Sample records for dynamic angular control

  1. Dynamic Angular Control Of Thermal Therapy With Stationary Multi-Sectored Tubular Ultrasound Applicators Under MR Temperature Monitoring

    NASA Astrophysics Data System (ADS)

    Kinsey, Adam M.; Diederich, Chris J.; Nau, William H.; Ross, Anthony B.; Butts Pauly, Kim; Rieke, Viola; Sommer, Graham

    2006-05-01

    Multi-sectored ultrasound heating applicators with dynamic angular and longitudinal control of heating profiles are being investigated for the thermal treatment of tumors in sites such as prostate, uterus, and brain. Multi-sectored tubular ultrasound transducers with independent sector power control were incorporated into interstitial and transurethral applicators and provided dynamic angular control of a heating pattern without requiring device manipulation during treatment. Acoustic beam measurements of each applicator type demonstrated a 35-40° acoustic dead zone between each independent sector, with negligible mechanical or electrical coupling. Despite the acoustic dead zone between sectors, simulations and experiments under MR temperature (MRT) monitoring showed that the variance from the maximum lesion radius (scalloping) with all elements activated on a transducer was minimal and did not affect conformal heating of a target area. A biothermal model with a multi-point controller was used to adjust the applied power and treatment time of individual transducer segments as the tissue temperature changed in simulations of thermal lesions with both interstitial and transurethral applicators. Transurethral ultrasound applicators for benign prostatic hyperplasia (BPH) treatment with either three or four sectors conformed a thermal dose to a simulated target area in the angular and radial dimensions. The simulated treatment was controlled to a maximum temperature of 85°C, and had a maximum duration of 5 min when power was turned off as the 52°C temperature contour reach a predetermined control point for each sector in the tissue. Experiments conducted with multi-sectored applicators under MRT monitoring showed thermal ablation and hyperthermia treatments had little or no border `scalloping', conformed to a pretreatment target area, and correlated very well with the simulated thermal lesions. The radial penetration of the heat treatments in tissue with interstitial (1.5-1.8 mm OD transducer) and transurethral (2.5-4.0 mm OD transducer) applicators was at least 1.5 cm and 2.0 cm, respectively, for a treatment duration of 10 min. Angular control of thermal ablation and hyperthermia therapy often relies upon non-adjustable angular power deposition patterns and/or mechanical manipulation of the heating device. The multi-sectored ultrasound applicators developed in this study provide dynamic control of the angular heating distribution during treatment without device manipulation and maintain previously reported heating penetration and spatial control characteristics of similar ultrasound devices.

  2. Research on the water-entry attitude of a submersible aircraft.

    PubMed

    Xu, BaoWei; Li, YongLi; Feng, JinFu; Hu, JunHua; Qi, Duo; Yang, Jian

    2016-01-01

    The water entry of a submersible aircraft, which is transient, highly coupled, and nonlinear, is complicated. After analyzing the mechanics of this process, the change rate of every variable is considered. A dynamic model is build and employed to study vehicle attitude and overturn phenomenon during water entry. Experiments are carried out and a method to organize experiment data is proposed. The accuracy of the method is confirmed by comparing the results of simulation of dynamic model and experiment under the same condition. Based on the analysis of the experiment and simulation, the initial attack angle and angular velocity largely influence the water entry of vehicle. Simulations of water entry with different initial and angular velocities are completed, followed by an analysis, and the motion law of vehicle is obtained. To solve the problem of vehicle stability and control during water entry, an approach is proposed by which the vehicle sails with a zero attack angle after entering water by controlling the initial angular velocity. With the dynamic model and optimization research algorithm, calculation is performed, and the optimal initial angular velocity of water-entry is obtained. The outcome of simulations confirms that the effectiveness of the propose approach by which the initial water-entry angular velocity is controlled.

  3. Improved determination of dynamic balance using the centre of mass and centre of pressure inclination variables in a complete golf swing cycle.

    PubMed

    Choi, Ahnryul; Sim, Taeyong; Mun, Joung Hwan

    2016-01-01

    Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)-centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM-COP inclination angle, COM-COP inclination angular velocity and normalised COM-COP inclination angular jerk were used. Professional golfer group revealed a smaller COM-COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P < 0.01). In the normalised COM-COP inclination angular jerk, the professional golfer group showed a lower value than the other two groups in all directions. Professional golfers tend to exhibit improved dynamic balance, and this can be attributed to the neuromusculoskeletal system that maintains balance with proper postural control. This study has the potential to allow for an evaluation of the dynamic balance mechanism and will provide useful basic information for swing training and prevention of golf injuries.

  4. Dynamic Fluid in a Porous Transducer-Based Angular Accelerometer

    PubMed Central

    Cheng, Siyuan; Fu, Mengyin; Wang, Meiling; Ming, Li; Fu, Huijin; Wang, Tonglei

    2017-01-01

    This paper presents a theoretical model of the dynamics of liquid flow in an angular accelerometer comprising a porous transducer in a circular tube of liquid. Wave speed and dynamic permeability of the transducer are considered to describe the relation between angular acceleration and the differential pressure on the transducer. The permeability and streaming potential coupling coefficient of the transducer are determined in the experiments, and special prototypes are utilized to validate the theoretical model in both the frequency and time domains. The model is applied to analyze the influence of structural parameters on the frequency response and the transient response of the fluidic system. It is shown that the radius of the circular tube and the wave speed affect the low frequency gain, as well as the bandwidth of the sensor. The hydrodynamic resistance of the transducer and the cross-section radius of the circular tube can be used to control the transient performance. The proposed model provides the basic techniques to achieve the optimization of the angular accelerometer together with the methodology to control the wave speed and the hydrodynamic resistance of the transducer. PMID:28230793

  5. Catching a Rolling Stone: Dynamics and Control of a Spacecraft and an Asteroid

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Shen, Haijun; Jesick, Mark C; Cornelius, David M

    2013-01-01

    In a recent report, a robotic spacecraft mission is proposed for the purpose of collecting a small asteroid, or a small part of a large one, and transporting it to an orbit in the Earth-Moon system. Such an undertaking will require solutions to many of the engineering problems associated with deflection of an asteroid that poses a danger to Earth. In both cases, it may be necessary for a spacecraft to approach an asteroid from a nearby position, hover for some amount of time, move with the same angular velocity as the asteroid, descend, perhaps ascend, and finally arrest the angular velocity of the asteroid. Dynamics and control in each of these activities is analyzed in order to determine the velocity increments and control torque that must be provided by a reaction control system, and the mass of the propellant that will be consumed. Two attitude control algorithms are developed, one to deal with synchronizing the spacecraft s angular velocity with that of the asteroid, and the other to arrest the asteroid s angular velocity. A novel approach is proposed for saving fuel in the latter case.

  6. Angular velocity estimation based on star vector with improved current statistical model Kalman filter.

    PubMed

    Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, He

    2016-11-20

    Angular velocity information is a requisite for a spacecraft guidance, navigation, and control system. In this paper, an approach for angular velocity estimation based merely on star vector measurement with an improved current statistical model Kalman filter is proposed. High-precision angular velocity estimation can be achieved under dynamic conditions. The amount of calculation is also reduced compared to a Kalman filter. Different trajectories are simulated to test this approach, and experiments with real starry sky observation are implemented for further confirmation. The estimation accuracy is proved to be better than 10-4  rad/s under various conditions. Both the simulation and the experiment demonstrate that the described approach is effective and shows an excellent performance under both static and dynamic conditions.

  7. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

    NASA Astrophysics Data System (ADS)

    Shahrooei, Abolfazl; Kazemi, Mohammad Hosein

    2018-04-01

    In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

  8. Innovations in Rheometer Controlled-Rate Control Loop Design: Ultra Low Angular Speed Control and New Applications

    NASA Astrophysics Data System (ADS)

    Schulz, Ulrich; Sierro, Philippe; Nijman, Jint

    2008-07-01

    The design and implementation of an angular speed control loop for a universal rheometer is not a trivial task. The combination of a highly dynamic, very low inertia (drag cup) motor (motor inertia is 10-5 kg m2) with samples which can range in viscosity from 10-3 Pas to 108 Pas, which can be between purely viscous and higly viscoelastic, which can exhibit yield-stresses, etc. asks for a highly adaptive digital control loop. For the HAAKE MARS rotational rheometer a new adaptive control loop was developed which allows the control of angular speeds as low 5×10-9 rad/s and response times a short as 10 ms. The adaptation of the control loop to "difficult" samples is performed by analysing the response of the complete system to a short pre-test. In this paper we will show that the (very) short response times at (very) low angular speeds are not only achieved with ideal samples, but due to the adaptable control loop, also with "difficult" samples. We will show measurement results on "difficult" samples like cosmetic creams and emulsions, a laponite gel, etc. to proof that angular speeds down to 10-4 rad/s are reached within 10 ms to 20 ms and angular speeds down to 10-7 rad/s within 1 s to 2 s. The response times for reaching ultra low angular speeds down to 5×10-9 rad/s are in the order of 10 s to 30 s. With this new control loop it is, for the first time, possible to measure yield stresses by applying a very low constant shear-rate to the sample and measuring the torque response as a function of time.

  9. Sensory perception. [role of human vestibular system in dynamic space perception and manual vehicle control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effect of motion on the ability of men to perform a variety of control actions was investigated. Special attention was given to experimental and analytical studies of the dynamic characteristics of the otoliths and semicircular canals using a two axis angular motion simulator and a one axis linear motion simulator.

  10. Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.

    2017-04-01

    We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.

  11. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect

    PubMed Central

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-01-01

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved. PMID:24784778

  12. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect.

    PubMed

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-05-02

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.

  13. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect

    NASA Astrophysics Data System (ADS)

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-05-01

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.

  14. On the dynamics of a spinning top under the influence of rotation: Resonant relative equilibrium states

    NASA Astrophysics Data System (ADS)

    Sheheitli, H.; Touma, J. R.

    2018-06-01

    We investigate the dynamics of a spinning top driven by a turntable that rotates with a given angular speed Ω. The pivot point of the top is at a fixed distance from the center of the turntable. We show that such a setup leads to resonance where the spinning top is locked in a state of relative equilibrium: precessing with an angular speed equal to that of the turntable while maintaining a constant nutation angle. Bifurcation diagrams are presented to depict how the stability of these relative equilibria, along with the corresponding value of the nutation angle, depends on the two parameters: the initial spin angular momentum and Ω. We discuss the classical spinning top, that is, the Ω = 0 case, and address the relation of the "sleeping top" state to the aforementioned relative equilibria. We also relate the dynamics to that of a spherical pendulum on a rotary arm and show that the latter can be viewed as a special case of the system at hand. Finally, we illustrate how the relative equilibria can be exploited for the attitude control of the top through resonance capture while slowly varying the turnable angular speed, Ω.

  15. Spatial curvilinear path following control of underactuated AUV with multiple uncertainties.

    PubMed

    Miao, Jianming; Wang, Shaoping; Zhao, Zhiping; Li, Yuan; Tomovic, Mileta M

    2017-03-01

    This paper investigates the problem of spatial curvilinear path following control of underactuated autonomous underwater vehicles (AUVs) with multiple uncertainties. Firstly, in order to design the appropriate controller, path following error dynamics model is constructed in a moving Serret-Frenet frame, and the five degrees of freedom (DOFs) dynamic model with multiple uncertainties is established. Secondly, the proposed control law is separated into kinematic controller and dynamic controller via back-stepping technique. In the case of kinematic controller, to overcome the drawback of dependence on the accurate vehicle model that are present in a number of path following control strategies described in the literature, the unknown side-slip angular velocity and attack angular velocity are treated as uncertainties. Whereas in the case of dynamic controller, the model parameters perturbations, unknown external environmental disturbances and the nonlinear hydrodynamic damping terms are treated as lumped uncertainties. Both kinematic and dynamic uncertainties are estimated and compensated by designed reduced-order linear extended state observes (LESOs). Thirdly, feedback linearization (FL) based control law is implemented for the control model using the estimates generated by reduced-order LESOs. For handling the problem of computational complexity inherent in the conventional back-stepping method, nonlinear tracking differentiators (NTDs) are applied to construct derivatives of the virtual control commands. Finally, the closed loop stability for the overall system is established. Simulation and comparative analysis demonstrate that the proposed controller exhibits enhanced performance in the presence of internal parameter variations, external unknown disturbances, unmodeled nonlinear damping terms, and measurement noises. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Crossed Molecular Beam Studies and Dynamics of Decomposition of Chemically Activated Radicals

    DOE R&D Accomplishments Database

    Lee, Y. T.

    1973-09-01

    The power of the crossed molecular beams method in the investigation of the dynamics of chemical reactions lies mainly in the direct observation of the consequences of single collisions of well controlled reactant molecules. The primary experimental observations which provide information on reaction dynamics are the measurements of angular and velocity distributions of reaction products.

  17. Muscle Contributions to Frontal Plane Angular Momentum during Walking

    PubMed Central

    Neptune, Richard R.; McGowan, Craig P.

    2016-01-01

    The regulation of whole-body angular momentum is important for maintaining dynamic balance during human walking, which is particularly challenging in the frontal plane. Whole-body angular momentum is actively regulated by individual muscle forces. Thus, understanding which muscles contribute to frontal plane angular momentum will further our understanding of mediolateral balance control and has the potential to help diagnose and treat balance disorders. The purpose of this study was to identify how individual muscles and gravity contribute to whole-body angular momentum in the frontal plane using a muscle-actuated forward dynamics simulation analysis. A three-dimensional simulation was developed that emulated the average walking mechanics of a group of young healthy adults (n=10). The results showed that a finite set of muscles are the primary contributors to frontal plane balance and that these contributions vary throughout the gait cycle. In early stance, the vasti, adductor magnus and gravity acted to rotate the body towards the contralateral leg while the gluteus medius acted to rotate the body towards the ipsilateral leg. In late stance, the gluteus medius continued to rotate the body towards the ipsilateral leg while the soleus and gastrocnemius acted to rotate the body towards the contralateral leg. These results highlight those muscles that are critical to maintaining dynamic balance in the frontal plane during walking and may provide targets for locomotor therapies aimed at treating balance disorders. PMID:27522538

  18. The use of the articulated total body model as a robot dynamics simulation tool

    NASA Technical Reports Server (NTRS)

    Obergfell, Louise A.; Avula, Xavier J. R.; Kalegs, Ints

    1988-01-01

    The Articulated Total Body (ATB) model is a computer sumulation program which was originally developed for the study of aircrew member dynamics during ejection from high-speed aircraft. This model is totally three-dimensional and is based on the rigid body dynamics of coupled systems which use Euler's equations of motion with constraint relations of the type employed in the Lagrange method. In this paper the use of the ATB model as a robot dynamics simulation tool is discussed and various simulations are demonstrated. For this purpose the ATB model has been modified to allow for the application of torques at the joints as functions of state variables of the system. Specifically, the motion of a robotic arm with six revolute articulations with joint torques prescribed as functions of angular displacement and angular velocity are demonstrated. The simulation procedures developed in this work may serve as valuable tools for analyzing robotic mechanisms, dynamic effects, joint load transmissions, feed-back control algorithms employed in the actuator control and end-effector trajectories.

  19. Equivalent dynamic model of DEMES rotary joint

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.

  20. Fatigue influences lower extremity angular velocities during a single-leg drop vertical jump.

    PubMed

    Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Junya; Toda, Yuka; Yamada, Kaori

    2017-03-01

    [Purpose] Fatigue alters lower extremity landing strategies and decreases the ability to attenuate impact during landing. The purpose of this study was to reveal the influence of fatigue on dynamic alignment and joint angular velocities in the lower extremities during a single leg landing. [Subjects and Methods] The 34 female college students were randomly assigned to either the fatigue or control group. The fatigue group performed single-leg drop vertical jumps before, and after, the fatigue protocol, which was performed using a bike ergometer. Lower extremity kinematic data were acquired using a three-dimensional motion analysis system. The ratio of each variable (%), for the pre-fatigue to post-fatigue protocols, were calculated to compare differences between each group. [Results] Peak hip and knee flexion angular velocities increased significantly in the fatigue group compared with the control group. Furthermore, hip flexion angular velocity increased significantly between each group at 40 milliseconds after initial ground contact. [Conclusion] Fatigue reduced the ability to attenuate impact by increasing angular velocities in the direction of hip and knee flexion during landings. These findings indicate a requirement to evaluate movement quality over time by measuring hip and knee flexion angular velocities in landings during fatigue conditions.

  1. Attenuation of cryocooler induced vibration using multimodal tuned dynamic absorbers

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Babitsky, Vladimir; Tuito, Avi

    2017-05-01

    Modern infrared imagers often rely on split Stirling linear cryocoolers comprising compressor and expander, the relative position of which is governed by the optical design and packaging constraints. A force couple generated by imbalanced reciprocation of moving components inside both compressor and expander result in cryocooler induced vibration comprising angular and translational tonal components manifesting itself in the form of line of sight jitter and dynamic defocusing. Since linear cryocooler is usually driven at a fixed and precisely adjustable frequency, a tuned dynamic absorber is a well suited tool for vibration control. It is traditionally made in the form of lightweight single degree of freedom undamped mechanical resonator, the frequency of which is essentially matched with the driving frequency or vice versa. Unfortunately, the performance of such a traditional approach is limited in terms of simultaneous attenuating translational and angular components of cooler induced vibration. The authors are enhancing the traditional concept and consider multimodal tuned dynamic absorber made in the form of weakly damped mechanical resonator, where the frequencies of useful dynamic modes are essentially matched with the driving frequency. Dynamic analysis and experimental testing show that the dynamic reactions (forces and moments) produced by such a device may simultaneously attenuate both translational and angular components of cryocoolerinduced vibration. The authors are considering different embodiments and their suitability for different packaging concepts. The outcomes of theoretical predictions are supported by full scale experimentation.

  2. Synthesis of dynamic phase profile by the correlation technique for spatial control of optical beams in multiplexing and switching

    NASA Astrophysics Data System (ADS)

    Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.

    2015-11-01

    New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.

  3. Fast vortex oscillations in a ferrimagnetic disk near the angular momentum compensation point

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-07-01

    We theoretically study the oscillatory dynamics of a vortex core in a ferrimagnetic disk near its angular momentum compensation point, where the spin density vanishes but the magnetization is finite. Due to the finite magnetostatic energy, a ferrimagnetic disk of suitable geometry can support a vortex as a ground state similar to a ferromagnetic disk. In the vicinity of the angular momentum compensation point, the dynamics of the vortex resemble those of an antiferromagnetic vortex, which is described by equations of motion analogous to Newton's second law for the motion of particles. Owing to the antiferromagnetic nature of the dynamics, the vortex oscillation frequency can be an order of magnitude larger than the frequency of a ferromagnetic vortex, amounting to tens of GHz in common transition-metal based alloys. We show that the frequency can be controlled either by applying an external field or by changing the temperature. In particular, the latter property allows us to detect the angular momentum compensation temperature, at which the lowest eigenfrequency attains its maximum, by performing ferromagnetic resonance measurements on the vortex disk. Our work proposes a ferrimagnetic vortex disk as a tunable source of fast magnetic oscillations and a useful platform to study the properties of ferrimagnets.

  4. Blurred Star Image Processing for Star Sensors under Dynamic Conditions

    PubMed Central

    Zhang, Weina; Quan, Wei; Guo, Lei

    2012-01-01

    The precision of star point location is significant to identify the star map and to acquire the aircraft attitude for star sensors. Under dynamic conditions, star images are not only corrupted by various noises, but also blurred due to the angular rate of the star sensor. According to different angular rates under dynamic conditions, a novel method is proposed in this article, which includes a denoising method based on adaptive wavelet threshold and a restoration method based on the large angular rate. The adaptive threshold is adopted for denoising the star image when the angular rate is in the dynamic range. Then, the mathematical model of motion blur is deduced so as to restore the blurred star map due to large angular rate. Simulation results validate the effectiveness of the proposed method, which is suitable for blurred star image processing and practical for attitude determination of satellites under dynamic conditions. PMID:22778666

  5. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to the actual angular velocity. Numerical results are presented to demonstrate the effectiveness of the proposed scheme in tracking the desired attitude, as well as suppressing the elastic deflection effects of solar arrays during maneuver.

  6. Prostate thermal therapy with catheter-based ultrasound devices and MR thermal monitoring

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Nau, Will H.; Kinsey, Adam; Ross, Tony; Wootton, Jeff; Juang, Titania; Butts-Pauly, Kim; Ricke, Viola; Liu, Erin H.; Chen, Jing; Bouley, Donna M.; Van den Bosch, Maurice; Sommer, Graham

    2007-02-01

    Four types of transurethral applicators were devised for thermal ablation of prostate combined with MR thermal monitoring: sectored tubular transducer devices with directional heating patterns; planar and curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with directional or dynamic angular control. In vivo experiments in canine prostate under MR temperature imaging were used to evaluate the heating technology and develop treatment control strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature and thermal dose in multiple slices through the target volume. Sectored tubular, planar, and curvilinear transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. Sequential rotation and modulated dwell time can conform thermal ablation to selected regions. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with directional devices can be used to effectively ablate the posterior peripheral zone of the gland while protecting the rectum. The MR derived 52 °C and lethal thermal dose contours (t 43=240 min) allowed for real-time control of the applicators and effectively defined the extent of thermal damage. Catheter-based ultrasound devices, combined with MR thermal monitoring, can produce relatively fast and precise thermal ablation of prostate, with potential for treatment of cancer or BPH.

  7. All joint moments significantly contribute to trunk angular acceleration

    PubMed Central

    Nott, Cameron R.; Zajac, Felix E.; Neptune, Richard R.; Kautz, Steven A.

    2010-01-01

    Computationally advanced biomechanical analyses of gait demonstrate the often counter intuitive roles of joint moments on various aspects of gait such as propulsion, swing initiation, and balance. Each joint moment can produce linear and angular acceleration of all body segments (including those on which the moment does not directly act) due to the dynamic coupling inherent in the interconnected musculoskeletal system. This study presents the quantitative relationships between individual joint moments and trunk control with respect to balance during gait to show that the ankle, knee, and hip joint moments all affect the angular acceleration of the trunk. We show that trunk angular acceleration is affected by all the joints in the leg with varying degrees of dependence during the gait cycle. Furthermore, it is shown that inter-planar coupling exists and a two dimensional analysis of trunk balance neglects important out-of-plane joint moments that affect trunk angular acceleration. PMID:20646711

  8. Radially dependent angular acceleration of twisted light.

    PubMed

    Webster, Jason; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2017-02-15

    While photons travel in a straight line at constant velocity in free space, the intensity profile of structured light may be tailored for acceleration in any degree of freedom. Here we propose a simple approach to control the angular acceleration of light. Using Laguerre-Gaussian modes as our twisted beams carrying orbital angular momentum, we show that superpositions of opposite handedness result in a radially dependent angular acceleration as they pass through a focus (waist plane). Due to conservation of orbital angular momentum, we find that propagation dynamics are complex despite the free-space medium: the outer part of the beam (rings) rotates in an opposite direction to the inner part (petals), and while the outer part accelerates, the inner part decelerates. We outline the concepts theoretically and confirm them experimentally. Such exotic structured light beams are topical due to their many applications, for instance in optical trapping and tweezing, metrology, and fundamental studies in optics.

  9. Simulation and experimental validation of the dynamical model of a dual-rotor vibrotactor

    NASA Astrophysics Data System (ADS)

    Miklós, Á.; Szabó, Z.

    2015-01-01

    In this work, a novel design for small vibrotactors called the Dual Excenter is presented, which makes it possible to produce vibrations with independently adjustable frequency and amplitude. This feature has been realized using two coaxially aligned eccentric rotors, which are driven by DC motors independently. The prototype of the device has been built, where mechanical components are integrated on a frame with two optical sensors for the measurement of angular velocity and phase angle. The system is equipped with a digital controller. Simulations confirm the results of analytical investigations and they allow us to model the sampling method of the signals of the angular velocity and the phase angle between the rotors. Furthermore, we model the discrete behavior of the controller, which is a PI controller for the angular velocities and a PID controller for the phase angle. Finally, simulation results are compared to experimental ones, which show that the Dual Excenter concept is feasible.

  10. Quasi Static and Dynamic Characterization of Equal Channel Angular Extrusion (ECAE) Processed and Rolled AZ31 Magnesium Alloy Sheet

    DTIC Science & Technology

    2017-04-01

    ARL-TR-8006 ● Apr 2017 US Army Research Laboratory Quasi -Static and Dynamic Characterization of Equal Channel Angular Extrusion...originator. ARL-TR-8006 ● Apr 2017 US Army Research Laboratory Quasi -Static and Dynamic Characterization of Equal Channel Angular...April 2017 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) April 2015–January 2016 4. TITLE AND SUBTITLE Quasi -Static and Dynamic

  11. Angular Rate Sensing with GyroWheel Using Genetic Algorithm Optimized Neural Networks.

    PubMed

    Zhao, Yuyu; Zhao, Hui; Huo, Xin; Yao, Yu

    2017-07-22

    GyroWheel is an integrated device that can provide three-axis control torques and two-axis angular rate sensing for small spacecrafts. Large tilt angle of its rotor and de-tuned spin rate lead to a complex and non-linear dynamics as well as difficulties in measuring angular rates. In this paper, the problem of angular rate sensing with the GyroWheel is investigated. Firstly, a simplified rate sensing equation is introduced, and the error characteristics of the method are analyzed. According to the analysis results, a rate sensing principle based on torque balance theory is developed, and a practical way to estimate the angular rates within the whole operating range of GyroWheel is provided by using explicit genetic algorithm optimized neural networks. The angular rates can be determined by the measurable values of the GyroWheel (including tilt angles, spin rate and torque coil currents), the weights and the biases of the neural networks. Finally, the simulation results are presented to illustrate the effectiveness of the proposed angular rate sensing method with GyroWheel.

  12. Optimization of Closed Loop Eigenvalues: Maneuvering, Vibration Control, and Structure/Control Design Iteration for Flexible Spacecraft.

    DTIC Science & Technology

    1986-05-31

    Nonlinear Feedback Control 8-16 for Spacecraft Attitude Maneuvers" 2. " Spacecraft Attitude Control Using 17-35... nonlinear state feedback control laws are developed for space- craft attitude control using the Euler parameters and conjugate angular momenta. Time... Nonlinear Feedback Control for Spacecraft Attitude Maneuvers," to appear in AIAA J. of Guidance, Control, and Dynamics, (AIAA Paper No. 83-2230-CP,

  13. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  14. Perception of socket alignment perturbations in amputees with transtibial prostheses.

    PubMed

    Boone, David A; Kobayashi, Toshiki; Chou, Teri G; Arabian, Adam K; Coleman, Kim L; Orendurff, Michael S; Zhang, Ming

    2012-01-01

    A person with amputation's subjective perception is the only tool available to describe fit and comfort to a prosthetist. However, few studies have investigated the effect of alignment on this perception. The aim of this article is to determine whether people with amputation could perceive the alignment perturbations of their prostheses and effectively communicate them. A randomized controlled perturbation of angular (3 and 6 degrees) and translational (5 and 10 mm) alignments in the sagittal (flexion, extension, and anterior and posterior translations) and coronal (abduction, adduction, and medial and lateral translations) planes were induced from an aligned condition in 11 subjects with transtibial prostheses. The perception was evaluated when standing (static) and immediately after walking (dynamic) using software that used a visual analog scale under each alignment condition. In the coronal plane, Friedman test demonstrated general statistical differences in static (p < 0.001) and dynamic (p < 0.001) measures of perceptions with angular perturbations. In the sagittal plane, it also demonstrated general statistical differences in late-stance dynamic measures of perceptions (p < 0.001) with angular perturbations, as well as in early-stance dynamic measures of perceptions (p < 0.05) with translational perturbations. Fisher exact test suggested that people with amputation's perceptions were good indicators for coronal angle malalignments but less reliable when defining other alignment conditions.

  15. Learning dynamic control of body yaw orientation.

    PubMed

    Vimal, Vivekanand Pandey; Lackner, James R; DiZio, Paul

    2018-05-01

    To investigate the role of gravitational cues in the learning of a dynamic balancing task, we placed blindfolded subjects in a device programmed with inverted pendulum dynamics about the yaw axis. Subjects used a joystick to try and maintain a stable orientation at the direction of balance during 20 100 s-long trials. They pressed a trigger button on the joystick to indicate whenever they felt at the direction of balance. Three groups of ten subjects each participated. One group balanced with their body and the yaw axis vertical, and thus did not have gravitational cues to help them to determine their angular position. They showed minimal learning, inaccurate indications of the direction of balance, and a characteristic pattern of positional drifting away from the balance point. A second group balanced with the yaw axis pitched 45° from the gravitational vertical and had gravity relevant position cues. The third group balanced with their yaw axis horizontal where they had gravity-dependent cues about body position in yaw. Groups 2 and 3 showed better initial balancing performance and more learning across trials than Group 1. These results indicate that in the absence of vision, the integration of transient semicircular canal and somatosensory signals about angular acceleration is insufficient for determining angular position during dynamic balancing; direct position-dependent gravity cues are necessary.

  16. Satellite recovery - Attitude dynamics of the targets

    NASA Technical Reports Server (NTRS)

    Cochran, J. E., Jr.; Lahr, B. S.

    1986-01-01

    The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.

  17. The Vestibular System and Human Dynamic Space Orientation

    NASA Technical Reports Server (NTRS)

    Meiry, J. L.

    1966-01-01

    The motion sensors of the vestibular system are studied to determine their role in human dynamic space orientation and manual vehicle control. The investigation yielded control models for the sensors, descriptions of the subsystems for eye stabilization, and demonstrations of the effects of motion cues on closed loop manual control. Experiments on the abilities of subjects to perceive a variety of linear motions provided data on the dynamic characteristics of the otoliths, the linear motion sensors. Angular acceleration threshold measurements supplemented knowledge of the semicircular canals, the angular motion sensors. Mathematical models are presented to describe the known control characteristics of the vestibular sensors, relating subjective perception of motion to objective motion of a vehicle. The vestibular system, the neck rotation proprioceptors and the visual system form part of the control system which maintains the eye stationary relative to a target or a reference. The contribution of each of these systems was identified through experiments involving head and body rotations about a vertical axis. Compensatory eye movements in response to neck rotation were demonstrated and their dynamic characteristics described by a lag-lead model. The eye motions attributable to neck rotations and vestibular stimulation obey superposition when both systems are active. Human operator compensatory tracking is investigated in simple vehicle orientation control system with stable and unstable controlled elements. Control of vehicle orientation to a reference is simulated in three modes: visual, motion and combined. Motion cues sensed by the vestibular system through tactile sensation enable the operator to generate more lead compensation than in fixed base simulation with only visual input. The tracking performance of the human in an unstable control system near the limits of controllability is shown to depend heavily upon the rate information provided by the vestibular sensors.

  18. Gaze stability, dynamic balance and participation deficits in people with multiple sclerosis at fall-risk.

    PubMed

    Garg, Hina; Dibble, Leland E; Schubert, Michael C; Sibthorp, Jim; Foreman, K Bo; Gappmaier, Eduard

    2018-05-05

    Despite the common complaints of dizziness and demyelination of afferent or efferent pathways to and from the vestibular nuclei which may adversely affect the angular Vestibulo-Ocular Reflex (aVOR) and vestibulo-spinal function in persons with Multiple Sclerosis (PwMS), few studies have examined gaze and dynamic balance function in PwMS. 1) Determine the differences in gaze stability, dynamic balance and participation measures between PwMS and controls, 2) Examine the relationships between gaze stability, dynamic balance and participation. Nineteen ambulatory PwMS at fall-risk and 14 age-matched controls were recruited. Outcomes included (a) gaze stability [angular Vestibulo-Ocular Reflex (aVOR) gain (ratio of eye to head velocity); number of Compensatory Saccades (CS) per head rotation; CS latency; gaze position error; Coefficient of Variation (CV) of aVOR gain], (b) dynamic balance [Functional Gait Assessment, FGA; four square step test], and (c) participation [dizziness handicap inventory; activities-specific balance confidence scale]. Separate independent t-tests and Pearson's correlations were calculated. PwMS were age = 53 ± 11.7yrs and had 4.2 ± 3.3 falls/yr. PwMS demonstrated significant (p<0.05) impairments in gaze stability, dynamic balance and participation measures compared to controls. CV of aVOR gain and CS latency were significantly correlated with FGA. Deficits and correlations across a spectrum of disability measures highlight the relevance of gaze and dynamic balance assessment in PwMS. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  19. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer.

    PubMed

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-04-14

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  20. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    PubMed Central

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-01-01

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper. PMID:27089347

  1. Guidance, steering, load relief and control of an asymmetric launch vehicle. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Boelitz, Frederick W.

    1989-01-01

    A new guidance, steering, and control concept is described and evaluated for the Third Phase of an asymmetrical configuration of the Advanced Launch System (ALS). The study also includes the consideration of trajectory shaping issues and trajectory design as well as the development of angular rate, angular acceleration, angle of attack, and dynamic pressure estimators. The Third Phase guidance, steering and control system is based on controlling the acceleration-direction of the vehicle after an initial launch maneuver. Unlike traditional concepts, the alignment of the estimated and commanded acceleration-directions is unimpaired by an add-on load relief. Instead, the acceleration-direction steering-control system features a control override that limits the product of estimated dynamic pressure and estimated angle of attack. When this product is not being limited, control is based exclusively on the commanded acceleration-direction without load relief. During limiting, control is based on nulling the error between the limited angle of attack and the estimated angle of attack. This limiting feature provides full freedom to the acceleration-direction steering and control to shape the trajectory within the limit, and also gives full priority to the limiting of angle of attack when necessary. The flight software concepts were analyzed on the basis of their effects on pitch plane motion.

  2. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The approach developed for analysis of the effects is a suitable tool to get insight into the complete fusion-fission dynamics, in particular, to investigate the mechanism of the complete fusion and fission time scale.

  3. GALACTIC ANGULAR MOMENTUM IN THE ILLUSTRIS SIMULATION: FEEDBACK AND THE HUBBLE SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genel, Shy; Fall, S. Michael; Snyder, Gregory F.

    We study the stellar angular momentum of thousands of galaxies in the Illustris cosmological simulation, which captures gravitational and gas dynamics within galaxies, as well as feedback from stars and black holes. We find that the angular momentum of the simulated galaxies matches observations well, and in particular two distinct relations are found for late-type versus early-type galaxies. The relation for late-type galaxies corresponds to the value expected from full conservation of the specific angular momentum generated by cosmological tidal torques. The relation for early-type galaxies corresponds to retention of only ∼30% of that, but we find that those early-typemore » galaxies with low angular momentum at z = 0 nevertheless reside at high redshift on the late-type relation. Some of them abruptly lose angular momentum during major mergers. To gain further insight, we explore the scaling relations in simulations where the galaxy formation physics is modified with respect to the fiducial model. We find that galactic winds with high mass-loading factors are essential for obtaining the high angular momentum relation typical for late-type galaxies, while active galactic nucleus feedback largely operates in the opposite direction. Hence, feedback controls the stellar angular momentum of galaxies, and appears to be instrumental for establishing the Hubble sequence.« less

  4. Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques

    NASA Astrophysics Data System (ADS)

    Tang, Yujie; Li, Jian; Wang, Gangyi

    2018-02-01

    An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.

  5. Dynamic Model of Aircraft Passenger Seats for Vibration Comfort Evaluation and Control

    NASA Astrophysics Data System (ADS)

    Šika, Z.; Valášek, Michael; Vampola, T.; Füllekrug, U.; Klimmek, T.

    The paper deals with the development of the seat dynamical model for vibration comfort evaluation and control. The aircraft seats have been tested extensively by vibrations on the 6 DOF vibrating platform. The importance of the careful comfort control together with the flight mechanics control is namely stressed for the blended wing body (BWB) aircrafts. They have a very large fuselage, where the mechanical properties (accelerations, angular accelerations) vary considerably for different seat places. The model have been improved by adding of dynamical models of the aircraft passenger seats identified by the measurements on the 6 DOF vibrating platform. The experiments, their results and the identification of the dynamical seat model are described. The model is further modified by adding of the comfort evaluation norms represented by dynamical filters. The structure and identification of the seat model is briefly described and discussed.

  6. Smoothed dissipative particle dynamics with angular momentum conservation

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard

    2015-01-01

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier-Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor-Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  7. Experimental Demonstration of Coherent Control in Quantum Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Bitter, M.; Milner, V.

    2017-01-01

    We experimentally demonstrate coherent control of a quantum system, whose dynamics is chaotic in the classical limit. Interaction of diatomic molecules with a periodic sequence of ultrashort laser pulses leads to the dynamical localization of the molecular angular momentum, a characteristic feature of the chaotic quantum kicked rotor. By changing the phases of the rotational states in the initially prepared coherent wave packet, we control the rotational distribution of the final localized state and its total energy. We demonstrate the anticipated sensitivity of control to the exact parameters of the kicking field, as well as its disappearance in the classical regime of excitation.

  8. A New MEMS Gyroscope Used for Single-Channel Damping

    PubMed Central

    Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao

    2015-01-01

    The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct. PMID:25942638

  9. Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Mao, Huina; Sinn, Thomas; Vasile, Massimiliano; Tibert, Gunnar

    2016-10-01

    Lightweight deployable space webs have been proposed as platforms or frames for a construction of structures in space where centrifugal forces enable deployment and stabilization. The Suaineadh project was aimed to deploy a 2 × 2m2 space web by centrifugal forces in milli-gravity conditions and act as a test bed for the space web technology. Data from former sounding rocket experiments, ground tests and simulations were used to design the structure, the folding pattern and control parameters. A developed control law and a reaction wheel were used to control the deployment. After ejection from the rocket, the web was deployed but entanglements occurred since the web did not start to deploy at the specified angular velocity. The deployment dynamics was reconstructed from the information recorded in inertial measurement units and cameras. The nonlinear torque of the motor used to drive the reaction wheel was calculated from the results. Simulations show that if the Suaineadh started to deploy at the specified angular velocity, the web would most likely have been deployed and stabilized in space by the motor, reaction wheel and controller used in the experiment.

  10. Modelling and Control of an Annular Momentum Control Device

    NASA Technical Reports Server (NTRS)

    Downer, James R.; Johnson, Bruce G.

    1988-01-01

    The results of a modelling and control study for an advanced momentum storage device supported on magnetic bearings are documented. The control challenge posed by this device lies in its dynamics being such a strong function of flywheel rotational speed. At high rotational speed, this can lead to open loop instabilities, resulting in requirements for minimum and maximum control bandwidths and gains for the stabilizing controllers. Using recently developed analysis tools for systems described by complex coefficient differential equations, the closed properties of the controllers were analyzed and stability properties established. Various feedback controllers are investigated and discussed. Both translational and angular dynamics compensators are developed, and measures of system stability and robustness to plant and operational speed variations are presented.

  11. Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1

    NASA Technical Reports Server (NTRS)

    Park, Thomas; Oliver, Emerson; Smith, Austin

    2018-01-01

    The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GN&C software from the set of healthy measurements. This paper provides an overview of the algorithms used for both fault-detection and measurement down selection.

  12. Canonical formalism for modelling and control of rigid body dynamics.

    PubMed

    Gurfil, P

    2005-12-01

    This paper develops a new paradigm for stabilization of rigid-body dynamics. The state-space model is formulated using canonical elements, known as the Serret-Andoyer (SA) variables, thus far scarcely used for engineering applications. The main feature of the SA formalism is the reduction of the dynamics via the underlying symmetry stemming from conservation of angular momentum and rotational kinetic energy. The controllability of the system model is examined using the notion of accessibility, and is shown to be accessible from all points. Based on the accessibility proof, two nonlinear asymptotic feedback stabilizers are developed: a damping feedback is designed based on the Jurdjevic-Quinn method, and a Hamiltonian controller is derived by using the Hamiltonian as a natural Lyapunov function for the closed-loop dynamics. It is shown that the Hamiltonian control is both passive and inverse optimal with respect to a meaningful performance index. The performance of the new controllers is examined and compared using simulations of realistic scenarios from the satellite attitude dynamics field.

  13. Efficacy of guided spiral drawing in the classification of Parkinson's Disease.

    PubMed

    Zham, Poonam; Arjunan, Sridhar; Raghav, Sanjay; Kumar, Dinesh Kant

    2017-10-11

    Change of handwriting can be an early marker for severity of Parkinson's disease but suffers from poor sensitivity and specificity due to inter-subject variations. This study has investigated the group-difference in the dynamic features during sketching of spiral between PD and control subjects with the aim of developing an accurate method for diagnosing PD patients. Dynamic handwriting features were computed for 206 specimens collected from 62 Subjects (31 Parkinson's and 31 Controls). These were analyzed based on the severity of the disease to determine group-difference. Spearman rank correlation coefficient was computed to evaluate the strength of association for the different features. Maximum area under ROC curve (AUC) using the dynamic features during different writing and spiral sketching tasks were in the range of 67 to 79 %. However, when angular features ( and ) and count of direction inversion during sketching of the spiral were used, AUC improved to 93.3%. Spearman correlation coefficient was highest for and . The angular features and count of direction inversion which can be obtained in real-time while sketching the Archimedean guided spiral on a digital tablet can be used for differentiating between Parkinson's and healthy cohort.

  14. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    PubMed Central

    Li, Jian; Wu, Dan; Han, Yan

    2016-01-01

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039

  15. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.

    PubMed

    Li, Jian; Wu, Dan; Han, Yan

    2016-09-30

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  16. Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri

    1999-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.

  17. Thrust Control Loop Design for Electric-Powered UAV

    NASA Astrophysics Data System (ADS)

    Byun, Heejae; Park, Sanghyuk

    2018-04-01

    This paper describes a process of designing a thrust control loop for an electric-powered fixed-wing unmanned aerial vehicle equipped with a propeller and a motor. In particular, the modeling method of the thrust system for thrust control is described in detail and the propeller thrust and torque force are modeled using blade element theory. A relation between current and torque of the motor is obtained using an experimental setup. Another relation between current, voltage and angular velocity is also obtained. The electric motor and the propeller dynamics are combined to model the thrust dynamics. The associated trim and linearization equations are derived. Then, the thrust dynamics are coupled with the flight dynamics to allow a proper design for the thrust loop in the flight control. The proposed method is validated by an application to a testbed UAV through simulations and flight test.

  18. Symmetry and conservation laws in semiclassical wave packet dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu

    2015-03-15

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum asmore » well as naturally corresponds to the quantum picture.« less

  19. Integrated model reference adaptive control and time-varying angular rate estimation for micro-machined gyroscopes

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; Sue, Chung-Yang

    2010-02-01

    Owing to the imposed but undesired accelerations such as quadrature error and cross-axis perturbation, the micro-machined gyroscope would not be unconditionally retained at resonant mode. Once the preset resonance is not sustained, the performance of the micro-gyroscope is accordingly degraded. In this article, a direct model reference adaptive control loop which is integrated with a modified disturbance estimating observer (MDEO) is proposed to guarantee the resonant oscillations at drive mode and counterbalance the undesired disturbance mainly caused by quadrature error and cross-axis perturbation. The parameters of controller are on-line innovated by the dynamic error between the MDEO output and expected response. In addition, Lyapunov stability theory is employed to examine the stability of the closed-loop control system. Finally, the efficacy of numerical evaluation on the exerted time-varying angular rate, which is to be detected and measured by the gyroscope, is verified by intensive simulations.

  20. The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling.

    PubMed

    Bobbert, Maarten Frank; Casius, L J Richard; Van Soest, Arthur J

    2016-05-01

    Relationships between tangential pedal force and crank angular velocity in sprint cycling tend to be linear. We set out to understand why they are not hyperbolic, like the intrinsic force-velocity relationship of muscles. We simulated isokinetic sprint cycling at crank angular velocities ranging from 30 to 150 rpm with a forward dynamic model of the human musculoskeletal system actuated by eight lower extremity muscle groups. The input of the model was muscle stimulation over time, which we optimized to maximize average power output over a cycle. Peak tangential pedal force was found to drop more with crank angular velocity than expected based on intrinsic muscle properties. This linearizing effect was not due to segmental dynamics but rather due to active state dynamics. Maximizing average power in cycling requires muscles to bring their active state from as high as possible during shortening to as low as possible during lengthening. Reducing the active state is a relatively slow process, and hence must be initiated a certain amount of time before lengthening starts. As crank angular velocity goes up, this amount of time corresponds to a greater angular displacement, so the instant of switching off extensor muscle stimulation must occur earlier relative to the angle at which pedal force was extracted for the force-velocity relationship. Relationships between pedal force and crank angular velocity in sprint cycling do not reflect solely the intrinsic force-velocity relationship of muscles but also the consequences of activation dynamics.

  1. Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.

    PubMed

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.

  2. Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit

    PubMed Central

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586

  3. Wireless infrared computer control

    NASA Astrophysics Data System (ADS)

    Chen, George C.; He, Xiaofei

    2004-04-01

    Wireless mouse is not restricted by cable"s length and has advantage over its wired counterpart. However, all the mice available in the market have detection range less than 2 meters and angular coverage less than 180 degrees. Furthermore, commercial infrared mice are based on track ball and rollers to detect movements. This restricts them to be used in those occasions where users want to have dynamic movement, such as presentations and meetings etc. This paper presents our newly developed infrared wireless mouse, which has a detection range of 6 meters and angular coverage of 180 degrees. This new mouse uses buttons instead of traditional track ball and is developed to be a hand-held device like remote controller. It enables users to control cursor with a distance closed to computer and the mouse to be free from computer operation.

