes in pixel value. This technique is a simple, cost-effective diagnostic tool for the evaluation of regional pulmonary function.
The dream of a one-stop-shop: Meta-analysis on myocardial perfusion CT.
Pelgrim, Gert Jan; Dorrius, Monique; Xie, Xueqian; den Dekker, Martijn A M; Schoepf, U Joseph; Henzler, Thomas; Oudkerk, Matthijs; Vliegenthart, Rozemarijn
2015-12-01
To determine the diagnostic performance of computed tomography (CT) perfusion techniques for the detection of functionally relevant coronary artery disease (CAD) in comparison to reference standards, including invasive coronary angiography (ICA), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). PubMed, Web of Knowledge and Embase were searched from January 1, 1998 until July 1, 2014. The search yielded 9475 articles. After duplicate removal, 6041 were screened on title and abstract. The resulting 276 articles were independently analyzed in full-text by two reviewers, and included if the inclusion criteria were met. The articles reporting diagnostic parameters including true positive, true negative, false positive and false negative were subsequently evaluated for the meta-analysis. Results were pooled according to CT perfusion technique, namely snapshot techniques: single-phase rest, single-phase stress, single-phase dual-energy stress and combined coronary CT angiography [rest] and single-phase stress, as well the dynamic technique: dynamic stress CT perfusion. Twenty-two articles were included in the meta-analysis (1507 subjects). Pooled per-patient sensitivity and specificity of single-phase rest CT compared to rest SPECT were 89% (95% confidence interval [CI], 82-94%) and 88% (95% CI, 78-94%), respectively. Vessel-based sensitivity and specificity of single-phase stress CT compared to ICA-based >70% stenosis were 82% (95% CI, 64-92%) and 78% (95% CI, 61-89%). Segment-based sensitivity and specificity of single-phase dual-energy stress CT in comparison to stress MRI were 75% (95% CI, 60-85%) and 95% (95% CI, 80-99%). Segment-based sensitivity and specificity of dynamic stress CT perfusion compared to stress SPECT were 77% (95% CI, 67-85) and 89% (95% CI, 78-95%). For combined coronary CT angiography and single-phase stress CT, vessel-based sensitivity and specificity in comparison to ICA-based >50% stenosis were 84% (95% CI, 67-93%) and 93% (95% CI, 89-96%). This meta-analysis shows considerable variation in techniques and reference standards for CT of myocardial blood supply. While CT seems sensitive and specific for evaluation of hemodynamically relevant CAD, studies so far are limited in size. Standardization of myocardial perfusion CT technique is essential. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Schmitt, M; Groß, K; Grub, J; Heib, F
2015-06-01
Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (<0.4mm) and the dominance of counted events with small velocity the measurements are less influenced by motion dynamics and the procedure can be called "slow moving" analysis. The presented procedures as performed are especially sensitive to the range which reaches from the static to the "slow moving" dynamic contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration behaviour (reactive de-wetting) are presented. Copyright © 2014 Elsevier Inc. All rights reserved.
Bifurcation analysis of an automatic dynamic balancing mechanism for eccentric rotors
NASA Astrophysics Data System (ADS)
Green, K.; Champneys, A. R.; Lieven, N. J.
2006-04-01
We present a nonlinear bifurcation analysis of the dynamics of an automatic dynamic balancing mechanism for rotating machines. The principle of operation is to deploy two or more masses that are free to travel around a race at a fixed distance from the hub and, subsequently, balance any eccentricity in the rotor. Mathematically, we start from a Lagrangian description of the system. It is then shown how under isotropic conditions a change of coordinates into a rotating frame turns the problem into a regular autonomous dynamical system, amenable to a full nonlinear bifurcation analysis. Using numerical continuation techniques, curves are traced of steady states, limit cycles and their bifurcations as parameters are varied. These results are augmented by simulations of the system trajectories in phase space. Taking the case of a balancer with two free masses, broad trends are revealed on the existence of a stable, dynamically balanced steady-state solution for specific rotation speeds and eccentricities. However, the analysis also reveals other potentially attracting states—non-trivial steady states, limit cycles, and chaotic motion—which are not in balance. The transient effects which lead to these competing states, which in some cases coexist, are investigated.
Interactive visualization of vegetation dynamics
Reed, B.C.; Swets, D.; Bard, L.; Brown, J.; Rowland, James
2001-01-01
Satellite imagery provides a mechanism for observing seasonal dynamics of the landscape that have implications for near real-time monitoring of agriculture, forest, and range resources. This study illustrates a technique for visualizing timely information on key events during the growing season (e.g., onset, peak, duration, and end of growing season), as well as the status of the current growing season with respect to the recent historical average. Using time-series analysis of normalized difference vegetation index (NDVI) data from the advanced very high resolution radiometer (AVHRR) satellite sensor, seasonal dynamics can be derived. We have developed a set of Java-based visualization and analysis tools to make comparisons between the seasonal dynamics of the current year with those from the past twelve years. In addition, the visualization tools allow the user to query underlying databases such as land cover or administrative boundaries to analyze the seasonal dynamics of areas of their own interest. The Java-based tools (data exploration and visualization analysis or DEVA) use a Web-based client-server model for processing the data. The resulting visualization and analysis, available via the Internet, is of value to those responsible for land management decisions, resource allocation, and at-risk population targeting.
Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1987-01-01
A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. The effects of system parameters on beam response are explored with a perturbation expansion technique. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V., E-mail: sergeid@kth.se
2016-01-21
Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental datamore » obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.« less
Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review
NASA Astrophysics Data System (ADS)
Heard, W.; Song, B.; Williams, B.; Martin, B.; Sparks, P.; Nie, X.
2018-01-01
This review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior of geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Uniqueness and limitations for each experimental technique are also discussed.
Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review
Heard, W.; Song, B.; Williams, B.; ...
2018-01-03
Here, this review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior ofmore » geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Finally, uniqueness and limitations for each experimental technique are also discussed.« less
Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heard, W.; Song, B.; Williams, B.
Here, this review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior ofmore » geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Finally, uniqueness and limitations for each experimental technique are also discussed.« less
Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E; Conolly, Rory B
2010-02-01
The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell biology has advanced rapidly with increasing availability of new data and powerful simulation techniques, a quantitative orientation is still lacking in life sciences education to make efficient use of these new tools to implement the new toxicity testing paradigm. A revamped undergraduate curriculum in the biological sciences including compulsory courses in mathematics and analysis of dynamical systems is required to address this gap. In parallel, dissemination of computational systems biology techniques and other analytical tools among practicing toxicologists and risk assessment professionals will help accelerate implementation of the new toxicity testing vision.
Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio
2016-09-01
We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique.
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.
NASA Astrophysics Data System (ADS)
Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, Claude A.
2016-03-01
Cells shape or density is an important marker of tissues pathology. However, individual cells are difficult to observe in thick tissues frequently presenting highly scattering structures such as collagen fibers. Endogenous techniques struggle to image cells in these conditions. Moreover, exogenous contrast agents like dyes, fluorophores or nanoparticles cannot always be used, especially if non-invasive imaging is required. Scatterers motion happening down to the millisecond scale, much faster than the fix and highly scattering structures (global motion of the tissue), allowed us to develop a new approach based on the time dependence of the FF-OCT signals. This method reveals hidden cells after a spatiotemporal analysis based on singular value decomposition and wavelet analysis concepts. It does also give us access to local dynamics of imaged scatterers. This dynamic information is linked with the local metabolic activity that drives these scatterers. Our technique can explore subcellular scales with micrometric resolution and dynamics ranging from the millisecond to seconds. By this mean we studied a wide range of tissues, animal and human in both normal and pathological conditions (cancer, ischemia, osmotic shock…) in different organs such as liver, kidney, and brain among others. Different cells, undetectable with FF-OCT, were identified (erythrocytes, hepatocytes…). Different scatterer clusters express different characteristic times and thus can be related to different mechanisms that we identify with metabolic functions. We are confident that the D-FFOCT, by accessing to a new spatiotemporal metabolic contrast, will be a leading technique on tissue imaging and could lead to better medical diagnosis.
Merkle, Conrad W.; Leahy, Conor; Srinivasan, Vivek J.
2016-01-01
Despite the prevalence of optical imaging techniques to measure hemodynamics in large retinal vessels, quantitative measurements of retinal capillary and choroidal hemodynamics have traditionally been challenging. Here, a new imaging technique called dynamic contrast optical coherence tomography (DyC-OCT) is applied in the rat eye to study microvascular blood flow in individual retinal and choroidal layers in vivo. DyC-OCT is based on imaging the transit of an intravascular tracer dynamically as it passes through the field-of-view. Hemodynamic parameters can be determined through quantitative analysis of tracer kinetics. In addition to enabling depth-resolved transit time, volume, and flow measurements, the injected tracer also enhances OCT angiograms and enables clear visualization of the choriocapillaris, particularly when combined with a post-processing method for vessel enhancement. DyC-OCT complements conventional OCT angiography through quantification of tracer dynamics, similar to fluorescence angiography, but with the important added benefit of laminar resolution. PMID:27867732
Merkle, Conrad W; Leahy, Conor; Srinivasan, Vivek J
2016-10-01
Despite the prevalence of optical imaging techniques to measure hemodynamics in large retinal vessels, quantitative measurements of retinal capillary and choroidal hemodynamics have traditionally been challenging. Here, a new imaging technique called dynamic contrast optical coherence tomography (DyC-OCT) is applied in the rat eye to study microvascular blood flow in individual retinal and choroidal layers in vivo . DyC-OCT is based on imaging the transit of an intravascular tracer dynamically as it passes through the field-of-view. Hemodynamic parameters can be determined through quantitative analysis of tracer kinetics. In addition to enabling depth-resolved transit time, volume, and flow measurements, the injected tracer also enhances OCT angiograms and enables clear visualization of the choriocapillaris, particularly when combined with a post-processing method for vessel enhancement. DyC-OCT complements conventional OCT angiography through quantification of tracer dynamics, similar to fluorescence angiography, but with the important added benefit of laminar resolution.
NASA Astrophysics Data System (ADS)
Samuel, Boni; Retheesh, R.; Zaheer Ansari, Md; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.
2017-10-01
Quality evaluation of fruits and vegetables is of great concern as there is a shortage of unadulterated items on the market. Even unadulterated fruits and vegetables, especially those with soft tissue, cannot be stored for longer times due to physical and chemical changes. Moreover, damage can occur during harvest and in the post-harvest period, while preserving or transporting the fruits and vegetables. This work describes the use of a laser dynamic speckle imaging technique as a powerful optoelectronic tool for the quality evaluation of certain seasonal fruits and vegetables in an Indian market. A simple optical configuration was designed for developing the dynamic speckle imagining system to record dynamic specklegrams of the specimens under different conditions. These images were analysed using a cross-correlation function and the temporal history of specklegrams. The technique can be effectively adapted to the industrial environment and would be beneficial for all stakeholders in the field.
Similarities between principal components of protein dynamics and random diffusion
NASA Astrophysics Data System (ADS)
Hess, Berk
2000-12-01
Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.
NASA Astrophysics Data System (ADS)
Khusainov, R.; Klimchik, A.; Magid, E.
2017-01-01
The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.
Assessment of bruising in fruits using dynamic speckle
NASA Astrophysics Data System (ADS)
Pajuelo, Myriam; Baldwin-Olguin, Guillermo; Rabal, Hector J.; Arizaga, Ricardo A.; Trivi, Marcelo
2001-08-01
When a rough surface changes, its optical properties change also and the scattered light shows intensity fluctuations named dynamic speckle. Fruits, even hard peel ones, shows a speckle activity that can be related to maturity, turgor, damage, aging, and mechanical properties. Many techniques have been sued to study these properties, most of them destructive ones. We present an application of dynamical speckle to the study of impact on apples and the analysis of bruises produced by them. The aim is to correlate physical properties of apples with quality factors.
Develop Advanced Nonlinear Signal Analysis Topographical Mapping System
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1997-01-01
During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.
Tipping point analysis of ocean acoustic noise
NASA Astrophysics Data System (ADS)
Livina, Valerie N.; Brouwer, Albert; Harris, Peter; Wang, Lian; Sotirakopoulos, Kostas; Robinson, Stephen
2018-02-01
We apply tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system and study possible bifurcations and transitions of the system. The analysis is based on a statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the data using time-series techniques. We analyse long-term and seasonal trends, system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to approximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and detect several changes in the system states in the past 14 years. These are most likely caused by climatic phenomena. We analyse trends in sound pressure level within different frequency bands and hypothesize a possible anthropogenic impact on the acoustic environment. The tipping point analysis framework provides insight into the structure of the acoustic data and helps identify its dynamic phenomena, correctly reproducing the probability distribution and scaling properties (power-law correlations) of the time series.
Tipping point analysis of atmospheric oxygen concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livina, V. N.; Forbes, A. B.; Vaz Martins, T. M.
2015-03-15
We apply tipping point analysis to nine observational oxygen concentration records around the globe, analyse their dynamics and perform projections under possible future scenarios, leading to oxygen deficiency in the atmosphere. The analysis is based on statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the observed data using Bayesian and wavelet techniques.
NASA Technical Reports Server (NTRS)
1973-01-01
The heat transfer characteristics of various materials used for the thermal insulation of spacecraft are discussed. Techniques for conducting thermal performance analysis, structural performance analysis, and dynamic analysis are described. Processes for producing and finishing the materials are explained. The methods for determining reliability, system safety, materials tests, and design effectiveness are explained.
Acta Aeronautica et Astronautica Sinica,
1983-07-28
substructural analysis in modal synthesis - two improved substructural assembling techniques 49 9-node quadrilateral isoparametric element 64 Application of laser...Time from Service Data, J. Aircraft, Vol. 15, No. 11, 1978. 48 MULTI-LEVEL SUBSTRUCTURAL ANALYSIS IN MODAL SYNTHESIS -- TWO IMPROVED SUBSTRUCTURAL...34 Modal Synthesis in Structural Dynamic Analysis ," Naching Institute of Aeronautics and Astronautics, 1979. 62a 8. Chang Te-wen, "Free-Interface Modal
Comprehensive Flood Plain Studies Using Spatial Data Management Techniques.
1978-06-01
Hydrologic Engineer- ing Center computer programs that forecast urban storm water quality and dynamic in- stream water quality response to waste...determination. Water Quality The water quality analysis planned for the pilot study includes urban storm water quality forecasting and in-streamn...analysis is performed under the direction of Tony Thomas. Chief, Research Branch, by Jess Abbott for storm water quality analysis, R. G. Willey for
Fast Computation and Assessment Methods in Power System Analysis
NASA Astrophysics Data System (ADS)
Nagata, Masaki
Power system analysis is essential for efficient and reliable power system operation and control. Recently, online security assessment system has become of importance, as more efficient use of power networks is eagerly required. In this article, fast power system analysis techniques such as contingency screening, parallel processing and intelligent systems application are briefly surveyed from the view point of their application to online dynamic security assessment.
