Science.gov

Sample records for dynamic atmosphere composition

  1. Composition and dynamics of lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Hoffman, J. H.; Johnson, F. S.; Evans, D. E.

    1973-01-01

    The model of lunar atmosphere is updated to take into account new information on the dynamics and amounts of H2, He-4, Ne-20, Ar-36, and Ar-40. Helium and neon appear to be in close balance with the solar wind, although Ar-36 is depleted in the atmosphere, suggesting that surface materials are not saturated with argon. Atmospheric carbon compounds, which should result from the solar wind influx of carbon, remain undetected, as do nitrogen compounds. However, evidence of a volcanic gas release is presented, which suggests the transient presence of these elements.

  2. Street Canyon Atmospheric Composition: Coupling Dynamics and Chemistry

    NASA Astrophysics Data System (ADS)

    Bright, V.; Bloss, W. J.; Cai, X.

    2010-12-01

    Atmospheric composition within the urban environment, particularly within street canyons (formed by a road running between two rows of buildings), has a direct effect on the air quality of an environment in which a large majority of people live and work. The composition of air within a street canyon is determined by the composition of background air mixed in from above, advection of air into and out of the canyon, vehicle exhaust and other emissions from within the street, together with the mixing and chemical processing of pollutants within the canyon. This occurs on a timescale of a few seconds to minutes and as a result, within-canyon atmospheric processes can have a significant effect on atmospheric composition on such timescales. This paper outlines a modelling study of street canyon atmospheric composition, integrating the combined effects of emissions, dynamics and chemistry. This work builds upon an existing dynamical model of canyon atmospheric motion (Large Eddy Simulation (LES) model) by adding a detailed chemical reaction scheme. Previous studies have considered basic NOx-O3 cycles with only a small number of chemical reactions included. Initially, a zero-dimensional box model was used to develop and assess the accuracy of a suitable reduced chemical scheme to be included within the LES. The reduced chemical scheme, based upon a subset of the Master Chemical Mechanism (MCM), includes 51 chemical species and 136 reactions. Vehicle emissions taken from the UK National Atmospheric Emissions Inventory (NAEI) were subsequently added to the box model. These elements were then combined with the canyon dynamics simulated by the Large Eddy Simulation (LES) model. Results demonstrate that the enhanced model is a suitable tool to be used to further investigate the combined effects of mixing and chemical processing upon air quality within the street canyon. Subsequently, a number of key questions relating to urban atmospheric composition are addressed using the

  3. Atmospheric composition

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.

  4. Composition/Structure/Dynamics of comet and planetary satellite atmospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R. (Principal Investigator)

    1995-01-01

    This research program addresses two cases of tenuous planetary atmospheres: comets and Io. The comet atmospheric research seeks to analyze a set of spatial profiles of CN in comet Halley taken in a 7.4-day period in April 1986; to apply a new dust coma model to various observations; and to analyze observations of the inner hydrogen coma, which can be optically thick to the resonance scattering of Lyman-alpha radiation, with the newly developed approach that combines a spherical radiative transfer model with our Monte Carlo H coma model. The Io research seeks to understand the atmospheric escape from Io with a hybrid-kinetic model for neutral gases and plasma given methods and algorithms developed for the study of neutral gas cometary atmospheres and the earth's polar wind and plasmasphere. Progress is reported on cometary Hydrogen Lyman-alpha studies; time-series analysis of cometary spatial profiles; model analysis of the dust comae of comets; and a global kinetic atmospheric model of Io.

  5. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Showman, A. P.

    2014-04-01

    Depending on the metallicity of the protoplanetary disk, the details of gas accretion during planetary formation, and atmospheric loss during planetary evolution, the atmospheres of exoplanets could exhibit a variety of bulk compositions (e.g., Moses et al., 2013). Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich (but still hydrogen-dominated) atmospheres like Neptune, evaporated atmospheres dominated by helium in analogy to helium white dwarfs, or of course carbon dioxide, water vapour, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. Despite differing opacities that will impact the radiative energy deposition (e.g., Lewis et al., 2010; Kataria et al., 2014), differing bulk compositions also differ in molecular weight and specific heat. The latter two fundamental parameters might have crucial effects on various aspects of atmospheric structure and dynamics. For example, a lower specific heat from molecules such as carbon dioxide implies a steeper dry adiabatic temperature gradient; this implies that, for a given vertical temperature profile, atmospheres with differing molecular weights exhibit different Brunt-Väisälä frequencies and therefore gravity wave speeds. Molecular weight also influences the scale height of the atmosphere, which could range (for typical exoplanet gravities) from ten km for high-molecularweight compositions to hundreds of km for hydrogen-dominated cases. A lower molecular weight or a lower specific heat would likely cause a larger deformation radius in which the atmospheric flow is more significantly influenced by the gravity and buoyancy effects instead of the rotation effects. In this study we use a three-dimensional general circulation model (GCM) to simulate generic exoplanets with different compositions, emphasizing close-in, synchronously rotating super Earths whose atmospheric composition is the most uncertain and which will be the focus of characterization

  6. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Showman, Adam P.

    2017-02-01

    Super Earths and mini Neptunes likely have a wide range of atmospheric compositions, ranging from low molecular mass atmospheres of H2 to higher molecular atmospheres of water, CO2, N2, or other species. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets, using an idealized 3D general circulation model (GCM). The bulk composition effects are characterized in the framework of two independent variables: molecular weight and molar heat capacity. The effect of molecular weight dominates. As the molecular weight increases, the atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal phase curve, and a smaller zonal wind speed. The width of the equatorial super-rotating jet also becomes narrower, and the “jet core” region, where the zonal-mean jet speed maximizes, moves to a greater pressure level. The zonal-mean zonal wind is more prone to exhibit a latitudinally alternating pattern in a higher molecular weight atmosphere. We also present analytical theories that quantitatively explain the above trends and shed light on the underlying dynamical mechanisms. Those trends might be used to indirectly determine the atmospheric compositions on tidally locked sub-Jupiter-sized planets. The effects of the molar heat capacity are generally small. But if the vertical temperature profile is close to adiabatic, molar heat capacity will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere.

  7. Effects of bulk composition on the atmospheric dynamics on close-in exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Showman, Adam P.

    2014-11-01

    Depending on the metallicity of the protoplanetary disk, the details of gas accretion during planetary formation, and atmospheric loss during planetary evolution, the atmospheres of exoplanets could exhibit a variety of bulk compositions (e.g., Moses et al., 2013). Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich (but still hydrogen-dominated) atmospheres like Neptune, evaporated atmospheres dominated by helium in analogy to helium white dwarfs, or of course carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. Despite differing opacities that will impact the radiative energy deposition (e.g., Lewis et al., 2010), differing bulk compositions also differ in molecular weight and heat capacity. The latter two fundamental parameters might have crucial effects on various aspects of atmospheric structure and dynamics. Molecular weight may influence the scale height, Brunt-Väisälä frequencies and therefore gravity wave speeds in the atmosphere. A lower molecular weight or a lower heat capacity would likely to result a larger deformation radius in which the atmospheric flow is more significantly influenced by the gravity and buoyancy effects instead of the rotation effects. We use a three-dimensional general circulation model to simulate generic sub-Jupiter exoplanets, especially those close to their host stars-known as “hot Neptunes” or close-in “super-Earths”. We found that the atmosphere with lower molecular mass favors zonal jets and equatorial superrotation, and that with lower heat capacity favors day-to-night divergent flow. Our results suggest that super Earths and hotNeptunes will exhibit large meteorological diversity due to bulk composition effects. Since atmospheres with fast zonal jets tends to have smaller day-night temperature difference due to larger circulation efficiency and larger hot spot phase shift than that with day-to-night divergent flows

  8. Dynamics in Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Lindzen, Richard A.

    2005-08-01

    Motion is manifest in the atmosphere in an almost infinite variety of ways. In Dynamics in Atmospheric Physics, Dr. Richard Lindzen describes the nature of motion in the atmosphere, develops fluid dynamics relevant to the atmosphere, and explores the role of motion in determining the climate and atmospheric composition. The author presents the material in a lecture note style, and the emphasis throughout is on describing phenomena that are at the frontiers of current research, but due attention is given to the methodology of research and to the historical background of these topics. The author's treatment and choice of topics is didactic. Problems at the end of each chapter will help students assimilate the material. In general the discussions emphasize physical concepts, and throughout Dr. Lindzen makes a concerted effort to avoid the notion that dynamic meteorology is simply the derivation of equations and their subsequent solution. His desire is that interested students will delve further into solution details. The book is intended as a text for first year graduate students in the atmospheric sciences. Although the material in the book is self contained, a familiarity with differential equations is assumed; some background in fluid mechanics is helpful.

  9. Measuring atmospheric composition change

    NASA Astrophysics Data System (ADS)

    Laj, P.; Klausen, J.; Bilde, M.; Plaß-Duelmer, C.; Pappalardo, G.; Clerbaux, C.; Baltensperger, U.; Hjorth, J.; Simpson, D.; Reimann, S.; Coheur, P.-F.; Richter, A.; De Mazière, M.; Rudich, Y.; McFiggans, G.; Torseth, K.; Wiedensohler, A.; Morin, S.; Schulz, M.; Allan, J. D.; Attié, J.-L.; Barnes, I.; Birmili, W.; Cammas, J. P.; Dommen, J.; Dorn, H.-P.; Fowler, D.; Fuzzi, S.; Glasius, M.; Granier, C.; Hermann, M.; Isaksen, I. S. A.; Kinne, S.; Koren, I.; Madonna, F.; Maione, M.; Massling, A.; Moehler, O.; Mona, L.; Monks, P. S.; Müller, D.; Müller, T.; Orphal, J.; Peuch, V.-H.; Stratmann, F.; Tanré, D.; Tyndall, G.; Abo Riziq, A.; Van Roozendael, M.; Villani, P.; Wehner, B.; Wex, H.; Zardini, A. A.

    Scientific findings from the last decades have clearly highlighted the need for a more comprehensive approach to atmospheric change processes. In fact, observation of atmospheric composition variables has been an important activity of atmospheric research that has developed instrumental tools (advanced analytical techniques) and platforms (instrumented passenger aircrafts, ground-based in situ and remote sensing stations, earth observation satellite instruments) providing essential information on the composition of the atmosphere. The variability of the atmospheric system and the extreme complexity of the atmospheric cycles for short-lived gaseous and aerosol species have led to the development of complex models to interpret observations, test our theoretical understanding of atmospheric chemistry and predict future atmospheric composition. The validation of numerical models requires accurate information concerning the variability of atmospheric composition for targeted species via comparison with observations and measurements. In this paper, we provide an overview of recent advances in instrumentation and methodologies for measuring atmospheric composition changes from space, aircraft and the surface as well as recent improvements in laboratory techniques that permitted scientific advance in the field of atmospheric chemistry. Emphasis is given to the most promising and innovative technologies that will become operational in the near future to improve knowledge of atmospheric composition. Our current observation capacity, however, is not satisfactory to understand and predict future atmospheric composition changes, in relation to predicted climate warming. Based on the limitation of the current European observing system, we address the major gaps in a second part of the paper to explain why further developments in current observation strategies are still needed to strengthen and optimise an observing system not only capable of responding to the requirements of

  10. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Showman, A. P.

    2015-12-01

    Depending on the metallicity of the protoplanetary disk, the details of gas accretion during planetary formation, and atmospheric loss during planetary evolution, the atmospheres of sub-Jupiter-sized planets could exhibit a variety of bulk compositions. Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich atmospheres like Neptune, evaporated atmospheres dominated by helium, or of course carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets using an idealized three-dimensional general circulation model (GCM). Composition—in particular, the molecular mass and specific heat—affect the sound speed, gravity wave speeds, atmospheric scale height, and Rossby deformation radius, and therefore in principle can exert significant controls on the atmospheric circulation, including the day-night temperature difference and other observables. We performed numerous simulations exploring a wide range of molecular masses and molar specific heats. The effect of molecular weight dominates. We found that a higher-molecular-weight atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal light curve, and a narrower equatorial super-rotating jet that occurs in a deeper atmosphere. The zonal-mean zonal wind is smaller and more prone to exhibit a latitudinally alternating pattern in a higher-molecular-weight atmosphere. If the vertical temperature profile is close to adiabatic, molar specific heat will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere. We are also working on analytical theories to explain aspects of the simulations relevant for possible observables on tidally locked

  11. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Showman, Adam P.

    2015-12-01

    Depending on the metallicity of the protoplanetary disk and processes such as gas accretion during planetary formation and atmospheric loss during planetary evolution, the atmospheres of sub-Jupiter-sized planets could exhibit a variety of bulk compositions. Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich atmospheres like Neptune, carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. In this study we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets such as super-Earths and mini-Neptunes, using an idealized three-dimensional general circulation model (GCM). Composition—in particular, the molecular mass and specific heat—affect the sound speed, gravity wave speeds, atmospheric scale height, and Rossby deformation radius, and therefore in principle can exert significant controls on the atmospheric circulation, including the day-night temperature difference and other observables.We performed numerous simulations exploring a wide range of molecular masses and molar specific heats. The effect of molecular weight dominates. We found that a higher-molecular-weight atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal light curve, and a narrower equatorial super-rotating jet that occurs in a deeper atmosphere. The zonal-mean zonal wind is smaller and more prone to exhibit a latitudinally alternating pattern in a higher-molecular-weight atmosphere. If the vertical temperature profile is close to adiabatic, molar specific heat will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere.In order to understand the systematic behavior and capture the underlying physics, we present analytical theories to explain aspects of the

  12. Lunar atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    Apollo 17 carried a miniature mass spectrometer, called the Lunar Atmospheric Composition Experiment (LACE), to the moon as part of the Apollo Lunar Surface Experiments Package (ALSEP) to study the composition and variations in the lunar atmosphere. The instrument was successfully deployed in the Taurus-Littrow Valley with its entrance aperture oriented upward to intercept and measure the downward flux of gases at the lunar surface. During the ten lunations that the LACE operated, it produced a large base of data on the lunar atmosphere, mainly collected at night time. It was found that thermal escape is the most rapid loss mechanism for hydrogen and helium. For heavier gases, photoionization followed by acceleration through the solar wind electric field accounted for most of the loss. The dominant gases on the moosn were argon and helium, and models formed for their distribution are described in detail. It is concluded that most of the helium in the lunar atmosphere is of solar wind origin, and that there also exist very small amounts of methane, ammonia, and carbon dioxide.

  13. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil

    PubMed Central

    Shrestha, Pravin Malla; Kammann, Claudia; Lenhart, Katharina; Dam, Bomba; Liesack, Werner

    2012-01-01

    Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH4 m−2 h−1. Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 105–1.9 × 106 copies g−1 of soil. Temperature was positively correlated with CH4 uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH4 uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH4 uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH4 uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade. PMID:22189499

  14. Study of atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Mcnider, Richard T.; Christy, John R.; Cox, Gregory N.

    1993-01-01

    In order to better understand the dynamics of the global atmosphere, a data set of precision temperature measurements was developed using the NASA built Microwave Sounding Unit. Modeling research was carried out to validate global model outputs using various satellite data. Idealized flows in a rotating annulus were studied and applied to the general circulation of the atmosphere. Dynamic stratospheric ozone fluctuations were investigated. An extensive bibliography and several reprints are appended.

  15. Studies for the 3-Dimensional Structure, Composition, and Dynamic of Io's Atmosphere

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2001-01-01

    Research work is discussed for the following: (1) the exploration of new H and Cl chemistry in Io's atmosphere using the already developed two-dimensional multi-species hydrodynamic model of Wong and Smyth; and (2) for the development of a new three-dimensional multi-species hydrodynamic model for Io's atmosphere.

  16. Dynamics of Massive Atmospheres

    NASA Astrophysics Data System (ADS)

    Chemke, Rei; Kaspi, Yohai

    2017-08-01

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  17. Dynamics of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    1989-01-01

    The overall goal is to illuminate the mechanisms that control weather and climate on the Earth and other planets. Each planet presents its own puzzling behavior - the stability of jets and vortices in Jupiter's otherwise turbulent atmosphere, the superrotation of the Venus atmosphere, the interplay of dust, polar volatiles, and climate change in Mars, the supersonic meteorology of Io, and the counterintuitive equator-to-pole temperature gradients on the outer planets. The data sets are generally those obtained from spacecraft - cloud-tracked winds, radiometrically inferred temperatures, and the results of in situ observations where appropriate. The approach includes both data analysis and modeling, ranging from analytic modeling to time-dependent numerical modeling of atmospheric dynamics. The latter approach involves the use of supercomputers such as the San Diego Cray. Progress is generally made when a model with a small number of free parameters either fits a data set that has a large number of independent observations or applies to several planets at once.

  18. Impact of solar proton events on temperature changes trough dynamics and variations in chemical composition of the polar atmosphere.

    NASA Astrophysics Data System (ADS)

    Karagodin, A. V.

    2016-12-01

    This paper presents a study of changes of chemical composition of the polar atmosphere, namely ozone O3, hydroxyl hydrogen OH via changes of atmospheric ionization, and their impact on the vertical profiles of temperature variations. Ozone is one of the main greenhouse gases that significantly affect the thermal balance of the atmosphere. Changing of ionization rate is due to the external flux of protons generated by solar proton events and/or by variability of galactic cosmic rays. Several solar proton events (SPE) that occurred in January 2005 caused the increase of the ionization rate at the polar atmosphere by several orders of magnitude. Also, during these SPE occurred two Forbush decreases. The decreases of intensity of galactic cosmic rays lead to reduction of ionization rates at the middle atmosphere. The results of present research are presented in the form of spatial-temporal distributions of O3, OH and temperature before and after the SPE in January 2005. In this study, we confirmed that increase in the rates of ionization leads to significant fluctuations of O3 and OH in the upper stratosphere and mesosphere. At the first time we have revealed that the reduction in ionization, caused by Forbush decreases, leads to a significant reduction of OH in the lower and middle stratosphere. All changes lead to variability in the temperature profiles of the polar night atmosphere.

  19. The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua Spacecraft: A General Remote Sensing Tool for Understanding Atmospheric Structure, Dynamics and Composition

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Fetzer, Eric J.

    2010-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. Early in the mission, the AIRS instrument demonstrated its value to the weather forecasting community with better than 6 hours of improvement on the 5 day forecast. Now with over eight years of consistent and stable data from AIRS, scientists are able to examine processes governing weather and climate and look at seasonal and interannual trends from the AIRSdata with high statistical confidence. Naturally, long-term climate trends require a longer data set, but indications are that the Aqua spacecraft and the AIRS instrument should last beyond 2018. This paper briefly describes the AIRS data products and presents some of the most significant findings involving the use of AIRS data in the areas of weather forecast improvement, climate processes and model validation, cloud and polar processes, and atmospheric composition (chemistry and dust).

  20. Finding Atmospheric Composition (AC) Metadata

    NASA Technical Reports Server (NTRS)

    Strub, Richard F..; Falke, Stefan; Fiakowski, Ed; Kempler, Steve; Lynnes, Chris; Goussev, Oleg

    2015-01-01

    The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not all

  1. Atmospheric and Oceanic Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Vallis, Geoffrey K.

    2006-11-01

    Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692. Includes end of chapter review questions to aid understanding Unified and comprehensive treatment of both atmospheric and oceanic fluid dynamics Covers many modern topics and provides up to date knowledge

  2. The Structure and Composition of Io's Atmosphere

    NASA Astrophysics Data System (ADS)

    Smyth, W. H.; Marconi, M. L.

    2011-12-01

    Io's atmosphere is thought to be generated principally by sublimation on the dayside and by multiple volcanoes scattered throughout its surface and more concentrated near the equator. While SO2 seems to be the principle product of these sources, many other chemical species are placed into the atmosphere by these sources, including substantial amounts of SO and S2 as well as smaller but observationally significant amounts of Na bearing molecules. These species in turn interact strongly with the torus plasma generating additional species such as O2, S, O, and Na. The strong interaction of the torus plasma with the neutral atmosphere not only exerts a profound effect on the composition of Io's atmosphere but also strongly affects the dynamics and thermodynamics of Io's atmosphere, particularly at higher altitudes. In addition, as Io orbits Jupiter, the change in location of the sublimation region and the eclipse of Io as it passes through Jupiter's shadow result in substantial variation in the atmosphere. A complex time-dependent three-dimensional atmosphere with strong spatial compositional variation is created. Here we extend the two-dimensional multispecies Navier-Stokes model of Smyth and Wong (2004) to three-dimensions, include two volcanic sources similar to Pele and Loki, and include the effect of Io's movement around Jupiter on sublimation. The effects of the torus plasma are also included as in Smyth and Wong. We will present the overall composition and structure of the atmosphere, O to S ratios in the upper atmosphere, and discuss a potential issue with the O2 abundance. Smyth, W.H. and M.C. Wong, Icarus 171, 171-182, 2004.

  3. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  4. Dynamics of Triton's atmosphere

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    1990-01-01

    It is argued here that the facts about Triton's atmosphere discovered by the recent Voyager encounter can be explained if Triton, like Mars, has a global, well-structured atmosphere in equilibrium with surface frosts. The subliming frost cap produces a polar anticyclone at low altitudes, with northeastward winds of about 5 m/s within the Ekman boundary layer. The temperature contrast between the cold frost-covered pole and the warm unforested equator produces westward winds at high altitudes.

  5. Lidar investigations of atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2015-09-01

    Ground based lidar techniques using Raleigh and Raman scattering, differential absorption (DIAL), and supercontinuum sources are capable of providing unique signatures to study dynamical processes in the lower atmosphere. The most useful profile signatures of dynamics in the lower atmosphere are available in profiles of time sequences of water vapor and aerosol optical extinction obtained with Raman and DIAL lidars. Water vapor profiles are used to study the scales and motions of daytime convection cells, residual layer bursts into the planetary boundary layer (PBL), variations in height of the PBL layer, cloud formation and dissipation, scale sizes of gravity waves, turbulent eddies, as well as to study the seldom observed phenomena of Brunt-Väisälä oscillations and undular bore waves. Aerosol optical extinction profiles from Raman lidar provide another tracer of dynamics and motion using sequential profiles atmospheric aerosol extinction, where the aerosol distribution is controlled by dynamic, thermodynamic, and photochemical processes. Raman lidar profiles of temperature describe the stability of the lower atmosphere and measure structure features. Rayleigh lidar can provide backscatter profiles of aerosols in the troposphere, and temperature profiles in the stratosphere and mesosphere, where large gravity waves, stratospheric clouds, and noctilucent clouds are observed. Examples of several dynamical features are selected to illustrate interesting processes observed with Raman lidar. Lidar experiments add to our understanding of physical processes that modify atmospheric structure, initiate turbulence and waves, and describe the relationships between energy sources, atmospheric stability parameters, and the observed dynamics.

  6. Uranus atmospheric dynamics and circulation

    NASA Astrophysics Data System (ADS)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  7. Uranus atmospheric dynamics and circulation

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  8. Uranus atmospheric dynamics and circulation

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  9. The PHOCUS Project: Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Hedin, J.; Gumbel, J.; Khaplanov, M.

    2012-12-01

    On the morning of July 21, 2011, the PHOCUS sounding rocket was launched from Esrange, Sweden, into strong noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). The aim of the PHOCUS project (Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere) is to study mesospheric particles (ice and meteoric smoke) and their interaction with their neutral and charged environment. Interactions of interest comprise the charging and nucleation of particles, the relationship between meteoric smoke and ice, and the influence of these particles on gas-phase chemistry. Here we will describe the optical measurements of the atmospheric composition and present first results including comparison to the other simultaneous measurements. The atmospheric composition was probed by a set of optical instruments from Stockholm University. The idea behind the instrument setup was to combine the advantages of the sensitive resonance fluorescence with well-calibrated airglow photometry. The set of instruments consisted of two resonance fluorescence probes (each containing a lamp and a detector), one for atomic oxygen and one for atomic hydrogen, and two IR photometers for O2 and OH dayglow emissions in the near IR. The O2 IR Atmospheric system at 1.27 μm is related to the photolysis of O3, which during the day is in steady state with O and a retrieval of O is possible. The OH Meinel emission is produced by the reaction between mesospheric O3 and H, and H concentrations can be deduced by combining information from both photometers. Unfortunately, some of these measurements were corrupted by instrument problems or payload glow. O3 and O profiles will be presented and compared to the simultaneous measurements of ice and meteoric smoke particles, water vapour and the state of the background neutral and charged atmosphere.

  10. Applications II: Water Vapor and Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Demoz, Belay

    2004-01-01

    Contents include the following: 1. Introduction. A case for using lidars in atmospheric dynamics will be made. 2. Scales of motion. Will discuss atmospheric scales of motion and lidar role in probing this various events. 3. Examples. We will discuss applications of lidars into atmospheric dynamics using data from case studies that illustrate different atmospheric phenomenon. Concluding statement. Water Vapor and Atmospheric Dynamics.

  11. Atmospheric composition change: Ecosystems-Atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Fowler, D.; Pilegaard, K.; Sutton, M. A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J. K.; Granier, C.; Neftel, A.; Isaksen, I. S. A.; Laj, P.; Maione, M.; Monks, P. S.; Burkhardt, J.; Daemmgen, U.; Neirynck, J.; Personne, E.; Wichink-Kruit, R.; Butterbach-Bahl, K.; Flechard, C.; Tuovinen, J. P.; Coyle, M.; Gerosa, G.; Loubet, B.; Altimir, N.; Gruenhage, L.; Ammann, C.; Cieslik, S.; Paoletti, E.; Mikkelsen, T. N.; Ro-Poulsen, H.; Cellier, P.; Cape, J. N.; Horváth, L.; Loreto, F.; Niinemets, Ü.; Palmer, P. I.; Rinne, J.; Misztal, P.; Nemitz, E.; Nilsson, D.; Pryor, S.; Gallagher, M. W.; Vesala, T.; Skiba, U.; Brüggemann, N.; Zechmeister-Boltenstern, S.; Williams, J.; O'Dowd, C.; Facchini, M. C.; de Leeuw, G.; Flossman, A.; Chaumerliac, N.; Erisman, J. W.

    Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO 2, HONO, HNO 3, NH 3, SO 2, DMS, Biogenic VOC, O 3, CH 4, N 2O and particles in the size range 1 nm-10 μm including organic and inorganic chemical species. The main focus of the review is on the exchange between terrestrial ecosystems, both managed and natural and the atmosphere, although some new developments in ocean-atmosphere exchange are included. The material presented is biased towards the last decade, but includes earlier work, where more recent developments are limited or absent. New methodologies and instrumentation have enabled, if not driven technical advances in measurement. These developments have advanced the process understanding and upscaling of fluxes, especially for particles, VOC and NH 3. Examples of these applications include mass spectrometric methods, such as Aerosol Mass Spectrometry (AMS) adapted for field measurement of atmosphere-surface fluxes using micrometeorological methods for chemically resolved aerosols. Also briefly described are some advances in theory and techniques in micrometeorology. For some of the compounds there have been paradigm shifts in approach and application of both techniques and assessment. These include flux measurements over marine surfaces and urban areas using micrometeorological methods and the up-scaling of flux measurements using aircraft and satellite remote sensing. The application of a flux-based approach in assessment of O 3 effects on vegetation at regional scales is an important policy linked development secured through improved quantification of fluxes. The coupling of monitoring, modelling and intensive flux measurement at a continental scale within the NitroEurope network represents a quantum development in the application of research teams to address the underpinning

  12. Atmospheric Dynamics of Hot Exoplanets

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Showman, Adam P.

    2015-05-01

    The characterization of exoplanetary atmospheres has come of age in the past decade, as astronomical techniques now allow for albedos, chemical abundances, temperature profiles and maps, rotation periods, and even wind speeds to be measured. Atmospheric dynamics sets the background state of density, temperature, and velocity that determines or influences the spectral and temporal appearance of an exoplanetary atmosphere. Hot exoplanets are most amenable to these characterization techniques. In this review, we focus on highly irradiated, large exoplanets (the hot Jupiters), as astronomical data begin to confront theoretical questions. We summarize the basic atmospheric quantities inferred from the astronomical observations. We review the state of the art by addressing a series of current questions, and look toward the future by considering a separate set of exploratory questions. Attaining the next level of understanding requires a concerted effort of constructing multifaceted, multiwavelength datasets for benchmark objects. Understanding clouds presents a formidable obstacle, as they introduce degeneracies into the interpretation of spectra, yet their properties and existence are directly influenced by atmospheric dynamics. Confronting general circulation models with these multifaceted, multiwavelength datasets will help us understand these and other degeneracies.

  13. Helicity in dynamic atmospheric processes

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2017-03-01

    An overview on the helicity of the velocity field and the role played by this concept in modern research in the field of geophysical fluid dynamics and dynamic meteorology is given. Different (both previously known in the literature and first presented) formulations of the equation of helicity balance in atmospheric motions (including those with allowance for effects of air compressibility and Earth's rotation) are brought together. Equations and relationships are given which are valid in different approximations accepted in dynamic meteorology: Boussinesq approximation, quasi-static approximation, and quasi-geostrophic approximation. Emphasis is placed on the analysis of helicity budget in large-scale quasi-geostrophic systems of motion; a formula for the helicity flux across the upper boundary of the nonlinear Ekman boundary layer is given, and this flux is shown to be exactly compensated for by the helicity destruction inside the Ekman boundary layer.

  14. Atmospheric composition - Influence of biology

    NASA Technical Reports Server (NTRS)

    Mcelroy, M. B.

    1983-01-01

    The variability of atmospheric constituents influenced by biological organisms over various time scales is examined, together with the human contribution to atmospheric sulfur. The biogeochemistry of nitrogen is discussed, with an emphasis on N2O, NO, and microbially mediated reactions in soil and water. Carbon species are bound up mainly in sediments and the deep ocean, but human activities involving combustion may cause a doubling of the atmospheric levels of CO2 in the near future, which could produce a general low-level atmospheric warming. Longer term measurements are required to assess the effects of CH4 augmentation in the atmosphere through fuel combustion. Coal burning effectively doubles the amount of SO2 produced by natural sources, and reduces the pH of rainwater, thus posing hazards to fish, plankton, and mollusc life.

  15. Atmospheric composition - Influence of biology

    NASA Technical Reports Server (NTRS)

    Mcelroy, M. B.

    1983-01-01

    The variability of atmospheric constituents influenced by biological organisms over various time scales is examined, together with the human contribution to atmospheric sulfur. The biogeochemistry of nitrogen is discussed, with an emphasis on N2O, NO, and microbially mediated reactions in soil and water. Carbon species are bound up mainly in sediments and the deep ocean, but human activities involving combustion may cause a doubling of the atmospheric levels of CO2 in the near future, which could produce a general low-level atmospheric warming. Longer term measurements are required to assess the effects of CH4 augmentation in the atmosphere through fuel combustion. Coal burning effectively doubles the amount of SO2 produced by natural sources, and reduces the pH of rainwater, thus posing hazards to fish, plankton, and mollusc life.

  16. Photodissociation dynamics and atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Wayne, R. P.

    1993-07-01

    The paper uses data from the literature to explore photodissociation dynamics of molecules possessing three, four, and five atoms, as represented by O3 and CO2, NH3 and C2H2, and CH4, respectively. The results yield many details, even in regard to the disposal of energy into rotation, which have applications to atmospheric problems. For instance, experiments probing the translational energies of the O and the vibrational and rotational distributions in the CO suggest that a spin-forbidden channel operates as it does in ozone photolysis. The data for both O3 and CO2 suggest a relationship between the structure of the parent molecule and the dynamics of dissociation.

  17. The Atmospheric Dynamics of Venus

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, Agustín; Lebonnois, Sebastien; Imamura, Takeshi; Read, Peter; Luz, David

    2017-08-01

    We review our current knowledge of the atmospheric dynamics of Venus prior to the Akatsuki mission, in the altitude range from the surface to approximately the cloud tops located at about 100 km altitude. The three-dimensional structure of the wind field in this region has been determined with a variety of techniques over a broad range of spatial and temporal scales (from the mesoscale to planetary, from days to years, in daytime and nighttime), spanning a period of about 50 years (from the 1960s to the present). The global panorama is that the mean atmospheric motions are essentially zonal, dominated by the so-called super-rotation (an atmospheric rotation that is 60 to 80 times faster than that of the planetary body). The zonal winds blow westward (in the same direction as the planet rotation) with a nearly constant speed of ˜ 100 m s^{-1} at the cloud tops (65-70 km altitude) from latitude 50°N to 50°S, then decreasing their speeds monotonically from these latitudes toward the poles. Vertically, the zonal winds decrease with decreasing altitude towards velocities ˜ 1-3 m s^{-1} in a layer of thickness ˜ 10 km close to the surface. Meridional motions with peak speeds of ˜ 15 m s^{-1} occur within the upper cloud at 65 km altitude and are related to a Hadley cell circulation and to the solar thermal tide. Vertical motions with speeds ˜1-3 m s^{-1} occur in the statically unstable layer between altitudes of ˜ 50 - 55 km. All these motions are permanent with speed variations of the order of ˜10%. Various types of wave, from mesoscale gravity waves to Rossby-Kelvin planetary scale waves, have been detected at and above cloud heights, and are considered to be candidates as agents for carrying momentum that drives the super-rotation, although numerical models do not fully reproduce all the observed features. Momentum transport by atmospheric waves and the solar tide is thought to be an indispensable component of the general circulation of the Venus atmosphere

  18. Polar Atmospheric Dynamics of Jupiter

    NASA Astrophysics Data System (ADS)

    Sayanagi, Kunio M.; Mitchell, J. L.; Heavens, N. G.