  4. Intracycle angular velocity control of cross-flow turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian

    2017-08-01

    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  5. Dopaminergic modulation of arm swing during gait among Parkinson’s disease patients

    PubMed Central

    Sterling, Nicholas W.; Cusumano, Joseph P.; Shaham, Noam; Piazza, Stephen J.; Liu, Guodong; Kong, Lan; Du, Guangwei; Lewis, Mechelle M.; Huang, Xuemei

    2015-01-01

    Background Reduced arm swing amplitude, symmetry, and coordination during gait have been reported in Parkinson’s disease (PD), but the relationship between dopaminergic depletion and these upper limb gait changes remains unclear. This study investigated the effects of dopaminergic drugs on arm swing velocity, symmetry, and coordination in PD. Methods Forearm angular velocity was recorded in 16 PD and 17 control subjects (Controls) during free walking trials. Angular velocity amplitude of each arm, arm swing asymmetry, and maximum cross-correlation were compared between control and PD groups, and between OFF- and ON-medication states among PD subjects. Results Compared to Controls, PD subjects in the OFF-medication state exhibited lower angular velocity amplitude of the slower- (p=0.0018), but not faster- (p=0.2801) swinging arm. In addition, PD subjects demonstrated increased arm swing asymmetry (p=0.0046) and lower maximum cross-correlation (p=0.0026). Following dopaminergic treatment, angular velocity amplitude increased in the slower- (p=0.0182), but not faster- (p=0.2312) swinging arm among PD subjects. Furthermore, arm swing asymmetry decreased (p=0.0386), whereas maximum cross-correlation showed no change (p=0.7436). Pre-drug angular velocity amplitude of the slower-swinging arm was correlated inversely with the change in arm swing asymmetry (R=−0.73824, p=0.0011). Conclusions This study provides quantitative evidence that reduced arm swing and symmetry in PD can be modulated by dopaminergic replacement. The lack of modulations of bilateral arm coordination suggests that additional neurotransmitters may also be involved in arm swing changes in PD. Further studies are warranted to investigate the longitudinal trajectory of arm swing dynamics throughout PD progression. PMID:25502948

  6. Dopaminergic modulation of arm swing during gait among Parkinson's disease patients.

    PubMed

    Sterling, Nicholas W; Cusumano, Joseph P; Shaham, Noam; Piazza, Stephen J; Liu, Guodong; Kong, Lan; Du, Guangwei; Lewis, Mechelle M; Huang, Xuemei

    2015-01-01

    Reduced arm swing amplitude, symmetry, and coordination during gait have been reported in Parkinson's disease (PD), but the relationship between dopaminergic depletion and these upper limb gait changes remains unclear. We aimed to investigate the effects of dopaminergic drugs on arm swing velocity, symmetry, and coordination in PD. Forearm angular velocity was recorded in 16 PD and 17 control subjects (Controls) during free walking trials. Angular velocity amplitude of each arm, arm swing asymmetry, and maximum cross-correlation were compared between control and PD groups, and between OFF- and ON-medication states among PD subjects. Compared to Controls, PD subjects in the OFF-medication state exhibited lower angular velocity amplitude of the slower- (p = 0.0018), but not faster- (p = 0.2801) swinging arm. In addition, PD subjects demonstrated increased arm swing asymmetry (p = 0.0046) and lower maximum cross-correlation (p = 0.0026). Following dopaminergic treatment, angular velocity amplitude increased in the slower- (p = 0.0182), but not faster- (p = 0.2312) swinging arm among PD subjects. Furthermore, arm swing asymmetry decreased (p = 0.0386), whereas maximum cross-correlation showed no change (p = 0.7436). Pre-drug angular velocity amplitude of the slower-swinging arm was correlated inversely with the change in arm swing asymmetry (R = -0.73824, p = 0.0011). This study provides quantitative evidence that reduced arm swing and symmetry in PD can be modulated by dopaminergic replacement. The lack of modulations of bilateral arm coordination suggests that additional neurotransmitters may also be involved in arm swing changes in PD. Further studies are warranted to investigate the longitudinal trajectory of arm swing dynamics throughout PD progression.

  7. Sensor positioning and experimental constraints influence estimates of local dynamic stability during repetitive spine movements.

    PubMed

    Howarth, Samuel J; Graham, Ryan B

    2015-04-13

    Application of non-linear dynamics analyses to study human movement has increased recently, which necessitates an understanding of how dependent measures may be influenced by experimental design and setup. Quantifying local dynamic stability for a multi-articulated structure such as the spine presents the possibility for estimates to be influenced by positioning of kinematic sensors used to measure spine angular kinematics. Oftentimes researchers will also choose to constrain the spine's movement by physically restraining the pelvis and/or using targets to control movement endpoints. Ten healthy participants were recruited, and asked to perform separate trials of 35 consecutive cycles of spine flexion under both constrained and unconstrained conditions. Electromagnetic sensors that measure three-dimensional angular orientations were positioned over the pelvis and the spinous processes of L3, L1, and T11. Using the pelvic sensor as a reference, each sensor location on the spine was used to obtain a different representation of the three-dimensional spine angular kinematics. Local dynamic stability of each kinematic time-series was determined by calculating the maximum finite-time Lyapunov exponent (λmax). Estimates for λmax were significantly lower (i.e. dynamically more stable) for spine kinematic data obtained from the L3 sensor than those obtained from kinematic data using either the L1 or T11 sensors. Likewise, λmax was lower when the movement was constrained. These results emphasize the importance of proper placement of instrumentation for quantifying local dynamic stability of spine kinematics and are especially relevant for repeated measures designs where data are obtained from the same individual on multiple days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Rotational diffusion of a molecular cat

    NASA Astrophysics Data System (ADS)

    Katz-Saporta, Ori; Efrati, Efi

    We show that a simple isolated system can perform rotational random walk on account of internal excitations alone. We consider the classical dynamics of a ''molecular cat'': a triatomic molecule connected by three harmonic springs with non-zero rest lengths, suspended in free space. In this system, much like for falling cats, the angular momentum constraint is non-holonomic allowing for rotations with zero overall angular momentum. The geometric nonlinearities arising from the non-zero rest lengths of the springs suffice to break integrability and lead to chaotic dynamics. The coupling of the non-integrability of the system and its non-holonomic nature results in an angular random walk of the molecule. We study the properties and dynamics of this angular motion analytically and numerically. For low energy excitations the system displays normal-mode-like motion, while for high enough excitation energy we observe regular random-walk. In between, at intermediate energies we observe an angular Lévy-walk type motion associated with a fractional diffusion coefficient interpolating between the two regimes.

  9. Angular analysis of the cyclic impacting oscillations in a robotic grinding process

    NASA Astrophysics Data System (ADS)

    Rafieian, Farzad; Girardin, François; Liu, Zhaoheng; Thomas, Marc; Hazel, Bruce

    2014-02-01

    In a robotic machining process, a light-weight cutter or grinder is usually held by an articulated robot arm. Material removal is achieved by the rotating cutting tool while the robot end effector ensures that the tool follows a programmed trajectory in order to work on complex curved surfaces or to access hard-to-reach areas. One typical application of such process is maintenance and repair work on hydropower equipment. This paper presents an experimental study of the dynamic characteristics of material removal in robotic grinding, which is unlike conventional grinding due to the lower structural stiffness of the tool-holder robot. The objective of the study is to explore the cyclic nature of this mechanical operation to provide the basis for future development of better process control strategies. Grinding tasks that minimize the number of iterations to converge to the target surface can be better planned based on a good understanding and modeling of the cyclic material removal mechanism. A single degree of freedom dynamic analysis of the process suggests that material removal is performed through high-frequency impacts that mainly last for only a small fraction of the grinding disk rotation period. To detect these discrete cutting events in practice, a grinder is equipped with a rotary encoder. The encoder's signal is acquired through the angular sampling technique. A running cyclic synchronous average is applied to the speed signal to remove its non-cyclic events. The measured instantaneous rotational frequency clearly indicates the impacting nature of the process and captures the transient response excited by these cyclic impacts. The technique also locates the angular positions of cutting impacts in revolution cycles. It is thus possible to draw conclusions about the cyclic nature of dynamic changes in impact-cutting behavior when grinding with a flexible robot. The dynamics of the impacting regime and transient responses to impact-cutting excitations captured synchronously using the angular sampling technique provide feedback that can be used to regulate the material removal process. The experimental results also make it possible to correlate the energy required to remove a chip of metal through impacting with the measured drop in angular speed during grinding.

  10. Whole-body angular momentum during stair walking using passive and powered lower-limb prostheses.

    PubMed

    Pickle, Nathaniel T; Wilken, Jason M; Aldridge, Jennifer M; Neptune, Richard R; Silverman, Anne K

    2014-10-17

    Individuals with a unilateral transtibial amputation have a greater risk of falling compared to able-bodied individuals, and falling on stairs can lead to serious injuries. Individuals with transtibial amputations have lost ankle plantarflexor muscle function, which is critical for regulating whole-body angular momentum to maintain dynamic balance. Recently, powered prostheses have been designed to provide active ankle power generation with the goal of restoring biological ankle function. However, the effects of using a powered prosthesis on the regulation of whole-body angular momentum are unknown. The purpose of this study was to use angular momentum to evaluate dynamic balance in individuals with a transtibial amputation using powered and passive prostheses relative to able-bodied individuals during stair ascent and descent. Ground reaction forces, external moment arms, and joint powers were also investigated to interpret the angular momentum results. A key result was that individuals with an amputation had a larger range of sagittal-plane angular momentum during prosthetic limb stance compared to able-bodied individuals during stair ascent. There were no significant differences in the frontal, transverse, or sagittal-plane ranges of angular momentum or maximum magnitude of the angular momentum vector between the passive and powered prostheses during stair ascent or descent. These results indicate that individuals with an amputation have altered angular momentum trajectories during stair walking compared to able-bodied individuals, which may contribute to an increased fall risk. The results also suggest that a powered prosthesis provides no distinct advantage over a passive prosthesis in maintaining dynamic balance during stair walking. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Collective circular motion in synchronized and balanced formations with second-order rotational dynamics

    NASA Astrophysics Data System (ADS)

    Jain, Anoop; Ghose, Debasish

    2018-01-01

    This paper considers collective circular motion of multi-agent systems in which all the agents are required to traverse different circles or a common circle at a prescribed angular velocity. It is required to achieve these collective motions with the heading angles of the agents synchronized or balanced. In synchronization, the agents and their centroid have a common velocity direction, while in balancing, the movement of agents causes the location of the centroid to become stationary. The agents are initially considered to move at unit speed around individual circles at different angular velocities. It is assumed that the agents are subjected to limited communication constraints, and exchange relative information according to a time-invariant undirected graph. We present suitable feedback control laws for each of these motion coordination tasks by considering a second-order rotational dynamics of the agent. Simulations are given to illustrate the theoretical findings.

  12. A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of Pitched Baseballs and Softballs

    PubMed Central

    McGinnis, Ryan S.; Perkins, Noel C.

    2012-01-01

    Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher's hand. While radar guns and video-based motion capture (mocap) resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU) that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball's velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.

  13. Gender differences in head-neck segment dynamic stabilization during head acceleration.

    PubMed

    Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph

    2005-02-01

    Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.

  14. Interpersonal Coordination of Head Motion in Distressed Couples

    PubMed Central

    Hammal, Zakia; Cohn, Jeffrey F.; George, David T.

    2015-01-01

    In automatic emotional expression analysis, head motion has been considered mostly a nuisance variable, something to control when extracting features for action unit or expression detection. As an initial step toward understanding the contribution of head motion to emotion communication, we investigated the interpersonal coordination of rigid head motion in intimate couples with a history of interpersonal violence. Episodes of conflict and non-conflict were elicited in dyadic interaction tasks and validated using linguistic criteria. Head motion parameters were analyzed using Student’s paired t-tests; actor-partner analyses to model mutual influence within couples; and windowed cross-correlation to reveal dynamics of change in direction of influence over time. Partners’ RMS angular displacement for yaw and RMS angular velocity for pitch and yaw each demonstrated strong mutual influence between partners. Partners’ RMS angular displacement for pitch was higher during conflict. In both conflict and non-conflict, head angular displacement and angular velocity for pitch and yaw were strongly correlated, with frequent shifts in lead-lag relationships. The overall amount of coordination between partners’ head movement was more highly correlated during non-conflict compared with conflict interaction. While conflict increased head motion, it served to attenuate interpersonal coordination. PMID:26167256

  15. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  16. Whole-body angular momentum during stair ascent and descent.

    PubMed

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo

    NASA Astrophysics Data System (ADS)

    Nag, Sankhasubhra; Sinha, Siddhartha; Ananda, Deepika B.; Das, Tapas K.

    2017-04-01

    We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by an asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.

  18. An investigation of angular stiffness and damping coefficients of an axial spline coupling in high-speed rotating machinery

    NASA Technical Reports Server (NTRS)

    Ku, C.-P. Roger; Walton, James F., Jr.; Lund, Jorgen W.

    1994-01-01

    This paper provided an opportunity to quantify the angular stiffness and equivalent viscous damping coefficients of an axial spline coupling used in high-speed turbomachinery. A unique test methodology and data reduction procedures were developed. The bending moments and angular deflections transmitted across an axial spline coupling were measured while a nonrotating shaft was excited by an external shaker. A rotor dynamics computer program was used to simulate the test conditions and to correlate the angular stiffness and damping coefficients. In addition, sensitivity analyses were performed to show that the accuracy of the dynamic coefficients do not rely on the accuracy of the data reduction procedures.

  19. From rotating atomic rings to quantum Hall states.

    PubMed

    Roncaglia, M; Rizzi, M; Dalibard, J

    2011-01-01

    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial angular frequencies, the giant-vortex state is adiabatically connected to the bosonic ν = 1/2 Laughlin state.

  20. A submicron device to rectify a square-wave angular velocity.

    PubMed

    Moradian, A; Miri, M F

    2011-02-01

    We study a system composed of two thick dielectric disks separated by a thin layer of an electrolyte solution. Initially both plates have the same surface charge distribution. The surface charge distribution has no rotational symmetry. We show that the top plate experiences a torque [Formula: see text]([Formula: see text]) if it rotates about its axis by an angle [Formula: see text] . The torque can be controlled by varying the electrolyte concentration, the separation and the surface charge density of the plates. For a specific example of charged rods attached to the plates, we find [Formula: see text]([Formula: see text]) [Formula: see text] sin(4[Formula: see text]) . We also study the dynamics of the system. We consider the case where the angular velocity of the bottom disk is a square-wave signal. We find that the average angular velocity of the top disk is not zero.

  1. Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets

    NASA Technical Reports Server (NTRS)

    Su, Weihua; King, Cecilia K.; Clark, Scott R.; Griffin, Edwin D.; Suhey, Jeffrey D.; Wolf, Michael G.

    2016-01-01

    In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets. The direct solution is completed by numerically integrate the beam structural dynamic equation using an explicit Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets. Furthermore, in the real-time operation, the bending strain of the beam is measured by fiber optical sensors (FOS) at intermittent locations along the span, while both angular velocity and translational acceleration are measured at a single point by the inertial measurement unit (IMU). Another study in this paper is to find the analytical and numerical solutions of the beam dynamics based on the limited measurement data to facilitate the real-time control development. Numerical studies demonstrate the accuracy of these real-time solutions to the beam dynamics. Such analytical and numerical solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to increase launch availability by processing flight data into the flexible launch vehicle's control system.

  2. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    NASA Astrophysics Data System (ADS)

    Viswanathan, Sasi Prabhakaran

    Design, dynamics, control and implementation of a novel spacecraft attitude control actuator called the "Adaptive Singularity-free Control Moment Gyroscope" (ASCMG) is presented in this dissertation. In order to construct a comprehensive attitude dynamics model of a spacecraft with internal actuators, the dynamics of a spacecraft with an ASCMG, is obtained in the framework of geometric mechanics using the principles of variational mechanics. The resulting dynamics is general and complete model, as it relaxes the simplifying assumptions made in prior literature on Control Moment Gyroscopes (CMGs) and it also addresses the adaptive parameters in the dynamics formulation. The simplifying assumptions include perfect axisymmetry of the rotor and gimbal structures, perfect alignment of the centers of mass of the gimbal and the rotor etc. These set of simplifying assumptions imposed on the design and dynamics of CMGs leads to adverse effects on their performance and results in high manufacturing cost. The dynamics so obtained shows the complex nonlinear coupling between the internal degrees of freedom associated with an ASCMG and the spacecraft bus's attitude motion. By default, the general ASCMG cluster can function as a Variable Speed Control Moment Gyroscope, and reduced to function in CMG mode by spinning the rotor at constant speed, and it is shown that even when operated in CMG mode, the cluster can be free from kinematic singularities. This dynamics model is then extended to include the effects of multiple ASCMGs placed in the spacecraft bus, and sufficient conditions for non-singular ASCMG cluster configurations are obtained to operate the cluster both in VSCMG and CMG modes. The general dynamics model of the ASCMG is then reduced to that of conventional VSCMGs and CMGs by imposing the standard set of simplifying assumptions used in prior literature. The adverse effects of the simplifying assumptions that lead to the complexities in conventional CMG design, and how they lead to CMG singularities, are described. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of ASCMGs, are provided. Control schemes for agile and precise attitude maneuvers using ASCMG cluster in the absence of external torques and when the total angular momentum of the spacecraft is zero, is presented for both constant speed and variable speed modes. A Geometric Variational Integrator (GVI) that preserves the geometry of the state space and the conserved norm of the total angular momentum is constructed for numerical simulation and microcontroller implementation of the control scheme. The GVI is obtained by discretizing the Lagrangian of the rnultibody systems, in which the rigid body attitude is globally represented on the Lie group of rigid body rotations. Hardware and software architecture of a novel spacecraft Attitude Determination and Control System (ADCS) based on commercial smartphones and a bare minimum hardware prototype of an ASCMG using low cost COTS components is also described. A lightweight, dynamics model-free Variational Attitude Estimator (VAE) suitable for smartphone implementation is employed for attitude determination and the attitude control is performed by ASCMG actuators. The VAE scheme presented here is implemented and validated onboard an Unmanned Aerial Vehicle (UAV) platform and the real time performance is analyzed. On-board sensing, data acquisition, data uplink/downlink, state estimation and real-time feedback control objectives can be performed using this novel spacecraft ADCS. The mechatronics realization of the attitude determination through variational attitude estimation scheme and control implementation using ASCMG actuators are presented here. Experimental results of the attitude estimation (filtering) scheme using smartphone sensors as an Inertial Measurement Unit (IMU) on the Hardware In the Loop (HIL) simulator testbed are given. These results, obtained in the Spacecraft Guidance, Navigation and Control Laboratory at New Mexico State University, demonstrate the performance of this estimation scheme with the noisy raw data from the smartphone sensors. Keywords: Spacecraft, momentum exchange devices, control moment gyroscope, variational mechanics, geometric mechanics, variational integrators, attitude determination, attitude control, ADCS, estimation, ASCMG, VSCMG, cubesat, mechatronics, smartphone, Android, MEMS sensor, embedded programming, microcontroller, brushless DC drives, HIL simulation.

  3. Global finite-time attitude stabilization for rigid spacecraft in the exponential coordinates

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Ning; Zhou, Zhi-Gang; Zhou, Di

    2018-06-01

    This paper addresses the global finite-time attitude stabilisation problem on the special orthogonal group (SO(3)) for a rigid spacecraft via homogeneous feedback approach. Considering the topological and geometric properties of SO(3), the logarithm map is utilised to transform the stabilisation problem on SO(3) into the one on its associated Lie algebra (?). A model-independent discontinuous state feedback plus dynamics compensation scheme is constructed to achieve the global finite-time attitude stabilisation in a coordinate-invariant way. In addition, to address the absence of angular velocity measurements, a sliding mode observer is proposed to reconstruct the unknown angular velocity information within finite time. Then, an observer-based finite-time output feedback control strategy is obtained. Numerical simulations are finally performed to demonstrate the effectiveness of the proposed finite-time controllers.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPDmore » formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.« less

  5. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H.; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H2 + D. Clear oscillatory structures are observed for the H2(v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  6. A hybrid method for accurate star tracking using star sensor and gyros.

    PubMed

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  7. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  8. Linear and angular control of circular walking in healthy older adults and subjects with cerebellar ataxia.

    PubMed

    Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B

    2012-05-01

    Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.

  9. Large Angle Transient Dynamics (LATDYN) user's manual

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.

    1991-01-01

    A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.

  10. The accuracy of dynamic attitude propagation

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Chu, D.; Woodard, M.

    1990-01-01

    Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes.

  11. Dynamic analysis of Apollo-Salyut/Soyuz docking

    NASA Technical Reports Server (NTRS)

    Schliesing, J. A.

    1972-01-01

    The use of a docking-system computer program in analyzing the dynamic environment produced by two impacting spacecraft and the attitude control systems is discussed. Performance studies were conducted to determine the mechanism load and capture sensitivity to parametric changes in the initial impact conditions. As indicated by the studies, capture latching is most sensitive to vehicle angular-alinement errors and is least sensitive to lateral-miss error. As proved by load-sensitivity studies, peak loads acting on the Apollo spacecraft are considerably lower than the Apollo design-limit loads.

  12. A New Approach to Attitude Stability and Control for Low Airspeed Vehicles

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.

    2004-01-01

    This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.

  13. Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing.

    PubMed

    Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Jyunya; Toda, Yuka; Yamada, Kaori

    2017-01-01

    Dynamic knee valgus during landings is associated with an increased risk of non-contact anterior cruciate ligament (ACL) injury. In addition, the impact on the body during landings must be attenuated in the lower extremity joints. The purpose of this study was to investigate landing biomechanics during landing with dynamic knee valgus by measuring the vertical ground reaction force (vGRF) and angular impulses in the lower extremity during a single-leg landing. The study included 34 female college students, who performed the single-leg drop vertical jump. Lower extremity kinetic and kinematic data were obtained from a 3D motion analysis system. Participants were divided into valgus (N = 19) and varus (N = 15) groups according to the knee angular displacement during landings. The vGRF and angular impulses of the hip, knee, and ankle were calculated by integrating the vGRF-time curve and each joint's moment-time curve. vGRF impulses did not differ between two groups. Hip angular impulse in the valgus group was significantly smaller than that in the varus group (0.019 ± 0.033 vs. 0.067 ± 0.029 Nms/kgm, p<0.01), whereas knee angular impulse was significantly greater (0.093 ± 0.032 vs. 0.045 ± 0.040 Nms/kgm, p<0.01). There was no difference in ankle angular impulse between the groups. Our results indicate that dynamic knee valgus increases the impact the knee joint needs to attenuate during landing; conversely, the knee varus participants were able to absorb more of the landing impact with the hip joint.

  14. Self-consistent simulation of high-frequency driven plasma sheaths

    NASA Astrophysics Data System (ADS)

    Shihab, Mohammed; Eremin, Denis; Mussenbrock, Thomas; Brinkmann, Ralf

    2011-10-01

    Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. The financial support from the Federal Ministry of Education and Research within the frame of the project ``Plasma-Technology-Grid'' and the support of the DFG via the collaborative research center SFB-TR87 is gratefully acknowledged.

  15. Method for collecting thermocouple data via secured shell over a wireless local area network in real time

    NASA Astrophysics Data System (ADS)

    Arnold, F.; DeMallie, I.; Florence, L.; Kashinski, D. O.

    2015-03-01

    This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples.

  16. Method for collecting thermocouple data via secured shell over a wireless local area network in real time.

    PubMed

    Arnold, F; DeMallie, I; Florence, L; Kashinski, D O

    2015-03-01

    This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples.

  17. Targeted Prostate Thermal Therapy with Catheter-Based Ultrasound Devices and MR Thermal Monitoring

    NASA Astrophysics Data System (ADS)

    Diederich, Chris; Ross, Anthony; Kinsey, Adam; Nau, Will H.; Rieke, Viola; Butts Pauly, Kim; Sommer, Graham

    2006-05-01

    Catheter-based ultrasound devices have significant advantages for thermal therapy procedures, including potential for precise spatial and dynamic control of heating patterns to conform to targeted volumes. Interstitial and transurethral ultrasound applicators, with associated treatment strategies, were developed for thermal ablation of prostate combined with MR thermal monitoring. Four types of multielement transurethral applicators were devised, each with different levels of selectivity and intended therapeutic goals: sectored tubular transducer devices with fixed directional heating patterns; planar and lightly focused curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Similarly, interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with fixed directional heating patterns (e.g., 180 deg.). In vivo experiments in canine prostate (n=15) under MR temperature imaging were used to evaluate the heating technology and develop treatment strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature contours and thermal dose in multiple slices through the target volume. Sectored transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. The curvilinear applicator produces distinct 2-3 mm wide lesions, and with sequential rotation and modulated dwell time can precisely conform thermal ablation to selected areas or the entire prostate gland. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with directional devices can be used to effectively ablate the posterior peripheral zone of the gland while protecting the rectum. An implant with multi-sectored interstitial devices can effectively control the angular heating pattern without applicator rotation. The MR derived 52 °C and lethal thermal dose contours (t43=240 min) allowed for real-time control of the applicators and effectively defined the extent of thermal damage. Catheter-based ultrasound devices, combined with MR thermal monitoring, can produce relatively fast and precise thermal ablation of prostate, with potential for treatment of cancer or BPH.

  18. Control of interjoint coordination during the swing phase of normal gait at different speeds

    PubMed Central

    Shemmell, Jonathan; Johansson, Jennifer; Portra, Vanessa; Gottlieb, Gerald L; Thomas, James S; Corcos, Daniel M

    2007-01-01

    Background It has been suggested that the control of unconstrained movements is simplified via the imposition of a kinetic constraint that produces dynamic torques at each moving joint such that they are a linear function of a single motor command. The linear relationship between dynamic torques at each joint has been demonstrated for multijoint upper limb movements. The purpose of the current study was to test the applicability of such a control scheme to the unconstrained portion of the gait cycle – the swing phase. Methods Twenty-eight neurologically normal individuals walked along a track at three different speeds. Angular displacements and dynamic torques produced at each of the three lower limb joints (hip, knee and ankle) were calculated from segmental position data recorded during each trial. We employed principal component (PC) analysis to determine (1) the similarity of kinematic and kinetic time series at the ankle, knee and hip during the swing phase of gait, and (2) the effect of walking speed on the range of joint displacement and torque. Results The angular displacements of the three joints were accounted for by two PCs during the swing phase (Variance accounted for – PC1: 75.1 ± 1.4%, PC2: 23.2 ± 1.3%), whereas the dynamic joint torques were described by a single PC (Variance accounted for – PC1: 93.8 ± 0.9%). Increases in walking speed were associated with increases in the range of motion and magnitude of torque at each joint although the ratio describing the relative magnitude of torque at each joint remained constant. Conclusion Our results support the idea that the control of leg swing during gait is simplified in two ways: (1) the pattern of dynamic torque at each lower limb joint is produced by appropriately scaling a single motor command and (2) the magnitude of dynamic torque at all three joints can be specified with knowledge of the magnitude of torque at a single joint. Walking speed could therefore be altered by modifying a single value related to the magnitude of torque at one joint. PMID:17466065

  19. Characterization of thigh and shank segment angular velocity during jump landing tasks commonly used to evaluate risk for ACL injury.

    PubMed

    Dowling, Ariel V; Favre, Julien; Andriacchi, Thomas P

    2012-09-01

    The dynamic movements associated with anterior cruciate ligament (ACL) injury during jump landing suggest that limb segment angular velocity can provide important information for understanding the conditions that lead to an injury. Angular velocity measures could provide a quick and simple method of assessing injury risk without the constraints of a laboratory. The objective of this study was to assess the inter-subject variations and the sensitivity of the thigh and shank segment angular velocity in order to determine if these measures could be used to characterize jump landing mechanisms. Additionally, this study tested the correlation between angular velocity and the knee abduction moment. Thirty-six healthy participants (18 male) performed drop jumps with bilateral and unilateral landing. Thigh and shank angular velocities were measured by a wearable inertial-based system, and external knee moments were measured using a marker-based system. Discrete parameters were extracted from the data and compared between systems. For both jumping tasks, the angular velocity curves were well defined movement patterns with high inter-subject similarity in the sagittal plane and moderate to good similarity in the coronal and transverse planes. The angular velocity parameters were also able to detect differences between the two jumping tasks that were consistent across subjects. Furthermore, the coronal angular velocities were significantly correlated with the knee abduction moment (R of 0.28-0.51), which is a strong indicator of ACL injury risk. This study suggested that the thigh and shank angular velocities, which describe the angular dynamics of the movement, should be considered in future studies about ACL injury mechanisms.

  20. Momentum Transfer in a Spinning Fuel Tank Filled with Xenon

    NASA Technical Reports Server (NTRS)

    Peugeot, John W.; Dorney, Daniel J.

    2006-01-01

    Transient spin-up and spin-down flows inside of spacecraft fuel tanks need to be analyzed in order to properly design spacecraft control systems. Knowledge of the characteristics of angular momentum transfer to and from the fuel is used to size the de-spin mechanism that places the spacecraft in a controllable in-orbit state. In previous studies, several analytical models of the spin-up process were developed. However, none have accurately predicted all of the flow dynamics. Several studies have also been conducted using Navier-Stokes based methods. These approaches have been much more successful at simulating the dynamic processes in a cylindrical container, but have not addressed the issue of momentum transfer. In the current study, the spin-up and spin-down of a fuel tank filled with gaseous xenon has been investigated using a three-dimensional unsteady Navier-Stokes code. Primary interests have been concentrated on the spin-up/spin-down time constants and the initial torque imparted on the system. Additional focus was given to the relationship between the dominant flow dynamics and the trends in momentum transfer. Through the simulation of both a cylindrical and a spherical tank, it was revealed that the transfer of angular momentum is nonlinear at early times and tends toward a linear pattern at later times. Further investigation suggests that the nonlinear spin up is controlled by the turbulent transport of momentum, while the linear phase is controlled by a Coriolis driven (Ekman) flow along the outer wall. These results indicate that the spinup and spin-down processes occur more quickly in tanks with curved surfaces than those with defined top, bottom, and side walls. The results also provide insights for the design of spacecraft de-spin mechanisms.

  1. The biomechanics of concussion in unhelmeted football players in Australia: a case–control study

    PubMed Central

    McIntosh, Andrew S; Patton, Declan A; Fréchède, Bertrand; Pierré, Paul-André; Ferry, Edouard; Barthels, Tobias

    2014-01-01

    Objective Concussion is a prevalent brain injury in sport and the wider community. Despite this, little research has been conducted investigating the dynamics of impacts to the unprotected human head and injury causation in vivo, in particular the roles of linear and angular head acceleration. Setting Professional contact football in Australia. Participants Adult male professional Australian rules football players participating in 30 games randomly selected from 103 games. Cases selected based on an observable head impact, no observable symptoms (eg, loss-of-consciousness and convulsions), no on-field medical management and no injury recorded at the time. Primary and secondary outcome measures A data set for no-injury head impact cases comprising head impact locations and head impact dynamic parameters estimated through rigid body simulations using the MAthematical DYnamic MOdels (MADYMO) human facet model. This data set was compared to previously reported concussion case data. Results Qualitative analysis showed that the head was more vulnerable to lateral impacts. Logistic regression analyses of head acceleration and velocity components revealed that angular acceleration of the head in the coronal plane had the strongest association with concussion; tentative tolerance levels of 1747 rad/s2 and 2296 rad/s2 were reported for a 50% and 75% likelihood of concussion, respectively. The mean maximum resultant angular accelerations for the concussion and no-injury cases were 7951 rad/s2 (SD 3562 rad/s2) and 4300 rad/s2 (SD 3657 rad/s2), respectively. Linear acceleration is currently used in the assessment of helmets and padded headgear. The 50% and 75% likelihood of concussion values for resultant linear head acceleration in this study were 65.1 and 88.5 g, respectively. Conclusions As hypothesised by Holbourn over 70 years ago, angular acceleration plays an important role in the pathomechanics of concussion, which has major ramifications in terms of helmet design and other efforts to prevent and manage concussion. PMID:24844272

  2. Angular-velocity control approach for stance-control orthoses.

    PubMed

    Lemaire, Edward D; Goudreau, Louis; Yakimovich, Terris; Kofman, Jonathan

    2009-10-01

    Currently, stance-control knee orthoses require external control mechanisms to control knee flexion during stance and allow free knee motion during the swing phase of gait. A new angular-velocity control approach that uses a rotary-hydraulic device to resist knee flexion when the knee angular velocity passes a preset threshold is presented. This angular-velocity approach for orthotic stance control is based on the premise that knee-flexion angular velocity during a knee-collapse event, such as a stumble or fall, is greater than that during walking. The new hydraulic knee-flexion control device does not require an external control mechanism to switch from free motion to stance control mode. Functional test results demonstrated that the hydraulic angular-velocity activated knee joint provided free knee motion during walking, engaged upon knee collapse, and supported body weight while the end-user recovered to a safe body position. The joint was tested to 51.6 Nm in single loading tests and passed 200,000 repeated loading cycles with a peak load of 88 Nm per cycle. The hydraulic, angular velocity activation approach has potential to improve safety and security for people with lower extremity weakness or when recovering from joint trauma.

  3. Angular Declination and the Dynamic Perception of Egocentric Distance

    PubMed Central

    Gajewski, Daniel A.; Philbeck, John W.; Wirtz, Philip W.; Chichka, David

    2014-01-01

    The extraction of the distance between an object and an observer is fast when angular declination is informative, as it is with targets placed on the ground. To what extent does angular declination drive performance when viewing time is limited? Participants judged target distances in a real-world environment with viewing durations ranging from 36–220 ms. An important role for angular declination was supported by experiments showing that the cue provides information about egocentric distance even on the very first glimpse, and that it supports a sensitive response to distance in the absence of other useful cues. Performance was better at 220 ms viewing durations than for briefer glimpses, suggesting that the perception of distance is dynamic even within the time frame of a typical eye fixation. Critically, performance in limited viewing trials was better when preceded by a 15 second preview of the room without a designated target. The results indicate that the perception of distance is powerfully shaped by memory from prior visual experience with the scene. A theoretical framework for the dynamic perception of distance is presented. PMID:24099588

  4. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction.

    PubMed

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H 2  + D. Clear oscillatory structures are observed for the H 2 (v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  5. Real-time physics-based 3D biped character animation using an inverted pendulum model.

    PubMed

    Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee

    2010-01-01

    We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.

  6. Comparative analysis of on-orbit dynamic performance of several large antenna concepts

    NASA Technical Reports Server (NTRS)

    Andersen, G. C.; Garrett, L. B.; Calleson, R. E.

    1985-01-01

    A comparative analysis of the on-orbit dynamic performance of four large anetanna concepts is presented. Among the antenna concepts evaluated are: the box truss; tetrahedral truss; warp-radial rib; and the hoop and column antenna designs. The characteristics and magnitudes of the antennas' dynamic response were evaluated in terms of structural displacements and member loads incurred during various slew-rate maneuvers. The results of the dynamic response analysis are compared to the design requirements of the Land Mobile Satellite System (LMSS) with respect to surface accuracy, decenter, defocus, and angular rocking. Comments are made on the effectiveness of structural damping and the application of active controls for vibrational response reduction. Schematic illustrations of the antenna design concepts are provided.

  7. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  8. A Modern Picture of Barred Galaxy Dynamics

    NASA Astrophysics Data System (ADS)

    Petersen, Michael; Weinberg, Martin; Katz, Neal

    2018-01-01

    Observations of disk galaxies suggest that bars are responsible for altering global galaxy parameters (e.g. structures, gas fraction, star formation rate). The canonical understanding of the mechanisms underpinning bar-driven secular dynamics in disk galaxies has been largely built upon the analysis of linear theory, despite galactic bars being clearly demonstrated to be nonlinear phenomena in n-body simulations. We present simulations of barred Milky Way-like galaxy models designed to elucidate nonlinear barred galaxy dynamics. We have developed two new methodologies for analyzing n-body simulations that give the best of both powerful analytic linear theory and brute force simulation analysis: orbit family identification and multicomponent torque analysis. The software will be offered publicly to the community for their own simulation analysis.The orbit classifier reveals that the details of kinematic components in galactic disks (e.g. the bar, bulge, thin disk, and thick disk components) are powerful discriminators of evolutionary paradigms (i.e. violent instabilities and secular evolution) as well as the basic parameters of the dark matter halo (mass distribution, angular momentum distribution). Multicomponent torque analysis provides a thorough accounting of the transfer of angular momentum between orbits, global patterns, and distinct components in order to better explain the underlying physics which govern the secular evolution of barred disk galaxies.Using these methodologies, we are able to identify the successes and failures of linear theory and traditional n-body simulations en route to a detailed understanding of the control bars exhibit over secular evolution in galaxies. We present explanations for observed physical and velocity structures in observations of barred galaxies alongside predictions for how structures will vary with dynamical properties from galaxy to galaxy as well as over the lifetime of a galaxy, finding that the transfer of angular momentum through previously unidentified channels can more fully explain the observed dynamics.

  9. LAMMPS framework for dynamic bonding and an application modeling DNA

    NASA Astrophysics Data System (ADS)

    Svaneborg, Carsten

    2012-08-01

    We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework. Catalogue identifier: AEME_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEME_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 2 243 491 No. of bytes in distributed program, including test data, etc.: 771 Distribution format: tar.gz Programming language: C++ Computer: Single and multiple core servers Operating system: Linux/Unix/Windows Has the code been vectorized or parallelized?: Yes. The code has been parallelized by the use of MPI directives. RAM: 1 Gb Classification: 16.11, 16.12 Nature of problem: Simulating coarse-grain models capable of chemistry e.g. DNA hybridization dynamics. Solution method: Extending LAMMPS to handle dynamic bonding and directional bonds. Unusual features: Allows bonds to be created and broken while angular and dihedral interactions are kept consistent. Additional comments: The distribution file for this program is approximately 36 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead an html file giving details of how the program can be obtained is sent. Running time: Hours to days. The examples provided in the distribution take just seconds to run.

  10. On the study of angular velocity in mass asymmetry nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    Using isospin-dependent quantum molecular dynamics (IQMD) model, the role of angular velocity (Wy) has been explored by changing the mass asymmetric content of the colliding nuclei at the incident energy of 50 MeV/nucleon for centrality 0.25

  11. Head Movement Dynamics During Play and Perturbed Mother-Infant Interaction

    PubMed Central

    Hammal, Zakia; Cohn, Jeffrey F; Messinger, Daniel S

    2015-01-01

    We investigated the dynamics of head movement in mothers and infants during an age-appropriate, well-validated emotion induction, the Still Face paradigm. In this paradigm, mothers and infants play normally for 2 minutes (Play) followed by 2 minutes in which the mothers remain unresponsive (Still Face), and then two minutes in which they resume normal behavior (Reunion). Participants were 42 ethnically diverse 4-month-old infants and their mothers. Mother and infant angular displacement and angular velocity were measured using the CSIRO head tracker. In male but not female infants, angular displacement increased from Play to Still-Face and decreased from Still Face to Reunion. Infant angular velocity was higher during Still-Face than Reunion with no differences between male and female infants. Windowed cross-correlation suggested changes in how infant and mother head movements are associated, revealing dramatic changes in direction of association. Coordination between mother and infant head movement velocity was greater during Play compared with Reunion. Together, these findings suggest that angular displacement, angular velocity and their coordination between mothers and infants are strongly related to age-appropriate emotion challenge. Attention to head movement can deepen our understanding of emotion communication. PMID:26640622

  12. Star tracking method based on multiexposure imaging for intensified star trackers.

    PubMed

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2017-07-20

    The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.

  13. Effect of time derivative of contact area on dynamic friction

    NASA Astrophysics Data System (ADS)

    Arakawa, Kazuo

    2014-06-01

    This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball's angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F = μN + μη dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is the time derivative of the contact area A, and η is a coefficient associated with the contact area.

  14. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets

    NASA Astrophysics Data System (ADS)

    Kim, Kab-Jin; Kim, Se Kwon; Hirata, Yuushou; Oh, Se-Hyeok; Tono, Takayuki; Kim, Duck-Ho; Okuno, Takaya; Ham, Woo Seung; Kim, Sanghoon; Go, Gyoungchoon; Tserkovnyak, Yaroslav; Tsukamoto, Arata; Moriyama, Takahiro; Lee, Kyung-Jin; Ono, Teruo

    2017-12-01

    Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices. A central motivation towards this direction is that antiferromagnetic spin dynamics is expected to be much faster than its ferromagnetic counterpart. Recent theories indeed predicted faster dynamics of antiferromagnetic domain walls (DWs) than ferromagnetic DWs. However, experimental investigations of antiferromagnetic spin dynamics have remained unexplored, mainly because of the magnetic field immunity of antiferromagnets. Here we show that fast field-driven antiferromagnetic spin dynamics is realized in ferrimagnets at the angular momentum compensation point TA. Using rare earth-3d-transition metal ferrimagnetic compounds where net magnetic moment is nonzero at TA, the field-driven DW mobility is remarkably enhanced up to 20 km s-1 T-1. The collective coordinate approach generalized for ferrimagnets and atomistic spin model simulations show that this remarkable enhancement is a consequence of antiferromagnetic spin dynamics at TA. Our finding allows us to investigate the physics of antiferromagnetic spin dynamics and highlights the importance of tuning of the angular momentum compensation point of ferrimagnets, which could be a key towards ferrimagnetic spintronics.

  15. A femtosecond Yb-doped fiber laser with generalized vector vortex beams output (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huo, Tiancheng; Qi, Li; Zhang, Buyun; Chen, Zhongping

    2017-03-01

    Light carries both spin and orbital angular momentum (OAM) and the superpositions of these two dynamical properties have found many applications. Many techniques exist to create such light sources but none allow their creation at the femtosecond fiber laser. Here we report on a novel mode-locked Ytterbium-doped fiber laser that generates femtosecond pulses with generalized vector vortex states. The controlled generation of such pulses such as azimuthally and radially polarized light with definite orbital angular momentum modes are demonstrated. A unidirectional ring cavity constructed with the Yb-doped fiber placed at the end of the fiber section to reduces unnecessary nonlinear effects is employed for self-starting operation. Pairs of diffraction gratings are used for compensating the normal group velocity dispersion of the fiber and other elements. Mode-locked operation is achieved based on nonlinear polarization evolution, which is mainly implemented with the single mode fiber, the bulk wave plates and the variable spiral plates (q-plate with topological charge q=0.5). The conversion from spin angular momentum to the OAM and reverse inside the laser cavity are realized by means of a quarter-wave plate and a q-plate so that the polarization control was mapped to OAM mode control. The fiber laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability and portability.

  16. New dynamic variables for rotating spacecraft

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1993-01-01

    This paper introduces two new seven-parameter representations for spacecraft attitude dynamics modeling. The seven parameters are the three components of the total system angular momentum in the spacecraft body frame; the three components of the angular momentum in the inertial reference frame; and an angle variable. These obey a single constraint as do parameterizations that include a quaternion; in this case the constraint is the equality of the sum of the squares of the angular momentum components in the two frames. The two representations are nonsingular if the system angular momentum is non-zero and obeys certain orientation constraints. The new parameterizations of the attitude matrix, the equations of motion, and the relation of the solution of these equations to Euler angles for torque-free motion are developed and analyzed. The superiority of the new parameterizations for numerical integration is shown in a specific example.

  17. Collapse and Nonlinear Instability of AdS Space with Angular Momentum

    NASA Astrophysics Data System (ADS)

    Choptuik, Matthew W.; Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson

    2017-11-01

    We present a numerical study of rotational dynamics in AdS5 with equal angular momenta in the presence of a complex doublet scalar field. We determine that the endpoint of gravitational collapse is a Myers-Perry black hole for high energies and a hairy black hole for low energies. We investigate the time scale for collapse at low energies E , keeping the angular momenta J ∝E in anti-de Sitter (AdS) length units. We find that the inclusion of angular momenta delays the collapse time, but retains a t ˜1 /E scaling. We perturb and evolve rotating boson stars, and find that boson stars near AdS space appear stable, but those sufficiently far from AdS space are unstable. We find that the dynamics of the boson star instability depend on the perturbation, resulting either in collapse to a Myers-Perry black hole, or development towards a stable oscillating solution.

  18. Dynamics and stability of directional jumps in the desert locust.

    PubMed

    Gvirsman, Omer; Kosa, Gabor; Ayali, Amir

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps' azimuth and elevation angles. We also report a strong linear correlation between the jumps' pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  19. Magnetometer-only attitude and angular velocity filtering estimation for attitude changing spacecraft

    NASA Astrophysics Data System (ADS)

    Ma, Hongliang; Xu, Shijie

    2014-09-01

    This paper presents an improved real-time sequential filter (IRTSF) for magnetometer-only attitude and angular velocity estimation of spacecraft during its attitude changing (including fast and large angular attitude maneuver, rapidly spinning or uncontrolled tumble). In this new magnetometer-only attitude determination technique, both attitude dynamics equation and first time derivative of measured magnetic field vector are directly leaded into filtering equations based on the traditional single vector attitude determination method of gyroless and real-time sequential filter (RTSF) of magnetometer-only attitude estimation. The process noise model of IRTSF includes attitude kinematics and dynamics equations, and its measurement model consists of magnetic field vector and its first time derivative. The observability of IRTSF for small or large angular velocity changing spacecraft is evaluated by an improved Lie-Differentiation, and the degrees of observability of IRTSF for different initial estimation errors are analyzed by the condition number and a solved covariance matrix. Numerical simulation results indicate that: (1) the attitude and angular velocity of spacecraft can be estimated with sufficient accuracy using IRTSF from magnetometer-only data; (2) compared with that of RTSF, the estimation accuracies and observability degrees of attitude and angular velocity using IRTSF from magnetometer-only data are both improved; and (3) universality: the IRTSF of magnetometer-only attitude and angular velocity estimation is observable for any different initial state estimation error vector.

  20. Attenuation of cryocooler induced vibration using multimodal tuned dynamic absorber

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Babitsky, V.; Tuito, A.

    2017-12-01

    Modern infrared imagers often rely on low Size, Weight and Power split Stirling linear cryocoolers comprised of side-by-side packed compressor and expander units fixedly mounted upon a common frame and interconnected by the configurable transfer line. Imbalanced reciprocation of moving assemblies generates vibration export in the form of tonal force couple producing angular and translational dynamic responses. Resulting line of sight jitter and dynamic defocusing may affect the image quality. The authors explore the concept of multimodal tuned dynamic absorber, the translational and tilting modal frequencies of which are essentially matched to the driving frequency. Dynamic analysis and full-scale testing show that the dynamic reactions (forces and moments) produced by such a device may effectively attenuate both translational and angular components of cryocooler-induced vibration.

  1. Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and Extended Kalman Filter

    NASA Astrophysics Data System (ADS)

    Xu, Zheyao; Qi, Naiming; Chen, Yukun

    2015-12-01

    Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.

  2. Effects of some motion sickness suppressants on tracking performance during angular accelerations.

    DOT National Transportation Integrated Search

    1982-10-01

    The two studies reported here examined the influence of three established antimotion sickness drugs on tracking performance in static (stationary) and dynamic (angular acceleration) conditions and on visual fixation ability during motion. : In Study ...

  3. Bias Momentum Sizing for Hovering Dual-Spin Platforms

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Shin, Jong-Yeob; Moerder, Daniel D.