Live-cell imaging of G-actin dynamics using sequential FDAP
Kiuchi, Tai; Nagai, Tomoaki; Ohashi, Kazumasa; Watanabe, Naoki; Mizuno, Kensaku
2011-01-01
Various microscopic techniques have been developed to understand the mechanisms that spatiotemporally control actin filament dynamics in live cells. Kinetic data on the processes of actin assembly and disassembly on F-actin have been accumulated. However, the kinetics of cytoplasmic G-actin, a key determinant for actin polymerization, has remained unclear because of a lack of appropriate methods to measure the G-actin concentration quantitatively. We have developed two new microscopic techniques based on the fluorescence decay after photoactivation (FDAP) time-lapse imaging of photoswitchable Dronpa-labeled actin. These techniques, sequential FDAP (s-FDAP) and multipoint FDAP, were used to measure the time-dependent changes in and spatial distribution of the G-actin concentration in live cells. Use of s-FDAP provided data on changes in the G-actin concentration with high temporal resolution; these data were useful for the model analysis of actin assembly processes in live cells. The s-FDAP analysis also provided evidence that the cytoplasmic G-actin concentration substantially decreases after cell stimulation and that the extent of stimulus-induced actin assembly and cell size extension are linearly correlated with the G-actin concentration before cell stimulation. The advantages of using s-FDAP and multipoint FDAP to measure spatiotemporal G-actin dynamics and the roles of G-actin concentration and ADF/cofilin in stimulus-induced actin assembly and lamellipodium extension in live cells are discussed. PMID:22754616
DOE Office of Scientific and Technical Information (OSTI.GOV)
ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J
A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less
NASA Technical Reports Server (NTRS)
Towner, Robert L.; Band, Jonathan L.
2012-01-01
An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.
Booth, Jonathan; Vazquez, Saulo; Martinez-Nunez, Emilio; Marks, Alison; Rodgers, Jeff; Glowacki, David R; Shalashilin, Dmitrii V
2014-08-06
In this paper, we briefly review the boxed molecular dynamics (BXD) method which allows analysis of thermodynamics and kinetics in complicated molecular systems. BXD is a multiscale technique, in which thermodynamics and long-time dynamics are recovered from a set of short-time simulations. In this paper, we review previous applications of BXD to peptide cyclization, solution phase organic reaction dynamics and desorption of ions from self-assembled monolayers (SAMs). We also report preliminary results of simulations of diamond etching mechanisms and protein unfolding in atomic force microscopy experiments. The latter demonstrate a correlation between the protein's structural motifs and its potential of mean force. Simulations of these processes by standard molecular dynamics (MD) is typically not possible, because the experimental time scales are very long. However, BXD yields well-converged and physically meaningful results. Compared with other methods of accelerated MD, our BXD approach is very simple; it is easy to implement, and it provides an integrated approach for simultaneously obtaining both thermodynamics and kinetics. It also provides a strategy for obtaining statistically meaningful dynamical results in regions of configuration space that standard MD approaches would visit only very rarely.
Quantification of cardiorespiratory interactions based on joint symbolic dynamics.
Kabir, Muammar M; Saint, David A; Nalivaiko, Eugene; Abbott, Derek; Voss, Andreas; Baumert, Mathias
2011-10-01
Cardiac and respiratory rhythms are highly nonlinear and nonstationary. As a result traditional time-domain techniques are often inadequate to characterize their complex dynamics. In this article, we introduce a novel technique to investigate the interactions between R-R intervals and respiratory phases based on their joint symbolic dynamics. To evaluate the technique, electrocardiograms (ECG) and respiratory signals were recorded in 13 healthy subjects in different body postures during spontaneous and controlled breathing. Herein, the R-R time series were extracted from ECG and respiratory phases were obtained from abdomen impedance belts using the Hilbert transform. Both time series were transformed into ternary symbol vectors based on the changes between two successive R-R intervals or respiratory phases. Subsequently, words of different symbol lengths were formed and the correspondence between the two series of words was determined to quantify the interaction between cardiac and respiratory cycles. To validate our results, respiratory sinus arrhythmia (RSA) was further studied using the phase-averaged characterization of the RSA pattern. The percentage of similarity of the sequence of symbols, between the respective words of the two series determined by joint symbolic dynamics, was significantly reduced in the upright position compared to the supine position (26.4 ± 4.7 vs. 20.5 ± 5.4%, p < 0.01). Similarly, RSA was also reduced during upright posture, but the difference was less significant (0.11 ± 0.02 vs. 0.08 ± 0.01 s, p < 0.05). In conclusion, joint symbolic dynamics provides a new efficient technique for the analysis of cardiorespiratory interaction that is highly sensitive to the effects of orthostatic challenge.
Gain optimization with non-linear controls
NASA Technical Reports Server (NTRS)
Slater, G. L.; Kandadai, R. D.
1984-01-01
An algorithm has been developed for the analysis and design of controls for non-linear systems. The technical approach is to use statistical linearization to model the non-linear dynamics of a system by a quasi-Gaussian model. A covariance analysis is performed to determine the behavior of the dynamical system and a quadratic cost function. Expressions for the cost function and its derivatives are determined so that numerical optimization techniques can be applied to determine optimal feedback laws. The primary application for this paper is centered about the design of controls for nominally linear systems but where the controls are saturated or limited by fixed constraints. The analysis is general, however, and numerical computation requires only that the specific non-linearity be considered in the analysis.
Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John N.
1997-01-01
A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.
Multiscale molecular dynamics simulations of rotary motor proteins.
Ekimoto, Toru; Ikeguchi, Mitsunori
2018-04-01
Protein functions require specific structures frequently coupled with conformational changes. The scale of the structural dynamics of proteins spans from the atomic to the molecular level. Theoretically, all-atom molecular dynamics (MD) simulation is a powerful tool to investigate protein dynamics because the MD simulation is capable of capturing conformational changes obeying the intrinsically structural features. However, to study long-timescale dynamics, efficient sampling techniques and coarse-grained (CG) approaches coupled with all-atom MD simulations, termed multiscale MD simulations, are required to overcome the timescale limitation in all-atom MD simulations. Here, we review two examples of rotary motor proteins examined using free energy landscape (FEL) analysis and CG-MD simulations. In the FEL analysis, FEL is calculated as a function of reaction coordinates, and the long-timescale dynamics corresponding to conformational changes is described as transitions on the FEL surface. Another approach is the utilization of the CG model, in which the CG parameters are tuned using the fluctuation matching methodology with all-atom MD simulations. The long-timespan dynamics is then elucidated straightforwardly by using CG-MD simulations.
NASA Technical Reports Server (NTRS)
Muszynska, Agnes; Bently, Donald E.
1991-01-01
Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.
Research Reports: 1988 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)
1988-01-01
The basic objectives are to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA: to enrich and refresh the research and teaching activities of the participants' institutions; and to contribute to the research objectives of the NASA centers. Topics addressed include: cryogenics; thunderstorm simulation; computer techniques; computer assisted instruction; system analysis weather forecasting; rocket engine design; crystal growth; control systems design; turbine pumps for the Space Shuttle Main engine; electron mobility; heat transfer predictions; rotor dynamics; mathematical models; computational fluid dynamics; and structural analysis.
Rare event computation in deterministic chaotic systems using genealogical particle analysis
NASA Astrophysics Data System (ADS)
Wouters, J.; Bouchet, F.
2016-09-01
In this paper we address the use of rare event computation techniques to estimate small over-threshold probabilities of observables in deterministic dynamical systems. We demonstrate that genealogical particle analysis algorithms can be successfully applied to a toy model of atmospheric dynamics, the Lorenz ’96 model. We furthermore use the Ornstein-Uhlenbeck system to illustrate a number of implementation issues. We also show how a time-dependent objective function based on the fluctuation path to a high threshold can greatly improve the performance of the estimator compared to a fixed-in-time objective function.
Structure and Dynamics of Interfaces: Drops and Films
NASA Technical Reports Server (NTRS)
Mann, J. Adin, Jr.; Mann, Elizabeth K.; Meyer, William V.; Neumann, A. Wilhelm; Tavana, Hossein
2015-01-01
We aim to acquire measurements of the structure and dynamics of certain liquid-fluid interfaces using an ensemble of techniques in collaboration: (1) Total internal reflection (TIR) Surface light scattering spectroscopy (SLSS), (2) Brewster angle microscopy (BAM), and (3) Drop-shape analysis. SLSS and BAM can be done on a shared interfacial footprint. Results using a 50-50 mixture of pentane-isohexane, which extends the range of NASA's Confined Vapor Bubble (CVB) experiment, yield surface tension results that differ from the expected Langmuir Fit. These results were confirmed using both the SLSS and drop-shape analysis approaches.
NASA Astrophysics Data System (ADS)
Chen, Wei-Shing
2011-04-01
The aim of the article is to answer the question if the Taiwan unemployment rate dynamics is generated by a non-linear deterministic dynamic process. This paper applies a recurrence plot and recurrence quantification approach based on the analysis of non-stationary hidden transition patterns of the unemployment rate of Taiwan. The case study uses the time series data of the Taiwan’s unemployment rate during the period from 1978/01 to 2010/06. The results show that recurrence techniques are able to identify various phases in the evolution of unemployment transition in Taiwan.
Automatic Conflict Detection on Contracts
NASA Astrophysics Data System (ADS)
Fenech, Stephen; Pace, Gordon J.; Schneider, Gerardo
Many software applications are based on collaborating, yet competing, agents or virtual organisations exchanging services. Contracts, expressing obligations, permissions and prohibitions of the different actors, can be used to protect the interests of the organisations engaged in such service exchange. However, the potentially dynamic composition of services with different contracts, and the combination of service contracts with local contracts can give rise to unexpected conflicts, exposing the need for automatic techniques for contract analysis. In this paper we look at automatic analysis techniques for contracts written in the contract language mathcal{CL}. We present a trace semantics of mathcal{CL} suitable for conflict analysis, and a decision procedure for detecting conflicts (together with its proof of soundness, completeness and termination). We also discuss its implementation and look into the applications of the contract analysis approach we present. These techniques are applied to a small case study of an airline check-in desk.
Dynamic gas temperature measurement system. Volume 2: Operation and program manual
NASA Technical Reports Server (NTRS)
Purpura, P. T.
1983-01-01
The hot section technology (HOST) dynamic gas temperature measurement system computer program acquires data from two type B thermocouples of different diameters. The analysis method determines the in situ value of an aerodynamic parameter T, containing the heat transfer coefficient from the transfer function of the two thermocouples. This aerodynamic parameter is used to compute a fequency response spectrum and compensate the dynamic portion of the signal of the smaller thermocouple. The calculations for the aerodynamic parameter and the data compensation technique are discussed. Compensated data are presented in either the time or frequency domain, time domain data as dynamic temperature vs time, or frequency domain data.
NASA Astrophysics Data System (ADS)
Miquel, Benjamin
The dynamic or seismic behavior of hydraulic structures is, as for conventional structures, essential to assure protection of human lives. These types of analyses also aim at limiting structural damage caused by an earthquake to prevent rupture or collapse of the structure. The particularity of these hydraulic structures is that not only the internal displacements are caused by the earthquake, but also by the hydrodynamic loads resulting from fluid-structure interaction. This thesis reviews the existing complex and simplified methods to perform such dynamic analysis for hydraulic structures. For the complex existing methods, attention is placed on the difficulties arising from their use. Particularly, interest is given in this work on the use of transmitting boundary conditions to simulate the semi infinity of reservoirs. A procedure has been developed to estimate the error that these boundary conditions can introduce in finite element dynamic analysis. Depending on their formulation and location, we showed that they can considerably affect the response of such fluid-structure systems. For practical engineering applications, simplified procedures are still needed to evaluate the dynamic behavior of structures in contact with water. A review of the existing simplified procedures showed that these methods are based on numerous simplifications that can affect the prediction of the dynamic behavior of such systems. One of the main objectives of this thesis has been to develop new simplified methods that are more accurate than those existing. First, a new spectral analysis method has been proposed. Expressions for the fundamental frequency of fluid-structure systems, key parameter of spectral analysis, have been developed. We show that this new technique can easily be implemented in a spreadsheet or program, and that its calculation time is near instantaneous. When compared to more complex analytical or numerical method, this new procedure yields excellent prediction of the dynamic behavior of fluid-structure systems. Spectral analyses ignore the transient and oscillatory nature of vibrations. When such dynamic analyses show that some areas of the studied structure undergo excessive stresses, time history analyses allow a better estimate of the extent of these zones as well as a time notion of these excessive stresses. Furthermore, the existing spectral analyses methods for fluid-structure systems account only for the static effect of higher modes. Thought this can generally be sufficient for dams, for flexible structures the dynamic effect of these modes should be accounted for. New methods have been developed for fluid-structure systems to account for these observations as well as the flexibility of foundations. A first method was developed to study structures in contact with one or two finite or infinite water domains. This new technique includes flexibility of structures and foundations as well as the dynamic effect of higher vibration modes and variations of the levels of the water domains. Extension of this method was performed to study beam structures in contact with fluids. These new developments have also allowed extending existing analytical formulations of the dynamic properties of a dry beam to a new formulation that includes effect of fluid-structure interaction. The method yields a very good estimate of the dynamic behavior of beam-fluid systems or beam like structures in contact with fluid. Finally, a Modified Accelerogram Method (MAM) has been developed to modify the design earthquake into a new accelerogram that directly accounts for the effect of fluid-structure interaction. This new accelerogram can therefore be applied directly to the dry structure (i.e. without water) in order to calculate the dynamic response of the fluid-structure system. This original technique can include numerous parameters that influence the dynamic response of such systems and allows to treat analytically the fluid-structure interaction while keeping the advantages of finite element modeling.
ERIC Educational Resources Information Center
Torrens, Paul M.; Griffin, William A.
2013-01-01
The authors describe an observational and analytic methodology for recording and interpreting dynamic microprocesses that occur during social interaction, making use of space--time data collection techniques, spatial-statistical analysis, and visualization. The scheme has three investigative foci: Structure, Activity Composition, and Clustering.…
Periodic orbit analysis of a system with continuous symmetry--A tutorial.
Budanur, Nazmi Burak; Borrero-Echeverry, Daniel; Cvitanović, Predrag
2015-07-01
Dynamical systems with translational or rotational symmetry arise frequently in studies of spatially extended physical systems, such as Navier-Stokes flows on periodic domains. In these cases, it is natural to express the state of the fluid in terms of a Fourier series truncated to a finite number of modes. Here, we study a 4-dimensional model with chaotic dynamics and SO(2) symmetry similar to those that appear in fluid dynamics problems. A crucial step in the analysis of such a system is symmetry reduction. We use the model to illustrate different symmetry-reduction techniques. The system's relative equilibria are conveniently determined by rewriting the dynamics in terms of a symmetry-invariant polynomial basis. However, for the analysis of its chaotic dynamics, the "method of slices," which is applicable to very high-dimensional problems, is preferable. We show that a Poincaré section taken on the "slice" can be used to further reduce this flow to what is for all practical purposes a unimodal map. This enables us to systematically determine all relative periodic orbits and their symbolic dynamics up to any desired period. We then present cycle averaging formulas adequate for systems with continuous symmetry and use them to compute dynamical averages using relative periodic orbits. The convergence of such computations is discussed.