    2012-10-01

    We investigate the transition in Jupiter's atmospheric dynamic regime between mid-latitudes to polar regions. Spacecraft observations of Jupiter have identified three distinct dynamical regimes in the cloud-top winds. In the equatorial region, a fast, broad jetstream blows eastward where no vortices are found. In the mid-latitudes, many vortices exist between the numerous jetstreams that alternate in wind direction between eastward and westward. On Jupiter, vortices become increasingly prevalent with latitude; poleward of 65 degree N/S latitudes, the banded structure that characterizes the lower latitudes becomes indiscernible, and the flow acquires an increasingly turbulent appearance with little zonal organization - we identify this regime as polar turbulence. Saturn also has a very similarly organized atmosphere, except that it maintains zonally organized cloud bands up to the poles and lacks polar turbulence. The zonal structure of Saturn culminates in the southern hemisphere with a hurricane-like cyclonic vortex residing precisely at south pole. Here, we focus on the transition from the mixed jet-vortex regime in the mid-latitudes to the vortex-dominated polar-regime of Jupiter. Using an idealized shallow-water model in a beta-plane channel, we test the stability of various scenarios that range between a jet-dominated flow and vortical turbulence. Since we are simulating a zone on the sphere rather than the full circulation, we test the sensitivity of the dynamics to latitude by varying the model’s beta-plane parameters, namely, the background Coriolis parameter f0 and its gradient beta. In addition, as we employ a 1 1/2-layer shallow-water model, we also vary the layer thickness and the bottom-layer topography to mimic a steeply varying thermal stratification (i.e., a potential vorticity front) by exploiting the topographic beta effects. We use the EPIC model (Dowling et al. 1998) to perform our numerical experiments. Our study is supported by a NASA Outer

  19. Titan's Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  20. An assessment model for atmospheric composition

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor)

    1988-01-01

    Predicting future perturbations to global air quality and climate requires, as a prerequisite, prognostic models for the composition of the Earth's atmosphere. Such assessment models are needed to evaluate the impact on our environment of different social choices that affect emissions of the photochemically and radiatively important trace gases. Our presentation here of a prototype assessment model is intended to encourage public scientific discussions of the necessary components of the model and their interactions, with the recognition that models similar to this will likely be used by the Environmental Protection Agency and other regulatory agencies in order to assess the effect of changes in atmospheric composition on climate over the next century.

  1. Composition and chemistry of Saturn's atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Larson, H. P.; Caldwell, J. J.; Gautier, D.

    1984-01-01

    A comprehensive discussion and review is presented of the chemistry and composition of Saturn as determined by earth-based, earth-orbital, and Voyager 1 and 2 spectroscopic observations. The observations imply that there are important differences between the actual composition of Saturn's atmosphere and that predicted for a homogeneous solar-composition planet. The H2, He, Ch4, NH3, and PH3 volume mixing ratios differ from the expected solar composition ratios, implying that during its formation Saturn accreted a significant amount of ice and rock. The depletion of He in the visible atmosphere suggests that this element has preferentially differentiated toward the center of the planet. The D to H ratio is similar to that on Jupiter and has important cosmological implications. Volume mixing ratios for C2H6 and C2H2 are consistent with the theoretically expected photochemical sources for these gases.

  2. Composition and chemistry of Saturn's atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Larson, H. P.; Caldwell, J. J.; Gautier, D.

    1984-01-01

    A comprehensive discussion and review is presented of the chemistry and composition of Saturn as determined by earth-based, earth-orbital, and Voyager 1 and 2 spectroscopic observations. The observations imply that there are important differences between the actual composition of Saturn's atmosphere and that predicted for a homogeneous solar-composition planet. The H2, He, Ch4, NH3, and PH3 volume mixing ratios differ from the expected solar composition ratios, implying that during its formation Saturn accreted a significant amount of ice and rock. The depletion of He in the visible atmosphere suggests that this element has preferentially differentiated toward the center of the planet. The D to H ratio is similar to that on Jupiter and has important cosmological implications. Volume mixing ratios for C2H6 and C2H2 are consistent with the theoretically expected photochemical sources for these gases.

  3. Atmospheric Data Package for the Composite Analysis

    SciTech Connect

    Napier, Bruce A.; Ramsdell, James V.

    2005-09-01

    The purpose of this data package is to summarize our conceptual understanding of atmospheric transport and deposition, describe how this understanding will be simplified for numerical simulation as part of the Composite Analysis (i.e., implementation model), and finally to provide the input parameters needed for the simulations.

  4. Isotopic composition of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Mcelroy, M. B.; Yung, Y. L.

    1976-01-01

    Results from the neutral mass spectrometer carried on the aeroshell of Viking 1 show evidence for NO in the upper atmosphere of Mars and indicate that the isotopic composition of carbon and oxygen is similar to that of earth. Mars is enriched in N-15 relative to earth by about 75 per cent, a consequence of escape that implies an initial abundance of nitrogen equivalent to a partial pressure of at least 2 millibars. The initial abundance of oxygen present either as CO2 or H2O must be equivalent to an exchangeable atmospheric pressure of at least 2 bars in order to inhibit escape-related enrichment of O-18.

  5. Oxygen isotopic composition of carbon dioxide in the middle atmosphere.

    PubMed

    Liang, Mao-Chang; Blake, Geoffrey A; Lewis, Brenton R; Yung, Yuk L

    2007-01-02

    The isotopic composition of long-lived trace molecules provides a window into atmospheric transport and chemistry. Carbon dioxide is a particularly powerful tracer, because its abundance remains >100 parts per million by volume (ppmv) in the mesosphere. Here, we successfully reproduce the isotopic composition of CO(2) in the middle atmosphere, which has not been previously reported. The mass-independent fractionation of oxygen in CO(2) can be satisfactorily explained by the exchange reaction with O((1)D). In the stratosphere, the major source of O((1)D) is O(3) photolysis. Higher in the mesosphere, we discover that the photolysis of (16)O(17)O and (16)O(18)O by solar Lyman-alpha radiation yields O((1)D) 10-100 times more enriched in (17)O and (18)O than that from ozone photodissociation at lower altitudes. This latter source of heavy O((1)D) has not been considered in atmospheric simulations, yet it may potentially affect the "anomalous" oxygen signature in tropospheric CO(2) that should reflect the gross carbon fluxes between the atmosphere and terrestrial biosphere. Additional laboratory and atmospheric measurements are therefore proposed to test our model and validate the use of CO(2) isotopic fractionation as a tracer of atmospheric chemical and dynamical processes.

  6. Dynamic of the atmospheric boundary layer from the isotopic composition of surface water vapor at the Maïdo Observatory (La Réunion, Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Guilpart, Etienne; Vimeux, Francoise; Metzger, Jean-Marc; Evan, Stephanie; Brioude, Jerome; Cattani, Olivier

    2016-04-01

    Projections of tropical and subtropical precipitation strongly differ from one climate model to another, both in sign and in amplitude. This is the case for example in some parts of the West Indian Ocean. The causes of those uncertainties are numerous and a better understanding of humid processes in the tropical atmosphere is needed. We propose to address this burning question by using water stables isotopes. We have been measuring the isotopic composition of surface water vapor at the atmospheric Observatory of Maïdo located at La Reunion Island (21°S, 55°E, 2200m a.s.l) since November 2014. Our results exhibit a strong diurnal cycle all over the year (except during cyclonic activity), with almost constant isotopic values during the day (around -13.5±0.6‰ for oxygen 18 from November 2014 to November 2015) and variable and very depleted isotopic values during the night (down to -35‰ for oxygen 18 over the same period) associated with low humidity levels. We will show in this presentation that the diurnal isotopic variations are associated to a strong air masses mixing. During the day, the isotopic composition of the vapor is typical of marine boundary layer (BL) moisture transported from the close Ocean and lifted up to the Maïdo station. During the night, the depleted values and the low humidity could trace free troposphere moisture, which is consistent with previous studies suggesting that the Maïdo Observatory is above the BL during the night. We will explore the influence of the daily BL development on our observations, using a set of atmospheric vertical profiles done on site in May 2015 during the BIOMAIDO campaign. At last, we will discuss the most isotopic depleted values recorded in our observations during the night as a possible consequence of regional strong subsidences.

  7. Nitrogen condensation in Titan's atmosphere under contemporary atmospheric composition

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya

    2017-06-01

    Temperature profiles of Titan's atmosphere obtained by Cassini radio occultations approach the nitrogen condensation temperature curve at some places. This raises the question as to whether nitrogen, Titan's main atmospheric constituent, might condense in some seasons and areas contrary to previous perception. To address this question, possible areas and seasons of nitrogen condensation are searched for by a global climate model. The model is run under the present atmospheric pressure and composition but under various orbital configurations including the present one. Under the present orbital configuration the polar temperature at either pole becomes lowest around the northern autumnal equinox one season after aphelion. Liquid nitrogen clouds may appear in this season between 30 and 40 km altitude at least near the south pole, presumably embedded in icy methane clouds. Any falling nitrogen rain is likely to entirely evaporate before reaching the surface and thus does not affect the seasonal cycle of surface pressure. Seasonal nitrogen condensation is more frequent and intense when Saturn's orbital eccentricity is larger and hence the heliocentric distance at aphelion is larger. Nevertheless, orbital parameter variations alone are not capable of flooding the surface with liquid nitrogen or causing large fluctuations of the surface pressure.

  8. Effects of eustatic sea-level change, ocean dynamics, and iron fertilization on atmospheric pCO2 and seawater composition over the last 130 000 years

    NASA Astrophysics Data System (ADS)

    Wallmann, K.; Schneider, B.; Sarnthein, M.

    2015-06-01

    We developed and employed an earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus, reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, they led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to reduced deep ocean dynamics, a shoaling of Atlantic meridional overturning circulation, and a rise in iron fertilization. The increased transit time of deep waters in the glacial ocean led to significant 14C depletions with respect to the atmosphere. The deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in dust-borne iron discharge to the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks

  9. New Discoveries Resulted from Lidar Investigation of Middle and Upper Atmosphere Temperature, Composition, Chemistry and Dynamics at McMurdo, Antarctica

    NASA Astrophysics Data System (ADS)

    Chu, X.; Yu, Z.; Fong, W.; Chen, C.; Huang, W.; Lu, X.; Gardner, C. S.; McDonald, A.; Fuller-Rowell, T. J.; Vadas, S.

    2013-12-01

    discoveries may have opened the new door to observing the neutral thermosphere with ground-based instruments. Extreme Fe events in summer were observed and understood as the interesting interactions among the meteoric metal atoms, sub-visible ice particles and energetic particles during aurora precipitation. Furthermore, the McMurdo middle and upper atmosphere is found to be very dynamical, especially in winter when inertia-gravity waves and eastward propagating planetary waves are predominant in the mesosphere and lower thermosphere and in the stratosphere, respectively. Despite small amplitudes below 100 km, the diurnal and semidiurnal tidal amplitudes exhibit fast growth from 100 to 110 km depending on the geomagnetic activities. These observations pose great challenges to our understanding of the Earth's upper atmosphere but also provide excellent opportunities to exploring how the electrodynamics and neutral dynamics work together at this high southern latitude to produce many intriguing geophysical phenomena.

  10. Atmospheric dynamics of tidally synchronized extrasolar planets.

    PubMed

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  11. Dynamics of the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1992-01-01

    The superrotation of the Venus atmosphere is a major unanswered problem in planetary science. At cloud-top levels (65-70 km altitude) the atmosphere rotates with a five-day period, corresponding to an equatorial wind speed of 90 m/s. Angular velocity is roughly constant on spherical shells, and decreases linearly with altitude to zero at the surface. The direction of rotation is the same as that of the solid planet, which is retrograde--opposite to the direction of orbital motion, but the 5-day period is short compared to the 243-day spin period of the solid planet or to the mean solar day, which is 117 Earth-days at the surface. The problem with the superrotation is that shearing stresses tend to transfer angular momentum downward, and would slow the atmosphere until it is spinning with the solid planet. Some organized circulation pattern is counteracting the tendency, but the pattern has not been identified. A simple Hadley-type circulation cannot do it because such a circulation is zonally symmetric and Hide's Theorem states that in an axisymmetric circulation an extremum in angular momentum per unit mass M can exist only at the surface. Venus violates the last condition, having a maximum of retrograde M on the equator at 70-80 km altitude. This leaves waves and eddies to maintain the superrotation but the length scales and forcing mechanisms for these motions need to be specified. Possible forcing mechanisms associated with waves, eddies and tides are discussed.

  12. Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B. (Editor); Salstein, David A.

    1994-01-01

    The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above.

  13. Atmospheric dynamics of the outer planets.

    PubMed

    Ingersoll, A P

    1990-04-20

    Despite major differences in the solar and internal energy inputs, the atmospheres of the four Jovian planets all exhibit latitudinal banding and high-speed jet streams. Neptune and Saturn are the windiest planets, Jupiter is the most active, and Uranus is a tipped-over version of the others. Large oval storm systems exhibit complicated time-dependent behavior that can be simulated in numerical models and laboratory experiments. The largest storm system, the Great Red Spot of Jupiter, has survived for more than 300 years in a chaotic shear zone where smaller structures appear and dissipate every few days. Future space missions will add to our understanding of small-scale processes, chemical composition, and vertical structure. Theoretical hypotheses about the interiors provide input for fluid dynamical models that reproduce many observed features of the winds, temperatures, and cloud patterns. In one set of models the winds are confined to the thin layer where clouds form. In other models, the winds extend deep into the planetary fluid interiors. Hypotheses will be tested further as observations and theories become more exact and detailed comparisons are made.

  14. Atmospheric dynamics of the outer planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    1990-01-01

    Despite major differences in the solar and internal energy inputs, the atmospheres of the four Jovian planets all exhibit latitudinal banding and high-speed jet streams. Neptune and Saturn are the windiest planets, Jupiter is the most active, and Uranus is a tipped-over version of the others. Large oval storm systems exhibit complicated time-dependent behavior that can be simulated in numerical models and laboratory experiments. The largest storm system, the Great Red Spot of Jupiter, has survived for more than 300 years in a chaotic shear zone where smaller structures appear and dissipate every few days. Future space missions will add to the understanding of small-scale processes, chemical composition, and vertical structure. Theoretical hypotheses about the interiors provide input for fluid dynamical models that reproduce many observed features of the winds, temperatures, and cloud patterns. In one set of models the winds are confined to the thin layer where clouds form. In other models, the winds extend deep into the planetary fluid interiors. Hypotheses will be tested further as observations and theories become more exact and detailed comparisons are made.

  15. Atmospheric dynamics of the outer planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    1990-01-01

    Despite major differences in the solar and internal energy inputs, the atmospheres of the four Jovian planets all exhibit latitudinal banding and high-speed jet streams. Neptune and Saturn are the windiest planets, Jupiter is the most active, and Uranus is a tipped-over version of the others. Large oval storm systems exhibit complicated time-dependent behavior that can be simulated in numerical models and laboratory experiments. The largest storm system, the Great Red Spot of Jupiter, has survived for more than 300 years in a chaotic shear zone where smaller structures appear and dissipate every few days. Future space missions will add to the understanding of small-scale processes, chemical composition, and vertical structure. Theoretical hypotheses about the interiors provide input for fluid dynamical models that reproduce many observed features of the winds, temperatures, and cloud patterns. In one set of models the winds are confined to the thin layer where clouds form. In other models, the winds extend deep into the planetary fluid interiors. Hypotheses will be tested further as observations and theories become more exact and detailed comparisons are made.

  16. Titan's atmosphere - Temperature and dynamics

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Samuelson, R. E.; Conrath, B. J.

    1981-01-01

    In the lower atmosphere of Titan IR brightness temperatures exhibit meridional contrast less than approximately 3 K. Seasonal variations are absent because of the large radiative time constant. In the upper stratosphere meridional contrasts are approximately 20 K, consistent with 100 m/s cyclostrophic zonal winds, and the radiative time constant is short, implying a large seasonal variation in the temperature and wind field. The absence of longitudinal thermal structure implies that zonally symmetric flows effect the meridional transport of heat. A simple model yields meridional velocities approximately 0.04 cm/s and vertical eddy viscosities approximately 1,000 sq cm/s in the lower troposphere, and meridional velocities approximately 5 cm/s in the upper stratosphere.

  17. Fundamentals of Middle Atmospheric Dynamics

    DTIC Science & Technology

    1989-03-31

    from year to year . These trends are partly a result of man-made perturbations and involve an intricate interplay of chemical, radiative and dynamical...processes on the one hand, and radiation and chemistry on the other. (4) Accomplishments since 1 April 1988: Dr Dritschel has continued to make important...appear in the Quarterly Journal of the Royal Meteorological Society, probably early next year . Dr McIntyre was seconded to the field phase of the NASA/NOAA

  18. Structure and dynamics of Saturn's atmosphere

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.; Beebe, R. F.; Conrath, B. J.; Hunt, G. E.

    1984-01-01

    The large-scale structure and dynamics of Saturn's atmosphere, as revealed in the visible markings, wind patterns, and horizontal variation of temperature, are discussed. The large-scale thermal structure is addressed, including the mean vertical structure and the seasons and jets of the horizontal temperature structure. Earth-based and Voyager wind observations are used to discuss the internal rate of rotation, the zonal wind profile, the eddies, and the eddy transport. Dynamic models of the atmospheric circulation are reviewed, discussing the depth of the zonal flow, upwelling and downwelling, deep convection, eddy-mean flow interactions, long-lived ovals, and the zonal velocity profile.

  19. Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.

    2006-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.

  20. Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.

    2006-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.

  1. The Stable Isotopic Composition of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Yakir, D.

    2003-12-01

    When a bean leaf was sealed in a closed chamber under a lamp (Rooney, 1988), in two hours the atmospheric CO2 in the microcosm reached an isotopic steady state with a 13C abundance astonishingly similar to the global mean value of atmospheric CO2 at that time (-7.5‰ in the δ13C notation introduced below). Almost concurrently, another research group sealed a suspension of asparagus cells in a different type of microcosm in which within about two hours the atmospheric O2 reached an isotopic steady state with 18O enrichment relative to water in the microcosm that was, too, remarkably similar to the global-scale offset between atmospheric O2 and mean ocean water (21‰ versus 23.5‰ in the δ18O notation introduced below; Guy et al., 1987). These classic experiments capture some of the foundations underlying the isotopic composition of atmospheric CO2 and O2. First, in both cases the biological system rapidly imposed a unique isotopic value on the microcosms' atmosphere via their massive photosynthetic and respiratory exchange of CO2 and O2. Second, in both cases the biological system acted on materials with isotopic signals previously formed by the global carbon and hydrological cycles. That is, the bean leaf introduced its previously formed organic matter (the source of the CO2 respired into microcosm's atmosphere), and the asparagus cells were introduced complete with local tap water (from which photosynthesis released molecular oxygen). Therefore, while the isotopic composition of the biological system used was slave to long-term processes, intense metabolic processes centered on few specific enzymes (Yakir, 2002) dictated the short-term atmospheric composition.In a similar vein, on geological timescales of millions of years, the atmosphere and its isotopic composition are integral parts of essentially a single dynamic ocean-atmosphere-biosphere system. This dynamic system exchanges material, such as carbon and oxygen, with the sediments and the lithosphere via

  2. Atmospheric Composition and Chemistry Discoveries from Space

    NASA Astrophysics Data System (ADS)

    Douglass, A. R.; Stolarski, R. S.

    2005-12-01

    Satellite observations have given scientists a global perspective on the photochemical and dynamical processes that control the atmospheric evolution of constituents like ozone. The satellites and their instruments are often designed to address specific questions and sometimes vastly exceed their developer's expectations. The Total Ozone Mapping Spectrometer (TOMS) was designed to simply map the variability of the ozone column due to atmospheric waves. The instruments on the Upper Atmosphere Research Satellite (UARS) were designed to measure upper stratospheric ozone and quantities important to ozone including solar flux, winds and constituents that contribute to ozone destruction. The scientific payoff from UARS and TOMS vastly exceeded these modest goals. Total ozone measurements from TOMS revealed the extent and variability of the Antarctic ozone hole. UARS instruments showed the spatial structures of the conversion of chlorine species from reservoirs to radicals and back to reservoirs during the seasonal development and disappearance of the ozone hole. UARS investigators discovered previously unknown features of the atmospheric circulation. For example, long-lived tracer measurements showed unmixed descent of mesospheric air into the polar lower stratosphere as the winter vortex was formed. Observations of water vapor in the tropical stratosphere showed that air parcels carry the memory of the tropical tropopause temperature for years as they ascend through the stratosphere (the tropical "tape recorder"). The persistence of this signature places constraints on mass flux into the stratosphere and the mixing between tropical and middle latitudes. Satellite data have yielded unexpected bonuses. Improvements in the understanding of the TOMS retrieval algorithm allowed for the removal of drifts in instrument performance to produce a stable climate-quality data set for trend analysis. Apparent noise in the retrievals was eventually understood to be due to aerosols

  3. CIDGA - Coupling of Interior Dynamic models with Global Atmosphere models

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Plesa, Ana-Catalina; Breuer, Doris

    2010-05-01

    Atmosphere temperatures and in particular the surface temperatures mostly depend on the solar heat flux and the atmospheric composition. The latter can be influenced by interior processes of the planet, i.e. volcanism that releases greenhouse gases such as H2O, CO2 and methane into the atmosphere and plate tectonics through which atmospheric CO2 is recycled via carbonates into the mantle. An increasing concentration of greenhouse gases in the atmosphere results in an increase of the surface temperature. Changes in the surface temperature on the other hand may influence the cooling behaviour of the planet and hence influence its volcanic activity [Phillips et al., 2001]. This feedback relation between mantle convection and atmosphere is not very well understood, since until now mostly either the interior dynamic of a planet or its atmosphere was investigated separately. 2D or 3D mantle convection models to the authors' knowledge haven't been coupled to the atmosphere so far. We have used the 3D spherical simulation code GAIA [Hüttig et al., 2008] including partial melt production and coupled it with the atmosphere module CIDGA using a gray greenhouse model for varying H2O concentrations. This way, not only the influence of mantle dynamics on the atmosphere can be investigated, but also the recoupling effect, that the surface temperature has on the mantle dynamics. So far, we consider one-plate planets without crustal and thus volatile recycling. Phillips et al. [2001] already investigated the coupling effect of the surface temperature on mantle dynamics by using simple parameterized convection models for Venus. In their model a positive feedback mechanism has been observed, i.e., an increase of the surface temperature leads to an increase of partial melt and hence an increase of atmosphere density and surface temperature. Applying our model to Venus, we show that an increase of surface temperature leads not only to an increase of partial melt in the mantle; it also

  4. Compositions of Hot Super-earth Atmospheres: Exploring Kepler Candidates

    NASA Astrophysics Data System (ADS)

    Miguel, Y.; Kaltenegger, L.; Fegley, B.; Schaefer, L.

    2011-12-01

    This paper outlines a simple approach to evaluate the atmospheric composition of hot rocky planets by assuming different types of planetary composition and using corresponding model calculations. To explore hot atmospheres above 1000 K, we model the vaporization of silicate magma and estimate the range of atmospheric compositions according to the planet's radius and semi-major axis for the Kepler 2011 February data release. Our results show five atmospheric types for hot, rocky super-Earth atmospheres, strongly dependent on the initial composition and the planet's distance to the star. We provide a simple set of parameters that can be used to evaluate atmospheric compositions for current and future candidates provided by the Kepler mission and other searches.

  5. COMPOSITIONS OF HOT SUPER-EARTH ATMOSPHERES: EXPLORING KEPLER CANDIDATES

    SciTech Connect

    Miguel, Y.; Kaltenegger, L.; Fegley, B.; Schaefer, L.

    2011-12-15

    This paper outlines a simple approach to evaluate the atmospheric composition of hot rocky planets by assuming different types of planetary composition and using corresponding model calculations. To explore hot atmospheres above 1000 K, we model the vaporization of silicate magma and estimate the range of atmospheric compositions according to the planet's radius and semi-major axis for the Kepler 2011 February data release. Our results show five atmospheric types for hot, rocky super-Earth atmospheres, strongly dependent on the initial composition and the planet's distance to the star. We provide a simple set of parameters that can be used to evaluate atmospheric compositions for current and future candidates provided by the Kepler mission and other searches.

  6. Atmospheric accelerations and the stability of dynamic supergiant atmospheres.

    NASA Astrophysics Data System (ADS)

    Nieuwenhuijzen, H.; de Jager, C.

    1995-10-01

    The goal of this paper is to study instability regions in the HR diagram, through a calculation of the atmospheric accelerations for spherically symmetric stars, in dynamic equilibrium, without using detailed atmospheric models. The input data are five primary data, viz.: the stellar luminosity L, the effective temperature T_eff_, the mass M, the rate of mass loss ˙(M), and the microturbulent velocity component ζmu_, while we assume the temperature for a reference atmospheric layer, an assumption that appears not to be critical. An iterative solution of the momentum equation, simultaneous with some other equations, yields values for the various accelerations acting on a stellar atmosphere and their algebraic sum g_eff_', the predicted effective acceleration. In the first part of the paper we compare this latter quantity with the g_eff_-value derived observationally from spectral studies of nine program stars and we find overall fair agreement. This supports the method as well as the values of the five input data. In part 2 we determine g'_eff_ in same way for the whole upper part of the Hertzsprung-Russell diagram by using statistical primary data on the mass (based on evolutionary calculations), on mass-loss and on microturbulence (shock-strengths). We find as a fairly general rule that, as stars move along their evolutionary track, and for time scales longer than the dynamic time scale of the atmosphere, the atmosphere continuously adapts to the new (L,T_eff_)-values and essentially remains stable. Current practice of determining the stability limit of stellar atmospheres by extrapolating hydrostatic models to the Eddington limit is not justified by this study. There is one exception: we find a small area around T_eff_=8300K and log(L/Lsun_)=5.7, where no solution is possible for evolved stars on their blueward evolutionary track; the stars in this area have in any case effective accelerations <1mm/s^2^: the "Yellow Evolutionary Void". In the third part we

  7. Dust particle dynamics in atmospheric dust devils

    NASA Astrophysics Data System (ADS)

    Izvekova, Yulia; Popel, Sergey

    2016-04-01

    Dust particle dynamics is modeled in the Dust Devils (DDs). DD is a strong, well-formed, and relatively long-lived whirlwind, ranging from small (half a meter wide and a few meters tall) to large (more than 100 meters wide and more than 1000 meters tall) in Earth's atmosphere. We develop methods for the description of dust particle charging in DDs, discuss the ionization processes in DDs, and model charged dust particle motion. Our conclusions are consistent with the fact that DD can lift a big amount of dust from the surface of a planet into its atmosphere. On the basis of the model we perform calculations and show that DDs are important mechanism for dust uplift in the atmospheres of Earth and Mars. Influence of DD electric field on dynamics of dust particles is investigated. It is shown that influence of the electric field on dust particles trajectories is significant near the ground. At some altitude (more then a quarter of the height of DD) influence of the electric field on dust particles trajectories is negligible. For the calculation of the dynamics of dust electric field can be approximated by effective dipole located at a half of the height of DD. This work was supported by the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  8. HPC simulations of the atmospheric composition climate of Bulgaria

    NASA Astrophysics Data System (ADS)

    Gadzhev, Georgi; Ganev, Kostadin; Miloshev, Nikolay; Syrakov, Dimiter; Prodanova, Maria

    2014-05-01

    Some extensive numerical simulations of the atmospheric composition fields in Bulgaria have been recently performed. The US EPA Model-3 system was chosen as a modelling tool. The system consists of three components: MM5 - the 5th generation PSU/NCAR Meso-meteorological Model used as meteorological pre-processor; CMAQ - the Community Multiscale Air Quality System CMAQ; SMOKE - the Sparse Matrix Operator Kernel Emissions Modelling System - the emission model. As the NCEP Global Analysis Data with 1 degree resolution was used as meteorological background, the MM5 and CMAQ nesting capabilities were applied for downscaling the simulations to a 3 km resolution over Bulgaria. The TNO emission inventory was used as emission input. Special pre-processing procedures are created for introducing temporal profiles and speciation of the emissions. The biogenic emissions of VOC are estimated by the model SMOKE. The numerical experiments have been carried out for different emission scenarios, which makes it possible the contribution of emissions from different source categories to be evaluated. The air pollution pattern is formed as a result of interaction of different processes, so knowing the contribution of each for different meteorological conditions and given emission spatial configuration and temporal behaviour could be interesting. Therefore the Models-3 'Integrated Process Rate Analysis' option is applied to discriminate the role of different dynamic and chemical processes for the air pollution formation. The obtained ensemble of numerical simulation results is extensive enough to allow statistical treatment - calculating not only the mean concentrations and different source categories contribution mean fields, but also standard deviations, skewness, etc. with their dominant temporal modes (seasonal and/or diurnal variations). Thus some basic facts about the atmospheric composition climate of Bulgaria can be retrieved from the simulation ensemble, which makes it possible

  9. Morphology, composition, and atmospheric processing of soot particles

    NASA Astrophysics Data System (ADS)

    Slowik, Jay G.

    Combustion-generated soot aerosols play an important role in climate forcing due to their strong light-absorbing properties. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. The task is further complicated because of the lack of an unambiguous chemical definition of the material. Here we present the development and application of a new technique for determining particle morphology and composition. Simultaneous measurements of mobility diameter, vacuum aerodynamic diameter, and non-refractory composition were used to determine the particle mass, volume, density, composition, dynamic shape factor, and fractal dimension. Under certain conditions, particle surface area and the number and size of the primary spherules composing the soot fractal aggregates were also determined. The particle characterization technique described above was applied to the following four studies: (1) Characterization of flame-generated soot particles. Depending on flame conditions, either fractal or near-spherical particles were generated and their properties interpreted in terms of the mechanism for soot formation. (2) Coating and denuding experiments were performed on soot particles. The results yielded information about morphology changes to the entire soot particle and to the internal black carbon structure due to atmospheric processing. The denuding experiments also provided particle surface area, which was used to determine the atmospheric lifetime of fractal soot particles relative to spheres. (3) An inter-comparison study of instruments measuring the black carbon content of soot particles was conducted. The detailed characterization of soot particles enabled a number of assumptions about the operation of the selected instruments to be tested. (4) Ambient particles were sampled in Mexico City. In the early morning, ambient particles were detected with a fractal morphology similar to that of diesel

  10. Measurement of Atmospheric Composition from Geostationary Platforms

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.; Kawa, S. R.; Janz, S.; Herman, J. R.; Gleason, J. F.

    2008-01-01

    Satellite instruments flown since 1970 have had great success in elucidating the processes that control stratospheric ozone. In contrast, space-based data for tropospheric constituents that affect air quality and climate have only recently become available. While these datasets highlight the rapidly advancing capabilities of spacebased tropospheric sensors, they are also pointing to the limitations of sun-synchronous, low-earth orbiting (SSO/LEO) satellite platforms for making such measurements. In our talk we will highlight the science requirements for new missions and the technological and algorithmic approaches that we are developing to meet these requirements. From these studies a clear need for advanced atmospheric composition sensors has emerged that can be put on geostationary (GEO) platforms to provide 5 km horizontal resolution with 15-60 minutes repeat cycle. Such measurements have been high priority in the recently released Decadal Survey report by the US National Research Council. The need for GEO is driven not only by the science requirements to track rapidly changing pollution events but also by the need to provide altitude-resolved information about tropospheric constituents. Currently, with the exception of aerosols, it is not possible to derive profile information about lower tropospheric constituents from satellite measurements. New algorithmic approaches are being developed to obtain this information by combining UV and IR data, by monitoring the spatial and temporal structures of the constituents, and by using low-level clouds to separate boundary layer constituents from free troposphere. All these approaches require better spatial and temporal resolution than that provided by LEO sensors.

  11. Dynamic model of the Earth's upper atmosphere

    NASA Technical Reports Server (NTRS)

    Slowey, J. W.

    1984-01-01

    An initial modification to the MSF/J70 Thermospheric Model, in which the variations due to sudden geomagnetic disturbances upon the Earth's upper atmospheric density structure were modeled is presented. This dynamic model of the geomagnetic variation included is an improved version of one which SAO developed from the analysis of the ESRO 4 mass spectrometer data that was incorporated in the Jacchia 1977 model. The variation with geomagnetic local time as well as with geomagnetic latitude are included, and also the effects due to disturbance of the temperature profiles in the region of energy deposition.

  12. The Dynamics of the Atmospheric Radiation Environment at Aviation Altitudes

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, Epaminondas G.

    2004-01-01

    Single Event Effects vulnerability of on-board computers that regulate the: navigational, flight control, communication, and life support systems has become an issue in advanced modern aircraft, especially those that may be equipped with new technology devices in terabit memory banks (low voltage, nanometer feature size, gigabit integration). To address this concern, radiation spectrometers need to fly continually on a multitude of carriers over long periods of time so as to accumulate sufficient information that will broaden our understanding of the very dynamic and complex nature of the atmospheric radiation environment regarding: composition, spectral distribution, intensity, temporal variation, and spatial variation.

  13. Extending Atmospheric Composition Processing to the Community

    NASA Astrophysics Data System (ADS)

    Durbin, P.; Tilmes, C.; Balsano, R.; Martin, A.; Soika, V.; Inskeep, E.

    2007-12-01

    The Ozone Monitoring Instrument Science Investigator-led Processing System (OMI SIPS) has been the central data processing system for OMI since its launch on NASA's Aura spacecraft in July, 2004. As part of NASA's evolution from mission based processing to measurement based processing, we are evolving the system into a community oriented Atmospheric Composition Processing System (ACPS). This involves changing focus from the mission (OMI) to the measurement (total column ozone), and a widening of our focus from the mission science teams to the overall scientific community. The current system dispatches and executes software developed by scientists on a computer cluster; archiving the results and distributing the data to numerous parties. Although this works well for the production environment, access to centralized systems has been naturally limited. Ideally, scientists should be able to easily get the data, run their software, make changes and repeat the process until they are happy with the solution to the problems they are trying to solve. In addition it should be simple to migrate research improvements from the community back into the formal production system. Through NASA's "Advancing Collaborative Connections for Earth-Sun System Science," we have extended publicly accessible interfaces into the production system. The system provides an open API via a set of SOAP/XML and REST based web services, enabling scientists, researchers and operators to interact directly with the data and services offered by the central system. The system includes metadata, archive, and planner subsystems. The metadata server stores metadata about the data products and provides the ability for processing software to evaluate production rules to determine the appropriate input data files for a given data processing job. The archive server stores the data files themselves and makes then available for clients to retrieve the files as needed. The planner plans out the set of jobs to be run

  14. Dynamic Stabilization of Atmospheric Single Column Models.

    NASA Astrophysics Data System (ADS)

    Bergman, John W.; Sardeshmukh, Prashant D.