    2006-01-01

    An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and attitude control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias aligned with the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes a methodical approach for trading off angular momentum bias level needed with desired levels of vehicle response due to the design disturbance environment given a vehicle's physical parameters. It also describes several simplifications that provide a more physical and intuitive understanding of dual-spin dynamics for hovering atmospheric vehicles. This approach also mitigates the need for control torques and inadvertent actuator saturation difficulties in trying to stabilize a vehicle via control torques produced by unsteady aerodynamics, thrust vectoring, and unsteady throttling. Simulation results, based on a subscale laboratory test flying platform, demonstrate significant improvements in the attitude control robustness of the vehicle with respect to both wind disturbances and off-center of gravity payload changes during flight.

  4. Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: Angular momentum and ring current

    NASA Astrophysics Data System (ADS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.

    2013-02-01

    The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012), 10.1021/ja3047848].

  5. Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: angular momentum and ring current.

    PubMed

    Mineo, H; Lin, S H; Fujimura, Y

    2013-02-21

    The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012)].

  6. A Module for Automatic Dock and Detumble (MADD) for orbital rescue operations

    NASA Technical Reports Server (NTRS)

    Snow, W. R.; Kunciw, B. G.; Kaplan, M. H.

    1973-01-01

    The module for automatic dock and detumble (MADD) is an automated device for bringing a passive, tumbling space base under control in an orbital rescue situation. The conceptual design of such a device resulted from a consideration of tumbling motion analyses and mission constraints. Specific topics of investigation include orbit and attitude dynamics and detumble profiles. Position and attitude control systems for the various phases of operation were developed. Dynamic motion of a passive vehicle with MADD attached is considered as an example application and to determine control requirements. Since time is a critical factor in rescue operations, it is essential to execute the detumbling maneuver in a minimum of time. Optimization of the MADD thrusting sequence has also been investigated. Results indicate the control torque must be directed opposite to the angular momentum vector for the assumption used here.

  7. Orbital-angular-momentum transfer to optically levitated microparticles in vacuum

    NASA Astrophysics Data System (ADS)

    Mazilu, Michael; Arita, Yoshihiko; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2016-11-01

    We demonstrate the transfer of orbital angular momentum to an optically levitated microparticle in vacuum. The microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present.

  8. Dynamic state estimation assisted power system monitoring and protection

    NASA Astrophysics Data System (ADS)

    Cui, Yinan

    The advent of phasor measurement units (PMUs) has unlocked several novel methods to monitor, control, and protect bulk electric power systems. This thesis introduces the concept of "Dynamic State Estimation" (DSE), aided by PMUs, for wide-area monitoring and protection of power systems. Unlike traditional State Estimation where algebraic variables are estimated from system measurements, DSE refers to a process to estimate the dynamic states associated with synchronous generators. This thesis first establishes the viability of using particle filtering as a technique to perform DSE in power systems. The utility of DSE for protection and wide-area monitoring are then shown as potential novel applications. The work is presented as a collection of several journal and conference papers. In the first paper, we present a particle filtering approach to dynamically estimate the states of a synchronous generator in a multi-machine setting considering the excitation and prime mover control systems. The second paper proposes an improved out-of-step detection method for generators by means of angular difference. The generator's rotor angle is estimated with a particle filter-based dynamic state estimator and the angular separation is then calculated by combining the raw local phasor measurements with this estimate. The third paper introduces a particle filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It considers the situation where the field voltage measurements are not readily available. The particle filter is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. The fourth paper proposes a novel framework for event detection based on energy functions. The key idea is that any event in the system will leave a signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance events are buried in the components that constitute the energy function for the system. This establishes a direct correspondence (or mapping) between an event and certain component(s) of the energy function. The last paper considers the dynamic latency effect when the measurements and estimated dynamics are transmitted from remote ends to a centralized location through the networks.

  9. Attitude output feedback control for rigid spacecraft with finite-time convergence.

    PubMed

    Hu, Qinglei; Niu, Guanglin

    2017-09-01

    The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. High precision active nutation control for a flexible momentum biased spacecraft

    NASA Technical Reports Server (NTRS)

    Laskin, R. A.; Kopf, E. H.

    1984-01-01

    The controller design for the Solar Dynamics Observatory (SDO) is presented. SDO is a momentum biased spacecraft with three flexible appendages. Its primary scientific instrument, the solar oscillations imager (SOI), is rigidly attached to the spacecraft bus and has arc-second pointing requirements. Meeting these requirements necessitates the use of an active nutation controller (ANC) which is here mechanized with a small reaction wheel oriented along a bus transverse axis. The ANC does its job by orchestrating the transfer of angular momentum out of the bus transverse axes and into the momentum wheel. A simulation study verifies that the controller provides quick, stable, and accurate response.

  11. Studies of pointing, acquisition, and tracking of agile optical wireless transceivers for free-space optical communication networks

    NASA Astrophysics Data System (ADS)

    Ho, Tzung-Hsien; Trisno, Sugianto; Smolyaninov, Igor I.; Milner, Stuart D.; Davis, Christopher C.

    2004-02-01

    Free space, dynamic, optical wireless communications will require topology control for optimization of network performance. Such networks may need to be configured for bi- or multiple-connectedness, reliability and quality-of-service. Topology control involves the introduction of new links and/or nodes into the network to achieve such performance objectives through autonomous reconfiguration as well as precise pointing, acquisition, tracking, and steering of laser beams. Reconfiguration may be required because of link degradation resulting from obscuration or node loss. As a result, the optical transceivers may need to be re-directed to new or existing nodes within the network and tracked on moving nodes. The redirection of transceivers may require operation over a whole sphere, so that small-angle beam steering techniques cannot be applied. In this context, we are studying the performance of optical wireless links using lightweight, bi-static transceivers mounted on high-performance stepping motor driven stages. These motors provide an angular resolution of 0.00072 degree at up to 80,000 steps per second. This paper focuses on the performance characteristics of these agile transceivers for pointing, acquisition, and tracking (PAT), including the influence of acceleration/deceleration time, motor angular speed, and angular re-adjustment, on latency and packet loss in small free space optical (FSO) wireless test networks.

  12. Molecular alignment and orientation with a hybrid Raman scattering technique

    NASA Astrophysics Data System (ADS)

    Bustard, Philip J.; Lausten, R.; Sussman, Benjamin J.

    2012-11-01

    We demonstrate a scheme for the preparation of molecular alignment and angular momentum orientation using a hybrid combination of two limits of Raman scattering. First a weak, impulsive pump pulse initializes the system via the nonresonant dynamic Stark effect. Then, having overcome the influence of the vacuum fluctuations, an amplification pulse selectively enhances the initial coherences by transient stimulated Raman scattering, generating alignment and angular momentum orientation of molecular hydrogen. The amplitude and phase of the resulting coherent dynamics are experimentally probed, indicating an amplification factor of 4.5. An analytic theory is developed to model the dynamics.

  13. Inverse dynamic investigation of voluntary trunk movements in weightlessness: a new microgravity-specific strategy.

    PubMed

    Pedrocchi, Alessandra; Pedotti, Antonio; Baroni, Guido; Massion, Jean; Ferrigno, Giancarlo

    2003-11-01

    Present investigation faces the question of quantitative assessment of exchanged forces and torques at the restraints during whole body posture exercises in long-term microgravity. Inverse dynamic modelling and total angular momentum at the ankle joint were used in order to reconstruct movement dynamics at the restraining point, represented by the ankle joint. The hypothesis is that the minimisation of the torques at the interface point assumes a key role in movement planning in 0 g. This hypothesis would respond to an optimisation of muscles activity, a minimisation of energy expenditure and therefore an accurate control of body movement. Results show that the 0 g movement strategy adopted ensures that the integral of the net ankle moment between the beginning and the end of the movement is zero. This expected mechanical constraint is not satisfied when 0 g movement dynamics is simulated using terrestrial kinematics. This accounts for a significant imposed change of movement strategy. Particularly, the efficient compensation of the inertial effects of the segments in terms of total angular momentum at the ankle joint was evidenced. These results explain the exaggerated axial synergies, observed on kinematics and which moved centre of mass (CM) backward from its already backward initial positioning, as a tool for enhancing the compensation and achieving the desired minimisation of the torques exchanges at the restraints.

  14. LANDING QUALITY IN ARTISTIC GYMNASTICS IS RELATED TO LANDING SYMMETRY

    PubMed Central

    Marinšek, M.

    2013-01-01

    In gymnastics every exercise finishes with a landing. The quality of landing depends on subjective (e.g. biomechanical) and objective (e.g. mechanical characteristics of landing area) factors. The aim of our research was to determine which biomechanical (temporal, kinematic and dynamic) characteristics of landing best predict the quality of landing. Twelve male gymnasts performed a stretched forward and backward salto; also with 1/2, 1/1 and 3/2 turns. Stepwise multiple regression extracted five predictors which explained 51.5% of landing quality variance. All predictors were defining asymmetries between legs (velocities, angles). To avoid asymmetric landings, gymnasts need to develop enough height; they need higher angular momentum around the transverse and longitudinal axis and they need to better control angular velocity in the longitudinal axis. PMID:24744462

  15. The investigation of tethered satellite system dynamics

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1985-01-01

    Progress in tethered satellite system dynamics research is reported. A retrieval rate control law with no angular feedback to investigate the system's dynamic response was studied. The initial conditions for the computer code which simulates the satellite's rotational dynamics were extended to a generic orbit. The model of the satellite thrusters was modified to simulate a pulsed thrust, by making the SKYHOOK integrator suitable for dealing with delta functions without loosing computational efficiency. Tether breaks were simulated with the high resolution computer code SLACK3. Shuttle's maneuvers were tested. The electric potential around a severed conductive tether with insulator, in the case of a tether breakage at 20 km from the Shuttle, was computed. The electrodynamic hazards due to the breakage of the TSS electrodynamic tether in a plasma are evaluated.

  16. Angular declination and the dynamic perception of egocentric distance.

    PubMed

    Gajewski, Daniel A; Philbeck, John W; Wirtz, Philip W; Chichka, David

    2014-02-01

    The extraction of the distance between an object and an observer is fast when angular declination is informative, as it is with targets placed on the ground. To what extent does angular declination drive performance when viewing time is limited? Participants judged target distances in a real-world environment with viewing durations ranging from 36-220 ms. An important role for angular declination was supported by experiments showing that the cue provides information about egocentric distance even on the very first glimpse, and that it supports a sensitive response to distance in the absence of other useful cues. Performance was better at 220-ms viewing durations than for briefer glimpses, suggesting that the perception of distance is dynamic even within the time frame of a typical eye fixation. Critically, performance in limited viewing trials was better when preceded by a 15-s preview of the room without a designated target. The results indicate that the perception of distance is powerfully shaped by memory from prior visual experience with the scene. A theoretical framework for the dynamic perception of distance is presented. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. Dynamics of Liquid-Filled Projectiles

    DTIC Science & Technology

    1976-04-01

    1 Estimate of Shape of the Free Surface of the Liquid in a Liquid-Pilled Projectile During Acceleration 6 CHAPTER II. ANGULAR ACCELERATION OF THE...LIQUID IN A LIQUID-FILLED PROJECTILE DURING FLIGHT 13 Liquid "Spinup" in Configuration A 13 Angular Acceleration of the Liquid in Con... Angular Acceleration. 13 2.2 Tangential Velocity of Liquid Versus Radial Position at Several Values of Time (Liquid Configuration A) 21 2.3 Tangential

  18. Brownian self-driven particles on the surface of a sphere

    NASA Astrophysics Data System (ADS)

    Apaza, Leonardo; Sandoval, Mario

    2017-08-01

    We present the dynamics of overdamped Brownian self-propelled particles moving on the surface of a sphere. The effect of self-propulsion on the diffusion of these particles is elucidated by determining their angular (azimuthal and polar) mean-square displacement. Short- and long-times analytical expressions for their angular mean-square displacement are offered. Finally, the particles' steady marginal angular probability density functions are also elucidated.

  19. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions

    NASA Astrophysics Data System (ADS)

    Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei

    2017-09-01

    Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.

  20. Cascaded Kalman and particle filters for photogrammetry based gyroscope drift and robot attitude estimation.

    PubMed

    Sadaghzadeh N, Nargess; Poshtan, Javad; Wagner, Achim; Nordheimer, Eugen; Badreddin, Essameddin

    2014-03-01

    Based on a cascaded Kalman-Particle Filtering, gyroscope drift and robot attitude estimation method is proposed in this paper. Due to noisy and erroneous measurements of MEMS gyroscope, it is combined with Photogrammetry based vision navigation scenario. Quaternions kinematics and robot angular velocity dynamics with augmented drift dynamics of gyroscope are employed as system state space model. Nonlinear attitude kinematics, drift and robot angular movement dynamics each in 3 dimensions result in a nonlinear high dimensional system. To reduce the complexity, we propose a decomposition of system to cascaded subsystems and then design separate cascaded observers. This design leads to an easier tuning and more precise debugging from the perspective of programming and such a setting is well suited for a cooperative modular system with noticeably reduced computation time. Kalman Filtering (KF) is employed for the linear and Gaussian subsystem consisting of angular velocity and drift dynamics together with gyroscope measurement. The estimated angular velocity is utilized as input of the second Particle Filtering (PF) based observer in two scenarios of stochastic and deterministic inputs. Simulation results are provided to show the efficiency of the proposed method. Moreover, the experimental results based on data from a 3D MEMS IMU and a 3D camera system are used to demonstrate the efficiency of the method. © 2013 ISA Published by ISA All rights reserved.

  1. The LATDYN user's manual

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Mcgowan, P. E.; Abrahamson, A. L.; Powell, M. G.

    1986-01-01

    The LATDYN User's Manual presents the capabilities and instructions for the LATDYN (Large Angle Transient DYNamics) computer program. The LATDYN program is a tool for analyzing the controlled or uncontrolled dynamic transient behavior of interconnected deformable multi-body systems which can undergo large angular motions of each body relative other bodies. The program accommodates large structural deformation as well as large rigid body rotations and is applicable, but not limited to, the following areas: (1) development of large flexible space structures; (2) slewing of large space structure components; (3) mechanisms with rigid or elastic components; and (4) robotic manipulations of beam members. Presently the program is limited to two dimensional problems, but in many cases, three dimensional problems can be exactly or approximately reduced to two dimensions. The program uses convected finite elements to affect the large angular motions involved in the analysis. General geometry is permitted. Detailed user input and output specifications are provided and discussed with example runstreams. To date, LATDYN has been configured for CDC/NOS and DEC VAX/VMS machines. All coding is in ANSII-77 FORTRAN. Detailed instructions regarding interfaces with particular computer operating systems and file structures are provided.

  2. Sliding Mode Control of the X-33 with an Engine Failure

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Hall, Charles E.

    2000-01-01

    Ascent flight control of the X-3 is performed using two XRS-2200 linear aerospike engines. in addition to aerosurfaces. The baseline control algorithms are PID with gain scheduling. Flight control using an innovative method. Sliding Mode Control. is presented for nominal and engine failed modes of flight. An easy to implement, robust controller. requiring no reconfiguration or gain scheduling is demonstrated through high fidelity flight simulations. The proposed sliding mode controller utilizes a two-loop structure and provides robust. de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of engine failure, bounded external disturbances (wind gusts) and uncertain matrix of inertia. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues. Conditions that restrict engine failures to robustness domain of the sliding mode controller are derived. Overall stability of a two-loop flight control system is assessed. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in the presence of external disturbances and vehicle inertia uncertainties, as well as the single engine failed case. The designed robust controller will significantly reduce the time and cost associated with flying new trajectory profiles or orbits, with new payloads, and with modified vehicles

  3. A continually online-trained neural network controller for brushless DC motor drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubaai, A.; Kotaru, R.; Kankam, M.D.

    2000-04-01

    In this paper, a high-performance controller with simultaneous online identification and control is designed for brushless dc motor drives. The dynamics of the motor/load are modeled online, and controlled using two different neural network based identification and control schemes, as the system is in operation. In the first scheme, an attempt is made to control the rotor angular speed, utilizing a single three-hidden-layer network. The second scheme attempts to control the stator currents, using a predetermined control law as a function of the estimated states. This schemes incorporates three multilayered feedforward neural networks that are online trained, using the Levenburg-Marquadtmore » training algorithm. The control of the direct and quadrature components of the stator current successfully tracked a wide variety of trajectories after relatively short online training periods. The control strategy adapts to the uncertainties of the motor/load dynamics and, in addition, learns their inherent nonlinearities. Simulation results illustrated that a neurocontroller used in conjunction with adaptive control schemes can result in a flexible control device which may be utilized in a wide range of environments.« less

  4. Transient Performance of a Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Onol, Aykut; Yesilyurt, Serhat

    2016-11-01

    A coupled CFD/rotor dynamics modeling approach is presented for the analysis of realistic transient behavior of a height-normalized, three-straight-bladed VAWT subject to inertial effects of the rotor and generator load which is manipulated by a feedback control under standardized wind gusts. The model employs the k- ɛ turbulence model to approximate unsteady Reynolds-averaged Navier-Stokes equations and is validated with data from field measurements. As distinct from related studies, here, the angular velocity is calculated from the rotor's equation of motion; thus, the dynamic response of the rotor is taken into account. Results include the following: First, the rotor's inertia filters large amplitude oscillations in the wind torque owing to the first-order dynamics. Second, the generator and wind torques differ especially during wind transients subject to the conservation of angular momentum of the rotor. Third, oscillations of the power coefficient exceed the Betz limit temporarily due to the energy storage in the rotor, which acts as a temporary buffer that stores the kinetic energy like a flywheel in short durations. Last, average of transient power coefficients peaks at a smaller tip-speed ratio for wind gusts than steady winds. This work was supported by the Sabanci University Internal Research Grant Program (SU-IRG-985).

  5. The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; van den Bosch, Frank C.

    2012-03-01

    We combine constraints on the galaxy-dark matter connection with structural and dynamical scaling relations to investigate the angular momentum content of disc galaxies. For haloes with masses in the interval 1011.3 M⊙≲Mvir≲ 1012.7 M⊙ we find that the galaxy spin parameters are basically independent of halo mass with ?. This is significantly lower than for relaxed Λcold dark matter (ΛCDM) haloes, which have an average spin parameter ?. The average ratio between the specific angular momentum of disc galaxies and their host dark matter haloes is therefore ?. This calls into question a standard assumption made in the majority of all (semi-analytical) models for (disc) galaxy formation, namely that ?. Using simple disc formation models we show that it is particularly challenging to understand why ? is independent of halo mass, while the galaxy formation efficiency (ɛGF; proportional to the ratio of galaxy mass to halo mass) reveals a strong halo mass dependence. We argue that the empirical scaling relations between ɛGF, ? and halo mass require both feedback (i.e. galactic outflows) and angular momentum transfer from the baryons to the dark matter (i.e. dynamical friction). Most importantly, the efficiency of angular momentum loss needs to decrease with increasing halo mass. Such a mass dependence may reflect a bias against forming stable discs in high-mass, low-spin haloes or a transition from cold-mode accretion in low-mass haloes to hot-mode accretion at the massive end. However, current hydrodynamical simulations of galaxy formation, which should include these processes, seem unable to reproduce the empirical relation between ɛGF and ?. We conclude that the angular momentum build-up of galactic discs remains poorly understood.

  6. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars

    PubMed Central

    Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho

    2015-01-01

    In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629

  7. Dynamic Angular Petrissage as Treatment for Axillary Web Syndrome Occurring after Surgery for Breast Cancer: a Case Report

    PubMed Central

    Lewis, Paul A.; Cunningham, Joan E.

    2016-01-01

    Background In the context of breast cancer, axillary web syndrome (AWS), also called lymphatic cording, typically presents in the weeks after axillary surgery. This painful condition, likely lymphofibrotic in origin, restricts upper extremity range of motion (ROM). There is no established treatment, although physical therapy and other approaches have been used to variable effect. This report describes treatment of a female client with AWS, who had recently undergone a unilateral simple mastectomy with sentinel node biopsy plus axillary dissection. Methods The client presented with pain upon movement (self-reported as 5 on the 0–10 Oxford Pain Scale), visible cording and restricted use of the ipsilateral upper extremity. Clinical assessment included determining the extent of AWS cording (taut, from axilla to wrist) and measuring glenohumeral joint ROM (140° flexion by goniometer). A therapeutic massage with movement protocol, termed dynamic angular petrissage, was administered over two sessions: Swedish massage combined with dynamically taking the limb through all possible angles of movement (passive ROM), controlling stretch and tension while simultaneously and segmentally applying petrissage and non-petrissage techniques to the underlying soft tissue. Careful attention was taken to not break the cord. Home care consisted of prescribed exercises performed by the patient. Results After Session One, pain was reduced (to 0/10), ROM improved (to 170° flexion), and cording was visibly reduced. After Session Two the cord was residually apparent only on hyperextension, with no ROM restrictions in glenohumeral joint flexion. Follow-up at three months revealed absence of visual or palpable evidence of cording, unrestricted glenohumeral joint ROM, and absence of movement-associated pain. Conclusion The signs and symptoms of AWS were quickly and effectively eliminated, without causing any pain or discomfort to the client. We propose that dynamic angular petrissage may be an efficient and safe treatment approach for reducing the pain, mobility restrictions, and cording of AWS. PMID:27257446

  8. Effects of intermediate wettability on entry capillary pressure in angular pores.

    PubMed

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima

    2016-07-01

    Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Fault-Tolerant and Reconfigurable Control of Unmanned Aerial Vehicles (UAVs)

    DTIC Science & Technology

    2008-02-29

    forces and moments are expressed as functions of angle of attack, sideslip angle, angular rates, and control surface deflection. L, M, and N are...invertible. As for matrix B, the control surfaces of the reusable launch vehicle are designed to control each axes angular rate of aircraft...literature as being invertible. As for matrix B, the control surfaces of the UAV are designed to control angular rate along each axis of the aircraft

  10. A compensation method of lever arm effect for tri-axis hybrid inertial navigation system based on fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Liu, Zengjun; Wang, Lei; Li, Kui; Gao, Jiaxin

    2017-05-01

    Hybrid inertial navigation system (HINS) is a new kind of inertial navigation system (INS), which combines advantages of platform INS, strap-down INS and rotational INS. HINS has a physical platform to isolate the angular motion as platform INS does, HINS also uses strap-down attitude algorithms and applies rotation modulation technique. Tri-axis HINS has three gimbals to isolate the angular motion in the dynamic base, in which way the system can reduce the effects of angular motion and improve the positioning precision. However, the angular motion will affect the compensation of some error parameters, especially for the lever arm effect. The lever arm effect caused by position errors between the accelerometers and rotation center cannot be ignored due to the rapid rotation of inertial measurement unit (IMU) and it will cause fluctuation and stage in velocity in HINS. The influences of angular motion on the lever arm effect compensation are analyzed firstly in this paper, and then the compensation method of lever arm effect based on the photoelectric encoders in dynamic base is proposed. Results of experiments on turntable show that after compensation, the fluctuations and stages in velocity curve disappear.

  11. The biomechanics of concussion in unhelmeted football players in Australia: a case-control study.

    PubMed

    McIntosh, Andrew S; Patton, Declan A; Fréchède, Bertrand; Pierré, Paul-André; Ferry, Edouard; Barthels, Tobias

    2014-05-20

    Concussion is a prevalent brain injury in sport and the wider community. Despite this, little research has been conducted investigating the dynamics of impacts to the unprotected human head and injury causation in vivo, in particular the roles of linear and angular head acceleration. Professional contact football in Australia. Adult male professional Australian rules football players participating in 30 games randomly selected from 103 games. Cases selected based on an observable head impact, no observable symptoms (eg, loss-of-consciousness and convulsions), no on-field medical management and no injury recorded at the time. A data set for no-injury head impact cases comprising head impact locations and head impact dynamic parameters estimated through rigid body simulations using the MAthematical DYnamic MOdels (MADYMO) human facet model. This data set was compared to previously reported concussion case data. Qualitative analysis showed that the head was more vulnerable to lateral impacts. Logistic regression analyses of head acceleration and velocity components revealed that angular acceleration of the head in the coronal plane had the strongest association with concussion; tentative tolerance levels of 1747 rad/s(2) and 2296 rad/s(2) were reported for a 50% and 75% likelihood of concussion, respectively. The mean maximum resultant angular accelerations for the concussion and no-injury cases were 7951 rad/s(2) (SD 3562 rad/s(2)) and 4300 rad/s(2) (SD 3657 rad/s(2)), respectively. Linear acceleration is currently used in the assessment of helmets and padded headgear. The 50% and 75% likelihood of concussion values for resultant linear head acceleration in this study were 65.1 and 88.5 g, respectively. As hypothesised by Holbourn over 70 years ago, angular acceleration plays an important role in the pathomechanics of concussion, which has major ramifications in terms of helmet design and other efforts to prevent and manage concussion. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Nutation and precession control of the High Energy Solar Physics (HESP) satellite

    NASA Technical Reports Server (NTRS)

    Jayaraman, C. P.; Robertson, B. P.

    1993-01-01

    The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.

  13. Sensor fault detection and recovery in satellite attitude control

    NASA Astrophysics Data System (ADS)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  14. Voltage linear transformation circuit design

    NASA Astrophysics Data System (ADS)

    Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael

    2017-09-01

    Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.

  15. Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1

    NASA Technical Reports Server (NTRS)

    Park, Thomas; Smith, Austin; Oliver, T. Emerson

    2018-01-01

    The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GNC software from the set of healthy measurements. This paper explores the trades and analyses that were performed in selecting a set of robust fault-detection algorithms included in the GN&C flight software. These trades included both an assessment of hardware-provided health and status data as well as an evaluation of different algorithms based on time-to-detection, type of failures detected, and probability of detecting false positives. We then provide an overview of the algorithms used for both fault-detection and measurement down selection. We next discuss the role of trajectory design, flexible-body models, and vehicle response to off-nominal conditions in setting the detection thresholds. Lastly, we present lessons learned from software integration and hardware-in-the-loop testing.

  16. Lower Extremity Kinematics During a Drop Jump in Individuals With Patellar Tendinopathy

    PubMed Central

    Rosen, Adam B.; Ko, Jupil; Simpson, Kathy J.; Kim, Seock-Ho; Brown, Cathleen N.

    2015-01-01

    Background: Patellar tendinopathy (PT) is a common degenerative condition in physically active populations. Knowledge regarding the biomechanics of landing in populations with symptomatic PT is limited, but altered mechanics may play a role in the development or perpetuation of PT. Purpose: To identify whether study participants with PT exhibited different landing kinematics compared with healthy controls. Study Design: Controlled laboratory study. Methods: Sixty recreationally active participants took part in this study; 30 had current signs and symptoms of PT, including self-reported pain within the patellar tendon during loading activities for at least 3 months and ≤80 on the Victorian Institute of Sport Assessment Scale–Patella (VISA-P). Thirty healthy participants with no history of PT or other knee joint pathology were matched by sex, age, height, and weight. Participants completed 5 trials of a 40-cm, 2-legged drop jump followed immediately by a 50% maximum vertical jump. Dependent variables of interest included hip, knee, and ankle joint angles at initial ground contact, peak angles, and maximum angular displacements during the landing phase in 3 planes. Independent-samples t tests (P ≤ .05) were utilized to compare the joint angles and angular displacements between PT and control participants. Results: Individuals with PT displayed significantly decreased peak hip (PT, 59.2° ± 14.6°; control, 67.2° ± 13.9°; P = .03) and knee flexion angles (PT, 74.8° ± 13.2°; control, 82.5° ± 9.0°; P = .01) compared with control subjects. The PT group displayed decreased maximum angular displacement in the sagittal plane at the hip (PT, 49.3° ± 10.8°; control, 55.2° ± 11.4°; P = .04) and knee (PT, 71.6° ± 8.4°; control, 79.7° ± 8.3°; P < .001) compared with the control group. Conclusion: Participants with PT displayed decreased maximum flexion and angular displacement in the sagittal plane, at both the knee and the hip. The altered movement patterns in those with PT may be perpetuating symptoms associated with PT and could be due to the contributions of the rectus femoris during dynamic movement. Clinical Relevance: Based on kinematic alterations in symptomatic participants, rehabilitation efforts may benefit from focusing on both the knee and the hip to treat symptoms associated with PT. PMID:26665034

  17. Momentum-Based Dynamics for Spacecraft with Chained Revolute Appendages

    NASA Technical Reports Server (NTRS)

    Queen, Steven; London, Ken; Gonzalez, Marcelo

    2005-01-01

    An efficient formulation is presented for a sub-class of multi-body dynamics problems that involve a six degree-of-freedom base body and a chain of N rigid linkages connected in series by single degree-of-freedom revolute joints. This general method is particularly well suited for simulations of spacecraft dynamics and control that include the modeling of an orbiting platform with or without internal degrees of freedom such as reaction wheels, dampers, and/or booms. In the present work, particular emphasis is placed on dynamic simulation of multi-linkage robotic manipulators. The differential equations of motion are explicitly given in terms of linear and angular momentum states, which can be evaluated recursively along a serial chain of linkages for an efficient real-time solution on par with the best of the O(N3) methods.

  18. Angular-Rate Estimation Using Delayed Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.

  19. Angular dependence of multiangle dynamic light scattering for particle size distribution inversion using a self-adapting regularization algorithm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yu, Long; Yang, Kecheng; Li, Wei; Li, Kai; Xia, Min

    2018-04-01

    The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions (PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization method called the wavelet iterative recursion nonnegative Tikhonov-Phillips-Twomey (WIRNNT-PT) algorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method and could self-adaptively optimize several noteworthy issues containing the choices of the weighting coefficients, the inversion range and the optimal inversion method from two regularization algorithms for estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for estimating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the number and range of measurement angles was analyzed in depth to identify the optimal scattering angle combination. Numerical simulations and experimental results for unimodal and multimodal distributions are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence of MDLS and show that the proposed algorithm with a six-angle analysis in the 30-130° range can be satisfactorily applied to retrieve PSDs from MDLS measurements.

  20. Mitigation of radiation-pressure-induced angular instability of a Fabry-Perot cavity consisting of suspended mirrors

    NASA Astrophysics Data System (ADS)

    Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-12-01

    To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system.

  1. Decentralized control experiments on NASA's flexible grid

    NASA Technical Reports Server (NTRS)

    Ozguner, U.; Yurkowich, S.; Martin, J., III; Al-Abbass, F.

    1986-01-01

    Methods arising from the area of decentralized control are emerging for analysis and control synthesis for large flexible structures. In this paper the control strategy involves a decentralized model reference adaptive approach using a variable structure control. Local models are formulated based on desired damping and response time in a model-following scheme for various modal configurations. Variable structure controllers are then designed employing co-located angular rate and position feedback. In this scheme local control forces the system to move on a local sliding mode in some local error space. An important feature of this approach is that the local subsystem is made insensitive to dynamical interactions with other subsystems once the sliding surface is reached. Experiments based on the above have been performed for NASA's flexible grid experimental apparatus. The grid is designed to admit appreciable low-frequency structural dynamics, and allows for implementation of distributed computing components, inertial sensors, and actuation devices. A finite-element analysis of the grid provides the model for control system design and simulation; results of several simulations are reported on here, and a discussion of application experiments on the apparatus is presented.

  2. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For horizontal VOR, the amplitude of the steady-state slow-phase velocity during constant velocity rotation and the reduction of phase leads during sinusoidal oscillation were relatively independent of tilt angle (for angles larger than approximately 10 degrees). For vertical and torsional VOR, the amplitude of steady-state slow-phase eye velocity during constant velocity rotation increased, and the phase leads during sinusoidal oscillation decreased with increasing tilt angle. The largest steady-state response amplitudes and smallest phase leads were observed during vertical/torsional VOR about an earth-horizontal axis. 5. The dynamic range of otolith-borne head angular velocity information in the VOR was limited to velocities up to approximately 110 degrees/s. Higher head velocities resulted in saturation and a decrease in the amplitude of the steady-state response components during constant velocity rotation and in increased phase leads during sinusoidal oscillations. 6. The response characteristics of otolith-borne angular VORs were also studied in animals after selective semicircular canal inactivation. Otolith angular VORs exhibited clear low-pass filtered properties with a corner frequency of approximately 0.05-0.1 Hz. Vectorial summation of canal VOR alone (elicited during earth-vertical axis rotations) and otolith VOR alone (elicited during off-vertical axis oscillations after semicircular canal inactivation) could not predict VOR gain and phase during off-vertical axis rotations in intact animals. This suggests a more complex interaction of semicircular canal and otolith signals. 7. The results of this study show that the primate low-frequency enhancement of VOR dynamics during off-vertical axis rotation is independent of a simultaneous activation of the vertical and torsional "tilt" otolith-ocular reflexes that have been characterized in the preceding paper. (ABSTRACT TRUNCATED).

  3. Characterization of the Bell-Shaped Vibratory Angular Rate Gyro

    PubMed Central

    Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang

    2013-01-01

    The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements. PMID:23966183

  4. Characterization of the bell-shaped vibratory angular rate gyro.

    PubMed

    Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang

    2013-08-07

    The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements.

  5. Relationship between lower limb dynamics and knee joint pain.

    PubMed

    Radin, E L; Yang, K H; Riegger, C; Kish, V L; O'Connor, J J

    1991-05-01

    To test the hypothesis that appropriate and timely neuromuscular control of limb motions plays an important role in the preservation of joint health, we kinematically and kinetically examined the behavior of the legs of young adult subjects at heel strike during natural walking. We compared a group of 18 volunteers, who, we presumed, were preosteoarthrotic because of mild, intermittent, activity-related knee joint pain, with 14 age-matched asymptomatic normal subjects. The two groups of subjects exhibited similar gait patterns with equivalent cadences, walking speeds, terminal stance phase knee flexion, maximum (peak) swing angular velocity, and overall shape of the vertical ground reaction. However, our instrumentation detected statistically significant differences between the two groups within a few milliseconds of heel strike. In the knee pain group, the heel hit the floor with a stronger impact in this brief interval. Just before heel strike, there was a faster downward velocity of the ankle with a larger angular velocity of the shank. The follow-through of the leg immediately after heel strike was more violent with larger peak axial and angular accelerations of the leg echoed by a more rapid rise of the ground reaction force. This sequence of events represents repetitive impulsive loading, which consistently provoked osteoarthrosis in animal experiments. We refer to this micro-incoordination of neuromuscular control not visible to the naked eye as "microklutziness."

  6. Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor.

    PubMed

    Averbukh, I S; Arvieu, R

    2001-10-15

    Semiclassical catastrophes in the dynamics of a quantum rotor (molecule) driven by a strong time-varying field are considered. We show that for strong enough fields, a sharp peak in the rotor angular distribution can be achieved via a time-domain focusing phenomenon, followed by the formation of rainbowlike angular structures. A strategy leading to the enhanced angular squeezing is proposed that uses a specially designed sequence of pulses. The predicted effects can be observed in many processes, ranging from molecular alignment (orientation) by laser fields to heavy-ion collisions, and the trapping of cold atoms by a standing light wave.

  7. Brownian self-propelled particles on a sphere

    NASA Astrophysics Data System (ADS)

    Apaza-Pilco, Leonardo Felix; Sandoval, Mario

    We present the dynamics of a Brownian self-propelled particle at low Reynolds number moving on the surface of a sphere. The effects of curvature and self-propulsion on the diffusion of the particle are elucidated by determining (numerically) the mean-square displacement of the particle's angular (azimuthal and polar) coordinates. The results show that the long time behavior of its angular mean-square displacement is linear in time. We also see that the slope of the angular MSD is proportional to the propulsion velocity and inverse to the curvature of the sphere. The angular probability distribution function (PDF) of the particle is also obtained by numerically solving its respective Smoluchowski equation.

  8. SO(4) algebraic approach to the three-body bound state problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Salom, Igor

    2014-08-01

    We use the permutation symmetric hyperspherical three-body variables to cast the non-relativistic three-body Schrödinger equation in two dimensions into a set of (possibly decoupled) differential equations that define an eigenvalue problem for the hyper-radial wave function depending on an SO(4) hyper-angular matrix element. We express this hyper-angular matrix element in terms of SO(3) group Clebsch-Gordan coefficients and use the latter's properties to derive selection rules for potentials with different dynamical/permutation symmetries. Three-body potentials acting on three identical particles may have different dynamical symmetries, in order of increasing symmetry, as follows: (1) S3 ⊗ OL(2), the permutation times rotational symmetry, that holds in sums of pairwise potentials, (2) O(2) ⊗ OL(2), the so-called "kinematic rotations" or "democracy symmetry" times rotational symmetry, that holds in area-dependent potentials, and (3) O(4) dynamical hyper-angular symmetry, that holds in hyper-radial three-body potentials. We show how the different residual dynamical symmetries of the non-relativistic three-body Hamiltonian lead to different degeneracies of certain states within O(4) multiplets.

  9. Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors

    NASA Astrophysics Data System (ADS)

    Bitter, M.; Milner, V.

    2016-09-01

    The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum—the hallmark of dynamical localization—is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.

  10. Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors.

    PubMed

    Bitter, M; Milner, V

    2016-09-30

    The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum-the hallmark of dynamical localization-is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.

  11. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices

    NASA Astrophysics Data System (ADS)

    Spektor, G.; Kilbane, D.; Mahro, A. K.; Frank, B.; Ristok, S.; Gal, L.; Kahl, P.; Podbiel, D.; Mathias, S.; Giessen, H.; Meyer zu Heringdorf, F.-J.; Orenstein, M.; Aeschlimann, M.

    2017-03-01

    The ability of light to carry and deliver orbital angular momentum (OAM) in the form of optical vortices has attracted much interest. The physical properties of light with a helical wavefront can be confined onto two-dimensional surfaces with subwavelength dimensions in the form of plasmonic vortices, opening avenues for thus far unknown light-matter interactions. Because of their extreme rotational velocity, the ultrafast dynamics of such vortices remained unexplored. Here we show the detailed spatiotemporal evolution of nanovortices using time-resolved two-photon photoemission electron microscopy. We observe both long- and short-range plasmonic vortices confined to deep subwavelength dimensions on the scale of 100 nanometers with nanometer spatial resolution and subfemtosecond time-step resolution. Finally, by measuring the angular velocity of the vortex, we directly extract the OAM magnitude of light.

  12. Self-focusing skyrmion racetracks in ferrimagnets

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Lee, Kyung-Jin; Tserkovnyak, Yaroslav

    2017-04-01

    We theoretically study the dynamics of ferrimagnetic skyrmions in inhomogeneous metallic films close to the angular momentum compensation point. In particular, it is shown that the line of the vanishing angular momentum can be utilized as a self-focusing racetrack for skyrmions. To that end, we begin by deriving the equations of motion for the dynamics of collinear ferrimagnets in the presence of a charge current. The obtained equations of motion reduce to those of ferromagnets and antiferromagnets at two special limits. In the collective coordinate approach, a skyrmion behaves as a massive charged particle moving in a viscous medium subjected to a magnetic field. Analogous to the snake orbits of electrons in a nonuniform magnetic field, we show that a ferrimagnet with nonuniform angular momentum density can exhibit the snake trajectories of skyrmions, which can be utilized as racetracks for skyrmions.

  13. Particle dynamics around time conformal regular black holes via Noether symmetries

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Umair Shahzad, M.

    The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.

  14. A novel approach to piecewise analytic agricultural machinery path reconstruction

    NASA Astrophysics Data System (ADS)

    Wörz, Sascha; Mederle, Michael; Heizinger, Valentin; Bernhardt, Heinz

    2017-12-01

    Before analysing machinery operation in fields, it has to be coped with the problem that the GPS signals of GPS receivers located on the machines contain measurement noise, are time-discrete, and the underlying physical system describing the positions, axial and absolute velocities, angular rates and angular orientation of the operating machines during the whole working time are unknown. This research work presents a new three-dimensional mathematical approach using kinematic relations based on control variables as Euler angular velocities and angles and a discrete target control problem, such that the state control function is given by the sum of squared residuals involving the state and control variables to get such a physical system, which yields a noise-free and piecewise analytic representation of the positions, velocities, angular rates and angular orientation. It can be used for a further detailed study and analysis of the problem of why agricultural vehicles operate in practice as they do.

  15. Multiple-Fiber-Optic Probe For Light-Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh; Ansari, Rafat R.

    1996-01-01

    Multiple-fiber-optical probe developed for use in measuring light scattered at various angles from specimens of materials. Designed for both static and dynamic light-scattering measurements of colloidal dispersions. Probe compact, rugged unit containing no moving parts and remains stationary during operation. Not restricted to operation in controlled, research-laboratory environment. Positioned inside or outside light-scattering chamber. Provides simultaneous measurements at small angular intervals over range of angles, made to include small scattering angles by orienting probe in appropriate direction.

  16. Rotational dynamics and heating of trapped nanovaterite particles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Richards, Joseph M.; Mazilu, Michael; Spalding, Gabriel C.; Skelton Spesyvtseva, Susan E.; Craig, Derek; Dholakia, Kishan

    2016-09-01

    Rotational control over optically trapped particles has gained significant prominence in recent years. The marriage between light fields possessing optical angular momentum and the material properties of microparticles has been useful to controllably spin particles in liquid, air and vacuum. The rotational degree of freedom adds new functionality to optical traps: in addition to allowing fundamental tests of optical angular momentum, the transfer of spin angular momentum in particular can allow measurements of local viscosity and exert local stresses on cellular systems. We demonstrate optical trapping and controlled rotation of nanovaterite crystals. These particles represent the smallest birefringent crystals ever trapped and set into rotation. Rotation rates of up to 5kHz in water are recorded, representing the fastest rotation to date for dielectric particles in liquid. Laser-induced heating results in the superlinear behaviour of the rotation rate as a function of trap power. We study both the rotational and translational modes of trapped nanovaterite crystals. The particle temperatures derived from those two optomechanical modes are in good agreement, which is supported by a numerical model revealing that the observed heating is dominated by absorption of light by the particles rather than by the surrounding liquid. A comparison is performed with trapped silica particles of similar size. The use of nanovaterite particles open up new studies for levitated optomechanics in vacuum as well as microrheological properties of cells or biological media. Their size and low heating offers prospects of viscosity measurements in ultra-small volumes and potentially simpler uptake by cellular media.

  17. Angular-Rate Estimation Using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quatemion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quatemion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quatemion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  18. Angular-Rate Estimation using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  19. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.

    PubMed

    Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S

    2015-04-15

    We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30  dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding.

  20. Robust fault-tolerant tracking control design for spacecraft under control input saturation.

    PubMed

    Bustan, Danyal; Pariz, Naser; Sani, Seyyed Kamal Hosseini

    2014-07-01

    In this paper, a continuous globally stable tracking control algorithm is proposed for a spacecraft in the presence of unknown actuator failure, control input saturation, uncertainty in inertial matrix and external disturbances. The design method is based on variable structure control and has the following properties: (1) fast and accurate response in the presence of bounded disturbances; (2) robust to the partial loss of actuator effectiveness; (3) explicit consideration of control input saturation; and (4) robust to uncertainty in inertial matrix. In contrast to traditional fault-tolerant control methods, the proposed controller does not require knowledge of the actuator faults and is implemented without explicit fault detection and isolation processes. In the proposed controller a single parameter is adjusted dynamically in such a way that it is possible to prove that both attitude and angular velocity errors will tend to zero asymptotically. The stability proof is based on a Lyapunov analysis and the properties of the singularity free quaternion representation of spacecraft dynamics. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of external disturbances, actuator failures, and control input saturation. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Multibody dynamics driving GNC and system design in tethered nets for active debris removal

    NASA Astrophysics Data System (ADS)

    Benvenuto, Riccardo; Lavagna, Michèle; Salvi, Samuele

    2016-07-01

    Debris removal in Earth orbits is an urgent issue to be faced for space exploitation durability. Among different techniques, tethered-nets present appealing benefits and some open points to fix. Former and latter are discussed in the paper, supported by the exploitation of a multibody dynamics tool. With respect to other proposed capture mechanisms, tethered-net solutions are characterised by a safer capturing distance, a passive angular momentum damping effect and the highest flexibility to unknown shape, material and attitude of the target to interface with. They also allow not considering the centre of gravity alignment with thrust axis as a constraint, as it is for any rigid link solution. Furthermore, the introduction of a closing thread around the net perimeter ensures safer and more reliable grasping and holding. In the paper, a six degrees of freedom multibody dynamics simulator is presented: it was developed at Politecnico di Milano - Department of Aerospace Science and Technologies - and it is able to describe the orbital and attitude dynamics of tethered-nets systems and end-bodies during different phases, with great flexibility in dealing with different topologies and configurations. Critical phases as impact and wrapping are analysed by simulation to address the tethered-stack controllability. It is shown how the role of contact modelling is fundamental to describe the coupled dynamics: it is demonstrated, as a major novel contribution, how friction between the net and a tumbling target allows reducing its angular motion, stabilizing the system and allowing safer towing operations. Moreover, the so-called tethered space tug is analysed: after capture, the two objects, one passive and one active, are connected by the tethered-net flexible link, the motion of the system being excited by the active spacecraft thrusters. The critical modes prevention during this phase, by means of a closed-loop control synthesis is shown. Finally, the connection between flexible dynamics and capture system design is highlighted, giving engineering answers to most challenging open points to lead to a ready to flight solution.

  2. Sway control method and system for rotary cranes

    DOEpatents

    Robinett, R.D.; Parker, G.G.; Feddema, J.T.; Dohrmann, C.R.; Petterson, B.J.

    1999-06-01

    Methods and apparatuses are disclosed for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory [gamma](t), which includes a jib angular acceleration [gamma], a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle [theta](t) and a radial rotation angle [phi](t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular [gamma] and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach. 25 figs.

  3. Sway control method and system for rotary cranes

    DOEpatents

    Robinett, Rush D.; Parker, Gordon G.; Feddema, John T.; Dohrmann, Clark R.; Petterson, Ben J.

    1999-01-01

    Methods and apparatuses for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory .gamma.(t), which includes a jib angular acceleration .gamma., a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle .theta.(t) and a radial rotation angle .phi.(t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular .gamma. and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach.

  4. General relativistic dynamics of an extreme mass-ratio binary interacting with an external body

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Casals, Marc

    2017-10-01

    We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.