A framework for studying transient dynamics of population projection matrix models.
Stott, Iain; Townley, Stuart; Hodgson, David James
2011-09-01
Empirical models are central to effective conservation and population management, and should be predictive of real-world dynamics. Available modelling methods are diverse, but analysis usually focuses on long-term dynamics that are unable to describe the complicated short-term time series that can arise even from simple models following ecological disturbances or perturbations. Recent interest in such transient dynamics has led to diverse methodologies for their quantification in density-independent, time-invariant population projection matrix (PPM) models, but the fragmented nature of this literature has stifled the widespread analysis of transients. We review the literature on transient analyses of linear PPM models and synthesise a coherent framework. We promote the use of standardised indices, and categorise indices according to their focus on either convergence times or transient population density, and on either transient bounds or case-specific transient dynamics. We use a large database of empirical PPM models to explore relationships between indices of transient dynamics. This analysis promotes the use of population inertia as a simple, versatile and informative predictor of transient population density, but criticises the utility of established indices of convergence times. Our findings should guide further development of analyses of transient population dynamics using PPMs or other empirical modelling techniques. © 2011 Blackwell Publishing Ltd/CNRS.
Dahlberg, Jerry; Tkacik, Peter T; Mullany, Brigid; Fleischhauer, Eric; Shahinian, Hossein; Azimi, Farzad; Navare, Jayesh; Owen, Spencer; Bisel, Tucker; Martin, Tony; Sholar, Jodie; Keanini, Russell G
2017-12-04
An analog, macroscopic method for studying molecular-scale hydrodynamic processes in dense gases and liquids is described. The technique applies a standard fluid dynamic diagnostic, particle image velocimetry (PIV), to measure: i) velocities of individual particles (grains), extant on short, grain-collision time-scales, ii) velocities of systems of particles, on both short collision-time- and long, continuum-flow-time-scales, iii) collective hydrodynamic modes known to exist in dense molecular fluids, and iv) short- and long-time-scale velocity autocorrelation functions, central to understanding particle-scale dynamics in strongly interacting, dense fluid systems. The basic system is composed of an imaging system, light source, vibrational sensors, vibrational system with a known media, and PIV and analysis software. Required experimental measurements and an outline of the theoretical tools needed when using the analog technique to study molecular-scale hydrodynamic processes are highlighted. The proposed technique provides a relatively straightforward alternative to photonic and neutron beam scattering methods traditionally used in molecular hydrodynamic studies.
Pattern Recognition for a Flight Dynamics Monte Carlo Simulation
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; Hurtado, John E.
2011-01-01
The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zingone, Gaetano; Licata, Vincenzo; Calogero, Cucchiara
2008-07-08
The present work fits into the interesting theme of seismic prevention for protection of the monumental patrimony made up of churches with drum domes. Specifically, with respect to a church in the historic area of Catania, chosen as a monument exemplifying the typology examined, the seismic behavior is analyzed in the linear field using modern dynamic identification techniques. The dynamically identified computational model arrived at made it possible to identify the macro-element most at risk, the dome-drum system. With respect to this system the behavior in the nonlinear field is analyzed through dynamic tests on large-scale models in the presencemore » of various types of improving reinforcement. The results are used to appraise the ameliorative contribution afforded by each of them and to choose the most suitable type of reinforcement, optimizing the stiffness/ductility ratio of the system.« less
Rayleigh Scattering Diagnostic for Dynamic Measurement of Velocity and Temperature
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Panda, J.
2001-01-01
A new technique for measuring dynamic gas velocity and temperature is described. The technique is based on molecular Rayleigh scattering of laser light, so no seeding of the flow is necessary. The Rayleigh scattered light is filtered with a fixed cavity, planar mirror Fabry-Perot interferometer. A minimum number of photodetectors were used in order to allow the high data acquisition rate needed for dynamic measurements. One photomultiplier tube (PMT) was used to measure the total Rayleigh scattering, which is proportional to the gas density. Two additional PMTs were used to detect light that passes through two apertures in a mask located in the interferometer fringe plane. An uncertainty analysis was used to select the optimum aperture parameters and to predict the measurement uncertainty due to photon shot-noise. Results of an experiment to measure the velocity of a subsonic free jet are presented.
Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions.
Zang, Duyang; Yu, Yinkai; Chen, Zhen; Li, Xiaoguang; Wu, Hongjing; Geng, Xingguo
2017-05-01
The technique of acoustic levitation normally produces a standing wave and the potential well of the sound field can be used to trap small objects. Since no solid surface is involved it has been widely applied for the study of fluid physics, nucleation, bio/chemical processes, and various forms of soft matter. In this article, we survey the works on drop dynamics in acoustic levitation, focus on how the dynamic behavior is related to the rheological properties and discuss the possibility to develop a novel rheometer based on this technique. We review the methods and applications of acoustic levitation for the manipulation of both liquid and solid samples and emphasize the important progress made in the study of phase transitions and bio-chemical analysis. We also highlight the possible open areas for future research. Copyright © 2017 Elsevier B.V. All rights reserved.
Chaos in the sunspot cycle - Analysis and prediction
NASA Technical Reports Server (NTRS)
Mundt, Michael D.; Maguire, W. Bruce, II; Chase, Robert R. P.
1991-01-01
The variability of solar activity over long time scales, given semiquantitatively by measurements of sunspot numbers, is examined as a nonlinear dynamical system. First, a discussion of the data set used and the techniques utilized to reduce the noise and capture the long-term dynamics inherent in the data is presented. Subsequently, an attractor is reconstructed from the data set using the method of time delays. The reconstructed attractor is then used to determine both the dimension of the underlying system and also the largest Lyapunov exponent, which together indicate that the sunspot cycle is indeed chaotic and also low dimensional. In addition, recent techniques of exploiting chaotic dynamics to provide accurate, short-term predictions are utilized in order to improve upon current forecasting methods and also to place theoretical limits on predictability extent. The results are compared to chaotic solar-dynamo models as a possible physically motivated source of this chaotic behavior.
Numerical modelling in biosciences using delay differential equations
NASA Astrophysics Data System (ADS)
Bocharov, Gennadii A.; Rihan, Fathalla A.
2000-12-01
Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.
Dynamic P-Technique for Modeling Patterns of Data: Applications to Pediatric Psychology Research
Aylward, Brandon S.; Rausch, Joseph R.
2011-01-01
Objective Dynamic p-technique (DPT) is a potentially useful statistical method for examining relationships among dynamic constructs in a single individual or small group of individuals over time. The purpose of this article is to offer a nontechnical introduction to DPT. Method An overview of DPT analysis, with an emphasis on potential applications to pediatric psychology research, is provided. To illustrate how DPT might be applied, an example using simulated data is presented for daily pain and negative mood ratings. Results The simulated example demonstrates the application of DPT to a relevant pediatric psychology research area. In addition, the potential application of DPT to the longitudinal study of adherence is presented. Conclusion Although it has not been utilized frequently within pediatric psychology, DPT could be particularly well-suited for research in this field because of its ability to powerfully model repeated observations from very small samples. PMID:21486938
Dynamic p-technique for modeling patterns of data: applications to pediatric psychology research.
Nelson, Timothy D; Aylward, Brandon S; Rausch, Joseph R
2011-10-01
Dynamic p-technique (DPT) is a potentially useful statistical method for examining relationships among dynamic constructs in a single individual or small group of individuals over time. The purpose of this article is to offer a nontechnical introduction to DPT. An overview of DPT analysis, with an emphasis on potential applications to pediatric psychology research, is provided. To illustrate how DPT might be applied, an example using simulated data is presented for daily pain and negative mood ratings. The simulated example demonstrates the application of DPT to a relevant pediatric psychology research area. In addition, the potential application of DPT to the longitudinal study of adherence is presented. Although it has not been utilized frequently within pediatric psychology, DPT could be particularly well-suited for research in this field because of its ability to powerfully model repeated observations from very small samples.
NASA Technical Reports Server (NTRS)
Hooker, John C.
1990-01-01
A preliminary study of the applicability of nonlinear dynamic systems analysis techniques to low body negative pressure (LBNP) studies. In particular, the applicability of the heart rate delay map is investigated. It is suggested that the heart rate delay map has potential as a supplemental tool in the assessment of subject performance in LBNP tests and possibly in the determination of susceptibility to cardiovascular deconditioning with spaceflight.
Continued reduction and analysis of data from the Dynamics Explorer Plasma Wave Instrument
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.; Weimer, Daniel R.
1994-01-01
The plasma wave instrument on the Dynamics Explorer 1 spacecraft provided measurements of the electric and magnetic components of plasma waves in the Earth's magnetosphere. Four receiver systems processed signals from five antennas. Sixty-seven theses, scientific papers and reports were prepared from the data generated. Data processing activities and techniques used to analyze the data are described and highlights of discoveries made and research undertaken are tabulated.
NASA Technical Reports Server (NTRS)
Hashemi-Kia, Mostafa; Toossi, Mostafa
1990-01-01
A computational procedure for the reduction of large finite element models was developed. This procedure is used to obtain a significantly reduced model while retaining the essential global dynamic characteristics of the full-size model. This reduction procedure is applied to the airframe finite element model of AH-64A Attack Helicopter. The resulting reduced model is then validated by application to a vibration reduction study.
Application of phyto-indication and radiocesium indicative methods for microrelief mapping
NASA Astrophysics Data System (ADS)
Panidi, E.; Trofimetz, L.; Sokolova, J.
2016-04-01
Remote sensing technologies are widely used for production of Digital Elevation Models (DEMs), and geomorphometry techniques are valuable tools for DEM analysis. One of the broadly used applications of these technologies and techniques is relief mapping. In the simplest case, we can identify relief structures using DEM analysis, and produce a map or map series to show the relief condition. However, traditional techniques might fail when used for mapping microrelief structures (structures below ten meters in size). In this case high microrelief dynamics lead to technological and conceptual difficulties. Moreover, erosion of microrelief structures cannot be detected at the initial evolution stage using DEM modelling and analysis only. In our study, we investigate the possibilities and specific techniques for allocation of erosion microrelief structures, and mapping techniques for the microrelief derivatives (e.g. quantitative parameters of microrelief). Our toolset includes the analysis of spatial redistribution of the soil pollutants and phyto-indication analysis, which complement the common DEM modelling and geomorphometric analysis. We use field surveys produced at the test area, which is arable territory with high erosion risks. Our main conclusion at the current stage is that the indicative methods (i.e. radiocesium and phyto-indication methods) are effective for allocation of the erosion microrelief structures. Also, these methods need to be formalized for convenient use.
Static Analysis of Mobile Programs
2017-02-01
information flow analysis has the potential to significantly aid human auditors , but it is handicapped by high false positive rates. Instead, auditors ...presents these specifications to a human auditor for validation. We have implemented this framework for a taint analysis of An- droid apps that relies on...of queries to a human auditor . 6.4 Inferring Library Information Flow Specifications Using Dynamic Anal- ysis In [15], we present a technique to mine
Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis.
Bonham-Carter, Oliver; Steele, Joe; Bastola, Dhundy
2014-11-01
Modern sequencing and genome assembly technologies have provided a wealth of data, which will soon require an analysis by comparison for discovery. Sequence alignment, a fundamental task in bioinformatics research, may be used but with some caveats. Seminal techniques and methods from dynamic programming are proving ineffective for this work owing to their inherent computational expense when processing large amounts of sequence data. These methods are prone to giving misleading information because of genetic recombination, genetic shuffling and other inherent biological events. New approaches from information theory, frequency analysis and data compression are available and provide powerful alternatives to dynamic programming. These new methods are often preferred, as their algorithms are simpler and are not affected by synteny-related problems. In this review, we provide a detailed discussion of computational tools, which stem from alignment-free methods based on statistical analysis from word frequencies. We provide several clear examples to demonstrate applications and the interpretations over several different areas of alignment-free analysis such as base-base correlations, feature frequency profiles, compositional vectors, an improved string composition and the D2 statistic metric. Additionally, we provide detailed discussion and an example of analysis by Lempel-Ziv techniques from data compression. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Fein, Howard
1999-03-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.
Fattore, Matteo; Arrigo, Patrizio
2005-01-01
The possibility to study an organism in terms of system theory has been proposed in the past, but only the advancement of molecular biology techniques allow us to investigate the dynamical properties of a biological system in a more quantitative and rational way than before . These new techniques can gave only the basic level view of an organisms functionality. The comprehension of its dynamical behaviour depends on the possibility to perform a multiple level analysis. Functional genomics has stimulated the interest in the investigation the dynamical behaviour of an organism as a whole. These activities are commonly known as System Biology, and its interests ranges from molecules to organs. One of the more promising applications is the 'disease modeling'. The use of experimental models is a common procedure in pharmacological and clinical researches; today this approach is supported by 'in silico' predictive methods. This investigation can be improved by a combination of experimental and computational tools. The Machine Learning (ML) tools are able to process different heterogeneous data sources, taking into account this peculiarity, they could be fruitfully applied to support a multilevel data processing (molecular, cellular and morphological) that is the prerequisite for the formal model design; these techniques can allow us to extract the knowledge for mathematical model development. The aim of our work is the development and implementation of a system that combines ML and dynamical models simulations. The program is addressed to the virtual analysis of the pathways involved in neurodegenerative diseases. These pathologies are multifactorial diseases and the relevance of the different factors has not yet been well elucidated. This is a very complex task; in order to test the integrative approach our program has been limited to the analysis of the effects of a specific protein, the Cyclin dependent kinase 5 (CDK5) which relies on the induction of neuronal apoptosis. The system has a modular structure centred on a textual knowledge discovery approach. The text mining is the only way to enhance the capability to extract ,from multiple data sources, the information required for the dynamical simulator. The user may access the publically available modules through the following site: http://biocomp.ge.ismac.cnr.it.
Earth orientation from lunar laser ranging and an error analysis of polar motion services
NASA Technical Reports Server (NTRS)
Dickey, J. O.; Newhall, X. X.; Williams, J. G.
1985-01-01
Lunar laser ranging (LLR) data are obtained on the basis of the timing of laser pulses travelling from observatories on earth to retroreflectors placed on the moon's surface during the Apollo program. The modeling and analysis of the LLR data can provide valuable insights into earth's dynamics. The feasibility to model accurately the lunar orbit over the full 13-year observation span makes it possible to conduct relatively long-term studies of variations in the earth's rotation. A description is provided of general analysis techniques, and the calculation of universal time (UT1) from LLR is discussed. Attention is also given to a summary of intercomparisons with different techniques, polar motion results and intercomparisons, and a polar motion error analysis.