    2004-03-01

    Single column models (SCMs) provide an economical framework for assessing the sensitivity of atmospheric temperature and humidity to natural and imposed perturbations, and also for developing improved representations of diabatic processes in weather and climate models. Their economy is achieved at the expense of ignoring interactions with the circulation dynamics; thus, advection by the large-scale flow is either prescribed or neglected. This artificial decoupling of the diabatic and adiabatic tendencies can often cause rapid error growth in SCM integrations, especially in the Tropics where large-scale vertical advection is important. As a result, SCMs can quickly develop highly unrealistic thermodynamic structures, making it pointless to study their subsequent evolution.This paper suggests one way around this fundamental difficulty through a simple coupling of the diabatic and adiabatic tendencies. In essence, the local vertical velocity at any instant is specified by a formula that links the local vertical temperature advection to the evolution of SCM-generated diabatic heating rates up to that instant. This vertical velocity is then used to determine vertical humidity advection, and also horizontal temperature and humidity advection under an additional assumption that the column is embedded in a uniform environment. The parameters in the formula are estimated in a separate set of calculations, from the approach to equilibrium of a linearized global primitive equation model forced by steady heat sources. As a test, the parameterized dynamics are used to predict the linear model's local response to oscillating heat sources, and found to perform remarkably well over a wide range of space and time scales. In a second test, the parameterization is found to capture important aspects of a general circulation model's vertical advection and temperature tendencies and their lead lag relationships with diabatic heating fluctuations at convectively active locations in the

  15. Model atmospheres for cool stars. [varying chemical composition

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1974-01-01

    This report contains an extensive series of model atmospheres for cool stars having a wide range in chemical composition. Model atmospheres (temperature, pressure, density, etc.) are tabulated, along with emergent energy flux distributions, limb darkening, and information on convection for selected models. The models are calculated under the usual assumptions of hydrostatic equilibrium, constancy of total energy flux (including transport both by radiation and convection) and local thermodynamic equilibrium. Some molecular and atomic line opacity is accounted for as a straight mean. While cool star atmospheres are regimes of complicated physical conditions, and these atmospheres are necessarily approximate, they should be useful for a number of kinds of spectral and atmospheric analysis.

  16. Isotopic composition of atmospheric hydrogen and methane

    USGS Publications Warehouse

    Bainbridge, A.E.; Suess, H.E.; Friedman, I.

    1961-01-01

    IN a recent communication, Bishop and Taylor1 express the opinion that the tritium concentration of free hydrogen in the atmosphere has been rising over the past ten years, with a doubling time of approximately 18 months. The authors suspect that artificial tritium was released into the atmosphere several years before the Castle test series in 1954, which is commonly assumed to have led to the first pronounced rise in the tritium concentration of terrestrial surface water. Bishop and Taylor's communication includes a diagram of the logarithms of all the experimentally determined tritium values in free atmospheric hydrogen plotted against time. The plot shows that the values follow a straight line that includes the first value obtained by Faltings and Harteck2 on atmospheric hydrogen collected in 1948. ?? 1961 Nature Publishing Group.

  17. Challenges in Discerning Atmospheric Composition in Directly Imaged Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.

    2017-01-01

    One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.

  18. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    PubMed

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  19. Geomagnetic Disturbances Caused by Internal Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Sonneman, G.

    1984-01-01

    It is commonly believed that geomagnetic disturbances are caused by external influences connected with the solar wind. The 27-day recurrence of perturbations seems to be a strong hint for this interaction. But frequently geomagnetic disturbances occur without any relation to sunspot numbers or radiowave fluxes. This was one of the reasons for introducing hypothetical M-regions on the Sun and their relation to solar wind activities. Only one half of the variance of the geomagnetic AL-index could be related to the solar wind. Therefore it is concluded that internal processes of the magnetosphere were responsible for additional geomagnetic activity. Arguments, which might lead to the suggestion of geomagnetic disturbances as being caused by internal atmospheric dynamics are discussed and a rather preliminary scenario of those processes is proposed.

  20. Some numerically studies of the atmospheric composition climate of Bulgaria

    NASA Astrophysics Data System (ADS)

    Gadzhev, G. K.; Ganev, K. G.; Prodanov, M.; Syrakov, D. E.; Miloshev, N. G.; Georgiev, G. J.

    2013-10-01

    Some extensive numerical simulations of the atmospheric composition fields in Bulgaria have been recently performed. The US EPA Model-3 system was chosen as a modelling tool. The system consists of three components: MM5 - the 5th generation PSU/NCAR Meso-meteorological Model used as meteorological pre-processor; CMAQ - the Community Multiscale Air Quality System CMAQ; SMOKE - the Sparse Matrix Operator Kernel Emissions Modelling System - the emission model [4]. As the NCEP Global Analysis Data with 1 degree resolution was used as meteorological background, the MM5 and CMAQ nesting capabilities were applied for downscaling the simulations to a 3 km resolution over Bulgaria. The TNO emission inventory was used as emission input. Special pre-processing procedures are created for introducing temporal profiles and speciation of the emissions. The biogenic emissions of VOC are estimated by the model SMOKE. The numerical experiments have been carried out for different emission scenarios, which makes it possible the contribution of emissions from different source categories to be evaluated. The air pollution pattern is formed as a result of interaction of different processes, so knowing the contribution of each for different meteorological conditions and given emission spatial configuration and temporal behaviour could be interesting. Therefore the Models-3 "Integrated Process Rate Analysis" option is applied to discriminate the role of different dynamic and chemical processes for the air pollution formation. The obtained ensemble of numerical simulation results is extensive enough to allow statistical treatment - calculating not only the mean concentrations and different source categories contribution mean fields, but also standard deviations, skewness, etc. with their dominant temporal modes (seasonal and/or diurnal variations). Thus some basic facts about the atmospheric composition climate of Bulgaria can be retrieved from the simulation ensemble.

  1. Scientific summary. [composition of Titan atmospheric models

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.

    1974-01-01

    Methane absorptions are prominent in the Titan atmospheric spectrum; also present are atomic hydrogen and nitrogen bands. Evaluation of the low ultraviolet albedo points to solid methane clouds and photochemical haze. Thermal infrared data indicate solar energy absorption and photodissociation reactions of the gas mixture resulting in the production of organic compounds and free hydrogen atoms.

  2. Chapter 13. Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation, but in this case a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10 deg S, indicate that the zonal winds are mostly in the sense of the satellite's rotation. They generally increase with altitude and become cyclostrophic near 35 km above the surface. An exception to this is a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from temperatures retrieved from Cassini orbiter measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds of 190 m/s at mid northern latitudes near 300 km. Above this level, the vortex decays. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by about 4 deg. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the onset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures near 400 km and the enhanced concentration of several organic molecules suggest subsidence in the north polar region during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50 deg N. Titan's winter polar vortex appears to share many of the same characteristics of isolating high and low-latitude air masses as do the winter polar vortices on Earth that envelop the ozone holes. Global mapping of temperatures, winds, and composition in the troposphere, by contrast, is incomplete

  3. Spaceborne doppler atmospheric radar: an overview for measuring atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone

    2004-01-01

    Knowledge of the global distribution of the vertical velocity of precipitation and cloud constituents is important in estimating latent heat fluxes, and therefore in the study of energy transportation in the atmosphere, the climate and weather.

  4. Radiative and dynamical modeling of Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Guerlet, Sandrine; Spiga, Aymeric

    2016-04-01

    Jupiter's atmosphere harbours a rich meteorology, with alternate westward and eastward zonal jets, waves signatures and long-living storms. Recent ground-based and spacecraft measurements have also revealed a rich stratospheric dynamics, with the observation of thermal signatures of planetary waves, puzzling meridional distribution of hydrocarbons at odds with predictions of photochemical models, and a periodic equatorial oscillation analogous to the Earth's quasi-biennal oscillation and Saturn's equatorial oscillation. These recent observations, along with the many unanswered questions (What drives and maintain the equatorial oscillations? How important is the seasonal forcing compared to the influence of internal heat? What is the large-scale stratospheric circulation of these giant planets?) motivated us to develop a complete 3D General Circulation Model (GCM) of Saturn and Jupiter. We aim at exploring the large-scale circulation, seasonal variability, and wave activity from the troposphere to the stratosphere of these giant planets. We will briefly present how we adapted our existing Saturn GCM to Jupiter. One of the main change is the addition of a stratospheric haze layer made of fractal aggregates in the auroral regions (poleward of 45S and 30N). This haze layer has a significant radiative impact by modifying the temperature up to +/- 15K in the middle stratosphere. We will then describe the results of radiative-convective simulations and how they compare to recent Cassini and ground-based temperature measurements. These simulations reproduce surprisingly well some of the observed thermal vertical and meridional gradients, but several important mismatches at low and high latitudes suggest that dynamics also plays an important role in shaping the temperature field. Finally, we will present full GCM simulations and discuss the main resulting features (waves and instabilities). We will also and discuss the impact of the choice of spatial resolution and

  5. Parachute Dynamic Stability Variations Due to Atmospheric Density

    NASA Astrophysics Data System (ADS)

    Ginn, J. M.; Braun, R. D.; Clark, I. G.

    2014-06-01

    Apparent inertia effects on parachute dynamics are investigated. Both static and dynamic stability are examined as a function of apparent inertia parameters. Conclusions are drawn describing changes in stability based on atmospheric density.

  6. The atmospheric aerosol dynamics on Lidar and Sunphotometer data over Yakutsk

    NASA Astrophysics Data System (ADS)

    Nikolashkin, Semyen; Timofeeva, Galina; Sakerin, Sergey; Titov, Semyen; Marichev, Valery

    The lidar and sunphotometer investigations of atmospheric aerosol layers vertical structure and dynamics have been carried out in Yakutsk (62N). Also the season and annual variations of the total atmospheric aerosol and water vapor concentration near Yakutsk have been carried out and the main features are developed. The atmosphere is cleaner on aerosol composition on fall and winter periods, but spring and summer period is differed by maximally hazing and variability of the aerosol optical depth. The investigation of seasonal feature of water vapor concentration in the atmosphere for 2004-2006 years showed an expected view of the seasonal distribution with maximum in the summer season, because of high activity of the lower atmosphere in summer and more intensive evaporation in the warm period. Some results on investigation of the influence of the solar corpuscular and geomagnetic activity on aerosol composition of atmosphere on the subauroral latitudes are discussed.

  7. Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Mbarek, Rostom

    2015-12-01

    Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At

  8. Saturn's Polar Atmosphere: Seasonal Change and Composition from Cassini

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh; Orton, Glenn; Baines, Kevin; Momary, Thomas; Irwin, Patrick; Roos-Serote, Maarten; Teanby, Nicholas; Merlet, Cecile; Read, Peter

    Cassini's prime mission permitted the first detailed infrared studies of the polar atmosphere of Saturn, under both southern summertime and northern wintertime conditions. Both poles exhibited small, discrete warm vortices (`hotspots') in the troposphere and stratosphere, which were depleted in disequilibrium species and hazes, surrounded by strong prograde jets and characterised by distinct `eyewalls.' In addition, the south polar stratosphere had an extensive warm polar `hood' between 70-90° S, which was expected to be seasonal in nature and related to the presence of high-altitude stratospheric hazes, localised at the south pole. Finally, infrared observations revealed the continued presence of the northern hexagon discovered during the Voyager encounter in 1981, but observed no comparable features in the south. In August 2009 Saturn reached its equinox, so that the cold northern pole emerged into sunlight for the first time in almost 15 years. We present a time series of Composite Infrared Spectrom-eter (CIRS) observations from 2004 to 2009 which demonstrate (a) the continued presence of the polar vortices under spring and autumnal conditions; (b) the cooling of the southern stratospheric hood; and (c) the persistence of the northern hexagon. These are compared with ground-based observations of Saturn from the Very Large Telescope VISIR instrument at the time of ring-plane crossing to study compositional asymmetries between the two poles. Fur-thermore, we derive the spatial distribution of aerosols, phosphine, ammonia and arsine in the north polar hotspot and hexagon from Cassini VIMS 4.5-5.1 µm observations to reveal the mor-phology and composition of these dynamical features. These results will be discussed in terms of our present understanding of the polar circulation systems on Saturn, and their response to seasonal variations of insolation.

  9. Interior and its implications for the atmosphere. [effects of Titan interior structure on its atmospheric composition

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1974-01-01

    The bulk composition and interior structure of Titan required to explain the presence of a substantial methane atmosphere are shown to imply the presence of solid CH4 - 7H2O in Titan's primitive material. Consideration of the possible composition and structure of the present atmosphere shows plausible grounds for considering models with total atmospheric pressures ranging from approximately 20 mb up to approximately 1 kb. Expectations regarding the physical state of the surface and its chemical composition are strongly conditioned by the mass of atmosphere believed to be present. A surface of solid CH4, liquid CH4 solid, CH4 hydrate, H2O ice, aqueous NH3 solution, or even a non-surface of supercritical H2O-NH3-CH4 fluid could be rationalized.

  10. A dynamics based view of atmosphere-fire interactions

    Treesearch

    Brian E. Potter

    2002-01-01

    Current research on severe fire interactions with the atmosphere focuses largely on examination of correlations between fire growth and various atmospheric properties, and on the development of indices based on these correlations. The author proposes that progress requires understanding the physics and atmospheric dynamics behind the correlations. A conceptual 3-stage...

  11. Nonlinear dynamics and predictability in the atmospheric sciences

    SciTech Connect

    Ghil, M.; Kimoto, M.; Neelin, J.D. )

    1991-01-01

    Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.

  12. Turbulence dynamics in unsteady atmospheric flows

    NASA Astrophysics Data System (ADS)

    Momen, Mostafa; Bou-Zeid, Elie

    2016-11-01

    Unsteady pressure-gradient forcing in geophysical flows challenges the quasi-steady state assumption, and can strongly impact the mean wind and higher-order turbulence statistics. Under such conditions, it is essential to understand when turbulence is in quasi-equilibrium, and what are the implications of unsteadiness on flow characteristics. The present study focuses on the unsteady atmospheric boundary layer (ABL) where pressure gradient, Coriolis, buoyancy, and friction forces interact. We perform a suite of LES with variable pressure-gradient. The results indicate that the dynamics are mainly controlled by the relative magnitudes of three time scales: Tinertial, Tturbulence, and Tforcing. It is shown that when Tf Tt , the turbulence is no longer in a quasi-equilibrium state due to highly complex mean-turbulence interactions; consequently, the log-law and turbulence closures are no longer valid in these conditions. However, for longer and, surprisingly, for shorter forcing times, quasi-equilibrium is maintained. Varying the pressure gradient in the presence of surface buoyancy fluxes primarily influences the buoyant destruction in the stable ABLs, while under unstable conditions it mainly influences the transport terms. NSF-PDM under AGS-10266362. Cooperative Institute for Climate Science, NOAA-Princeton University under NA08OAR4320752. Simulations performed at NCAR, and Della server at Princeton University.

  13. ATMOSPHERIC CIRCULATION AND COMPOSITION OF GJ1214b

    SciTech Connect

    Menou, Kristen

    2012-01-15

    The exoplanet GJ1214b presents an interesting example of compositional degeneracy for low-mass planets. Its atmosphere may be composed of water, super-solar or solar metallicity material. We present atmospheric circulation models of GJ1214b for these three compositions, with explicit gray radiative transfer and an optional treatment of MHD bottom drag. All models develop strong, superrotating zonal winds ({approx}1-2 km s{sup -1}). The degree of eastward heat advection, which can be inferred from secondary eclipse and thermal phase curve measurements, varies greatly between the models. These differences are understood as resulting from variations in the radiative times at the thermal photosphere, caused by separate molecular weight and opacity effects. Our GJ1214b models illustrate how atmospheric circulation can be used as a probe of composition for similar tidally locked exoplanets in the mini-Neptune/waterworld class.

  14. Linking atmospheric composition data across data types and national boundaries

    NASA Astrophysics Data System (ADS)

    Schultz, Martin; Lyapina, Olga; Schröder, Sabine; Stein, Olaf; Mallmann, Daniel

    2016-04-01

    The field of atmospheric composition research involves the management of data sources from various disciplines such as meteorology, chemistry, (radiation) physics, emission inventories, etc. The output from global and regional chemistry climate models, chemistry transport models, and air quality models presents considerable challenges due to the manifold variables of interest and the multitude of diagnostics needed in order to interpret the results. Furthermore, many observations of atmospheric composition exist from different platforms involving different geometries, time resolutions, size spectra, etc. Due to the fact that few observation networks are globally coordinated, various representations of data formats and metadata definitions exist. For example, there is no unique agreement on chemical species names and in many networks, national languages are used to document the data. We will present a summary of the issues involving global interoperability of atmospheric composition data including the aspects of data volume, data compexity and metadata standardisation, and we will demonstrate various activities carried out in Jülich and internationally to overcome these challenges. Specifically, we will describe the current implementation and plans for the Copernicus Atmosphere Monitoring Service boundary condition service (http://ows-server.iek.fz-juelich.de), the design of the JOIN web interface (https://join.fz-juelich.de), and the activities for building an ontology of atmospheric composition vocabulary (https://ontology.geodab.eu/).

  15. A Community-oriented CEOS Atmospheric Composition Portal (ACP)

    NASA Astrophysics Data System (ADS)

    Bernonville, S.; Goussev, O.; Falke, S.; Lindsay, F.; Lynnes, C. S.; Yang, W.; Zhao, P.; Johnson, J.

    2012-04-01

    The Atmospheric Composition Constellation (ACC) and the Workgroup for Information Systems and Services (WGISS) within the Committee on Earth Observation Satellites (CEOS) is developing a portal to support interoperability among the atmospheric composition research and applications communities. The CEOS Atmospheric Composition Portal (ACP) is defining approaches for providing data access, tools and contextual guidance for an international suite of remote sensing datasets. An initial prototype provides access to data services and analysis tools hosted by the World Data Center for Remote Sensing of the Atmosphere (WDC-RSAT), NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC) and DataFed. Distributed access to data is implemented via interoperability standards, including the Open Geospatial Consortium's (OGC) Web Map Service (WMS) and Web Coverage Service (WCS). A fundamental aspect to the design, implementation and evolution of the ACP is community collaboration. The portal is intended as a community resource that is created through collaboration across remotely sensed atmospheric composition data organizations and used by a variety of groups across the climate, air quality, and stratospheric ozone domains. The implementation of interoperability standards in the ACP has involved coordination on identifying the most applicable standards and the definition of community-specific conventions to ensure consistent adoption of standards. This presentation includes an overview of the ACP, its community oriented approach, and use of community-conventions in achieving standards-based interoperability.

  16. Modeling the effects of atmospheric emissions on groundwater composition

    SciTech Connect

    Brown, Theresa Jean

    1994-01-01

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

  17. Earth-atmosphere evolution based on new determination of Devonian atmosphere Ar isotopic composition

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay M.; Mark, Darren F.; Gandanger, Pierre; McConville, Paul

    2016-07-01

    The isotopic composition of the noble gases, in particular Ar, in samples of ancient atmosphere trapped in rocks and minerals provides the strongest constraints on the timing and rate of Earth atmosphere formation by degassing of the Earth's interior. We have re-measured the isotopic composition of argon in the Rhynie chert from northeast Scotland using a high precision mass spectrometer in an effort to provide constraints on the composition of Devonian atmosphere. Irradiated chert samples yield 40Ar/36Ar ratios that are often below the modern atmosphere value. The data define a 40Ar/36Ar value of 289.5 ± 0.4 at K/36Ar = 0. Similarly low 40Ar/36Ar are measured in un-irradiated chert samples. The simplest explanation for the low 40Ar/36Ar is the preservation of Devonian atmosphere-derived Ar in the chert, with the intercept value in 40Ar-39Ar-36Ar space representing an upper limit. In this case the Earth's atmosphere has accumulated only 3% (5.1 ± 0.4 ×1016 mol) of the total 40Ar inventory since the Devonian. The average accumulation rate of 1.27 ± 0.09 ×108 mol40Ar/yr overlaps the rate over the last 800 kyr. This implies that there has been no resolvable temporal change in the outgassing rate of the Earth since the mid-Palaeozoic despite the likely episodicity of Ar degassing from the continental crust. Incorporating the new Devonian atmosphere 40Ar/36Ar into the Earth degassing model of Pujol et al. (2013) provides the most precise constraints on atmosphere formation so far. The atmosphere formed in the first ∼100 Ma after initial accretion during a catastrophic degassing episode. A significant volume of 40Ar did not start to accumulate in the atmosphere until after 4 Ga which implies that stable K-rich continental crust did not develop until this time.

  18. Atmospheric Composition Data and Information Services Center (ACDISC)

    NASA Technical Reports Server (NTRS)

    Kempler, S.

    2005-01-01

    NASA's GSFC Earth Sciences (GES) Data and Information and Data Services Center (DISC) manages the archive, distribution and data access for atmospheric composition data from AURA'S OMI, MLS, and hopefully one day, HIRDLS instruments, as well as heritage datasets from TOMS, UARS, MODIS, and AIRS. This data is currently archived in the GES Distributed Active Archive Center (DAAC). The GES DISC has begun the development of a community driven data management system that's sole purpose is to manage and provide value added services to NASA's Atmospheric Composition (AC) Data. This system, called the Atmospheric Composition Data and Information Services Center (ACDISC) will provide access all AC datasets from the above mentioned instruments, as well as AC datasets residing at remote archive sites (e.g, LaRC DAAC) The goals of the ACDISC are to: 1) Provide a data center for Atmospheric Scientists, guided by Atmospheric Scientists; 2) Be absolutely responsive to the data and data service needs of the Atmospheric Composition (AC) community; 3) Provide services (i.e., expertise) that will facilitate the effortless access to and usage of AC data; 4) Collaborate with AC scientists to facilitate the use of data from multiple sensors for long term atmospheric research. The ACDISC is an AC specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques that facilitate science data usage. The purpose of this presentation is to provide the evolution path that the GES DISC in order to better serve AC data, and also to receive continued community feedback and further foster collaboration with AC data users and providers.

  19. Atmospheric Composition Data and Information Services Center (ACDISC)

    NASA Technical Reports Server (NTRS)

    Kempler, S.

    2005-01-01

    NASA's GSFC Earth Sciences (GES) Data and Information and Data Services Center (DISC) manages the archive, distribution and data access for atmospheric composition data from AURA'S OMI, MLS, and hopefully one day, HIRDLS instruments, as well as heritage datasets from TOMS, UARS, MODIS, and AIRS. This data is currently archived in the GES Distributed Active Archive Center (DAAC). The GES DISC has begun the development of a community driven data management system that's sole purpose is to manage and provide value added services to NASA's Atmospheric Composition (AC) Data. This system, called the Atmospheric Composition Data and Information Services Center (ACDISC) will provide access all AC datasets from the above mentioned instruments, as well as AC datasets residing at remote archive sites (e.g, LaRC DAAC) The goals of the ACDISC are to: 1) Provide a data center for Atmospheric Scientists, guided by Atmospheric Scientists; 2) Be absolutely responsive to the data and data service needs of the Atmospheric Composition (AC) community; 3) Provide services (i.e., expertise) that will facilitate the effortless access to and usage of AC data; 4) Collaborate with AC scientists to facilitate the use of data from multiple sensors for long term atmospheric research. The ACDISC is an AC specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques that facilitate science data usage. The purpose of this presentation is to provide the evolution path that the GES DISC in order to better serve AC data, and also to receive continued community feedback and further foster collaboration with AC data users and providers.

  20. Dynamical variability in Saturn Equatorial Atmosphere

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.; Grupo Ciencias Planetarias Team

    2003-05-01

    Historical ground-based and recent HST observations show that Saturn's Equatorial Atmosphere is the region where the most intense large-scale dynamical variability took place at cloud level in the planet. Large-scale convective storms (nicknamed the ``Great White Spots") occurred in 1876, 1933 and 1990. The best studied case (the 1990 storm), produced a dramatic change in the cloud aspect in the years following the outburst of September 1990. Subsequently, a new large storm formed in 1994 and from 1996 to 2002 our HST observations showed periods of unusual cloud activity in the southern part of the Equator. This contrast with the aspect observed during the Voyager 1 and 2 encounters in 1980 and 1981 when the Equator was calm, except for some mid-scale plume-like features seen in 1981. Cloud-tracking of the features have revealed a dramatic slow down in the equatorial winds from maximum velocities of ˜ 475 m/s in 1980-1981 to ˜ 275 m/s during 1996-2002, as we have recently reported in Nature, Vol. 423, 623 (2003). We discuss the possibility that seasonal and ring-shadowing effects are involved in generating this activity and variability. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.

  1. Atmospheric composition affects heat- and mass-transfer processes

    NASA Technical Reports Server (NTRS)

    Blakely, R. L.; Nelson, W. G.

    1970-01-01

    For environmental control system functions sensitive to atmospheric composition, components are test-operated in helium-oxygen and nitrogen-oxygen mixtures, pure oxygen, and air. Transient heat- and mass-transfer tests are conducted for carbon dioxide adsorption on molecular sieve and for water vapor adsorption on silica gel.

  2. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1984-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  3. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1985-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  4. Theoretical and experimental investigations of upper atmosphere dynamics

    NASA Technical Reports Server (NTRS)

    Roper, R. G.; Edwards, H. D.

    1980-01-01

    A brief overview of the significant contributions made to the understanding of the dynamics of the Earth's upper atmosphere is presented, including the addition of winds and diffusion to the semi-empirical Global Reference Atmospheric Model developed for the design phase of the Space Shuttle, reviews of turbulence in the lower thermosphere, the dynamics of the equatorial mesopause, stratospheric warming effects on mesopause level dynamics, and the relevance of these studies to the proposed Middle Atmosphere Program (1982-85). A chronological bibliography, with abstracts of all papers published, is also included.

  5. Atmospheric Dynamics of Uranus and Neptune: Theoretical Considerations

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1984-01-01

    The atmospheric dynamics of neptune and uranus are investigated. Uranus, because of its pole on orientation and low internal heat source, is in a dynamically different atmospheric regime from Jupiter and Saturn. Neptune resembles Jupiter and Saturn in orientation and internal heating, but its extremely long radiative time constant puts Neptune in a different class. Voyager observations of seasonal temperature gradients, equator to pole temperature gradients, infrared emission, Bond albedo, possible cloud structures (bands, spots, eddies), and cloud motions can be used to improve the ability to classify planetary atmospheres according to their dynamical regimes.

  6. Automated Atmospheric Composition Dataset Level Metadata Discovery. Difficulties and Surprises

    NASA Astrophysics Data System (ADS)

    Strub, R. F.; Falke, S. R.; Kempler, S.; Fialkowski, E.; Goussev, O.; Lynnes, C.

    2015-12-01

    The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System - CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not

  7. Historical aspects of radar atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Kato, Susumu

    1989-01-01

    A review of the history of radar techniques which have been applied to atmospheric observation is given. The author starts with ionosphere observation with the ionosonde, symbolizing as it does the earliest history of radar observation, and proceeds to later developments in radar observation such as the use of partial reflection, meteor, and incoherent scatter radars. Mesosphere stratosphere troposphere (MST) radars are discussed in terms of lower atmosphere observation.

  8. Pioneer 10 Jupiter atmospheric definition results: A summary. [Jupiter atmosphere composition measurements

    NASA Technical Reports Server (NTRS)

    Wolfe, J.; Kliore, A.

    1974-01-01

    The various entry probes for measuring outer planetary atmospheric compositions are discussed. Considered are chemical components and physical accumulation processes observable by spectroscopic studies, as well as pressure gauges, temperature gauges, accelerometers, nephelometers, and visible and infrared sensors for determining abundances.

  9. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  10. Isotopic composition of precipitation during different atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Brenčič, Mihael; Kononova, Nina; Vreča, Polona

    2016-04-01

    Precipitation generating processes depend on atmospheric circulation patterns and consequently it is expected that its water stable isotopic composition of hydrogen and oxygen is related to them. Precipitation generated at similar atmospheric circulation patterns should have similar empirical distribution of δ2H and δ18O values. There are several approaches in which atmospheric circulation patterns are classified as elementary air circulation mechanisms - ECM; in our approach we have applied Dzerdzeevskii classification. Two types of models of relation between ECM and isotopic composition of precipitation are proposed; first is based on the linear combination of δ2H and δ18O values with precipitation amount weighted average (Brenčič et al., 2015) and the second new one is based on the multiple regression approach. Both approaches make possible also to estimate empirical distributions' dispersion parameters. Application of the models is illustrated on the precipitation records from Ljubljana and Portorož GNIP stations, Slovenia. Estimated values of the parameters for empirical distributions of δ2H and δ18O of each ECM subtype have shown that calculated estimates are reasonable. Brenčič, M., Kononova, N.K., Vreča, P., 2015: Relation between isotopic composition of precipitation and atmospheric circulation patterns. Journal of Hydrology 529, 1422-1432: doi: 10.1016/j.jhydrol.2015.08.040

  11. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

  12. Predictability of upper-atmospheric density and composition

    NASA Technical Reports Server (NTRS)

    Straus, J. M.; Hickman, D. R.

    1979-01-01

    Empirical models of upper-atmospheric density and composition are employed in a number of areas, ranging from basic research in atmospheric and ionospheric physics to practical applications in satellite ephemeris prediction. Such models are based on various kinds of data sets and have varying levels of complexity, strengths, and weaknesses. The characteristics of several of the widely used models are described and studies in which the predictions of these models were compared with observational data are reviewed. The relative advantages and limitations of the models in current use are discussed as well as ways in which the models might be improved.

  13. The San Marco 3 neutral atmosphere composition experiment

    NASA Technical Reports Server (NTRS)

    Pelz, D. T.; Newton, G. P.; Kasprzak, W. T.; Clem, T. D.

    1973-01-01

    The experimental instrumentation of the San Marco 3 satellite is described along with the calibration and operation. The instrumentation for the following experiments was included: an air density experiment for measuring the instantaneous drag force, and thus the neutral particle total mass density; a neutral atmosphere composition experiment for measuring the densities of helium, atomic and molecular oxygen, molecular nitrogen and argon; and a neutral atmosphere temperature experiment to determine the gas kinetic temperature by measuring molecular nitrogen density variations in an orificed spherical chamber as a function of angle of attack.

  14. Characteristics of wavelike fluctuations in Dynamics Explorer neutral composition data

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Mayr, H. G.

    1987-01-01

    Wavelike fluctuations in neutral composition data obtained with the neutral atmospheric composition system quadrupole mass spectrometer carried aboard the Dynamics Explorer (DE 2) satellite are at a maximum in the vicinity of the magnetic poles. Typical rms amplitudes near the poles for N2, O, He, and Ar fluctuations in the 400- to 4000-km-wavelength band are found to be 11, 6, 6, and 20 percent, respectively. Amplitudes near the equator are roughly a third of the polar amplitudes, and activity in the 50- to 400-km-wavlength band is roughly 20 percent of the longer-wavelength activity.

  15. Computational Fluid Dynamics for Atmospheric Entry

    DTIC Science & Technology

    2009-09-01

    Atmospheric entry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT... Atmospheric Entry 15 - 4 RTO-EN-AVT-162 and was performed on 16 million element hybrid unstructured grid. Not shown in this image is that the...conserved quantities and the non-conserved quantities such as pressure and temperature are discussed in this section. The total energy, E, is made up of

  16. Europa's Oxygen Atmosphere: Effects due to Regolith Porosity and Composition

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.; Johnson, R. E.

    2006-05-01

    The surfaces of "airless" bodies in our solar system are covered by porous regoliths, granular surfaces generated by micrometeor impact. Europa's tenuous neutral atmosphere is generated by UV and plasma irradiation of and sublimation from this regolith. Therefore, in addition to the atmosphere above the surface, there is a substantial amount of gas in the porous regolith. The effect of the regolith on the source processes and sinks are typically neglected in modeling the spatial distribution and composition of the atmosphere. The regolith complicates processes such as sputtering, the ejection of mostly neutral atoms and molecules due to energetic ion flux, because the incident ions encounter surfaces at a variety of angles, rather than one angle as usually assumed. Also, most ejecta produced within a regolith no longer have a direct line to space. If ejecta do not stick to or react with grain surfaces, then it may be safely assumed that the majority of ejecta will interact with grain surfaces before leaving the regolith. Similarly, a returning non-sticking particle experiences numerous interactions with grains below the nominal surface. As compared to a flat, smooth planetary surface, these many interactions enhance the probability of chemical reactions or sticking. F. Leblanc and R.E. Johnson have shown that the sticking coefficient is critical in describing the alkali atmosphere at Mercury and likely Europa. The regolith will also affect the velocity distribution of non-sticking ejecta and atmospheric species, which will affect the population of the Europa neutral torus. In this presentation the effect of regolith on the source and sink processes is demonstrated by generating the gravitationally bound and escaping components of the ballistic Europan atmosphere with and without regolith effects. Assuming that O2 can react in the regolith where there is a high sulfur content, we can generate a morphology roughly consistent with HST observations by McGrath and

  17. Dynamics of atmospheres with a non-dilute condensible component.

    PubMed

    Pierrehumbert, Raymond T; Ding, Feng

    2016-06-01

    The diversity of characteristics for the host of recently discovered exoplanets opens up a great deal of fertile new territory for geophysical fluid dynamics, particularly when the fluid flow is coupled to novel thermodynamics, radiative transfer or chemistry. In this paper, we survey one of these new areas-the climate dynamics of atmospheres with a non-dilute condensible component, defined as the situation in which a condensible component of the atmosphere makes up a substantial fraction of the atmospheric mass within some layer. Non-dilute dynamics can occur for a wide range of condensibles, generically applying near both the inner and the outer edges of the conventional habitable zone and in connection with runaway greenhouse phenomena. It also applies in a wide variety of other planetary circumstances. We first present a number of analytical results developing some key features of non-dilute atmospheres, and then show how some of these features are manifest in simulations with a general circulation model adapted to handle non-dilute atmospheres. We find that non-dilute atmospheres have weak horizontal temperature gradients even for rapidly rotating planets, and that their circulations are largely barotropic. The relative humidity of the condensible component tends towards 100% as the atmosphere becomes more non-dilute, which has important implications for runaway greenhouse thresholds. Non-dilute atmospheres exhibit a number of interesting organized convection features, for which there is not yet any adequate theoretical understanding.

  18. Dynamics of atmospheres with a non-dilute condensible component

    PubMed Central

    Ding, Feng

    2016-01-01

    The diversity of characteristics for the host of recently discovered exoplanets opens up a great deal of fertile new territory for geophysical fluid dynamics, particularly when the fluid flow is coupled to novel thermodynamics, radiative transfer or chemistry. In this paper, we survey one of these new areas—the climate dynamics of atmospheres with a non-dilute condensible component, defined as the situation in which a condensible component of the atmosphere makes up a substantial fraction of the atmospheric mass within some layer. Non-dilute dynamics can occur for a wide range of condensibles, generically applying near both the inner and the outer edges of the conventional habitable zone and in connection with runaway greenhouse phenomena. It also applies in a wide variety of other planetary circumstances. We first present a number of analytical results developing some key features of non-dilute atmospheres, and then show how some of these features are manifest in simulations with a general circulation model adapted to handle non-dilute atmospheres. We find that non-dilute atmospheres have weak horizontal temperature gradients even for rapidly rotating planets, and that their circulations are largely barotropic. The relative humidity of the condensible component tends towards 100% as the atmosphere becomes more non-dilute, which has important implications for runaway greenhouse thresholds. Non-dilute atmospheres exhibit a number of interesting organized convection features, for which there is not yet any adequate theoretical understanding. PMID:27436980

  19. Dynamics of atmospheres with a non-dilute condensible component

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, Raymond T.; Ding, Feng

    2016-06-01

    The diversity of characteristics for the host of recently discovered exoplanets opens up a great deal of fertile new territory for geophysical fluid dynamics, particularly when the fluid flow is coupled to novel thermodynamics, radiative transfer or chemistry. In this paper, we survey one of these new areas-the climate dynamics of atmospheres with a non-dilute condensible component, defined as the situation in which a condensible component of the atmosphere makes up a substantial fraction of the atmospheric mass within some layer. Non-dilute dynamics can occur for a wide range of condensibles, generically applying near both the inner and the outer edges of the conventional habitable zone and in connection with runaway greenhouse phenomena. It also applies in a wide variety of other planetary circumstances. We first present a number of analytical results developing some key features of non-dilute atmospheres, and then show how some of these features are manifest in simulations with a general circulation model adapted to handle non-dilute atmospheres. We find that non-dilute atmospheres have weak horizontal temperature gradients even for rapidly rotating planets, and that their circulations are largely barotropic. The relative humidity of the condensible component tends towards 100% as the atmosphere becomes more non-dilute, which has important implications for runaway greenhouse thresholds. Non-dilute atmospheres exhibit a number of interesting organized convection features, for which there is not yet any adequate theoretical understanding.