  5. Spin-Mechanical Inertia in Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Wu, Xiaochuan; Xiao, Di

    Interplay between spin dynamics and mechanical motions is responsible for numerous striking phenomena, which has shaped a rapidly expanding field known as spin-mechanics. The guiding principle of this field has been the conservation of angular momentum that involves both quantum spins and classical mechanical rotations. However, in an antiferromagnet, the macroscopic magnetization vanishes while the order parameter (Néel order) does not carry an angular momentum. It is therefore not clear whether the order parameter dynamics has any mechanical consequence as its ferromagnetic counterparts. Here we demonstrate that the Néel order dynamics affects the mechanical motion of a rigid body by modifying its inertia tensor in the presence of strong magnetocrystalline anisotropy. This effect depends on temperature when magnon excitations are considered. Such a spin-mechanical inertia can produce measurable consequences at nanometer scales. Our discovery establishes spin-mechanical inertia as an essential ingredient to properly describe spin-mechanical effects in AFs, which supplements the known governing physics from angular momentum conservation. This work was supported by the DOE, Basic Energy Sciences, Grant No. DE-SC0012509. D.X. also acknowledges support from a Research Corporation for Science Advancement Cottrell Scholar Award.

  6. Interplay between translational diffusion and large-amplitude angular jumps of water molecules

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Zhang, Yangyang; Zhang, Jian; Wang, Jun; Li, Wenfei; Wang, Wei

    2018-05-01

    Understanding the microscopic mechanism of water molecular translational diffusion is a challenging topic in both physics and chemistry. Here, we report an investigation on the interplay between the translational diffusion and the large-amplitude angular jumps of water molecules in bulk water using molecular dynamics simulations. We found that large-amplitude angular jumps are tightly coupled to the translational diffusions. Particularly, we revealed that concurrent rotational jumps of spatially neighboring water molecules induce inter-basin translational jumps, which contributes to the fast component of the water translational diffusion. Consequently, the translational diffusion shows positional heterogeneity; i.e., the neighbors of the water molecules with inter-basin translational jumps have larger probability to diffuse by inter-basin translational jumps. Our control simulations showed that a model water molecule with moderate hydrogen bond strength can diffuse much faster than a simple Lennard-Jones particle in bulk water due to the capability of disturbing the hydrogen bond network of the surrounding water molecules. Our results added to the understanding of the microscopic picture of the water translational diffusion and demonstrated the unique features of water diffusion arising from their hydrogen bond network structure compared with those of the simple liquids.

  7. Individual differences in mathematical competence predict parietal brain activation during mental calculation.

    PubMed

    Grabner, Roland H; Ansari, Daniel; Reishofer, Gernot; Stern, Elsbeth; Ebner, Franz; Neuper, Christa

    2007-11-01

    Functional neuroimaging studies have revealed that parietal brain circuits subserve arithmetic problem solving and that their recruitment dynamically changes as a function of training and development. The present study investigated whether the brain activation during mental calculation is also modulated by individual differences in mathematical competence. Twenty-five adult students were selected from a larger pool based on their performance on standardized tests of intelligence and arithmetic and divided into groups of individuals with relatively lower and higher mathematical competence. These groups did not differ in their non-numerical intelligence or age. In an fMRI block-design, participants had to verify the correctness of single-digit and multi-digit multiplication problems. Analyses revealed that the individuals with higher mathematical competence displayed stronger activation of the left angular gyrus while solving both types of arithmetic problems. Additional correlational analyses corroborated the association between individual differences in mathematical competence and angular gyrus activation, even when variability in task performance was controlled for. These findings demonstrate that the recruitment of the left angular gyrus during arithmetic problem solving underlies individual differences in mathematical ability and suggests a stronger reliance on automatic, language-mediated processes in more competent individuals.

  8. Investigation of fluctuations in angular velocity in magnetic memory devices

    NASA Technical Reports Server (NTRS)

    Meshkis, Y. A.; Potsyus, Z. Y.

    1973-01-01

    The fluctuations in the angular velocity of individual assemblies of a precision mechanical system were analyzed. The system was composed of an electric motor and a magnetic drum which were connected by a flexible coupling. A dynamic model was constructed which took into account the absence of torsion in the rigid shafts of the electric motor drive rotor and the magnetic drum. The motion was described by Lagrange differential equations of the second kind. Curves are developed to show the nature of amplitude fluctuation of the magnetic drum angular velocity at a specific excitation frequency. Additional curves show the amplitudes of fluctuation of the magnetic drum angular velocity compared to the quantity of damping at specific frequencies.

  9. Verification of the grid size and angular increment effects in lung stereotactic body radiation therapy using the dynamic conformal arc technique

    NASA Astrophysics Data System (ADS)

    Park, Hae-Jin; Suh, Tae-Suk; Park, Ji-Yeon; Lee, Jeong-Woo; Kim, Mi-Hwa; Oh, Young-Taek; Chun, Mison; Noh, O. Kyu; Suh, Susie

    2013-06-01

    The dosimetric effects of variable grid size and angular increment were systematically evaluated in the measured dose distributions of dynamic conformal arc therapy (DCAT) for lung stereotactic body radiation therapy (SBRT). Dose variations with different grid sizes (2, 3, and 4 mm) and angular increments (2, 4, 6, and 10°) for spherical planning target volumes (PTVs) were verified in a thorax phantom by using EBT2 films. Although the doses for identical PTVs were predicted for the different grid sizes, the dose discrepancy was evaluated using one measured dose distribution with the gamma tool because the beam was delivered in the same set-up for DCAT. The dosimetric effect of the angular increment was verified by comparing the measured dose area histograms of organs at risk (OARs) at each angular increment. When the difference in the OAR doses is higher than the uncertainty of the film dosimetry, the error is regarded as the angular increment effect in discretely calculated doses. In the results, even when a 2-mm grid size was used with an elaborate dose calculation, 4-mm grid size led to a higher gamma pass ratio due to underdosage, a steep-dose descent gradient, and lower estimated PTV doses caused by the smoothing effect in the calculated dose distribution. An undulating dose distribution and a difference in the maximum contralateral lung dose of up to 14% were observed in dose calculation using a 10° angular increment. The DCAT can be effectively applied for an approximately spherical PTV in a relatively uniform geometry, which is less affected by inhomogeneous materials and differences in the beam path length.

  10. Steering Law Controlling the Constant Speeds of Control Moment Gyros

    NASA Astrophysics Data System (ADS)

    KOYASAKO, Y.; TAKAHASHI, M.

    2016-09-01

    To enable the agile control of satellites, using control moment gyros (CMGs) has become increasingly necessary because of their ability to generate large amounts of torque. However, CMGs have a singularity problem whereby the torque by the CMGs degenerates from three dimensions to two dimensions, affecting spacecraft attitude control performance. This study proposes a new steering control law for CMGs by controlling the constant speed of a CMG. The proposed method enables agile attitude changes, according to the required task, by managing the total angular momentum of the CMGs by considering the distance to external singularities. In the proposed method, the total angular momentum is biased in a specific direction and the angular momentum envelope is extended. The design method can increase the net angular momentum of CMGs which can be exchanged with the satellite. The effectiveness of the proposed method is demonstrated by numerical simulations.

  11. Modeling of functional trunk muscle performance: interfacing ergonomics and spine rehabilitation in response to the ADA.

    PubMed

    Khalaf, K A; Parnianpour, M; Sparto, P J; Simon, S R

    1997-10-01

    The combination of increasing costs of musculoskeletal injuries and the implementation of the Americans with Disabilities Act (ADA) has created the need for a more objective functional understanding of dynamic trunk performance. In this study, trunk extensor and flexor strengths were measured as a function of angular position and velocity for 20 subjects performing maximum isometric and isokinetic exertions. Results indicate that trunk strength is significantly influenced by trunk angular position, trunk angular velocity, gender, and direction, as well as by the interaction between trunk angular position and velocity. Three-dimensional surfaces of trunk strength in response to trunk angular position and velocity were constructed for each subject per direction. Such data presentation is more accurate and gives better insight about the strength profile of an individual than does the traditional use of a single strength value. The joint strength capacity profiles may be combined with joint torque requirements from a manual material handling task, such as a lifting task, to compute the dynamic utilization ratio for the trunk muscles. This ratio can be used as a unified measure of both task demand and functional capacity to guide job assignment, return to work, and prognosis during the rehabilitation processes. Furthermore, the strength regressions developed in this study would provide dynamic strength limits that can be used as functional constraints in the computer simulation of physical activities, such as lifting. In light of the ADA, this would be of great value in predicting the consequences of task modifications and/or workstation alterations without subjecting an injured worker or an individual with a disability to unnecessary testing.

  12. Time-resolved orbital angular momentum spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyan, Mehmet A.; Kikkawa, James M.

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  13. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.

  14. Satellite Angular Rate Estimation From Vector Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    1996-01-01

    This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.

  15. Triple coupling and parameter resonance in quantum optomechanics with a single atom

    NASA Astrophysics Data System (ADS)

    Chang, Yue; Ian, H.; Sun, C. P.

    2009-11-01

    We study the energy level structure and quantum dynamics for a cavity optomechanical system assisted by a single atom. It is found that a triple coupling involving a photon, a phonon and an atom cannot be described only by the quasi-orbital angular momentum at frequency resonance, there also exists the phenomenon of parameter resonance, namely, when the system parameters are matched in some way, the evolution of the end mirror of the cavity is conditioned by the dressed states of the photon-atom subsystem. The quantum decoherence due to this conditional dynamics is studied in detail. In the quasi-classical limit of very large angular momentum, this system will behave like a standard cavity-QED system described by the Jaynes-Cummings (J-C) model when the angular momentum operators are transformed to bosonic operators of a single mode. We test this observation with an experimentally accessible parameter.

  16. Analysis of the dynamics of movement of the landing vehicle with an inflatable braking device on the final trajectory under the influence of wind load

    NASA Astrophysics Data System (ADS)

    Koryanov, V.; Kazakovtsev, V.; Harri, A.-M.; Heilimo, J.; Haukka, H.; Aleksashkin, S.

    2015-10-01

    This research work is devoted to analysis of angular motion of the landing vehicle (LV) with an inflatable braking device (IBD), taking into account the influence of the wind load on the final stage of the movement. Using methods to perform a calculation of parameters of angular motion of the landing vehicle with an inflatable braking device based on the availability of small asymmetries, which are capable of complex dynamic phenomena, analyzes motion of the landing vehicle at the final stage of motion in the atmosphere.

  17. Difference in perception of angular displacement according to applied waveforms.

    PubMed

    Kushiro, Keisuke; Goto, Fumiyuki

    2013-05-01

    This study shows that the differences in the waveforms of angular rotation affect the perception and memory of angular displacement. During daily life, when we turn our head during various activities, our brain calculates how much angular displacement our head has undergone. However, how we obtain an accurate estimation of this angular displacement remains unclarified. This study aims to clarify this issue by investigating the perception and memory of passive rotation for three different waveforms of angular velocity rotation (sinusoidal (sine), triangle, and step). Thirteen healthy young subjects sitting on a servo-controlled chair were passively rotated at 60° or 120° about the earth-vertical axis by using one of these three angular velocity waveforms. They then attempted to reproduce the rotation angle by rotating the chair in the same direction in which they had been passively rotated using a handheld controller. The gain (reproduced angle/passively rotated angle) was calculated and used for the evaluation of the perception and memory of angular rotation. The gain for step rotation was larger than that for sine and triangle rotations, with statistical significance. This confirms that the difference in the waveforms of angular rotation affects the perception and memory of angular displacement.

  18. Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    2007-01-01

    This paper describes the performance of a simplified dynamic inversion controller with neural network supplementation. This 6 DOF (Degree-of-Freedom) simulation study focuses on the results with and without adaptation of neural networks using a simulation of the NASA modified F-15 which has canards. One area of interest is the performance of a simulated surface failure while attempting to minimize the inertial cross coupling effect of a [B] matrix failure (a control derivative anomaly associated with a jammed or missing control surface). Another area of interest and presented is simulated aerodynamic failures ([A] matrix) such as a canard failure. The controller uses explicit models to produce desired angular rate commands. The dynamic inversion calculates the necessary surface commands to achieve the desired rates. The simplified dynamic inversion uses approximate short period and roll axis dynamics. Initial results indicated that the transient response for a [B] matrix failure using a Neural Network (NN) improved the control behavior when compared to not using a neural network for a given failure, However, further evaluation of the controller was comparable, with objections io the cross coupling effects (after changes were made to the controller). This paper describes the methods employed to reduce the cross coupling effect and maintain adequate tracking errors. The IA] matrix failure results show that control of the aircraft without adaptation is more difficult [leas damped) than with active neural networks, Simulation results show Neural Network augmentation of the controller improves performance in terms of backing error and cross coupling reduction and improved performance with aerodynamic-type failures.

  19. The Dominance of Dynamic Barlike Instabilities in the Evolution of a Massive Stellar Core Collapse That ``Fizzles''

    NASA Astrophysics Data System (ADS)

    Imamura, James N.; Durisen, Richard H.

    2001-03-01

    Core collapse in a massive rotating star may halt at subnuclear density if the core contains angular momentum J>~1049 g cm2 s-1. An aborted collapse can lead to the formation of a rapidly rotating equilibrium object, which, because of its high electron fraction, Ye>0.4, and high entropy per baryon, Sb/k~1-2, is secularly and dynamically stable. The further evolution of such a ``fizzler'' is driven by deleptonization and cooling of the hot, dense material. These processes cause the fizzler both to contract toward neutron star densities and to spin up, driving it toward instability points of the barlike modes. Using linear stability analyses to study the latter case, we find that the stability properties of fizzlers are similar to those of Maclaurin spheroids and polytropes despite the nonpolytropic nature and extreme compressibility of the fizzler equation of state. For fizzlers with the specific angular momentum distribution of the Maclaurin spheroids, secular and dynamic barlike instabilities set in at T/|W|~0.14 and 0.27, respectively, where T is the rotational kinetic energy and W is the gravitational energy of the fizzler, the same limits as found for Maclaurin spheroids. For fizzlers in which angular momentum is more concentrated toward the equator, the secular stability limits drop dramatically. For the most extreme angular momentum distribution we consider, the secular stability limit for the barlike modes falls to T/|W|~0.038, compared with T/|W|~0.09-0.10 for the most extreme polytropic cases known previously (Imamura et al.). For fixed equation-of-state parameters, the secular and dynamic stability limits occur at roughly constant mass over the range of typical fizzler central densities. Deleptonization and cooling decrease the limiting masses on timescales shorter than the growth time for secular instability. Consequently, unless an evolving fizzler reaches neutron star densities first, it will always encounter dynamic barlike instabilities before secular instabilities have time to grow. Quasi-linear analysis shows that the angular momentum loss during the early nonlinear evolution of the dynamic barlike instability is dominated by Newtonian self-interaction gravitational torques rather than by the emission of gravitational wave (GW) radiation. GW emission may dominate after the initial dynamic evolutionary phase ends. Nonlinear hydrodynamics simulations with a proper equation of state will be required to determine the ultimate outcome of such evolutions and to refine predictions of GW production by barlike instabilities.

  20. Initial angular momentum and flow in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  1. A dynamic system matching technique for improving the accuracy of MEMS gyroscopes

    NASA Astrophysics Data System (ADS)

    Stubberud, Peter A.; Stubberud, Stephen C.; Stubberud, Allen R.

    2014-12-01

    A classical MEMS gyro transforms angular rates into electrical values through Euler's equations of angular rotation. Production models of a MEMS gyroscope will have manufacturing errors in the coefficients of the differential equations. The output signal of a production gyroscope will be corrupted by noise, with a major component of the noise due to the manufacturing errors. As is the case of the components in an analog electronic circuit, one way of controlling the variability of a subsystem is to impose extremely tight control on the manufacturing process so that the coefficient values are within some specified bounds. This can be expensive and may even be impossible as is the case in certain applications of micro-electromechanical (MEMS) sensors. In a recent paper [2], the authors introduced a method for combining the measurements from several nominally equal MEMS gyroscopes using a technique based on a concept from electronic circuit design called dynamic element matching [1]. Because the method in this paper deals with systems rather than elements, it is called a dynamic system matching technique (DSMT). The DSMT generates a single output by randomly switching the outputs of several, nominally identical, MEMS gyros in and out of the switch output. This has the effect of 'spreading the spectrum' of the noise caused by the coefficient errors generated in the manufacture of the individual gyros. A filter can then be used to eliminate that part of the spread spectrum that is outside the pass band of the gyro. A heuristic analysis in that paper argues that the DSMT can be used to control the effects of the random coefficient variations. In a follow-on paper [4], a simulation of a DSMT indicated that the heuristics were consistent. In this paper, analytic expressions of the DSMT noise are developed which confirm that the earlier conclusions are valid. These expressions include the various DSMT design parameters and, therefore, can be used as design tools for DSMT systems.

  2. A dynamic system matching technique for improving the accuracy of MEMS gyroscopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubberud, Peter A., E-mail: stubber@ee.unlv.edu; Stubberud, Stephen C., E-mail: scstubberud@ieee.org; Stubberud, Allen R., E-mail: stubberud@att.net

    A classical MEMS gyro transforms angular rates into electrical values through Euler's equations of angular rotation. Production models of a MEMS gyroscope will have manufacturing errors in the coefficients of the differential equations. The output signal of a production gyroscope will be corrupted by noise, with a major component of the noise due to the manufacturing errors. As is the case of the components in an analog electronic circuit, one way of controlling the variability of a subsystem is to impose extremely tight control on the manufacturing process so that the coefficient values are within some specified bounds. This canmore » be expensive and may even be impossible as is the case in certain applications of micro-electromechanical (MEMS) sensors. In a recent paper [2], the authors introduced a method for combining the measurements from several nominally equal MEMS gyroscopes using a technique based on a concept from electronic circuit design called dynamic element matching [1]. Because the method in this paper deals with systems rather than elements, it is called a dynamic system matching technique (DSMT). The DSMT generates a single output by randomly switching the outputs of several, nominally identical, MEMS gyros in and out of the switch output. This has the effect of 'spreading the spectrum' of the noise caused by the coefficient errors generated in the manufacture of the individual gyros. A filter can then be used to eliminate that part of the spread spectrum that is outside the pass band of the gyro. A heuristic analysis in that paper argues that the DSMT can be used to control the effects of the random coefficient variations. In a follow-on paper [4], a simulation of a DSMT indicated that the heuristics were consistent. In this paper, analytic expressions of the DSMT noise are developed which confirm that the earlier conclusions are valid. These expressions include the various DSMT design parameters and, therefore, can be used as design tools for DSMT systems.« less

  3. Output feedback control of a quadrotor UAV using neural networks.

    PubMed

    Dierks, Travis; Jagannathan, Sarangapani

    2010-01-01

    In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online, including uncertain nonlinear terms like aerodynamic friction and blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control input scheme is proposed which allows all six degrees of freedom (DOF) of the UAV to be controlled using only four control inputs. Furthermore, an NN observer is introduced to estimate the translational and angular velocities of the UAV, and an output feedback control law is developed in which only the position and the attitude of the UAV are considered measurable. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semiglobally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle. The effectiveness of proposed output feedback control scheme is then demonstrated in the presence of unknown nonlinear dynamics and disturbances, and simulation results are included to demonstrate the theoretical conjecture.

  4. Discovery of Enhanced Magnetoelectric Coupling through Electric Field Control of Two-Magnon Scattering within Distorted Nanostructures.

    PubMed

    Xue, Xu; Zhou, Ziyao; Dong, Guohua; Feng, Mengmeng; Zhang, Yijun; Zhao, Shishun; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming

    2017-09-26

    Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a La 0.7 Sr 0.3 MnO 3 (LSMO)/Pb(Mn 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.

  5. Staggered solution procedures for multibody dynamics simulation

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.; Downer, J. D.

    1990-01-01

    The numerical solution procedure for multibody dynamics (MBD) systems is termed a staggered MBD solution procedure that solves the generalized coordinates in a separate module from that for the constraint force. This requires a reformulation of the constraint conditions so that the constraint forces can also be integrated in time. A major advantage of such a partitioned solution procedure is that additional analysis capabilities such as active controller and design optimization modules can be easily interfaced without embedding them into a monolithic program. After introducing the basic equations of motion for MBD system in the second section, Section 3 briefly reviews some constraint handling techniques and introduces the staggered stabilized technique for the solution of the constraint forces as independent variables. The numerical direct time integration of the equations of motion is described in Section 4. As accurate damping treatment is important for the dynamics of space structures, we have employed the central difference method and the mid-point form of the trapezoidal rule since they engender no numerical damping. This is in contrast to the current practice in dynamic simulations of ground vehicles by employing a set of backward difference formulas. First, the equations of motion are partitioned according to the translational and the rotational coordinates. This sets the stage for an efficient treatment of the rotational motions via the singularity-free Euler parameters. The resulting partitioned equations of motion are then integrated via a two-stage explicit stabilized algorithm for updating both the translational coordinates and angular velocities. Once the angular velocities are obtained, the angular orientations are updated via the mid-point implicit formula employing the Euler parameters. When the two algorithms, namely, the two-stage explicit algorithm for the generalized coordinates and the implicit staggered procedure for the constraint Lagrange multipliers, are brought together in a staggered manner, they constitute a staggered explicit-implicit procedure which is summarized in Section 5. Section 6 presents some example problems and discussions concerning several salient features of the staggered MBD solution procedure are offered in Section 7.

  6. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Xin; Sun, Xiu-Jun; Wang, Yan-Hui; Wu, Jian-Guo; Wang, Xiao-Ming

    2011-03-01

    PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.

  7. Dynamics of levitated objects in acoustic vortex fields.

    PubMed

    Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W

    2017-08-02

    Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.

  8. Photonic Interrogation and Control of Nano Processes

    NASA Technical Reports Server (NTRS)

    Jassemnejad, Baha

    2003-01-01

    My research activities for the summer of 2003 consisted of two projects: One project was concerned with determining a method for predicting the static and dynamic assembly properties of nano-structures using laser tweezers. The other project was to investigate the generation of Laguerre-Gaussian modes using a spatial light modulator incorporated into an optical tweezers system. Concerning the first project, I initially pursued the approach suggested by my NASA colleague Dr. Art Decker. This approach involved mimicking the model of the structure of atomic nucleus for the assembly of 1 to 100 atoms using allowed quadruple transitions induced by orbital angular momentums of a Laguerre- Gaussian (Doughnut) laser mode. After realizing the inaptness of the nuclear model with the nanostructure model as far as the binding forces and transitions were concerned, I focused on using quantum dot modei. This model was not attuned also for the host lattice influences the electronic structure of the quantum dot. Thus one other option that I decided to pursue was the approach of molecular quantum mechanics. In this approach the nanostructure is treated as a large (10-100 nm) molecule constructed from single element or multi-elements. Subsequent to consultation with Dr. Fred Morales, a chemical engineer at NASA GRC, and Dr. David Ball, a computational chemist at Cleveland State University, I acquired a molecular-quantum computation software, Hyperchem 7.0. This software allows simulation of different molecular structures as far as their static and dynamic behaviors are concerned. The time that I spent on this project was about eight weeks. Once this suitable approach was identified, I realized the need to collaborate with a computational quantum chemist to pursue searching for stable nanostructures in the range of 10-100 nm that we can be assembled using laser tweezers. The second project was about generating laser tweezers that possess orbital angular momentum. As shown, we were able to generate laser tweezers modes of different orbital angular momentum using a spatial light modulator incorporated into a laser tweezers system. The motivation for investigating these types of modes stems from being able to spin particles at high speeds and also to orient two particles in separate traps and then join them together. Also, there has been recent intense interest on fundamental physics research on orbital angular momentum of light. The fact that circularly polarized light may have associated with it angular momentum that relates to the spin of individual photons (spin 0 for the plane polarized light, spin +1 for the right-circularly polarized light and spin -1 for the left-circularly polarized light) was first demonstrated by Beth in 1936. Orbital angular momentum is, however, distinct from spin in that the spin angular momentum of light is intrinsically linked to the behavior of the electric field in the light whereas orbital angular momentum is a consequence of inclined wavefronts. In 1992 L. Allen, et al showed that the Laguerre-Gaussian (LG) modes could possess well-defined orbital angular momentum that can exceed 1 planck's constant, i.e. l plancks constant per photon, where l is the azimuthal index of the mode.

  9. Method and system for controlling start of a permanent magnet machine

    DOEpatents

    Walters, James E.; Krefta, Ronald John

    2003-10-28

    Method and system for controlling a permanent magnet machine are provided. The method provides a sensor assembly for sensing rotor sector position relative to a plurality of angular sectors. The method further provides a sensor for sensing angular increments in rotor position. The method allows starting the machine in a brushless direct current mode of operation using a calculated initial rotor position based on an initial angular sector position information from the sensor assembly. Upon determining a transition from the initial angular sector to the next angular sector, the method allows switching to a sinusoidal mode of operation using rotor position based on rotor position information from the incremental sensor.

  10. Five degrees of freedom linear state-space representation of electrodynamic thrust bearings

    NASA Astrophysics Data System (ADS)

    Van Verdeghem, J.; Kluyskens, V.; Dehez, B.

    2017-09-01

    Electrodynamic bearings can provide stable and contactless levitation of rotors while operating at room temperatures. Depending solely on passive phenomena, specific models have to be developed to study the forces they exert and the resulting rotordynamics. In recent years, models allowing us to describe the axial dynamics of a large range of electrodynamic thrust bearings have been derived. However, these bearings being devised to be integrated into fully magnetic suspensions, the existing models still suffer from restrictions. Indeed, assuming the spin speed as varying slowly, a rigid rotor is characterised by five independent degrees of freedom whereas early models only considered the axial degree. This paper presents a model free of the previous limitations. It consists in a linear state-space representation describing the rotor's complete dynamics by considering the impact of the rotor axial, radial and angular displacements as well as the gyroscopic effects. This set of ten equations depends on twenty parameters whose identification can be easily performed through static finite element simulations or quasi-static experimental measurements. The model stresses the intrinsic decoupling between the axial dynamics and the other degrees of freedom as well as the existence of electrodynamic angular torques restoring the rotor to its nominal position. Finally, a stability analysis performed on the model highlights the presence of two conical whirling modes related to the angular dynamics, namely the nutation and precession motions. The former, whose intrinsic stability depends on the ratio between polar and transverse moments of inertia, can be easily stabilised through external damping whereas the latter, which is stable up to an instability threshold linked to the angular electrodynamic cross-coupling stiffness, is less impacted by that damping.

  11. Convergence of excitatory and inhibitory hair cell transmitters shapes vestibular afferent responses.

    PubMed

    Holstein, Gay R; Rabbitt, Richard D; Martinelli, Giorgio P; Friedrich, Victor L; Boyle, Richard D; Highstein, Stephen M

    2004-11-02

    The vestibular semicircular canals respond to angular acceleration that is integrated to angular velocity by the biofluid mechanics of the canals and is the primary origin of afferent responses encoding velocity. Surprisingly, some afferents actually report angular acceleration. Our data indicate that hair-cell/afferent synapses introduce a mathematical derivative in these afferents that partially cancels the biomechanical integration and results in discharge rates encoding angular acceleration. We examined the role of convergent synaptic inputs from hair cells to this mathematical differentiation. A significant reduction in the order of the differentiation was observed for low-frequency stimuli after gamma-aminobutyric acid type B receptor antagonist administration. Results demonstrate that gamma-aminobutyric acid participates in shaping the temporal dynamics of afferent responses.

  12. An analytical model of dynamic sliding friction during impact

    NASA Astrophysics Data System (ADS)

    Arakawa, Kazuo

    2017-01-01

    Dynamic sliding friction was studied based on the angular velocity of a golf ball during an oblique impact. This study used the analytical model proposed for the dynamic sliding friction on lubricated and non-lubricated inclines. The contact area A and sliding velocity u of the ball during impact were used to describe the dynamic friction force Fd = λAu, where λ is a parameter related to the wear of the contact area. A comparison with experimental results revealed that the model agreed well with the observed changes in the angular velocity during impact, and λAu is qualitatively equivalent to the empirical relationship, μN + μη‧dA/dt, given by the product between the frictional coefficient μ and the contact force N, and the additional term related to factor η‧ for the surface condition and the time derivative of A.

  13. Spin angular momentum induced by optical quasi-phonons activated in birefringent uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Mohamadou, B.; Maïmounatou, B.; Erasmus, R. M.

    2017-09-01

    The present report formally establishes the expression of the angular momentum of the quasi-phonons induced by linearly polarized light. The transferred mechanical torque due to phonons is then determined from the spin angular momentum and is shown to be measurable from Raman scattering experiments. To investigate this, the electric field due the excited dipoles and the associated macroscopic dielectric polarization vectors were first calculated using a lattice dynamical model in order to derive in a second step the analytical expression of the angular momentum density arising from the inelastic light scattering by quasi-phonons. The numerical results of the calculated angle dependent mode electric fields and the induced spin angular moments as well as the transferred torques were analyzed with regard to some typical behaviors of the interacting modes and it is shown that the fluctuations of the effective charges is their main origin.

  14. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

    PubMed

    Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A

    2007-01-01

    Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.

  15. On the role of surface friction in tropical cyclone intensification

    NASA Astrophysics Data System (ADS)

    Wang, Yuqing

    2017-04-01

    Recent studies have debated on whether surface friction is positive or negative to tropical cyclone intensification in the view on angular momentum budget. That means whether the frictionally induced inward angular momentum transport can overcome the loss of angular momentum to the surface due to surface friction itself. Although this issue is still under debate, this study investigates another implicit dynamical effect, which modifies the radial location and strength of eyewall convection. We found that moderate surface friction is necessary for rapid intensity of tropical cyclones. This is demonstrated first by a simple coupled dynamical system that couples a multi-level boundary layer model and a shallow water equation model above with mass source parameterized by mass flux from the boundary layer model below, and then by a full physics model. The results show that surface friction leads to the inward penetration of inflow under the eyewall, shift the boundary layer mass convergence slightly inside the radius of maximum wind, and enhance the upward mass flux, and thus diabatic heating in the eyewall and intensification rate of a TC. This intensification process is different from the direct angular momentum budget previously used to explain the role of surface friction in tropical cyclone intensification.

  16. System and method for correcting attitude estimation

    NASA Technical Reports Server (NTRS)

    Josselson, Robert H. (Inventor)

    2010-01-01

    A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.

  17. Orbital and angular motion construction for low thrust interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  18. Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding

    NASA Astrophysics Data System (ADS)

    Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.

    2017-12-01

    Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.

  19. A computational procedure for the dynamics of flexible beams within multibody systems. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Downer, Janice Diane

    1990-01-01

    The dynamic analysis of three dimensional elastic beams which experience large rotational and large deformational motions are examined. The beam motion is modeled using an inertial reference for the translational displacements and a body-fixed reference for the rotational quantities. Finite strain rod theories are then defined in conjunction with the beam kinematic description which accounts for the effects of stretching, bending, torsion, and transverse shear deformations. A convected coordinate representation of the Cauchy stress tensor and a conjugate strain definition is introduced to model the beam deformation. To treat the beam dynamics, a two-stage modification of the central difference algorithm is presented to integrate the translational coordinates and the angular velocity vector. The angular orientation is then obtained from the application of an implicit integration algorithm to the Euler parameter/angular velocity kinematical relation. The combined developments of the objective internal force computation with the dynamic solution procedures result in the computational preservation of total energy for undamped systems. The present methodology is also extended to model the dynamics of deployment/retrieval of the flexible members. A moving spatial grid corresponding to the configuration of a deployed rigid beam is employed as a reference for the dynamic variables. A transient integration scheme which accurately accounts for the deforming spatial grid is derived from a space-time finite element discretization of a Hamiltonian variational statement. The computational results of this general deforming finite element beam formulation are compared to reported results for a planar inverse-spaghetti problem.

  20. Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro

    2011-09-01

    To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.

  1. Optoelectronic simulation of GaAs solar cells with angularly selective filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Tobias, E-mail: tobias.kraus@ise.fraunhofer.de; Höhn, Oliver; Hauser, Hubert

    We discuss the influence of angularly selective filters on thin film gallium arsenide solar cells. For this reason, the detailed balance model was refined to fit our needs with respect to Auger recombination, reflection, transmission, and realistic absorption. For calculating real systems, an approach was made to include optical effects of angularly selective filters into electron-hole dynamic equations implemented in PC1D, a one dimensional solar cell calculation tool. With this approach, we find a relative V{sub oc} increase of 5% for an idealized 100 nm GaAs cell, including Auger recombination.

  2. Towards multi-field D-brane inflation in a warped throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Heng-Yu; Gong, Jinn-Ouk; Koyama, Kazuya

    2010-11-01

    We study the inflationary dynamics in a model of slow-roll inflation in warped throat. Inflation is realized by the motion of a D-brane along the radial direction of the throat, and at later stages instabilities develop in the angular directions. We closely investigate both the single field potential relevant for the slow-roll phase, and the full multi-field one including the angular modes which becomes important at later stages. We study the main features of the instability process, discussing its possible consequences and identifying the vacua towards which the angular modes are driven.

  3. Control of spin ambiguity during reorientation of an energy dissipating body

    NASA Technical Reports Server (NTRS)

    Kaplan, M. H.; Cenker, R. J.

    1973-01-01

    A quasi-rigid body initially spinning about its minor principal axis and experiencing energy dissipation will enter a tumbling mode and eventually reorient itself such that stable spin about its major principal axis is achieved. However, in this final state the body may be spinning in a positive or negative sense with respect to its major axis and aligned in a positive or negative sense with the inertially fixed angular momentum vector. This ambiguity can be controlled only through an active system. The associated dynamical formulations and simulations of uncontrolled reorientations are presented. Three control schemes are discussed and results offered for specific examples. These schemes include displacement of internal masses, spinning up of internal inertia, and reaction jets, all of which have demonstrated the ability to control spin ambiguity.

  4. Adaptive Control of a Transport Aircraft Using Differential Thrust

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan

    2009-01-01

    The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.

  5. Human dynamic orientation model applied to motion simulation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Borah, J. D.

    1976-01-01

    The Ormsby model of dynamic orientation, in the form of a discrete time computer program was used to predict non-visually induced sensations during an idealized coordinated aircraft turn. To predict simulation fidelity, the Ormsby model was used to assign penalties for incorrect attitude and angular rate perceptions. It was determined that a three rotational degree of freedom simulation should remain faithful to attitude perception even at the expense of incorrect angular rate sensations. Implementing this strategy, a simulation profile for the idealized turn was designed for a Link GAT-1 trainer. A simple optokinetic display was added to improve the fidelity of roll rate sensations.

  6. Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum

    PubMed Central

    Wang, Yu; Zhao, Peng; Feng, Xue; Xu, Yuntao; Liu, Fang; Cui, Kaiyu; Zhang, Wei; Huang, Yidong

    2016-01-01

    As a fundamental tool for light-matter interactions, plasmonic vortex (PV) is extremely useful due to the unique near field property. However, it is a pity that, up to now, the orbital angular momentum (OAM) carried by PVs could not be dynamically and continuously tuned in practice as well as the properties of fractional PVs are still not well investigated. By comparing with two previously reported methods, it is suggested that our proposal of utilizing the propagation induced radial phase gradient of incident Laguerre-Gaussian (LG) beam is a promising candidate to sculpture PVs from integer to fractional OAM dynamically. Consequently, the preset OAM of PVs could have four composing parts: the incident spin and orbital angular momentum, the geometric contribution of chiral plasmonic structure, and the radial phase gradient dependent contribution. Moreover, an analytical expression for the fractional PV is derived as a linear superposition of infinite numbers of integer PVs described by Bessel function of the first kind. It is also shown that the actual mean OAM of a fractional PV would deviate from the preset value, which is similar with previous results for spatial fractional optical vortices. PMID:27811986

  7. Theories of time-dependent and time-independent nearside-farside reactive scattering dynamics

    NASA Astrophysics Data System (ADS)

    Monks, Phillip David Durrant

    The first application of nearside-farside (NF) theory is made to the time-dependent partial wave series (PWS) representation of the scattering amplitude for the reaction H + D[2](v = 0,j = 0, m = 0) → HD(v' = 3,j' = 0, m'= 0) + D. Time-dependent NF angular distributions and time-dependent NF local angular momenta (LAMs) are defined and used to analyse the dynamics in terms of time- direct and time-delayed reaction mechanisms. The concept of a cumulative time-evolving differential cross section (DCS) is introduced and used to provide a new method for visualising the time evolution of a chemical reaction. Time-independent NF DCS and LAM analyses of the H + D[2] reaction are presented, highlighting a distinctive "trench-ridge" feature present in the full and N LAMs. It is used to define a cut line which separates the energy-analogs of the two time- distinct reaction mechanisms. This trench-ridge feature is shown to be an interference between the time-direct (backward-scattered) and time-delayed (forward-scattered) reaction mechanisms. Resummation PWS theory is used to "clean" plots of the NF DCSs and LAMs of unphysical effects. A limitation of the resummation theory is described, whereby unphysical behaviour is sometimes introduced into the N and F subamplitudes. A technique for predicting and avoiding these undesired effects is used to further improve the usefulness of the resummation technique. The fundamental identity for NF local angular momenta is stated and derived by two methods. This identity gives rise to a CLAM plot (where CLAM denotes Cross section x LAM), which provides insight into the empirical obsei'vation that DCS and LAM analyses give consistent, yet complementary, information on the reaction dynamics. Applications are reported for the H + D[2] reaction, as well as for F + H[2](v = 0,j=0, m = 0)→ FH(v' = 3,j' = 3, m' = 0) + H. The angular time-delay for a state-to-state reactive collision often displays complicated behaviour. It is shown for the H + D[2] and F + H[2] reactions that this behaviour is caused by NF interference. The fundamental identity for NF angular time-delays is stated, and CATD (Cross section x Angular Time-Delay) results are reported, which provide further insight into the properties of the angular time-delay.

  8. Free-Flight-Tunnel Investigation of the Dynamic Stability and Control Characteristics of a Chance Vought F7U-3 Airplane in Towed Flight

    NASA Technical Reports Server (NTRS)

    Grana, David C.; Shanks, Robert E.

    1952-01-01

    As part of a program to determine the feasibility of using a fighter airplane as a parasite in combination with a Consolidated Vultee RB-36 for long-range reconnaissance missions (project FICON), an experimental investigation has been made in the Langley free-flight tunnel to determine the dynamic stability and control characteristics of a 1/17.5-scale model of a Chance Vought F7U-3 airplane in several tow configurations. The investigation consisted of flight tests in which the model was towed from a strut in the tunnel by a towline and by a direct coupling which provided complete angular freedom. The tests with the direct coupling also included a study of the effect of spring restraint in roll in order to simulate approximately the proposed full-scale arrangement in which the only freedom is that permitted by the flexibility of the launching and retrieving trapeze carried by the-bomber. For the tow configurations in which a towline was used (15 and 38 feet full scale), the model had a very unstable lateral oscillation which could not be controlled. The stability was also unsatisfactory for the tow configuration in Which the model was coupled directly to the strut with complete angular freedom. When spring restraint in roll was added, however, the stability was satisfactory. The use of the yaw damper which increased the damping in yaw to about six times the normal value of the model appeared to have no appreciable effect on the lateral oscillations in the towline configurations, but produced a slight improvement in the case of the direct coupling configurations. The longitudinal stability was satisfactory for those cases in which the lateral stability was good enough to permit study of longitudinal motions.

  9. Prospects of using a permanent magnetic end effector to despin and detumble an uncooperative target

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Lu, Yong; Zhou, Yu; Yin, Yuanhao

    2018-04-01

    Space debris, such as defunct satellites and upper stages of rockets, becomes an uncooperative target after losing its attitude control and communication ability. In addition, tumbling motion can occur due to environmental perturbations and residual angular momentum prior to the object's end-of-mission. To minimize the collision risk during docking and capturing of the tumbling target, a non-contact method based on the eddy current effect is put forward to transmit the control torque to the tumbling target. The main idea is to induce a controllable torque on the conducting surface of the tumbling target using a rotational magnetic field generated by a Halbach rotor. The radial and axial Halbach rotors are used to damp the spinning and nutation motions of the target, respectively. The normal and tangential force are evaluated concerning the relative pose between the chaser and the target. A simplified dynamic model of the nutation damping and despinning processes is developed and the influences of the asymmetrical principal moments of inertia and transverse angular velocity are discussed. The numerical simulation results show that the designed Halbach rotor stabilized the target attitude within an acceptable time. The electromagnetic nutation damping and despinning method provides new solutions for the development of on-orbit capture technology.

  10. Neural network-based motion control of an underactuated wheeled inverted pendulum model.

    PubMed

    Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong

    2014-11-01

    In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.

  11. Attitude coordination of multi-HUG formation based on multibody system theory

    NASA Astrophysics Data System (ADS)

    Xue, Dong-yang; Wu, Zhi-liang; Qi, Er-mai; Wang, Yan-hui; Wang, Shu-xin

    2017-04-01

    Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.

  12. The measurement of dynamic radii for passenger car tyre

    NASA Astrophysics Data System (ADS)

    Anghelache, G.; Moisescu, R.

    2017-10-01

    The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.

  13. Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Han, Qinkai; Zhou, Daning

    2017-02-01

    In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yu; Scheeres, D. J.; Busch, Michael W.

    The 4.5 km long near-Earth asteroid 4179 Toutatis has made close Earth flybys approximately every four years between 1992 and 2012, and has been observed with high-resolution radar imaging during each approach. Its most recent Earth flyby in 2012 December was observed extensively at the Goldstone and Very Large Array radar telescopes. In this paper, Toutatis' spin state dynamics are estimated from observations of five flybys between 1992 and 2008. Observations were used to fit Toutatis' spin state dynamics in a least-squares sense, with the solar and terrestrial tidal torques incorporated in the dynamical model. The estimated parameters are Toutatis'more » Euler angles, angular velocity, moments of inertia, and the center-of-mass-center-of-figure offset. The spin state dynamics as well as the uncertainties of the Euler angles and angular velocity of the converged solution are then propagated to 2012 December in order to compare the dynamical model to the most recent Toutatis observations. The same technique of rotational dynamics estimation can be applied to any other tumbling body, given sufficiently accurate observations.« less

  15. Learning Dynamic Control of Body Roll Orientation

    PubMed Central

    Vimal, Vivekanand Pandey; Lackner, James R.; DiZio, Paul

    2016-01-01

    Our objective was to examine how the control of orientation is learned in a task involving dynamically balancing about an unstable equilibrium point, the gravitational vertical, in the absence of leg reflexes and muscle stiffness. Subjects (n=10) used a joystick to set themselves to the gravitational vertical while seated in a multi-axis rotation system device (MARS) programmed with inverted pendulum dynamics. The MARS is driven by powerful servomotors and can faithfully follow joystick commands up to 2.5 Hz with a 30 ms latency. To make the task extremely difficult, the pendulum constant was set to 600°/sec2. Each subject participated in 5 blocks of 4 trials, with a trial ending after a cumulative 100 s of balancing, excluding reset times when a subject lost control. To characterize performance and learning, we used metrics derived from joystick movements, phase portraits (joystick deflections vs MARS position and MARS velocity vs angular position), and stabilogram diffusion functions. We found that as subjects improved their balancing performance they did so by making fewer destabilizing joystick movements and reducing the number and duration of joystick commands. The control strategy they acquired involved making more persistent short-term joystick movements, waiting longer before making changes to ongoing motion, and only intervening intermittently. PMID:26525709

  16. Development of a hardware-in-loop attitude control simulator for a CubeSat satellite

    NASA Astrophysics Data System (ADS)

    Tapsawat, Wittawat; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    Attitude control is an important part in satellite on-orbit operation. It greatly affects the performance of satellites. Testing of an attitude determination and control subsystem (ADCS) is very challenging since it might require attitude dynamics and space environment in the orbit. This paper develops a low-cost hardware-in-loop (HIL) simulator for testing an ADCS of a CubeSat satellite. The simulator consists of a numerical simulation part, a hardware part, and a HIL interface hardware unit. The numerical simulation part includes orbital dynamics, attitude dynamics and Earth’s magnetic field. The hardware part is the real ADCS board of the satellite. The simulation part outputs satellite’s angular velocity and geomagnetic field information to the HIL interface hardware. Then, based on this information, the HIL interface hardware generates I2C signals mimicking the signals of the on-board rate-gyros and magnetometers and consequently outputs the signals to the ADCS board. The ADCS board reads the rate-gyro and magnetometer signals, calculates control signals, and drives the attitude actuators which are three magnetic torquers (MTQs). The responses of the MTQs sensed by a separated magnetometer are feedback to the numerical simulation part completing the HIL simulation loop. Experimental studies are conducted to demonstrate the feasibility and effectiveness of the simulator.

  17. H and H2 NMR properties in amorphous hydrogenated silicon (a-Si:H)

    NASA Astrophysics Data System (ADS)

    Lee, Sook

    1986-07-01

    It is shown that the basic NMR properties of ortho-H2 molecules with a rotational angular momentum J and a spin angular momentum I under the influence of a completely asymmetric crystalline field in an amorphous matrix can be described by an effective nuclear spin Hamiltonian which contains only the nuclear spin angular momentum operators (Ii), but is independent of the molecular rotational angular momentum operators (Ji). By directly applying the existing magnetic-resonance theories to this effective nuclear spin Hamiltonian, a simple description is presented for various static and dynamic NMR properties of the ortho-H2 NMR centers in amorphous hydrogenated silicon (a-Si:H), thereby resolving many difficulties and uncertainties encountered in understanding and explaining the H and H2 NMR observations in a-Si:H.

  18. The dynamics and optimal control of spinning spacecraft and movable telescoping appendages, part A. [two axis control with single offset boom

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sellappan, R.

    1977-01-01

    The problem of optimal control with a minimum time criterion as applied to a single boom system for achieving two axis control is discussed. The special case where the initial conditions are such that the system can be driven to the equilibrium state with only a single switching maneuver in the bang-bang optimal sequence is analyzed. The system responses are presented. Application of the linear regulator problem for the optimal control of the telescoping system is extended to consider the effects of measurement and plant noises. The noise uncertainties are included with an application of the estimator - Kalman filter problem. Different schemes for measuring the components of the angular velocity are considered. Analytical results are obtained for special cases, and numerical results are presented for the general case.

  19. Quantum walks and wavepacket dynamics on a lattice with twisted photons.

    PubMed

    Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W; Marrucci, Lorenzo

    2015-03-01

    The "quantum walk" has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.

  20. Quantum walks and wavepacket dynamics on a lattice with twisted photons

    PubMed Central

    Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W.; Marrucci, Lorenzo

    2015-01-01

    The “quantum walk” has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations. PMID:26601157

  1. Three-dimensional finite volume modelling of blood flow in simulated angular neck abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Algabri, Y. A.; Rookkapan, S.; Chatpun, S.