Nonlinear dynamics of the magnetosphere and space weather
NASA Technical Reports Server (NTRS)
Sharma, A. Surjalal
1996-01-01
The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
Discovery of Information Diffusion Process in Social Networks
NASA Astrophysics Data System (ADS)
Kim, Kwanho; Jung, Jae-Yoon; Park, Jonghun
Information diffusion analysis in social networks is of significance since it enables us to deeply understand dynamic social interactions among users. In this paper, we introduce approaches to discovering information diffusion process in social networks based on process mining. Process mining techniques are applied from three perspectives: social network analysis, process discovery and community recognition. We then present experimental results by using a real-life social network data. The proposed techniques are expected to employ as new analytical tools in online social networks such as blog and wikis for company marketers, politicians, news reporters and online writers.
NASA Technical Reports Server (NTRS)
Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.
1980-01-01
A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.
3D Feature Extraction for Unstructured Grids
NASA Technical Reports Server (NTRS)
Silver, Deborah
1996-01-01
Visualization techniques provide tools that help scientists identify observed phenomena in scientific simulation. To be useful, these tools must allow the user to extract regions, classify and visualize them, abstract them for simplified representations, and track their evolution. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This article explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and those from Finite Element Analysis.
Dynamic speckle interferometry of microscopic processes in solid state and thin biological objects
NASA Astrophysics Data System (ADS)
Vladimirov, A. P.
2015-08-01
Modernized theory of dynamic speckle interferometry is considered. It is shown that the time-average radiation intensity has the parameters characterizing the wave phase changes. It also brings forward an expression for time autocorrelation function of the radiation intensity. It is shown that with the vanishing averaging time value the formulas transform to the prior expressions. The results of experiments with high-cycle material fatigue and cell metabolism analysis conducted using the time-averaging technique are discussed. Good reproducibility of the results is demonstrated. It is specified that the upgraded technique allows analyzing accumulation of fatigue damage, detecting the crack start moment and determining its growth velocity with uninterrupted cyclic load. It is also demonstrated that in the experiments with a cell monolayer the technique allows studying metabolism change both in an individual cell and in a group of cells.
Uncertainty of Videogrammetric Techniques used for Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Burner, A. W.; Liu, Tianshu; DeLoach, Richard
2002-01-01
The uncertainty of videogrammetric techniques used for the measurement of static aeroelastic wind tunnel model deformation and wind tunnel model pitch angle is discussed. Sensitivity analyses and geometrical considerations of uncertainty are augmented by analyses of experimental data in which videogrammetric angle measurements were taken simultaneously with precision servo accelerometers corrected for dynamics. An analysis of variance (ANOVA) to examine error dependence on angle of attack, sensor used (inertial or optical). and on tunnel state variables such as Mach number is presented. Experimental comparisons with a high-accuracy indexing table are presented. Small roll angles are found to introduce a zero-shift in the measured angles. It is shown experimentally that. provided the proper constraints necessary for a solution are met, a single- camera solution can he comparable to a 2-camera intersection result. The relative immunity of optical techniques to dynamics is illustrated.
X-ray near-field speckle: implementation and critical analysis
Lu, Xinhui; Mochrie, S. G. J.; Narayanan, S.; Sandy, A. R.; Sprung, M.
2011-01-01
The newly introduced coherence-based technique of X-ray near-field speckle (XNFS) has been implemented at 8-ID-I at the Advanced Photon Source. In the near-field regime of high-brilliance synchrotron X-rays scattered from a sample of interest, it turns out that, when the scattered radiation and the main beam both impinge upon an X-ray area detector, the measured intensity shows low-contrast speckles, resulting from interference between the incident and scattered beams. A micrometer-resolution XNFS detector with a high numerical aperture microscope objective has been built and its capability for studying static structures and dynamics at longer length scales than traditional far-field X-ray scattering techniques is demonstrated. Specifically, the dynamics of dilute silica and polystyrene colloidal samples are characterized. This study reveals certain limitations of the XNFS technique, especially in the characterization of static structures, which is discussed. PMID:21997906
Fascione, Jeanna M; Crews, Ryan T; Wrobel, James S
2012-01-01
Identifying the variability of footprint measurement collection techniques and the reliability of footprint measurements would assist with appropriate clinical foot posture appraisal. We sought to identify relationships between these measures in a healthy population. On 30 healthy participants, midgait dynamic footprint measurements were collected using an ink mat, paper pedography, and electronic pedography. The footprints were then digitized, and the following footprint indices were calculated with photo digital planimetry software: footprint index, arch index, truncated arch index, Chippaux-Smirak Index, and Staheli Index. Differences between techniques were identified with repeated-measures analysis of variance with post hoc test of Scheffe. In addition, to assess practical similarities between the different methods, intraclass correlation coefficients (ICCs) were calculated. To assess intrarater reliability, footprint indices were calculated twice on 10 randomly selected ink mat footprint measurements, and the ICC was calculated. Dynamic footprint measurements collected with an ink mat significantly differed from those collected with paper pedography (ICC, 0.85-0.96) and electronic pedography (ICC, 0.29-0.79), regardless of the practical similarities noted with ICC values (P = .00). Intrarater reliability for dynamic ink mat footprint measurements was high for the footprint index, arch index, truncated arch index, Chippaux-Smirak Index, and Staheli Index (ICC, 0.74-0.99). Footprint measurements collected with various techniques demonstrate differences. Interchangeable use of exact values without adjustment is not advised. Intrarater reliability of a single method (ink mat) was found to be high.
Understanding and Modeling Teams As Dynamical Systems
Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.
2017-01-01
By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231
Application of chaos theory to the particle dynamics of asymmetry-induced transport
NASA Astrophysics Data System (ADS)
Eggleston, D. L.
2018-03-01
The techniques of chaos theory are employed in an effort to better understand the complex single-particle dynamics of asymmetry-induced transport in non-neutral plasmas. The dynamical equations are re-conceptualized as describing time-independent trajectories in a four-dimensional space consisting of the radius r, rotating frame angle ψ, axial position z, and axial velocity v. Results include the identification of an integral of the motion, fixed-point analysis of the dynamical equations, the construction and interpretation of Poincaré sections to visualize the dynamics, and, for the case of chaotic motion, numerical calculation of the largest Lyapunov exponent. Chaotic cases are shown to be associated with the overlap of resonance islands formed by the applied asymmetry.
NASA Astrophysics Data System (ADS)
Shoukry, Samir N.; William, Gergis W.; Riad, Mourad Y.; McBride, Kevyn C.
2006-08-01
Dynamic relaxation is a technique developed to solve static problems through an explicit integration in finite element. The main advantage of such a technique is the ability to solve a large problem in a relatively short time compared with the traditional implicit techniques, especially when using nonlinear material models. This paper describes the use of such a technique in analyzing large transportation structures as dowel jointed concrete pavements and 306-m-long, reinforced concrete bridge superstructure under the effect of temperature variations. The main feature of the pavement model is the detailed modeling of dowel bars and their interfaces with the surrounding concrete using extremely fine mesh of solid elements, while in the bridge structure it is the detailed modeling of the girder-deck interface as well as the bracing members between the girders. The 3DFE results were found to be in a good agreement with experimentally measured data obtained from an instrumented pavements sections and a highway bridge constructed in West Virginia. Thus, such a technique provides a good tool for analyzing the response of large structures to static loads in a fraction of the time required by traditional, implicit finite element methods.
Accelerating Large Data Analysis By Exploiting Regularities
NASA Technical Reports Server (NTRS)
Moran, Patrick J.; Ellsworth, David
2003-01-01
We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.
Pond, Stuart B.; Brassey, Charlotte A.; Manning, Philip L.; Bates, Karl T.
2017-01-01
The running ability of Tyrannosaurus rex has been intensively studied due to its relevance to interpretations of feeding behaviour and the biomechanics of scaling in giant predatory dinosaurs. Different studies using differing methodologies have produced a very wide range of top speed estimates and there is therefore a need to develop techniques that can improve these predictions. Here we present a new approach that combines two separate biomechanical techniques (multibody dynamic analysis and skeletal stress analysis) to demonstrate that true running gaits would probably lead to unacceptably high skeletal loads in T. rex. Combining these two approaches reduces the high-level of uncertainty in previous predictions associated with unknown soft tissue parameters in dinosaurs, and demonstrates that the relatively long limb segments of T. rex—long argued to indicate competent running ability—would actually have mechanically limited this species to walking gaits. Being limited to walking speeds contradicts arguments of high-speed pursuit predation for the largest bipedal dinosaurs like T. rex, and demonstrates the power of multiphysics approaches for locomotor reconstructions of extinct animals. PMID:28740745
Sellers, William I; Pond, Stuart B; Brassey, Charlotte A; Manning, Philip L; Bates, Karl T
2017-01-01
The running ability of Tyrannosaurus rex has been intensively studied due to its relevance to interpretations of feeding behaviour and the biomechanics of scaling in giant predatory dinosaurs. Different studies using differing methodologies have produced a very wide range of top speed estimates and there is therefore a need to develop techniques that can improve these predictions. Here we present a new approach that combines two separate biomechanical techniques (multibody dynamic analysis and skeletal stress analysis) to demonstrate that true running gaits would probably lead to unacceptably high skeletal loads in T. rex . Combining these two approaches reduces the high-level of uncertainty in previous predictions associated with unknown soft tissue parameters in dinosaurs, and demonstrates that the relatively long limb segments of T. rex -long argued to indicate competent running ability-would actually have mechanically limited this species to walking gaits. Being limited to walking speeds contradicts arguments of high-speed pursuit predation for the largest bipedal dinosaurs like T. rex , and demonstrates the power of multiphysics approaches for locomotor reconstructions of extinct animals.
Heidari, Zahra; Roe, Daniel R; Galindo-Murillo, Rodrigo; Ghasemi, Jahan B; Cheatham, Thomas E
2016-07-25
Long time scale molecular dynamics (MD) simulations of biological systems are becoming increasingly commonplace due to the availability of both large-scale computational resources and significant advances in the underlying simulation methodologies. Therefore, it is useful to investigate and develop data mining and analysis techniques to quickly and efficiently extract the biologically relevant information from the incredible amount of generated data. Wavelet analysis (WA) is a technique that can quickly reveal significant motions during an MD simulation. Here, the application of WA on well-converged long time scale (tens of μs) simulations of a DNA helix is described. We show how WA combined with a simple clustering method can be used to identify both the physical and temporal locations of events with significant motion in MD trajectories. We also show that WA can not only distinguish and quantify the locations and time scales of significant motions, but by changing the maximum time scale of WA a more complete characterization of these motions can be obtained. This allows motions of different time scales to be identified or ignored as desired.
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.
1995-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.
MDANSE: An Interactive Analysis Environment for Molecular Dynamics Simulations.
Goret, G; Aoun, B; Pellegrini, E
2017-01-23
The MDANSE software-Molecular Dynamics Analysis of Neutron Scattering Experiments-is presented. It is an interactive application for postprocessing molecular dynamics (MD) simulations. Given the widespread use of MD simulations in material and biomolecular sciences to get a better insight for experimental techniques such as thermal neutron scattering (TNS), the development of MDANSE has focused on providing a user-friendly, interactive, graphical user interface for analyzing many trajectories in the same session and running several analyses simultaneously independently of the interface. This first version of MDANSE already proposes a broad range of analyses, and the application has been designed to facilitate the introduction of new analyses in the framework. All this makes MDANSE a valuable tool for extracting useful information from trajectories resulting from a wide range of MD codes.
2003-10-01
Among the procedures developed to identify cognitive processes, there are the Cognitive Task Analysis (CTA) and the Cognitive Work Analysis (CWA...of Cognitive Task Design. [11] Potter, S.S., Roth, E.M., Woods, D.D., and Elm, W.C. (2000). Cognitive Task Analysis as Bootstrapping Multiple...Converging Techniques, In Schraagen, Chipman, and Shalin (Eds.). Cognitive Task Analysis . Mahwah, NJ: Lawrence Erlbaum Associates. [12] Roth, E.M
Warlick, W B; O'Rear, J H; Earley, L; Moeller, J H; Gaffney, D K; Leavitt, D D
1997-01-01
The dose to the contralateral breast has been associated with an increased risk of developing a second breast malignancy. Varying techniques have been devised and described in the literature to minimize this dose. Metal beam modifiers such as standard wedges are used to improve the dose distribution in the treated breast, but unfortunately introduce an increased scatter dose outside the treatment field, in particular to the contralateral breast. The enhanced dynamic wedge is a means of remote wedging created by independently moving one collimator jaw through the treatment field during dose delivery. This study is an analysis of differing doses to the contralateral breast using two common clinical set-up techniques with the enhanced dynamic wedge versus the standard metal wedge. A tissue equivalent block (solid water), modeled to represent a typical breast outline, was designed as an insert in a Rando phantom to simulate a standard patient being treated for breast conservation. Tissue equivalent material was then used to complete the natural contour of the breast and to reproduce appropriate build-up and internal scatter. Thermoluminescent dosimeter (TLD) rods were placed at predetermined distances from the geometric beam's edge to measure the dose to the contralateral breast. A total of 35 locations were used with five TLDs in each location to verify the accuracy of the measured dose. The radiation techniques used were an isocentric set-up with co-planar, non divergent posterior borders and an isocentric set-up with a half beam block technique utilizing the asymmetric collimator jaw. Each technique used compensating wedges to optimize the dose distribution. A comparison of the dose to the contralateral breast was then made with the enhanced dynamic wedge vs. the standard metal wedge. The measurements revealed a significant reduction in the contralateral breast dose with the enhanced dynamic wedge compared to the standard metal wedge in both set-up techniques. The dose was measured at varying distances from the geometric field edge, ranging from 2 to 8 cm. The average dose with the enhanced dynamic wedge was 2.7-2.8%. The average dose with the standard wedge was 4.0-4.7%. Thermoluminescent dosimeter measurements suggest an increase in both scattered electrons and photons with metal wedges. The enhanced dynamic wedge is a practical clinical advance which improves the dose distribution in patients undergoing breast conservation while at the same time minimizing dose to the contralateral breast, thereby reducing the potential carcinogenic effects.
NASA Technical Reports Server (NTRS)
Klein, M.; Reynolds, J.; Ricks, E.
1989-01-01
Load and stress recovery from transient dynamic studies are improved upon using an extended acceleration vector in the modal acceleration technique applied to structural analysis. Extension of the normal LTM (load transformation matrices) stress recovery to automatically compute margins of safety is presented with an application to the Hubble space telescope.
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
Towards the use of Structural Loop Analysis to Study System Behaviour of Socio-Ecological Systems.
NASA Astrophysics Data System (ADS)
Abram, Joseph; Dyke, James
2016-04-01
Maintaining socio-ecological systems in desirable states is key to developing a growing economy, alleviating poverty and achieving a sustainable future. While the driving forces of an environmental system are often well known, the dynamics impacting these drivers can be hidden within a tangled structure of causal chains and feedback loops. A lack of understanding of a system's dynamic structure and its influence on a system's behaviour can cause unforeseen side-effects during model scenario testing and policy implementation. Structural Loop analysis of socio-ecological system models identifies dominant feedback structures during times of behavioural shift, allowing the user to monitor key influential drivers during model simulation. This work carries out Loop Eigenvalue Elasticity Analysis (LEEA) on three system dynamic models, exploring tipping points in lake systems undergoing eutrophication. The purpose is to explore the potential benefits and limitations of the technique in the field of socio-ecology. The LEEA technique shows promise for socio-ecological systems which undergo regime shifts or express oscillatory trends, but shows limited usefulness with large models. The results of this work highlight changes in feedback loop dominance, years prior to eutrophic tipping events in lake systems. LEEA could be used as an early warning signal to impending system changes, complementary to other known early warning signals. This approach could improve our understanding during critical times of a system's behaviour, changing how we approach model analysis and the way scenario testing and policy implementation are addressed in socio-ecological system models.