  20. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  1. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  2. Nitrogen isotopic composition and density of the Archean atmosphere.

    PubMed

    Marty, Bernard; Zimmermann, Laurent; Pujol, Magali; Burgess, Ray; Philippot, Pascal

    2013-10-04

    Understanding the atmosphere's composition during the Archean eon is fundamental to unraveling ancient environmental conditions. We show from the analysis of nitrogen and argon isotopes in fluid inclusions trapped in 3.0- to 3.5-billion-year-old hydrothermal quartz that the partial pressure of N2 of the Archean atmosphere was lower than 1.1 bar, possibly as low as 0.5 bar, and had a nitrogen isotopic composition comparable to the present-day one. These results imply that dinitrogen did not play a significant role in the thermal budget of the ancient Earth and that the Archean partial pressure of CO2 was probably lower than 0.7 bar.

  3. Three dimensional atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Showman, A. P.

    2014-04-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters, suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone-including transitions to Snowballlike states and runaway-greenhouse feedbacks-depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  4. Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, Adam

    2014-05-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters, suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone--including transitions to Snowball-like states and runaway-greenhouse feedbacks--depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star, atmospheric mass and optical thickness affect the atmospheric circulation and temperature distribution on such planets. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  5. Paleosols and their relevance to Precambrian atmospheric composition

    PubMed

    Palmer, J A; Phillips, G N; McCarthy, T S

    1989-01-01

    Various paleosols have been reported from within the Witwatersrand and Ventersdorp Supergroups, South Africa. They were studied in an attempt to constrain the amount of oxygen available in the atmosphere during deposition of the gold- and uranium-bearing Witwatersrand conglomerates. The majority of these horizons do not have any physical characteristics of paleosols, and none of them have a chemistry consistent with weathering, suggesting they have been subjected to modification by later alteration processes. A similar chemistry, indicating overprinting of any original soil chemistry, has been reported from paleosols elsewhere (Elliot Lake region, Canada; Hekpoort basalt, South Africa), but it does not appear that significant cognizance has been taken of this fact when using these paleosols to determine the composition of the Precambrian atmosphere. It is concluded here that characteristics previously attributed to Precambrian weathering in an oxygen-deficient atmosphere are better explained by post-burial, hydrothermal alteration along lithological contacts.

  6. Solar-wind interactions - Nature and composition of lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Mukherjee, N. R.

    1975-01-01

    The nature and composition of the lunar atmosphere are examined on the basis of solar-wind interactions, and the nature of the species in the trapped-gas layer is discussed using results of theoretical and experimental investigations. It is shown that the moon has a highly tenuous atmosphere consisting of various species derived from five sources: solar-wind interaction products, cosmic-ray interaction products, effects of meteoritic impacts, planetary degassing, and radioactive-decay products. Atmospheric concentrations are determined for those species derived from solar-wind protons, alpha particles, and oxygen ions. Carbon chemistry is briefly discussed, and difficulties encountered in attempts to determine quantitatively the concentrations of molecular oxygen, atomic oxygen, carbon monoxide, carbon dioxide, and methane are noted. The calculated concentrations are shown to be in good agreement with observations by the Apollo 17 lunar-surface mass spectrometer and orbital UV spectrometer.

  7. Dynamic simulation for distortion image with turbulence atmospheric transmission effects

    NASA Astrophysics Data System (ADS)

    Du, Huijie; Fei, Jindong; Qing, Duzheng; Zhao, Hongming; Yu, Hong; Cheng, Chen

    2013-09-01

    The imaging through atmospheric turbulence is an inevitable problem encountered by infrared imaging sensors working in the turbulence atmospheric environment. Before light-rays enter the window of the imaging sensors, the atmospheric turbulence will randomly interfere with the transmission of the light waves came from the objects, causing the distribution of image intensity values on the focal plane to diffuse, the peak value to decrease, the image to get blurred, and the pixels to deviate, and making image identification very difficult. Owing to the fact of the long processing time and that the atmospheric turbulent flow field is unknown and hard to be described by mathematical models, dynamic simulation for distortion Image with turbulence atmospheric transmission effects is much more difficult and challenging in the world. This paper discusses the dynamic simulation for distortion Image of turbulence atmospheric transmission effect. First of all, with the data and the optical transmission model of the turbulence atmospheric, the ray-tracing method is applied to obtain the propagation path of optical ray which propagates through the high-speed turbulent flow field, and then to calculate the OPD from the reference wave to the reconverted wave front and obtain the point spread function (PSF). Secondly, infrared characteristics models of typical scene were established according to the theory of infrared physics and heat conduction, and then the dynamic infrared image was generated by OpenGL. The last step is to obtain the distortion Image with turbulence atmospheric transmission effects .With the data of atmospheric transmission computation, infrared simulation image of every frame was processed according to the theory of image processing and the real-time image simulation, and then the dynamic distortion simulation images with effects of blurring, jitter and shifting were obtained. Above-mentioned simulation method can provide the theoretical bases for recovering

  8. Fire Influences on Atmospheric Composition, Air Quality, and Climate

    NASA Technical Reports Server (NTRS)

    Voulgarakis, Apostolos; Field, Robert D.

    2015-01-01

    Fires impact atmospheric composition through their emissions, which range from long-lived gases to short-lived gases and aerosols. Effects are typically larger in the tropics and boreal regions but can also be substantial in highly populated areas in the northern mid-latitudes. In all regions, fire can impact air quality and health. Similarly, its effect on large-scale atmospheric processes, including regional and global atmospheric chemistry and climate forcing, can be substantial, but this remains largely unexplored. The impacts are primarily realised in the boundary layer and lower free troposphere but can also be noticeable in upper troposphere/lower stratosphere (UT/LS) region, for the most intense fires. In this review, we summarise the recent literature on findings related to fire impact on atmospheric composition, air quality and climate. We explore both observational and modelling approaches and present information on key regions and on the globe as a whole. We also discuss the current and future directions in this area of research, focusing on the major advances in emission estimates, the emerging efforts to include fire as a component in Earth system modelling and the use of modelling to assess health impacts of fire emissions.

  9. Fire Influences on Atmospheric Composition, Air Quality, and Climate

    NASA Technical Reports Server (NTRS)

    Voulgarakis, Apostolos; Field, Robert D.

    2015-01-01

    Fires impact atmospheric composition through their emissions, which range from long-lived gases to short-lived gases and aerosols. Effects are typically larger in the tropics and boreal regions but can also be substantial in highly populated areas in the northern mid-latitudes. In all regions, fire can impact air quality and health. Similarly, its effect on large-scale atmospheric processes, including regional and global atmospheric chemistry and climate forcing, can be substantial, but this remains largely unexplored. The impacts are primarily realised in the boundary layer and lower free troposphere but can also be noticeable in upper troposphere/lower stratosphere (UT/LS) region, for the most intense fires. In this review, we summarise the recent literature on findings related to fire impact on atmospheric composition, air quality and climate. We explore both observational and modelling approaches and present information on key regions and on the globe as a whole. We also discuss the current and future directions in this area of research, focusing on the major advances in emission estimates, the emerging efforts to include fire as a component in Earth system modelling and the use of modelling to assess health impacts of fire emissions.

  10. Constraining hot Jupiter’s atmospheric structure and dynamics through Doppler shifted emission spectra

    NASA Astrophysics Data System (ADS)

    Zhang, Jisheng; Kempton, Eliza; Rauscher, Emily

    2017-01-01

    In recent years, astronomers have begun successfully observing the atmospheres of extrasolar planets using ground-based telescopes equipped with spectrographs capable of observing at high spectral resolution (R~105). Such studies are capable of diagnosing the atmospheric structure, composition, and dynamics (winds and rotation) of both transiting and non-transiting exoplanets. However, few studies have examined how the 3-D atmospheric dynamics could alter the emitted light of hot Jupiters at such high spectral resolution. Here, we present a model to explore such influence on the hot Jupiters’ thermal emission spectra. Our aim is to investigate the extent to which the effects of 3-D atmospheric dynamics are imprinted on planet-averaged thermal emission spectra. We couple together a 3-D general circulation model of hot Jupiter atmospheric dynamics (Rauscher & Menou, 2012) with a radiative transfer solver to predict the planet’s disk-integrated emission spectrum as a function of its orbital phase. For the first time, we self-consistently include the effects of the line-of-sight atmospheric motions (resulting from winds and rotation) in the calculation to produce Doppler-shifted spectral line profiles that result from the atmospheric dynamics. We focus our study on three benchmark hot Jupiters, HD 189733b, HD 209458b, and WASP-43b which have been the focus of previous detailed observational studies. We find that the high-resolution Doppler shifted thermal emission spectra can be used to diagnose key properties of the dynamical atmosphere - the planet’s longitudinal temperature and wind structure, and its rotation rate.

  11. Multifluids description of dynamics of upper atmosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Hung, R. J.

    1975-01-01

    A multifluids model to investigate ionospheric dynamics was established on kinetic theory. Its resultant equations are used to examine the following dynamic problems in the gamma region of 80-2000 Km of the ionosphere: (1) propagation of acoustic modes in the 500-2,000 Km of the ionosphere (two fluid model); (2) the relation between the cross field plasma drift instabilities and type I and type II ionospheric irregularities; and (3) time dependent neutral wind structure and horizontal pressure gradient.

  12. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Kosovic, B; Belles, R; Chow, F K; Monache, L D; Dyer, K; Glascoe, L; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J K; Mirin, A; Neuman, S; Nitao, J; Serban, R; Sugiyama, G; Aines, R

    2007-02-22

    Accidental or terrorist releases of hazardous materials into the atmosphere can impact large populations and cause significant loss of life or property damage. Plume predictions have been shown to be extremely valuable in guiding an effective and timely response. The two greatest sources of uncertainty in the prediction of the consequences of hazardous atmospheric releases result from poorly characterized source terms and lack of knowledge about the state of the atmosphere as reflected in the available meteorological data. In this report, we discuss the development of a new event reconstruction methodology that provides probabilistic source term estimates from field measurement data for both accidental and clandestine releases. Accurate plume dispersion prediction requires the following questions to be answered: What was released? When was it released? How much material was released? Where was it released? We have developed a dynamic data-driven event reconstruction capability which couples data and predictive models through Bayesian inference to obtain a solution to this inverse problem. The solution consists of a probability distribution of unknown source term parameters. For consequence assessment, we then use this probability distribution to construct a ''''composite'' forward plume prediction which accounts for the uncertainties in the source term. Since in most cases of practical significance it is impossible to find a closed form solution, Bayesian inference is accomplished by utilizing stochastic sampling methods. This approach takes into consideration both measurement and forward model errors and thus incorporates all the sources of uncertainty in the solution to the inverse problem. Stochastic sampling methods have the additional advantage of being suitable for problems characterized by a non-Gaussian distribution of source term parameters and for cases in which the underlying dynamical system is non-linear. We initially developed a Markov Chain Monte

  13. A similarity approach to the atmospheric dynamics of giant extrasolar planets and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.

    2001-10-01

    We present an assessment of the most plausible dynamical regimes operating in the atmospheres of giant extrasolar planets (EGP) and cold (``methane'') brown dwarfs from the available data on a selected group of objects. The most important parameters controlling the atmospheric circulation are the rotation angular velocity and the energy balance between the internal heat source and the star's insolation. The first parameter can be reasonably constrained for some of these objects by theoretical arguments. The second is constrained by the observations. Assuming a hydrogen composition, we discuss possible scenarios for the first order atmospheric motions in terms of characteristic geophysical fluid dynamic numbers and representative time constants. The analysis is applied to the family of extrasolar giant planets classified recently by Sudarsky et al. (\\cite {sudarsky}) according to their effective temperature and Bond albedo. For completeness we extend this study to cold (``methane'') brown dwarfs. Three main dynamical regimes emerge from this analysis: (A) Close EGP (``hot jupiters'') with spin-orbit locked (slowly rotating) planets, have their atmospheres mainly under the star's radiative control. Super-rotating atmospheric motions between the heated and cooled hemispheres can be expected. (B) Atmospheres with their dynamics controlled by both the internal and external energy sources, with Coriolis forces producing zonal motions (Jupiter like objects). (C) Cold brown dwarfs, with motions controlled by the internal heat source (thermally driven turbulent convection) producing intense vertical velocities that dominate the motion field.

  14. Dynamics of Undisturbed Midlatitude Atmospheric Electricity: From Observations to Scaling

    NASA Astrophysics Data System (ADS)

    Anisimov, S. V.; Afinogenov, K. V.; Shikhova, N. M.

    2014-04-01

    Long-term dynamics of the electric field of the midlatitude near-surface atmosphere in a wide range of temporal scales is analyzed according to multiyear observatory and seasonal field observations. It is found that the daily dynamics of the aeroelectric field at mid-latitudes most authentically repeats a diurnal variation for the winter months. It is stated that short-period pulsations of the electric field have a self-similar power-law spectrum. Spatio-temporal scales of the self-similarity interval are estimated and the nature of the generalized diffusive process of the aeroelectric pulsation generation is defined. Characteristics of the turbulent ΔE pulsations are analyzed. Estimates of interrelation between the dynamic (fractal dimensions, intermittency indices) and power (degrees of spectral index and structure function) ΔE characteristics are obtained. Mutual correlations between atmospheric electric field variations, vertical atmospheric electrical current density, space charge density, and atmospheric electrical conductivity are studied. It is shown that variations of the light atmospheric ion number density and space charge density are related with variations of the Radon-222 emanations. Spectral analysis of the space charge density variations is carried out. It is shown that the electrodynamic state of the surface atmosphere depends on the convective state of the atmospheric boundary layer.

  15. The Middle Atmosphere Program: A special project for the Antarctic Middle Atmosphere (AMA)

    NASA Astrophysics Data System (ADS)

    Hirasawa, T.

    1982-04-01

    Areas of concern are: dynamics, structure, and atmospheric composition of the middle atmosphere in Antarctica; particle precipitation and interaction of the middle atmosphere with the lower ionosphere; atmospheric pollution; and the difference between the northern and southern polar middle atmosphere.

  16. The Middle Atmosphere Program: A special project for the Antarctic Middle Atmosphere (AMA)

    NASA Technical Reports Server (NTRS)

    Hirasawa, T.

    1982-01-01

    Areas of concern are: dynamics, structure, and atmospheric composition of the middle atmosphere in Antarctica; particle precipitation and interaction of the middle atmosphere with the lower ionosphere; atmospheric pollution; and the difference between the northern and southern polar middle atmosphere.

  17. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation.

    PubMed

    Kulmala, M; Petäjä, T; Ehn, M; Thornton, J; Sipilä, M; Worsnop, D R; Kerminen, V-M

    2014-01-01

    The recent development in measurement techniques and theoretical understanding has enabled us to study atmospheric vapor, cluster and nanoparticle concentrations, dynamics, and their connection to atmospheric nucleation. Here we present a summary of the chemistry of atmospheric clustering, growing nanoparticles, and their precursors. In this work, we focus particularly on atmospheric gas-to-particle conversion and recent progress in its understanding.

  18. Atmospheric Dynamics of Terrestrial Exoplanets Over a Wide Range of Orbital and Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, Adam P.

    2014-11-01

    Since the mid-1990s, nearly 1800 exoplanets have been discovered around other stars. Exoplanet discovery and characterization began with giant planets, but as the observational techniques are advancing the emphasis is gradually shifting to smaller worlds. The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone---including transitions to Snowball-like states and runaway-greenhouse feedbacks---depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we discuss the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star, optical thickness and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet stream, Hadley and Ferrel cells and latitudinal temperature differences. Finally, we will

  19. Lidar application to middle atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Sridharan, S.

    2016-05-01

    LIDAR (LIght Detection And Ranging) is an optical remote sensing technique which can be used to probe middle atmosphere (stratosphere & mesosphere) from where RADAR (RAdio Detection And Ranging) system fails to get scattering. The Mie and Rayleigh lidar system installed at National Atmospheric Research Laboratory (NARL), Gadanki (13.5°N, 79.2°E) has been operating at 532 nm green laser with increased energy of 600 mJ/pulse and pulse repletion frequency of 50 Hz since 2007. From the Rayleigh lidar observations, vertical profiles of atmospheric density and temperature can be obtained above 25-30 km (where the aerosols are almost negligible) at high spatial and temporal resolutions. The temperature profiles often show mesospheric inversion layers (MILs), the causative mechanisms of which are yet to be understood. In the present study, the improved performance of the lidar system is demonstrated by showing the height profile of temperature and its error obtained with the high power laser ( 12 W per pulse) on 20 January 2007 when compared to the same obtained using the low power laser ( 5 W per pulse) on 05 February 2007 over Gadanki. The temperature errors observed at 80 km are 3.5 K, 18 K with high and low power lasers respectively. A large MIL has been observed on 20 January 2007 above 78 km with amplitude of 31 K from the lidar temperature operated with high power laser. The dominant gravity wave (GW) period and vertical wavelengths are found to be T 66 min and λz 6.4 km in the inversion region. The wave saturation ratio and eddy diffusion coefficient due to the GW breaking are calculated and it is found that the wave gets saturated at 84-85 km and the eddy diffusion coefficient increases from 25 m2/sec above the inversion region ( 83 km). This result suggests that the occurrence of this large MIL event is probably due to gravity wave breaking.

  20. Sharing is Winning: Cooperative Learning about Atmospheric Composition Change

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2010-09-01

    This contribution presents evolving good practice in disseminating the body of know-how, skills and competencies within the networked community of atmospheric scientists as established in ACCENT. The promotion of early-career scientists, and encouraging the next generation to move into the field were among the key issues addressed by the "Training and Education" programme in the European Network of Excellence in Atmospheric Composition Change (ACCENT). Dissemination avenues include a virtual knowledge train carrying the wealth of high-quality scientific learning material developed with experts involved in the ACCENT network. Learning opportunities on current research in atmospheric composition change in Europe were also created during face-to-face training workshops. Real-life examples of pressing air quality issues were addressed in meetings with stakeholder groups that offered opportunities for mutual learning in inspiring partnerships. In order to increase the expertise in atmospheric composition change across Europe, activities were organized with the general public (e.g., Café Scientifique), where the participating early-career scientists were confronted with questions from lay people. For interested teachers, didactic translations of compact overviews on air quality science topics developed in ACCENT offer links with the typical European science curriculum and go beyond school book content. Some of the educational events, methods and tools are described in a booklet published in 2009 ("We Care for Clean Air!", ISBN 978-88-95665-01-6). The electronic version and all training material can be downloaded from www.accent-network.org/portal/education - a valuable resource for teachers and learners around the globe.

  1. Gravity-Wave Dynamics in the Atmosphere

    DTIC Science & Technology

    2010-02-01

    of wave-induced downslope winds. Journal of the Atmospheric Sciences, 32(2):320–339, 1975. [12] P. K. Kundu and I. M. Cohen. Fluid Mechanics . Elsevier...Wave Beams and Local Generation of Solitary Waves in the Ocean Thermocline”, Journal of Fluid Mechanics , 593, 297-313 (2007) Akylas, T. R. & Druecke...334–348, 1992. [4] T. H. Bell. Lee waves in stratified flows with simple harmonic time-dependence. Journal of Fluid Mechanics , 67(FEB25):705–722

  2. The molecular dynamics of atmospheric reaction

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.

    1971-01-01

    Detailed information about the chemistry of the upper atmosphere took the form of quantitative data concerning the rate of reaction into specified states of product vibration, rotation and translation for exothermic reaction, as well as concerning the rate of reaction from specified states of reagent vibration, rotation and translation for endothermic reaction. The techniques used were variants on the infrared chemiluminescence method. Emphasis was placed on reactions that formed, and that removed, vibrationally-excited hydroxyl radicals. Fundamental studies were also performed on exothermic reactions involving hydrogen halides.

  3. ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY

    SciTech Connect

    Benneke, Bjoern; Seager, Sara

    2012-07-10

    We present a retrieval method based on Bayesian analysis to infer the atmospheric compositions and surface or cloud-top pressures from transmission spectra of exoplanets with general compositions. In this study, we identify what can unambiguously be determined about the atmospheres of exoplanets from their transmission spectra by applying the retrieval method to synthetic observations of the super-Earth GJ 1214b. Our approach to inferring constraints on atmospheric parameters is to compute their joint and marginal posterior probability distributions using the Markov Chain Monte Carlo technique in a parallel tempering scheme. A new atmospheric parameterization is introduced that is applicable to general atmospheres in which the main constituent is not known a priori and clouds may be present. Our main finding is that a unique constraint of the mixing ratios of the absorbers and two spectrally inactive gases (such as N{sub 2} and primordial H{sub 2}+ He) is possible if the observations are sufficient to quantify both (1) the broadband transit depths in at least one absorption feature for each absorber and (2) the slope and strength of the molecular Rayleigh scattering signature. A second finding is that the surface pressure or cloud-top pressure can be quantified if a surface or cloud deck is present at low optical depth. A third finding is that the mean molecular mass can be constrained by measuring either the Rayleigh scattering slope or the shapes of the absorption features, thus enabling one to distinguish between cloudy hydrogen-rich atmospheres and high mean molecular mass atmospheres. We conclude, however, that without the signature of molecular Rayleigh scattering-even with robustly detected infrared absorption features (>10{sigma})-there is no reliable way to tell from the transmission spectrum whether the absorber is a main constituent of the atmosphere or just a minor species with a mixing ratio of X{sub abs} < 0.1%. The retrieval method leads us to a

  4. Building a "big picture" of planetary atmospheres dynamics

    NASA Astrophysics Data System (ADS)

    Read, Peter; Wang, Yixiong

    and explore relatively simple parameter spaces for atmospheric circulation systems, along similar lines to what is commonly done in the laboratory, without the need to compute many of the details specific to individual planetary composition, topography etc. Trends observed in such studies indicate that a common theoretical framework can account for many of the basic differences and similarities between the terrestrial planets in the Solar System, although this approach is still in its infancy. Such an approach can even enable simple predictions to be made of the style and intensity of circulation for planets (e.g. around other stars) yet to be discovered. Future work along similar lines, however, will need to take into account a wider range of possibilities than has been studied systematically hitherto, including the full range of planetary obliquity and seasonal variations, ratios of dynamical and radiative timescales, diurnal cycles and tidally-locked states. [1] R. Hide and P. J. Mason. Adv. in Phys., 24:47-99, 1975 [2] Wordsworth, R. D., Read, P. L. Yamazaki, H. Y. (2008) Phys. Fluids, 20, 126602

  5. Application of atmospheric pressure plasma in polymer and composite adhesion

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  6. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics

    NASA Technical Reports Server (NTRS)

    Chin, Gordon

    2011-01-01

    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.

  7. Composition and evolution of the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Donahue, Thomas (Principal Investigator)

    1996-01-01

    The contract year started by analyzing Jovian atmospheric data acquired by the Galileo Probe Mass Spectrometer (GPMS). Two Venus hydrogen projects got underway as well. The first study strives to understand how to reconcile the standard treatment of the evolution of the H2O and HDO resevoirs on Venus over 4.5 Gyr in the presence of H and D escape and injection by comets. The second study is calculating the charge exchange contribution to hydrogen loss rates, using realistic models for exospheric H, H(+), D, D(+), and ion temperature from PV data. This report includes the following papers as attachments and supporting data: 'The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere'; 'Chemical Composition Measurements of the Atmosphere of Jupiter with the Galileo Probe Mass Spectrometer'; 'Ion/Neutral Escape of Hydrogen and Deuterium: Evolution of Water'; 'Hydrogen and Deuterium in the Thermosphere of Venus: Solar Cycle Variations and Escape'; and 'Solar Cycle Variations in H(+) and D(+) Densities in the Venus Ionosphere: Implications for Escape'.

  8. Atmospheric chemical composition of the peculiar carbon giant TU Gem

    NASA Astrophysics Data System (ADS)

    Yakovina, L. A.; Polinovskii, G. A.; Pavlenko, Ya. V.; Kuznetsov, M. K.

    2017-01-01

    The evolutionary status of the bright peculiar carbon giant TU Gemis fairly uncertain. The possibility that this is aCH star—aGalactic halo star with characteristic chemical-composition anomalies—is considered. Unfortunately, data on the atmospheric chemical composition of TUGem are relatively few and are ambiguous. The results of an analysis of a moderate-resolution optical and near-infrared spectrum of TU Gem obtained on the 2-m telescope of Terskol Peak Observatory (Northern Caucasus) is presented. The atmospheric parameters of TU Gem T eff = 3100 K, C/O = 1.10, and [N/Fe] = 0.0 for the derived metallicity [Fe/H] = 0.0 are taken from [1]. The abundances of Na, Mg, Ca, Ti, and Cr are estimated to be normal or slightly enhanced, and the lithium abundance is log N(Li) = +0.1. The abundances of s-process elements are substantially enhanced in the atmosphere of TU Gem, namely, [s/Fe] ≈ 2, for both light and heavy s-process elements. The range of uncertainty in [Fe/H] is 0.0-0.3, and the uncertainties in other estimates are Δ[M/Fe]≈ ±0.3 and Δ[ s/Fe] = ±0.5. The results show that TU Gem is an anomalous carbon giant, but not a CH star.

  9. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  10. An Integrated Global Atmospheric Composition Observing System: Progress and Impediments

    NASA Astrophysics Data System (ADS)

    Keating, T. J.

    2016-12-01

    In 2003-2005, a vision of an integrated global observing system for atmospheric composition and air quality emerged through several international forums (IGACO, 2004; GEO, 2005). In the decade since, the potential benefits of such a system for improving our understanding and mitigation of health and climate impacts of air pollution have become clearer and the needs more urgent. Some progress has been made towards the goal: technology has developed, capabilities have been demonstrated, and lessons have been learned. In Europe, the Copernicus Atmospheric Monitoring Service has blazed a trail for other regions to follow. Powerful new components of the emerging global system (e.g. a constellation of geostationary instruments) are expected to come on-line in the near term. But there are important gaps in the emerging system that are likely to keep us from achieving for some time the full benefits that were envisioned more than a decade ago. This presentation will explore the components and benefits of an integrated global observing system for atmospheric composition and air quality, some of the gaps and obstacles that exist in our current capabilities and institutions, and efforts that may be needed to achieve the envisioned system.

  11. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Neil, Doreen O.; Kondragunbta, Shobha; Osterman, Gregory; Pickering, Kenneth; Pinder, Robert W.; Prados, Ana I.; Szykman, James

    2009-01-01

    The satellite observations provide constraints on detailed atmospheric modeling, including emissions inventories, indications of transport, harmonized data over vast areas suitable for trends analysis, and a link between spatial scales ranging from local to global, and temporal scales from diurnal to interannual. 1 The National Oceanic and Atmospheric Administration's (NOAA) long-term commitments help provide these observations in cooperation with international meteorological organizations. NASA s long-term commitments will advance scientifically important observations as part of its Earth Science Program, and will assist the transition of the science measurements to applied analyses through the Applied Science Program. Both NASA and NOAA have begun to provide near realtime data and tools to visualize and analyze satellite data,2 while maintaining data quality, validation, and standards. Consequently, decision-makers can expect satellite data services to support air quality decision making now and in the future. The international scientific community's Integrated Global Atmosphere Chemistry Observation System Report3 outlined a plan for ground-based, airborne and satellite measurements and models to integrate the observations into a four-dimensional representation of the atmosphere (space and time) to support assessment and policy information needs. This plan is being carried out under the Global Earth Observation System of Systems (GEOSS). Demonstrations of such an integrated capability4 provide new understanding of the changing atmosphere and link policy decisions to benefits for society. In this article, we highlight the use of satellite data to constrain biomass burning emissions, to assess oxides of nitrogen (NO(x)) emission reductions, and to contribute to state implementation plans, as examples of the use of satellite observations for detecting and tracking changes in atmospheric composition.

  12. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Neil, Doreen O.; Kondragunbta, Shobha; Osterman, Gregory; Pickering, Kenneth; Pinder, Robert W.; Prados, Ana I.; Szykman, James

    2009-01-01

    The satellite observations provide constraints on detailed atmospheric modeling, including emissions inventories, indications of transport, harmonized data over vast areas suitable for trends analysis, and a link between spatial scales ranging from local to global, and temporal scales from diurnal to interannual. 1 The National Oceanic and Atmospheric Administration's (NOAA) long-term commitments help provide these observations in cooperation with international meteorological organizations. NASA s long-term commitments will advance scientifically important observations as part of its Earth Science Program, and will assist the transition of the science measurements to applied analyses through the Applied Science Program. Both NASA and NOAA have begun to provide near realtime data and tools to visualize and analyze satellite data,2 while maintaining data quality, validation, and standards. Consequently, decision-makers can expect satellite data services to support air quality decision making now and in the future. The international scientific community's Integrated Global Atmosphere Chemistry Observation System Report3 outlined a plan for ground-based, airborne and satellite measurements and models to integrate the observations into a four-dimensional representation of the atmosphere (space and time) to support assessment and policy information needs. This plan is being carried out under the Global Earth Observation System of Systems (GEOSS). Demonstrations of such an integrated capability4 provide new understanding of the changing atmosphere and link policy decisions to benefits for society. In this article, we highlight the use of satellite data to constrain biomass burning emissions, to assess oxides of nitrogen (NO(x)) emission reductions, and to contribute to state implementation plans, as examples of the use of satellite observations for detecting and tracking changes in atmospheric composition.

  13. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    SciTech Connect

    Kaspi, Yohai; Showman, Adam P.

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  14. Atmospheric Dynamics of Terrestrial Exoplanets over a Wide Range of Orbital and Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, Adam P.

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  15. Relation between isotopic composition of precipitation and atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Brenčič, Mihael; Kononova, Nina K.; Vreča, Polona

    2015-10-01

    Precipitation generating processes depend on atmospheric circulation patterns and consequently it is expected that its water stable isotopic composition of hydrogen and oxygen is related to them. Precipitation generated at similar atmospheric circulation patterns should have similar empirical distribution of δ2H and δ18O values. Mathematical model based on the linear combination of δ2H and δ18O values and on precipitation amount weighted average related to elementary air circulation mechanisms - ECM is proposed. The model enables estimation of average δ2H and δ18O values and their standard deviation for the precipitation generated at distinctive atmospheric circulation patterns. Approach in which atmospheric circulation patterns were classified as ECM based on the Dzerdzeevskii classification was applied. Application of the model is illustrated on the long term precipitation record from Ljubljana GNIP station Slovenia. Estimated values of the parameters for empirical distributions of δ2H and δ18O of each ECM subtype have shown that calculated estimates are reasonable. Further applications of the proposed model enable new insight into the understanding of isotopes spatial and temporal distribution in precipitation important also for better understanding of climate proxies.

  16. Classroom Demonstrations Of Atmosphere-ocean Dynamics: Baroclinic Instability

    NASA Astrophysics Data System (ADS)

    Aurnou, Jonathan; Nadiga, B. T.

    2008-09-01

    Here we will present simple hands-on experimental demonstrations that show how baroclinic instabilities develop in rotating fluid dynamical systems. Such instabilities are found in the Earth's oceans and atmosphere as well as in the atmospheres and oceans of planetary bodies throughout the solar system and beyond. Our inexpensive experimental apparatus consists of a vinyl-record player, a wide shallow pan, and a weighted, dyed block of ice. Most directly, these demonstrations can be used to explain winter-time atmospheric weather patterns observed in Earth's mid-latitudes.

  17. Atmospheric composition and climate on the early Earth.

    PubMed

    Kasting, James F; Howard, M Tazewell

    2006-10-29

    Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85 degrees C. We argue, following others, that this interpretation is incorrect-the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot.A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere.

  18. Atmospheric composition and climate on the early Earth

    PubMed Central

    Kasting, James F; Howard, M. Tazewell

    2006-01-01

    Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85°C. We argue, following others, that this interpretation is incorrect—the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot. A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4 Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9 Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere. PMID:17008214

  19. Lidar Measurements of Atmospheric Dynamics over High Mountainous Terrain

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Deleva, Atanaska D.; Dreischuh, Tanja N.; Stoyanov, Dimitar V.

    2010-01-01

    Results of lidar observations on the dynamics of atmospheric layers over the ridge and northeast slope of Vitosha Mountain situated close to Sofia, Bulgaria, are reported and compared with results for layers over surrounding plain and urban zones. Measurements are carried out at 1064 nm wavelength with a lidar range resolution of 15 m, by using one of the aerosol channels of a combined Raman-aerosol lidar based on a powerful Nd:YAG laser. Two cases of distinctly different weather conditions are studied. The mountainous area, situated from 6 km to 12 km away from the lidar station, is scanned reiteratively within 7°-9° slope-angle range. Multiple series of lidar profiles are registered with average time of 2-5 s. Lidar signals are then range corrected and processed statistically. Normalized standard deviation is used as a characteristic of the atmospheric dynamics. The spatial-temporal evolution of atmospheric density fluctuations is shown on colormap plots. Intensive air dynamics over the mountain is revealed, exceeding considerably the one over the plain zone. Peculiarities of the dynamics in the investigated atmospheric domains are discussed. Results obtained show that Vitosha Mountain strongly affects variations of the atmospheric density and stability over large areas.