    2017-09-01

    An abdominal aortic aneurysm (AAA) is considered a deadly cardiovascular disease that defined as a focal dilation of blood artery. The healthy aorta size is between 15 and 24 mm based on gender, bodyweight, and age. When the diameter increased to 30 mm or more, the rupture can occur if it is kept growing or untreated. Moreover, the proximal angular neck of aneurysm is categorized as a significant morphological feature with prime harmful effects on endovascular aneurysm repair (EVAR). Flow pattern in pathological vessel can influence the vascular intervention. The aim of this study is to investigate the blood flow behaviours in angular neck abdominal aortic aneurysm with simulated geometry based on patient’s information using computational fluid dynamics (CFD). The 3D angular neck AAA models have been designed by using SolidWorks Software. Consequently, CFD tools are used for simulating these 3D models of angular neck AAA in ANSYS FLUENT Software. Eventually, based on the results, we summarized that the CFD techniques have shown high performance in explaining and investigating the flow patterns for angular neck abdominal aortic aneurysm.

  2. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum

    PubMed Central

    Seghilani, Mohamed S.; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-01-01

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications. PMID:27917885

  3. Numerical Study of Impingement Location of Liquid Jet Poured from a Tilting Ladle with Lip Spout

    NASA Astrophysics Data System (ADS)

    Castilla, R.; Gamez-Montero, P. J.; Raush, G.; Khamashta, M.; Codina, E.

    2017-04-01

    A new approach for simulating liquid poured from a tilting lip spout is presented, using neither a dynamic mesh nor the moving solid solution method. In this case only the tilting ladle is moving, so we propose to rotate the gravitational acceleration at an angular velocity prescribed by a geometrical and dynamical calculation to keep the poured flow rate constant. This angular velocity is applied to modify the orientation of the gravity vector in computational fluid dynamics (CFD) simulations using the OpenFOAM® toolbox. Also, fictitious forces are considered. The modified solver is used to calculate the impingement location for six spout geometries and compare the jet dispersion there. This method could offer an inexpensive tool to calculate optimal spout geometries to reduce sprue size in the metal casting industry.

  4. Some effects of sleep deprivation on tracking performance in static and dynamic environments.

    DOT National Transportation Integrated Search

    1976-01-01

    The influence of approximately 34 and 55 h of sleep deprivation on performance scores derived from manually tracking the localizer needle on an aircraft instrument was assessed under both static (no motion) and dynamic (whole-body angular acceleratio...

  5. Consideration of Gravity Gradient Stabilization for Orion

    DTIC Science & Technology

    1989-03-01

    AND ERIC ANDionl STABILIZATION TION. MAY NEED SECOND CONTROL SYSTEM TO CONTROL OVERALL ANGULAR MOMENTUM I MOMENTUM DUMPING I IN RESPONSE TO...FURTHER EXPERIENCE IS GAINED RPEFERS TO ANY DEVICE THAT MAY BEl USED Ift A PRIOCESS TOE ECHANGE ANGULAR MOMENTUM WITH THME SPACIECRAFTI BODY Figure 5...rotating with angular velocity w relative to XYZ. If unit vectors along the X, Y, and Z axes are ij, and k, respectively, the vector r can be written

  6. Dynamic shape transitions in the sdg boson model

    NASA Astrophysics Data System (ADS)

    Kuyucak, S.

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192Os.

  7. A high bandwidth three-axis out-of-plane motion measurement system based on optical beam deflection

    NASA Astrophysics Data System (ADS)

    Piyush, P.; Giridhar, M. S.; Jayanth, G. R.

    2018-03-01

    Multi-axis measurement of motion is indispensable for characterization of dynamic systems and control of motion stages. This paper presents an optical beam deflection-based measurement system to simultaneously measure three-axis out-of-plane motion of both micro- and macro-scale targets. Novel strategies are proposed to calibrate the sensitivities of the measurement system. Subsequently the measurement system is experimentally realized and calibrated. The system is employed to characterize coupled linear and angular motion of a piezo-actuated stage. The measured motion is shown to be in agreement with theoretical expectation. Next, the high bandwidth of the measurement system has been showcased by utilizing it to measure coupled two-axis transient motion of a Radio Frequency Micro-Electro-Mechanical System switch with a rise time of about 60 μs. Finally, the ability of the system to measure out-of-plane angular motion about the second axis has been demonstrated by measuring the deformation of a micro-cantilever beam.

  8. Manipulation of resonant Auger processes with strong optical fields

    NASA Astrophysics Data System (ADS)

    Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen

    2013-05-01

    We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  9. Controller arm for a remotely related slave arm

    NASA Technical Reports Server (NTRS)

    Salisbury, J. K., Jr. (Inventor)

    1979-01-01

    A segmented controller arm configured and dimensioned to form a miniature kinematic replica of a remotely related slave arm is disclosed. The arm includes: (1) a plurality of joints for affording segments of the arm simultaneous angular displacement about a plurality of pairs of intersecting axes, (2) a plurality of position sensing devices for providing electrical signals indicative of angular displacement imparted to corresponding segments of the controller shaft about the axes, and (3) a control signal circuit for generating control signals to be transmitted to the slave arm. The arm is characterized by a plurality of yokes, each being supported for angular displacement about a pair of orthogonally related axes and counterbalanced against gravitation by a cantilevered mass.

  10. Effects of Wall-Normal and Angular Momentum Injections in Airfoil Separation Control

    NASA Astrophysics Data System (ADS)

    Munday, Phillip M.; Taira, Kunihiko

    2018-05-01

    The objective of this computational study is to quantify the influence of wall-normal and angular momentum injections in suppressing laminar flow separation over a canonical airfoil. Open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at $\\alpha = 9^\\circ$ and $Re = 23,000$ is examined with large-eddy simulations. This study independently introduces wall-normal momentum and angular momentum into the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. It is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Lift enhancement and suppression of separation with the wall-normal and angular momentum inputs are characterized by modifying the standard definition of the coefficient of momentum. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With this single modified coefficient of momentum, we are able to categorize each controlled flow into separated, transitional, and attached flows.

  11. Creating optical near-field orbital angular momentum in a gold metasurface.

    PubMed

    Chen, Ching-Fu; Ku, Chen-Ta; Tai, Yi-Hsin; Wei, Pei-Kuen; Lin, Heh-Nan; Huang, Chen-Bin

    2015-04-08

    Nanocavities inscribed in a gold thin film are optimized and designed to form a metasurface. We demonstrate both numerically and experimentally the creation of surface plasmon (SP) vortex carrying orbital angular momentum in the metasurface under linearly polarized optical excitation that carries no optical angular momentum. Moreover, depending on the orientation of the exciting linearly polarized light, we show that the metasurface is capable of providing dynamic switching between SP vortex formation or SP subwavelength focusing. The resulting SP intensities are experimentally measured using a near-field scanning optical microscope and are found in excellent quantitative agreements as compared to the numerical results.

  12. CONNECTING ANGULAR MOMENTUM AND GALACTIC DYNAMICS: THE COMPLEX INTERPLAY BETWEEN SPIN, MASS, AND MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus

    The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticummore » Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo and shows a significant scatter.« less

  13. Mid-IR Lasers: Challenges Imposed by the Population Dynamics of the Gain System

    DTIC Science & Technology

    2010-09-01

    MicroSystems (IOMS) Central-Field Approximation: Perturbations 1. a) Non-centrosymmetric splitting (Coulomb interaction) ⇒ total orbital angular momentum b...Accordingly: ⇒ total electron-spin momentum 2. Spin-orbit coupling (“LS” coupling) ⇒ total angular momentum lanthanides: intermediate coupling (LS / jj) 3...MicroSystems (IOMS) Luminescence Decay Curves Rate-equation for decay: Solution ( Bernoulli -Eq.): Linearized solution: T. Jensen, Ph.D. Thesis, Univ. Hamburg

  14. Mode-sum regularization of ⟨ϕ2⟩ in the angular-splitting method

    NASA Astrophysics Data System (ADS)

    Levi, Adam; Ori, Amos

    2016-08-01

    The computation of the renormalized stress-energy tensor or ⟨ϕ2⟩ren in curved spacetime is a challenging task, at both the conceptual and technical levels. Recently we developed a new approach to compute such renormalized quantities in asymptotically flat curved spacetimes, based on the point-splitting procedure. Our approach requires the spacetime to admit some symmetry. We already implemented this approach to compute ⟨ϕ2⟩ren in a stationary spacetime using t splitting, namely splitting in the time-translation direction. Here we present the angular-splitting version of this approach, aimed for computing renormalized quantities in a general (possibly dynamical) spherically symmetric spacetime. To illustrate how the angular-splitting method works, we use it here to compute ⟨ϕ2⟩ren for a quantum massless scalar field in Schwarzschild background, in various quantum states (Boulware, Unruh, and Hartle-Hawking states). We find excellent agreement with the results obtained from the t -splitting variant and also with other methods. Our main goal in pursuing this new mode-sum approach was to enable the computation of the renormalized stress-energy tensor in a dynamical spherically symmetric background, e.g. an evaporating black hole. The angular-splitting variant presented here is most suitable to this purpose.

  15. Bounded extremum seeking for angular velocity actuated control of nonholonomic unicycle

    DOE PAGES

    Scheinker, Alexander

    2016-08-17

    Here, we study control of the angular-velocity actuated nonholonomic unicycle, via a simple, bounded extremum seeking controller which is robust to external disturbances and measurement noise. The vehicle performs source seeking despite not having any position information about itself or the source, able only to sense a noise corrupted scalar value whose extremum coincides with the unknown source location. In order to control the angular velocity, rather than the angular heading directly, a controller is developed such that the closed loop system exhibits multiple time scales and requires an analysis approach expanding the previous work of Kurzweil, Jarnik, Sussmann, andmore » Liu, utilizing weak limits. We provide analytic proof of stability and demonstrate how this simple scheme can be extended to include position-independent source seeking, tracking, and collision avoidance of groups on autonomous vehicles in GPS-denied environments, based only on a measure of distance to an obstacle, which is an especially important feature for an autonomous agent.« less

  16. Controlling the spins angular momentum in ferromagnets with sequences of picosecond acoustic pulses.

    PubMed

    Kim, Ji-Wan; Vomir, Mircea; Bigot, Jean-Yves

    2015-02-17

    Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses.

  17. Models of Angular Momentum Input to a Circumterrestrial Swarm from Encounters with Heliocentric Planetesimals

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Greenberg, R.; Hebert, F.

    1985-01-01

    Models of lunar origin in which the Moon accretes in orbit about the Earth from material approaching the Earth from heliocentric orbits must overcome a fundamental problem: the approach orbits of such material would be, in the simplest approximation, equally likely to be prograde or retrograde about the Earth, with the result that accretion of such material adds mass but not angular momentum to circumterrestrial satellites. Satellite orbits would then decay due to the resulting drag, ultimately impacting onto the Earth. One possibility for adding both material and angular momentum to Earth orbit is investigated: imbalance in the delivered angular momentum between pro and retrograde Earth passing orbits which arises from the three body dynamics of planetesimals approaching the Earth from heliocentric space. In order to study angular momentum delivery to circumterrestrial satellites, the near Earth velocities were numerically computed as a function of distance from the Earth for a large array of orbits systematically spanning heliocentric phase space.

  18. Momentum and Energy Assessments with NASA and Other Model and Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Salstein, David; Nelson, Peter; Hu, Wen-Jie; Sud, Yogesh (Technical Monitor)

    2001-01-01

    Aspects of the angular momentum cycle, energetics, and related diagnostics from a number of models, including some from the Goddard Laboratory for Atmospheres, and from the Atmospheric Model Intercomparison Project (AMIP) are examined. Torques that dynamically excite changes in angular momentum, including strong torques at mountains were studied. The measure of how atmospheric mass from a strong weather signal can notably change the angular momentum is studied. For AMIP, there is a spread in the angular momentum amongst models, while the GLA model does reasonably well compared to the other models in the diagnostics examined, namely angular momentum and water vapor. Trends and interannual variability in water vapor over a lengthy period was examined. The role of the diabatic heating components, especially latent heating, in the energy cycle and the terms converting available potential energy to kinetic energy, among other parts of the energy cycle, are studied. Modes of climate of the atmosphere, especially the Arctic and North Atlantic Oscillations, are analyzed as well.

  19. Speed-constrained three-axes attitude control using kinematic steering

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Piggott, Scott

    2018-06-01

    Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.

  20. Modulation of head movement control in humans during treadmill walking

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Verstraete, Mary C.; Bloomberg, Jacob J.

    2002-01-01

    The purpose of this study was to investigate the coordination of the head relative to the trunk within a gait cycle during gaze fixation. Nine normal subjects walked on a motorized treadmill driven at 1.79 m/s (20 s trials) while fixing their gaze on a centrally located earth-fixed target positioned at a distance of 2 m from their eyes. The net and relative angular motions of the head about the three axes of rotations, as well as the corresponding values for the moments acting on it relative to the trunk during the gait cycle were quantified and used as measures of coordination. The average net moment, as well as the average moments about the different axes were significantly different (P<0.01) between the high impact and low/no impact phases of the gait cycle. However, the average net angular displacement as well as the average angular displacement about the axial rotation axis of the head relative to the trunk was maintained uniform (P>0.01) throughout the gait cycle. The average angular displacement about the lateral bending axis was significantly increased (P<0.01) during the high impact phase while that about the flexion-extension axis was significantly decreased (P<0.01) throughout the gait cycle. Thus, the coordination of the motion of the head relative to the trunk during walking is dynamically modulated depending on the behavioral events occurring in the gait cycle. This modulation may serve to aid stabilization of the head by counteracting the force variations acting on the upper body that may aid in the visual fixation of targets during walking.

  1. Neural network identification of aircraft nonlinear aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Egorchev, M. V.; Tiumentsev, Yu V.

    2018-02-01

    The simulation problem for the controlled aircraft motion is considered in the case of imperfect knowledge of the modeling object and its operating conditions. The work aims to develop a class of modular semi-empirical dynamic models that combine the capabilities of theoretical and neural network modeling. We consider the use of semi-empirical neural network models for solving the problem of identifying aerodynamic characteristics of an aircraft. We also discuss the formation problem for a representative set of data characterizing the behavior of a simulated dynamic system, which is one of the critical tasks in the synthesis of ANN-models. The effectiveness of the proposed approach is demonstrated using a simulation example of the aircraft angular motion and identifying the corresponding coefficients of aerodynamic forces and moments.

  2. A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling.

    PubMed

    Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing

    2015-02-27

    With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.42%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity.

  3. A New Open-Loop Fiber Optic Gyro Error Compensation Method Based on Angular Velocity Error Modeling

    PubMed Central

    Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing

    2015-01-01

    With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.2%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity. PMID:25734642

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shi-Zeng

    We derive the skyrmion dynamics in response to a weak external drive, taking all the magnon modes into account. A skyrmion has rotational symmetry, and the magnon modes can be characterized by an angular momentum. For a weak distortion of a skyrmion, only the magnon modes with an angular momentum | m | = 1 govern the dynamics of skyrmion topological center. We also determine that the skyrmion inertia comes by way of the magnon modes in the continuum spectrum. For a skyrmion driven by a magnetic field gradient or by a spin transfer torque generated by a current, themore » dynamical response is practically instantaneous. This justifies the rigid skyrmion approximation used in Thiele's collective coordinate approach. For a skyrmion driven by a spin Hall torque, the torque couples to the skyrmion motion through the magnons in the continuum and damping; therefore the skyrmion dynamics shows sizable inertia in this case. The trajectory of a skyrmion is an ellipse for an ac drive of spin Hall torque.« less

  5. Isotropy of Angular Frequencies and Weak Chimeras with Broken Symmetry

    NASA Astrophysics Data System (ADS)

    Bick, Christian

    2017-04-01

    The notion of a weak chimeras provides a tractable definition for chimera states in networks of finitely many phase oscillators. Here, we generalize the definition of a weak chimera to a more general class of equivariant dynamical systems by characterizing solutions in terms of the isotropy of their angular frequency vector—for coupled phase oscillators the angular frequency vector is given by the average of the vector field along a trajectory. Symmetries of solutions automatically imply angular frequency synchronization. We show that the presence of such symmetries is not necessary by giving a result for the existence of weak chimeras without instantaneous or setwise symmetries for coupled phase oscillators. Moreover, we construct a coupling function that gives rise to chaotic weak chimeras without symmetry in weakly coupled populations of phase oscillators with generalized coupling.

  6. Dynamics and inertia of a skyrmion in chiral magnets and interfaces: A linear response approach based on magnon excitations

    DOE PAGES

    Lin, Shi-Zeng

    2017-07-06

    We derive the skyrmion dynamics in response to a weak external drive, taking all the magnon modes into account. A skyrmion has rotational symmetry, and the magnon modes can be characterized by an angular momentum. For a weak distortion of a skyrmion, only the magnon modes with an angular momentum | m | = 1 govern the dynamics of skyrmion topological center. We also determine that the skyrmion inertia comes by way of the magnon modes in the continuum spectrum. For a skyrmion driven by a magnetic field gradient or by a spin transfer torque generated by a current, themore » dynamical response is practically instantaneous. This justifies the rigid skyrmion approximation used in Thiele's collective coordinate approach. For a skyrmion driven by a spin Hall torque, the torque couples to the skyrmion motion through the magnons in the continuum and damping; therefore the skyrmion dynamics shows sizable inertia in this case. The trajectory of a skyrmion is an ellipse for an ac drive of spin Hall torque.« less

  7. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.

    PubMed

    Olenšek, Andrej; Zadravec, Matjaž; Matjačić, Zlatko

    2016-06-11

    The most common approach to studying dynamic balance during walking is by applying perturbations. Previous studies that investigated dynamic balance responses predominantly focused on applying perturbations in frontal plane while walking on treadmill. The goal of our work was to develop balance assessment robot (BAR) that can be used during overground walking and to assess normative balance responses to perturbations in transversal plane in a group of neurologically healthy individuals. BAR provides three passive degrees of freedom (DoF) and three actuated DoF in pelvis that are admittance-controlled in such a way that the natural movement of pelvis is not significantly affected. In this study BAR was used to assess normative balance responses in neurologically healthy individuals by applying linear perturbations in frontal and sagittal planes and angular perturbations in transversal plane of pelvis. One way repeated measure ANOVA was used to statistically evaluate the effect of selected perturbations on stepping responses. Standard deviations of assessed responses were similar in unperturbed and perturbed walking. Perturbations in frontal direction evoked substantial pelvis displacement and caused statistically significant effect on step length, step width and step time. Likewise, perturbations in sagittal plane also caused statistically significant effect on step length, step width and step time but with less explicit impact on pelvis movement in frontal plane. On the other hand, except from substantial pelvis rotation angular perturbations did not have substantial effect on pelvis movement in frontal and sagittal planes while statistically significant effect was noted only in step length and step width after perturbation in clockwise direction. Results indicate that the proposed device can repeatedly reproduce similar experimental conditions. Results also suggest that "stepping strategy" is the dominant strategy for coping with perturbations in frontal plane, perturbations in sagittal plane are to greater extent handled by "ankle strategy" while angular perturbations in transversal plane do not pose substantial challenge for balance. Results also show that specific perturbation in general elicits responses that extend also to other planes of movement that are not directly associated with plane of perturbation as well as to spatio temporal parameters of gait.

  8. Characterisation of dynamic couplings at lower limb residuum/socket interface using 3D motion capture.

    PubMed

    Tang, Jinghua; McGrath, Michael; Laszczak, Piotr; Jiang, Liudi; Bader, Dan L; Moser, David; Zahedi, Saeed

    2015-12-01

    Design and fitting of artificial limbs to lower limb amputees are largely based on the subjective judgement of the prosthetist. Understanding the science of three-dimensional (3D) dynamic coupling at the residuum/socket interface could potentially aid the design and fitting of the socket. A new method has been developed to characterise the 3D dynamic coupling at the residuum/socket interface using 3D motion capture based on a single case study of a trans-femoral amputee. The new model incorporated a Virtual Residuum Segment (VRS) and a Socket Segment (SS) which combined to form the residuum/socket interface. Angular and axial couplings between the two segments were subsequently determined. Results indicated a non-rigid angular coupling in excess of 10° in the quasi-sagittal plane and an axial coupling of between 21 and 35 mm. The corresponding angular couplings of less than 4° and 2° were estimated in the quasi-coronal and quasi-transverse plane, respectively. We propose that the combined experimental and analytical approach adopted in this case study could aid the iterative socket fitting process and could potentially lead to a new socket design. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Dynamics of optically levitated microparticles in vacuum placed in 2D and 3D optical potentials possessing orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Mazilu, Michael; Chen, Mingzhou; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2017-04-01

    We demonstrate the transfer of orbital angular momentum to optically levitated microparticles in vacuum [1]. We prepare two-dimensional and three-dimensional optical potentials. In the former case the microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present. This effect was predicted theoretically [2] and can be understood considering the underlying dynamics arising from the link between the magnitude of the azimuthal index and the beam radius [3]. Whilst a Laguerre-Gaussian beam scales in size with azimuthal index `, recently we have created a "perfect" vortex beam whose radial intensity profile and radius are both independent of topological charge [4, 5]. As the Fourier transform of a perfect vortex yields a Bessel beam. Imaging a perfect vortex, with its subsequent propagation thus realises a complex three dimensional optical field. In this scenario we load individual silica microparticles into this field and observe their trajectories. The optical gradient and scattering forces interplay with the inertial and gravitational forces acting on the trapped particle, including the rotational degrees of freedom. As a result the trapped microparticle exhibits a complex three dimensional motion that includes a periodic orbital motion between the Bessel and the perfect vortex beam. We are able to determine the three dimensional optical potential in situ by tracking the particle. This first demonstration of trapping microparticles within a complex three dimensional optical potential in vacuum opens up new possibilities for fundamental studies of many-body dynamics, mesoscopic entanglement [6, 7], and optical binding [8, 9].

  10. An integrated control scheme for space robot after capturing non-cooperative target

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2018-06-01

    How to identify the mass properties and eliminate the unknown angular momentum of space robotic system after capturing a non-cooperative target is of great challenge. This paper focuses on designing an integrated control framework which includes detumbling strategy, coordination control and parameter identification. Firstly, inverted and forward chain approaches are synthesized for space robot to obtain dynamic equation in operational space. Secondly, a detumbling strategy is introduced using elementary functions with normalized time, while the imposed end-effector constraints are considered. Next, a coordination control scheme for stabilizing both base and end-effector based on impedance control is implemented with the target's parameter uncertainty. With the measurements of the forces and torques exerted on the target, its mass properties are estimated during the detumbling process accordingly. Simulation results are presented using a 7 degree-of-freedom kinematically redundant space manipulator, which verifies the performance and effectiveness of the proposed method.

  11. On rotational dynamics of an NH4+ ion in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Tsun-Mei; Dang, Liem X.

    2003-05-15

    We used molecular dynamics simulations to characterize the rotational dynamics of the NH4+ ion in liquid water. The polarizable potential models were to describe the ion-water and water-water interactions. This study complements the work of Karim and Haymet (J. Chem. Phys., 93, 5961, 1990), who employed effective pir potential models. The computed rotational diffusion coefficients of the NH4+ ion in water, which were determined from the angular momentum autocorrelation function and the angular mean-square displacement, are 0.093 x 1012 rad2/s and 0.067 x 1012 rad2/s, repectively. These results are in good agreement with the 0.075 x 1012 rad2/s value determinedmore » from the nuclear magnetic resonance (NMR) spectroscopy studies of Perrin and Gipe (J. Am. Chem. Soc., 108, 1088, 1986; Science, 238, 1393, 1987).« less

  12. A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock

    NASA Technical Reports Server (NTRS)

    Quast, Thomas; Nelson, Robert C.; Fisher, David F.

    1991-01-01

    Free-to-roll experiments and flow visualization studies have been conducted for a 2.5-percent model of the F-18 undergoing unsteady wing rock oscillations. Data have been acquired in the form of roll angle time histories as well as video recordings and 35 mm photography of the forebody and leading edge extension vortices. The time histories were differentiated to produce angular velocity and angular acceleration. From this the roll moment as a function of time and/or roll angle could be estimated. A thorough analysis of the data has revealed a genuine wing-rock phenomenon. Off-surface flow visualization was used to identiify the forebody and LEX vortex core positions and their interaction in both static and dynamic configurations. A direct correlation between the dynamic data and visualized vortex activity during the wing-rock motion has been made.

  13. Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned

    NASA Technical Reports Server (NTRS)

    Heck, M. L.; Findlay, J. T.; Compton, H. R.

    1983-01-01

    The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.

  14. A general model for preload calculation and stiffness analysis for combined angular contact ball bearings

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhua; Fang, Bin; Hong, Jun; Wan, Shaoke; Zhu, Yongsheng

    2017-12-01

    The combined angular contact ball bearings are widely used in automatic, aerospace and machine tools, but few researches on the combined angular contact ball bearings have been reported. It is shown that the preload and stiffness of combined bearings are mutual influenced rather than simply the superposition of multiple single bearing, therefore the characteristic calculation of combined bearings achieved by coupling the load and deformation analysis of a single bearing. In this paper, based on the Jones quasi-static model and stiffness analytical model, a new iterative algorithm and model are proposed for the calculation of combined bearings preload and stiffness, and the dynamic effects include centrifugal force and gyroscopic moment have to be considered. It is demonstrated that the new method has general applicability, the preload factors of combined bearings are calculated according to the different design preloads, and the static and dynamic stiffness for various arrangements of combined bearings are comparatively studied and analyzed, and the influences of the design preload magnitude, axial load and rotating speed are discussed in detail. Besides, the change rule of dynamic contact angles of combined bearings with respect to the rotating speed is also discussed. The results show that bearing arrangement modes, rotating speed and design preload magnitude have a significant influence on the preload and stiffness of combined bearings. The proposed formulation provides a useful tool in dynamic analysis of the complex bearing-rotor system.

  15. Disentangling the Dynamical Mechanisms for Cluster Galaxy Evolution

    DTIC Science & Technology

    2008-02-01

    reversible energy and angular momentum exchange between the density wave and the disk matter and the outward transport of these exchanged energy and angular...elapsed time for a smaller z as well. Yet the argument should hold no matter what observation epoch one uses, as long as one concentrates to the regions... matter (CDM) paradigm, galaxy mergers are the preferred means of morphological evolution of galaxies in clusters (see, e.g., Kauffmann 1995). Even though

  16. Precise predictions for the angular coefficients in Z-boson production at the LHC

    NASA Astrophysics Data System (ADS)

    Gauld, R.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2017-11-01

    The angular distributions of lepton pairs in the Drell-Yan process can provide rich information on the underlying QCD production mechanisms. These dynamics can be parameterised in terms of a set of frame dependent angular coefficients, A i=0,…,7, which depend on the invariant mass, transverse momentum, and rapidity of the lepton pair. Motivated by recent measurements of these coefficients by ATLAS and CMS, and in particular by the apparent violation of the Lam-Tung relation A 0 - A 2 = 0, we perform a precision study of the angular coefficients at O({α}s^3) in perturbative QCD. We make predic-tions relevant for pp collisions at √{s}=8 TeV, and perform comparisons with the available ATLAS and CMS data as well as providing predictions for a prospective measurement at LHCb. To expose the violation of the Lam-Tung relationship we propose a new observable ΔLT = 1 - A 2 /A 0 that is more sensitive to the dynamics in the region where A 0 and A 2 are both small. We find that the O({α}s^3) corrections have an important impact on the p T,Z distributions for several of the angular coefficients, and are essential to provide an adequate description of the data. The compatibility of the available ATLAS and CMS data is reassessed by performing a partial χ 2 test with respect to the central theoretical prediction which shows that χ 2 /N data is significantly reduced by going from O({α}s^2) to O({α}s^3).

  17. Tail function during arboreal quadrupedalism in squirrel monkeys (Saimiri boliviensis) and tamarins (Saguinus oedipus).

    PubMed

    Young, Jesse W; Russo, Gabrielle A; Fellmann, Connie D; Thatikunta, Meena A; Chadwell, Brad A

    2015-10-01

    The need to maintain stability on narrow branches is often presented as a major selective force shaping primate morphology, with adaptations to facilitate grasping receiving particular attention. The functional importance of a long and mobile tail for maintaining arboreal stability has been comparatively understudied. Tails can facilitate arboreal balance by acting as either static counterbalances or dynamic inertial appendages able to modulate whole-body angular momentum. We investigate associations between tail use and inferred grasping ability in two closely related cebid platyrrhines-cotton-top tamarins (Saguinus oedipus) and black-capped squirrel monkeys (Saimiri boliviensis). Using high-speed videography of captive monkeys moving on 3.2 cm diameter poles, we specifically test the hypothesis that squirrel monkeys (characterized by grasping extremities with long digits) will be less dependent on the tail for balance than tamarins (characterized by claw-like nails, short digits, and a reduced hallux). Tamarins have relatively longer tails than squirrel monkeys, move their tails through greater angular amplitudes, at higher angular velocities, and with greater angular accelerations, suggesting dynamic use of tail to regulate whole-body angular momentum. By contrast, squirrel monkeys generally hold their tails in a comparatively stationary posture and at more depressed angles, suggesting a static counterbalancing mechanism. This study, the first empirical test of functional tradeoffs between grasping ability and tail use in arboreal primates, suggests a critical role for the tail in maintaining stability during arboreal quadrupedalism. Our findings have the potential to inform our functional understanding of tail loss during primate evolution. © 2015 Wiley Periodicals, Inc.

  18. Laboratory investigation of a fluid-dynamic actuator designed for CubeSats

    NASA Astrophysics Data System (ADS)

    Noack, Daniel; Brieß, Klaus

    2014-03-01

    In general, the attitude control systems (ACS) for precise spacecraft operations rely on reaction wheel technology for angular momentum exchange. In this paper, an alternative ACS concept using fluid rings for this task is presented. This novel actuator—based on Lorentz body force—uses a direct-current conduction pump to accelerate liquid metal within a circular channel structure. As working fluid for the fluid-dynamic actuator (FDA) serves the eutectic alloy Galinstan. Along with a microcontroller that runs the FDA, a MEMS gyroscope is implemented on the device for closed loop operation. Several models of FDAs for small satellites were tested successfully for various attitude control maneuvers on an air bearing platform. Thus advantageous performance has been achieved in terms of torque and power consumption in comparison to similarly dimensioned reaction wheels. Further considerable advantages are wear-free operations and higher reliability as well as expected passive damping properties. A next generation FDA prototype for nano-satellites is currently in development for in-orbit testing.

  19. Pilot study: Investigating the effects of Kinesio Taping® on functional activities in children with cerebral palsy.

    PubMed

    da Costa, Carolina Souza Neves; Rodrigues, Fernanda Simioni; Leal, Fernanda Mustafe; Rocha, Nelci Adriana Cicuto Ferreira

    2013-01-01

    To investigate the immediate effects of Kinesio Taping® (KT) on sit-to-stand (STS) movement, balance and dynamic postural control in children with cerebral palsy (CP). Four children diagnosed with left hemiplegic CP level I by the Gross Motor Function Classification System were evaluated under conditions without taping as control condition (CC); and with KT as kinesio condition. A motion analysis system was used to measure total duration of STS movement and angular movements of each joint. Clinical instruments such as Pediatric Balance Scale (PBS) and Timed up and Go (TUG) were also applied. Compared to CC, decreased total duration of STS, lower peak ankle flexion, higher knee extension at the end of STS, and decreased total time in TUG; but no differences were obtained on PBS score in KT. Neuromuscular taping seems to be beneficial on dynamic activities, but not have the same performance in predominantly static activities studied.

  20. Formation tracker design of multiple mobile robots with wheel perturbations: adaptive output-feedback approach

    NASA Astrophysics Data System (ADS)

    Yoo, Sung Jin

    2016-11-01

    This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.

  1. A hybrid system for upper limb movement restoration in quadriplegics.

    PubMed

    Varoto, Renato; Barbarini, Elisa Signoreto; Cliquet, Alberto

    2008-09-01

    Generally, quadriplegic individuals have difficulties performing object manipulation. Toward satisfactory manipulation, reach and grasp movements must be performed with voluntary control, and for that, grasp force feedback is essential. A hybrid system aiming at partial upper limb sensory-motor restoration for quadriplegics was built. Such device is composed of an elbow dynamic orthosis that provides elbow flexion/extension (range was approximately from 20 degrees to 120 degrees , and average angular speed was approximately 15 degrees /s) with forearm support, a wrist static orthosis and neuromuscular electrical stimulation for grasping generation, and a glove with force sensors that allows grasping force feedback. The glove presents two user interface modes: visual by light emitting diodes or audio emitted by buzzer. Voice control of the entire system (elbow dynamic orthosis and electrical stimulator) is performed by the patient. The movements provided by the hybrid system, combined with the scapular and shoulder movements performed by the patient, can aid quadriplegic individuals in tasks that involve reach and grasp movements.

  2. Dynamic metasurface lens based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Roy, Tapashree; Zhang, Shuyan; Jung, Il Woong; Troccoli, Mariano; Capasso, Federico; Lopez, Daniel

    2018-02-01

    In the recent years, metasurfaces, being flat and lightweight, have been designed to replace bulky optical components with various functions. We demonstrate a monolithic Micro-Electro-Mechanical System (MEMS) integrated with a metasurface-based flat lens that focuses light in the mid-infrared spectrum. A two-dimensional scanning MEMS platform controls the angle of the lens along two orthogonal axes by ±9°, thus enabling dynamic beam steering. The device could be used to compensate for off-axis incident light and thus correct for aberrations such as coma. We show that for low angular displacements, the integrated lens-on-MEMS system does not affect the mechanical performance of the MEMS actuators and preserves the focused beam profile as well as the measured full width at half maximum. We envision a new class of flat optical devices with active control provided by the combination of metasurfaces and MEMS for a wide range of applications, such as miniaturized MEMS-based microscope systems, LIDAR scanners, and projection systems.

  3. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    PubMed Central

    Nakagawa, Hideki; Nishida, Yuuya

    2012-01-01

    Summary In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r2 = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r2 = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning. PMID:23213389

  4. Generation and dynamics of optical beams with polarization singularities.

    PubMed

    Cardano, Filippo; Karimi, Ebrahim; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico

    2013-04-08

    We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as "lemon", "star", and "spiral". Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

  5. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System.

    PubMed

    Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang

    2018-05-04

    The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.

  6. Low-dimensional organization of angular momentum during walking on a narrow beam.

    PubMed

    Chiovetto, Enrico; Huber, Meghan E; Sternad, Dagmar; Giese, Martin A

    2018-01-08

    Walking on a beam is a challenging motor skill that requires the regulation of upright balance and stability. The difficulty in beam walking results from the reduced base of support compared to that afforded by flat ground. One strategy to maintain stability and hence avoid falling off the beam is to rotate the limb segments to control the body's angular momentum. The aim of this study was to examine the coordination of the angular momentum variations during beam walking. We recorded movement kinematics of participants walking on a narrow beam and computed the angular momentum contributions of the body segments with respect to three different axes. Results showed that, despite considerable variability in the movement kinematics, the angular momentum was characterized by a low-dimensional organization based on a small number of segmental coordination patterns. When the angular momentum was computed with respect to the beam axis, the largest fraction of its variation was accounted for by the trunk segment. This simple organization was robust and invariant across all participants. These findings support the hypothesis that control strategies for complex balancing tasks might be easier to understand by investigating angular momentum instead of the segmental kinematics.

  7. Quantification of structural changes in acute inflammation by fractal dimension, angular second moment and correlation.

    PubMed

    Stankovic, Marija; Pantic, Igor; De Luka, Silvio R; Puskas, Nela; Zaletel, Ivan; Milutinovic-Smiljanic, Sanja; Pantic, Senka; Trbovich, Alexander M

    2016-03-01

    The aim of the study was to examine alteration and possible application of fractal dimension, angular second moment, and correlation for quantification of structural changes in acutely inflamed tissue. Acute inflammation was induced by injection of turpentine oil into the right and left hind limb muscles of mice, whereas control animals received intramuscular saline injection. After 12 h, animals were anesthetised and treated muscles collected. The tissue was stained by hematoxylin and eosin, digital micrographs produced, enabling determination of fractal dimension of the cells, angular second moment and correlation of studied tissue. Histopathological analysis showed presence of inflammatory infiltrate and tissue damage in inflammatory group, whereas tissue structure in control group was preserved, devoid of inflammatory infiltrate. Fractal dimension of the cells, angular second moment and correlation of treated tissue in inflammatory group decreased in comparison to the control group. In this study, we were first to observe and report that fractal dimension of the cells, angular second moment, and correlation were reduced in acutely inflamed tissue, indicating loss of overall complexity of the cells in the tissue, the tissue uniformity and structure regularity. Fractal dimension, angular second moment and correlation could be useful methods for quantification of structural changes in acute inflammation. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. Canonical angular momentum compression near the Brillouin limit

    NASA Astrophysics Data System (ADS)

    Jeong, E.; Gilson, E.; Fajans, J.

    2000-10-01

    Near the Brillouin limit, the angular momentum of a trapped, T=0, pure-electron plasma approaches zero. If the plasma expands axially, its density would appear to drop. However, the plasma's canonical angular momentum is not changed by an axial expansion, so the plasma must stay near the Brillouin limit; thus the plasma's density cannot change when it is expanded. The only way for the plasma density to remain constant as the plasma length increases is for the plasma radius to decrease. Dynamically, this decrease is caused by the polarization drift induced by a small decrease in the density. In this poster we present preliminary experimental evidence demonstrating this radial compression. This work was supported by the ONR.

  9. Angular velocity estimation from measurement vectors of star tracker.

    PubMed

    Liu, Hai-bo; Yang, Jun-cai; Yi, Wen-jun; Wang, Jiong-qi; Yang, Jian-kun; Li, Xiu-jian; Tan, Ji-chun

    2012-06-01

    In most spacecraft, there is a need to know the craft's angular rate. Approaches with least squares and an adaptive Kalman filter are proposed for estimating the angular rate directly from the star tracker measurements. In these approaches, only knowledge of the vector measurements and sampling interval is required. The designed adaptive Kalman filter can filter out noise without information of the dynamic model and inertia dyadic. To verify the proposed estimation approaches, simulations based on the orbit data of the challenging minisatellite payload (CHAMP) satellite and experimental tests with night-sky observation are performed. Both the simulations and experimental testing results have demonstrated that the proposed approach performs well in terms of accuracy, robustness, and performance.

  10. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge.

    PubMed

    Murray, Matthew J; Ogden, Hannah M; Mullin, Amy S

    2017-10-21

    An optical centrifuge is used to generate an ensemble of CO 2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  11. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2017-10-01

    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  12. On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitória, R.L.L.; Furtado, C., E-mail: furtado@fisica.ufpb.br; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    2016-07-15

    The relativistic quantum dynamics of an electrically charged particle subject to the Klein–Gordon oscillator and the Coulomb potential is investigated. By searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system. The meaning of this behaviour of the angular frequency is that only some specific values of the angular frequency of the Klein–Gordon oscillator are permitted in order to obtain bound state solutions. As an example, we obtain both the angular frequency and the energy level associated with the ground statemore » of the relativistic system. Further, we analyse the behaviour of a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential.« less

  13. Measurement of $$B\\bar{B}$$ Angular Correlations based on Secondary Vertex Reconstruction at $$\\sqrt{s}=7$$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan; et al.

    2011-03-01

    A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizablemore » fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.« less

  14. A parametric study of the behavior of the angular momentum vector during spin rate changes of rigid body spacecraft

    NASA Technical Reports Server (NTRS)

    Longuski, J. M.

    1982-01-01

    During a spin-up or spin-down maneuver of a spinning spacecraft, it is usual to have not only a constant body-fixed torque about the desired spin axis, but also small undesired constant torques about the transverse axes. This causes the orientation of the angular momentum vector to change in inertial space. Since an analytic solution is available for the angular momentum vector as a function of time, this behavior can be studied for large variations of the dynamic parameters, such as the initial spin rate, the inertial properties and the torques. As an example, the spin-up and spin-down maneuvers of the Galileo spacecraft was studied and as a result, very simple heuristic solutions were discovered which provide very good approximations to the parametric behavior of the angular momentum vector orientation.

  15. Angular dependence of spin-orbit spin-transfer torques

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurélien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-04-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  16. Rotating Hele-Shaw cell with a time-dependent angular velocity

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.

    2017-12-01

    Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.

  17. Creating fractional quantum Hall states with atomic clusters using light-assisted insertion of angular momentum

    NASA Astrophysics Data System (ADS)

    Zhang, Junyi; Beugnon, Jerome; Nascimbene, Sylvain

    We describe a protocol to prepare clusters of ultracold bosonic atoms in strongly interacting states reminiscent of fractional quantum Hall states. Our scheme consists in injecting a controlled amount of angular momentum to an atomic gas using Raman transitions carrying orbital angular momentum. By injecting one unit of angular momentum per atom, one realizes a single-vortex state, which is well described by mean-field theory for large enough particle numbers. We also present schemes to realize fractional quantum Hall states, namely, the bosonic Laughlin and Moore-Read states. We investigate the requirements for adiabatic nucleation of such topological states, in particular comparing linear Landau-Zener ramps and arbitrary ramps obtained from optimized control methods. We also show that this protocol requires excellent control over the isotropic character of the trapping potential. ERC-Synergy Grant UQUAM, ANR-10-IDEX-0001-02, DIM NanoK Atocirc project.

  18. Acceleration and torque feedback for robotic control - Experimental results

    NASA Technical Reports Server (NTRS)

    Mclnroy, John E.; Saridis, George N.

    1990-01-01

    Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.

  19. Rigging dark haloes: why is hierarchical galaxy formation consistent with the inside-out build-up of thin discs?

    NASA Astrophysics Data System (ADS)

    Pichon, C.; Pogosyan, D.; Kimm, T.; Slyz, A.; Devriendt, J.; Dubois, Y.

    2011-12-01

    State-of-the-art hydrodynamical simulations show that gas inflow through the virial sphere of dark matter haloes is focused (i.e. has a preferred inflow direction), consistent (i.e. its orientation is steady in time) and amplified (i.e. the amplitude of its advected specific angular momentum increases with time). We explain this to be a consequence of the dynamics of the cosmic web within the neighbourhood of the halo, which produces steady, angular momentum rich, filamentary inflow of cold gas. On large scales, the dynamics within neighbouring patches drives matter out of the surrounding voids, into walls and filaments before it finally gets accreted on to virialized dark matter haloes. As these walls/filaments constitute the boundaries of asymmetric voids, they acquire a net transverse motion, which explains the angular momentum rich nature of the later infall which comes from further away. We conjecture that this large-scale driven consistency explains why cold flows are so efficient at building up high-redshift thin discs inside out.

  20. Vortex Dynamics around Pitching Plates

    DTIC Science & Technology

    2014-04-29

    electrical signals are A/D converted in an ATI NetBox interface and recorded using a Java application, and are filtered in three steps. The first is a low...the plate while staying attached to the corners of the leading edge. During this process, a second vortex loop, created by the quick angular ...is a spike in CL centered around t = 0 due to non-circulatory6 effects from the angular acceleration of the wing. The amplitude of the peak is

  1. Optical Reflectance Measurements for Commonly Used Reflectors

    NASA Astrophysics Data System (ADS)

    Janecek, Martin; Moses, William W.

    2008-08-01

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.

  2. Dynamics of dissociative electron attachment to ammonia

    DOE PAGES

    Rescigno, T. N.; Trevisan, C. S.; Orel, A. E.; ...

    2016-05-12

    We present that ab initio theoretical studies and momentum-imaging experiments are combined to provide a consistent picture of the dynamics of dissociative electron attachment to ammonia through its 5.5- and 10.5-eV resonance channels. The present study clarifies the character and symmetry of the anion states involved and the dynamics that leads to the observed fragment-ion channels, their branching ratios, and angular distributions.

  3. Dynamics of dissociative electron attachment to ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rescigno, T. N.; Trevisan, C. S.; Orel, A. E.

    We present that ab initio theoretical studies and momentum-imaging experiments are combined to provide a consistent picture of the dynamics of dissociative electron attachment to ammonia through its 5.5- and 10.5-eV resonance channels. The present study clarifies the character and symmetry of the anion states involved and the dynamics that leads to the observed fragment-ion channels, their branching ratios, and angular distributions.

  4. A Homing Missile Control System to Reduce the Effects of Radome Diffraction

    NASA Technical Reports Server (NTRS)

    Smith, Gerald L.

    1960-01-01

    The problem of radome diffraction in radar-controlled homing missiles at high speeds and high altitudes is considered from the point of view of developing a control system configuration which will alleviate the deleterious effects of the diffraction. It is shown that radome diffraction is in essence a kinematic feedback of body angular velocities which causes the radar to sense large apparent line-of-sight angular velocities. The normal control system cannot distinguish between the erroneous and actual line-of-sight rates, and entirely wrong maneuvers are produced which result in large miss distances. The problem is resolved by adding to the control system a special-purpose computer which utilizes measured body angular velocity to extract from the radar output true line-of-sight information for use in steering the missile. The computer operates on the principle of sampling and storing the radar output at instants when the body angular velocity is low and using this stored information for maneuvering commands. In addition, when the angular velocity is not low the computer determines a radome diffraction compensation which is subtracted from the radar output to reduce the error in the sampled information. Analog simulation results for the proposed control system operating in a coplanar (vertical plane) attack indicate a potential decrease in miss distance to an order of magnitude below that for a conventional system. Effects of glint noise, random target maneuvers, initial heading errors, and missile maneuverability are considered in the investigation.

  5. Study of the mode of angular velocity damping for a spacecraft at non-standard situation

    NASA Astrophysics Data System (ADS)

    Davydov, A. A.; Sazonov, V. V.

    2012-07-01

    Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.

  6. Tiger beetles pursue prey using a proportional control law with a delay of one half-stride.

    PubMed

    Haselsteiner, Andreas F; Gilbert, Cole; Wang, Z Jane

    2014-06-06

    Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s(-1), is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier.

  7. Quark orbital dynamics in the proton from lattice QCD: From Ji to Jaffe-Manohar orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Engelhardt, M.

    2017-05-01

    Given a Wigner distribution simultaneously characterizing quark transverse positions and momenta in a proton, one can directly evaluate their cross product, i.e., quark orbital angular momentum. The aforementioned distribution can be obtained by generalizing the proton matrix elements of quark bilocal operators which define transverse momentum-dependent parton distributions (TMDs); the transverse momentum information is supplemented with transverse position information by introducing an additional nonzero momentum transfer. A gauge connection between the quarks must be specified in the quark bilocal operators; the staple-shaped gauge link path used in TMD calculations yields the Jaffe-Manohar definition of orbital angular momentum, whereas a straight path yields the Ji definition. An exploratory lattice calculation, performed at the pion mass mπ=518 MeV , is presented which quasicontinuously interpolates between the two definitions and demonstrates that their difference can be clearly resolved. The resulting Ji orbital angular momentum is confronted with traditional evaluations based on Ji's sum rule. Jaffe-Manohar orbital angular momentum is enhanced in magnitude compared to its Ji counterpart.