Kwasniok, Frank
2013-11-01
A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.
Exciton-polariton dynamics in a GaAs bulk microcavity
NASA Astrophysics Data System (ADS)
Ceccherini, S.; Gurioli, M.; Bogani, F.; Colocci, M.; Tredicucci, A.; Bassani, F.; Beltram, F.; Sorba, L.
1998-01-01
We present a full analysis of exciton dynamics in a GaAs λ/2 bulk microcavity following excitation by ultrafast laser pulses. Coherent dynamics was probed by means of an interferometric technique; beating and dephasing times were studied for various excitation intensities. At high incident power, population effects begin to show up reducing exciton oscillator strength and suppressing Rabi splitting. This feature produces marked non-linearities in the input-output characteristic of the optical functions, which were studied in view of reaching bistable operation. Theoretical calculations performed within the transfer-matrix framework show good agreement with experimental results.
Sensitivity analyses for simulating pesticide impacts on honey bee colonies
We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop + Pesticide model. Simulations are performed of hive population trajectories with and without pesti...
NASA Technical Reports Server (NTRS)
Zalesak, J.
1975-01-01
A dynamic substructuring analysis, utilizing the component modes technique, of the 1/8 scale space shuttle orbiter finite element model is presented. The analysis was accomplished in 3 phases, using NASTRAN RIGID FORMAT 3, with appropriate Alters, on the IBM 360-370. The orbiter was divided into 5 substructures, each of which was reduced to interface degrees of freedom and generalized normal modes. The reduced substructures were coupled to yield the first 23 symmetric free-free orbiter modes, and the eigenvectors in the original grid point degree of freedom lineup were recovered. A comparison was made with an analysis which was performed with the same model using the direct coordinate elimination approach. Eigenvalues were extracted using the inverse power method.
Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies
Werner, Steffen; Rink, Jochen C.; Riedel-Kruse, Ingmar H.; Friedrich, Benjamin M.
2014-01-01
We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way. PMID:25426857
On the Optimization of Aerospace Plane Ascent Trajectory
NASA Astrophysics Data System (ADS)
Al-Garni, Ahmed; Kassem, Ayman Hamdy
A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.
Non-local means denoising of dynamic PET images.
Dutta, Joyita; Leahy, Richard M; Li, Quanzheng
2013-01-01
Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM). NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch. To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches. The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while lowering the background noise variance.
2010-01-01
UAV Autonomy program which includes intelligent reasoning for autonomy, technologies to enhance see and avoid capabilities, object identification ...along the ship’s base recovery course (BRC). The pilot then flies toward the stern of the ship, aligning his approach path with the ship’s lineup line...quiescent point identification . CONCLUSIONS The primary goal for conducting dynamic interface analysis is to expand existing operating envelopes and
Image-Based Reconstruction and Analysis of Dynamic Scenes in a Landslide Simulation Facility
NASA Astrophysics Data System (ADS)
Scaioni, M.; Crippa, J.; Longoni, L.; Papini, M.; Zanzi, L.
2017-12-01
The application of image processing and photogrammetric techniques to dynamic reconstruction of landslide simulations in a scaled-down facility is described. Simulations are also used here for active-learning purpose: students are helped understand how physical processes happen and which kinds of observations may be obtained from a sensor network. In particular, the use of digital images to obtain multi-temporal information is presented. On one side, using a multi-view sensor set up based on four synchronized GoPro 4 Black® cameras, a 4D (3D spatial position and time) reconstruction of the dynamic scene is obtained through the composition of several 3D models obtained from dense image matching. The final textured 4D model allows one to revisit in dynamic and interactive mode a completed experiment at any time. On the other side, a digital image correlation (DIC) technique has been used to track surface point displacements from the image sequence obtained from the camera in front of the simulation facility. While the 4D model may provide a qualitative description and documentation of the experiment running, DIC analysis output quantitative information such as local point displacements and velocities, to be related to physical processes and to other observations. All the hardware and software equipment adopted for the photogrammetric reconstruction has been based on low-cost and open-source solutions.
Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane
NASA Technical Reports Server (NTRS)
Gera, Joseph; Bosworth, John T.
1987-01-01
Initial envelope clearance and subsequent flight testing of a new, fully augmented airplane with an extremely high degree of static instability can place unusual demands on the flight test approach. Previous flight test experience with these kinds of airplanes is very limited or nonexistent. The safe and efficient flight testing may be further complicated by a multiplicity of control effectors that may be present on this class of airplanes. This paper describes some novel flight test and analysis techniques in the flight dynamics and handling qualities area. These techniques were utilized during the initial flight envelope clearance of the X-29A aircraft and were largely responsible for the completion of the flight controls clearance program without any incidents or significant delays.
Split Node and Stress Glut Methods for Dynamic Rupture Simulations in Finite Elements.
NASA Astrophysics Data System (ADS)
Ramirez-Guzman, L.; Bielak, J.
2008-12-01
I present two numerical techniques to solve the Dynamic problem. I revisit and modify the Split Node approach and introduce a Stress Glut type Method. Both algorithms are implemented using a iso/sub- parametric FEM solver. In the first case, I discuss the formulation and perform an analysis of convergence for different orders of approximation for the acoustic case. I describe the algorithm of the second methodology as well as the assumptions made. The key to the new technique is to have an accurate representation of the traction. Thus, I devote part of the discussion to analyze the tractions for a simple example. The sensitivity of the method is tested by comparing against Split Node solutions.
Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis
NASA Technical Reports Server (NTRS)
Eberhart, C. J.; Casiano, M. J.
2015-01-01
Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.
Symbolic dynamics for arrhythmia identification from heart variability of rats with cardiac failures
NASA Astrophysics Data System (ADS)
Letellier, C.; Roulin, E.; Loriot, S.; Morin, J.-P.; Dionnet, F.
2004-12-01
Heart rate variability of rats is investigated using concepts from the nonlinear dynamical system theory. Among the important techniques offered, symbolic dynamics is very appealing by its power to investigate patterns which can be repeated in a time series. The present analysis was performed in six control rats and six chronic cardiac insufficient rats (myocardial infarction due to left descendent coronary artery ligation). Rats are left in clean atmosphere or exposed to atmosphere containing diluted engine emission pollutants. The evolution of the heart rate variability is then investigated with a three element symbolic dynamics which allows to distinguish extrasystoles from tachycardia or bradycardia using the symbol sequences.
Dynamic-focusing microscope objective for optical coherence tomography
NASA Astrophysics Data System (ADS)
Murali, Supraja; Rolland, Jannick
2007-01-01
Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.
Study the fragment size distribution in dynamic fragmentation of laser shock loding tin
NASA Astrophysics Data System (ADS)
He, Weihua; Xin, Jianting; Chu, Genbai; Shui, Min; Xi, Tao; Zhao, Yongqiang; Gu, Yuqiu
2017-06-01
Characterizing the distribution of fragment size produced from dynamic fragmentation process is very important for fundamental science like predicting material dymanic response performance and for a variety of engineering applications. However, only a few data about fragment mass or size have been obtained due to its great challenge in its dynamic measurement. This paper would focus on investigating the fragment size distribution from the dynamic fragmentation of laser shock-loaded metal. Material ejection of tin sample with wedge shape groove in the free surface is collected with soft recovery technique. Via fine post-shot analysis techniques including X-ray micro-tomography and the improved watershed method, it is found that fragments can be well detected. To characterize their size distributions, a random geometric statistics method based on Poisson mixtures was derived for dynamic heterogeneous fragmentation problem, which leads to a linear combinational exponential distribution. Finally we examined the size distribution of laser shock-loaded tin with the derived model, and provided comparisons with other state-of-art models. The resulting comparisons prove that our proposed model can provide more reasonable fitting result for laser shock-loaded metal.
Applications of microscopy in Salmonella research.
Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A
2015-01-01
Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.
Tashman, Scott; Anderst, William
2003-04-01
Dynamic assessment of three-dimensional (3D) skeletal kinematics is essential for understanding normal joint function as well as the effects of injury or disease. This paper presents a novel technique for measuring in-vivo skeletal kinematics that combines data collected from high-speed biplane radiography and static computed tomography (CT). The goals of the present study were to demonstrate that highly precise measurements can be obtained during dynamic movement studies employing high frame-rate biplane video-radiography, to develop a method for expressing joint kinematics in an anatomically relevant coordinate system and to demonstrate the application of this technique by calculating canine tibio-femoral kinematics during dynamic motion. The method consists of four components: the generation and acquisition of high frame rate biplane radiographs, identification and 3D tracking of implanted bone markers, CT-based coordinate system determination, and kinematic analysis routines for determining joint motion in anatomically based coordinates. Results from dynamic tracking of markers inserted in a phantom object showed the system bias was insignificant (-0.02 mm). The average precision in tracking implanted markers in-vivo was 0.064 mm for the distance between markers and 0.31 degree for the angles between markers. Across-trial standard deviations for tibio-femoral translations were similar for all three motion directions, averaging 0.14 mm (range 0.08 to 0.20 mm). Variability in tibio-femoral rotations was more dependent on rotation axis, with across-trial standard deviations averaging 1.71 degrees for flexion/extension, 0.90 degree for internal/external rotation, and 0.40 degree for varus/valgus rotation. Advantages of this technique over traditional motion analysis methods include the elimination of skin motion artifacts, improved tracking precision and the ability to present results in a consistent anatomical reference frame.
Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis
Prerau, Michael J.; Brown, Ritchie E.; Bianchi, Matt T.; Ellenbogen, Jeffrey M.; Purdon, Patrick L.
2016-01-01
During sleep, cortical and subcortical structures within the brain engage in highly structured oscillatory dynamics that can be observed in the electroencephalogram (EEG). The ability to accurately describe changes in sleep state from these oscillations has thus been a major goal of sleep medicine. While numerous studies over the past 50 years have shown sleep to be a continuous, multifocal, dynamic process, long-standing clinical practice categorizes sleep EEG into discrete stages through visual inspection of 30-s epochs. By representing sleep as a coarsely discretized progression of stages, vital neurophysiological information on the dynamic interplay between sleep and arousal is lost. However, by using principled time-frequency spectral analysis methods, the rich dynamics of the sleep EEG are immediately visible—elegantly depicted and quantified at time scales ranging from a full night down to individual microevents. In this paper, we review the neurophysiology of sleep through this lens of dynamic spectral analysis. We begin by reviewing spectral estimation techniques traditionally used in sleep EEG analysis and introduce multitaper spectral analysis, a method that makes EEG spectral estimates clearer and more accurate than traditional approaches. Through the lens of the multitaper spectrogram, we review the oscillations and mechanisms underlying the traditional sleep stages. In doing so, we will demonstrate how multitaper spectral analysis makes the oscillatory structure of traditional sleep states instantaneously visible, closely paralleling the traditional hypnogram, but with a richness of information that suggests novel insights into the neural mechanisms of sleep, as well as novel clinical and research applications. PMID:27927806
A Method for Generating Reduced Order Linear Models of Supersonic Inlets
NASA Technical Reports Server (NTRS)
Chicatelli, Amy; Hartley, Tom T.
1997-01-01
For the modeling of high speed propulsion systems, there are at least two major categories of models. One is based on computational fluid dynamics (CFD), and the other is based on design and analysis of control systems. CFD is accurate and gives a complete view of the internal flow field, but it typically has many states and runs much slower dm real-time. Models based on control design typically run near real-time but do not always capture the fundamental dynamics. To provide improved control models, methods are needed that are based on CFD techniques but yield models that are small enough for control analysis and design.
RP and RQA Analysis for Floating Potential Fluctuations in a DC Magnetron Sputtering Plasma
NASA Astrophysics Data System (ADS)
Sabavath, Gopikishan; Banerjee, I.; Mahapatra, S. K.
2016-04-01
The nonlinear dynamics of a direct current magnetron sputtering plasma is visualized using recurrence plot (RP) technique. RP comprises the recurrence quantification analysis (RQA) which is an efficient method to observe critical regime transitions in dynamics. Further, RQA provides insight information about the system’s behavior. We observed the floating potential fluctuations of the plasma as a function of discharge voltage by using Langmuir probe. The system exhibits quasi-periodic-chaotic-quasi-periodic-chaotic transitions. These transitions are quantified from determinism, Lmax, and entropy of RQA. Statistical investigations like kurtosis and skewness also studied for these transitions which are in well agreement with RQA results.
Jang, Jae-Wook; Yun, Jaesung; Mohaisen, Aziz; Woo, Jiyoung; Kim, Huy Kang
2016-01-01
Mass-market mobile security threats have increased recently due to the growth of mobile technologies and the popularity of mobile devices. Accordingly, techniques have been introduced for identifying, classifying, and defending against mobile threats utilizing static, dynamic, on-device, and off-device techniques. Static techniques are easy to evade, while dynamic techniques are expensive. On-device techniques are evasion, while off-device techniques need being always online. To address some of those shortcomings, we introduce Andro-profiler, a hybrid behavior based analysis and classification system for mobile malware. Andro-profiler main goals are efficiency, scalability, and accuracy. For that, Andro-profiler classifies malware by exploiting the behavior profiling extracted from the integrated system logs including system calls. Andro-profiler executes a malicious application on an emulator in order to generate the integrated system logs, and creates human-readable behavior profiles by analyzing the integrated system logs. By comparing the behavior profile of malicious application with representative behavior profile for each malware family using a weighted similarity matching technique, Andro-profiler detects and classifies it into malware families. The experiment results demonstrate that Andro-profiler is scalable, performs well in detecting and classifying malware with accuracy greater than 98 %, outperforms the existing state-of-the-art work, and is capable of identifying 0-day mobile malware samples.
Nonlinear Analysis of Squeeze Film Dampers Applied to Gas Turbine Helicopter Engines.
1980-11-01
calculate the stability (complex roots) of a multi-level gas turbine with aero- dynamic excitation. This program has been applied to the space shuttle...such phenomena as oil film whirl. This paper devlops an analysis technique incorporating modal analysis and fast Fourier transform tech- niques to...USING A SQUEEZE FILM BEARING By M. A. Simpson Research Engineer L. E. Barrett Reserach Assistant Professor Department of Mechanical and Aerospace
Modelling and analysis of gene regulatory network using feedback control theory
NASA Astrophysics Data System (ADS)
El-Samad, H.; Khammash, M.