  20. A compositing approach for preserving signifigant features in atmospheric profiles

    SciTech Connect

    Brown, R. )

    1993-03-01

    Composite profiles of thermodynamic and kinematic variables are prepared to represent the characteristics of the environment within which a particular atmospheric phenomenon occurs. During the averaging process, it is desirable to retain the dominant features and associated gradients found in the individual profiles so that representative values of quantities such as flux parameters, energy budgets, convective available ptoential energy, and various stability indices can be computed from the composite profiles. The conventional compositing approach, where averages are computed at common heights, reduces or even smooths out a significant feature when the height and vertical extent of the feature differ from one individual file to the next. To retain a desirable feature in the composite profile, it is necessary to compute averages at the heights where the feature occurs and to compute the average height of the feature itself. As an example ot the capabilities of this scaling or feature-preserving approach, the technique was applied to a set of 33 hodographs from supercell thunderstorm environments as documented in the literature. The feature-preserving technique retained realistic wind-shear values, including a midaltitude minimum-shear layer that disappeared when the conventional compositing technique was used. 44 refs., 5 figs., 1 tab.

  1. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study

    NASA Astrophysics Data System (ADS)

    Wallmann, K.; Schneider, B.; Sarnthein, M.

    2016-02-01

    -level rise led to a gradual decline in nutrient, DIC, and TA stocks, a slow change due to the large size and extended residence times of dissolved chemical species in the ocean. Thus, the rapid deglacial rise in pCO2 can be explained by fast changes in ocean dynamics and nutrient utilization whereas the gradual pCO2 rise over the Holocene may be linked to the slow drop in nutrient and TA stocks that continued to promote an ongoing CO2 transfer from the ocean into the atmosphere.

  2. Lower atmospheric composition of Jupiter from Voyager infrared measurements

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.

    1984-01-01

    The observed spectrum of Jovian atmosphere exhibits spectral features of H2, CH4, C2H6, NH3, H2O, GeH4 and CH3D. Analytical programs were developed for radiative transfer calculations and for retrieval of lower atmospheric composition of Jupiter from the observed infrared spectrum. The program models developed are based line by line transmittance calculations with appropriate convolution of the instrument function. The constituent inversion programs were evaluated for accuracy by analyzing synthetic data for retrievals of NH3 profiles. The inversion programs were employed for retrieval of NH3 profiles from the Voyager infared data with results generally in agreement with the accepted values.

  3. Measurement of atmospheric neutrino composition with the IMB-3 detector

    SciTech Connect

    Casper, D.; Becker-Szendy, R.; Bratton, C.B.; Cady, D.R.; Claus, R.; Dye, S.T.; Gajewski, W.; Goldhaber, M.; Haines, T.J.; Halverson, P.G.; Jones, T.W.; Kielczewska, D.; Kropp, W.R.; Learned, J.G.; LoSecco, J.M.; McGrew, C.; Matsuno, S.; Matthews, J.; Mudan, M.S.; Price, L.; Reines, F.; Schultz, J.; Sinclair, D.; Sobel, H.W.; Stone, J.L.; Sulak, L.R.; Svoboda, R.; Thornton, G.; van der Velde, J.C. The University of Michigan, Ann Arbor, Michigan 48109 Brookhaven National Laboratory, Upton, New York 11973 Boston University, Boston, Massachusetts 02215 The University of Hawaii, Honolulu, Hawaii 96822 University College, London, WC1E F6BT, United Kingdom Warsaw University, Warsaw, Poland Cleveland State University, Cleveland, Ohio 44115 The University of Notre Dame, Notre Dame, Indiana 46556 Lousiana State University, Baton Rouge, Lousisiana 70803 The University of Maryland, College Park, Maryland 20742)

    1991-05-20

    The atmospheric neutrino flux is measured using a 3.4-kt yr exposure of the IMB-3 detector. Single-ring events are classified as showering or nonshowering using the geometry of the {hacek C}erenkov pattern. A simulation of neutrino interactions and three models of atmospheric neutrino production are used to predict the composition of the sample. Showering-nonshowering character is strongly correlated with the flavor of the neutrino parent. In the lepton momentum range {ital p}{lt}1500 MeV/{ital c}, we find that nonshowering events comprise (41{plus minus}3{plus minus}2syst)% of the total. The fraction expected is (51{plus minus}5(syst))%.

  4. [Dynamic control of the atmospheric parameters of spacecraft].

    PubMed

    Breslav, I S; Salazkin, V N

    1977-01-01

    On the basis of experimental data a mathematical model of relationships between physiological parameters, oxygen content in the atmosphere and exercises has been developed. Using the model, it has been demonstrated that circulation and respiration reactions to exercises can be optimized by increasing the partial pressure of oxygen as related to the exercise level. A probable law of the dynamic and physiologically optimal control of the oxygen content in the space cabin atmosphere has been advanced. In cases of an uncontrolled decrease of PO2 the oxygen supply of crewmembers can be optimized by the dynamic control of the ambient CO2 content.

  5. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  6. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2007-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  7. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  8. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bezard, B.; Strobel, D. F.; Conrath, B. J.; Nixon, C. A.; Bjoraker, G. L.; Romani, P. N.; Achterberg, R. K.; hide

    2004-01-01

    The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.

  9. Composition and Chemistry of the Neutral Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Marcq, E.; Millis, F.; Sandor, B.; Vandaele, A. C.

    2014-04-01

    With the pending ending of the ESA Venus Express mission after 8 years of scientific success, a new page in the in situ exploration of the inner solar system is on the verge of being turned. Considering how much our vision of Venus has been updated and refined thanks to it, the scientific community has decided to summarize our new picture of Venus in a dedicated book. This talk aims at presenting the structure and some contents of the Composition and Chemistry of the Neutral Atmosphere chapter.

  10. Surface ices and the atmospheric composition of Pluto

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.; Roush, Ted L.; Cruikshank, Dale P.; Elliot, James L.; Young, Leslie A.; De Bergh, Catherine; Schmitt, Bernard; Geballe, Thomas R.; Brown, Robert H.; Bartholomew, Mary J.

    1993-01-01

    Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.

  11. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment.

    PubMed

    Kunde, V G; Flasar, F M; Jennings, D E; Bézard, B; Strobel, D F; Conrath, B J; Nixon, C A; Bjoraker, G L; Romani, P N; Achterberg, R K; Simon-Miller, A A; Irwin, P; Brasunas, J C; Pearl, J C; Smith, M D; Orton, G S; Gierasch, P J; Spilker, L J; Carlson, R C; Mamoutkine, A A; Calcutt, S B; Read, P L; Taylor, F W; Fouchet, T; Parrish, P; Barucci, A; Courtin, R; Coustenis, A; Gautier, D; Lellouch, E; Marten, A; Prangé, R; Biraud, Y; Ferrari, C; Owen, T C; Abbas, M M; Samuelson, R E; Raulin, F; Ade, P; Césarsky, C J; Grossman, K U; Coradini, A

    2004-09-10

    The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.

  12. Towards an exploitation of IAGOS atmospheric composition measurements

    NASA Astrophysics Data System (ADS)

    Marshall, Julia; Gerbig, Christoph; Petzold, Andreas; Zahn, Andreas

    2015-04-01

    IAGOS, In-service Aircraft for a Global Observing System, has installed instrumentation on a growing fleet of commercial airliners in order to continuously monitor atmospheric composition around the globe. IAGOS is providing accurate in situ observations of greenhouse gases (GHGs), reactive gases, aerosols, and cloud particles at high spatial resolution in the free atmosphere, thereby covering the essential climate variables (ECVs) for atmospheric composition as designated by the GCOS programme (Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC, 2010). The greenhouse gas measurements made by IAGOS will be submitted to the WMO/GAW World Data Centre for Greenhouse Gases (WDCGG). Within the EU FP7 project IGAS (IAGOS for the GMES Atmospheric Service), the links between this new data stream and scientific users, including the Copernicus Atmosphere Monitoring Service, are being improved. This includes the provision of measurements in both near-real-time and delayed mode, and improved accessibility to the data through linkages to the databases of both the German Aerospace Centre (DLR) flight campaign archive and the Copernicus data archive. Work has been undertaken to investigate the use of the near-real-time profile measurements in order to correct bias in satellite measurements assimilated by the Copernicus Atmosphere Monitoring Service. Documentation of the QA/QC procedures and measurement techniques for each instrument have been formalized and reviewed by external experts, to provide users with a measurement traceable to WMO standards. The representativeness of the measurements has been assessed, to better interpret results in polluted regions and near the tropopause. The potential impact of the GHG measurements on regional scale flux inversions has been quantified, which is relevant for ICOS (Integrated Carbon Observing System). Finally, tools have been developed to use the measurements for validation of satellite column

  13. Saturn's Atmospheric Composition from Observations by the Cassini/Composite Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Young, M.; LeClair, A. C.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.

    2010-01-01

    Thermal emission infrared observation of Saturn s atmosphere are being made by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft since its insertion in Saturn s orbit on July 2nd, 2004. The measurements made in both limb and nadir modes of observations consist of infrared spectra in the 10-1400/cm region with a variable spectral resolution of 0.53/cm and 2.8/cm, and exhibit rotational and vibrational spectral features that may be analyzed for retrieval of the thermal structure and constituent distribution of Saturn s atmosphere. In this paper, we present a comprehensive analysis of the CIRS infrared observed spectra for retrieval of Saturn s atmospheric composition focusing on the distributions of some selected hydrocarbons, phosphine, ammonia, and possible determination of the isotopic ratios of some species with sufficiently strong isolated spectral features. A comparison of the retrieved constituent distributions with the available data in the literature will be made.

  14. Atmospheric Dynamics of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2002-01-01

    The giant planets-Jupiter, Saturn, Uranus, and Neptune-are fluid objects. The winds are powered by absorbed sunlight, as on earth, and by internal heat left over from planetary formation. The main constituents of the atmospheres are hydrogen and helium. The clouds are made of ammonia, hydrogen sulphide, and water. All four giant planets are banded, with multiple zonal jet streams. Even Uranus, whose spin axis is tipped by 98deg relative to the orbit axis, shows latitudinal banding and zonal jets. Equator-to-pole temperature differences are close to zero. Wind speeds are larger than on earth and do not decrease with distance from the sun. Although the power/area at Neptune is only 1/20 that at Jupiter, the winds at Neptune are three times stronger. Stable vortices like the Great Red Spot of Jupiter and similar spots on Neptune come in all size ranges and exhibit a variety of behaviours including merging, orbiting, filament ejection, and oscillating in both shape and position. At least at cloud-top levels, 90% of the long-lived vortices are anticyclonic and sit in anticyclonic shear zones. Features in the cyclonic zones tend to be chaotic, with lifetimes of several days or less. These mesoscale eddies tend to have lightning in them, which suggests that they get their energy from moist convection. The rate of conversion of eddy kinetic energy into kinetic energy of the zonal jets is more than 10% of the power/area radiated by Jupiter. This fraction is more than an order of magnitude larger than on earth. Several lines of evidence now indicate that the winds at cloud-top levels are the surface manifestation of deep-rooted motions that extend into the interior and are presumably driven by internal heat.

  15. Atmospheric Dynamics of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2002-01-01

    The giant planets-Jupiter, Saturn, Uranus, and Neptune-are fluid objects. The winds are powered by absorbed sunlight, as on earth, and by internal heat left over from planetary formation. The main constituents of the atmospheres are hydrogen and helium. The clouds are made of ammonia, hydrogen sulphide, and water. All four giant planets are banded, with multiple zonal jet streams. Even Uranus, whose spin axis is tipped by 98deg relative to the orbit axis, shows latitudinal banding and zonal jets. Equator-to-pole temperature differences are close to zero. Wind speeds are larger than on earth and do not decrease with distance from the sun. Although the power/area at Neptune is only 1/20 that at Jupiter, the winds at Neptune are three times stronger. Stable vortices like the Great Red Spot of Jupiter and similar spots on Neptune come in all size ranges and exhibit a variety of behaviours including merging, orbiting, filament ejection, and oscillating in both shape and position. At least at cloud-top levels, 90% of the long-lived vortices are anticyclonic and sit in anticyclonic shear zones. Features in the cyclonic zones tend to be chaotic, with lifetimes of several days or less. These mesoscale eddies tend to have lightning in them, which suggests that they get their energy from moist convection. The rate of conversion of eddy kinetic energy into kinetic energy of the zonal jets is more than 10% of the power/area radiated by Jupiter. This fraction is more than an order of magnitude larger than on earth. Several lines of evidence now indicate that the winds at cloud-top levels are the surface manifestation of deep-rooted motions that extend into the interior and are presumably driven by internal heat.

  16. Atmospheric anionic and VOCs composition from Detroit Plateau, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Alencar, A. S.; Evangelista, H.; Cataldo, M.; Coôrreia, S.; Simoes, J. C.; Wainer, I.; Jaña, R.; Kurbatov, A.; Potocki, M.; Mayewski, P. A.

    2009-12-01

    In the context of Climate of Antarctica and South America project (CASA/ Brasil-Chile-EUA scientific cooperation) atmospheric sampling were performed in 2007 austral summer (nov-dec) at Detroit Plateau (64°05'07”S, 59°38'42”W, ~ 2,000 m above sea level) in the Antarctic Peninsula, aiming to analyze the anionic and VOCs (Volatile Organic Compounds) composition in the low atmosphere, and to better understand the regional atmospheric transport patterns. Air samples were collected using stainless steel canisters and filter pack. Local climatological data were obtained from an AWS installed in the site during the scientific expedition and regional data are based on NCEP/NCAR and NOAA HYSPLIT reanalyzes. Air samples were collected using eight 2.5L-canisters, and 0.1µm pore size Nuclepore filter at 6h / day intervals. In laboratory, after cryogenic concentration, air samples from canisters were analyzed using gas chromatography (GC/MS). While all filters were leached out with 15 mL Milli-Q water using a ultrasound device, and these solutions were sealed in Teflon vials until later analysis through an ICPMS (Inductively Coupled Plasma Mass Spectroscopy) system. Analyses of the AWS data, during the studied period, showed a mean temperature of -10.4 ± 3.8oC, while the atmospheric pressure was 770.1 ± 10.2 hPa. Results from atmospheric reanalyzes indicates that Detroit Plateau has a significant influence of continental and marine aerosols. Al and Fe were the main represents in the aerosol with terrigenous influence, while Na showed the high concentration in the aerosol with marine influence. Total quantification of VOCs in the local atmosphere showed mean value of 9.8 ug/m3, with maximum (34.1 ug/m3) observed in 29 November and minimum (1.3 ug/m3) during 12 December. Our previous results indicate Detroit Plateau as a well preserved atmospheric site, allowing its use for climatological/glaciological studies.

  17. Deterministic Chaos in Tropical Atmospheric Dynamics.

    NASA Astrophysics Data System (ADS)

    Waelbroeck, H.

    1995-07-01

    An 11-year dataset from the tropical weather station of Tlaxcala, Mexico, is examined. It is found that mutual information drops quickly with the delay, to a positive value that relaxes to zero with a timescale of 20 days. The mutual dependence of the observables is also examined and it is concluded that the dataset gives the equivalent of eight variables per day, known to a precision of 2%. It is determined that the effective dimension of the attractor is Deff 11.7 at the scale 3.5% < R/Rmax < 8%. Evidence is found that the effective dimension increases as R/Rmax 0, supporting a conjecture by Lorenz that the climate system may consist of a large number of weakly coupled subsystems, some of which have low-dimensional attractors. A local reconstruction of the dynamics in phase space is performed; the short-term predictability is modest and agrees with theoretical estimates. Useful skill in predictions of 10-day rainfall accumulation anomalies reflects the persistence of weather patterns, which follow the 20-day decay rate of the mutual information.

  18. Investigations of atmospheric dynamics using a CW Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Rao, G. L.

    1974-01-01

    A three-dimensional CW Doppler sounding system currently under operation at the NASA-Marshall Space Flight Center, Alabama is described. The properties of the neutral atmosphere are discussed along with the theory of Doppler sounding technique. Methods of data analyses used to investigate the dynamical phenomena at the ionospheric heights are presented and suggestions for future investigations provided.

  19. The Wmo Global Atmosphere Watch Programme: Global Framework for Atmospheric Composition Observations and Analysis

    NASA Astrophysics Data System (ADS)

    Tarasova, O. A.; Jalkanen, L.

    2010-12-01

    The WMO Global Atmosphere Watch (GAW) Programme is the only existing long-term international global programme providing an international coordinated framework for observations and analysis of the chemical composition of the atmosphere. GAW is a partnership involving contributors from about 80 countries. It includes a coordinated global network of observing stations along with supporting facilities (Central Facilities) and expert groups (Scientific Advisory Groups, SAGs and Expert Teams, ETs). Currently GAW coordinates activities and data from 27 Global Stations and a substantial number of Regional and Contributing Stations. Station information is available through the GAW Station Information System GAWSIS (http://gaw.empa.ch/gawsis/). There are six key groups of variables which are addressed by the GAW Programme, namely: ozone, reactive gases, greenhouse gases, aerosols, UV radiation and precipitation chemistry. GAW works to implement integrated observations unifying measurements from different platforms (ground based in situ and remote, balloons, aircraft and satellite) supported by modeling activities. GAW provides data for ozone assessments, Greenhouse Gas Bulletins, Ozone Bulletins and precipitation chemistry assessments published on a regular basis and for early warnings of changes in the chemical composition and related physical characteristics of the atmosphere. To ensure that observations can be used for global assessments, the GAW Programme has developed a Quality Assurance system. Five types of Central Facilities dedicated to the six groups of measurement variables are operated by WMO Members and form the basis of quality assurance and data archiving for the GAW global monitoring network. They include Central Calibration Laboratories (CCLs) that host primary standards (PS), Quality Assurance/Science Activity Centres (QA/SACs), World Calibration Centers (WCCs), Regional Calibration Centers (RCCs), and World Data Centers (WDCs) with responsibility for

  20. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics.

    PubMed

    Pujol, Magali; Marty, Bernard; Burgess, Ray; Turner, Grenville; Philippot, Pascal

    2013-06-06

    Understanding the growth rate of the continental crust through time is a fundamental issue in Earth sciences. The isotopic signatures of noble gases in the silicate Earth (mantle, crust) and in the atmosphere afford exceptional insight into the evolution through time of these geochemical reservoirs. However, no data for the compositions of these reservoirs exists for the distant past, and temporal exchange rates between Earth's interior and its surface are severely under-constrained owing to a lack of samples preserving the original signature of the atmosphere at the time of their formation. Here, we report the analysis of argon in Archaean (3.5-billion-year-old) hydrothermal quartz. Noble gases are hosted in primary fluid inclusions containing a mixture of Archaean freshwater and hydrothermal fluid. Our analysis reveals Archaean atmospheric argon with a (40)Ar/(36)Ar value of 143 ± 24, lower than the present-day value of 298.6 (for which (40)Ar has been produced by the radioactive decay of the potassium isotope (40)K, with a half-life of 1.25 billion years; (36)Ar is primordial in origin). This ratio is consistent with an early development of the felsic crust, which might have had an important role in climate variability during the first half of Earth's history.

  1. Influence of Atmospheric Pressure and Composition on LIBS

    SciTech Connect

    Hatch, Jeremy J.; Scott, Jill R.; Effenberger, A. J. Jr.

    2014-03-01

    Most LIBS experiments are conducted at standard atmospheric pressure in air. However, there are LIBS studies that vary the pressure and composition of the gas. These studies have provided insights into fundamentals of the mechanisms that lead to the emission and methods for improving the quality of LIBS spectra. These atmospheric studies are difficult because the effects of pressure and gas composition and interconnected, making interpretation of the results difficult. The influence of pressures below and above 760 Torr have been explored. Performing LIBS on a surface at reduced pressures (<760 Torr) can result in enhanced spectra due to higher resolution, increased intensity, improved signal-to-noise (S/N), and increased ablation. Lower pressures produce increased resolution because the line width in LIBS spectra is predominantly due to Stark and Doppler broadening. Stark broadening is primarily caused from collisions between electrons and atoms, while Doppler broadening is proportional to the plasma temperature. Close examination using a high resolution spectrometer reveals that spectra show significant peak broadening and self-absorption as pressures increase, especially for pressures >760 Torr. During LIBS plasma expansion, energy is lost to the surrounding atmosphere, which reduces the lifetime of the laser plasma. Therefore, reducing the pressure increases the lifetime of the plasma, allowing more light from the laser plasma to be collected; thus, increasing the observed signal intensity. However, if pressures are too low (<10 Torr), then there is a steep drop in LIBS spectral intensity. This loss in intensity is mostly due to a disordered plasma that results from the lack of sufficient atmosphere to provide adequate confinement. At reduced pressures, the plasma expands into a less dense atmosphere, which results in a less dense shock wave. The reduced density in the shock wave results in reduced plasma shielding, allowing more photons to reach the sample

  2. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Mirin, A A; Kosovic, B

    2007-03-29

    Accidental or terrorist releases of hazardous materials into the atmosphere can impact large populations and cause significant loss of life or property damage. Plume predictions have been shown to be extremely valuable in guiding an effective and timely response. The two greatest sources of uncertainty in the prediction of the consequences of hazardous atmospheric releases result from poorly characterized source terms and lack of knowledge about the state of the atmosphere as reflected in the available meteorological data. We have developed a new event reconstruction methodology that provides probabilistic source term estimates from field measurement data for both accidental and clandestine releases. Accurate plume dispersion prediction requires the following questions to be answered: What was released? When was it released? How much material was released? Where was it released? We have developed a dynamic-data-driven event reconstruction capability that couples data and predictive methods through Bayesian inference to obtain a solution to this inverse problem. The solution consists of a probability distribution of unknown source term parameters. For consequence assessment, we then use this probability distribution to construct a 'composite' forward plume prediction that accounts for the uncertainties in the source term. Since in most cases of practical significance it is impossible to find a closed form solution, Bayesian inference is accomplished by utilizing stochastic sampling methods. This approach takes into consideration both measurement and forward model errors and thus incorporates all the sources of uncertainty in the solution to the inverse problem. Stochastic sampling methods have the additional advantage of being suitable for problems characterized by a non-Gaussian distribution of source term parameters and for cases in which the underlying dynamical system is nonlinear. We initially developed a Markov Chain Monte Carlo (MCMC) stochastic methodology

  3. Lobe dynamics and homoclinic tangles in atmospheric flows

    NASA Astrophysics Data System (ADS)

    Naik, S.; Ross, S. D.

    2012-12-01

    In recent years, dynamical system theorists have been developing methods to study structures that govern the dynamics of atmospheric and oceanic flows. The primary concern for these flows are the finite time nature and the arbitrary time dependence in contrast to classical dynamical systems. Recent work on 2D quasi-horizontal approximations of atmospheric motion have demonstrated that there are aperiodic, finite-time analogs of homoclinic tangles and lobe dynamics, e.g., around hurricane boundaries. The tools used have been coherent structure boundaries based on ridges of the finite-time Lyapunov exponent (FTLE) field calculated from integrated particle trajectories. There are some ambiguities in the FTLE-based approach which suggests other methods should be attempted. In this work, we apply methods based on Lagrangian descriptors (due to Mancho and co-workers) to locate distinguished hyperbolic trajectories (DHTs) and generate corresponding finite-time stable and unstable manifolds to study lobe dynamics, as applied to atmospheric flow as well as fluid experiments. We compare the Lagrangian descriptor approach with the FTLE-based approach.

  4. Measured Spacecraft Dynamic Effects on Atmospheric Science Instruments

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Gell, David A.; Lay, Richard R.

    1997-01-01

    On September 1991, NASA launched the Upper Atmosphere Research Satellite. In addition to its atmospheric science mission, spacecraft dynamic effects on science measurements were analyzed. The investigation included two in-flight experiments to determine how each on-board instrument, subsystem and environmental disturbance contributed to the spacecraft dynamic response and how these disturbances affected science measurements. Three case studies are presented which show the impact of spacecraft dynamic response on science measurements. In the first case, correlation of independent atmospheric meridional wind measurements taken by two instruments with the spacecraft dynamic response demonstrated that excessive vibration (exceeding instrument pointing requirements) resulted in wind measurement disagreement. In the second case, solar array disturbances produced a spacecraft response signature on radiometer measurements. The signature explicitly demonstrated that if an instrument has sufficient spatial and temporal resolution, spacecraft dynamic response could impact measurements. In the final case, correlation of an instrument's fine sun sensor data and CO2 measurements demonstrated the effect of temporal and spatial sampling resolution and active pointing control on science measurements. The sun sensor had a frequency modulated characteristic due to spacecraft vibration and the periodic scanning of another instrument which was not present on the CO2 measurements.

  5. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics.

    PubMed

    Bringel, Françoise; Couée, Ivan

    2015-01-01

    The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent -omics studies have opened fascinating opportunities for characterizing the spatio-temporal structure of phyllosphere microbial communities in relation with structural, functional, and ecological properties of host plants, and with physico-chemical properties of the environment, such as climate dynamics and trace gas composition of the surrounding atmosphere. This review will analyze recent advances, especially those resulting from environmental genomics, and how this novel knowledge has revealed the extent of the ecosystemic impact of the phyllosphere at the interface between plants and atmosphere. Highlights • The phyllosphere is one of the most prevalent microbial habitats on earth. • Phyllosphere microbiota colonize extreme, stressful, and changing environments. • Plants, phyllosphere microbiota and the atmosphere present a dynamic continuum. • Phyllosphere microbiota interact with the dynamics of volatile organic compounds and atmospheric trace gasses.

  6. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics

    PubMed Central

    Bringel, Françoise; Couée, Ivan

    2015-01-01

    The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent –omics studies have opened fascinating opportunities for characterizing the spatio-temporal structure of phyllosphere microbial communities in relation with structural, functional, and ecological properties of host plants, and with physico-chemical properties of the environment, such as climate dynamics and trace gas composition of the surrounding atmosphere. This review will analyze recent advances, especially those resulting from environmental genomics, and how this novel knowledge has revealed the extent of the ecosystemic impact of the phyllosphere at the interface between plants and atmosphere. Highlights • The phyllosphere is one of the most prevalent microbial habitats on earth. • Phyllosphere microbiota colonize extreme, stressful, and changing environments. • Plants, phyllosphere microbiota and the atmosphere present a dynamic continuum. • Phyllosphere microbiota interact with the dynamics of volatile organic compounds and atmospheric trace gasses. PMID:26052316

  7. Ar Atmosphere: Implications for Structure and Composition of Mercury's Crust

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Morgan, T. H.

    2001-01-01

    We examine the possibilities of sustaining an argon atmosphere by diffusion from the upper 10 km of crust, and alternatively by effusion from a molten or previously molten area at great depth . Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in surface-bounded exospheres is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon, Mercury and probably Europa is representative of current effusion rather than accumulation over the lifetime of the body. Argon content will be a function of K content, temperature, grain size distribution, connected pore volume and possible seismic activity. Although Mercury and the Moon differ in many details, we can train the solutions to diffusion equations to predict the average lunar atmosphere. Then these parameters can be varied for Hermean conditions. Assuming a lunar crustal potassium abundance of 300 ppm, the observed argon atmosphere requires equilibrium between the argon production in the upper 9 Km of the moon (1.135 x 10(exp -3) cm(exp -3) s(exp -1)) and its loss. Hodges et al. conclude that this loss rate and the observed time variability requires argon release through seismic activity, tapping a deep argon source. An important observation is that the extreme surface of the Moon is enhanced in argon rather than depleted, as one would expect from outgassing of radiogenic argon. Manka and Michel concluded that ion implantation explains the surface enhancement of Ar-40. About half of the argon ions produced in the lunar atmosphere would return to the surface, where they would become embedded in the rocks. Similarly, at Mercury we expect the surface rocks to be enhanced in Ar-40 wherever

  8. Reaction Profiles and Molecular Dynamics Simulations of Cyanide Radical Reactions Relevant to Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Trinidad Pérez-Rivera, Danilo; Romani, Paul N.; Lopez-Encarnacion, Juan Manuel

    2016-10-01

    Titan's atmosphere is arguably the atmosphere of greatest interest that we have an abundance of data for from both ground based and spacecraft observations. As we have learned more about Titan's atmospheric composition, the presence of pre-biotic molecules in its atmosphere has generated more and more fascination about the photochemical process and pathways it its atmosphere. Our computational laboratory has been extensively working throughout the past year characterizing nitrile synthesis reactions, making significant progress on the energetics and dynamics of the reactions of .CN with the hydrocarbons acetylene (C2H2), propylene (CH3CCH), and benzene (C6H6), developing a clear picture of the mechanistic aspects through which these three reactions proceed. Specifically, first principles calculations of the reaction profiles and molecular dynamics studies for gas-phase reactions of .CN and C2H2, .CN and CH3CCH, and .CN and C6H6 have been carried out. A very accurate determination of potential energy surfaces of these reactions will allow us to compute the reaction rates which are indispensable for photochemical modeling of Titan's atmosphere.The work at University of Puerto Rico at Cayey was supported by Puerto Rico NASA EPSCoR IDEAS-ER program (2015-2016) and DTPR was sponsored by the Puerto Rico NASA Space Grant Consortium Fellowship. *E-mail: juan.lopez15@upr.edu

  9. Role of megafauna and frozen soil in the atmospheric CH4 dynamics.

    PubMed

    Zimov, Sergey; Zimov, Nikita

    2014-01-01

    Modern wetlands are the world's strongest methane source. But what was the role of this source in the past? An analysis of global 14C data for basal peat combined with modelling of wetland succession allowed us to reconstruct the dynamics of global wetland methane emission through time. These data show that the rise of atmospheric methane concentrations during the Pleistocene-Holocene transition was not connected with wetland expansion, but rather started substantially later, only 9 thousand years ago. Additionally, wetland expansion took place against the background of a decline in atmospheric methane concentration. The isotopic composition of methane varies according to source. Owing to ice sheet drilling programs past dynamics of atmospheric methane isotopic composition is now known. For example over the course of Pleistocene-Holocene transition atmospheric methane became depleted in the deuterium isotope, which indicated that the rise in methane concentrations was not connected with activation of the deuterium-rich gas clathrates. Modelling of the budget of the atmospheric methane and its isotopic composition allowed us to reconstruct the dynamics of all main methane sources. For the late Pleistocene, the largest methane source was megaherbivores, whose total biomass is estimated to have exceeded that of present-day humans and domestic animals. This corresponds with our independent estimates of herbivore density on the pastures of the late Pleistocene based on herbivore skeleton density in the permafrost. During deglaciation, the largest methane emissions originated from degrading frozen soils of the mammoth steppe biome. Methane from this source is unique, as it is depleted of all isotopes. We estimated that over the entire course of deglaciation (15,000 to 6,000 year before present), soils of the mammoth steppe released 300-550 Pg (10(15) g) of methane. From current study we conclude that the Late Quaternary Extinction significantly affected the global

  10. Role of Megafauna and Frozen Soil in the Atmospheric CH4 Dynamics

    PubMed Central

    Zimov, Sergey; Zimov, Nikita

    2014-01-01

    Modern wetlands are the world’s strongest methane source. But what was the role of this source in the past? An analysis of global 14C data for basal peat combined with modelling of wetland succession allowed us to reconstruct the dynamics of global wetland methane emission through time. These data show that the rise of atmospheric methane concentrations during the Pleistocene-Holocene transition was not connected with wetland expansion, but rather started substantially later, only 9 thousand years ago. Additionally, wetland expansion took place against the background of a decline in atmospheric methane concentration. The isotopic composition of methane varies according to source. Owing to ice sheet drilling programs past dynamics of atmospheric methane isotopic composition is now known. For example over the course of Pleistocene-Holocene transition atmospheric methane became depleted in the deuterium isotope, which indicated that the rise in methane concentrations was not connected with activation of the deuterium-rich gas clathrates. Modelling of the budget of the atmospheric methane and its isotopic composition allowed us to reconstruct the dynamics of all main methane sources. For the late Pleistocene, the largest methane source was megaherbivores, whose total biomass is estimated to have exceeded that of present-day humans and domestic animals. This corresponds with our independent estimates of herbivore density on the pastures of the late Pleistocene based on herbivore skeleton density in the permafrost. During deglaciation, the largest methane emissions originated from degrading frozen soils of the mammoth steppe biome. Methane from this source is unique, as it is depleted of all isotopes. We estimated that over the entire course of deglaciation (15,000 to 6,000 year before present), soils of the mammoth steppe released 300–550 Pg (1015 g) of methane. From current study we conclude that the Late Quaternary Extinction significantly affected the global

  11. An exploration of Saturn's atmospheric dynamics with Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Guerlet, Sandrine; Indurain, Mikel; Meurdesoif, Yann; Millour, Ehouarn; Sylvestre, Mélody; Dubos, Thomas; Fouchet, Thierry

    2015-04-01

    A decade of Cassini observations has yielded a new vision on the dynamical phenomena in Saturn's troposphere and stratosphere. Several puzzling signatures (equatorial oscillations with a period of about half a Saturn year, interhemispheric circulations affecting the hydrocarbons' distribution, including possible effects of rings shadowing, sudden warming associated with the powerful 2010 Great White Spot) cannot be explained by current photochemical and radiative models, which do not include dynamics. We therefore suspect that 1. the observed anomalies arise from large-scale dynamical circulations and 2. those large-scale dynamical motions are driven by atmospheric waves, eddies, and convection, in other words fundamental mechanisms giving birth to, e.g., the Quasi-Biennal Oscillation and Brewer-Dobson circulation in the Earth's middle atmosphere. We explore the plausibility of this scenario using our new Global Climate Modeling (GCM) for Saturn. To build this model, we firstly formulated dedicated physical parameterizations for Saturn's atmosphere, with a particular emphasis on radiative computations (using a correlated-k radiative transfer model, with radiative species and spectral discretization tailored for Saturn) aimed at both efficiency and accuracy, and validated them against existing Cassini observations. A second step consisted in coupling this radiative model to an hydrodynamical solver to predict the three-dimensional evolution of Saturn's tropospheric and stratospheric flow. We will provide an analysis of the first results of those dynamical simulations, with a focus on the development of baroclinic and barotropic instability, on eddy vs. mean flow interactions, and how this could relate to the enigmatic signatures observed by Cassini. Preliminary high-resolution simulations with a new icosahedral dynamical solver adapted to high-performance computing will also be analyzed. Perspectives are twofold: firstly, broadening our fundamental knowledge of

  12. Dynamic Probabilistic Instability of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.

  13. Nonlinear dynamics of global atmospheric and earth system processes

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  14. Infrasound monitoring, acoustic-gravity waves and global atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Blanc, E.; Le Pichon, A.; Ceranna, L.; Farges, T.