  8. Light controlled 3D micromotors powered by bacteria

    NASA Astrophysics Data System (ADS)

    Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; di Leonardo, Roberto

    2017-06-01

    Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed.

  9. Light controlled 3D micromotors powered by bacteria

    PubMed Central

    Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; Di Leonardo, Roberto

    2017-01-01

    Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed. PMID:28656975

  10. Design and Analysis of an Axisymmetric Phased Array Fed Gregorian Reflector System for Limited Scanning

    DTIC Science & Technology

    2016-01-22

    applications. For space applications, attitude control systems can provide good angular control of the antenna aperture with small residual angular...Bilyeu, and G.R. Veal, Development of Flight Hardware for a Large Inflatable- Deployable Antenna Experiment , Acta Astronautica, Vol. 38, Nos. 4-8

  11. Design and simulation of a cable-pulley-based transmission for artificial ankle joints

    NASA Astrophysics Data System (ADS)

    Liu, Huaxin; Ceccarelli, Marco; Huang, Qiang

    2016-06-01

    In this paper, a mechanical transmission based on cable pulley is proposed for human-like actuation in the artificial ankle joints of human-scale. The anatomy articular characteristics of the human ankle is discussed for proper biomimetic inspiration in designing an accurate, efficient, and robust motion control of artificial ankle joint devices. The design procedure is presented through the inclusion of conceptual considerations and design details for an interactive solution of the transmission system. A mechanical design is elaborated for the ankle joint angular with pitch motion. A multi-body dynamic simulation model is elaborated accordingly and evaluated numerically in the ADAMS environment. Results of the numerical simulations are discussed to evaluate the dynamic performance of the proposed design solution and to investigate the feasibility of the proposed design in future applications for humanoid robots.

  12. Novel method to form adaptive internal impedance profiles in walkers.

    PubMed

    Escudero Morland, Maximilano F; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2015-01-01

    This paper proposes a novel approach to improve walking in prosthetics, orthotics and robotics without closed loop controllers. The approach requires impedance profiles to be formed in a walker and uses state feedback to update the profiles in real-time via a simple policy. This approach is open loop and inherently copes with the challenge of uncertain environment. In application it could be used either online for a walker to adjust its impedance profiles in real-time to compensate for environmental changes, or offline to learn suitable profiles for specific environments. So far we have conducted simulations and experiments to investigate the transient and steady state gaits obtained using two simple update policies to form damping profiles in a passive dynamic walker known as the rimless wheel (RW). The damping profiles are formed in the motor that moves the RW vertically along a rail, analogous to a knee joint, and the two update equations were designed to a) control the angular velocity profile and b) minimise peak collision forces. Simulation results show that the velocity update equation works within limits and can cope with varying ground conditions. Experiment results show the angular velocity average reaching the target as well as the peak force update equation reducing peak collision forces in real-time.

  13. Feedback control of flow vorticity at low Reynolds numbers.

    PubMed

    Zeitz, Maria; Gurevich, Pavel; Stark, Holger

    2015-03-01

    Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.

  14. A simple orbit-attitude coupled modelling method for large solar power satellites

    NASA Astrophysics Data System (ADS)

    Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi

    2018-04-01

    A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.

  15. Static vs. Dynamic Acute Stretching Effect on Quadriceps Muscle Activity during Soccer Instep Kicking

    PubMed Central

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2013-01-01

    The purpose of this study was to compare the effects of static and dynamic stretching on quadriceps muscle activation during maximal soccer instep kicking. The kicking motion of twelve male college soccer players (body height: 174.66 ± 5.01 cm; body mass: 72.83 ± 4.83 kg; age: 18.83 ± 0.75 years) was captured using six synchronized high-speed infra-red cameras whilst electromyography (EMG) signals from vastus medialis (VM), lateralis (VL) and rectus femoris (RF) were recorded before and after static or dynamic stretching. Analysis of variance designs showed a higher increase in knee extension angular velocity (9.65% vs. −1.45%, p < 0.001), RF (37.5% vs. −8.33%, p < 0.001), VM (12% vs. −12%, p < 0.018), and VL EMG activity (20% vs. −6.67%, p < 0.001) after dynamic stretching exercises. Based on these results, it could be suggested that dynamic stretching is probably more effective in increasing quadriceps muscle activity and knee extension angular velocity during the final swing phase of a maximal soccer instep kick than static stretching. PMID:24511339

  16. Slump sitting X-ray of the lumbar spine is superior to the conventional flexion view in assessing lumbar spine instability.

    PubMed

    Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Lim, Joel-Louis; Choong, Denise Ai-Wen; Tan, Chuen-Seng; Liu, Gabriel Ka-Po; Wong, Hee-Kit

    2017-03-01

    Flexion radiographs have been used to identify cases of spinal instability. However, current methods are not standardized and are not sufficiently sensitive or specific to identify instability. This study aimed to introduce a new slump sitting method for performing lumbar spine flexion radiographs and comparison of the angular range of motions (ROMs) and displacements between the conventional method and this new method. This study used is a prospective study on radiological evaluation of the lumbar spine flexion ROMs and displacements using dynamic radiographs. Sixty patients were recruited from a single spine tertiary center. Angular and displacement measurements of lumbar spine flexion were carried out. Participants were randomly allocated into two groups: those who did the new method first, followed by the conventional method versus those who did the conventional method first, followed by the new method. A comparison of the angular and displacement measurements of lumbar spine flexion between the conventional method and the new method was performed and tested for superiority and non-inferiority. The measurements of global lumbar angular ROM were, on average, 17.3° larger (p<.0001) using the new slump sitting method compared with the conventional method. They were most significant at the levels of L3-L4, L4-L5, and L5-S1 (p<.0001, p<.0001 and p=.001, respectively). There was no significant difference between both methods when measuring lumbar displacements (p=.814). The new method of slump sitting dynamic radiograph was shown to be superior to the conventional method in measuring the angular ROM and non-inferior to the conventional method in the measurement of displacement. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Asada, Keiichi; Akiyama, Kazunori

    A radiatively inefficient accretion flow (RIAF), which is commonly characterized by its sub-Keplerian nature, is a favored accretion model for the supermassive black hole at the Galactic center, Sagittarius A*. To investigate the observable features of an RIAF, we compare the modeled shadow images, visibilities, and spectra of three flow models with dynamics characterized by (i) a Keplerian shell that is rigidly rotating outside the innermost stable circular orbit (ISCO) and infalling with a constant angular momentum inside ISCO, (ii) a sub-Keplerian motion, and (iii) a free-falling motion with zero angular momentum at infinity. At near-millimeter wavelengths, the emission ismore » dominated by the flow within several Schwarzschild radii. The energy shift due to these flow dynamics becomes important and distinguishable, suggesting that the flow dynamics are an important model parameter for interpreting the millimeter/sub-millimeter very long baseline interferometric observations with the forthcoming, fully assembled Event Horizon Telescope (EHT). As an example, we demonstrate that structural variations of Sagittarius A* on event horizon-scales detected in previous EHT observations can be explained by the non-stationary dynamics of an RIAF.« less

  18. Magnetic resonance imaging volume of the angular gyri predicts financial skill deficits in people with amnestic mild cognitive impairment.

    PubMed

    Griffith, H Randall; Stewart, Christopher C; Stoeckel, Luke E; Okonkwo, Ozioma C; den Hollander, Jan A; Martin, Roy C; Belue, Katherine; Copeland, Jacquelynn N; Harrell, Lindy E; Brockington, John C; Clark, David G; Marson, Daniel C

    2010-02-01

    To better understand how brain atrophy in amnestic mild cognitive impairment (MCI) as measured using magnetic resonance imaging (MRI) volumetrics could affect instrumental activities of daily living (IADLs) such as financial abilities. Controlled, matched-sample, cross-sectional analysis regressing MRI volumetrics with financial performance measures. University medical and research center. Thirty-eight people with MCI and 28 older adult controls. MRI volumetric measurement of the hippocampi, angular gyri, precunei, and medial frontal lobes. Participants also completed neuropsychological tests and the Financial Capacity Instrument (FCI). Correlations were performed between FCI scores and MRI volumes in the group with MCI. People with MCI performed significantly below controls on the FCI and had significantly smaller hippocampi. Among people with MCI, performance on the FCI was moderately correlated with angular gyri and precunei volumes. Regression models demonstrated that angular gyrus volumes were predictive of FCI scores. Tests of mediation showed that measures of arithmetic and possibly attention partially mediated the relationship between angular gyrus volume and FCI score. Impaired financial abilities in amnestic MCI correspond with volume of the angular gyri as mediated by arithmetic knowledge. The findings suggest that early neuropathology within the lateral parietal region in MCI leads to a breakdown of cognitive abilities that affect everyday financial skills. The findings have implications for diagnosis and clinical care of people with MCI and AD.

  19. Dynamic behaviour analysis of an energy accumulation system comprising a composite flywheel

    NASA Astrophysics Data System (ADS)

    Portnov, G. G.; Kulakov, V. L.; Barinov, I. N.

    1994-01-01

    A simple system for energy accumulation comprising a rim and a massive shaft with elastic couplings was considered; the shaft runs in elastic damping bearings. Forced vibrations of the flywheel system induced by linear and angular eccentricities of composite rim were investigated. The effect of variation of different parameters of the system (stiffness of bearings, viscous friction coefficients of bearings, mass and moment of inertia of the shaft) on damping of radial and angular forced vibrations has been estimated.

  20. Area-angular-momentum inequality for axisymmetric black holes.

    PubMed

    Dain, Sergio; Reiris, Martin

    2011-07-29

    We prove the local inequality A≥8π|J|, where A and J are the area and angular momentum of any axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. Hence, we prove the validity of this inequality for all dynamical (not necessarily near equilibrium) axially symmetric black holes.

  1. Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2017-01-01

    This report addresses position corrections made to airspeed and aerodynamic flow angle measurements on fixed-wing aircraft. These corrections remove the effects of angular rates, which contribute to the measurements when the sensors are installed away from the aircraft center of mass. Simplified corrections, which are routinely used in practice and assume small flow angles and angular rates, are reviewed. The exact, nonlinear corrections are then derived. The simplified corrections are sufficient in most situations; however, accuracy diminishes for smaller aircraft that incur higher angular rates, and for flight at high air flow angles. This is demonstrated using both flight test data and a nonlinear flight dynamics simulation of a subscale transport aircraft in a variety of low-speed, subsonic flight conditions.

  2. Angular oversampling with temporally offset layers on multilayer detectors in computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjölin, Martin, E-mail: martin.sjolin@mi.physics.kth.se; Danielsson, Mats

    2016-06-15

    Purpose: Today’s computed tomography (CT) scanners operate at an increasingly high rotation speed in order to reduce motion artifacts and to fulfill the requirements of dynamic acquisition, e.g., perfusion and cardiac imaging, with lower angular sampling rate as a consequence. In this paper, a simple method for obtaining angular oversampling when using multilayer detectors in continuous rotation CT is presented. Methods: By introducing temporal offsets between the measurement periods of the different layers on a multilayer detector, the angular sampling rate can be increased by a factor equal to the number of layers on the detector. The increased angular samplingmore » rate reduces the risk of producing aliasing artifacts in the image. A simulation of a detector with two layers is performed to prove the concept. Results: The simulation study shows that aliasing artifacts from insufficient angular sampling are reduced by the proposed method. Specifically, when imaging a single point blurred by a 2D Gaussian kernel, the method is shown to reduce the strength of the aliasing artifacts by approximately an order of magnitude. Conclusions: The presented oversampling method is easy to implement in today’s multilayer detectors and has the potential to reduce aliasing artifacts in the reconstructed images.« less

  3. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System

    PubMed Central

    Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang

    2018-01-01

    The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions. PMID:29734707

  4. Investigation of human locomotion using Penny & Giles electrogoniometer

    NASA Astrophysics Data System (ADS)

    Jaworek, Krzysztof; Derlatka, Marcin; Dominikowski, Mateusz

    1999-04-01

    This paper deals with the experimental measurements, data filtering and theoretical representation of the angular position of a human led in 3D space during normal and pathological walking. The angular position of a human leg during walking in sagittal plane was measured by a new electrogoniometer made by a UK company named Penny & Giles. This system is a spatial mechanism made of a group of links which are coupled by proper angular sensor. This instrument enables an indirect evaluation of the angular position of a human leg in the 3D space from knowledge of the system geometry and from the angular value readings. This instrument is light, small-sized technologically new and is easy to use. However, its dynamics features have not been analyzed in the literature. Therefore we decided to analyze the instrument in order to built a DWT (Discrete Wavelets Transform) filter for filtering data recorded by a electrogoniometer Penny & Giles. We built filter corresponding to Daubechies wavelets, DAUB #20. The DWT filter is sufficient for filtering high frequency noise which exists during experimental measurement of the angular position of a human leg during normal and pathological gait. Filtering using Daubechies wavelets--DAUB #20 is more efficient than commercial numerical filtering delivered by Penny & Giles company.

  5. A Novel Angular Acceleration Sensor Based on the Electromagnetic Induction Principle and Investigation of Its Calibration Tests

    PubMed Central

    Zhao, Hao; Feng, Hao

    2013-01-01

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911

  6. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space

    NASA Astrophysics Data System (ADS)

    Hong, S.-M.; Jung, B.-H.; Ruan, D.

    2011-03-01

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.

  7. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space.

    PubMed

    Hong, S-M; Jung, B-H; Ruan, D

    2011-03-21

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.

  8. Nonlinear model of a rotating hub-beams structure: Equations of motion

    NASA Astrophysics Data System (ADS)

    Warminski, Jerzy

    2018-01-01

    Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.

  9. attitude control design for the solar polar orbit radio telesope

    NASA Astrophysics Data System (ADS)

    Gao, D.; Zheng, J.

    This paper studies the attitude dynamics and control of the Solar Polar Orbit Radio Telescope SPORT The SPORT which consists of one parent satellite and eight tethered satellites runs around the Sun in a polar orbit The parent satellite locates at the mass center of the constellation and tethered satellites which are tied with the parent satellite through a non-electric rope rotate around the parent satellite It is also supposed that the parent satellite and all tethered satellites are in a plane when the constellation works begin figure htbp centerline includegraphics width 3 85in height 2 38in 75271331 6a6eb71057 doc1 eps label fig1 end figure Fig 1 the SPORT constellation Firstly this paper gives the dynamic equations of the tethered satellite and the parent satellite From the dynamic characteristic of the tethered satellite we then find that the roll axis is coupled with the yaw axis The control torque of the roll axis can control the yaw angle But the control torque of the roll axis and pitch axis provided by the tether is very small it can not meet the accuracy requirement of the yaw angle In order to improve the attitude pointing accuracy of the tethered satellite a gradient pole is set in the negative orientation of the yaw axis The gradient pole can improve not only the attitude accuracy of roll angle and pitch angle but also that of the yaw angle indirectly As to the dynamic characteristic of the parent satellite the roll axis is coupled with the pitch axis due to the spinning angular velocity At the same

  10. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2017-12-01

    The objective of this paper is to establish a detumbling strategy and a coordination control scheme for a kinematically redundant space manipulator post-grasping a rotational satellite. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling and motion planning strategy for the post-capture phase is proposed based on the quartic Bézier curves and adaptive differential evolution (DE) algorithm subject to the specific constraints. Both detumbling time and control torques are taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is presented to track the designed reference path while regulating the attitude of the chaser to a desired value, which successfully dumps the initial angular velocity of the rotational satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a 7 degree-of-freedom (DOF) redundant space manipulator, which demonstrates the effectiveness of the proposed method.

  11. Dynamics of Multibody Systems Near Lagrangian Points

    NASA Astrophysics Data System (ADS)

    Wong, Brian

    This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term dynamics of two sample rigid bodies when they are in different periodic orbits around a collinear point, and the tether librations of a two-tether system in the same orbits. The results show that the rigid satellites and the tethered system experience greater attitude motions when they are in larger periodic orbits. The dynamics of variable length systems are also studied in order to determine the control cost associated with moving the end bodies in a gapless spiral to cover the area spanned by the system. The control cost is relatively low during tether deployment, and negligible effort is required to maintain the angular velocity of the tethered system after deployment. A set of recommendations for the applications of Lagrangian-point physically-connected systems are presented as well as some future research directions are suggested.

  12. Mechanical and biomechanical analysis of a linear piston design for angular-velocity-based orthotic control.

    PubMed

    Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan

    2013-01-01

    A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.

  13. Angular-Rate Estimation Using Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  14. Dynamic modulation of ocular orientation during visually guided saccades and smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Hess, Bernhard J M.; Angelaki, Dora E.

    2003-01-01

    Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.

  15. Stepping-Motion Motor-Control Subsystem For Testing Bearings

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1992-01-01

    Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).

  16. Tiger beetles pursue prey using a proportional control law with a delay of one half-stride

    PubMed Central

    Haselsteiner, Andreas F.; Gilbert, Cole; Wang, Z. Jane

    2014-01-01

    Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s−1, is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier. PMID:24718454

  17. Method and system for controlling the position of a beam of light

    DOEpatents

    Steinkraus, Jr., Robert F.; Johnson, Gary W [Livermore, CA; Ruggiero, Anthony J [Livermore, CA

    2011-08-09

    An method and system for laser beam tracking and pointing is based on a conventional position sensing detector (PSD) or quadrant cell but with the use of amplitude-modulated light. A combination of logarithmic automatic gain control, filtering, and synchronous detection offers high angular precision with exceptional dynamic range and sensitivity, while maintaining wide bandwidth. Use of modulated light enables the tracking of multiple beams simultaneously through the use of different modulation frequencies. It also makes the system resistant to interfering light sources such as ambient light. Beam pointing is accomplished by feeding back errors in the measured beam position to a beam steering element, such as a steering mirror. Closed-loop tracking performance is superior to existing methods, especially under conditions of atmospheric scintillation.

  18. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  19. n l -> n' l' transition rates in electron and proton - Rydberg atom collision

    NASA Astrophysics Data System (ADS)

    Vrinceanu, Daniel

    2017-04-01

    Electrons and protons drive the recombination dynamics of highly excited Rydberg atoms in cold rarefied plasmas found in astrophysical conditions such as primordial recombination or star formation in H-II clouds. It has been recognized that collisions induce both energy and angular momentum transitions in Rydberg atoms, although in different proportions, depending on the initial state, temperature and the given species considered in the collision (electron or proton). Most studies focused on one collision type at a time, under the assumption that collision types are independent or their effects are not competing. The classical Monte-Carlo trajectory simulations presented in this work calculate the rates for both energy and angular momentum transfers and show their interdependence. For example, energy transfer with small angular momentum change are more efficient for target states with initial large angular momentum. The author acknowledges support received from the National Science Foundation through a Grant for the Center for Research on Complex Networks (HRD-1137732).

  20. Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability.

    PubMed

    Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang

    2018-01-22

    A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.

  1. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs

    NASA Astrophysics Data System (ADS)

    Inoue, Shunya; Kashino, Junichi; Matsutani, Akihiro; Ohtsuki, Hideo; Miyashita, Takahiro; Koyama, Fumio

    2014-09-01

    We report on the design and fabrication of a highly angular dependent high contrast grating (HCG) mirror. The modeling and experiment on amorphous-Si/SiO2 HCG clearly show the large angular dependence of reflectivity, which enables single transverse-mode operations of large-area VCSELs. We fabricate 980 nm VCSELs with the angular dependent HCG functioning as a spatial frequency filter. We obtained the single transverse mode operation of the fabricated device in contrast to conventional VCSELs with semiconductor multilayer mirrors.

  2. Generalized extended Navier-Stokes theory: correlations in molecular fluids with intrinsic angular momentum.

    PubMed

    Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik

    2013-01-21

    The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.

  3. Geodynamo Modeling of Core-Mantle Interactions

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  4. The dynamical simulation of transient three-dimensional cryogenic liquid sloshing oscillations under low-gravity and microgravity

    NASA Astrophysics Data System (ADS)

    Chi, Yong Mann

    A numerical simulation model has been developed for the dynamical behavior of spacecraft propellant, both during the draining and the closing of the tank outlet at the onset of suction dip affected by the asymmetric combined gravity gradient and gravity jitter accelerations. In particular the effect of the surface tension of the fluids in the partially filled dewar (applicable to the Gravity Probe-B spacecraft dewar tank and fuel tanks for a liquid rocket) with rotation has been simulated and investigated. Two different cases of accelerations, one with gravity jitter dominated and the other equally weighted between gravity gradient and gravity jitter accelerations, are studied. In the development of this numerical simulation model, the NASA-VOF3D has been used as a supplement to the numerical program of this dissertation. The NASA-VOF3D code has been used for performing the three-dimensional incompressible flows with free surface. This is also used for controlling liquid sloshing inside the tank when the spacecraft is orbiting. To keep track of the location of the liquid, the fractional volume of fluid (VOF) technique was used. The VOF is based on the indicator function of the region occupied by the liquid with an Eulerian approach to solve the free surface phenomena between liquid and gas phases. For the calculation of surface tension force, the VOF model is also used. The newly developed simulation model is used to investigate the characteristics of liquid hydrogen draining in terms of the residual amount of trapped liquid at the onset of the suction dip and residual liquid volume at the time the dip of the liquid-vapor interface formed. This investigation simulates the characteristics of liquid oscillations due to liquid container outlet shut-off at the onset of suction dip. These phenomena checked how these mechanisms affected the excitation of slosh waves during the course of liquid draining and after shut-off tank outlet. In the present study, the dynamical evolution of sloshing dynamics excited by fluid stress forces, fluid stress moments, and the arm of fluid moment exerted on the dewar container, is considered. This excitation was driven by the combined gravity gradient and gravity jitter acceleration inside the tank during the draining process and closing the tank outlet. The time evolution of the liquid-vapor interface profiles and the bubble mass center fluctuation, as well as liquid mass center and fluctuations of angular momentum caused by slosh wave excitations with 0.1 rpm in a reduced gravity, are also investigated and simulated. Force, angular momentum, and torque vector time histories and Power Spectral Density (PSD) are also plotted and discussed. The results of this investigation may be applied to determine the magnitude and nature of control forces and torques needed to minimize influence of slosh on the dynamics of liquid fueled vehicles in near earth orbit. Results show that induced fluid forces (or angular momentum) exerted on the container wall along x and y-axes, which are non-existent at the beginning, are introduced by the slosh waves excited by asymmetric gravity gradient and the gravity jitter acceleration.

  5. Dynamic balance during walking adaptability tasks in individuals post-stroke.

    PubMed

    Vistamehr, Arian; Balasubramanian, Chitralakshmi K; Clark, David J; Neptune, Richard R; Fox, Emily J

    2018-06-06

    Maintaining dynamic balance during community ambulation is a major challenge post-stroke. Community ambulation requires performance of steady-state level walking as well as tasks that require walking adaptability. Prior studies on balance control post-stroke have mainly focused on steady-state walking, but walking adaptability tasks have received little attention. The purpose of this study was to quantify and compare dynamic balance requirements during common walking adaptability tasks post-stroke and in healthy adults and identify differences in underlying mechanisms used for maintaining dynamic balance. Kinematic data were collected from fifteen individuals with post-stroke hemiparesis during steady-state forward and backward walking, obstacle negotiation, and step-up tasks. In addition, data from ten healthy adults provided the basis for comparison. Dynamic balance was quantified using the peak-to-peak range of whole-body angular-momentum in each anatomical plane during the paretic, nonparetic and healthy control single-leg-stance phase of the gait cycle. To understand differences in some of the key underlying mechanisms for maintaining dynamic balance, foot placement and plantarflexor muscle activation were examined. Individuals post-stroke had significant dynamic balance deficits in the frontal plane across most tasks, particularly during the paretic single-leg-stance. Frontal plane balance deficits were associated with wider paretic foot placement, elevated body center-of-mass, and lower soleus activity. Further, the obstacle negotiation task imposed a higher balance requirement, particularly during the trailing leg single-stance. Thus, improving paretic foot placement and ankle plantarflexor activity, particularly during obstacle negotiation, may be important rehabilitation targets to enhance dynamic balance during post-stroke community ambulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Attitude guidance and tracking for spacecraft with two reaction wheels

    NASA Astrophysics Data System (ADS)

    Biggs, James D.; Bai, Yuliang; Henninger, Helen

    2018-04-01

    This paper addresses the guidance and tracking problem for a rigid-spacecraft using two reaction wheels (RWs). The guidance problem is formulated as an optimal control problem on the special orthogonal group SO(3). The optimal motion is solved analytically as a function of time and is used to reduce the original guidance problem to one of computing the minimum of a nonlinear function. A tracking control using two RWs is developed that extends previous singular quaternion stabilisation controls to tracking controls on the rotation group. The controller is proved to locally asymptotically track the generated reference motions using Lyapunov's direct method. Simulations of a 3U CubeSat demonstrate that this tracking control is robust to initial rotation errors and angular velocity errors in the controlled axis. For initial angular velocity errors in the uncontrolled axis and under significant disturbances the control fails to track. However, the singular tracking control is combined with a nano-magnetic torquer which simply damps the angular velocity in the uncontrolled axis and is shown to provide a practical control method for tracking in the presence of disturbances and initial condition errors.

  7. Simulating the dynamic behavior of a vertical axis wind turbine operating in unsteady conditions

    NASA Astrophysics Data System (ADS)

    Battisti, L.; Benini, E.; Brighenti, A.; Soraperra, G.; Raciti Castelli, M.

    2016-09-01

    The present work aims at assessing the reliability of a simulation tool capable of computing the unsteady rotational motion and the associated tower oscillations of a variable speed VAWT immersed in a coherent turbulent wind. As a matter of fact, since the dynamic behaviour of a variable speed turbine strongly depends on unsteady wind conditions (wind gusts), a steady state approach can't accurately catch transient correlated issues. The simulation platform proposed here is implemented using a lumped mass approach: the drive train is described by resorting to both the polar inertia and the angular position of rotating parts, also considering their speed and acceleration, while rotor aerodynamic is based on steady experimental curves. The ultimate objective of the presented numerical platform is the simulation of transient phenomena, driven by turbulence, occurring during rotor operation, with the aim of supporting the implementation of efficient and robust control algorithms.

  8. Nonlinear Hysteretic Torsional Waves

    NASA Astrophysics Data System (ADS)

    Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.

    2015-07-01

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  9. Rotational and frictional dynamics of the slamming of a door

    NASA Astrophysics Data System (ADS)

    Klein, Pascal; Müller, Andreas; Gröber, Sebastian; Molz, Alexander; Kuhn, Jochen

    2017-01-01

    A theoretical and experimental investigation of the rotational dynamics, including friction, of a slamming door is presented. Based on existing work regarding different damping models for rotational and oscillatory motions, we examine different forms for the (angular) velocity dependence (ωn, n = 0, 1, 2) of the frictional force. An analytic solution is given when all three friction terms are present and several solutions for specific cases known from the literature are reproduced. The motion of a door is investigated experimentally using a smartphone, and the data are compared with the theoretical results. A laboratory experiment under more controlled conditions is conducted to gain a deeper understanding of the movement of a slammed door. Our findings provide quantitative evidence that damping models involving quadratic air drag are most appropriate for the slamming of a door. Examining this everyday example of a physical phenomenon increases student motivation, because they can relate it to their own personal experience.

  10. Scale dependencies of proton spin constituents with a nonperturbative αs

    NASA Astrophysics Data System (ADS)

    Jia, Shaoyang; Huang, Feng

    2012-11-01

    By introducing the contribution from dynamically generated gluon mass, we present a brand new parametrized form of QCD beta function to get an inferred limited running behavior of QCD coupling constant αs. This parametrized form is regarded as an essential factor to determine the scale dependencies of the proton spin constituents at the very low scale. In order to compare with experimental results directly, we work within the gauge-invariant framework to decompose the proton spin. Utilizing the updated next-to-next-leading-order evolution equations for angular momentum observables within a modified minimal subtraction scheme, we indicate that gluon contribution to proton spin cannot be ignored. Specifically, by assuming asymptotic limits of the total quark/gluon angular momentum valid, respectively, the scale dependencies of quark angular momentum Jq and gluon angular momentum Jg down to Q2˜1GeV2 are presented, which are comparable with the preliminary analysis of deeply virtual Compton scattering experiments by HERMES and JLab. After solving scale dependencies of quark spin ΔΣq, orbital angular momenta of quarks Lq are given by subtraction, presenting a holistic picture of proton spin partition within up and down quarks at a low scale.

  11. Dynamical stability of the one-dimensional rigid Brownian rotator: the role of the rotator’s spatial size and shape

    NASA Astrophysics Data System (ADS)

    Jeknić-Dugić, Jasmina; Petrović, Igor; Arsenijević, Momir; Dugić, Miroljub

    2018-05-01

    We investigate dynamical stability of a single propeller-like shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the realistic situations, rotation of the finite-size cogwheel is subject to the environmentally-induced Brownian-motion effect that we describe by utilizing the quantum Caldeira-Leggett master equation. Assuming the initially narrow (classical-like) standard deviations for the angle and the angular momentum of the rotator, we investigate the dynamics of the first and second moments depending on the size, i.e. on the number of blades of both the free rotator as well as of the rotator in the external harmonic field. The larger the standard deviations, the less stable (i.e. less predictable) rotation. We detect the absence of the simple and straightforward rules for utilizing the rotator’s stability. Instead, a number of the size-related criteria appear whose combinations may provide the optimal rules for the rotator dynamical stability and possibly control. In the realistic situations, the quantum-mechanical corrections, albeit individually small, may effectively prove non-negligible, and also revealing subtlety of the transition from the quantum to the classical dynamics of the rotator. As to the latter, we detect a strong size-dependence of the transition to the classical dynamics beyond the quantum decoherence process.

  12. Comparison of Fixed-Stabilizer, Adjustable-Stabilizer and All-Moveable Horizontal Tails

    DTIC Science & Technology

    1945-10-01

    the thrust axis and wind direction at Infinity, degrees; primed to indicate that a is corrected for ground interference effects 5 angular ...deflection of control surface, degrees i+- maximum angular deflection of stabilizer measured with reference to thrust axis, degrees hnax...5e maximum negative angular deflection of elevator, degrees E downwash angle at teil, degrees; primed to indicate that e Is

  13. ECG denoising using angular velocity as a state and an observation in an Extended Kalman Filter framework.

    PubMed

    Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Coppa, Bertrand

    2012-01-01

    In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and in the other case, we have not assumed any observations for it. Quantitative evaluation of the proposed algorithm on the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows that an average SNR improvement of 8 dB is achieved for an input signal of -4 dB.

  14. A Sensory-Motor Control Model of Animal Flight Explains Why Bats Fly Differently in Light Versus Dark

    PubMed Central

    Bar, Nadav S.; Skogestad, Sigurd; Marçal, Jose M.; Ulanovsky, Nachum; Yovel, Yossi

    2015-01-01

    Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity (“proportional-derivative” controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air. PMID:25629809

  15. Multijoint kinetic chain analysis of knee extension during the soccer instep kick.

    PubMed

    Naito, Kozo; Fukui, Yosuke; Maruyama, Takeo

    2010-04-01

    Although previous studies have shown that motion-dependent interactions between adjacent segments play an important role in producing knee extension during the soccer instep kick, detailed knowledge about the mechanisms underlying those interactions is lacking. The present study aimed to develop a 3-D dynamical model for the multijoint kinetic chain of the instep kick in order to quantify the contributions of the causal dynamical factors to the production of maximum angular velocity during knee extension. Nine collegiate soccer players volunteered to participate in the experiment and performed instep kicking movements while 3-D positional data and the ground reaction force were measured. A dynamical model was developed in the form of a linked system containing 8 segments and 18 joint rotations, and the knee extension/flexion motion was decomposed into causal factors related to muscular moment, gyroscopic moment, centrifugal force, Coriolis force, gravity, proximal endpoint linear acceleration, and external force-dependent terms. The rapid knee extension during instep kicking was found to result almost entirely from kicking leg centrifugal force, trunk rotation muscular moment, kicking leg Coriolis force, and trunk rotation gyroscopic-dependent components. Based on the finding that rapid knee extension during instep kicking stems from multiple dynamical factors, it is suggested that the multijoint kinetic chain analysis used in the present study is more useful for achieving a detailed understanding of the cause of rapid kicking leg movement than the previously used 2-D, two-segment kinetic chain model. The present results also indicated that the centrifugal effect due to the kicking hip flexion angular velocity contributed substantially to the generation of a rapid knee extension, suggesting that the adjustment between the kicking hip flexion angular velocity and the leg configuration (knee flexion angle) is more important for effective instep kicking than other joint kinematics.

  16. Comparison of angular dependence of magnetic Barkhausen noise of hysteresis and initial magnetization curve in API5L steel

    NASA Astrophysics Data System (ADS)

    Chávez-Gonzalez, A. F.; Martínez-Ortiz, P.; Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Caleyo, F.

    2018-01-01

    This work analyzes the differences between the magnetic Barkhausen noise corresponding to the initial magnetization curve and Barkhausen noise corresponding to one branch of the hysteresis loop in API-5L steel. The outcomes show that the Barkhausen noise signal corresponding to the initial magnetization curve and that corresponding to the hysteresis are significantly different. This difference is due to the presence of different processes of the domain wall dynamics in both phenomena. To study the processes present in magnetization dynamics for an applied field of H > 0, research into the angular dependence of a Barkhausen signal using applied field bands has revealed that a Barkhausen signal corresponding to the initial magnetization curve is more suitable than a Barkhausen signal corresponding to the hysteresis loop.

  17. New Langevin and gradient thermostats for rigid body dynamics.

    PubMed

    Davidchack, R L; Ouldridge, T E; Tretyakov, M V

    2015-04-14

    We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.

  18. A methodologic approach for normalizing angular work and velocity during isotonic and isokinetic eccentric training.

    PubMed

    Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud

    2012-01-01

    Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Controlled laboratory study. Controlled research laboratory. Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Angular work and angular velocity. The isotonic and isokinetic groups performed the same total amount of work (-185.2 ± 6.5 kJ and -184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury.

  19. Knee joint laxity and passive stiffness in meniscectomized patients compared with healthy controls.

    PubMed

    Thorlund, Jonas B; Creaby, Mark W; Wrigley, Tim V; Metcalf, Ben R; Bennell, Kim L

    2014-10-01

    Passive mechanical behavior of the knee in the frontal plane, measured as angular laxity and mechanical stiffness, may play an important role in the pathogenesis of knee osteoarthritis (OA). Little is known about knee laxity and stiffness prior to knee OA onset. We investigated knee joint angular laxity and passive stiffness in meniscectomized patients at high risk of knee OA compared with healthy controls. Sixty patients meniscectomized for a medial meniscal tear (52 men, 41.4 ± 5.5 years, 175.3 ± 7.9 cm, 83.6 ± 12.8 kg, mean ± SD) and 21 healthy controls (18 men, 42.0 ± 6.7 years, 176.8 ± 5.7 cm, 77.8 ± 13.4 kg) had their knee joint angular laxity and passive stiffness assessed twice ~2.3 years apart. Linear regression models including age, sex, height and body mass as covariates in the adjusted model were used to assess differences between groups. Greater knee joint varus (-10.1 vs. -7.3°, p<0.001), valgus (7.1 vs. 5.6°, p=0.001) and total (17.2 vs. 12.9°, p<0.001) angular laxity together with reduced midrange passive stiffness (1.71 vs. 2.36 Nm/°, p<0.001) were observed in patients vs. healthy controls. No differences were observed in change in stiffness over time between patients and controls, however a tendency towards increased laxity in patients was seen. Meniscectomized patients showed increased knee joint angular laxity and reduced passive stiffness ~3 months post surgery compared with controls. In addition, the results indicated that knee joint laxity may increase over time in meniscectomized patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Runway Exit Designs for Capacity Improvement Demonstrations. Phase 1. Algorithm Development

    DTIC Science & Technology

    1990-06-01

    Dynamic Module 39 Table 3.1 Aircraft Approach Category Classification (FAA, 1988). Category Landing Speed (1.3 Vst ,,,) A less than 91 Knots B From 91 to...inertia about the vertical axis, in Kg-m-m, a is the angular acceleration (rad/sec,) of the aircraft fuselage as it executes the turning maneuver, wb is the...breakdown of the angular acceleration yields for Eq. 3.13 the following, I/ (V R 2 / g"= m g wb Im/100 (1- Im100) (3.16) where, R represents the rate of

  1. Clustangles: An Open Library for Clustering Angular Data.

    PubMed

    Sargsyan, Karen; Hua, Yun Hao; Lim, Carmay

    2015-08-24

    Dihedral angles are good descriptors of the numerous conformations visited by large, flexible systems, but their analysis requires directional statistics. A single package including the various multivariate statistical methods for angular data that accounts for the distinct topology of such data does not exist. Here, we present a lightweight standalone, operating-system independent package called Clustangles to fill this gap. Clustangles will be useful in analyzing the ever-increasing number of structures in the Protein Data Bank and clustering the copious conformations from increasingly long molecular dynamics simulations.

  2. Enhancing the Damping Behavior of Dilute Zn-0.3Al Alloy by Equal Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Demirtas, M.; Atli, K. C.; Yanar, H.; Purcek, G.

    2017-06-01

    The effect of grain size on the damping capacity of a dilute Zn-0.3Al alloy was investigated. It was found that there was a critical strain value (≈1 × 10-4) below and above which damping of Zn-0.3Al showed dynamic and static/dynamic hysteresis behavior, respectively. In the dynamic hysteresis region, damping resulted from viscous sliding of phase/grain boundaries, and decreasing grain size increased the damping capacity. While the quenched sample with 100 to 250 µm grain size showed very limited damping capacity with a loss factor tanδ of less than 0.007, decreasing grain size down to 2 µm by equal channel angular pressing (ECAP) increased tanδ to 0.100 in this region. Dynamic recrystallization due to microplasticity at the sample surface was proposed as the damping mechanism for the first time in the region where the alloy showed the combined aspects of dynamic and static hysteresis damping. In this region, tanδ increased with increasing strain amplitude, and ECAPed sample showed a tanδ value of 0.256 at a strain amplitude of 2 × 10-3, the highest recorded so far in the damping capacity-related studies on ZA alloys.

  3. Equilibrium properties of the Skylab CMG rotation law

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Anderson, G. M.

    1972-01-01

    The equilibrium properties of the control moment gyroscopes of the Skylab are discussed. A rotation law is developed to produce gimbal rates which distribute the angular momentum contributions among the control moment gyroscopes to avoid gimbal stop encounters. The implications for gimbal angle management under various angular momentum situations are described. Conditions were obtained for the existence of equilibria and corresponding stability properties.

  4. Control of Angular Momentum during Walking in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Bruijn, Sjoerd M.; Meyns, Pieter; Jonkers, Ilse; Kaat, Desloovere; Duysens, Jacques

    2011-01-01

    Children with hemiparetic Cerebral Palsy (CP) walk with marked asymmetries. For instance, we have recently shown that they have less arm swing on the affected side, and more arm swing at the unaffected side. Such an increase in arm swing at the unaffected side may be aimed at controlling total body angular momentum about the vertical axis,…

  5. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  6. The three-dimensional angular widths of CMEs and their relations to the source regions

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Feng, X. S.

    2017-12-01

    The angular width of a coronal mass ejection (CME) is an important factor to determine whether the corresponding interplanetary CME (ICME) and its preceding shock will reach our Earth. However, very few studies are involved to study the decisive factors of the CME's angular width. In this study, we use the three-dimensional (3D) angular width of CMEs obtained from the Graduated Cylindrical Shell (GCS) model based on observations of Solar Terrestrial Relations Observatory (STEREO) to study the relations between the CME's 3D width and characteristics of the CME's source region. We find that for the CMEs produced by active regions (ARs), the CME width has some correlations with the AR's area and flux, but these correlations are not strong. The magnetic flux contained in the CME seems to come from only part of the AR's total flux. For the CMEs produced by flare regions, the correlations between the CME angular width and the flare region's area and flux are strong. The magnetic flux within those CMEs seems to totally (even not enough) come from the flare region. Our findings prefer to support that the CME's 3D angular width can be generally estimated based on observations of Solar Dynamics Observatory (SDO) for its source region instead of the observations from coronagraphs onboard Solar and Heliospheric Observatory (SOHO) and STEREO.

  7. Effect of angular velocity on soleus and medial gastrocnemius H-reflex during maximal concentric and eccentric muscle contraction.

    PubMed

    Duclay, Julien; Robbe, Alice; Pousson, Michel; Martin, Alain

    2009-10-01

    At rest, the H-reflex is lower during lengthening than shortening actions. During passive lengthening, both soleus (SOL) and medial gastrocnemius (MG) H-reflex amplitudes decrease with increasing angular velocity. This study was designed to investigate whether H-reflex amplitude is affected by angular velocity during concentric and eccentric maximal voluntary contraction (MVC). Experiments were performed on nine healthy men. At a constant angular velocity of 60 degrees /s and 20 degrees /s, maximal H-reflex and M-wave potentials were evoked at rest (i.e., H(max) and M(max), respectively) and during concentric and eccentric MVC (i.e., H(sup) and M(sup), respectively). Regardless of the muscle, H(max)/M(max) was lower during lengthening than shortening actions and the H(sup)/M(sup) ratio was higher than H(max)/M(max) during lengthening actions. Whereas no action type and angular velocity effects on the MG H(sup)/M(sup) were found, the SOL H(sup)/M(sup) was lower during eccentric than concentric MVC and this depression was increased with higher angular velocity. Our findings indicate that the depression of the H-reflex amplitude during eccentric compared to concentric MVC depends mainly on the amount of inhibition induced by lengthening action. In conclusion, H-reflex should be evoked during both passive and active dynamic trials to evaluate the plasticity of the spinal loop.

  8. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    PubMed

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  9. Control of the Spin Angular Momentum and Orbital Angular Momentum of a Reflected Wave by Multifunctional Graphene Metasurfaces.

    PubMed

    Zhang, Chen; Deng, Li; Zhu, Jianfeng; Hong, Weijun; Wang, Ling; Yang, Wenjie; Li, Shufang

    2018-06-21

    Three kinds of multifunctional graphene metasurfaces based on Pancharatnam⁻Berry (PB) phase cells are proposed and numerically demonstrated to control a reflected wave’s spin angular momentum (SAM) and orbital angular momentum (OAM) in the terahertz (THz) regime. Each proposed metasurface structure is composed of an array of graphene strips with different deviation angles and a back-grounded quartz substrate. In order to further help readers have a deeper insight into the graphene-based metasurfaces, a detailed design strategy is also provided. With the aid of the designed graphene elements, the proposed metasurfaces can achieve the full 360° range of phase coverage and provide manipulation of SAM and OAM of a circularly polarized (CP) wave at will. More importantly, simultaneous control of these two momentums can also be realized, and in order to demonstrate this function, a THz spin-controlled OAM beam generator with diverse topological charges is created, which can provide one more degree of freedom to improve the channel capability without increasing the bandwidth compared to a linearly polarized (LP) OAM beam. Numerical results verify the proposed graphene metasurfaces, which pave the way for generating spin OAM vortex waves for THz communication systems.

  10. GOES-R active vibration damping controller design, implementation, and on-orbit performance

    NASA Astrophysics Data System (ADS)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2018-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.

  11. GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2017-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.

  12. Spatial orientation perception and reflexive eye movements--a perspective, an overview, and some clinical implications

    NASA Technical Reports Server (NTRS)

    Guedry, F. E.; Paloski, W. F. (Principal Investigator)

    1996-01-01

    When head motion includes a linear velocity component, eye velocity required to track an earth-fixed target depends upon: a) angular and linear head velocity, b) target distance, and c) direction of gaze relative to the motion trajectory. Recent research indicates that eye movements (LVOR), presumably otolith-mediated, partially compensate for linear velocity in small head excursions on small devices. Canal-mediated eye velocity (AVOR), otolith-mediated eye velocity (LVOR), and Ocular Torsion (OT) can be measured, one by one, on small devices. However, response dynamics that depend upon the ratio of linear to angular velocity in the motion trajectory and on subject orientation relative to the trajectory are present in a centrifuge paradigm. With this paradigm, two 3-min runs yields measures of: LVOR differentially modulated by different subject orientations in the two runs; OT dynamics in four conditions; two directions of "steady-state" OT, and two directions of AVOR. Efficient assessment of the dynamics (and of the underlying central integrative processes) may require a centrifuge radius of 1.0 meters or more. Clinical assessment of the spatial orientation system should include evaluation of central integrative processes that determine the dynamics of these responses.

  13. Orientational dynamics in a room temperature ionic liquid: Are angular jumps predominant?

    NASA Astrophysics Data System (ADS)

    Das, Suman; Mukherjee, Biswaroop; Biswas, Ranjit

    2018-05-01

    Reorientational dynamics of the constituent ions in a room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), are explored via molecular dynamics simulations, and several features of orientation dynamics are summarized. The anion, [PF6]-, not only exhibits a higher propensity to orientation jumps than the cation, [BMIM]+ but also accesses a wider jump angle distribution and larger peak-angle. Jump and waiting time distributions for both the ions depict power-law dependences, suggesting temporally heterogeneous dynamics for the medium. This heterogeneity feature is further highlighted by the finding that the simulated first rank (ℓ = 1) and second rank (ℓ = 2) average reorientational correlation times reflect a severe break-down of Debye's ℓ(ℓ + 1) law for orientational diffusion in an isotropic homogeneous medium. Simulated average H-bond lifetime resides between the mean orientation jump and waiting times, while the structural H-bond relaxation suggests, as in normal liquids, a pronounced presence of translational motion of the partnering ions. Average simulated jump trajectories reveal a strong rotation-translation coupling and indicate relatively larger changes in spatial and angular arrangements for the anion during an orientation jump. In fact, a closer inspection of all these results points toward more heterogeneous dynamics for [PF6]- than [BMIM]+. This is a new observation and may simply be linked to the ion-size. However, such a generalization warrants further study.

  14. Nonlinear management of the angular momentum of soliton clusters: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Fratalocchi, Andrea; Piccardi, Armando; Peccianti, Marco; Assanto, Gaetano

    2007-06-01

    We demonstrate, both theoretically and experimentally, how to acquire nonlinear control over the angular momentum of a cluster of solitary waves. Our results, stemming from a universal theoretical model, show that the angular momentum can be adjusted by acting on the global energy input in the system. The phenomenon is experimentally ascertained in nematic liquid crystals by observing a power-dependent rotation of a two-soliton ensemble.