2010-01-01
Molecular pathways are a part of a remarkable hierarchy of regulatory networks that operate at all levels of organisation. These regulatory networks are responsible for much of the biological complexity within the cell. The dynamic character of these pathways and the prevalence of feedback regulation strategies in their operation make them amenable to systematic mathematical analysis using the same tools that have been used with success in analysing and designing engineering control systems. In this article, we aim at establishing this strong connection through various examples where the behaviour exhibited by gene networks is explained in terms of their underlying control strategies. We complement our analysis by a survey of mathematical techniques commonly used to model gene regulatory networks and analyse their dynamic behaviour.
What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes
2017-01-01
Nuclear resonance vibrational spectroscopy (NRVS; also known as nuclear inelastic scattering, NIS) is a synchrotron-based method that reveals the full spectrum of vibrational dynamics for Mössbauer nuclei. Another major advantage, in addition to its completeness (no arbitrary optical selection rules), is the unique selectivity of NRVS. The basics of this recently developed technique are first introduced with descriptions of the experimental requirements and data analysis including the details of mode assignments. We discuss the use of NRVS to probe 57Fe at the center of heme and heme protein derivatives yielding the vibrational density of states for the iron. The application to derivatives with diatomic ligands (O2, NO, CO, CN–) shows the strong capabilities of identifying mode character. The availability of the complete vibrational spectrum of iron allows the identification of modes not available by other techniques. This permits the correlation of frequency with other physical properties. A significant example is the correlation we find between the Fe–Im stretch in six-coordinate Fe(XO) hemes and the trans Fe–N(Im) bond distance, not possible previously. NRVS also provides uniquely quantitative insight into the dynamics of the iron. For example, it provides a model-independent means of characterizing the strength of iron coordination. Prediction of the temperature-dependent mean-squared displacement from NRVS measurements yields a vibrational “baseline” for Fe dynamics that can be compared with results from techniques that probe longer time scales to yield quantitative insights into additional dynamical processes. PMID:28921972
NASA Astrophysics Data System (ADS)
Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke
2017-05-01
Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steenbergen, K. G., E-mail: kgsteen@gmail.com; Gaston, N.
2014-02-14
Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement formore » a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.« less
Steenbergen, K G; Gaston, N
2014-02-14
Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.
Reduced-Order Aerothermoelastic Analysis of Hypersonic Vehicle Structures
NASA Astrophysics Data System (ADS)
Falkiewicz, Nathan J.
Design and simulation of hypersonic vehicles require consideration of a variety of disciplines due to the highly coupled nature of the flight regime. In order to capture all of the potential effects on vehicle dynamics, one must consider the aerodynamics, aerodynamic heating, heat transfer, and structural dynamics as well as the interactions between these disciplines. The problem is further complicated by the large computational expense involved in capturing all of these effects and their interactions in a full-order sense. While high-fidelity modeling techniques exist for each of these disciplines, the use of such techniques is computationally infeasible in a vehicle design and control system simulation setting for such a highly coupled problem. Early in the design stage, many iterations of analyses may need to be carried out as the vehicle design matures, thus requiring quick analysis turnaround time. Additionally, the number of states used in the analyses must be small enough to allow for efficient control simulation and design. As a result, alternatives to full-order models must be considered. This dissertation presents a fully coupled, reduced-order aerothermoelastic framework for the modeling and analysis of hypersonic vehicle structures. The reduced-order transient thermal solution is a modal solution based on the proper orthogonal decomposition. The reduced-order structural dynamic model is based on projection of the equations of motion onto a Ritz modal subspace that is identified a priori. The reduced-order models are assembled into a time-domain aerothermoelastic simulation framework which uses a partitioned time-marching scheme to account for the disparate time scales of the associated physics. The aerothermoelastic modeling framework is outlined and the formulations associated with the unsteady aerodynamics, aerodynamic heating, transient thermal, and structural dynamics are outlined. Results demonstrate the accuracy of the reduced-order transient thermal and structural dynamic models under variation in boundary conditions and flight conditions. The framework is applied to representative hypersonic vehicle control surface structures and a variety of studies are conducted to assess the impact of aerothermoelastic effects on hypersonic vehicle dynamics. The results presented in this dissertation demonstrate the ability of the proposed framework to perform efficient aerothermoelastic analysis.
Application of dynamic programming to control khuzestan water resources system
Jamshidi, M.; Heidari, M.
1977-01-01
An approximate optimization technique based on discrete dynamic programming called discrete differential dynamic programming (DDDP), is employed to obtain the near optimal operation policies of a water resources system in the Khuzestan Province of Iran. The technique makes use of an initial nominal state trajectory for each state variable, and forms corridors around the trajectories. These corridors represent a set of subdomains of the entire feasible domain. Starting with such a set of nominal state trajectories, improvements in objective function are sought within the corridors formed around them. This leads to a set of new nominal trajectories upon which more improvements may be sought. Since optimization is confined to a set of subdomains, considerable savings in memory and computer time are achieved over that of conventional dynamic programming. The Kuzestan water resources system considered in this study is located in southwest Iran, and consists of two rivers, three reservoirs, three hydropower plants, and three irrigable areas. Data and cost benefit functions for the analysis were obtained either from the historical records or from similar studies. ?? 1977.
Nanoscale live cell optical imaging of the dynamics of intracellular microvesicles in neural cells.
Lee, Sohee; Heo, Chaejeong; Suh, Minah; Lee, Young Hee
2013-11-01
Recent advances in biotechnology and imaging technology have provided great opportunities to investigate cellular dynamics. Conventional imaging methods such as transmission electron microscopy, scanning electron microscopy, and atomic force microscopy are powerful techniques for cellular imaging, even at the nanoscale level. However, these techniques have limitations applications in live cell imaging because of the experimental preparation required, namely cell fixation, and the innately small field of view. In this study, we developed a nanoscale optical imaging (NOI) system that combines a conventional optical microscope with a high resolution dark-field condenser (Cytoviva, Inc.) and halogen illuminator. The NOI system's maximum resolution for live cell imaging is around 100 nm. We utilized NOI to investigate the dynamics of intracellular microvesicles of neural cells without immunocytological analysis. In particular, we studied direct, active random, and moderate random dynamic motions of intracellular microvesicles and visualized lysosomal vesicle changes after treatment of cells with a lysosomal inhibitor (NH4Cl). Our results indicate that the NOI system is a feasible, high-resolution optical imaging system for live small organelles that does not require complicated optics or immunocytological staining processes.
Development of a theoretical framework for analyzing cerebrospinal fluid dynamics
Cohen, Benjamin; Voorhees, Abram; Vedel, Søren; Wei, Timothy
2009-01-01
Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis. PMID:19772652
Brettl, S; Franko Zeitz, P; Fuchsluger, T A
2018-06-22
The in vivo analysis of corneal biomechanics in patients with keratoconus is especially of interest with respect to diagnosis, follow-up and monitoring of the disease. For a better understanding it is necessary to describe the potential of dynamic Scheimpflug measurements for the detection and interpretation of biomechanical changes in keratoconus. The current state of analyzing biomechanical changes in keratoconus with the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) is described. This technique represents a new approach for understanding corneal biomechanics. Furthermore, it was investigated whether the device can biomechanically quantify a rigidity increasing effect of therapeutic UV-crosslinking and whether early stages of keratoconus can be detected using dynamic Scheimpflug analysis. In patients with keratoconus, the in vivo analysis of corneal biomechanics using dynamic Scheimpflug measurements as a supplementary procedure can be of advantage with respect to disease management. By optimization of screening of subclinical keratoconus stages, this method widens the analytic spectrum regarding diagnosis and follow-up of the disease; however, further studies are required to evaluate whether visual outcome of affected patients can be improved by earlier diagnosis.
Large Angle Transient Dynamics (LATDYN) user's manual
NASA Technical Reports Server (NTRS)
Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.
1991-01-01
A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.
Automated quantification of the synchrogram by recurrence plot analysis.
Nguyen, Chinh Duc; Wilson, Stephen James; Crozier, Stuart
2012-04-01
Recently, the concept of phase synchronization of two weakly coupled oscillators has raised a great research interest and has been applied to characterize synchronization phenomenon in physiological data. Phase synchronization of cardiorespiratory coupling is often studied by a synchrogram analysis, a graphical tool investigating the relationship between instantaneous phases of two signals. Although several techniques have been proposed to automatically quantify the synchrogram, most of them require a preselection of a phase-locking ratio by trial and error. One technique does not require this information; however, it is based on the power spectrum of phase's distribution in the synchrogram, which is vulnerable to noise. This study aims to introduce a new technique to automatically quantify the synchrogram by studying its dynamic structure. Our technique exploits recurrence plot analysis, which is a well-established tool for characterizing recurring patterns and nonstationarities in experiments. We applied our technique to detect synchronization in simulated and measured infants' cardiorespiratory data. Our results suggest that the proposed technique is able to systematically detect synchronization in noisy and chaotic data without preselecting the phase-locking ratio. By embedding phase information of the synchrogram into phase space, the phase-locking ratio is automatically unveiled as the number of attractors.
Riva, F; Bisi, M C; Stagni, R
2013-01-01
Falls represent a heavy economic and clinical burden on society. The identification of individual chronic characteristics associated with falling is of fundamental importance for the clinicians; in particular, the stability of daily motor tasks is one of the main factors that the clinicians look for during assessment procedures. Various methods for the assessment of stability in human movement are present in literature, and methods coming from stability analysis of nonlinear dynamic systems applied to biomechanics recently showed promise. One of these techniques is orbital stability analysis via Floquet multipliers. This method allows to measure orbital stability of periodic nonlinear dynamic systems and it seems a promising approach for the definition of a reliable motor stability index, taking into account for the whole task cycle dynamics. Despite the premises, its use in the assessment of fall risk has been deemed controversial. The aim of this systematic review was therefore to provide a critical evaluation of the literature on the topic of applications of orbital stability analysis in biomechanics, with particular focus to methodologic aspects. Four electronic databases have been searched for articles relative to the topic; 23 articles were selected for review. Quality of the studies present in literature has been assessed with a customised quality assessment tool. Overall quality of the literature in the field was found to be high. The most critical aspect was found to be the lack of uniformity in the implementation of the analysis to biomechanical time series, particularly in the choice of state space and number of cycles to include in the analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Pharmaceutical applications of dynamic mechanical thermal analysis.
Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P
2012-04-01
The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V. All rights reserved.
Calleja, Felipe; Galván, Cristina; Silió-Calzada, Ana; Juanes, José A; Ondiviela, Bárbara
2017-09-01
Long-term studies are necessary to establish trends and to understand seagrasses' spatial and temporal dynamic. Nevertheless, this type of research is scarce, as the required databases are often unavailable. The objectives of this study are to create a method for mapping the seagrass Zostera noltei using remote sensing techniques, and to apply it to the characterization of the meadows' extension trend and the potential drivers of change. A time series was created using a novel method based on remote sensing techniques that proved to be adequate for mapping the seagrass in the emerged intertidal. The meadows seem to have a decreasing trend between 1984 and the early 2000s, followed by an increasing tendency that represents a recovery in the extension area of the species. This 30-year analysis demonstrated the Z. noltei's recovery in the study site, similar to that in other estuaries nearby and contrary to the worldwide decreasing behavior of seagrasses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Periodic orbit analysis of a system with continuous symmetry—A tutorial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budanur, Nazmi Burak, E-mail: budanur3@gatech.edu; Cvitanović, Predrag; Borrero-Echeverry, Daniel
2015-07-15
Dynamical systems with translational or rotational symmetry arise frequently in studies of spatially extended physical systems, such as Navier-Stokes flows on periodic domains. In these cases, it is natural to express the state of the fluid in terms of a Fourier series truncated to a finite number of modes. Here, we study a 4-dimensional model with chaotic dynamics and SO(2) symmetry similar to those that appear in fluid dynamics problems. A crucial step in the analysis of such a system is symmetry reduction. We use the model to illustrate different symmetry-reduction techniques. The system's relative equilibria are conveniently determined bymore » rewriting the dynamics in terms of a symmetry-invariant polynomial basis. However, for the analysis of its chaotic dynamics, the “method of slices,” which is applicable to very high-dimensional problems, is preferable. We show that a Poincaré section taken on the 'slice' can be used to further reduce this flow to what is for all practical purposes a unimodal map. This enables us to systematically determine all relative periodic orbits and their symbolic dynamics up to any desired period. We then present cycle averaging formulas adequate for systems with continuous symmetry and use them to compute dynamical averages using relative periodic orbits. The convergence of such computations is discussed.« less
Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.
Siettos, Constantinos; Starke, Jens
2016-09-01
The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sun, Jiwen; Wei, Ling; Fu, Danying
2002-01-01
resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.
Computer-aided-engineering system for modeling and analysis of ECLSS integration testing
NASA Technical Reports Server (NTRS)
Sepahban, Sonbol
1987-01-01
The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.
NASA Astrophysics Data System (ADS)
Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang
2016-12-01
Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.
Validating clustering of molecular dynamics simulations using polymer models.
Phillips, Joshua L; Colvin, Michael E; Newsam, Shawn
2011-11-14
Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers.
Validating clustering of molecular dynamics simulations using polymer models
2011-01-01
Background Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers. PMID:22082218
Resolution of structural heterogeneity in dynamic crystallography
Ren, Zhong; Chan, Peter W. Y.; Moffat, Keith; Pai, Emil F.; Royer, William E.; Šrajer, Vukica; Yang, Xiaojing
2013-01-01
Dynamic behavior of proteins is critical to their function. X-ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamic ‘structural changes’ are often indirectly inferred from ‘structural differences’ by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods. PMID:23695239
Resolution of structural heterogeneity in dynamic crystallography.
Ren, Zhong; Chan, Peter W Y; Moffat, Keith; Pai, Emil F; Royer, William E; Šrajer, Vukica; Yang, Xiaojing
2013-06-01
Dynamic behavior of proteins is critical to their function. X-ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamic `structural changes' are often indirectly inferred from `structural differences' by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods.
Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics. Revised
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1999-01-01
A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example.