    2008-12-01

    For the verification of the Comprehensive nuclear Test Ban Treaty, the International Monitoring System has been developed. As part of this system, the infrasound network provides an unique opportunity to monitor continuously pressure waves in the atmosphere. Such infrasonic waves propagate in the channel formed by the temperature and wind gradients of the atmosphere. Long term observations provide information about the evolution of the propagation conditions and then of atmospheric parameters. The monitoring of continuous sources, as ocean swell, gives the characteristics of the stratospheric wave channel submitted to stratospheric warming effects. Large scale gravity waves, which are also observed by the network, produce a forcing of the stratosphere at low and middle latitudes and long-lived changes in the stratospheric circulation towards high latitudes, leading to fluctuations in the strength of the polar vortex. These fluctuations move down to the lower stratosphere with possible effects on the tropospheric temperature. Gravity wave monitoring in Antarctica reveals a gravity wave system probably related to the wind effect over mountains. At mid latitudes an additional main sources of disturbances is the thunderstorm activity. The infrasound monitoring system allows a better knowledge of the atmospheric wave systems and of the dynamics of the atmosphere. In return this better knowledge of the wave systems allow a better identification of the possible explosion signals in the background of the atmospheric waves and then to improve the discrimination methods

  15. Lidar determination of the composition of atmosphere aerosols

    NASA Technical Reports Server (NTRS)

    Wright, M. L.

    1980-01-01

    Theoretical and experimental studies of the feasibility of using DIfferential SCatter (DISC) lidar to measure the composition of atmospheric aerosols are described. This technique involves multiwavelength measurements of the backscatter cross section of aerosols in the middle infrared, where a number of materials display strong restrahlen features that significantly modulate the backscatter spectrum. The theoretical work indicates that a number of materials of interest, including sulfuric acid, ammonium sulfate, and silicates, can be discriminated among with a CO2 lidar. An initial evaluation of this procedure was performed in which cirrus clouds and lower altitude tropospheric aerosols were developed. The observed ratio spectrum of the two types of aerosol displays structure that is in crude accord with theoretical expectations.

  16. Factors influencing atmospheric composition over subarctic North America during summer

    NASA Technical Reports Server (NTRS)

    Wofsy, Steven C.; Fan, S. -M.; Blake, D. R.; Bradshaw, J. D.; Sandholm, S. T.; Singh, H. B.; Sachse, G. W.; Harriss, R. C.

    1994-01-01

    Elevated concentrations of hydrocarbons, CO, and nitrogen oxides were observed in extensive haze layers over northeastern Canada in the summer of 1990, during ABLE 3B. Halocarbon concentrations remained near background in most layers, indicating a source from biomass wildfires. Elevated concentrations of C2Cl4 provided a sensitive indicator for pollution from urban/industrial sources. Detailed analysis of regional budgets for CO and hydrocarbons indicates that biomass fires accounted for approximately equal to 70% of the input to the subarctic for most hydrocarbons and for acetone and more than 50% for CO. Regional sources for many species (including CO) exceeded chemical sinks during summer, and the boreal region provided a net source to midlatitudes. Interannual variations and long-term trends in atmospheric composition are sensitive to climatic change; a shift to warmer, drier conditions could increase the areas burned and thus the sources of many trace gases.

  17. Changes in atmospheric composition inferred from ionospheric production rates

    NASA Technical Reports Server (NTRS)

    Titheridge, J. E.

    1974-01-01

    Changes in the total electron content of the ionosphere near sunrise are used to determine the integrated production rate in the ionosphere (Q) from 1965 to 1971 at latitudes of 34S, 20N, and 34N. The observed regular semiannual variation in Q through a range of 1:3:1 is interpreted as an increase in the ratio O/N2 (relative densities) near the equinoxes. It follows that there is a worldwide semiannual variation in atmospheric composition, with the above ratio maximum just after the equinoxes. There is a large seasonal variation in the Northern hemisphere with a maximum in mid-summer. This effect is absent in the Southern hemisphere. At all times except solar maximum in the Northern hemisphere there is a global asymmetry. The ratio O/N2 is about three times as large in the Northern hemisphere. The overall mechanism appears to be N2 absorption.

  18. Effects of cirrus composition on atmospheric radiation budgets

    NASA Technical Reports Server (NTRS)

    Kinne, Stefan; Liou, Kuo-Nan

    1988-01-01

    A radiative transfer model that can be used to determine the change in solar and infrared fluxes caused by variations in the composition of cirrus clouds was used to investigate the importance of particle size and shape on the radiation budget of the Earth-atmosphere system. Even though the cloud optical thickness dominates the radiative properties of ice clouds, the particle size and nonsphericity of ice crystals are also important in calculations of the transfer of near-IR solar wavelengths. Results show that, for a given optical thickness, ice clouds composed of larger particles would produce larger greenhouse effects than those composed of smaller particles. Moreover, spherical particles with equivalent surface areas, frequently used for ice crystal clouds, would lead to an overestimation of the greenhouse effect.

  19. Mass composition and dynamics in quiet sun prominences

    NASA Astrophysics Data System (ADS)

    Kilper, Gary K.

    2009-06-01

    Solar prominences are transient phenomena in the solar atmosphere that display highly dynamic activity and can result in dramatic eruptions, ejecting a large amount of material into the heliosphere. The dynamics of the prominence plasma reveal information about its interaction with the magnetic field of the prominence, while the eruptions are associated with coronal mass ejections, which greatly affect space weather near Earth and throughout the solar system. My research on these topics was conducted via observational analyses of the partially-ionized prominence material, its composition, and the dynamics over time in prominences that range in activity from quiescent to highly active. The main results are evidence that (1) in quiescent prominences, neutral He is located more in the lower part of the structure, (2) a higher level of activity in prominences is related to a mixing of the material, and (3) an extended period of high activity and mixing occurs prior to eruptions, possibly due to mass loading. In addition, innovative modifications to analytical techniques led to measurements of the material's mass, composition, and small-scale dynamics.

  20. A study on major inorganic ion composition of atmospheric aerosols.

    PubMed

    Salve, P R; Krupadam, R J; Wate, S R

    2007-04-01

    Atmospheric aerosol samples were collected from Akola and Buldana region covering around 40 sqkm area during October-November 2002 and were analyzed for ten major inorganic ions namely F-, Cl-, NO3-, SO4(2-), PO4(2-), Na+, K+, Ca2+, Mg2+ and NH4+ using ion chromatographic technique. The average mass of aerosols was found to be 225.81 microg/m3 with standard deviation of 31.29 and average total water soluble load of total cations and anions was found to be 4.32 microg/m3. The concentration of ions in samples showed a general pattern as SO4(2-) > NO3- > Cl- > PO4(2-) > F- for anions and Na+ > Ca2+ > NH4+ > Mg2+ > K+ for cations. The overall composition of the aerosols was taken into account to identify the sources. The trend showed higher concentration of sodium followed by calcium, sulfate, nitrate, phosphate and ammoinum and found to be influenced by terrestrial sources. The presence of SO4(2-) and NO3- in aerosols may be due to re-suspension of soil particles. Ca2+, Mg2+ and Cl- are to be derived from soil materials. The presence of NH4+ may be attributed to the reaction of NH3 vapors with acidic gases may react or condense on an acidic particle surface of anthropogenic origin. The atmospheric aerosol is slightly acidic due to neutralization of basicity by SO2 and NO(x).

  1. Effect of flares on the chemical composition of exoplanets atmospheres

    NASA Astrophysics Data System (ADS)

    Venot, O.; Decin, L.

    2015-10-01

    M stars are very abundant in our Galaxy, and very likely harbour the majority of planetary systems. But a particularity of M stars is that they are the most active class of stars. Indeed, they experience stellar variability such as flares. These violent and unpredictable outbursts originate from the photosphere and are caused by magnetic processus. During such an event, the energy emitted by the star can vary by several orders of magnitude for the whole wavelength range. It results in an enhancement of the H# emission and of the continuum. Different studies on the effect of flares on exoplanets have already been conducted [1, 2]. Here we are interested in the effect of a flare on the atmospheric composition of a warm Neptune orbiting around an M star. Using the stellar flux of AD Leo recorded during a flare event [1] and the chemical model of [3], we have studied the impact on the atmosphere. We have also computed the synthetic spectra assuming that such an event occurs during a transit. We will present these results.

  2. Composition and oxidation state of sulfur in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Longo, Amelia F.; Vine, David J.; King, Laura E.; Oakes, Michelle; Weber, Rodney J.; Huey, Lewis Gregory; Russell, Armistead G.; Ingall, Ellery D.

    2016-10-01

    The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS) and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm) analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  3. The Sentinel-4 Mission and its Atmospheric Composition Producs

    NASA Astrophysics Data System (ADS)

    Veihelmann, Ben; Meijer, Yasjka; Ingmann, Paul; Koopman, Rob; Wright, Norrie; Courreges-Lacoste, Gregory Bazalgette; Bagnasco, Glorgio

    2016-08-01

    The Sentinel-4 (S4) mission is an element of the Copernicus Space Component dedicated to atmospheric composition. The mission is implemented as an Ultra- violet Visible Near infrared spectrometer (S4/UVN) embarked on the geostationary Meteosat Third Generation-Sounder (MTG-S) platforms (see Fig. 1). The S4/UVN instrument measures Earth radiance and solar irradiance over Europe with a revisit time of one hour and a spatial sampling distance of 8 km (at the reference location at 45°N). The mission will provide hourly measurements of tropospheric amounts of NO2 (Nitrogen dioxide), O3 (Ozone), SO2 (Sulfur dioxide), HCHO (Formaldehyde), CHOCHO (glyoxal), and aerosols in support of the air quality applications of the Copernicus Atmosphere Monitoring Services. Two S4/UVN instruments will be embarked on the geostationary MTG-S platforms. The Flight Acceptance Review of the first MTG-S satellite is expected to take place in the first quarter of 2021. The expected S4 mission lifetime spans 15 years.

  4. Structure and Composition of the Neutral Upper Atmosphere of Mars from the MAVEN NGIMS Investigation

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Benna, M.; Yelle, R. V.; Stone, S. W.; Elrod, M. K.; Fox, J. L.

    2015-12-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the MAVEN mission is designed to characterize the state of the upper atmosphere and its response to perturbations from the sun and from lower atmosphere. These measurements complement other instruments on the MAVEN spacecraft and support the MAVEN science goal [Jakosky et al., 2015] of understanding atmospheric escape and over the course of martian history. We report NGIMS measurements of the neutral composition of multiple atomic and molecular species over hundreds of orbits since the science phase of this mission began late in 2014. Ion measurements from NGIMS are reported separately in other contributions to this session. The wide dynamic range, the high temporal resolution, and the use of two different ion source configurations of the NGIMS instrument [Mahaffy et al., 2014] allows neutral density structure and its variability to be characterized in detail. Large amplitude wave structure is observed on the lowest altitude portion of many orbits that dissipates at higher altitudes. Although this structure puts scatter in the retrieval of scale height temperatures these are nevertheless robustly secured by averaging over several orbits. The variability of the upper atmosphere temperature with latitude and local solar time is reported. The deep dip campaign approach to the homopause allows the mixing ratio of the major gases in the lower atmosphere to be measured. We compare these mixing ratios with those reported by the Sample Analysis at Mars investigation and previous Viking measurements. Jakosky, B. M., et al. (2015), The Mars Atmosphere and Volatile Evolution (MAVEN) Mission, Space Sci Rev, 21. Mahaffy, P. R., et al. (2014), The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission, Space Sci Rev, 185, DOI: 10.1007/s11214-11014-10091-11211.

  5. A generalized tensor formulation of atmosphere and seas dynamics

    NASA Technical Reports Server (NTRS)

    Avis, L. M.; Turner, R. E.; Rees, T. H.

    1975-01-01

    A generalized mathematical model was developed for simulation of the dynamics and transport of both the atmosphere and seas. A nearly horizontal bottom coordinate surface conforms to the land-to-air interface and the sea-floor-to-water interface, which simplifies computations. General vertical motion of the other quasi-horizontal coordinate surfaces is allowed; external gravity waves can be represented by the top coordinate surface, and meteorological fronts and inversion layers in the atmosphere and refractive layers in the seas can be represented with enhanced resolution by the internal quasi-horizontal coordinate surfaces. A tensor reformulation of the standard subgrid mixing theory departs significantly from the standard theory in allowing, as a solution under adiabatic conditions, rigid-body rotation of the atmosphere.

  6. Global dynamics and thermal structure of Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1986-01-01

    Voyager flyby observations have yielded the first detailed maps of wind and temperature fields in the Jupiter atmosphere; these data indicate that Jupiter's zonal currents violate the barotropic instability criterion if they extend only a few scale heights below the cloud tops. Microwave observations at mm and cm wavelengths have probed the atmosphere down to a level of about 7 bars, thereby constraining horizontal and vertical thermal structure in a region of the atmosphere about which little was known. Temporal variations in the temperature field suggest that dynamical processes may be important in the establishment of tropopause structure on short time scales. Ground-based and Voyager observations have also indicated a hemispheric asymmetry in temperature in the upper stratosphere.

  7. The dynamics in the upper atmospheres of Mars and Titan

    NASA Astrophysics Data System (ADS)

    Bell, Jared M.

    2008-06-01

    This thesis explores the dynamics of two terrestrial bodies: Mars and Titan. At Mars, the coupled Mars General Circulation Model - Mars Thermospheric General Circulation Model (MGCM-MTGCM) is employed to investigate the phenomenon known as Mars winter polar warming. At Titan, a new theoretical model, the Titan Global Ionosphere - Thermosphere Model (T-GITM), is developed, based upon previous work by Ridley et al. [2006]. Using this new model, three separate numerical studies quantify the impacts of solar cycle, seasons, and lower boundary zonal winds on the Titan thermosphere structure and dynamics. At Mars, this thesis investigates thermospheric winter polar warming through three major studies: (1) a systematic analysis of vertical dust mixing in the lower atmosphere and its impact upon the dynamics of the lower thermosphere (100-130 km), (2) an interannual investigation utilizing three years of lower atmosphere infrared (IR) dust optical depth data acquired by the Thermal Emission Spectrometer (TES) instrument on board Mars Global Surveyor (MGS), and finally (3) a brief study of the MTGCM's response to variations in upward propagating waves and tides from the lower atmosphere. Ultimately, this investigation suggests that an interhemispheric summer-to-winter Hadley circulation, originating in the lower atmosphere and extending into the upper atmosphere, is responsible for thermospheric winter polar warming [ Bell etal. , 2007]. A major branch of this thesis builds upon the previous work of Müller-Wodarg et al. [2000], Müller-Wodarg et al. [2003], M7uuml;ller-Wodarg et al. [2006], and Yelle et al. [2006] as it attempts to explain the structures in Titan's upper atmosphere, between 500-1500 km. Building also upon the recent development of GITM by Ridley et al. [2006], this thesis presents a new theoretical framework, T-GITM. This model is then employed to conduct a series of numerical experiments to quantify the impacts of the solar cycle, the season, and the

  8. Structural dynamic analysis of composite beams

    NASA Astrophysics Data System (ADS)

    Suresh, J. K.; Venkatesan, C.; Ramamurti, V.

    1990-12-01

    In the treatment of the structural dynamic problem of composite materials, two alternate types of formulations, based on the elastic modulus and compliance quantities, exist in the literature. The definitions of the various rigidities are observed to differ in these two approaches. Following these two types of formulation, the structural dynamic characteristics of a composite beam are analyzed. The results of the analysis are compared with those available in the literature. Based on the comparison, the influence of the warping function in defining the coupling terms in the modulus approach and also on the natural frequencies of the beam has been identified. It is found from the analysis that, in certain cases, the difference between the results of the two approaches is appreciable. These differences may be attributed to the constraints imposed on the deformation and flexibility of the beam by the choice of the description of the warping behaviour. Finally, the influence of material properties on the structural dynamic characteristics of the beam is studied for different composites for various angles of orthotropy.

  9. Subcycled dynamics in the Spectral Community Atmosphere Model, version 4

    SciTech Connect

    Taylor, Mark; Evans, Katherine J; Hack, James J; Worley, Patrick H

    2010-01-01

    To gain computational efficiency, a split explicit time integration scheme has been implemented in the CAM spectral Eulerian dynamical core. In this scheme, already present in other dynamical core options within the Community Atmosphere Model, version 4 (CAM), the fluid dynamics portion of the model is subcycled to allow a longer time step for the parameterization schemes. The physics parameterization of CAM is not subject to the stability restrictions of the fluid dynamics, and thus finer spatial resolutions of the model do not require the physics time step to be reduced. A brief outline of the subcycling algorithm implementation and resulting model efficiency improvement is presented. A discussion regarding the effect of the climate statistics derived from short model runs is provided.

  10. Subtropical middle atmosphere dynamics observed by the Chung Li radar

    NASA Technical Reports Server (NTRS)

    Fu, I. J.; Liu, C. H.; Roettger, J.; Chao, J. K.

    1989-01-01

    The Chung Li Radar (24.91 N; 121.24 E) has been operating since 1986. A five beam observational configuration was used on a regular basis to study the various dynamics processes in the atmosphere-lower stratosphere height region. Due to its geographical location, the annual Typhoon and Mei-Yu seasons provide good opportunities to study the various interesting dynamic processes such as instabilities, generation of gravity waves, wave mean field interaction, etc. Three dimensional air motions due to these fronts are presented. Special cases of gravity wave generation, propagation and their effects on the turbulent layers are discussed.

  11. Goddard Atmospheric Composition Data Center: Aura Data and Services in One Place

    NASA Technical Reports Server (NTRS)

    Leptoukh, G.; Kempler, S.; Gerasimov, I.; Ahmad, S.; Johnson, J.

    2005-01-01

    The Goddard Atmospheric Composition Data and Information Services Center (AC-DISC) is a portal to the Atmospheric Composition specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques for the better science data usage. It provides convenient access to Atmospheric Composition data and information from various remote-sensing missions, from TOMS, UARS, MODIS, and AIRS, to the most recent data from Aura OMI, MLS, HIRDLS (once these datasets are released to the public), as well as Atmospheric Composition datasets residing at other remote archive site.

  12. Spectroscopic, Kinetic, and Dynamic Experiments on Atmospheric Species.

    DTIC Science & Technology

    1985-03-21

    0077 PHYSICAL SCIENCES RESEARCH PAPERS , NO. 668 P D-A 162 691 Spectroscopic, Kinetic, and Dynamic Experiments on Atmospheric Species S. M. MILLER J. I...we observed, in a very limited data base , values similar to those predicted by the theory of Billingsley4 over the range 4 ! v’ :- 12. This result is...the identities of several others. Further investigations will be aided by an improved data base under conditions similar to those in Figure 9, with

  13. Chemical composition of atmospheric aerosols resolved via positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Äijälä, Mikko; Junninen, Heikki; Heikkinen, Liine; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael

    2017-04-01

    Atmospheric particulate matter is a complex mixture of various chemical species such as organic compounds, sulfates, nitrates, ammonia, chlorides, black carbon and sea salt. As aerosol chemical composition strongly influences aerosol climate effects (via cloud condensation nucleus activation, hygroscopic properties, aerosol optics, volatility and condensation) as well as health effects (toxicity, carcinogenicity, particle morphology), detailed understanding of atmospheric fine particle composition is widely beneficial for understanding these interactions. Unfortunately the comprehensive, detailed measurement of aerosol chemistry remains difficult due to the wide range of compounds present in the atmosphere as well as for the miniscule mass of the particles themselves compared to their carrier gas. Aerosol mass spectrometer (AMS; Canagaratna et al., 2007) is an instrument often used for characterization of non-refractive aerosol types: the near-universal vaporization and ionisation technique allows for measurement of most atmospheric-relevant compounds (with the notable exception of refractory matter such as sea salt, black carbon, metals and crustal matter). The downside of the hard ionisation applied is extensive fragmentation of sample molecules. However, the apparent loss of information in fragmentation can be partly offset by applying advanced statistical methods to extract information from the fragmentation patterns. In aerosol mass spectrometry statistical analysis methods, such as positive matrix factorization (PMF; Paatero, 1999) are usually applied for aerosol organic component only, to keep the number of factors to be resolved manageable, to retain the inorganic components for solution validation via correlation analysis, and to avoid inorganic species dominating the factor model. However, this practice smears out the interactions between organic and inorganic chemical components, and hinders the understanding of the connections between primary and

  14. Exploring the Frontier of Exoplanet Atmosphere Dynamics with NASA's Great Observatories

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura; Bean, Jacob; Stevenson, Kevin; Showman, Adam; Fortney, Jonathan; Line, Michael; Desert, Jean-Michel

    2014-12-01

    We propose a joint Spitzer+HST program to explore the frontier of exoplanet atmosphere dynamics. We will pursue a multi-wavelength approach to create detailed maps of the thermal structure of two of the best target hot Jupiters. First, we will perform secondary eclipse mapping for WASP-18b with Spitzer at 4.5 microns to complement existing Spitzer+HST phase curve observations. The combination of these data will yield the first ever map of an exoplanet's thermal structure as a function of latitude, longitude, and altitude, and provide a benchmark for 3D atmospheric circulation models of highly irradiated planets. Second, we will use a new technique pioneered by our team to observe full-orbit phase curves for WASP-103b with Spitzer and HST/WFC3. These observations will reveal the planet's phase-resolved emission spectrum and determine the global temperature-pressure profile and atmospheric composition, as well as its heat redistribution and Bond albedo. This program will significantly expand the sample of thoroughly characterized exoplanets and enable comparative planetology beyond the Solar System. Spitzer and HST are the facilities that have made the strongest contributions to our understanding of exoplanet atmospheres thus far, and we are now in a position to combine their powers in a strategic way to yield unprecedentedly detailed characterization of hot Jupiter atmospheric dynamics. This program will set the stage for even more precise investigations that will be possible with JWST.

  15. Spin dynamics in driven composite multiferroics

    SciTech Connect

    Wang, Zidong Grimson, Malcolm J.

    2015-09-28

    A spin dynamics approach has been used to study the behavior of the magnetic spins and the electric pseudo-spins in a 1-D composite multiferroic chain with a linear magneto-electric coupling at the interface. The response is investigated with either external magnetic or electric fields driving the system. The spin dynamics is based on the Landau-Lifshitz-Gilbert equation. A Gaussian white noise is later added into the dynamic process to include the thermal effects. The interface requires a closer inspection of the magneto-electric effects. Thus, we construct a 2-D ladder model to describe the behavior of the magnetic spins and the electric pseudo-spins with different magneto-electric couplings.

  16. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  17. Composition of Atmospheric Dust from Qatar in the Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Yigiterhan, O.; Al-Ansari, I. S.; Abdel-Moati, M.; Al-Ansi, M.; Paul, B.; Nelson, A.; Turner, J.; Murray, J. W.; Alfoldy, B. Z.; Mahfouz, M. M. K.; Giamberini, M.

    2015-12-01

    Samples of atmospheric dust from Qatar have been collected and analyzed for major and trace elemental composition. Twenty-one samples were collected in 2014 and 2015 from Doha, Al Khor, Katara, Sealine, and Al Waab by a variety of techniques. Some samples were collected during the megastorms that occurred in April 2015. Back trajectories were determined for each sample using the NOAA HYSPLIT model over a 50 hour time interval. Our samples were about equally divided between northerly (n=12; northern Saudi Arabia, Kuwait or Iraq) and southerly (n=8; SE Saudi Arabia, United Arab Emirates and Oman) sources. One sample originated directly westward, in Saudi Arabia. Samples were microwave-assisted total acid digested (HF+HCl+HNO3) and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES). There are only 12 out of 23 elements for which the Qatari dust was enriched relative to upper continental crust (UCC). Calcium was especially enriched at 400% relative to UCC. About 33% of the total sample mass was CaCO3, reflecting the composition of surface rocks in the source areas. Of the elements typically associated with anthropogenic activity, Ag, Ni and Zn were the most enriched relative to UCC, with enrichment factors of 182%, 233% and 209%, respectively. Others like Pb and V were not significantly enriched, with enrichment factors of 25% and 3%, respectively. The major elements Al, Mn and Fe were depleted relative to UCC because of the strong enrichment in CaCO3, with enrichment factors of -58%, -35% and -45% respectively. We separately averaged the samples with northern and southern origins to see if composition could be used to identify source. Only three elements had a statistical difference. Pb and Na were higher in the samples from the Se while Cr was higher in those from the north.

  18. Assessing Northern Hemisphere Land-Atmosphere Hotspots Using Dynamical Adjustment

    NASA Astrophysics Data System (ADS)

    Merrifield, Anna; Lehner, Flavio; Deser, Clara; Xie, Shang-Ping

    2017-04-01

    Understanding the influence of soil moisture on surface air temperature (SAT) is made more challenging by large-scale, internal atmospheric variability present in the midlatitude summer atmosphere. In this study, dynamical adjustment is used to characterize and remove summer SAT variability associated with large-scale circulation patterns in the Community Earth System Model large ensemble (CESM-LE). The adjustment is performed over North America and Europe with two different circulation indicators: sea level pressure (SLP) and 500mb height (Z500). The removal of dynamical "noise" leaves residual SAT variability in the central U.S. and Mediterranean regions identified as hotspots of land-atmosphere interaction (e.g. Koster et al. 2004, Seneviratne et al. 2006). The residual SAT variability "signal" is not clearly related to modes of sea surface temperature (SST) variability, but is related to local soil moisture, evaporative fraction, and radiation availability. These local relationships suggest that residual SAT variability is representative of the aggregate land surface signal. SLP dynamical adjustment removes ˜15% more variability in the central U.S. hotspot region than Z500 dynamical adjustment. Similar amounts of variability are removed by SLP and Z500 in the Mediterranean region. Differences in SLP and Z500 signal magnitude in the central U.S. are likely due to the modification of SLP by local land surface conditions, while the proximity of European hotspots to the Mediterranean sea mitigates the land surface influence. Variations in the Z500 field more closely resemble large-scale midlatitude circulation patterns and therefore Z500 may be a more suitable circulation indicator for summer dynamical adjustment. Changes in the residual SAT variability signal under increased greenhouse gas forcing will also be explored.

  19. Simulation of all-scale atmospheric dynamics on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna; Xiao, Feng

    2016-10-01

    The advance of massively parallel computing in the nineteen nineties and beyond encouraged finer grid intervals in numerical weather-prediction models. This has improved resolution of weather systems and enhanced the accuracy of forecasts, while setting the trend for development of unified all-scale atmospheric models. This paper first outlines the historical background to a wide range of numerical methods advanced in the process. Next, the trend is illustrated with a technical review of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach, proven effective in simulations of atmospheric flows from small-scale dynamics to global circulations and climate. The outlined approach exploits the synergy of two specific ingredients: the MPDATA methods for the simulation of fluid flows based on the sign-preserving properties of upstream differencing; and the flexible finite-volume median-dual unstructured-mesh discretisation of the spatial differential operators comprising PDEs of atmospheric dynamics. The paper consolidates the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-incompressible systems, common in large-eddy simulation of small- and meso-scale dynamics, as well as all-scale compressible Euler equations. Such a framework naturally extends predictive skills of large-eddy simulation to the global atmosphere, providing a bottom-up alternative to the reverse approach pursued in the weather-prediction models. Theoretical considerations are substantiated by calculations attesting to the versatility and efficacy of the NFTFV approach. Some prospective developments are also discussed.

  20. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  1. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  2. The CEOS Atmospheric Composition Constellation (ACC), an Integrated Observing System

    NASA Astrophysics Data System (ADS)

    Hilsenrath, E.; Langen, J.; Zehner, C.

    2008-05-01

    The Atmospheric Composition (AC) Constellation is one of four pilot projects initiated by the Committee for Earth Observations Systems (CEOS) to bring about technical/scientific cooperation among space agencies that meet the goals of GEO and comply with the CEOS member agencies national programs. The Constellation concept has been endorsed in the GEO Work Plan, 2007-2009. The AC Constellation goal is to collect and deliver data to develop and improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment. These data will support five of the nine GEO SBAs: Health, Energy, Climate, Hazards, and Ecosystems. At the present time ESA, EC, CSA, CNES, JAXA, DLR, NIVR, NASA, NOAA and Eumetsat are participating in the Constellation study, and have major assets in orbit including 17 instruments on seven platforms. One goal of the Constellation study is to identify missing capabilities that will result when the present orbiting research satellites missions end and those not included in the next generation operational missions. Missing observations include very accurate and high spatial resolution measurements needed to be to track trends in atmospheric composition and understand their relationship to climate change. The following are the top level objectives for the AC Constellation Concept Study: • Develop a virtual constellation of existing and upcoming missions using synergies among the instruments and identify missing capabilities. • Study advanced architecture with new space assets and varying orbits with expectations that new technology could also be brought forward to best meet user requirements • Data system interoperability to insure that data are useful, properly targeted, and easily accessible. To demonstrate that the Constellation concept can provide value added data products, the ACC has initiated the three projects that are being supported by the

  3. The Sentinel-4 Mission: Instrument Description and Atmospheric Composition Products

    NASA Astrophysics Data System (ADS)

    Veihelmann, Ben; Meijer, Yasjka; Ingmann, Paul; Koopman, Rob; Bazalgette Courrèges-Lacoste, Grégory; Stark, Hendrik

    2013-04-01

    The Sentinel-4 mission, together with Sentinel-5 and the Sentinel-5 Precursor missions, is part of the Global Monitoring for Environment and Security (GMES) space component covering the Earth's atmosphere. The primary objective of the Sentinel-4 mission is the observation of the diurnal cycle of tropospheric species in support of the air quality applications of GMES Atmosphere Services. The presentation focuses on the Sentinel-4/UVN instrument and its related Level-2 atmospheric composition products. The Sentinel-4 instrument is an Ultra-violet Visible Near infrared spectrometer (S4/UVN) which is embarked on the geostationary Meteosat Third Generation-Sounder (MTG-S) platforms. Key features of the S4/UVN instrument are the spectral range from 305 nm to 500 nm with a spectral resolution of 0.5 nm, and from 750 nm to 775 nm with a spectral resolution of 0.12 nm, in combination with a low polarization sensitivity and a high radiometric accuracy. The instrument shall observe Europe with a revisit time of one hour. The spatial sampling distance varies across the geographic coverage area and takes a value of 8 km at a reference location at 45˚ N. The expected launch date of the first MTG-S platform is 2019, and the expected lifetime is 15 years (two S4/UVN instruments in sequence on two MTG-S platforms). ESA will develop products based on the S4/UVN measurements for the key target species, which are NO2, O3, HCHO, SO2, aerosols, and CHOCHO, and for cloud and surface properties (mainly intermediate products). Also a synergetic O3 vertical profile product is foreseen based on observations from the S4/UVN and the MTG InfraRed Sounder (IRS) on-board the same platform. Synergetic aerosol and cloud products are foreseen based on observations from the S4/UVN and from the MTG Flexible Combined Imager (FCI) on-board the MTG-Imager (MTG-I) platform. Current pre-development studies are dedicated to a daily surface reflectance map product that treats the surface directionality as

  4. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    PubMed

    Johnson, Jennifer E; Berry, Joseph A

    2013-10-01

    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. © 2013 John Wiley & Sons Ltd.

  5. Atmospheric Dynamics of the Transiting Exoplanet HD 209458b

    NASA Astrophysics Data System (ADS)

    Cooper, C. S.; Showman, A. P.

    2004-11-01

    We investigate here the atmosphere of the transiting extrasolar giant planet HD 209458b. The heavy irradiation from the nearby star stabilizes the atmosphere, producing a deep radiative zone extending to pressures of 1800 bars at the object's estimated age of 5.1 Gyr. In this work, we use a primitive equation model adapted from the atmospheric sciences to simulate the dynamics of the atmosphere of HD 209458b within the extended radiative zone. The simulations employ a scheme for Newtonian cooling to approximate the radiative transfer at depth. In this scheme, the temperature field is relaxed to the temperature profile in radiative equilibrium. We present simulations demonstrating the flow geometry for a range of assumptions about the radiative equilibrium temperature profile. Our simulations show---in general agreement with the predictions of Showman & Guillot (2002)---fast equatorial jets of ˜3 km/s at altitude (10-1000 mb), which approach the speed of sound in the fluid. At these low pressures, the hottest regions of the atmosphere are blown downstream from the substellar point where the planet receives the highest irradiation. Deeper down (>10 bars), wind velocities decrease and the equatorial jet gives way to a weak meridional flow and relatively uniform temperature profile. The simulations allow us to predict variations in the infrared light curve, which is in principle measurable with sufficiently sensitive instruments. We also diagnose the hypothesis that the object's evolution has been affected by the dissipation of atmospheric kinetic energy into the deep interior. This research is supported by NSF grant AST-0206269, NASA Ames Research Center Cooperative Agreement (NCC 2-5518), and NASA GSRP NGT5-50462.

  6. Composition of LHB Comets and Their Influence on the Early Earth Atmosphere Composition

    NASA Technical Reports Server (NTRS)

    Tornow, C.; Kupper, S.; Ilgner, M.; Kuehrt, E.; Motschmann, U.

    2011-01-01

    Two main processes were responsible for the composition of this atmosphere: chemical evolution of the volatile fraction of the accretion material forming the planet and the delivery of gasses to the planetary surface by impactors during the late heavy bombardment (LHB). The amount and composition of the volatile fraction influences the outgassing of the Earth mantle during the last planetary formation period. A very weakened form of outgassing activity can still be observed today by examining the composition of volcanic gasses. An enlightenment of the second process is based on the sparse records of the LHB impactors resulting from the composition of meteorites, observed cometary comas, and the impact material found on the Moon. However, for an assessment of the influence of the outgassing on the one hand and the LHB event on the other, one has to supplement the observations with numerical simulations of the formation of volatiles and their incorporation into the accretion material which is the precursors of planetary matter, comets and asteroids. These simulations are performed with a combined hydrodynamic-chemical model of the solar nebula (SN). We calculate the chemical composition of the gas and dust phase of the SN. From these data, we draw conclusions on the upper limits of the water content and the amount of carbon and nitrogen rich volatiles incorporated later into the accretion material. Knowing these limits we determine the portion of major gas compounds delivered during the LHB and compare it with the related quantities of the outgassed species.

  7. Surface Composition of Mars: Results from a New Atmospheric Compensation Technique Applied to TES

    NASA Technical Reports Server (NTRS)

    Kirkland, L. E.; Herr, K. C.; Ward, J.; Keim, E. R.; Hackwell, J. H.; McAfee, J. M.

    2002-01-01

    Before TES (Thermal Emission Spectrometry) spectra can be used to model surface compositions, they must have a strong atmospheric compensation applied. We explore a very different atmospheric retrieval process, and compare results and implications for the derived surface composition. Additional information is contained in the original extended abstract.