  15. Control Laws for a Dual-Spin Stabilized Platform

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Moerder, D. D.

    2008-01-01

    This paper describes two attitude control laws suitable for atmospheric flight vehicles with a steady angular momentum bias in the vehicle yaw axis. This bias is assumed to be provided by an internal flywheel, and is introduced to enhance roll and pitch stiffness. The first control law is based on Lyapunov stability theory, and stability proofs are given. The second control law, which assumes that the angular momentum bias is large, is based on a classical PID control. It is shown that the large yaw-axis bias requires that the PI feedback component on the roll and pitch angle errors be cross-fed. Both control laws are applied to a vehicle simulation in the presence of disturbances for several values of yaw-axis angular momentum bias. It is seen that both control laws provide a significant improvement in attitude performance when the bias is sufficiently large, but the nonlinear control law is also able to provide improved performance for a small value of bias. This is important because the smaller bias corresponds to a smaller requirement for mass to be dedicated to the flywheel.

  16. Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.

    1997-01-01

    The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.

  17. Single-axis gyroscopic motion with uncertain angular velocity about spin axis

    NASA Technical Reports Server (NTRS)

    Singh, S. N.

    1977-01-01

    A differential game approach is presented for studying the response of a gyro by treating the controlled angular velocity about the input axis as the evader, and the bounded but uncertain angular velocity about the spin axis as the pursuer. When the uncertain angular velocity about the spin axis desires to force the gyro to saturation a differential game problem with two terminal surfaces results, whereas when the evader desires to attain the equilibrium state the usual game with single terminal manifold arises. A barrier, delineating the capture zone (CZ) in which the gyro can attain saturation and the escape zone (EZ) in which the evader avoids saturation is obtained. The CZ is further delineated into two subregions such that the states in each subregion can be forced on a definite target manifold. The application of the game theoretic approach to Control Moment Gyro is briefly discussed.

  18. Tunable orbital angular momentum in high-harmonic generation

    PubMed Central

    Gauthier, D.; Ribič, P. Rebernik; Adhikary, G.; Camper, A.; Chappuis, C.; Cucini, R.; DiMauro, L. F.; Dovillaire, G.; Frassetto, F.; Géneaux, R.; Miotti, P.; Poletto, L.; Ressel, B.; Spezzani, C.; Stupar, M.; Ruchon, T.; De Ninno, G.

    2017-01-01

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions, and the disentanglement and independent control of the intrinsic and extrinsic components of the photon's angular momentum at short-wavelengths. The methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms. PMID:28378741

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheinker, Alexander

    Here, we study control of the angular-velocity actuated nonholonomic unicycle, via a simple, bounded extremum seeking controller which is robust to external disturbances and measurement noise. The vehicle performs source seeking despite not having any position information about itself or the source, able only to sense a noise corrupted scalar value whose extremum coincides with the unknown source location. In order to control the angular velocity, rather than the angular heading directly, a controller is developed such that the closed loop system exhibits multiple time scales and requires an analysis approach expanding the previous work of Kurzweil, Jarnik, Sussmann, andmore » Liu, utilizing weak limits. We provide analytic proof of stability and demonstrate how this simple scheme can be extended to include position-independent source seeking, tracking, and collision avoidance of groups on autonomous vehicles in GPS-denied environments, based only on a measure of distance to an obstacle, which is an especially important feature for an autonomous agent.« less

  20. Dynamical localization of coupled relativistic kicked rotors

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Efim B.; Galitski, Victor

    2017-02-01

    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  1. Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test

    PubMed Central

    Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan

    2016-01-01

    GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results. PMID:27941602

  2. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  3. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents 26 activities, experiments, demonstrations, games, and computer programs for biology, chemistry, and physics. Background information, laboratory procedures, equipment lists, and instructional strategies are given. Topics include eye measurements, nutrition, soil test tube rack, population dynamics, angular momentum, transition metals,…

  4. Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses

    NASA Astrophysics Data System (ADS)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing

    2018-04-01

    We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.

  5. Global-scale equatorial Rossby waves as an essential component of solar internal dynamics

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Gizon, Laurent; Birch, Aaron C.; Schou, Jesper; Proxauf, Bastian; Duvall, Thomas L.; Bogart, Richard S.; Christensen, Ulrich R.

    2018-05-01

    The Sun’s complex dynamics is controlled by buoyancy and rotation in the convection zone. Large-scale flows are dominated by vortical motions1 and appear to be weaker than expected in the solar interior2. One possibility is that waves of vorticity due to the Coriolis force, known as Rossby waves3 or r modes4, remove energy from convection at the largest scales5. However, the presence of these waves in the Sun is still debated. Here, we unambiguously discover and characterize retrograde-propagating vorticity waves in the shallow subsurface layers of the Sun at azimuthal wavenumbers below 15, with the dispersion relation of textbook sectoral Rossby waves. The waves have lifetimes of several months, well-defined mode frequencies below twice the solar rotational frequency, and eigenfunctions of vorticity that peak at the equator. Rossby waves have nearly as much vorticity as the convection at the same scales, thus they are an essential component of solar dynamics. We observe a transition from turbulence-like to wave-like dynamics around the Rhines scale6 of angular wavenumber of approximately 20. This transition might provide an explanation for the puzzling deficit of kinetic energy at the largest spatial scales.

  6. Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States.

    PubMed

    Yue, Fuyong; Wen, Dandan; Zhang, Chunmei; Gerardot, Brian D; Wang, Wei; Zhang, Shuang; Chen, Xianzhong

    2017-04-01

    A facile metasurface approach is shown to realize polarization-controllable multichannel superpositions of orbital angular momentum (OAM) states with various topological charges. By manipulating the polarization state of the incident light, four kinds of superpositions of OAM states are realized using a single metasurface consisting of space-variant arrays of gold nanoantennas. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Proposal for a new mass distribution control system and its simulation for vibration reduction on rotating machinery

    NASA Astrophysics Data System (ADS)

    Enginoglu, Ozan; Ozturk, Hasan

    2016-12-01

    This study presents a new mass distribution control system (MDCS) along with its analysis and simulation. It is aimed to balance a system containing rotating parts in order to minimize the dynamic vibration on it. For this purpose, a test mechanism rotating with an angular velocity of ω is simulated. The mechanism consists of a pair of MDCS, each containing three flaps connected to the shaft. The flaps rotate in relation to the shaft's plane of rotation. The center of gravity (COG) of the MDCS is concentric with the shaft axis when all three flaps are stretched out but the COG changes as the flaps rotate. By adjusting the orientations of the flaps in both systems, it is possible to create a counterforce which suppresses the imbalance force, reducing the vibration to a minimum.

  8. Hybrid switched time-optimal control of underactuated spacecraft

    NASA Astrophysics Data System (ADS)

    Olivares, Alberto; Staffetti, Ernesto

    2018-04-01

    This paper studies the time-optimal control problem for an underactuated rigid spacecraft equipped with both reaction wheels and gas jet thrusters that generate control torques about two of the principal axes of the spacecraft. Since a spacecraft equipped with two reaction wheels is not controllable, whereas a spacecraft equipped with two gas jet thrusters is controllable, this mixed actuation ensures controllability in the case in which one of the control axes is unactuated. A novel control logic is proposed for this hybrid actuation in which the reaction wheels are the main actuators and the gas jet thrusters act only after saturation or anticipating future saturation of the reaction wheels. The presence of both reaction wheels and gas jet thrusters gives rise to two operating modes for each actuated axis and therefore the spacecraft can be regarded as a switched dynamical system. The time-optimal control problem for this system is reformulated using the so-called embedding technique and the resulting problem is a classical optimal control problem. The main advantages of this technique are that integer or binary variables do not have to be introduced to model switching decisions between modes and that assumptions about the number of switches are not necessary. It is shown in this paper that this general method for the solution of optimal control problems for switched dynamical systems can efficiently deal with time-optimal control of an underactuated rigid spacecraft in which bound constraints on the torque of the actuators and on the angular momentum of the reaction wheels are taken into account.

  9. Adaptive twisting sliding mode algorithm for hypersonic reentry vehicle attitude control based on finite-time observer.

    PubMed

    Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun

    2018-06-01

    This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A Methodologic Approach for Normalizing Angular Work and Velocity During Isotonic and Isokinetic Eccentric Training

    PubMed Central

    Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud

    2012-01-01

    Context: Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. Objective: To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Design: Controlled laboratory study. Setting: Controlled research laboratory. Patients or Other Participants: Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Intervention(s): Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Main Outcome Measure(s): Angular work and angular velocity. Results: The isotonic and isokinetic groups performed the same total amount of work (−185.2 ± 6.5 kJ and −184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. Conclusions: The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury. PMID:22488276

  11. Representing and selecting vibrational angular momentum states for quasiclassical trajectory chemical dynamics simulations.

    PubMed

    Lourderaj, Upakarasamy; Martínez-Núñez, Emilio; Hase, William L

    2007-10-18

    Linear molecules with degenerate bending modes have states, which may be represented by the quantum numbers N and L. The former gives the total energy for these modes and the latter identifies their vibrational angular momentum jz. In this work, the classical mechanical analog of the N,L-quantum states is reviewed, and an algorithm is presented for selecting initial conditions for these states in quasiclassical trajectory chemical dynamics simulations. The algorithm is illustrated by choosing initial conditions for the N = 3 and L = 3 and 1 states of CO2. Applications of this algorithm are considered for initial conditions without and with zero-point energy (zpe) included in the vibrational angular momentum states and the C-O stretching modes. The O-atom motions in the x,y-plane are determined for these states from classical trajectories in Cartesian coordinates and are compared with the motion predicted by the normal-mode model. They are only in agreement for the N = L = 3 state without vibrational angular momentum zpe. For the remaining states, the Cartesian O-atom motions are considerably different from the elliptical motion predicted by the normal-mode model. This arises from bend-stretch coupling, including centrifugal distortion, in the Cartesian trajectories, which results in tubular instead of elliptical motion. Including zpe in the C-O stretch modes introduces considerable complexity into the O-atom motions for the vibrational angular momentum states. The short-time O-atom motions for these trajectories are highly irregular and do not appear to have any identifiable characteristics. However, the O-atom motions for trajectories integrated for substantially longer period of times acquire unique properties. With C-O stretch zpe included, the long-time O-atom motion becomes tubular for trajectories integrated to approximately 14 ps for the L = 3 states and to approximately 44 ps for the L = 1 states.

  12. Reinforcement learning state estimator.

    PubMed

    Morimoto, Jun; Doya, Kenji

    2007-03-01

    In this study, we propose a novel use of reinforcement learning for estimating hidden variables and parameters of nonlinear dynamical systems. A critical issue in hidden-state estimation is that we cannot directly observe estimation errors. However, by defining errors of observable variables as a delayed penalty, we can apply a reinforcement learning frame-work to state estimation problems. Specifically, we derive a method to construct a nonlinear state estimator by finding an appropriate feedback input gain using the policy gradient method. We tested the proposed method on single pendulum dynamics and show that the joint angle variable could be successfully estimated by observing only the angular velocity, and vice versa. In addition, we show that we could acquire a state estimator for the pendulum swing-up task in which a swing-up controller is also acquired by reinforcement learning simultaneously. Furthermore, we demonstrate that it is possible to estimate the dynamics of the pendulum itself while the hidden variables are estimated in the pendulum swing-up task. Application of the proposed method to a two-linked biped model is also presented.

  13. A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2010-01-01

    A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.

  14. Aberration compensation in a Skew parametric-resonance ionization cooling channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sy, Amy V.; Derbenev, Yaroslav S.; Morozov, Vasiliy

    Skew Parametric-resonance Ionization Cooling (Skew PIC) represents a novel method for focusing of highly divergent particle beams, as in the final 6D cooling stage of a high-luminosity muon collider. In the muon collider concept, the resultant equilibrium transverse emittances from cooling with Skew PIC are an order of magnitude smaller than in conventional ionization cooling. The concept makes use of coupling of the transverse dynamic behavior, and the linear dynamics are well-behaved with good agreement between analytic solutions and simulation results. Compared to the uncoupled system, coupling of the transverse dynamic behavior purports to reduce the number of multipoles requiredmore » for aberration compensation while also avoiding unwanted resonances. Aberration compensation is more complicated in the coupled case, especially in the high-luminosity muon collider application where equilibrium angular spreads in the cooling channel are on the order of 200 mrad. We present recent progress on aberration compensation for control of highly divergent muon beams in the coupled correlated optics channel, and a simple cooling model to test the transverse acceptance of the channel.« less

  15. Experimental Observation of Classical Dynamical Monodromy

    NASA Astrophysics Data System (ADS)

    Nerem, M. P.; Salmon, D.; Aubin, S.; Delos, J. B.

    2018-03-01

    A Hamiltonian system is said to have nontrivial monodromy if its fundamental action-angle loops do not return to their initial topological state at the end of a closed circuit in angular momentum-energy space. This process has been predicted to have consequences which can be seen in dynamical systems, called dynamical monodromy. Using an apparatus consisting of a spherical pendulum subject to magnetic potentials and torques, we observe nontrivial monodromy by the associated topological change in the evolution of a loop of trajectories.

  16. A dynamic method for magnetic torque measurement

    NASA Technical Reports Server (NTRS)

    Lin, C. E.; Jou, H. L.

    1994-01-01

    In a magnetic suspension system, accurate force measurement will result in better control performance in the test section, especially when a wider range of operation is required. Although many useful methods were developed to obtain the desired model, however, significant error is inevitable since the magnetic field distribution of the large-gap magnetic suspension system is extremely nonlinear. This paper proposed an easy approach to measure the magnetic torque of a magnetic suspension system using an angular photo encoder. Through the measurement of the velocity change data, the magnetic torque is converted. The proposed idea is described and implemented to obtain the desired data. It is useful to the calculation of a magnetic force in the magnetic suspension system.

  17. Controlled Viscosity in Dense Granular Materials

    NASA Astrophysics Data System (ADS)

    Gnoli, A.; de Arcangelis, L.; Giacco, F.; Lippiello, E.; Ciamarra, M. Pica; Puglisi, A.; Sarracino, A.

    2018-03-01

    We experimentally investigate the fluidization of a granular material subject to mechanical vibrations by monitoring the angular velocity of a vane suspended in the medium and driven by an external motor. On increasing the frequency, we observe a reentrant transition, as a jammed system first enters a fluidized state, where the vane rotates with high constant velocity, and then returns to a frictional state, where the vane velocity is much lower. While the fluidization frequency is material independent, the viscosity recovery frequency shows a clear dependence on the material that we rationalize by relating this frequency to the balance between dissipative and inertial forces in the system. Molecular dynamics simulations well reproduce the experimental data, confirming the suggested theoretical picture.

  18. Modal identities for elastic bodies, with application to vehicle dynamics and control

    NASA Technical Reports Server (NTRS)

    Hughes, P. C.

    1980-01-01

    It is a standard procedure to analyze a flexible vehicle in terms of its vibration frequencies and mode shapes. However, the entire mode shape is not needed per se, but two integrals of the mode shape, pi and hi, which correspond to the momentum and angular momentum in Mode i. Together with the natural frequencies omega-i, these modal parameters satisfy several important identities, 25 of which are derived in this paper. Expansions in terms of both constrained and unconstrained modes are considered. A simple illustrative example is included. The paper concludes with some remarks on the theoretical and practical utility of these results, and several potential extensions to the theory are suggested.

  19. Dynamics of flare sprays. [in sun

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E.; Martin, S. F.; Hansen, R. T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable passband filters, multislit spectroscopy and extended angular field coronagraphs). From combined analysis of 13 well-observed sprays which occurred between 1969-1974 it is concluded that (1) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (2) the spray material is confined within a steadily expanding, loop-shaped (presumable magnetically controlled) envelope with part of the materials draining back down along one or both legs of the loop.

  20. Neural processing of gravity information

    NASA Technical Reports Server (NTRS)

    Schor, Robert H.

    1992-01-01

    The goal of this project was to use the linear acceleration capabilities of the NASA Vestibular Research Facility (VRF) at Ames Research Center to directly examine encoding of linear accelerations in the vestibular system of the cat. Most previous studies, including my own, have utilized tilt stimuli, which at very low frequencies (e.g., 'static tilt') can be considered a reasonably pure linear acceleration (e.g., 'down'); however, higher frequencies of tilt, necessary for understanding the dynamic processing of linear acceleration information, necessarily involves rotations which can stimulate the semicircular canals. The VRF, particularly the Long Linear Sled, has promise to provide controlled pure linear accelerations at a variety of stimulus frequencies, with no confounding angular motion.

  1. Comparing post-Newtonian and numerical relativity precession dynamics

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Boyle, Michael; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilágyi, Béla

    2015-11-01

    Binary black-hole systems are expected to be important sources of gravitational waves for upcoming gravitational-wave detectors. If the spins are not colinear with each other or with the orbital angular momentum, these systems exhibit complicated precession dynamics that are imprinted on the gravitational waveform. We develop a new procedure to match the precession dynamics computed by post-Newtonian (PN) theory to those of numerical binary black-hole simulations in full general relativity. For numerical relativity (NR) simulations lasting approximately two precession cycles, we find that the PN and NR predictions for the directions of the orbital angular momentum and the spins agree to better than ˜1 ° with NR during the inspiral, increasing to 5° near merger. Nutation of the orbital plane on the orbital time scale agrees well between NR and PN, whereas nutation of the spin direction shows qualitatively different behavior in PN and NR. We also examine how the PN equations for precession and orbital-phase evolution converge with PN order, and we quantify the impact of various choices for handling partially known PN terms.

  2. Comparing Post-Newtonian and Numerical-Relativity Precession Dynamics

    NASA Astrophysics Data System (ADS)

    Kidder, Lawrence; Ossokine, Sergei; Boyle, Michael; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Binary black-hole systems are expected to be important sources of gravitational waves for upcoming gravitational-wave detectors. If the spins are not colinear with each other or with the orbital angular momentum, these systems exhibit complicated precession dynamics that are imprinted on the gravitational waveform. We develop a new procedure to match the precession dynamics computed by post-Newtonian (PN) theory to those of numerical binary black-hole simulations in full general relativity. For numerical relativity (NR) simulations lasting approximately two precession cycles, we find that the PN and NR predictions for the directions of the orbital angular momentum and the spins agree to better than ~1° with NR during the inspiral, increasing to 5° near merger. Nutation of the orbital plane on the orbital time-scale agrees well between NR and PN, whereas nutation of the spin direction shows qualitatively different behavior in PN and NR. We also examine how the PN equations for precession and orbital-phase evolution converge with PN order, and we quantify the impact of various choices for handling partially known PN terms.

  3. Dynamic calibration of a wheelchair dynamometer.

    PubMed

    DiGiovine, C P; Cooper, R A; Boninger, M L

    2001-01-01

    The inertia and resistance of a wheelchair dynamometer must be determined in order to compare the results of one study to another, independent of the type of device used. The purpose of this study was to describe and implement a dynamic calibration test for characterizing the electro-mechanical properties of a dynamometer. The inertia, the viscous friction, the kinetic friction, the motor back-electromotive force constant, and the motor constant were calculated using three different methods. The methodology based on a dynamic calibration test along with a nonlinear regression analysis produced the best results. The coefficient of determination comparing the dynamometer model output to the measured angular velocity and torque was 0.999 for a ramp input and 0.989 for a sinusoidal input. The inertia and resistance were determined for the rollers and the wheelchair wheels. The calculation of the electro-mechanical parameters allows for the complete description of the propulsive torque produced by an individual, given only the angular velocity and acceleration. The measurement of the electro-mechanical properties of the dynamometer as well as the wheelchair/human system provides the information necessary to simulate real-world conditions.

  4. Attitude motion of a non-attitude-controlled cylindrical satellite

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. K.

    1988-01-01

    In 1985, two non-attitude-controlled satellites were each placed in a low earth orbit by the Scout Launch Vehicle. The satellites were cylindrical in shape and contained reservoirs of hydrazine fuel. Three-axis magnetometer measurements, telemetered in real time, were used to derive the attitude motion of each satellite. Algorithms are generated to deduce possible orientations (and magnitudes) of each vehicle's angular momentum for each telemetry contact. To resolve ambiguities at each contact, a force model was derived to simulate the significant long-term effects of magnetic, gravity gradient, and aerodynamic torques on the angular momentum of the vehicles. The histories of the orientation and magnitude of the angular momentum are illustrated.

  5. Gimbal-Angle Vectors of the Nonredundant CMG Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Bang, Hyochoong

    2018-05-01

    This paper deals with the method using the preferred gimbal angles of a control moment gyro (CMG) cluster for controlling spacecraft attitude. To apply the method to the nonredundant CMG cluster, analytical gimbal-angle solutions for the zero angular momentum state are derived, and the gimbal-angle vectors for the nonzero angular momentum states are studied by a numerical method. It will be shown that the number of the gimbal-angle vectors is determined from the given skew angle and the angular momentum state of the CMG cluster. Through numerical examples, it is shown that the method using the preferred gimbal-angle is an efficient approach to avoid internal singularities for the nonredundant CMG cluster.

  6. Sloshing dynamics on rotating helium dewar tank

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1993-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics were based on the non-inertia frame spacecraft bound coordinate, and solve time dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers were derived. Results were widely published in the open journals.

  7. Angular-momentum-assisted dissociation of CO in strong optical fields

    NASA Astrophysics Data System (ADS)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  8. Tilt angle measurement with a Gaussian-shaped laser beam tracking

    NASA Astrophysics Data System (ADS)

    Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr; Lazar, Josef; Číp, Ondrej

    2014-05-01

    We have addressed the challenge to carry out the angular tilt stabilization of a laser guiding mirror which is intended to route a laser beam with a high energy density. Such an application requires good angular accuracy as well as large operating range, long term stability and absolute positioning. We have designed an instrument for such a high precision angular tilt measurement based on a triangulation method where a laser beam with Gaussian profile is reflected off the stabilized mirror and detected by an image sensor. As the angular deflection of the mirror causes a change of the beam spot position, the principal task is to measure the position on the image chip surface. We have employed a numerical analysis of the Gaussian intensity pattern which uses the nonlinear regression algorithm. The feasibility and performance of the method were tested by numeric modeling as well as experimentally. The experimental results indicate that the assembled instrument achieves a measurement error of 0.13 microradian in the range +/-0.65 degrees over the period of one hour. This corresponds to the dynamic range of 1:170 000.

  9. The growth of discs and bulges during hierarchical galaxy formation - II. Metallicity, stellar populations and dynamical evolution

    NASA Astrophysics Data System (ADS)

    Tonini, C.; Mutch, S. J.; Wyithe, J. S. B.; Croton, D. J.

    2017-03-01

    We investigate the properties of the stellar populations of model galaxies as a function of galaxy evolutionary history and angular momentum content. We use the new semi-analytic model presented in Tonini et al. This new model follows the angular momentum evolution of gas and stars, providing the base for a new star formation recipe, and treatment of the effects of mergers that depends on the central galaxy dynamical structure. We find that the new recipes have the effect of boosting the efficiency of the baryonic cycle in producing and recycling metals, as well as preventing minor mergers from diluting the metallicity of bulges and ellipticals. The model reproduces the stellar mass-stellar metallicity relation for galaxies above 1010 solar masses, including Brightest Cluster Galaxies. Model discs, galaxies dominated by instability-driven components, and merger-driven objects each stem from different evolutionary channels. These model galaxies therefore occupy different loci in the galaxy mass-size relation, which we find to be in accord with the ATLAS 3D classification of disc galaxies, fast rotators and slow rotators. We find that the stellar populations' properties depend on the galaxy evolutionary type, with more evolved stellar populations being part of systems that have lost or dissipated more angular momentum during their assembly history.

  10. Pragmatic mode-sum regularization method for semiclassical black-hole spacetimes

    NASA Astrophysics Data System (ADS)

    Levi, Adam; Ori, Amos

    2015-05-01

    Computation of the renormalized stress-energy tensor is the most serious obstacle in studying the dynamical, self-consistent, semiclassical evaporation of a black hole in 4D. The difficulty arises from the delicate regularization procedure for the stress-energy tensor, combined with the fact that in practice the modes of the field need to be computed numerically. We have developed a new method for numerical implementation of the point-splitting regularization in 4D, applicable to the renormalized stress-energy tensor as well as to ⟨ϕ2⟩ren , namely the renormalized ⟨ϕ2⟩. So far we have formulated two variants of this method: t -splitting (aimed for stationary backgrounds) and angular splitting (for spherically symmetric backgrounds). In this paper we introduce our basic approach, and then focus on the t -splitting variant, which is the simplest of the two (deferring the angular-splitting variant to a forthcoming paper). We then use this variant, as a first stage, to calculate ⟨ϕ2⟩ren in Schwarzschild spacetime, for a massless scalar field in the Boulware state. We compare our results to previous ones, obtained by a different method, and find full agreement. We discuss how this approach can be applied (using the angular-splitting variant) to analyze the dynamical self-consistent evaporation of black holes.

  11. Three new models for evaluation of standard involute spur gear mesh stiffness

    NASA Astrophysics Data System (ADS)

    Liang, Xihui; Zhang, Hongsheng; Zuo, Ming J.; Qin, Yong

    2018-02-01

    Time-varying mesh stiffness is one of the main internal excitation sources of gear dynamics. Accurate evaluation of gear mesh stiffness is crucial for gear dynamic analysis. This study is devoted to developing new models for spur gear mesh stiffness evaluation. Three models are proposed. The proposed model 1 can give very accurate mesh stiffness result but the gear bore surface must be assumed to be rigid. Enlighted by the proposed model 1, our research discovers that the angular deflection pattern of the gear bore surface of a pair of meshing gears under a constant torque basically follows a cosine curve. Based on this finding, two other models are proposed. The proposed model 2 evaluates gear mesh stiffness by using angular deflections at different circumferential angles of an end surface circle of the gear bore. The proposed model 3 requires using only the angular deflection at an arbitrary circumferential angle of an end surface circle of the gear bore but this model can only be used for a gear with the same tooth profile among all teeth. The proposed models are accurate in gear mesh stiffness evaluation and easy to use. Finite element analysis is used to validate the accuracy of the proposed models.

  12. The dynamics and control of large flexible space structures. Part B: Development of continuum model and computer simulation

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Kumar, V. K.; James, P. K.

    1978-01-01

    The equations of motion of an arbitrary flexible body in orbit were derived. The model includes the effects of gravity with all its higher harmonics. As a specific example, the motion of a long, slender, uniform beam in circular orbit was modelled. The example considers both the inplane and three dimensional motion of the beam in orbit. In the case of planar motion with only flexible vibrations, the pitch motion is not influenced by the elastic motion of the beam. For large values of the square of the ratio of the structural modal frequency to the orbital angular rate the elastic motion was decoupled from the pitch motion. However, for small values of the ratio and small amplitude pitch motion, the elastic motion was governed by a Hill's 3 term equation. Numerical simulation of the equation indicates the possibilities of instability for very low values of the square of the ratio of the modal frequency to the orbit angular rate. Also numerical simulations of the first order nonlinear equations of motion for a long flexible beam in orbit were performed. The effect of varying the initial conditions and the number of modes was demonstrated.

  13. The Rim Inertial Measuring System (RIMS). [to measure angular rate and linear acceleration of a moving vehicle

    NASA Technical Reports Server (NTRS)

    Groom, N. J.

    1979-01-01

    The rim inertial measuring system (RIMS) is introduced and an approach for extracting angular rate and linear acceleration information from a RIMS unit is presented and discussed. The RIMS consists of one or more small annular momentum control devices (AMCDs), mounted in a strapped down configuration, which are used to measure angular rates and linear accelerations of a moving vehicle. An AMCD consists of a spinning rim, a set of noncontacting magnetic bearings for supporting the rim, and a noncontacting electromagnetic spin motor. The approach for extracting angular rate and linear acceleration information is for a single spacecraft mounted RIMS unit.

  14. Multi-body dynamic coupling mechanism for generating throwing arm velocity during baseball pitching.

    PubMed

    Naito, Kozo; Takagi, Tokio; Kubota, Hideaki; Maruyama, Takeo

    2017-08-01

    The purpose of this study was to identify the detailed mechanism how the maximum throwing arm endpoint velocity is determined by the muscular torques and non-muscular interactive torques from the perspective of the dynamic coupling among the trunk, thorax and throwing and non-throwing arm segments. The pitching movements of ten male collegiate baseball pitchers were measured by a three-dimensional motion capture system. Using the induced-segmental velocity analysis (IVA) developed in this study, the maximum fingertip velocity of the throwing arm (MFV) was decomposed into each contribution of the muscular torques, passive motion-dependent torques due to gyroscopic moment, Coriolis force and centrifugal force, and other interactive torque components. The results showed that MFV (31.6±1.7m/s) was mainly attributed to two different mechanisms. The first is the passive motion-dependent effect on increasing the angular velocities of three joints (thorax rotation, elbow extension and wrist flexion). The second is the muscular torque effect of the shoulder internal rotation (IR) torque on generating IR angular velocity. In particular, the centrifugal force-induced elbow extension motion, which was the greatest contributor among individual joint contributions, was caused primarily by the angular velocity-dependent forces associated with the humerus, thorax, and trunk rotations. Our study also found that a compensatory mechanism was achieved by the negative and positive contributions of the muscular torque components. The current IVA is helpful to understand how the rapid throwing arm movement is determined by the dynamic coupling mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chiou, Jin-Chern

    1990-01-01

    Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.

  16. Sensor fault-tolerant control for gear-shifting engaging process of automated manual transmission

    NASA Astrophysics Data System (ADS)

    Li, Liang; He, Kai; Wang, Xiangyu; Liu, Yahui

    2018-01-01

    Angular displacement sensor on the actuator of automated manual transmission (AMT) is sensitive to fault, and the sensor fault will disturb its normal control, which affects the entire gear-shifting process of AMT and results in awful riding comfort. In order to solve this problem, this paper proposes a method of fault-tolerant control for AMT gear-shifting engaging process. By using the measured current of actuator motor and angular displacement of actuator, the gear-shifting engaging load torque table is built and updated before the occurrence of the sensor fault. Meanwhile, residual between estimated and measured angular displacements is used to detect the sensor fault. Once the residual exceeds a determined fault threshold, the sensor fault is detected. Then, switch control is triggered, and the current observer and load torque table estimates an actual gear-shifting position to replace the measured one to continue controlling the gear-shifting process. Numerical and experiment tests are carried out to evaluate the reliability and feasibility of proposed methods, and the results show that the performance of estimation and control is satisfactory.

  17. Error field optimization in DIII-D using extremum seeking control

    NASA Astrophysics Data System (ADS)

    Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; Humphreys, D. A.; Eidietis, N.; Hanson, J. M.; Paz-Soldan, C.; Strait, E. J.; Walker, M. L.

    2016-07-01

    DIII-D experiments have demonstrated a new real-time approach to tokamak error field control based on maximizing the toroidal angular momentum. This approach uses extremum seeking control theory to optimize the error field in real time without inducing instabilities. Slowly-rotating n  =  1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coil currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.

  18. Robust inertia-free attitude takeover control of postcapture combined spacecraft with guaranteed prescribed performance.

    PubMed

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yin, Zeyang; Wei, Xing; Yuan, Jianping

    2018-03-01

    In this paper, a robust inertia-free attitude takeover control scheme with guaranteed prescribed performance is investigated for postcapture combined spacecraft with consideration of unmeasurable states, unknown inertial property and external disturbance torque. Firstly, to estimate the unavailable angular velocity of combination accurately, a novel finite-time-convergent tracking differentiator is developed with a quite computationally achievable structure free from the unknown nonlinear dynamics of combined spacecraft. Then, a robust inertia-free prescribed performance control scheme is proposed, wherein, the transient and steady-state performance of combined spacecraft is first quantitatively studied by stabilizing the filtered attitude tracking errors. Compared with the existing works, the prominent advantage is that no parameter identifications and no neural or fuzzy nonlinear approximations are needed, which decreases the complexity of robust controller design dramatically. Moreover, the prescribed performance of combined spacecraft is guaranteed a priori without resorting to repeated regulations of the controller parameters. Finally, four illustrative examples are employed to validate the effectiveness of the proposed control scheme and tracking differentiator. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.

    ERIC Educational Resources Information Center

    Engelhorn, Richard

    1983-01-01

    Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)

  20. Electromagnetic wave propagating along a space curve

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Yun; Wang, Yong-Long; Liang, Guo-Hua; Wang, Fan; Zong, Hong-Shi

    2018-03-01

    By using the thin-layer approach, we derive the effective equation for the electromagnetic wave propagating along a space curve. We find intrinsic spin-orbit, extrinsic spin-orbit, and extrinsic orbital angular-momentum and intrinsic orbital angular-momentum couplings induced by torsion, which can lead to geometric phase, spin, and orbital Hall effects. And we show the helicity inversion induced by curvature that can convert a right-handed circularly polarized electromagnetic wave into a left-handed polarized one, vice versa. Finally, we demonstrate that the gauge invariance of the effective dynamics is protected by the geometrically induced gauge potential.

  1. Numerical method for high accuracy index of refraction estimation for spectro-angular surface plasmon resonance systems.

    PubMed

    Alleyne, Colin J; Kirk, Andrew G; Chien, Wei-Yin; Charette, Paul G

    2008-11-24

    An eigenvector analysis based algorithm is presented for estimating refractive index changes from 2-D reflectance/dispersion images obtained with spectro-angular surface plasmon resonance systems. High resolution over a large dynamic range can be achieved simultaneously. The method performs well in simulations with noisy data maintaining an error of less than 10(-8) refractive index units with up to six bits of noise on 16 bit quantized image data. Experimental measurements show that the method results in a much higher signal to noise ratio than the standard 1-D weighted centroid dip finding algorithm.

  2. Spin in Compton scattering with pronounced polarization dynamics

    NASA Astrophysics Data System (ADS)

    Ahrens, Sven; Sun, Chang-Pu

    2017-12-01

    We theoretically investigate a scattering configuration in Compton scattering, in which the orientation of the electron spin is reversed and, simultaneously, the photon polarization changes from linear polarization into circular polarization. The intrinsic angular momentum of electron and photon are computed along the coincident propagation direction of the incoming and outgoing photon. We find that this intrinsic angular momentum is not conserved in the considered scattering process. We also discuss the generation of entanglement for the considered scattering setup and present an angle-dependent investigation of the corresponding differential cross section, Stokes parameters, and spin expectation.

  3. Simulation of the Boltzmann Process: An Energy Space Model.

    ERIC Educational Resources Information Center

    Eger, Martin; Kress, Michael

    1982-01-01

    A model is introduced for the simulation of Boltzmann-like binary interactions which may be extended to exhibit the effect of angular dependence in the scattering cross section and other dynamical aspects of two-body interactions. (Author/SK)

  4. Critical gravitational collapse with angular momentum. II. Soft equations of state

    NASA Astrophysics Data System (ADS)

    Gundlach, Carsten; Baumgarte, Thomas W.

    2018-03-01

    We study critical phenomena in the collapse of rotating ultrarelativistic perfect fluids, in which the pressure P is related to the total energy density ρ by P =κ ρ , where κ is a constant. We generalize earlier results for radiation fluids with κ =1 /3 to other values of κ , focusing on κ <1 /9 . For 1 /9 <κ ≲0.49 , the critical solution has only one unstable, growing mode, which is spherically symmetric. For supercritical data it controls the black-hole mass, while for subcritical data it controls the maximum density. For κ <1 /9 , an additional axial l =1 mode becomes unstable. This controls either the black-hole angular momentum, or the maximum angular velocity. In theory, the additional unstable l =1 mode changes the nature of the black-hole threshold completely: at sufficiently large initial rotation rates Ω and sufficient fine-tuning of the initial data to the black-hole threshold we expect to observe nontrivial universal scaling functions (familiar from critical phase transitions in thermodynamics) governing the black-hole mass and angular momentum, and, with further fine-tuning, eventually a finite black-hole mass almost everywhere on the threshold. In practice, however, the second unstable mode grows so slowly that we do not observe this breakdown of scaling at the level of fine-tuning we can achieve, nor systematic deviations from the leading-order power-law scalings of the black-hole mass. We do see systematic effects in the black-hole angular momentum, but it is not clear yet if these are due to the predicted nontrivial scaling functions, or to nonlinear effects at sufficiently large initial angular momentum (which we do not account for in our theoretical model).

  5. Error field optimization in DIII-D using extremum seeking control

    DOE PAGES

    Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; ...

    2016-06-03

    A closed-loop error field control algorithm is implemented in the Plasma Control System of the DIII-D tokamak and used to identify optimal control currents during a single plasma discharge. The algorithm, based on established extremum seeking control theory, exploits the link in tokamaks between maximizing the toroidal angular momentum and minimizing deleterious non-axisymmetric magnetic fields. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coilmore » currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.« less

  6. Are Covert Saccade Functionally Relevant in Vestibular Hypofunction?

    PubMed

    Hermann, R; Pelisson, D; Dumas, O; Urquizar, Ch; Truy, E; Tilikete, C

    2018-06-01

    The vestibulo-ocular reflex maintains gaze stabilization during angular or linear head accelerations, allowing adequate dynamic visual acuity. In case of bilateral vestibular hypofunction, patients use saccades to compensate for the reduced vestibulo-ocular reflex function, with covert saccades occurring even during the head displacement. In this study, we questioned whether covert saccades help maintain dynamic visual acuity, and evaluated which characteristic of these saccades are the most relevant to improve visual function. We prospectively included 18 patients with chronic bilateral vestibular hypofunction. Subjects underwent evaluation of dynamic visual acuity in the horizontal plane as well as video recording of their head and eye positions during horizontal head impulse tests in both directions (36 ears tested). Frequency, latency, consistency of covert saccade initiation, and gain of covert saccades as well as residual vestibulo-ocular reflex gain were calculated. We found no correlation between residual vestibulo-ocular reflex gain and dynamic visual acuity. Dynamic visual acuity performance was however positively correlated with the frequency and gain of covert saccades and negatively correlated with covert saccade latency. There was no correlation between consistency of covert saccade initiation and dynamic visual acuity. Even though gaze stabilization in space during covert saccades might be of very short duration, these refixation saccades seem to improve vision in patients with bilateral vestibular hypofunction during angular head impulses. These findings emphasize the need for specific rehabilitation technics that favor the triggering of covert saccades. The physiological origin of covert saccades is discussed.

  7. Dynamic balance in elite karateka.

    PubMed

    Zago, Matteo; Mapelli, Andrea; Shirai, Yuri Francesca; Ciprandi, Daniela; Lovecchio, Nicola; Galvani, Christel; Sforza, Chiarella

    2015-12-01

    In karate, balance control represents a key performance determinant. With the hypothesis that high-level athletes display advanced balance abilities, the purpose of the current study was to quantitatively investigate the motor strategies adopted by elite and non-elite karateka to maintain balance control in competition. The execution of traditional karate techniques (kihon) in two groups of elite Masters (n = 6, 31 ± 19 years) and non-elite Practitioners (n = 4, 25 ± 9 years) was compared assessing body center of mass (CoM) kinematics and other relevant parameters like step width and angular joint behavior. In the considered kihon sequence, normalized average CoM height was 8% lower (p < 0.05), while CoM displacement in the horizontal direction was significantly higher in Masters than in Practitioners (2.5 vs. 1.9 m, p < 0.05), as well as CoM average velocity and rms acceleration (p < 0.05). Step width was higher in Masters in more than half of the sequence steps (p < 0.05). Results suggest that elite karateka showed a refined dynamic balance control, obtained through the increase of the base of support and different maneuvers of lower limbs. The proposed method could be used to objectively detect talented karateka, to measure proficiency level and to assess training effectiveness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR).

    PubMed

    Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran

    2015-04-23

    In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range.

  9. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR)

    PubMed Central

    Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran

    2015-01-01

    In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range. PMID:25915590

  10. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.

    PubMed

    Quinteiro, G F; Tamborenea, P I; Berakdar, J

    2011-12-19

    We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.

  11. Tunable orbital angular momentum in high-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, David; Ribič, P. Rebernik; Adhikary, G.

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions,more » and the disentanglement and independent control of the intrinsic and extrinsic components of the photon’s angular momentum at short-wavelengths. Finally, the methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms.« less

  12. Tunable orbital angular momentum in high-harmonic generation

    DOE PAGES

    Gauthier, David; Ribič, P. Rebernik; Adhikary, G.; ...

    2017-04-05

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions,more » and the disentanglement and independent control of the intrinsic and extrinsic components of the photon’s angular momentum at short-wavelengths. Finally, the methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms.« less

  13. Dynamics and Control of Attitude, Power, and Momentum for a Spacecraft Using Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Seywald, Hans; Bose, David M.

    2003-01-01

    Several laws are designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as an integrated set of actuators for attitude control. General, nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as a means of compensating for damping exerted by rotor bearings. Two flywheel steering laws are developed such that torque commanded by an attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude, and illustrate the benefits of kinetic energy error feedback. Control laws for attitude hold are also developed, and used to show the amount of propellant that can be saved when flywheels assist the CMGs. Nonlinear control laws for large-angle slew maneuvers perform well, but excessive momentum is required to reorient a vehicle like the International Space Station.

  14. Nonlinear Attitude Control of Planar Structures in Space Using Only Internal Controls

    NASA Technical Reports Server (NTRS)

    Reyhanoglu, Mahmut; Mcclamroch, N. Harris

    1993-01-01

    An attitude control strategy for maneuvers of an interconnection of planar bodies in space is developed. It is assumed that there are no exogeneous torques and that torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero. The control strategy utilizes the nonintegrability of the expression for the angular momentum. Large angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is summarized.

  15. A Study of Longitudinal Control Problems at Low and Negative Damping and Stability with Emphasis on Effects of Motion Cues

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.

    1961-01-01

    As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision.

  16. Angular velocity of gravitational radiation from precessing binaries and the corotating frame

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2013-05-01

    This paper defines an angular velocity for time-dependent functions on the sphere and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important—and largely ignored—problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the corotating frame of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive, and consistent framework for waveform analysis. Explicit implementations of all these methods are provided in accompanying computer code.

  17. Structural optimization of Beach-Cleaner snatch mechanism

    NASA Astrophysics Data System (ADS)

    Ouyang, Lian-ge; Wei, Qin-rui; Zhou, Shui-ting; Peng, Qian; Zhao, Yuan-jiang; Wang, Fang

    2017-12-01

    In the working process of one Beach-Cleaner snatch institution, the second knuckle arm angular speed was too high, which resulted in the pick-up device would crash into the basic arm in the fold process. The rational position of joint to reduce the second knuckle arm angular speed and the force along the axis direction of the most dangerous point can be obtained from the kinematics simulation of snatch institution in the code of Automatic Dynamic Analysis off Mechanical Systems (ADAAMS). The feasible of scheme was validated by analyzing the optimized model in the software of ANSYS. The analysis results revealed: the open angle between the basic arm and the second knuckle arm improved from 125.0° too 135.24°, thee second knuckle arm angular speed decreased from 990.74rad/s to 58.53 rad/s, Not only improved work efficiency of snatch institution, but also prolonged its operation smoothness.

  18. Spin-torque driven magnetization switching in ferromagnetic nanopillar with pinned layer biasing configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhoomeeswaran, H.; Sabareesan, P., E-mail: sendtosabari@gmail.com; Bharathi, B. Divya

    2016-05-06

    Magnetization switching driven by spin transfer torque in a ferromagnetic nanopillar by biasing the angular polarizer with different orientation has been studied. The free layer dynamics includes the spin torque from the oscillating free layer with magneto crystalline anisotropy and shape anisotropy, which is governed by the Landau-Lifshitsz-Gilbert-Slonczweski (LLGS) equation and solving it numerically by using embedded Runge Kutta fourth order method. Results of numerical simulation shows that there is a drastic reduction of switching time in the free layer by the orientation of angular polarizer of the nano pillar device. We fixed the angular polarizer as 0°, 30°, 60°,more » 90° and the corresponding switching time is 6.53 ns, 4.36 ns, 2.25 ns and 1.21 ns respectively for an applied current density of 5 × 10{sup 11} Am{sup −2}.« less

  19. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  20. Phase Resolved Angular Velocity Control of Cross Flow Turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2015-11-01

    Cross flow turbines have a number of operational advantages for the conversion of kinetic energy in marine or fluvial currents, but they are often less efficient than axial flow devices. Here a control scheme is presented in which the angular velocity of a cross flow turbine with two straight blades is prescribed as a function of azimuthal blade position, altering the time-varying effective angle of attack. Flume experiments conducted with a scale model turbine show approximately an 80% increase in turbine efficiency versus optimal constant angular velocity and constant resistive torque control schemes. Torque, drag, and lateral forces on one- and two-bladed turbines are analyzed and interpreted with bubble flow visualization to develop a simple model that describes the hydrodynamics responsible for the observed increase in mean efficiency. Challenges associated with implementing this control scheme on commercial-scale devices are discussed. If solutions are found, the performance increase presented here may impact the future development of cross flow turbines.

  1. Hingeless Rotorcraft Flight Dynamics

    DTIC Science & Technology

    1974-01-01

    or pitch rate of the rotor to determine the rotor forces and moments on the hub for these conditions. Many phenomena of flight dynamics can be treated... determining the hub forces and moments per unit linear and angular velocity increment from trim. The rotor derivatives can also be determined from...attitude instability. Since rotor lift and drag forces contribute to handling qualities, they must be determined . The rotor characteristics are also of no

  2. Dynamic theory of neutron diffraction from a moving grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushuev, V. A., E-mail: vabushuev@yandex.ru; Frank, A. I.; Kulin, G. V.

    2016-01-15

    A multiwave dynamic theory of diffraction of ultracold neutrons from a moving phase grating has been developed in the approximation of coupled slowly varying amplitudes of wavefunctions. The effect of the velocity, period, and height of grooves of the grating, as well as the spectral angular distribution of the intensity of incident neurons, on the discrete energy spectrum and the intensity of diffraction reflections of various orders has been analyzed.