Zhu, Ming-Zhi; Chen, Gui-Lin; Wu, Jian-Lin; Li, Na; Liu, Zhong-Hua; Guo, Ming-Quan
2018-04-23
Medicinal plants are gaining increasing attention worldwide due to their empirical therapeutic efficacy and being a huge natural compound pool for new drug discovery and development. The efficacy, safety and quality of medicinal plants are the main concerns, which are highly dependent on the comprehensive analysis of chemical components in the medicinal plants. With the advances in mass spectrometry (MS) techniques, comprehensive analysis and fast identification of complex phytochemical components have become feasible, and may meet the needs, for the analysis of medicinal plants. Our aim is to provide an overview on the latest developments in MS and its hyphenated technique and their applications for the comprehensive analysis of medicinal plants. Application of various MS and its hyphenated techniques for the analysis of medicinal plants, including but not limited to one-dimensional chromatography, multiple-dimensional chromatography coupled to MS, ambient ionisation MS, and mass spectral database, have been reviewed and compared in this work. Recent advancs in MS and its hyphenated techniques have made MS one of the most powerful tools for the analysis of complex extracts from medicinal plants due to its excellent separation and identification ability, high sensitivity and resolution, and wide detection dynamic range. To achieve high-throughput or multi-dimensional analysis of medicinal plants, the state-of-the-art MS and its hyphenated techniques have played, and will continue to play a great role in being the major platform for their further research in order to obtain insight into both their empirical therapeutic efficacy and quality control. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Del Gaudio, Vincenzo; Wasowski, Janusz
2016-04-01
In the last few decades, we have witnessed a growing awareness of the role of site dynamic response to seismic shaking in slope failures during earthquakes. Considering the time and costs involved in acquiring accelerometer data on landslide prone slopes, the analysis of ambient noise offers a profitable investigative alternative. Standard procedures of ambient noise analysis, according to the technique known as HVNR or Nakamura's method, were originally devised to interpret data under simple site conditions similar to 1D layering (flat horizontal layering infinitely extended). In such cases, conditions of site amplification, characterized by a strong impedance contrast between a soft surface layer and a stiff bedrock, result in a single pronounced isotropic maximum of spectral ratios between horizontal and vertical component of ambient noise. However, previous studies have shown that the dynamic response of slopes affected by landslides is rather complex, being characterized by multiple resonance peaks with directional variability, thus, the use of standard techniques can encounter difficulties in providing reliable information. A new approach of data analysis has recently been proposed to exploit the potential of information content of Rayleigh waves present in ambient noise, with regard to the identification of frequency and orientation of directional resonance. By exploiting ground motion ellipticity this approach can also provide information on vertical distribution of S-wave velocity, which controls site amplification factors. The method, based on the identification of Rayleigh wave packets from instantaneous polarization properties of ambient noise, was first tested using synthetic signals in order to optimize the data processing system. Then the improved processing scheme is adopted to re-process and re-interpret the ambient noise data acquired on landslide prone slopes around Caramanico Terme (central Italy), at sites monitored also with accelerometer stations. The comparison of ambient noise analysis results with the outcomes of accelerometer monitoring reveals potential and limits of the new method for the investigations on slope dynamic response.
Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis.
Du, Jiang; Karimi, Afshin; Wu, Yijing; Korosec, Frank R; Grist, Thomas M; Mistretta, Charles A
2011-04-01
Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engine turbines is to decompose a computational fluid dynamics (CFD).generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies using cyclically symmetric structural dynamic models. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non ]harmonic excitation sources that become present in complex flows. This complex content can only be captured by a CFD flow field encompassing at least an entire revolution. A substantial development effort to create a series of software programs to enable application of the 360 degree forcing function in a frequency response analysis on cyclic symmetric models has been completed (to be described in a future paper), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements and the disk modeled with plates (using the finite element code MSC/NASTRAN). The focus of this model is to be representative of response of realistic bladed disks, and so the dimensions are roughly equivalent to the new J2X rocket engine 1st stage fuel pump turbine. The simplicity of the model allows the CFD load to be able to be readily applied, along with analytical and experimental variations in both the temporal and spatial fourier components of the excitation. In addition, this model is a first step in identifying response differences between transient and frequency forced response analysis techniques. The second phase assesses this difference for a much more realistic solid model of a bladed-disk in order to evaluate the effect of the spatial variation in loading on blade dominated modes. Neither research on the accuracy of the frequency response method when used in this context or a comprehensive study of the effect of test-observed variation on blade forced response have been found in the literature, so this research is a new contribution to practical structural dynamic analysis of gas turbines. The primary excitation of the upstream nozzles interacts with the blades on fuel pump of the J2X causes the 5th Nodal diameter modes to be excited, as explained by Tyler and Sofrin1, so a modal analysis was first performed on the beam/plate model and the 5ND bladed-disk mode at 40167 hz was identified and chosen to be the one excited at resonance (see figure 1). The first forced response analysis with this model focuses on identifying differences between frequency and transient response analyses. A hypothesis going into the analysis was that perhaps the frequency response was enforcing a temporal periodicity that did not really exist, and so therefore it would overestimate the response. As high dynamic response was a considerable source of stress in the J2X, examining this concept could potentially be beneficial for the program.
Shock-Ramp Loading of Tin and Aluminum
NASA Astrophysics Data System (ADS)
Seagle, Christopher; Davis, Jean; Martin, Matthew; Hanshaw, Heath
2013-06-01
Equation of state properties for materials off the principle Hugoniot and isentrope are currently poorly constrained. The ability to directly probe regions of phase space between the Hugoniot and isentrope under dynamic loading will greatly improve our ability to constrain equation of state properties under a variety of conditions and study otherwise inaccessible phase transitions. We have developed a technique at Sandia's Z accelerator to send a steady shock wave through a material under test, and subsequently ramp compress from the Hugoniot state. The shock-ramp experimental platform results in a unique loading path and enables probing of equation of state properties in regions of phase space otherwise difficult to access in dynamic experiments. A two-point minimization technique has been developed for the analysis of shock-ramp velocity data. The technique correctly accounts for the ``initial'' Hugoniot density of the material under test before the ramp wave arrives. Elevated quasi-isentropes have been measured for solid aluminum up to 1.4 Mbar and liquid tin up to 1.1 Mbar using the shock ramp technique. These experiments and the analysis of the resulting velocity profiles will be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.
Towards Dynamic Remote Data Auditing in Computational Clouds
Khurram Khan, Muhammad; Anuar, Nor Badrul
2014-01-01
Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA) techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server. PMID:25121114
Gupta, Jasmine; Nunes, Cletus; Vyas, Shyam; Jonnalagadda, Sriramakamal
2011-03-10
The objectives of this study were (i) to develop a computational model based on molecular dynamics technique to predict the miscibility of indomethacin in carriers (polyethylene oxide, glucose, and sucrose) and (ii) to experimentally verify the in silico predictions by characterizing the drug-carrier mixtures using thermoanalytical techniques. Molecular dynamics (MD) simulations were performed using the COMPASS force field, and the cohesive energy density and the solubility parameters were determined for the model compounds. The magnitude of difference in the solubility parameters of drug and carrier is indicative of their miscibility. The MD simulations predicted indomethacin to be miscible with polyethylene oxide and to be borderline miscible with sucrose and immiscible with glucose. The solubility parameter values obtained using the MD simulations values were in reasonable agreement with those calculated using group contribution methods. Differential scanning calorimetry showed melting point depression of polyethylene oxide with increasing levels of indomethacin accompanied by peak broadening, confirming miscibility. In contrast, thermal analysis of blends of indomethacin with sucrose and glucose verified general immiscibility. The findings demonstrate that molecular modeling is a powerful technique for determining the solubility parameters and predicting miscibility of pharmaceutical compounds. © 2011 American Chemical Society
Towards dynamic remote data auditing in computational clouds.
Sookhak, Mehdi; Akhunzada, Adnan; Gani, Abdullah; Khurram Khan, Muhammad; Anuar, Nor Badrul
2014-01-01
Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA) techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server.
Parachute Aerodynamics From Video Data
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Queen, Eric M.; Cruz, Juan R.
2005-01-01
A new data analysis technique for the identification of static and dynamic aerodynamic stability coefficients from wind tunnel test video data is presented. This new technique was applied to video data obtained during a parachute wind tunnel test program conducted in support of the Mars Exploration Rover Mission. Total angle-of-attack data obtained from video images were used to determine the static pitching moment curve of the parachute. During the original wind tunnel test program the static pitching moment curve had been determined by forcing the parachute to a specific total angle-of -attack and measuring the forces generated. It is shown with the new technique that this parachute, when free to rotate, trims at an angle-of-attack two degrees lower than was measured during the forced-angle tests. An attempt was also made to extract pitch damping information from the video data. Results suggest that the parachute is dynamically unstable at the static trim point and tends to become dynamically stable away from the trim point. These trends are in agreement with limit-cycle-like behavior observed in the video. However, the chaotic motion of the parachute produced results with large uncertainty bands.
Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics
NASA Astrophysics Data System (ADS)
Guo, Qiang
Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of solutions of continuous time wavelet numerical methods for the nonlinear aerosol dynamics are proved by using Schauder's fixed point theorem and the variational technique. Optimal error estimates are derived for both continuous and discrete time wavelet Galerkin schemes. We further derive reliable and efficient a posteriori error estimate which is based on stable multiresolution wavelet bases and an adaptive space-time algorithm for efficient solution of linear parabolic differential equations. The adaptive space refinement strategies based on the locality of corresponding multiresolution processes are proved to converge. At last, we develop efficient numerical methods by combining the wavelet methods proposed in previous parts and the splitting technique to solve the spatial aerosol dynamic equations. Wavelet methods along the particle size direction and the upstream finite difference method along the spatial direction are alternately used in each time interval. Numerical experiments are taken to show the effectiveness of our developed methods.
Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry
NASA Astrophysics Data System (ADS)
Iqbal, S.; Gualini, M. M. S.
2013-06-01
In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation, this technique can possibly be developed for in-vivo experiments on animals and humans and then may prospectively be matured for future clinical usage.
Precipitates studies in ultrafine-grained Al alloys with enhanced strength and conductivity
NASA Astrophysics Data System (ADS)
Sitdikov, V. D.; Murashkin, M. Yu.; Valiev, R. Z.
2017-05-01
The paper analyzes precipitation of nanosized particles in dynamically aged Al-Mg-Si alloy subjected to high pressure torsion in the temperature range from 25°C to 230°C. Precipitate types are identified and quantified within the frames of the modified X-ray phase analysis (XPA) technique. The generality and difference in the mechanisms and kinetics of precipitation during artificial and dynamic strain aging are analyzed, which opens new ways to further increase properties in promising aluminum conductors.
System dynamics and simulation of LSS
NASA Technical Reports Server (NTRS)
Ryan, R. F.
1978-01-01
Large Space Structures have many unique problems arising from mission objectives and the resulting configuration. Inherent in these configurations is a strong coupling among several of the designing disciplines. In particular, the coupling between structural dynamics and control is a key design consideration. The solution to these interactive problems requires efficient and accurate analysis, simulation and test techniques, and properly planned and conducted design trade studies. The discussion presented deals with these subjects and concludes with a brief look at some NASA capabilities which can support these technology studies.
Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1987-01-01
A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the free vibration solution is obtained in a closed-form, and the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.
Interaction Dynamics Between a Flexible Rotor and an Auxiliary Clearance Bearing
NASA Technical Reports Server (NTRS)
Lawen, James L., Jr.; Flowers, George T.
1996-01-01
This study investigates the application of synchronous interaction dynamics methodology to the design of auxiliary bearing systems. The technique is applied to a flexible rotor system and comparisons are made between the behavior predicted by this analysis method and the observed simulation response characteristics. Of particular interest is the influence of coupled shaft/bearing vibration modes on rotordynamical behavior. Experimental studies are also perFormed to validate the simulation results and provide insight into the expected behavior of such a system.
1977-09-01
Division, Barry Wright Corporation, Watertown, MA DESIGN OF ELASTOMERIC COMPONENTS BY USING THE FINITE -" b ELEMENT TECHNIQUE R.H. Finney and B.P. Gupta...Alabama in Huntsville, Huntsville, AL PAPERS APPEARING IN PART 2 Vibration Analysis SOME ASPECTS OF VIBRATION CONTROL SUPPORT DESIGN 0 P. Bezler and J.R...at the Air Force Flight August 1968, pp. 239-248. Dynamics Laboratory (AFFDL). The laser force measuring mounting brackets were designed and 5. G. K
NASA Technical Reports Server (NTRS)
Thorp, Scott A.
1992-01-01
This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.
Dynamic fatigue of a lithia-alumina-silica glass-ceramic
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.
1990-01-01
A dynamic fatigue study was performed on a Li2O-Al2O3-SiO2 glass-ceramic in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N = 20) to stress corrosion in ambient conditions. Analysis also indicated the elements should survive applied stresses incurred during grinding and polishing operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishiyama, Katsuhiko; Hoshino, Tadatsugu; Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522
2007-05-21
Interactions between luciferase and a nanofabricated hydrophilic Si surface were explored by molecular-dynamics simulations. The structural changes in the active-site residues, the residues affecting the luciferin binding, and the residues affecting the bioluminescence color were smaller on the nanofabricated hydrophilic Si surface than on both a hydrophobic Si surface and a hydrophilic Si surface. The nanofabrication and wet-treatment techniques are expected to prevent the decrease in activity of luciferase on the Si surface.
1985-06-01
purposes. 55 15 525 + 2 225L L53 + L3 ) + 2G3(L 2 + L35L4 + L45)" For the present system identification + 2G(L45 2 + L45L5 + L5 "L 1 technique, the...orbital model is comprised of 257 nodes and 819 dynamic:"DOF’s. k; were compared to ITD results for a wide variety of TD input parameters. Overall, the
Analysis of pilot control strategy
NASA Technical Reports Server (NTRS)
Heffley, R. K.; Hanson, G. D.; Jewell, W. F.; Clement, W. F.
1983-01-01
Methods for nonintrusive identification of pilot control strategy and task execution dynamics are presented along with examples based on flight data. The specific analysis technique is Nonintrusive Parameter Identification Procedure (NIPIP), which is described in a companion user's guide (NASA CR-170398). Quantification of pilot control strategy and task execution dynamics is discussed in general terms followed by a more detailed description of how NIPIP can be applied. The examples are based on flight data obtained from the NASA F-8 digital fly by wire airplane. These examples involve various piloting tasks and control axes as well as a demonstration of how the dynamics of the aircraft itself are identified using NIPIP. Application of NIPIP to the AFTI/F-16 flight test program is discussed. Recommendations are made for flight test applications in general and refinement of NIPIP to include interactive computer graphics.
NASA Astrophysics Data System (ADS)
Mitchell, Justin Chadwick
2011-12-01
Using light to probe the structure of matter is as natural as opening our eyes. Modern physics and chemistry have turned this art into a rich science, measuring the delicate interactions possible at the molecular level. Perhaps the most commonly used tool in computational spectroscopy is that of matrix diagonalization. While this is invaluable for calculating everything from molecular structure and energy levels to dipole moments and dynamics, the process of numerical diagonalization is an opaque one. This work applies symmetry and semi-classical techniques to elucidate numerical spectral analysis for high-symmetry molecules. Semi-classical techniques, such as the Potential Energy Surfaces, have long been used to help understand molecular vibronic and rovibronic spectra and dynamics. This investigation focuses on newer semi-classical techniques that apply Rotational Energy Surfaces (RES) to rotational energy level clustering effects in high-symmetry molecules. Such clusters exist in rigid rotor molecules as well as deformable spherical tops. This study begins by using the simplicity of rigid symmetric top molecules to clarify the classical-quantum correspondence of RES semi-classical analysis and then extends it to a more precise and complete theory of modern high-resolution spectra. RES analysis is extended to molecules having more complex and higher rank tensorial rotational and rovibrational Hamiltonians than were possible to understand before. Such molecules are shown to produce an extraordinary range of rotational level clusters, corresponding to a panoply of symmetries ranging from C4v to C2 and C1 (no symmetry) with a corresponding range of new angular momentum localization and J-tunneling effects. Using RES topography analysis and the commutation duality relations between symmetry group operators in the lab-frame to those in the body-frame, it is shown how to better describe and catalog complex splittings found in rotational level clusters. Symmetry character analysis is generalized to give analytic eigensolutions. An appendix provides vibrational analogies. For the first time, interactions between molecular vibrations (polyads) are described semi-classically by multiple RES. This is done for the nu 3/2nu4 dyad of CF4. The nine-surface RES topology of the U(9)-dyad agrees with both computational and experimental work. A connection between this and a simpler U(2) example is detailed in an Appendix.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
Magic Angle Spinning NMR of Viruses
Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana
2015-01-01
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197
Sensitivity analyses for simulating pesticide impacts on honey bee colonies
USDA-ARS?s Scientific Manuscript database
We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop+Pesticide model. Simulations are performed of hive population trajectories with and without pesticide exposure to determine the eff...