  8. Tracing the oxygen isotope composition of the upper Earth's atmosphere using cosmic spherules

    PubMed Central

    Pack, Andreas; Höweling, Andres; Hezel, Dominik C.; Stefanak, Maren T.; Beck, Anne-Katrin; Peters, Stefan T. M.; Sengupta, Sukanya; Herwartz, Daniel; Folco, Luigi

    2017-01-01

    Molten I-type cosmic spherules formed by heating, oxidation and melting of extraterrestrial Fe,Ni metal alloys. The entire oxygen in these spherules sources from the atmosphere. Therefore, I-type cosmic spherules are suitable tracers for the isotopic composition of the upper atmosphere at altitudes between 80 and 115 km. Here we present data on I-type cosmic spherules collected in Antarctica. Their composition is compared with the composition of tropospheric O2. Our data suggest that the Earth's atmospheric O2 is isotopically homogenous up to the thermosphere. This makes fossil I-type micrometeorites ideal proxies for ancient atmospheric CO2 levels. PMID:28569769

  9. Tracing the oxygen isotope composition of the upper Earth's atmosphere using cosmic spherules

    NASA Astrophysics Data System (ADS)

    Pack, Andreas; Höweling, Andres; Hezel, Dominik C.; Stefanak, Maren T.; Beck, Anne-Katrin; Peters, Stefan T. M.; Sengupta, Sukanya; Herwartz, Daniel; Folco, Luigi

    2017-06-01

    Molten I-type cosmic spherules formed by heating, oxidation and melting of extraterrestrial Fe,Ni metal alloys. The entire oxygen in these spherules sources from the atmosphere. Therefore, I-type cosmic spherules are suitable tracers for the isotopic composition of the upper atmosphere at altitudes between 80 and 115 km. Here we present data on I-type cosmic spherules collected in Antarctica. Their composition is compared with the composition of tropospheric O2. Our data suggest that the Earth's atmospheric O2 is isotopically homogenous up to the thermosphere. This makes fossil I-type micrometeorites ideal proxies for ancient atmospheric CO2 levels.

  10. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    NASA Astrophysics Data System (ADS)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  11. Voyager infrared observations of Uranus' atmosphere - Thermal structure and dynamics

    NASA Astrophysics Data System (ADS)

    Flasar, F. M.; Conrath, B. J.; Pirraglia, J. A.; Gierasch, P. J.

    1987-12-01

    Temperatures in the Uranus atmosphere are derived from infrared spectrometer (IRIS) observations for a layer between 60 and 200 mbar, which includes the tropopause, where the vertical profile of temperature has a minimum. The variation with latitude of these temperatures and the implied thermal winds are in the same sense as those previously reported at the lower altitude range. The authors discuss the implications of this for dynamical models of the atmospheric thermal and wind structure. Finally, they use a linear, zonally symmetric model with radiative damping and frictional drag to estimate the magnitude of the frictional damping that is needed to account for the tropopause temperatures derived from IRIS observations and the zonal winds inferred from Voyager imaging data.

  12. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    EPA Science Inventory

    The international scientific community's Integrated Global Atmosphere Chemistry Observation System report outlined a plan for ground-based, airborne and satellite Measurements, and models to integrate the observations into a 4-dimensional representation of the atmosphere (space a...

  13. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    EPA Science Inventory

    The international scientific community's Integrated Global Atmosphere Chemistry Observation System report outlined a plan for ground-based, airborne and satellite Measurements, and models to integrate the observations into a 4-dimensional representation of the atmosphere (space a...

  14. Wave Dynamical Coupling of Atmospheres During Sudden Stratospheric Warming Events

    NASA Astrophysics Data System (ADS)

    Laskar, F. I.; Duggirala, P. R.

    2015-12-01

    The electrodynamic and neutral dynamic behavior of the low-latitude upper atmosphere during sudden stratospheric warming (SSW) events has been investigated. The equatorial electrojet (EEJ) strength and the total electron content (TEC) data from low latitudes, over Indian longitudes, during the mid-winter season in the years 2005 to 2013 are used in this study. Five major and three minor SSW events occurred in the observation duration, wherein the solar activity had varied from minimum (almost no sunspots) to mini-maximum (approximately 50 sunspots of the solar cycle 24). Spectral powers of the quasi-16-day waves in the EEJ and the TEC have been found to be dominant and varying with solar activity and SSW strengths. Specifically, the spectral powers of quasi-16-day type variations during the three dramatic strong SSW events in the years 2006, 2009, and 2013 were found to be very high in comparison with those of other years. For these major events, the amplitudes of the semi-diurnal tides and quasi-16-day waves were found to be highly correlated and were maximum around the peak of SSW, suggesting a strong interaction between the two waves. However, this correlation was poor and the quasi-16-day spectral power was low for the minor events. A strong vertical coupling of atmospheres was noted in spite of the solar activity being relatively higher during 2013, which was, however, explained to be due to the occurrence of a strong SSW event. These results suggest that the wave dynamical vertical coupling of atmospheres is stronger during strong major SSW events and weaker during minor events. Also, SSW events play an important role in enabling the upward coupling of atmospheres even during high solar activity.

  15. LWS FST: Determine and Quantify the Responses of Atmospheric/Ionospheric Composition and Temperature to Solar XUV Spectral Variability

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.; Fuller-Rowell, T. J.; Qian, L.; Richards, P. G.; Ridley, A. J.

    2010-12-01

    We present a summary of the research plans and preliminary results of our 2009 Living With a Star Focus Science Team. Focus Area Description: With the recent availability of comprehensive solar spectral measurements at X-ray and ultraviolet (XUV) wavelengths, together with upper atmospheric chemistry and transport models, quantification of the full range of solar effects on chemically active minor constituents and ion composition in the ionospherethermosphere- mesosphere (I-T-M) system is now possible. Additional solar-driven variation is caused by the energetic particle environment, ranging from auroral fluxes to galactic cosmic rays. These sources have important influences on the chemistry, energetics, and dynamics of the lower thermosphere and ionosphere (e.g., on nitric oxide and ozone) via direct energy deposition and modulation of ion-neutral frictional heating. Observations of neutral composition and temperature for different phases of the solar cycle and for sporadic events are available through NASA missions like the Upper Atmosphere Research Satellite (UARS) and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission (TIMED), as well as from other space- and groundbased instruments. Observations of ionospheric electron density are available through a variety of sources. In view of these advances, models of atmospheric/ionospheric composition and energetics that fully exploit the available estimates of external energetic inputs can now be developed to more accurately quantify solar effects in the middle and upper atmosphere. We seek to determine how well our understanding of atmospheric/ionospheric processes, as incorporated in state-of-the-art models, is able to explain observed compositional and temperature effects in the middle and upper atmosphere caused by external energetic inputs, in order to be able to predict these effects under both normal and extreme conditions.

  16. Study of the dynamics of meteoroids through the Earth's atmosphere and retrieval of meteorites

    NASA Astrophysics Data System (ADS)

    Guadalupe Cordero Tercero, Maria; Farah-Simon, Alejandro; Velázquez-Villegas, Fernando

    2016-07-01

    When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each and every one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors (shooting stars) are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c ) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f ) recover and study meteorites. During this meeting, the academic

  17. The Atmosphere.

    ERIC Educational Resources Information Center

    Ingersoll, Andrew P.

    1983-01-01

    The composition and dynamics of the earth's atmosphere are discussed, considering the atmosphere's role in distributing the energy of solar radiation received by the earth. Models of this activity which help to explain climates of the past and predict those of the future are also considered. (JN)

  18. Satellite-Borne Measurements of Middle-Atmosphere Composition

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; McCormick, M. P.

    1987-11-01

    A number of satellite experiments have been launched in recent years with the goal of providing fundamental data needed for analysis of photochemistry, radiation, dynamics, and transport processes. Collectively, these experiments have accumulated information on the vertical and horizontal distributions of a host of minor constituents in the middle atmosphere. The combined satellite data set includes new global measurements of O3, NO2, N2O, HNO3, CH4, H2O, and aerosols, and more-limited data on CO, N2O5, ClONO2, HNO4, COF2, and CH3Cl. These data have provided descriptions of (1) the geographic extent and year-to-year change in the recently discovered Antarctic ozone hole; (2) interannual variability in N2O and CH4; (3) the winter high latitude NO2 `cliff'; (4) exchange of NO2 from the mesosphere to the stratosphere during polar night; (5) a lower limit total odd nitrogen distribution that displays a maximum that exceeds model calculated values; (6) variations in the newly discovered polar stratospheric clouds (PSCS) seen in the north and south polar regions; and (7) details of latitudinal and temporal aerosol variability. The existing satellite data set is deficient in certain key measurements including OH, HO2, H2O2, polar night N2O5, radiatively important aerosol properties, and simultaneous measurements of aerosols and gases involved in heterogeneous processes.

  19. ATMOSPHERIC DYNAMICS OF BROWN DWARFS AND DIRECTLY IMAGED GIANT PLANETS

    SciTech Connect

    Showman, Adam P.; Kaspi, Yohai

    2013-10-20

    A variety of observations provide evidence for vigorous motion in the atmospheres of brown dwarfs and directly imaged giant planets. Motivated by these observations, we examine the dynamical regime of the circulation in the atmospheres and interiors of these objects. Brown dwarfs rotate rapidly, and for plausible wind speeds, the flow at large scales will be rotationally dominated. We present three-dimensional, global, numerical simulations of convection in the interior, which demonstrate that at large scales, the convection aligns in the direction parallel to the rotation axis. Convection occurs more efficiently at high latitudes than low latitudes, leading to systematic equator-to-pole temperature differences that may reach ∼1 K near the top of the convection zone. The interaction of convection with the overlying, stably stratified atmosphere will generate a wealth of atmospheric waves, and we argue that, as in the stratospheres of planets in the solar system, the interaction of these waves with the mean flow will cause a significant atmospheric circulation at regional to global scales. At large scales, this should consist of stratified turbulence (possibly organizing into coherent structures such as vortices and jets) and an accompanying overturning circulation. We present an approximate analytic theory of this circulation, which predicts characteristic horizontal temperature variations of several to ∼50 K, horizontal wind speeds of ∼10-300 m s{sup –1}, and vertical velocities that advect air over a scale height in ∼10{sup 5}-10{sup 6} s. This vertical mixing may help to explain the chemical disequilibrium observed on some brown dwarfs. Moreover, the implied large-scale organization of temperature perturbations and vertical velocities suggests that near the L/T transition, patchy clouds can form near the photosphere, helping to explain recent observations of brown-dwarf variability in the near-IR.

  20. Dynamical vegetation-atmosphere modelling of the boreal zone

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Stordal, Frode; Berntsen, Terje K.; Bryn, Anders

    2016-04-01

    Vegetation interacts with climate on seasonal to inter-annual time scales through albedo, roughness, evapotranspiration, CO2 sequestration and by influencing snow accumulation and ablation. The Scandinavian mountains and high latitudes is a hot spot for land-atmosphere feedback, as the future's increased winter minimum temperature supports a boreal tree line advance, lowering the surface albedo. The northern ecosystem is dominated by mires, boreal forests and alpine heaths, in addition to agricultural land. Model studies have shown that vegetation-climate feedbacks are strong enough to lead to regime shifts in vegetation and local climate in boreal regions. Biogeophysical factors, such as albedo, the Bowen ratio, and surface roughness, are all involved in these feedbacks, and they are also altered by land use change such as reforestation. For calculations of the dynamical coupling between the atmosphere and the vegetation we have used the Earth System Model NorESM, which includes several advanced features in its land surface model (CLM4.5), such as the inclusion of the radiative forcing due to black carbon and dust deposit onto snow, improved representation of fire, permafrost and its hydrological impact, a new snow cover fraction parameterization reflecting the hysteresis in fractional snow cover for a given snow depth between accumulation and melt phases, as well as dynamic vegetation coupled with carbon-nitrogen cycles. These new features improve the representation of surface albedo feedback in Arctic. We have performed experiments with coupled as well fixed ocean for the current as a quadrupled atmospheric CO2 situation. This model configuration is used to study changes in vegetation in a high end radiative forcing case. It is contrasted with an experiment where vegetation dynamics is neglected. Changes in the features of the vegetation along with surface fluxes, albedo and atmospheric temperatures are analysed, with main emphasis on the boreal zone. In

  1. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    NASA Astrophysics Data System (ADS)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  2. An unstructured-mesh atmospheric model for nonhydrostatic dynamics

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna; Wyszogrodzki, Andrzej A.

    2013-12-01

    A three-dimensional semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic anelastic equations, suitable for simulation of small-to-mesoscale atmospheric flows. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and admitting unstructured meshes with arbitrarily shaped cells. The numerical advancements are evaluated with canonical simulations of convective planetary boundary layer and strongly (stably) stratified orographic flows, epitomizing diverse aspects of highly nonlinear nonhydrostatic dynamics. The unstructured-mesh solutions are compared to equivalent results generated with an established structured-grid model and observation.

  3. Composition of early planetary atmospheres - I. Connecting disc astrochemistry to the formation of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Cridland, A. J.; Pudritz, R. E.; Alessi, M.

    2016-09-01

    We present a model of the early chemical composition and elemental abundances of planetary atmospheres based on the cumulative gaseous chemical species that are accreted on to planets forming by core accretion from evolving protoplanetary discs. The astrochemistry of the host disc is computed using an ionization-driven, non-equilibrium chemistry network within viscously evolving disc models. We accrete gas giant planets whose orbital evolution is controlled by planet traps using the standard core accretion model and track the chemical composition of the material that is accreted on to the protoplanet. We choose a fiducial disc model and evolve planets in three traps - water ice line, dead zone and heat transition. For a disc with a lifetime of 4.1 Myr, we produce two hot Jupiters (M = 1.43, 2.67 MJupiter, r = 0.15, 0.11 au) in the heat transition and ice line trap and one failed core (M = 0.003 MJupiter, r = 3.7 au) in the dead zone. These planets are found with mixing ratios for CO and H2O of 1.99 × 10-4 and 5.0 × 10-4, respectively, for both hot Jupiters. Additionally, for these planets we find CO2 and CH4, with mixing ratios of 1.8 × 10-6 → 9.8 × 10-10 and 1.1 × 10-8 → 2.3 × 10-10, respectively. These ranges correspond well with the mixing ratio ranges that have been inferred through the detection of emission spectra from hot Jupiters by multiple authors. We compute a carbon-to-oxygen ratio of 0.227 for the ice line planet and 0.279 for the heat transition planet. These planets accreted their gas inside the ice line, hence the sub-solar C/O.

  4. Wake Dynamics in the Atmospheric Boundary Layer Over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.

    The goal of this research is to advance our understanding of atmospheric boundary layer processes over heterogeneous landscapes and complex terrain. The atmospheric boundary layer (ABL) is a relatively thin (˜ 1 km) turbulent layer of air near the earth's surface, in which most human activities and engineered systems are concentrated. Its dynamics are crucially important for biosphere-atmosphere couplings and for global atmospheric dynamics, with significant implications on our ability to predict and mitigate adverse impacts of land use and climate change. In models of the ABL, land surface heterogeneity is typically represented, in the context of Monin-Obukhov similarity theory, as changes in aerodynamic roughness length and surface heat and moisture fluxes. However, many real landscapes are more complex, often leading to massive boundary layer separation and wake turbulence, for which standard models fail. Trees, building clusters, and steep topography produce extensive wake regions currently not accounted for in models of the ABL. Wind turbines and wind farms also generate wakes that combine in complex ways to modify the ABL. Wind farms are covering an increasingly significant area of the globe and the effects of large wind farms must be included in regional and global scale models. Research presented in this thesis demonstrates that wakes caused by landscape heterogeneity must be included in flux parameterizations for momentum, heat, and mass (water vapor and trace gases, e.g. CO2 and CH4) in ABL simulation and prediction models in order to accurately represent land-atmosphere interactions. Accurate representation of these processes is crucial for the predictions of weather, air quality, lake processes, and ecosystems response to climate change. Objectives of the research reported in this thesis are: 1) to investigate turbulent boundary layer adjustment, turbulent transport and scalar flux in wind farms of varying configurations and develop an improved

  5. Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan

    NASA Technical Reports Server (NTRS)

    Teanby, Nicholas A.; Irwin, Patrick Gerard Joseph; Nixon, Conor A.; DeKok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B.; Flasar, Michael F.

    2012-01-01

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  6. Active upper-atmosphere chemistry and dynamics from polar circulation reversal on Titan.

    PubMed

    Teanby, Nicholas A; Irwin, Patrick G J; Nixon, Conor A; de Kok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B; Flasar, F Michael

    2012-11-29

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the co-location of peak haze production and the limit of dynamical transport by the circulation's upper branch. Here we report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  7. The Atmospheric Transmission and Surface Composition of Titan

    NASA Astrophysics Data System (ADS)

    Clark, Roger N.; Pearson, N.; Brown, R. H.; Cruikshank, D. P.; Barnes, J.; Jaumann, R.; Soderblom, L.; Griffith, C.; Rannou, P.; Rodriguez, S.; Le Mouelic, S.; Lunine, J.; Sotin, C.; Baines, K. H.; Buratti, B. J.; Nicholson, P. D.; Nelson, R. M.; Stephan, K.

    2013-10-01

    Recent advances in radiative transfer models, measurements of Titan's atmosphere from solar occultations, and specular reflections off of lakes, have improved our understanding of the atmospheric transmission and scattering in the spectral windows where the surface can be detected by VIMS. Titan's surface, in the VIMS spectral range, is seen in only a few spectral windows near 0.94, 1.1, 1.3, 1.6, 2.0, 2.68-2.78, and 4.9-5.1 microns. The transmission of Titan's 2-micron window indicates that the surface is absorbing on the long wavelength side of the 2-micron window. This new knowledge, along with the spectral shapes of the 2.68-2.78-micron, and 5-micron windows provide powerful constraints on Titan's surface composition. Significant surficial water ice is incompatible with the observed 2-micron absorption and 2.78/2.68 micron I/F ratio but likely exists below the surface. Many organic compounds have absorptions that are not seen in spectral windows of Titan, eliminating them as possible major components at the surface. We find that some ring compounds and compounds with single N-H bonds have a close match to Titan's overall spectrum and can explain the relative intensities observed in the spectral windows, including the 2.68 and 2.78-micron double window, the low 3-5 micron reflectance, and increased absorption near 2.1-microns. Glycine is the only NH2 compound we have found that is also compatible. Some PAH compounds are compatible with the 2-micron window, but others can also be rejected due to incompatible absorptions in other windows. Combinations of coronene (C24H12), phenanthrene (C14H12), pentacene (C22H14), indole (C8H7N), uracil (C4H4N2O2), and glycine (NH2CH2C00H) match the overall spectral structure of Titan spectra. Indole, cytosine, and uracil, have 1.5-micron bands that are similar to the feature observed in Huygens DISR spectra of Titan's surface. These compounds, if present, can also help explain the pyrolysis results from the Huygens probe.

  8. The atmospheres of the earth and the other planets: Origin, evolution and composition

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1988-01-01

    The current understanding of the composition, chemistry, and structure of the atmospheres of the other planets and the origin, early history, and evolution of the earth's atmosphere is reviewed. The information on the atmospheres of the other planets is based on the successful Mariner, Viking, Pioneer, and Voyager missions to these planets. The information on the origin, early history, and evolution of the atmosphere, which is somewhat speculative, is largely based on numerical studies with geochemical and photochemical models.

  9. Composition and dynamics of plasma in Saturn's magnetosphere.

    PubMed

    Young, D T; Berthelier, J-J; Blanc, M; Burch, J L; Bolton, S; Coates, A J; Crary, F J; Goldstein, R; Grande, M; Hill, T W; Johnson, R E; Baragiola, R A; Kelha, V; McComas, D J; Mursula, K; Sittler, E C; Svenes, K R; Szegö, K; Tanskanen, P; Thomsen, M F; Bakshi, S; Barraclough, B L; Bebesi, Z; Delapp, D; Dunlop, M W; Gosling, J T; Furman, J D; Gilbert, L K; Glenn, D; Holmlund, C; Illiano, J-M; Lewis, G R; Linder, D R; Maurice, S; McAndrews, H J; Narheim, B T; Pallier, E; Reisenfeld, D; Rymer, A M; Smith, H T; Tokar, R L; Vilppola, J; Zinsmeyer, C

    2005-02-25

    During Cassini's initial orbit, we observed a dynamic magnetosphere composed primarily of a complex mixture of water-derived atomic and molecular ions. We have identified four distinct regions characterized by differences in both bulk plasma properties and ion composition. Protons are the dominant species outside about 9 RS (where RS is the radial distance from the center of Saturn), whereas inside, the plasma consists primarily of a corotating comet-like mix of water-derived ions with approximately 3% N+. Over the A and B rings, we found an ionosphere in which O2+ and O+ are dominant, which suggests the possible existence of a layer of O2 gas similar to the atmospheres of Europa and Ganymede.

  10. Geostrophic dynamics at surfaces in the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Tulloch, Ross

    Observed dynamics near bounding upper surfaces in the atmosphere and ocean are interpreted in terms of quasi-geostrophic theory. The quasi-geostrophic equations consist of advection of linearized potential vorticity coupled with advection of temperature at the upper and lower bounding surfaces. We show that the standard vertical finite difference formulation of 3D quasi-geostrophic flow accurately represents the flow only down to a critical horizontal scale that decreases with vertical grid spacing. To overcome this constraint, we derive a surface-modal formulation which accurately and efficiently captures both the surface dynamics due to temperature anomalies on the upper and lower boundaries, and the interior dynamics due to potential vorticity anomalies, without the need for high vertical resolution. In the atmosphere, the horizontal wavenumber spectra of wind and temperature near the tropopause have a steep -3 slope at synoptic scales and a shallow -5/3 slope at mesoscales, with a smooth transition between the two regimes from 800km to 200km. We demonstrate that when the surface temperature anomalies are resolved, quasi-geostrophic flow driven by baroclinic instability exhibits such a transition near the tropopause. The horizontal scale of transition between -3 and -5/3 slopes depends on the relative magnitudes of the mean surface temperature gradient and the mean potential vorticity gradient. In the ocean, sea surface height anomalies measured by satellite altimetry exhibit shallower spectral slopes than quasi-geostrophic theory predicts, and faster than expected westward phase propagation of sea surface height in the midlatitudes. We argue that, in some regions, the shallow spectral slopes are due to surface quasi-geostrophic dynamics, and that the westward phase propagation in the midlatitudes is indicative of a transition from a linear Rossby wave regime in the tropics to a nonlinear turbulent regime in the midlatitudes.

  11. Neutral atmosphere composition from SOIR measurements on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Drummond, R.; Wilquet, V.; Vandaele, A. C.; Federova, A.; Belyaev, D.; Korablev, O.; Villard, E.; Montmessin, F.; Bertaux, J.-L.

    2009-04-01

    The SOIR instrument performs solar occultation measurements in the IR region (2.2 - 4.3 m) at a resolution of 0.12 cm-1, the highest on board Venus Express. It combines an echelle spectrometer and an AOTF (Acousto-Optical Tunable Filter) for the order selection [1,2]. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on vertical distribution of the gases. Measurements of HDO, H2O, HCl, HF, CO and CO2 vertical profiles have been routinely performed, as well as those of their isotopologues [3,4]. We will discuss the improvements introduced in the analysis algorithm of the SOIR spectra. This discussion will be illustrated by presenting new results of retrievals of minor constituents of the Venus mesosphere, in terms of vertical profiles and geographical distribution. CO2 is the major constituent of the Venus atmosphere and was therefore observed in many solar occultations, leading to a good geographical coverage, although limited by the geometry of the orbit. Depending on the abundance of the absorbing isotopologue and on the intensity of the band measured, we will show that the SOIR instrument is able to furnish CO2 vertical profiles ranging typically from 65 to 150 km, reaching in some conditions 185 km altitude. This information is important in the frame of compiling, in collaboration with other teams, a new Venus Atmosphere Model. 1. A. Mahieux, S. Berkenbosch, R. Clairquin, D. Fussen, N. Mateshvili, E. Neefs, D. Nevejans, B. Ristic, A. C. Vandaele, V. Wilquet, D. Belyaev, A. Fedorova, O. Korablev, E. Villard, F. Montmessin and J.-L. Bertaux, "In-Flight performance and calibration of SPICAV SOIR on board Venus Express", Applied Optics 47 (13), 2252-65 (2008). 2. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois and E. Villard, "Compact high

  12. Composition and chemistry of the Venusian atmosphere after Venus Express

    NASA Astrophysics Data System (ADS)

    Marcq, Emmanuel

    The ESA/Venus Express orbiter mission is expected to end before the end of this year (2014), and time has come to summarize its results and examine how they changed our view of this planet. Venus Express instruments (especially the spectrometers VIRTIS and SPICAV/SOIR) have been addressing numerous scientific issues since 2006, among which remote sensing of many minor species from the lower troposphere up to the mesosphere at various latitudes and local solar time, often evidencing spatial or temporal variability. In preparation of a new synthesis of our current knowledge about Venusian atmospheric chemistry and composition to be included in the Venus III book (expected to be published in 2015), we shall present an overview of the most significant updates in this domain. A non-exhaustive list of the sub-topics we would like to address is; (1) Lower tropospheric measurements: Venus Express has been able to study in detail most of the thermal infrared windows, yielding extensive night side measurements of some key minor species (CO, OCS, H_2O, HDO, SO_2) (2) Profiles at an unparalleled vertical resolution of many minor species in the lower mesosphere thanks to stellar and solar occultation techniques. (3) Spatial and temporal variability of minor species at various scales, the most striking example being SO_2 above cloud top. (4) New theoretical understanding and modeling of the interplay between the various chemical cycles (carbon, sulfur, halogens) and the condensed phase particulate matter from the clouds and hazes, based on the newest available observational constraints from Venus Express and ground-based telescopes.

  13. Deciphering Jupiter's atmospheric dynamics using the upcoming Juno gravity measurements

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Galanti, Eli

    2016-07-01

    This summer, the Juno spacecraft will arrive at Jupiter in course for close flybys of the planet, obtaining a high precision gravity spectrum of Jupiter. This data can be used to estimate the depth of Jupiter's observed cloud-level wind, and decipher the possible internal flows, that might be decoupled from the surface wind. In this talk, we discuss the Juno gravity experiment, and the possible outcomes with regard to the flows on Jupiter. We show several ways in which the gravity spectrum might be used to study the large scale flows: 1. measurements of the high order even harmonics which beyond J10 are dominated by the dynamics; 2. measurements of odd gravity harmonics which have no contribution from a static planet, and therefore are a pure signature of dynamics; 3. upper limits on the depth of the surface flow can be obtained by comparing low order even harmonics from dynamical models to the difference between the measured low order even harmonics and the largest possible values of a static planet; 4. direct latitudinally varying measurements of the gravity field exerted on the spacecraft. We will discuss how these methods may be applied given the expected sensitivities of the Juno gravity experiment. In addition, we present an inverse adjoint model, which allows given the gravity data, to infer the flows that produce it. This will allow, hopefully, to make significant progress in one of the longest-standing question in planetary atmospheric dynamics regarding the nature of the flows on the giant planets.

  14. The Upper Atmosphere Research Satellite In-Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.

    1997-01-01

    Upper Atmosphere Research Satellite flight data from the first 737 days after launch (September 1991) was used to investigate spacecraft disturbances and responses. The investigation included two in-flight dynamics experiments (approximately three orbits each). Orbital and configuration influences on spacecraft dynamic response were also examined. Orbital influences were due to temperature variation from crossing the Earth's terminator and variation of the solar incident energy as the orbit precessed. During the terminator crossing, the rapid ambient temperature change caused the spacecraft's two flexible appendages to experience thermal elastic bending (thermal snap). The resulting response was dependent upon the orientation of the solar array and the solar incident energy. Orbital influences were also caused by on-board and environmental disturbances and spacecraft configuration changes resulting in dynamic responses which were repeated each orbit. Configuration influences were due to solar array rotation changing spacecraft modal properties. The investigation quantified the spacecraft dynamic response produced by the solar array and high gain antenna harmonic drive disturbances. The solar array's harmonic drive output resonated two solar array modes. Friction in the solar array gear drive provided sufficient energy dissipation which prevented the solar panels from resonating catastrophically; however, the solar array vibration amplitude was excessively large. The resulting vibration had a latitude-specific pattern.

  15. The Cd isotope composition of atmospheric aerosols from the Tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bridgestock, Luke; Rehkämper, Mark; Flierdt, Tina; Murphy, Katy; Khondoker, Roulin; Baker, Alex R.; Chance, Rosie; Strekopytov, Stanislav; Humphreys-Williams, Emma; Achterberg, Eric P.

    2017-03-01

    Stable isotope compositions can potentially be used to trace atmospheric Cd inputs to the surface ocean and anthropogenic Cd emissions to the atmosphere. Both of these applications may provide valuable insights into the effects of anthropogenic activities on the cycling of Cd in the environment. However, a lack of constraints for the Cd isotope compositions of atmospheric aerosols is currently hindering such studies. Here we present stable Cd isotope data for aerosols collected over the Tropical Atlantic Ocean. The samples feature variable proportions of mineral dust-derived and anthropogenic Cd, yet exhibit similar isotope compositions, thus negating the distinction of these Cd sources by using isotopic signatures in this region. Isotopic variability between these two atmospheric Cd sources may be identified in other areas, and thus warrants further investigation. Regardless, these data provide important initial constraints on the isotope composition of atmospheric Cd inputs to the ocean.

  16. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  17. Dynamic Buckling of Composite Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Cheng, Sai-Wei; Wang, Xiao-Jun

    2016-05-01

    Considering the effect of stress wave, the dynamic buckling governing equations and boundary conditions of composite cylindrical shells under axial step load are derived based on the Hamilton principle. The expression of radial displacement function along the circumferential direction is assumed since the cylindrical shell is closed. The solutions of the governing equations are obtained by the state-space technique. The determinant of the coefficient matrix must be equal to zero if the linear equations have a non-trivial solution. The relationship between the critical load and length and the influences of boundary conditions, modes, etc. on critical load are obtained by programming with MATLAB software before and after the reflection of stress wave.

  18. Dynamic mechanical analysis of fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Reed, K. E.

    1979-01-01

    Dynamic mechanical and thermal properties were determined for unidirectional epoxy/glass composites at various fiber orientation angles. Resonant frequency and relative logarithmic decrement were measured as functions of temperature. In low angle and longitudinal specimens a transition was observed above the resin glass transition temperature which was manifested mechanically as an additional damping peak and thermally as a change in the coefficient of thermal expansion. The new transition was attributed to a heterogeneous resin matrix induced by the fiber. The temperature span of the glass-rubber relaxation was found to broaden with decreasing orientation angle, reflecting the growth of fiber contribution and exhibiting behavior similar to that of Young's modulus. The change in resonant frequency through the glass transition was greatest for samples of intermediate fiber angle, demonstrating behavior similar to that of the longitudinal shear modulus.

  19. Dynamical model for light composite fermions

    NASA Astrophysics Data System (ADS)

    Derman, Emanuel

    1981-04-01

    A simple dynamical model for the internal structure of the three light lepton and quark generations (νe,e,u,d), (νμ,μ,c,s), and (ντ,τ,t,b) is proposed. Each generation is constructed of only one fundamental massive generation F=(L∘,L-,U,D) with the same (SU3)c×SU2×U1 quantum numbers as the light generations, bound to a core of one or more massive Higgs bosons H, where H is the single physical Higgs boson necessary for spontaneous symmetry breaking in the standard model. For example, e-=[L-H], μ-=[L-HH], τ-=[L-HHH]. It is shown that the known binding force due to H exchange is attractive and strong enough to produce light bound states. Dynamical calculations for the bound-state composite fermions using the Bethe-Salpeter equation, together with some phenomenological imput, suggest MH~16 TeV and MF~100 GeV. It is likely that such bound states can have properties compatible with the up to now apparently elementary appearance of known fermions, for example, their Dirac magnetic moments and absence of intergeneration radiative decays (such as μ-->eδ). Phenomenological consequences and tests of the model are discussed.

  20. Dynamical model for light composite fermions

    SciTech Connect

    Derman, E.

    1981-04-01

    A simple dynamical model for the internal structure of the three light lepton and quark generations (..nu../sub e/,e,u,d), (..nu../sub ..mu../,..mu..,c,s), and (..nu../sub tau/,tau,t,b) is proposed. Each generation is constructed of only one fundamental massive generation F=(L-italic/sup 0/,L/sup -/,U,D) with the same (SU/sub 3/)/sub c/ x SU/sub 2/ x U/sub 1/ quantum numbers as the light generations, bound to a core of one or more massive Higgs bosons H, where H is the single physical Higgs boson necessary for spontaneous symmetry breaking in the standard model. For example, e/sup -/=L/sup -/H), ..mu../sup -/=L/sup -/HH), tau/sup -/=L/sup -/HHH). It is shown that the known binding force due to H exchange is attractive and strong enough to produce light bound states. Dynamical calculations for the bound-state composite fermions using the Bethe-Salpeter equation, together with some phenomenological imput, suggest M/sub H/approx.16 TeV and M/sub F/approx.100 GeV. It is likely that such bound states can have properties compatible with the up to now apparently elementary appearance of known fermions, for example, their Dirac magnetic moments and absence of intergeneration radiative decays (such as ..mu -->..e..gamma..). Phenomenological consequences and tests of the model are discussed.

  1. Composite model for DNA torsion dynamics.

    PubMed

    Cadoni, Mariano; De Leo, Roberto; Gaeta, Giuseppe

    2007-02-01

    DNA torsion dynamics is essential in the transcription process; a simple model for it, in reasonable agreement with experimental observations, has been proposed by Yakushevich (Y) and developed by several authors; in this, the nucleotides (the DNA subunits made of a sugar-phosphate group and the attached nitrogen base) are described by a single degree of freedom. In this paper we propose and investigate, both analytically and numerically, a "composite" version of the Y model, in which the sugar-phosphate group and the base are described by separate degrees of freedom. The model proposed here contains as a particular case the Y model and shares with it many features and results, but represents an improvement from both the conceptual and the phenomenological point of view. It provides a more realistic description of DNA and possibly a justification for the use of models which consider the DNA chain as uniform. It shows that the existence of solitons is a generic feature of the underlying nonlinear dynamics and is to a large extent independent of the detailed modeling of DNA. The model we consider supports solitonic solutions, qualitatively and quantitatively very similar to the Y solitons, in a fully realistic range of all the physical parameters characterizing the DNA.

  2. Dynamics of the atmospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Gierasch, Peter J.; Conrath, Barney J.

    1992-01-01

    Current knowledge about dynamics and the thermal structure of the outer planets is reviewed with the aim of identifying important measurements which should be made in the post-Voyager era. The existence of jets and cloud bands is the puzzle that underlies all others. The discussion focuses on the particular case of Jupiter because the documentation is the most complete. It is argued that the gross dynamical parameters of the outer planetary atmospheres are the keys to their behaviors, rather than the particular specifics of radiative forcing, cloud distributions, or thermodynamic transformations. Voyager data has shown that the jet systems decay with height in the region above the visible clouds. Therefore, the highest priority must be given to establishing dynamical parameters that characterize levels within and beneath the clouds. These require the determination of the deep structure of the jets, of the density stratification, and of the horizontal density contrasts. The deep regions are not easily accessible and these measurements present challenging opportunities. Indirect inferences about the controlling processes may sometimes be possible by observing waves and other activity in the more easily accessible stratosphere.