  3. Molecular Dynamics Simulation Studies of Fracture in Two Dimensions

    DTIC Science & Technology

    1980-05-01

    reversibility of trajectories. The microscopic elastic constants, dispersion relation and phonon spectrum of the system were determined by lattice dynamics. These... linear elasticity theory of a two-dimensional crack embedded in an infinite medium. System con- sists of 436 particles arranged in a tri- angular lattice ...satisfying these demands. In evaluating the mechanical energy of his model, Griffith used a result from linear elasticity theory, namely that for any body

  4. Dual-wavelength laser with topological charge

    NASA Astrophysics Data System (ADS)

    Yu, Haohai; Xu, Miaomiao; Zhao, Yongguang; Wang, Yicheng; Han, Shuo; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang

    2013-09-01

    We demonstrate the simultaneous oscillation of different photons with equal orbital angular momentum in solid-state lasers for the first time to our knowledge. Single tunable Hermite-Gaussian (HG0,n) (0 ≤ n ≤ 7) laser modes with dual wavelength were generated using an isotropic cavity. With a mode-converter, the corresponding Laguerre-Gaussian (LG0,n) laser modes were obtained. The oscillating laser modes have two types of photons at the wavelengths of 1077 and 1081 nm and equal orbital angular momentum of nħ per photon. These results identify the possibility of simultaneous oscillation of different photons with equal and controllable orbital angular momentum. It can be proposed that this laser should have promising applications in many fields based on its compact structure, tunable orbital angular momentum, and simultaneous oscillation of different photons with equal orbital angular momentum.

  5. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Gul, M. Shahzeb Khan; Gunturk, Bahadir K.

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  6. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.

    PubMed

    Gul, M Shahzeb Khan; Gunturk, Bahadir K

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  7. The Astronomical Low Frequency Array: A Proposed Explorer Mission for Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Jones, D.; Allen, R.; Basart, J.; Bastian, T.; Bougeret, J. L.; Dennison, B.; Desch, M.; Dwarakanath, K.; Erickson, W.; Finley, D.; hide

    1999-01-01

    A radio interferometer array in space providing high dynamic range images with unprecedented angular resolution over the broad frequency range from 0.030 - 30 MHz will open new vistas in solar, terrestial, galactic, and extragalactic astrophysics.

  8. A nonlinear controller design for permanent magnet motors using a synchronization-based technique inspired from the Lorenz system.

    PubMed

    Zaher, Ashraf A

    2008-03-01

    The dynamic behavior of a permanent magnet synchronous machine (PMSM) is analyzed. Nominal and special operating conditions are explored to show that the PMSM can experience chaos. A nonlinear controller is introduced to control these unwanted chaotic oscillations and to bring the PMSM to a stable steady state. The designed controller uses a pole-placement approach to force the closed-loop system to follow the performance of a simple first-order linear system with zero steady-state error to a desired set point. The similarity between the mathematical model of the PMSM and the famous chaotic Lorenz system is utilized to design a synchronization-based state observer using only the angular speed for feedback. Simulation results verify the effectiveness of the proposed controller in eliminating the chaotic oscillations while using a single feedback signal. The superiority of the proposed controller is further demonstrated by comparing it with a conventional PID controller. Finally, a laboratory-based experiment was conducted using the MCK2812 C Pro-MS(BL) motion control kit to confirm the theoretical results and to verify both the causality and versatility of the proposed controller.

  9. Biomechanically Induced and Controller Coupled Oscillations Experienced on the F-16XL Aircraft During Rolling Maneuvers

    NASA Technical Reports Server (NTRS)

    Smith, John W.; Montgomery, Terry

    1996-01-01

    During rapid rolling maneuvers, the F-16 XL aircraft exhibits a 2.5 Hz lightly damped roll oscillation, perceived and described as 'roll ratcheting.' This phenomenon is common with fly-by-wire control systems, particularly when primary control is derived through a pedestal-mounted side-arm controller. Analytical studies have been conducted to model the nature of the integrated control characteristics. The analytical results complement the flight observations. A three-degree-of-freedom linearized set of aerodynamic matrices was assembled to simulate the aircraft plant. The lateral-directional control system was modeled as a linear system. A combination of two second-order transfer functions was derived to couple the lateral acceleration feed through effect of the operator's arm and controller to the roll stick force input. From the combined systems, open-loop frequency responses and a time history were derived, describing and predicting an analogous in-flight situation. This report describes the primary control, aircraft angular rate, and position time responses of the F-16 XL-2 aircraft during subsonic and high-dynamic-pressure rolling maneuvers. The analytical description of the pilot's arm and controller can be applied to other aircraft or simulations to assess roll ratcheting susceptibility.

  10. Planar reorientation of a free-free beam in space using embedded electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Kolmanovsky, Ilya V.; Mcclamroch, N. Harris

    1993-01-01

    It is demonstrated that the planar reorientation of a free-free beam in zero gravity space can be accomplished by periodically changing the shape of the beam using embedded electromechanical actuators. The dynamics which determine the shape of the free-free beam is assumed to be characterized by the Euler-Bernoulli equation, including material damping, with appropriate boundary conditions. The coupling between the rigid body motion and the flexible motion is explained using the angular momentum expression which includes rotatory inertia and kinematically exact effects. A control scheme is proposed where the embedded actuators excite the flexible motion of the beam so that it rotates in the desired sense with respect to a fixed inertial reference. Relations are derived which relate the average rotation rate to the amplitudes and the frequencies of the periodic actuation signal and the properties of the beam. These reorientation maneuvers can be implemented by using feedback control.

  11. A Prediction of Response of the Head and Neck of the U.S. Adult Military Population to Dynamic Impact Acceleration from Selected Dynamic Test Subjects.

    DTIC Science & Technology

    1976-05-01

    to Review Grants for Clinical Research and Investigation Involving Human Beings, Medical School, The University of Michigan. 3 of biomechanical models...human volunteers in dynamic sled tests found no clinically observable effects. due to acceleration on a subject in which the peak mouth angular...minutes cf rest between trials , and the average fo-ce of each set computed. Figure 2.7 shows typi- cal forcc curves and the EMG signal resulting from

  12. Ordered and disordered dynamics in monolayers of rolling particles.

    PubMed

    Kim, Byungsoo; Putkaradze, Vakhtang

    2010-12-10

    We consider the ordered and disordered dynamics for monolayers of rolling self-interacting particles modeling water molecules. The rolling constraint represents a simplified model of a strong, but rapidly decaying bond with the surface. We show the existence and nonlinear stability of ordered lattice states, as well as disturbance propagation through and chaotic vibrations of these states. We study the dynamics of disordered gas states and show that there is a surprising and universal linear connection between distributions of angular and linear velocity, allowing definition of temperature.

  13. European Workshop on Planetary Sciences, Rome, Italy, April 23-27, 1979, Proceedings. Part 1

    NASA Astrophysics Data System (ADS)

    1980-02-01

    Papers are presented on the dynamics and evolution of the solar system and its components. Specific topics include the dynamic stability of the solar system, the tidal friction theory of the earth moon system, the stability and irregularity of extrasolar planetary systems, angular momentum and magnetic braking during star formation, the collisional growth of planetesimals, the dynamics, interrelations and evolution of the asteroids and comets, the formation and stability of Saturn's rings, and the importance of nearly tangent orbits in planetary close encounters.

  14. Dynamic traversal of large gaps by insects and legged robots reveals a template.

    PubMed

    Gart, Sean W; Yan, Changxin; Othayoth, Ratan; Ren, Zhiyi; Li, Chen

    2018-02-02

    It is well known that animals can use neural and sensory feedback via vision, tactile sensing, and echolocation to negotiate obstacles. Similarly, most robots use deliberate or reactive planning to avoid obstacles, which relies on prior knowledge or high-fidelity sensing of the environment. However, during dynamic locomotion in complex, novel, 3D terrains, such as a forest floor and building rubble, sensing and planning suffer bandwidth limitation and large noise and are sometimes even impossible. Here, we study rapid locomotion over a large gap-a simple, ubiquitous obstacle-to begin to discover the general principles of the dynamic traversal of large 3D obstacles. We challenged the discoid cockroach and an open-loop six-legged robot to traverse a large gap of varying length. Both the animal and the robot could dynamically traverse a gap as large as one body length by bridging the gap with its head, but traversal probability decreased with gap length. Based on these observations, we developed a template that accurately captured body dynamics and quantitatively predicted traversal performance. Our template revealed that a high approach speed, initial body pitch, and initial body pitch angular velocity facilitated dynamic traversal, and successfully predicted a new strategy for using body pitch control that increased the robot's maximal traversal gap length by 50%. Our study established the first template of dynamic locomotion beyond planar surfaces, and is an important step in expanding terradynamics into complex 3D terrains.

  15. A Pilot Study of Individual Muscle Force Prediction during Elbow Flexion and Extension in the Neurorehabilitation Field

    PubMed Central

    Hou, Jiateng; Sun, Yingfei; Sun, Lixin; Pan, Bingyu; Huang, Zhipei; Wu, Jiankang; Zhang, Zhiqiang

    2016-01-01

    This paper proposes a neuromusculoskeletal (NMS) model to predict individual muscle force during elbow flexion and extension. Four male subjects were asked to do voluntary elbow flexion and extension. An inertial sensor and surface electromyography (sEMG) sensors were attached to subject's forearm. Joint angle calculated by fusion of acceleration and angular rate using an extended Kalman filter (EKF) and muscle activations obtained from the sEMG signals were taken as the inputs of the proposed NMS model to determine individual muscle force. The result shows that our NMS model can predict individual muscle force accurately, with the ability to reflect subject-specific joint dynamics and neural control solutions. Our method incorporates sEMG and motion data, making it possible to get a deeper understanding of neurological, physiological, and anatomical characteristics of human dynamic movement. We demonstrate the potential of the proposed NMS model for evaluating the function of upper limb movements in the field of neurorehabilitation. PMID:27916853

  16. Density matrix-based time-dependent configuration interaction approach to ultrafast spin-flip dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver

    2017-08-01

    Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.

  17. Design and control of rotating soil-like substrate plant-growing facility based on plant water requirement and computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Li, Leyuan; Liu, Hui; Zhang, Houkai; Fu, Yuming; Sun, Yi; Li, Liang

    It is necessary to process inedible plant biomass into soil-like substrate (SLS) by bio-compost to realize biological resource sustainable utilization. Although similar to natural soil in structure and function, SLS often has uneven water distribution adversely affecting the plant growth due to unsatisfactory porosity, permeability and gravity distribution. In this article, SLS plant-growing facility (SLS-PGF) were therefore rotated properly for cultivating lettuce, and the Brinkman equations coupled with laminar flow equations were taken as governing equations, and boundary conditions were specified by actual operating characteristics of rotating SLS-PGF. Optimal open-control law of the angular and inflow velocity was determined by lettuce water requirement and CFD simulations. The experimental result clearly showed that water content was more uniformly distributed in SLS under the action of centrifugal and Coriolis force, rotating SLS-PGF with the optimal open-control law could meet lettuce water requirement at every growth stage and achieve precise irrigation.

  18. Template-DTW based on inertial signals: Preliminary results for step characterization.

    PubMed

    Mantilla, Juan; Oudre, Laurent; Barrois, Remi; Vienne, Alienor; Ricard, Damien

    2017-07-01

    In this paper, we present a method for the creation of a library of inertial signals based on Dynamic Time Warping (DTW) for step characterization, with preliminary results in control subjects and patients with neurological diseases. Subjects performed a protocol including a 10 m straight walking, then turn back and walking for additional 10 m. The library is constructed with inertial signals (acceleration and angular velocities recorded in three directions) aligned with the DTW. Templates in the library are obtained for a specific cohort and for the different walking phases of the protocol. They are compared to the signal of a single subject by calculating a Pearson correlation coefficient. The method has been tested on a database of 864 exercises, obtained from 71 healthy controls, 24 patients with Parkinson disease and 48 patients with Radiation Induced Leukoencephalopathy (RIL). Pearson correlation classification reports a precision of about 85% for step detection. For exercise characterization the sensitivity is about 57%, 56% and 82% for Parkinson, RIL and control subjects respectively.

  19. Neural decoding of treadmill walking from noninvasive electroencephalographic signals

    PubMed Central

    Presacco, Alessandro; Goodman, Ronald; Forrester, Larry

    2011-01-01

    Chronic recordings from ensembles of cortical neurons in primary motor and somatosensory areas in rhesus macaques provide accurate information about bipedal locomotion (Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA. Front Integr Neurosci 3: 3, 2009). Here we show that the linear and angular kinematics of the ankle, knee, and hip joints during both normal and precision (attentive) human treadmill walking can be inferred from noninvasive scalp electroencephalography (EEG) with decoding accuracies comparable to those from neural decoders based on multiple single-unit activities (SUAs) recorded in nonhuman primates. Six healthy adults were recorded. Participants were asked to walk on a treadmill at their self-selected comfortable speed while receiving visual feedback of their lower limbs (i.e., precision walking), to repeatedly avoid stepping on a strip drawn on the treadmill belt. Angular and linear kinematics of the left and right hip, knee, and ankle joints and EEG were recorded, and neural decoders were designed and optimized with cross-validation procedures. Of note, the optimal set of electrodes of these decoders were also used to accurately infer gait trajectories in a normal walking task that did not require subjects to control and monitor their foot placement. Our results indicate a high involvement of a fronto-posterior cortical network in the control of both precision and normal walking and suggest that EEG signals can be used to study in real time the cortical dynamics of walking and to develop brain-machine interfaces aimed at restoring human gait function. PMID:21768121

  20. Modified hydraulic braking system limits angular deceleration to safe values

    NASA Technical Reports Server (NTRS)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  1. An Angular Method with Position Control for Block Mesh Squareness Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, J.; Stillman, D.

    We optimize a target function de ned by angular properties with a position control term for a basic stencil with a block-structured mesh, to improve element squareness in 2D and 3D. Comparison with the condition number method shows that besides a similar mesh quality regarding orthogonality can be achieved as the former does, the new method converges faster and provides a more uniform global mesh spacing in our numerical tests.

  2. Angular default mode network connectivity across working memory load.

    PubMed

    Vatansever, D; Manktelow, A E; Sahakian, B J; Menon, D K; Stamatakis, E A

    2017-01-01

    Initially identified during no-task, baseline conditions, it has now been suggested that the default mode network (DMN) engages during a variety of working memory paradigms through its flexible interactions with other large-scale brain networks. Nevertheless, its contribution to whole-brain connectivity dynamics across increasing working memory load has not been explicitly assessed. The aim of our study was to determine which DMN hubs relate to working memory task performance during an fMRI-based n-back paradigm with parametric increases in difficulty. Using a voxel-wise metric, termed the intrinsic connectivity contrast (ICC), we found that the bilateral angular gyri (core DMN hubs) displayed the greatest change in global connectivity across three levels of n-back task load. Subsequent seed-based functional connectivity analysis revealed that the angular DMN regions robustly interact with other large-scale brain networks, suggesting a potential involvement in the global integration of information. Further support for this hypothesis comes from the significant correlations we found between angular gyri connectivity and reaction times to correct responses. The implication from our study is that the DMN is actively involved during the n-back task and thus plays an important role related to working memory, with its core angular regions contributing to the changes in global brain connectivity in response to increasing environmental demands. Hum Brain Mapp 38:41-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Resonant interatomic Coulombic decay in HeNe: Electron angular emission distributions

    NASA Astrophysics Data System (ADS)

    Mhamdi, A.; Trinter, F.; Rauch, C.; Weller, M.; Rist, J.; Waitz, M.; Siebert, J.; Metz, D.; Janke, C.; Kastirke, G.; Wiegandt, F.; Bauer, T.; Tia, M.; Cunha de Miranda, B.; Pitzer, M.; Sann, H.; Schiwietz, G.; Schöffler, M.; Simon, M.; Gokhberg, K.; Dörner, R.; Jahnke, T.; Demekhin, Ph. Â. V.

    2018-05-01

    We present a joint experimental and theoretical study of resonant interatomic Coulombic decay (RICD) in HeNe employing high resolution cold target recoil ion momentum spectroscopy and ab initio electronic structure and nuclear dynamics calculations. In particular, laboratory- and molecular-frame angular emission distributions of RICD electrons are examined in detail. The exciting-photon energy-dependent anisotropy parameter β (ω ) , measured for decay events that populate bound HeNe+ ions, is in agreement with the calculations performed for the ground ionic state X2Σ1/2 + . A contribution from the a2Π3 /2 final ionic state is found to be negligible. For the He +Ne+ fragmentation channel, the observed laboratory-frame angular distribution of RICD electrons is explained by a slow homogeneous dissociation of bound vibrational levels of the final ionic state A2Π1 /2 into vibrational continua of the lower lying states X2Σ1/2 + and a2Π3 /2 . Our calculations predict that the angular distributions of RICD electrons in the body-fixed dipole plane provide direct access to the electronic character (i.e., symmetry) of intermediate vibronic resonances. However, because of the very slow dissociation of the A2Π1 /2 state, the molecular-frame angular distributions of RICD electrons in the He +Ne+ fragmentation channel are inaccessible to our coincidence experiment.

  4. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    PubMed

    Xingling, Shao; Honglun, Wang

    2014-11-01

    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Correlation between Angular Widths of CMEs and Characteristics of Their Source Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, X. H.; Feng, X. S.; Feng, H. Q.

    The angular width of a coronal mass ejection (CME) is an important factor in determining whether the corresponding interplanetary CME (ICME) and its preceding shock will reach Earth. However, there have been very few studies of the decisive factors of the CME’s angular width. In this study, we use the three-dimensional (3D) angular width of CMEs obtained from the Graduated Cylindrical Shell model based on observations of Solar Terrestrial Relations Observatory ( STEREO ) to study the relations between the CME’s 3D width and characteristics of the CME’s source region. We find that for the CMEs produced by active regionsmore » (ARs), the CME width has some correlations with the AR’s area and flux, but these correlations are not strong. The magnetic flux contained in the CME seems to come from only part of the AR’s total flux. For the CMEs produced by flare regions, the correlations between the CME angular width and the flare region’s area and flux are strong. The magnetic flux within those CMEs seems to come from the whole flare region or even from a larger region than the flare. Our findings show that the CME’s 3D angular width can be generally estimated based on observations of Solar Dynamics Observatory for the CME’s source region instead of the observations from coronagraphs on board the Solar and Heliospheric Observatory and STEREO if the two foot points of the CME stay in the same places with no expansion of the CME in the transverse direction until reaching Earth.« less

  6. Planetary rings - Theory

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.

  7. Photoionization dynamics of ammonia (B(1)E''): dependence on ionizing photon energy and initial vibrational level.

    PubMed

    Hockett, Paul; Staniforth, Michael; Reid, Katharine L

    2010-10-28

    In this article we present photoelectron spectra and angular distributions in which ion rotational states are resolved. This data enables the comparison of direct and threshold photoionization techniques. We also present angle-resolved photoelectron signals at different total energies, providing a method to scan the structure of the continuum in the near-threshold region. Finally, we have studied the influence of vibrational excitation on the photoionization dynamics.

  8. Momentum-imaging apparatus for the study of dissociative electron attachment dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradmand, A.; Williams, J. B.; Landers, A. L.

    An ion-momentum spectrometer is used to study the dissociative dynamics of electron attachment to molecules. A skimmed, supersonic gas jet is crossed with a pulsed beam of low-energy electrons, and the resulting negative ions are extracted toward a time- and position-sensitive detector. Calculations of the momentum in three dimensions may be used to determine the angular dependence of dissociative attachment as well as the energetics of the reaction.

  9. A conserved quantity in thin body dynamics

    NASA Astrophysics Data System (ADS)

    Hanna, J. A.; Pendar, H.

    2016-02-01

    Thin, solid bodies with metric symmetries admit a restricted form of reparameterization invariance. Their dynamical equilibria include motions with both rigid and flowing aspects. On such configurations, a quantity is conserved along the intrinsic coordinate corresponding to the symmetry. As an example of its utility, this conserved quantity is combined with linear and angular momentum currents to construct solutions for the equilibria of a rotating, flowing string, for which it is akin to Bernoulli's constant.

  10. A computational procedure for multibody systems including flexible beam dynamics

    NASA Technical Reports Server (NTRS)

    Downer, J. D.; Park, K. C.; Chiou, J. C.

    1990-01-01

    A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. The flexible beams are modeled using a fully nonlinear theory which accounts for both finite rotations and large deformations. The present formulation incorporates physical measures of conjugate Cauchy stress and covariant strain increments. As a consequence, the beam model can easily be interfaced with real-time strain measurements and feedback control systems. A distinct feature of the present work is the computational preservation of total energy for undamped systems; this is obtained via an objective strain increment/stress update procedure combined with an energy-conserving time integration algorithm which contains an accurate update of angular orientations. The procedure is demonstrated via several example problems.

  11. The solar optical telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.

  12. Mechanical Properties of Copper Processed by Equal Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Sülleiová, K.; Ballóková, B.; Besterci, M.; Kvačkaj, T.

    2017-12-01

    The development of the nanostructure in commercial pure copper and the strength and ductility after severe plastic deformation (SPD) with the technology of equal channel angular pressing (ECAP) are analysed. Experimental results and analyses showed that both strength and ductility can be increased simultaneously by SPD. The final grain size decreased from the initial 50μm by SPD to 100-300 nm after 10 passes. An increase of the ductility together with an increase of strength caused by SPD are explained by a strong grain refinement and by a dynamic equilibrium of weakening and strengthening, and it is visible on the final static tensile test stress-strain charts.

  13. Nonaxisymmetric incompressible hydrostatic pressure effects in radial face seals

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    A flat seal having an angular misalinement is analyzed, taking into account the radial variations in seal clearance. An analytical solution for axial force, tilting moment, and leakage is presented that covers the whole range from zero to full angular misalinement. Nonaxisymmetric hydrostatic pressures due to the radial variations in the film thickness have a considerable effect on seal stability. When the high pressure is on the outer periphery of the seal, both the axial force and the tilting moment are nonrestoring. The case of high-pressure seals where cavitation is eliminated is discussed, and the possibility of dynamic instability is pointed out.

  14. A theory of ring formation around Be stars

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1976-01-01

    A theory for the formation of gaseous rings around Be stars is developed which involves the combined effect of stellar rotation and radiation pressure. A qualitative scenario of ring formation is outlined in which the envelope formed about a star from ejected material is in the form of a disk in the equatorial plane, collisions between ejected gas blobs are inevitable, and particles with high angular momenta form a rotating ring around the star. A quantitative description of this process is then formulated by considering the angular momentum and dynamical energy of the ejected matter as well as those of the ring alone, without introducing any other assumptions.

  15. Extra-tropical QBO signals in angular momentum and wave forcing

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Tung, Ka Kit

    1994-01-01

    Although the period of the equatorial stratospheric quasi-biennal oscillation (QBO) is approximately 30 months, quasi-biennial modulation of the extratropical annual cycle may be expected to produce additional spectral peaks at approximately to produce additional spectral peaks at approximately 8.6 and 20 months in the extratropics. Using Northern Hemisphere data for 1964-78 and global data for 1978-93 it is shown that these spectral peaks are robust in both angular momentum and Eliassen-Palm flux divergence. This spectral signature represents a circulation anomaly in both hemispheres, and implies a dynamical origin to the previously observed similar spectral peaks in column ozone in the extratropics.

  16. Independent polarisation control of multiple optical traps

    PubMed Central

    Preece, Daryl; Keen, Stephen; Botvinick, Elliot; Bowman, Richard; Padgett, Miles; Leach, Jonathan

    2009-01-01

    We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a “split-screen” configuration to generate beams of orthogonal polarisation states which are subsequently combined at a polarising beam splitter. Defining the phase difference between the beams with the spatial light modulator enables control of the polarisation state of the light. We demonstrate the functionality of the system by controlling the rotation and orientation of birefringent vaterite crystals within holographic optical tweezers. PMID:18825226

  17. Don't Fence Me In: Free Meanders in a Confined River Valley

    NASA Astrophysics Data System (ADS)

    Eke, E. C.; Wilcock, P. R.

    2015-12-01

    The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.

  18. Nearside-farside, local angular momentum and resummation theories: Useful tools for understanding the dynamics of complex-mode reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankel, Marlies, E-mail: m.hankel@uq.edu.au, E-mail: j.n.l.connor@manchester.ac.uk; Connor, J. N. L., E-mail: m.hankel@uq.edu.au, E-mail: j.n.l.connor@manchester.ac.uk

    2015-07-15

    A valuable tool for understanding the dynamics of direct reactions is Nearside-Farside (NF) scattering theory. It makes a decomposition of the (resummed) partial wave series for the scattering amplitude, both for the differential cross section (DCS) and the Local Angular Momentum (LAM). This paper makes the first combined application of these techniques to complex-mode reactions. We ask if NF theory is a useful tool for their identification, in particular, can it distinguish complex-mode from direct-mode reactions? We also ask whether NF theory can identify NF interference oscillations in the full DCSs of complex-mode reactions. Our investigation exploits the fact thatmore » accurate quantum scattering matrix elements have recently become available for complex-mode reactions. We first apply NF theory to two simple models for the scattering amplitude of a complex-mode reaction: One involves a single Legendre polynomial; the other involves a single Legendre function of the first kind, whose form is suggested by complex angular momentum theory. We then study, at fixed translational energies, four state-to-state complex-mode reactions. They are: S({sup 1}D) + HD → SH + D, S({sup 1}D) + DH → SD + H, N({sup 2}D) +H{sub 2} → NH + H, and H{sup +} + D{sub 2} → HD + D{sup +}. We compare the NF results for the DCSs and LAMs with those for a state-to-state direct reaction, namely, F + H{sub 2} → FH + H. We demonstrate that NF theory is a valuable tool for identifying and analyzing the dynamics of complex-mode reactions.« less

  19. Effective star tracking method based on optical flow analysis for star trackers.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  20. mocca-SURVEY database I. Accreting white dwarf binary systems in globular clusters - III. Cataclysmic variables - implications of model assumptions

    NASA Astrophysics Data System (ADS)

    Belloni, Diogo; Zorotovic, Mónica; Schreiber, Matthias R.; Leigh, Nathan W. C.; Giersz, Mirek; Askar, Abbas

    2017-06-01

    In this third of a series of papers related to cataclysmic variables (CVs) and related objects, we analyse the population of CVs in a set of 12 globular cluster models evolved with the MOCCA Monte Carlo code, for two initial binary populations (IBPs), two choices of common-envelope phase (CEP) parameters, and three different models for the evolution of CVs and the treatment of angular momentum loss. When more realistic models and parameters are considered, we find that present-day cluster CV duty cycles are extremely low (≲0.1 per cent) that makes their detection during outbursts rather difficult. Additionally, the IBP plays a significant role in shaping the CV population properties, and models that follow the Kroupa IBP are less affected by enhanced angular momentum loss. We also predict from our simulations that CVs formed dynamically in the past few Gyr (massive CVs) correspond to bright CVs (as expected) and that faint CVs formed several Gyr ago (dynamically or not) represent the overwhelming majority. Regarding the CV formation rate, we rule out the notion that it is similar irrespective of the cluster properties. Finally, we discuss the differences in the present-day CV properties related to the IBPs, the initial cluster conditions, the CEP parameters, formation channels, the CV evolution models and the angular momentum loss treatments.

  1. Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft

    NASA Astrophysics Data System (ADS)

    Desbazeille, M.; Randall, R. B.; Guillet, F.; El Badaoui, M.; Hoisnard, C.

    2010-07-01

    This work aims at monitoring large diesel engines by analyzing the crankshaft angular speed variations. It focuses on a powerful 20-cylinder diesel engine with crankshaft natural frequencies within the operating speed range. First, the angular speed variations are modeled at the crankshaft free end. This includes modeling both the crankshaft dynamical behavior and the excitation torques. As the engine is very large, the first crankshaft torsional modes are in the low frequency range. A model with the assumption of a flexible crankshaft is required. The excitation torques depend on the in-cylinder pressure curve. The latter is modeled with a phenomenological model. Mechanical and combustion parameters of the model are optimized with the help of actual data. Then, an automated diagnosis based on an artificially intelligent system is proposed. Neural networks are used for pattern recognition of the angular speed waveforms in normal and faulty conditions. Reference patterns required in the training phase are computed with the model, calibrated using a small number of actual measurements. Promising results are obtained. An experimental fuel leakage fault is successfully diagnosed, including detection and localization of the faulty cylinder, as well as the approximation of the fault severity.

  2. On the impact index of synchronous generator displaced by DFIG on power system small-signal stability

    NASA Astrophysics Data System (ADS)

    Bi, J. T.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    As the maturity of wind power technology and the ageing and retirement of conventional synchronous generators, the displacement of synchronous generators by wind power generators would be a trend in the next few decades. The power system small-signal angular stability caused by the displacement is an urgent problem to be studied. The displacement of the SG by the DFIG includes withdrawing the dynamic interactions of the displaced SG and adding the dynamic interactions of the displacing DFIG. Based on this fact, a new index is proposed to predict the impact of the SG to be displaced by the DFIG on power system oscillation modes. The sensitivity index of the oscillation modes to the constant inertia of the displaced SGs, proposed in early literatures to estimate the dynamic impact of the SG being displaced by the DFIG, is also compared with the proposed index. The modified New England power system is adopted to show various results and conclusions. The proposed index can correctly identify the most dangerous and beneficial displacement to power system small-signal angular stability, and is very useful in practical applications.

  3. Visualizing electron dynamics in organic materials: Charge transport through molecules and angular resolved photoemission

    NASA Astrophysics Data System (ADS)

    Kümmel, Stephan

    Being able to visualize the dynamics of electrons in organic materials is a fascinating perspective. Simulations based on time-dependent density functional theory allow to realize this hope, as they visualize the flow of charge through molecular structures in real-space and real-time. We here present results on two fundamental processes: Photoemission from organic semiconductor molecules and charge transport through molecular structures. In the first part we demonstrate that angular resolved photoemission intensities - from both theory and experiment - can often be interpreted as a visualization of molecular orbitals. However, counter-intuitive quantum-mechanical electron dynamics such as emission perpendicular to the direction of the electrical field can substantially alter the picture, adding surprising features to the molecular orbital interpretation. In a second study we calculate the flow of charge through conjugated molecules. The calculations show in real time how breaks in the conjugation can lead to a local buildup of charge and the formation of local electrical dipoles. These can interact with neighboring molecular chains. As a consequence, collections of ''molecular electrical wires'' can show distinctly different characteristics than ''classical electrical wires''. German Science Foundation GRK 1640.

  4. Numerical studies of the surface tension effect of cryogenic liquid helium

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived.

  5. Identification of trunk and pelvis movement compensations in patients with transtibial amputation using angular momentum separation.

    PubMed

    Gaffney, Brecca M; Murray, Amanda M; Christiansen, Cory L; Davidson, Bradley S

    2016-03-01

    Patients with unilateral dysvascular transtibial amputation (TTA) have a higher risk of developing low back pain than their healthy counterparts, which may be related to movement compensations used in the absence of ankle function. Assessing components of segmental angular momentum provides a unique framework to identify and interpret these movement compensations alongside traditional observational analyses. Angular momentum separation indicates two components of total angular momentum: (1) transfer momentum and (2) rotational momentum. The objective of this investigation was to assess movement compensations in patients with dysvascular TTA, patients with diabetes mellitus (DM), and healthy controls (HC) by examining patterns of generating and arresting trunk and pelvis segmental angular momenta during gait. We hypothesized that all groups would demonstrate similar patterns of generating/arresting total momentum and transfer momentum in the trunk and pelvis in reference to the groups (patients with DM and HC). We also hypothesized that patients with amputation would demonstrate different (larger) patterns of generating/arresting rotational angular momentum in the trunk. Patients with amputation demonstrated differences in trunk and pelvis transfer angular momentum in the sagittal and transverse planes in comparison to the reference groups, which indicates postural compensations adopted during walking. However, patients with amputation demonstrated larger patterns of generating and arresting of trunk and pelvis rotational angular momentum in comparison to the reference groups. These segmental rotational angular momentum patterns correspond with high eccentric muscle demands needed to arrest the angular momentum, and may lead to consequential long-term effects such as low back pain. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Output control of da Vinci surgical system's surgical graspers.

    PubMed

    Johnson, Paul J; Schmidt, David E; Duvvuri, Umamaheswar

    2014-01-01

    The number of robot-assisted surgeries performed with the da Vinci surgical system has increased significantly over the past decade. The articulating movements of the robotic surgical grasper are controlled by grip controls at the master console. The user interface has been implicated as one contributing factor in surgical grasping errors. The goal of our study was to characterize and evaluate the user interface of the da Vinci surgical system in controlling surgical graspers. An angular manipulator with force sensors was used to increment the grip control angle as grasper output angles were measured. Input force at the grip control was simultaneously measured throughout the range of motion. Pressure film was used to assess the maximum grasping force achievable with the endoscopic grasping tool. The da Vinci robot's grip control angular input has a nonproportional relationship with the grasper instrument output. The grip control mechanism presents an intrinsic resistant force to the surgeon's fingertips and provides no haptic feedback. The da Vinci Maryland graspers are capable of applying up to 5.1 MPa of local pressure. The angular and force input at the grip control of the da Vinci robot's surgical graspers is nonproportional to the grasper instrument's output. Understanding the true relationship of the grip control input to grasper instrument output may help surgeons understand how to better control the surgical graspers and promote fewer grasping errors. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effect of mass variation on dynamics of tethered system in orbital maneuvering

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zhao, Guowei; Huang, Hai

    2018-05-01

    In orbital maneuvering, the mass variation due to fuel consumption has an obvious impact on the dynamics of tethered system, which cannot be neglected. The contributions of the work are mainly shown in two aspects: 1) the improvement of the model; 2) the analysis of dynamics characteristics. As the mass is variable, and the derivative of the mass is directly considered in the traditional Lagrange equation, the expression of generalized force is complicated. To solve this problem, the coagulated derivative is adopted in the paper; besides, the attitude dynamics equations derived in this paper take into account the effect of mass variation and the drift of orbital trajectory at the same time. The bifurcation phenomenon, the pendular motion angular frequency, and amplitudes of tether vibration revealed in this paper can provide a reference for the parameters and controller design in practical engineering. In the article, a dumbbell model is adopted to analyze the dynamics of tethered system, in which the mass variation of base satellite is fully considered. Considering the practical application, the case of orbital transfer under a transversal thrust is mainly studied. Besides, compared with the analytical solutions of librational angles, the effects of mass variation on stability and librational characteristic are studied. Finally, in order to make an analysis of the effect on vibrational characteristic, a lumped model is introduced, which reveals a strong coupling of librational and vibrational characteristics.

  8. Testability of evolutionary game dynamics based on experimental economics data

    NASA Astrophysics Data System (ADS)

    Wang, Yijia; Chen, Xiaojie; Wang, Zhijian

    2017-11-01

    Understanding the dynamic processes of a real game system requires an appropriate dynamics model, and rigorously testing a dynamics model is nontrivial. In our methodological research, we develop an approach to testing the validity of game dynamics models that considers the dynamic patterns of angular momentum and speed as measurement variables. Using Rock-Paper-Scissors (RPS) games as an example, we illustrate the geometric patterns in the experiment data. We then derive the related theoretical patterns from a series of typical dynamics models. By testing the goodness-of-fit between the experimental and theoretical patterns, we show that the validity of these models can be evaluated quantitatively. Our approach establishes a link between dynamics models and experimental systems, which is, to the best of our knowledge, the most effective and rigorous strategy for ascertaining the testability of evolutionary game dynamics models.

  9. Propagation dynamics of Helical Hermite-Gaussian beams

    NASA Astrophysics Data System (ADS)

    López-Mariscal, Carlos; Gutiérrez-Vega, Julio C.

    2007-09-01

    We investigate theoretically and experimentally the propagation characteristics of the Helical Hermite-Gauss beams corresponding to the helical Ince-Gauss beams in the limit of infinite ellipticity. Particular attention is paid to the transverse irradiance structure, the orbital angular momentum density, and the vortex distribution.

  10. Active motion assisted by correlated stochastic torques.

    PubMed

    Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter

    2011-07-01

    The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.

  11. Dynamical Scaling Relations and the Angular Momentum Problem in the FIRE Simulations

    NASA Astrophysics Data System (ADS)

    Schmitz, Denise; Hopkins, Philip F.; Quataert, Eliot; Keres, Dusan; Faucher-Giguere, Claude-Andre

    2015-01-01

    Simulations are an extremely important tool with which to study galaxy formation and evolution. However, even state-of-the-art simulations still fail to accurately predict important galaxy properties such as star formation rates and dynamical scaling relations. One possible explanation is the inadequacy of sub-grid models to capture the range of stellar feedback mechanisms which operate below the resolution limit of simulations. FIRE (Feedback in Realistic Environments) is a set of high-resolution cosmological galaxy simulations run using the code GIZMO. It includes more realistic models for various types of feedback including radiation pressure, supernovae, stellar winds, and photoionization and photoelectric heating. Recent FIRE results have demonstrated good agreement with the observed stellar mass-halo mass relation as well as more realistic star formation histories than previous simulations. We investigate the effects of FIRE's improved feedback prescriptions on the simulation "angular momentum problem," i.e., whether FIRE can reproduce observed scaling relations between galaxy stellar mass and rotational/dispersion velocities.

  12. Matrix methods applied to engineering rigid body mechanics

    NASA Astrophysics Data System (ADS)

    Crouch, T.

    The purpose of this book is to present the solution of a range of rigorous body mechanics problems using a matrix formulation of vector algebra. Essential theory concerning kinematics and dynamics is formulated in terms of matrix algebra. The solution of kinematics and dynamics problems is discussed, taking into account the velocity and acceleration of a point moving in a circular path, the velocity and acceleration determination for a linkage, the angular velocity and angular acceleration of a roller in a taper-roller thrust race, Euler's theroem on the motion of rigid bodies, an automotive differential, a rotating epicyclic, the motion of a high speed rotor mounted in gimbals, and the vibration of a spinning projectile. Attention is given to the activity of a force, the work done by a conservative force, the work and potential in a conservative system, the equilibrium of a mechanism, bearing forces due to rotor misalignment, and the frequency of vibrations of a constrained rod.

  13. New experimental approaches to the biology of flight control systems.

    PubMed

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  14. ALTERED PHALANX FORCE DIRECTION DURING POWER GRIP FOLLOWING STROKE

    PubMed Central

    Enders, Leah R.

    2015-01-01

    Many stroke survivors with severe impairment can grasp only with a power grip. Yet, little knowledge is available on altered power grip after stroke, other than reduced power grip strength. This study characterized stroke survivors’ static power grip during 100% and 50% maximum grip. Each phalanx force’s angular deviation from the normal direction and its contribution to total normal force was compared for 11 stroke survivors and 11 age-matched controls. Muscle activities and skin coefficient of friction (COF) were additionally compared for another 20 stroke and 13 age-matched control subjects. The main finding was that stroke survivors gripped with a 34% greater phalanx force angular deviation of 19±2° compared to controls of 14±1° (p<.05). Stroke survivors’ phalanx force angular deviation was closer to the 23° threshold of slippage between the phalanx and grip surface, which may explain increased likelihood of object dropping in stroke survivors. In addition, this altered phalanx force direction decreases normal grip force by tilting the force vector, indicating a partial role of phalanx force angular deviation in reduced grip strength post stroke. Greater phalanx force angular deviation may biomechanically result from more severe underactivation of stroke survivors’ first dorsal interosseous (FDI) and extensor digitorum communis (EDC) muscles compared to their flexor digitorum superficialis (FDS) or somatosensory deficit. While stroke survivors’ maximum power grip strength was approximately half of the controls’, the distribution of their remaining strength over the fingers and phalanges did not differ, indicating evenly distributed grip force reduction over the entire hand. PMID:25795079

  15. Effects of Energy Dissipation in the Sphere-Restricted Full Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Gabriel, T. S. J.

    Recently, the classical N-Body Problem has been adjusted to account for celestial bodies made of constituents of finite density. By imposing a minima on the achievable distance between particles, minimum energy resting states are allowed by the problem. The Full N-Body Problem allows for the dissipation of mechanical energy through surface-surface interactions via impacts or by way of tidal deformation. Barring exogeneous forces and allowing for the dissipation of energy, these systems have discrete, and sometimes multiple, minimum energy states for a given angular momentum. Building the dynamical framework of such finite density systems is a necessary process in outlining the evolution of rubble pile asteroids and other gravitational-granular systems such as protoplanetary discs, and potentially planetary rings, from a theoretical point of view. In all cases, resting states are expected to occur as a necessary step in the ongoing processes of solar system formation and evolution. Previous studies of this problem have been performed in the N=3 case where the bodies are indistinguishable spheres, with all possible relative equilibria and their stability having been identified as a function of the angular momentum of the system. These studies uncovered that at certain levels of angular momentum there exists two minimum energy states, a global and local minimum. Thus a question of interest is in which of these states a dissipative system would preferentially settle and the sensitivity of results to changes in dissipation parameters. Assuming equal-sized, perfectly-rigid bodies, this study investigates the dynamical evolution of three spheres under the influence of mutual gravity and impact mechanics as a function of dissipation parameters. A purpose-written, C-based, Hard Sphere Discrete Element Method code has been developed to integrate trajectories and resolve contact mechanics as grains evolve into minimum energy configurations. By testing many randomized initial conditions, statistics are measured regarding minimum energy states for a given angular momentum range. A trend in the Sphere-Restricted Full Three-Body Problem producing an end state of one configuration over another is found as a function of angular momentum and restitution.

  16. Surface control bent sub for directional drilling of petroleum wells

    DOEpatents

    Russell, Larry R.

    1986-01-01

    Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

  17. A new myohaptic instrument to assess wrist motion dynamically.

    PubMed

    Manto, Mario; Van Den Braber, Niels; Grimaldi, Giuliana; Lammertse, Piet

    2010-01-01

    The pathophysiological assessment of joint properties and voluntary motion in neurological patients remains a challenge. This is typically the case in cerebellar patients, who exhibit dysmetric movements due to the dysfunction of cerebellar circuitry. Several tools have been developed, but so far most of these tools have remained confined to laboratories, with a lack of standardization. We report on a new device which combines the use of electromyographic (EMG) sensors with haptic technology for the dynamic investigation of wrist properties. The instrument is composed of a drivetrain, a haptic controller and a signal acquisition unit. Angular accuracy is 0.00611 rad, nominal torque is 6 N·m, maximal rotation velocity is 34.907 rad/sec, with a range of motion of -1.0472 to +1.0472 rad. The inertia of the motor and handgrip is 0.004 kg·m2. This is the first standardized myohaptic instrument allowing the dynamic characterization of wrist properties, including under the condition of artificial damping. We show that cerebellar patients are unable to adapt EMG activities when faced with an increase in damping while performing fast reversal movements. The instrument allows the extraction of an electrophysiological signature of a cerebellar deficit.

  18. Optimizing the feedback control of Galvo scanners for laser manufacturing systems

    NASA Astrophysics Data System (ADS)

    Mirtchev, Theodore; Weeks, Robert; Minko, Sergey

    2010-06-01

    This paper summarizes the factors that limit the performance of moving-magnet galvo scanners driven by closed-loop digital servo amplifiers: torsional resonances, drifts, nonlinearities, feedback noise and friction. Then it describes a detailed Simulink® simulator that takes into account these factors and can be used to automatically tune the controller for best results with given galvo type and trajectory patterns. It allows for rapid testing of different control schemes, for instance combined position/velocity PID loops and displays the corresponding output in terms of torque, angular position and feedback sensor signal. The tool is configurable and can either use a dynamical state-space model of galvo's open-loop response, or can import the experimentally measured frequency domain transfer function. Next a drive signal digital pre-filtering technique is discussed. By performing a real-time Fourier analysis of the raw command signal it can be pre-warped to minimize all harmonics around the torsional resonances while boosting other non-resonant high frequencies. The optimized waveform results in much smaller overshoot and better settling time. Similar performance gain cannot be extracted from the servo controller alone.

  19. Vestibular adaptation to space in monkeys.

    PubMed

    Dai, M; Raphan, T; Kozlovskaya, I; Cohen, B

    1998-07-01

    Otolith-induced eye movements of rhesus monkeys were studied before and after the 1989 COSMOS 2044 and the 1992 to 1993 COSMOS 2229 flights. Two animals flew in each mission for approximately 2 weeks. After flight, spatial orientation of the angular vestibulo-ocular reflex was altered. In one animal the time constant of postrotatory nystagmus, which had been shortened by head tilts with regard to gravity before flight, was unaffected by the same head tilts after flight. In another animal, eye velocity, which tended to align with a gravitational axis before flight, moved toward a body axis after flight. This shift of orientation disappeared by 7 days after landing. After flight, the magnitude of compensatory ocular counter-rolling was reduced by about 70% in both dynamic and static tilts. Modulation in vergence in response to naso-occipital linear acceleration during off-vertical axis rotation was reduced by more than 50%. These changes persisted for 11 days after recovery. An up and down asymmetry of vertical nystagmus was diminished for 7 days. Gains of the semicircular canal-induced horizontal and vertical angular vestibulo-ocular reflexes were unaffected in both flights, but the gain of the roll angular vestibulo-ocular reflex was decreased. These data indicate that there are short- and long-term changes in otolith-induced eye movements after adaptation to microgravity. These experiments also demonstrate the unique value of the monkey as a model for studying effects of vestibular adaptation in space. Eye movements can be measured in three dimensions in response to controlled vestibular and visual stimulation, and the results are directly applicable to human beings. Studies in monkeys to determine how otolith afferent input and central processing is altered by adaptation to microgravity should be an essential component of future space-related research.

  20. Dimensional accuracy of pickup implant impression: an in vitro comparison of novel modular versus standard custom trays.

    PubMed

    Simeone, Piero; Valentini, Pier Paolo; Pizzoferrato, Roberto; Scudieri, Folco

    2011-01-01

    The purpose of this in vitro study was to compare the dimensional accuracy of the pickup impression technique using a modular individual tray (MIT) and using a standard individual tray (ST) for multiple internal-connection implants. The roles of both materials and geometric misfits were considered. First, because the MIT relies on the stiffness and elasticity of acrylic resin material, a preliminary investigation of the resin volume contraction during curing and polymerization was done. Then, two sets of specimens were tested to compare the accuracy of the MIT (test group) to that of the ST (control group). The linear and angular displacements of the transfer copings were measured and compared during three different stages of the impression procedure. Experimental measurements were performed with a computerized coordinate measuring machine. The curing dynamic of the acrylic resin was strongly dependent on the physical properties of the acrylic material and the powder/liquid ratio. Specifically, an increase in the powder/liquid ratio accelerated resin polymerization (curing time decreases by 70%) and reduced the final volume contraction by 45%. However, the total shrinkage never exceeded the elastic limits of the material; hence, it did not affect the coping's stability. In the test group, linear errors were reduced by 55% and angular errors were reduced by 65%. Linear and angular displacements of the transfer copings were significantly reduced with the MIT technique, which led to higher dimensional accuracy versus the ST group. The MIT approach, in combination with a thin and uniform amount of acrylic resin in the pickup impression technique, showed no significant permanent distortions in multiple misalignment internal-connection implants compared to the ST technique.

Top