Scaffolding Dynamics and the Emergence of Problematic Learning Trajectories
ERIC Educational Resources Information Center
Steenbeek, Henderien; Jansen, Louise; van Geert, Paul
2012-01-01
This study aims at examining problematic learning trajectories of students with emotional behavioral disorders (EBD) by means of a longitudinal and time serial (micro genetic) study of individual instruction sessions during arithmetic lessons. Micro genetic analysis techniques were applied on the variable "responsiveness" in the scaffolding…
2010-04-13
ERIC EARHART (AEROSPACE ENGINEER, ER41 PROPULSION STRUCTURAL & DYNAMICS ANALYSIS BRANCH) DISCUSSES DATA PRODUCED BY A UNIQUE MECHANICAL TEST SETUP THAT MEASURES STRAIN ON A SINGLE SAMPLE, USING TWO DIFFERENT TECHNIQUES AT THE SAME TIME. THE TEST FIXTURE HOLDS A SPECIMEN THAT REPRESENTS A LIQUID OXYGEN (LOX) BEARING FROM THE J2-X ENGINE
The art of spacecraft design: A multidisciplinary challenge
NASA Technical Reports Server (NTRS)
Abdi, F.; Ide, H.; Levine, M.; Austel, L.
1989-01-01
Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.
Nonlinear truncation error analysis of finite difference schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1983-01-01
It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.
NASA Astrophysics Data System (ADS)
Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav
2018-04-01
Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.
Coupled rotor/airframe vibration analysis
NASA Technical Reports Server (NTRS)
Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.
1982-01-01
A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Huang, Zhenyu; Rice, Mark J.
Contingency analysis studies are necessary to assess the impact of possible power system component failures. The results of the contingency analysis are used to ensure the grid reliability, and in power market operation for the feasibility test of market solutions. Currently, these studies are performed in real time based on the current operating conditions of the grid with a set of pre-selected contingency list, which might result in overlooking some critical contingencies caused by variable system status. To have a complete picture of a power grid, more contingencies need to be studied to improve grid reliability. High-performance computing techniques holdmore » the promise of being able to perform the analysis for more contingency cases within a much shorter time frame. This paper evaluates the performance of counter-based dynamic load balancing schemes for a massive contingency analysis program on 10,000+ cores. One million N-2 contingency analysis cases with a Western Electricity Coordinating Council power grid model have been used to demonstrate the performance. The speedup of 3964 with 4096 cores and 7877 with 10240 cores are obtained. This paper reports the performance of the load balancing scheme with a single counter and two counters, describes disk I/O issues, and discusses other potential techniques for further improving the performance.« less
A computer analysis of reflex eyelid motion in normal subjects and in facial neuropathy.
Somia, N N; Rash, G S; Epstein, E E; Wachowiak, M; Sundine, M J; Stremel, R W; Barker, J H; Gossman, D
2000-12-01
To demonstrate how computerized eyelid motion analysis can quantify the human reflex blink. Seventeen normal subjects and 10 patients with unilateral facial nerve paralysis were analyzed. Eyelid closure is currently evaluated by systems primarily designed to assess lower/midfacial movements. The methods are subjective, difficult to reproduce, and measure only volitional closure. Reflex closure is responsible for eye hydration, and its evaluation demands dynamic analysis. A 60Hz video camera incorporated into a helmet was used to analyze blinking. Reflective markers on the forehead and eyelids allowed for the dynamic measurement of the reflex blink. Eyelid displacement, velocity and acceleration were calculated. The degree of synchrony between bilateral blinks was also determined. This study demonstrates that video motion analysis can describe normal and altered eyelid motions in a quantifiable manner. To our knowledge, this is the first study to measure dynamic reflex blinks. Eyelid closure may now be evaluated in kinematic terms. This technique could increase understanding of eyelid motion and permit more accurate evaluation of eyelid function. Dynamic eyelid evaluation has immediate applications in the treatment of facial palsy affecting the reflex blink. Relevance No method has been developed that objectively quantifies dynamic eyelid closure. Methods currently in use evaluate only volitional eyelid closure, and are based on direct and indirect observer assessments. These methods are subjective and are incapable of analyzing dynamic eyelid movements, which are critical to maintenance of corneal hydration and comfort. A system that quantifies eyelid kinematics can provide a functional analysis of blink disorders and an objective evaluation of their treatment(s).
Dynamics analysis of fractional order Yu-Wang system
NASA Astrophysics Data System (ADS)
Bhalekar, Sachin
2013-10-01
Fractional order version of a dynamical system introduced by Yu and Wang (Engineering, Technology & Applied Science Research, 2, (2012) 209-215) is discussed in this article. The basic dynamical properties of the system are studied. Minimum effective dimension 0.942329 for the existence of chaos in the proposed system is obtained using the analytical result. For chaos detection, we have calculated maximum Lyapunov exponents for various values of fractional order. Feedback control method is then used to control chaos in the system. Further, the system is synchronized with itself and with fractional order financial system using active control technique. Modified Adams-Bashforth-Moulton algorithm is used for numerical simulations.
Gait analysis--precise, rapid, automatic, 3-D position and orientation kinematics and dynamics.
Mann, R W; Antonsson, E K
1983-01-01
A fully automatic optoelectronic photogrammetric technique is presented for measuring the spatial kinematics of human motion (both position and orientation) and estimating the inertial (net) dynamics. Calibration and verification showed that in a two-meter cube viewing volume, the system achieves one millimeter of accuracy and resolution in translation and 20 milliradians in rotation. Since double differentiation of generalized position data to determine accelerations amplifies noise, the frequency domain characteristics of the system were investigated. It was found that the noise and all other errors in the kinematic data contribute less than five percent error to the resulting dynamics.
The effect of cyclic feathering motions on dynamic rotor loads. [for helicopters
NASA Technical Reports Server (NTRS)
Harvey, K. W.
1974-01-01
The dynamic loads of a helicopter rotor in forward flight are influenced significantly by the geometric pitch angles between the structural axes of the hub and blade sections and the plane of rotation. The analytical study presented includes elastic coupling between inplane and out-of-plane deflections as a function of geometric pitch between the plane of rotation and the principal axes of inertia of each blade. The numerical evaluation is based on a transient analysis using lumped masses and elastic substructure techniques. A comparison of cases with and without cyclic feathering motion shows the effect on computed dynamic rotor loads.
Aerodynamic characteristics at high angles of attack
NASA Technical Reports Server (NTRS)
Chambers, J. R.
1977-01-01
An overview is presented of the aerodynamic inputs required for analysis of flight dynamics in the high-angle-of-attack regime wherein large-disturbance, nonlinear effects predominate. An outline of the presentation is presented. The discussion includes: (1) some important fundamental phenomena which determine to a large extent the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area.
Nanopore detection of DNA molecules in crowded neutral polymer solutions
NASA Astrophysics Data System (ADS)
Sharma, Rajesh Kumar; Dai, Liang; Doyle, Patrick; Garaj, Slaven
Nanopore sensing is a precise technique for analysis of the structure and dynamics of individual biomolecules in different environments, and has even become a prominent technique for next-gen DNA sequencing. In the nanopore sensor, an individual DNA molecule is electrophoretically translocated through a single, nanometer-scaled pore in a solid-state membrane separating two chambers filled with electrolyte. The conformation of the molecule is deduced from modulations in the ionic current through the pore during the translocation event. Using nanopores, we investigated the dynamics of the DNA molecules in a crowded solution of neutral polymers of different sizes and concentrations. The translocation dynamics depends significantly on the size and concentration of the polymers, as different contributions to the electrophoretic and entropic forces on the DNA molecules come into play. This setup offers an excellent, tuneable model-system for probing biologically relevant questions regarding the behaviour of DNA molecules in highly confined and crowded environments. Singapore-MIT Alliance for Research and Technology.
NASA Astrophysics Data System (ADS)
Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.
2016-09-01
The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.
Fragment size distribution statistics in dynamic fragmentation of laser shock-loaded tin
NASA Astrophysics Data System (ADS)
He, Weihua; Xin, Jianting; Zhao, Yongqiang; Chu, Genbai; Xi, Tao; Shui, Min; Lu, Feng; Gu, Yuqiu
2017-06-01
This work investigates the geometric statistics method to characterize the size distribution of tin fragments produced in the laser shock-loaded dynamic fragmentation process. In the shock experiments, the ejection of the tin sample with etched V-shape groove in the free surface are collected by the soft recovery technique. Subsequently, the produced fragments are automatically detected with the fine post-shot analysis techniques including the X-ray micro-tomography and the improved watershed method. To characterize the size distributions of the fragments, a theoretical random geometric statistics model based on Poisson mixtures is derived for dynamic heterogeneous fragmentation problem, which reveals linear combinational exponential distribution. The experimental data related to fragment size distributions of the laser shock-loaded tin sample are examined with the proposed theoretical model, and its fitting performance is compared with that of other state-of-the-art fragment size distribution models. The comparison results prove that our proposed model can provide far more reasonable fitting result for the laser shock-loaded tin.
Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.
Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M
2000-01-01
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).
Inverse dynamics of a 3 degree of freedom spatial flexible manipulator
NASA Technical Reports Server (NTRS)
Bayo, Eduardo; Serna, M.
1989-01-01
A technique is presented for solving the inverse dynamics and kinematics of 3 degree of freedom spatial flexible manipulator. The proposed method finds the joint torques necessary to produce a specified end effector motion. Since the inverse dynamic problem in elastic manipulators is closely coupled to the inverse kinematic problem, the solution of the first also renders the displacements and rotations at any point of the manipulator, including the joints. Furthermore the formulation is complete in the sense that it includes all the nonlinear terms due to the large rotation of the links. The Timoshenko beam theory is used to model the elastic characteristics, and the resulting equations of motion are discretized using the finite element method. An iterative solution scheme is proposed that relies on local linearization of the problem. The solution of each linearization is carried out in the frequency domain. The performance and capabilities of this technique are tested through simulation analysis. Results show the potential use of this method for the smooth motion control of space telerobots.
Intelligent data analysis to model and understand live cell time-lapse sequences.
Paterson, Allan; Ashtari, M; Ribé, D; Stenbeck, G; Tucker, A
2012-01-01
One important aspect of cellular function, which is at the basis of tissue homeostasis, is the delivery of proteins to their correct destinations. Significant advances in live cell microscopy have allowed tracking of these pathways by following the dynamics of fluorescently labelled proteins in living cells. This paper explores intelligent data analysis techniques to model the dynamic behavior of proteins in living cells as well as to classify different experimental conditions. We use a combination of decision tree classification and hidden Markov models. In particular, we introduce a novel approach to "align" hidden Markov models so that hidden states from different models can be cross-compared. Our models capture the dynamics of two experimental conditions accurately with a stable hidden state for control data and multiple (less stable) states for the experimental data recapitulating the behaviour of particle trajectories within live cell time-lapse data. In addition to having successfully developed an automated framework for the classification of protein transport dynamics from live cell time-lapse data our model allows us to understand the dynamics of a complex trafficking pathway in living cells in culture.
Döllinger, M; Rosanowski, F; Eysholdt, U; Lohscheller, J
2008-12-01
The understanding of normal and pathological vocal fold dynamics is the basis for a pathophysiological motivated voice therapy. Crucial vocal fold dynamics concerning voice production occur at the medial part of the vocal fold which is seen as the most critical region of mucosal wave propagation. Due to the limited size of the larynx the possibilities of laryngeal imaging by endoscopic techniques are limited. This work describes an experimental set-up that enables quantification of the entire medial and superior vocal fold surface using excised human and in vivo canine larynges. The data obtained enable analysis of vocal fold deflections, velocities, and mucosal wave propagation. The reciprocal dependencies can be examined and different areas of vocal fold dynamics located. The vertical components obscured in clinical endoscopy can be visualized. This is not negligible. In particular it is shown that the vertical deflection, which cannot be observed by clinical examination, plays an important part in the dynamics and therefore cannot be omitted for therapeutic procedures. The theoretically assumed entrainment and influence of the two main vibration modes enabling normal phonation is confirmed.
Development of a syringe pump assisted dynamic headspace sampling technique for needle trap device.
Eom, In-Yong; Niri, Vadoud H; Pawliszyn, Janusz
2008-07-04
This paper describes a new approach that combines needle trap devices (NTDs) with a dynamic headspace sampling technique (purge and trap) using a bidirectional syringe pump. The needle trap device is a 22-G stainless steel needle 3.5-in. long packed with divinylbenzene sorbent particles. The same sized needle, without packing, was used for purging purposes. We chose an aqueous mixture of benzene, toluene, ethylbenzene, and p-xylene (BTEX) and developed a sequential purge and trap (SPNT) method, in which sampling (trapping) and purging cycles were performed sequentially by the use of syringe pump with different distribution channels. In this technique, a certain volume (1 mL) of headspace was sequentially sampled using the needle trap; afterwards, the same volume of air was purged into the solution at a high flow rate. The proposed technique showed an effective extraction compared to the continuous purge and trap technique, with a minimal dilution effect. Method evaluation was also performed by obtaining the calibration graphs for aqueous BTEX solutions in the concentration range of 1-250 ng/mL. The developed technique was compared to the headspace solid-phase microextraction method for the analysis of aqueous BTEX samples. Detection limits as low as 1 ng/mL were obtained for BTEX by NTD-SPNT.
NASA Astrophysics Data System (ADS)
Suzuki, Yoshi-ichi; Seideman, Tamar; Stener, Mauro
2004-01-01
Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.
Finite element analysis using NASTRAN applied to helicopter transmission vibration/noise reduction
NASA Technical Reports Server (NTRS)
Howells, R. W.; Sciarra, J. J.
1975-01-01
A finite element NASTRAN model of the complete forward rotor transmission housing for the Boeing Vertol CH-47 helicopter was developed and applied to reduce transmission vibration/noise at its source. In addition to a description of the model, a technique for vibration/noise prediction and reduction is outlined. Also included are the dynamic response as predicted by NASTRAN, test data, the use of strain energy methods to optimize the housing for minimum vibration/noise, and determination of design modifications which will be manufactured and tested. The techniques presented are not restricted to helicopters but are applicable to any power transmission system. The transmission housing model developed can be used further to evaluate static and dynamic stresses, thermal distortions, deflections and load paths, fail-safety/vulnerability, and composite materials.