  3. The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    SciTech Connect

    Kataria, T.; Showman, A. P.; Fortney, J. J.; Marley, M. S.; Freedman, R. S.

    2014-04-20

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.

  4. Atmospheric dynamics Research InfraStructure in Europe: The ARISE Project

    NASA Astrophysics Data System (ADS)

    Blanc, E.; Bittner, M.; Hauchecorne, A.; Ceranna, L.; Charlton-Perez, A. J.; Ripepe, M.; Evers, L.; Kvaerna, T.; Lastovicka, J.; Eliasson, L.; Crosby, N. B.; Blanc-Benon, P.; Le Pichon, A.; Marchetti, E.; Pilger, C.; Keckhut, P.; Schmidt, C.; Lee, C.; Smets, P.

    2013-12-01

    ARISE proposes to design a new infrastructure that integrates different station networks in order to provide a new "3D" image of the atmospheric dynamics from the ground up to the mesosphere with unprecedented spatio-temporal resolution. These networks are: - the International infrasound network developed for the verification of the Comprehensive nuclear Test Ban Treaty (CTBT). This system is unique by its quality for infrasound and atmospheric wave observations, - the Network for the Detection of Atmospheric Composition Changes (NDACC) which uses Lidar to measure stratospheric dynamics, - the Network for the Detection of Mesopause Changes (NDMC), dedicated to airglow layer measurements in the mesosphere, and additional complementary stations and satellite data. The infrastructure extends across Europe and outlying regions, including polar and equatorial regions. The measurements will be used to improve the parameterization of gravity waves in the stratosphere to better resolve climate models. The project also concerns civil applications related to monitoring of natural hazards as volcanoes. The presentation will highlight the first results obtained in the frame of the project.

  5. Nonlinear dynamics of the atmospheric pollutants in Mexico City

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, Alejandro; Barrera-Ferrer, Amilcar; Angulo-Brown, Fernando

    2014-05-01

    The atmospheric pollution in the Metropolitan Zone of Mexico City (MZMC) is a serious problem with social, economical and political consequences, in virtue that it is the region which concentrates both the greatest country population and a great part of commercial and industrial activities. According to the World Health Organization, maximum permissible concentrations of atmospheric pollutants are exceeded frequently. In the MZMC, the environmental monitoring has been limited to criteria pollutants, named in this way due to when their levels are measured in the atmosphere, they indicate in a precise way the air quality. The Automatic Atmospheric Monitoring Network monitors and registers the values of pollutants concentration in air in the MZMC. Actually, it is integrated by approximately 35 automatic-equipped remote stations, which report an every-hour register. Local and global invariant quantities have been widely used to describe the fractal properties of diverse time series. In the study of certain time series, many times it is assumed that they are monofractal, which means that they can be described only with one fractal dimension. But this hypothesis is unrealistic because a lot of time series are heterogeneous and non stationary, so their scaling properties are not the same throughout time and therefore they may require more fractal dimensions for their description. Complexity of the atmospheric pollutants dynamics suggests us to analyze its time series of hourly concentration registers with the multifractal formalism. So, in this work, air concentration time series of MZMC criteria pollutants were studied with the proposed method. The chosen pollutants to perform this analysis are ozone, sulfur dioxide, carbon monoxide, nitrogen dioxide and PM10 (particles less than 10 micrometers). We found that pollutants air concentration time series are multifractal. When we calculate the degree of multifractality for each time series we know that while more

  6. Predictions of the Atmospheric Composition of GJ 1132b

    NASA Astrophysics Data System (ADS)

    Schaefer, Laura; Wordsworth, Robin D.; Berta-Thompson, Zachory; Sasselov, Dimitar

    2016-10-01

    GJ 1132b is a nearby Earth-sized exoplanet transiting an M dwarf, and is among the most highly characterizable small exoplanets currently known. In this paper, we study the interaction of a magma ocean with a water-rich atmosphere on GJ 1132b and determine that it must have begun with more than 5 wt% initial water in order to still retain a water-based atmosphere. We also determine the amount of O2 that can build up in the atmosphere as a result of hydrogen dissociation and loss. We find that the magma ocean absorbs at most ∼10% of the O2 produced, whereas more than 90% is lost to space through hydrodynamic drag. The most common outcome for GJ 1132b from our simulations is a tenuous atmosphere dominated by O2, though, for very large initial water abundances, atmospheres with several thousands of bars of O2 are possible. A substantial steam envelope would indicate either the existence of an earlier H2 envelope or low XUV flux over the system’s lifetime. A steam atmosphere would also imply the continued existence of a magma ocean on GJ 1132b. Further modeling is needed to study the evolution of CO2 or N2-rich atmospheres on GJ 1132b.

  7. The chemical composition and climatology of the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Henderson-Sellers, A.

    1983-01-01

    The earth's climate as it relates to the evolution of life is discussed.. Seven fundamental characteristics of the early evolutionary environment are examined, including a carbon dioxide and water vapor atmosphere, atmospheric mass between 500 and 1000 mb, a global hydrosphere, lowered solar luminosity, hospitable average global temperatures, a convectively active atmosphere, and trace gases. The influence of the early earth's extensive hydrosphere on the origin of life is considered. The warming of that hydrosphere due to radiative fluxes and the greenhouse effect is examined, and the nature of the feedback between clouds and climate is addressed.

  8. Southeast Pacific atmospheric composition and variability sampled along 20˚S during VOCALS-REx

    SciTech Connect

    Allen, G.; Kleinman, L.; Coe, H.; Clarke, A.; Bretherton, C.; Wood, R.; Abel, S. J.; Barrett, P.; Brown, P.; George, R.; Freitag, S.; McNaughton, C.; Howell, S.; Shank, L.; Kapustin, V.; Brekhovskikh, V.; Lee, Y.-N.; Springston, S.; Toniazzo, T.; Krejci, R.; Fochesatto, J.; Shaw, G.; Krecl, P.; Brooks, B.; McKeeking, G.; Bower, K. N.; Williams, P. I.; Crosier, J.; Crawford, I.; Connolly, P.; Covert, D.; Bandy, A. R.

    2011-01-10

    The VAMOS Ocean-Climate-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALS-REx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL) and Free Troposphere (FT) along the 20{sup o} S parallel between 70{sup o} W and 85{sup o} W. Significant zonal gradients in mean MBL sub-micron aerosol particle size and composition, carbon monoxide, ozone and sulphur dioxide were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients are observed to be associated with strong gradients in cloud droplet number. The FT is often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and long-range sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore - coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75{sup o} W was observed to be dominated by coastal emissions from sources to the west of the Andes

  9. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  10. The photochemistry and dynamics of a dusty cometary atmosphere

    NASA Technical Reports Server (NTRS)

    Marconi, M. L.; Mendis, D. A.

    1982-01-01

    The solving of a simultaneous set of differential equations representing conservation of number density, momentum, and energy together with solar radiation transfer in the streams which result in photolytic processes and the heating of the nucleus yields a self-consistent solution of the dynamical and thermal structure of an H2O-dominated two-phase dusty gas cometary atmosphere. Two models are considered for the transfer of solar radiation through the circumnuclear dust halo. The first considers only the direct extinction by the dust, and in the second the diffuse radiation field due to multiple scattering by the dust halo, which compensates for radiation removed by direct absorption when the optical depth is near unity, is approximated by neglecting the attenuation of radiation given off by the dust. It is shown that while dust attenuation has a strong effect on the H2O production rate, it also increases the electron density in the inner coma over the unattenuated case.

  11. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  12. Atmospheric structure and dynamics: the spatial and temporal domains

    NASA Astrophysics Data System (ADS)

    Harper, G. M.

    2013-05-01

    Multi-wavelength studies of M supergiants have revealed atmospheric structures with a large range of spatial and temporal scales. Focusing on Betelgeuse, these scales and their perplexing connections from the photosphere to the interstellar medium are reviewed. Of particular current interest is the dynamic origin of the ubiquitous and relatively dust-free mass loss. Is it multiple plumes of convection driven ejecta, episodic ejection of molecular reservoirs, or a more steady and uniform flow? With powerful new facilities such as the VLT and ALMA we may begin to understand the connections and answer such puzzles, but ultimately detailed studies of a sample of M supergiants will be needed to disentangle the physics from the stars' personalities.

  13. Mars' atmospheric argon: Tracer for understanding Martian atmospheric circulation and dynamics

    NASA Astrophysics Data System (ADS)

    Sprague, Ann L.; Boynton, William V.; Kerry, Kris E.; Janes, Daniel M.; Kelly, Nora J.; Crombie, M. Katherine; Melli, Steven M.; Murphy, James R.; Reedy, Robert C.; Metzger, Albert E.

    2007-01-01

    One and one half Mars years, from 8 June 2002 to 2 April 2005, of atmospheric argon (Ar) measurements are described and studied in the context of understanding how Ar, a minor constituent of the Martian atmosphere that does not condense at temperatures found on Mars, can be used to study Martian circulation and dynamics. The Ar data are from the gamma subsystem of the gamma ray spectrometer currently operating on the Mars Odyssey spacecraft in orbit around Mars. A comprehensive data analysis including γ ray production and attenuation by the atmosphere is presented. Four discoveries are discussed. (1) There is a factor of 6 enhancement of Ar measured over south polar latitudes (75°S to 90°S) for 2 consecutive Mars years occurring near the onset of southern winter. (2) There is no similar strong enhancement of Ar over north polar regions during northern winter. Part of this difference is explained by the global topographic dichotomy and the fact that the duration of northern autumn and winter is only ˜80% as long as that of southern autumn and winter. (3) Rapid seasonal fluctuations in Ar abundance from 60°S to 90°S may be evidence for wave activity at the perimeter of the southern seasonal polar cap. (4) The magnitude of the Ar enhancement over the south polar region lacks spatial coincidence with either the relatively dark "cryptic terrain" or the relatively bright albedo regions; however, a divergence in Ar abundance near Ls = 267.5° may be an expression of later CO2 sublimation in the bright terrain rather than in the cryptic region.

  14. Novel atmospheric plasma enhanced chitosan nanofiber/gauze composite wound dressings

    USDA-ARS?s Scientific Manuscript database

    Electrospun chitosan nanofibers were deposited onto atmospheric plasma treated cotton gauze to create a novel composite bandage with higher adhesion, better handling properties, enhanced bioactivity, and moisture management. Plasma treatment of the gauze substrate was performed to improve the durabi...

  15. Effect of modified atmosphere composition on the metabolism of glucose by Brochothrix thermosphacta.

    PubMed

    Pin, Carmen; García de Fernando, Gonzalo D; Ordóñez, Juan A

    2002-09-01

    The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO(2) percentages, glucose metabolism remained anaerobic under greater oxygen contents.

  16. Effect of Modified Atmosphere Composition on the Metabolism of Glucose by Brochothrix thermosphacta

    PubMed Central

    Pin, Carmen; García de Fernando, Gonzalo D.; Ordóñez, Juan A.

    2002-01-01

    The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO2 percentages, glucose metabolism remained anaerobic under greater oxygen contents. PMID:12200298

  17. Dynamics of magnetic bright points in the lower solar atmosphere

    NASA Astrophysics Data System (ADS)

    Jafarzadeh, Shahin

    2013-08-01

    In this thesis we have investigated the structure and dynamics of small-scale magnetic bright points (MBPs) in quiet, internetwork regions of the lower solar atmosphere. Such MBPs are associated with small-scale, intense (generally kG) magnetic elements. The internetwork (IN) areas cover the largest fraction of the solar surface and it has been argued that the IN may contain most of the existing unsigned magnetic flux on the surface at any given time. However, the distribution of the magnetic field's properties in the IN regions is still being debated. Thus, only recently has the presence of kG fields in the IN been confirmed of which the studied MBPs are thought to be manifestations. In addition, interaction between intense magnetic features and convective flows on the solar surface (in particular in IN areas) have been proposed to excite waves which can carry energy to the upper solar atmosphere. The properties of these waves and their contribution to the heating of the upper solar atmosphere is still unclear. Moreover, the migration of the small magnetic elements owing to the convective flows/turbulence is not known (due to, e.g., lack of high spatial and temporal resolution observations not affected by seeing). We used high spatial and temporal resolution observations, obtained by the Sunrise balloon-borne solar observatory, to address the above issues. We concentrate on the study of the smallest MBPs visible in the data; whose apparent lack of internal fine-structure facilitates their precise location and tracking in time-series of images. The analyses were performed using an algorithm we developed to identify, locate and track the MBPs as well as to determine their physical properties at any given time. These findings have implications for, e.g., our understanding of the heating mechanisms in the higher layers of the solar atmosphere, estimates of the solar magnetic flux as well as the structure of the convection flows (within a supergranule) advecting small

  18. Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.

    2016-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.

  19. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  20. A normal-mode approach to Jovian atmospheric dynamic

    NASA Technical Reports Server (NTRS)

    Achterberg, Richard K.; Ingersoll, Andrew P.

    1989-01-01

    A nonlinear, quasi-geostrophic, baroclinic model of Jovian atmospheric dynamics is proposed, in which vertical variations of velocity are represented by a truncated sum over a complete set of orthogonal functions obtained by a separation of variables of the linearized quasi-geostrophic potential vorticity equation. A set of equations for the time variation of the mode amplitudes in the nonlinear case is then derived. It is shown that, for a planet with a neutrally stable, fluid interior instead of a solid lower boundary, the barotropic mode represents motions in the interior, and is not affected by the baroclinic modes. One consequence of this is that a normal-mode model with one baroclinic mode is dynamically equivalent to a one-layer model with solid lower topography. It is also shown that, for motions in Jupiter's cloudy lower troposphere, the stratosphere behaves nearly as a rigid lid, so that the normal-mode is applicable to Jupiter. The accuracy of the normal-mode model for Jupiter is tested using the following simple problems: (1) forced, vertically propagating Rossby waves, using two and three baroclinic modes, and (2) baroclinic instability, using two baroclinic modes. It is found that the normal-mode model provides qualitatively correct results, even with only a very limited number of vertical degrees of freedom.

  1. The atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1976-01-01

    Current information on the neutral atmosphere of Jupiter is reviewed, with approximately equal emphasis on composition and thermal structure on one hand, and markings and dynamics on the other. Studies based on Pioneer 10 and 11 data are used to refine the atmospheric model. Data on the interior are reviewed for the information they provide on the deep atmosphere. The markings and dynamics are discussed with emphasis on qualitative relationships and analogies with phenomena in earth's atmosphere.

  2. Dynamic Mechanical Properties of Natural Rubber/Polyaniline Composites

    NASA Astrophysics Data System (ADS)

    Najidha, S.; Predeep, P.; Saxena, N. S.

    2008-04-01

    The Dynamic Mechanical properties of polymer composite containing Natural Rubber (NR) as the matrix and polyaniline as filler has been studied. The composites were prepared by mechanical mixing in a roll mill and vulcanized in a hot press. The dynamic modulus such as tanδ, storage modulus and loss modulus of the composite were evaluated. The glass transition (Tg) temperature of the Natural Rubber phase in the composite was shifted to lower temperature indicating that the polyaniline content strongly affects the behavior of the composite. Addition of polyaniline lowered the crosslinking degree, but produced a reinforcing effect in the elastomer.

  3. Venus lower atmospheric composition - Analysis by gas chromatography

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.

    1979-01-01

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen (69.3 ppm), argon (18.6 ppm), neon (4.31 ppm), and sulfur dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the cloud tops to their bottoms, as implied by Earth-based observations and these results, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.

  4. Venus lower atmospheric composition - Analysis by gas chromatography

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.

    1979-01-01

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen (69.3 ppm), argon (18.6 ppm), neon (4.31 ppm), and sulfur dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the cloud tops to their bottoms, as implied by Earth-based observations and these results, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.

  5. Venus lower atmospheric composition - Preliminary results from Pioneer Venus

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.; Hodges, R. R., Jr.; Mcelroy, M. B.; Donahue, T. M.; Kolpin, M.

    1979-01-01

    Initial examination of data from the neutral mass spectrometer on the Pioneer Venus sounder probe indicates that the abundances of argon-36, argon-38, and neon-20 in the Venus atmosphere are much higher than those of the corresponding gases in Earth's atmosphere, although the abundance of radiogenic argon-40 is apparently similar for both planets. The lower atmosphere of Venus includes significant concentrations of various gaseous sulfur compounds. The inlet leak to the mass spectrometer was temporarily blocked by an apparently liquid component of the Venus clouds during passage through the dense cloud layer. Analysis of gases released during the evaporation of the droplets shows the presence of water vapor to some compound or compounds of sulfur.

  6. Venus lower atmospheric composition: preliminary results from pioneer venus.

    PubMed

    Hoffman, J H; Hodges, R R; McElroy, M B; Donahue, T M; Kolpin, M

    1979-02-23

    Initial examination of data from the neutral mass spectrometer on the Pioneer Venus sounder probe indicates that the abundances of argon-36, argon-38, and neon-20 in the Venus atmosphere are much higher than those of the corresponding gases in Earth's atmosphere, although the abundance of radiogenic argon-40 is apparently similar for both planets. The lower atmosphere of Venus includes significant concentrations of various gaseous sulfur compounds. The inlet leak to the mass spectrometer was temporarily blocked by an apparently liquid component of the Venus clouds during passage through the dense cloud layer. Analysis of gases released during the evaporation of the droplets shows the presence of water vapor to some compound or compounds of sulfur.

  7. Demographic drivers of functional composition dynamics.

    PubMed

    Muscarella, Robert; Lohbeck, Madelon; Martínez-Ramos, Miguel; Poorter, Lourens; Rodríguez-Velázquez, Jorge Enrique; van Breugel, Michiel; Bongers, Frans

    2017-08-20

    Mechanisms of community assembly and ecosystem function are often analyzed using community-weighted mean trait values (CWMs). We present a novel conceptual framework to quantify the contribution of demographic processes (i.e., growth, recruitment, and mortality) to temporal changes in CWMs. We used this framework to analyze mechanisms of secondary succession in wet tropical forests in Mexico. Seed size increased over time, reflecting a trade-off between colonization by small seeds early in succession, to establishment by large seeds later in succession. Specific leaf area (SLA) and leaf phosphorus content decreased over time, reflecting a trade-off between fast growth early in succession vs. high survival late in succession. On average, CWM shifts were driven mainly (70%) by growth of surviving trees that comprise the bulk of standing biomass, then mortality (25%), and weakly by recruitment (5%). Trait shifts of growing and recruiting trees mirrored the CWM trait shifts, and traits of dying trees did not change during succession, indicating that these traits are important for recruitment and growth, but not for mortality, during the first 30 yr of succession. Identifying the demographic drivers of functional composition change links population dynamics to community change, and enhances insights into mechanisms of succession. © 2017 by the Ecological Society of America.

  8. Dynamics of the middle atmosphere as observed by the ARISE project

    NASA Astrophysics Data System (ADS)

    Blanc, E.

    2015-12-01

    It has been strongly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate all the way to the Earth's surface. A key part of this coupling occurs through the propagation and breaking of planetary and gravity waves. However, limited observations prevent to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. The main challenge of the ARISE (Atmospheric dynamics InfraStructure in Europe) project is to combine existing national and international observation networks including: the International infrasound monitoring system developed for the CTBT (Comprehensive nuclear-Test-Ban Treaty) verification, the NDACC (Network for the Detection of Atmospheric Composition Changes) lidar network, European observation infrastructures at mid latitudes (OHP observatory), tropics (Maïdo observatory), high latitudes (ALOMAR and EISCAT), infrasound stations which form a dense European network and satellites. The ARISE network is unique by its coverage (polar to equatorial regions in the European longitude sector), its altitude range (from troposphere to mesosphere and ionosphere) and the involved scales both in time (from seconds to tens of years) and space (from tens of meters to thousands of kilometers). Advanced data products are produced with the scope to assimilate data in the Weather Prediction models to improve future forecasts over weeks and seasonal time scales. ARISE observations are especially relevant for the monitoring of extreme events such as thunderstorms, volcanoes, meteors and at larger scales, deep convection and stratospheric warming events for physical processes description and study of long term evolution with climate change. Among the applications, ARISE fosters integration of innovative methods for remote detection of non-instrumented volcanoes including distant eruption characterization to provide notifications with reliable confidence indices to the

  9. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications.

    PubMed

    DeLeon-Rodriguez, Natasha; Lathem, Terry L; Rodriguez-R, Luis M; Barazesh, James M; Anderson, Bruce E; Beyersdorf, Andreas J; Ziemba, Luke D; Bergin, Michael; Nenes, Athanasios; Konstantinidis, Konstantinos T

    2013-02-12

    The composition and prevalence of microorganisms in the middle-to-upper troposphere (8-15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. In particular, airborne microorganisms above the oceans remain essentially uncharacterized, as most work to date is restricted to samples taken near the Earth's surface. Here we report on the microbiome of low- and high-altitude air masses sampled onboard the National Aeronautics and Space Administration DC-8 platform during the 2010 Genesis and Rapid Intensification Processes campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25- to 1-μm diameter range and were at least an order of magnitude more abundant than fungal cells, suggesting that bacteria represent an important and underestimated fraction of micrometer-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to use C1-C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms possess traits that allow survival in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate.

  10. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications

    PubMed Central

    DeLeon-Rodriguez, Natasha; Lathem, Terry L.; Rodriguez-R, Luis M.; Barazesh, James M.; Anderson, Bruce E.; Beyersdorf, Andreas J.; Ziemba, Luke D.; Bergin, Michael; Nenes, Athanasios; Konstantinidis, Konstantinos T.

    2013-01-01

    The composition and prevalence of microorganisms in the middle-to-upper troposphere (8–15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. In particular, airborne microorganisms above the oceans remain essentially uncharacterized, as most work to date is restricted to samples taken near the Earth’s surface. Here we report on the microbiome of low- and high-altitude air masses sampled onboard the National Aeronautics and Space Administration DC-8 platform during the 2010 Genesis and Rapid Intensification Processes campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25- to 1-μm diameter range and were at least an order of magnitude more abundant than fungal cells, suggesting that bacteria represent an important and underestimated fraction of micrometer-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to use C1–C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms possess traits that allow survival in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate. PMID:23359712

  11. Using Enthalpy as a Prognostic Variable in Atmospheric Modelling with Variable Composition

    DTIC Science & Technology

    2016-04-14

    internal energy equation as a convenient prognostic thermodynamic variable for atmospheric modelling with variable composition, including models of...in the energy equation, resulting from composition variations along the air-parcel trajectories and routinely neglected in models. This note presents...formulation. Published in 2008 by John Wiley & Sons, Ltd. KEY WORDS entropy; internal energy equation; thermodynamic potentials; virtual temperature Received 6

  12. The Atmospheric Imaging Assembly on the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Title, Alan M.; AIA Team

    2006-06-01

    The Atmospheric Imaging Assembly (AIA) on SDO will provide revolutionary coverage of the entire visible solar hemisphere, observed from photospheric to coronal temperatures, at 1-arcsecond resolution, with a characteristic cadence of 10 seconds for each channel. The AIA comprises four dual normal-incidence telescopes that enable it to cycle through a set of EUV channels centered on strong emission lines of iron (ranging from Fe IX through XXIII) and helium (304A), plus two UV channels near 1600A and a broad band visible channel. Combined with the (vector-)magnetic imagery from SDO/HMI, the AIA observations will significantly further our understanding of the dynamics of the magnetic field in the solar atmosphere and heliosphere, both in quiescent and eruptive stages. The comprehensive thermal coverage of the corona will open new avenues of study for coronal energetics and seismology, which will benefit from the excellent calibration against the SDO/EVE spectral irradiance measurements. The AIA data will be easily accessible on the web, with a time delay that is expected to be of the order of 15 minutes to 1 hour. Users will be able to browse the data through summary web pages that are complemented by a comprehensive metadata catalog. Data analysis will be supported through the freely available SolarSoft libraries and through modules in a flexible, evolving pipeline data analysis system to be operated at the AIA-HMI Joint Science Operations Center. We plan to incorporate feature recognition software, automated movie making, coronal field modeling, and other supporting analysis software. We invite the broad ILWS community to contact us with ideas to collaborate on any aspect of the AIA Investigation. Details on the AIA instrument, the Science Investigation, and related news can be found at http://aia.lmsal.com.

  13. Vesicle dynamics during the atmospheric entry heating of cosmic spherules

    NASA Astrophysics Data System (ADS)

    Genge, M. J.

    2017-03-01

    Cosmic spherules are unique igneous objects that form by melting due to gas drag heating during atmospheric entry heating. Vesicles are an important component of many cosmic spherules since they suggest their precursors had finite volatile contents. Vesicle abundances in spherules decrease through the series porphyritic, glassy, barred, to cryptocrystalline spherules. Anomalous hollow spherules, with large off-center vesicles occur in both porphyritic and glassy spheres. Numerical simulation of the dynamic behavior of vesicles during atmospheric flight is presented that indicates vesicles rapidly migrate due to deceleration and separate from nonporphyritic particles. Modest rotation rates of tens of radians s-1 are, however, sufficient to impede loss of vesicles and may explain the presence of small solitary vesicles in barred, cryptocrystalline and glassy spherules. Rapid rotation at spin rates of several thousand radians s-1 are required to concentrate vesicles at the rotational axis and leads to rapid growth by coalescence and either separation or retention depending on the orientation of the rotational axis. Complex rapid rotations that concentrate vesicles in the core of particles are proposed as a mechanism for the formation of hollow spherules. High vesicle contents in porphyritic spherules suggest volatile-rich precursors; however, calculation of volatile retention indicates these have lost >99.9% of volatiles to degassing prior to melting. The formation of hollow spherules, by rapid spin, necessarily implies preatmospheric rotations of several thousand radians s-1. These particles are suggested to represent immature dust, recently released from parent bodies, in which rotations have not been slowed by magnetic damping.

  14. Topographic Influence and Atmospheric Dynamics in the Indian Wells Valley

    NASA Astrophysics Data System (ADS)

    Uher, Erich J.

    Indian Wells Valley (IWV) is home to the China Lake Naval Air Weapons Station (NAWS) whose operations necessitate regional forecasting and weather analysis relevant to aviation and plume release scenarios. In order to better understand the terrain influenced mesoscale circulations in the varied complex terrain of Indian Wells Valley surrounding Ridgecrest, four seasonal WRF simulations were analyzed using linear shallow water theory and nonlinear theory for flows over two-dimensional mountains. The goal is to better understand the relationships between atmospheric dynamical processes and the wind/thermal structure of the mesoscale at Indian Wells Valley. This will involve exploring relationships linking theoretical meteorology in complex terrain and advanced high resolution atmospheric modeling in this region. The WRF simulation results show several distinct circulations which rely on the interaction between complex terrain and the background weather conditions: 1) In calm synoptic conditions, diurnal processes guide the evolution of boundary layer stability and slope flows. 2) In periods of greatest seasonal surface heating (i.e. summer), the pressure gradient across the Sierra Nevada drives near surface westerlies across IWV. 3) In conditions with strong synoptic scale increase in stability and meridional winds across the Sierra Nevada, a downslope windstorm can develop in IWV. The downslope winds and compensatory gravity wave activity over IWV will conclude once there is a significant change in conditions aloft, or an increase in convective instability at the surface of IWV which prevents air aloft from sinking towards the surface. These results provide a better understanding of the mesoscale meteorology in this region and improve forecast and analysis for plume transport and aviation needs while also laying the groundwork for future projects managing environmental concerns in this region.

  15. Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites.

    PubMed

    White, Ashley A; Kinloch, Ian A; Windle, Alan H; Best, Serena M

    2010-10-06

    Hydroxyapatite-carbon nanotube (HA-CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the 'water-gas reaction') would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water-gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density.

  16. Dynamic oxygenation of the early atmosphere and oceans

    NASA Astrophysics Data System (ADS)

    Lyons, Timothy W.; Planavsky, Noah J.; Reinhard, Christopher T.

    2014-05-01

    The traditional view of the oxygenation of the early atmosphere and oceans depicts irreversibly rising abundances in two large steps: one at the Great Oxidation Event (GOE) ca. 2.3-2.4 billion years ago (Ga) and another near the end of the Neoproterozoic. This talk will explore how the latest data challenge this paradigm. Recent results reveal a far more dynamic history of early oxygenation, one with both rising and falling levels, long periods of sustained low concentrations even after the GOE, complex feedback relationships that likely coupled nutrients and ocean redox, and dramatic changes tied through still-emerging cause-and-effect relationships to first-order tectonic, climatic, and evolutionary events. In the face of increasing doubt about the robustness of organic biomarker records from the Archean, researchers are increasingly reliant on inorganic geochemical proxies for the earliest records of oxygenic photosynthesis. Proxy data now suggest oxygenesis at ca. 3.0 Ga with a likelihood of local oxygen build up in the surface ocean long before the GOE, as well as low (and perhaps transient) accumulation in the atmosphere against a backdrop of mostly less than ca. 0.001% of the present atmospheric concentration. By the GOE, the balance between oxygen sources and sinks shifted in favor of persistent accumulation, although sedimentary recycling of non-mass-dependent sulfur isotope signatures allows for the possibility of rising and falling atmospheric oxygen before the GOE as traditionally defined by the sulfur isotope record. Recycling may also hinder our ability to precisely date the transition to permanent oxygen accumulation beyond trace levels. Diverse data point to a dramatic increase in biospheric oxygen following the GOE, coincident with the largest positive carbon isotope excursion in Earth history, followed by an equally dramatic drop. This decline in Earth surface redox potential ushered in more than a billion years of dominantly low oxygen levels in

  17. Dynamic Response of Composite Structures Underwater

    DTIC Science & Technology

    2013-09-01

    6 B. COMPOSITE FABRICATION ...15 Figure 9. Strain Gages Fully Attached and Waterproofed ...Vacuum hose 7 • Spiral wrap • Resin trap • Vacuum Gage • Glass Foundation B. COMPOSITE FABRICATION 1. Plate Sample Procedure a. Step 1

  18. Effects of Chemical Abundances on the Structure and Dynamics of the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Demarque, Pierre; Basu, S.; Robinson, F.; Hunter, C.; Kallinger, T.

    2008-05-01

    This paper presents a comparison between two three-dimensional radiative hydrodynamical (3D RHD) simulations of the solar outer layers using the Grevesse & Sauval (1998; GS98) and the Asplund, Grevesse & Sauval (2005; AGS05) mixtures, respectively. The AGS05 mixture is a revision of the solar abundance mixture using a model atmosphere based on the stratification and dynamics of a solar 3D RHD simulation performed with the GS98 mixture, using the code of Stein & Nordlund (1989, 1998). Our simulations use the same code, and physically realistic treatment of radiative opacities and equation of state as Robinson et al. (2003). A comparison between our GS98 and AGS05 3D simulations shows differences both in the mean vertical temperature gradient and in the turbulent velocity field in the line forming region of the solar atmosphere. The whole superadiabatic layer (SAL) in the AGS05 simulation, including its peak, is shifted outward with respect to the GS98 SAL. Turbulent velocities, critical for absorption line profile calculations, are larger in the AGS05 simulation by about 10%. Since opacities for the AGS05 mixture are lower than those for the GS98 mixture, the T-τ relations derived from the two simulations are different. At 5000K, τ obtained from the GS98 simulation is about 30% larger than that obtained from the AGS05 simulation. These results show the importance of preserving self consistency in the chemical abundances between the model atmosphere and the 3D HRD simulation. When deriving the solar abundances, one must iterate the chemical composition in the model atmosphere, and hence in the 3D simulation on which the atmosphere is based. This research was supported in part by NASA/ATP grant NAG5-13299 (PD and FR) and NSF grant ATM 0348837 to SB.

  19. Atmospheric NO2 dynamics and impact on ocean color retrievals in urban nearshore regions

    NASA Astrophysics Data System (ADS)

    Tzortziou, Maria; Herman, Jay R.; Ahmad, Ziauddin; Loughner, Christopher P.; Abuhassan, Nader; Cede, Alexander

    2014-06-01

    Urban nearshore regions are characterized by strong variability in atmospheric composition, associated with anthropogenic emissions and meteorological processes that influence the circulation and accumulation of atmospheric pollutants at the land-water interface. If not adequately corrected in satellite retrievals of ocean color, this atmospheric variability can impose a false impression of diurnal and seasonal changes in nearshore water quality and biogeochemical processes. Consideration of these errors is important for measurements from polar orbiting ocean color sensors but becomes critical for geostationary satellite missions having the capability for higher frequency and higher spatial resolution observations of coastal ocean dynamics. We examined variability in atmospheric NO2 over urban nearshore environments in the Eastern US, Europe, and Korea, using a new network of ground-based Pandora spectrometers and Aura-OMI satellite observations. Our measurements in the US and in Europe revealed clear diurnal and day-of-the-week patterns in total column NO2 (TCNO2), temporal changes as large as 0.8 DU within 4 h, and spatial variability as large as 0.7 DU within an area often covered by just a single OMI pixel. TCNO2 gradients were considerably stronger over the coastal cities of Korea. With a coarse resolution and an overpass at around 13:30 local time, OMI cannot detect this strong variability in NO2, missing pollution peaks from industrial and rush hour activities. Observations were combined with air quality model simulations and radiative transfer calculations to estimate the impact of atmospheric NO2 variability on satellite retrievals of coastal ocean remote sensing reflectance and biogeochemical variables (i.e., chlorophyll and CDOM).

  20. Atmospheric-Pressure Processed Silver Nanowire (Ag-NW)/ZnO Composite Transparent Conducting Contacts

    SciTech Connect

    Perkins, John D.; Aggarwal, Shruti; van Hest, Maikel F. A. M.; Ginley, David S.

    2015-06-14

    Composite transparent contacts (TCs) based on metal nanowires and metal oxide matrix materials hold great promise for high performance transparent contacts for photovoltaics and opto-electronic technologies with the potential of all-atmospheric pressure processing. The metal nanowire mesh can provide both electrical conductivity and mechanical robustness against bending while the matrix material can both control the electrical interface and protect the metal nanowires. Here, we demonstrate all atmospheric pressure processed Ag-NW/ZnO composite TCs that are 90% transparent in the visible with sheet resistance Rs ~= 10 Ohms/sq. In addition, the composite TCs have higher infrared transmission than conventional TCO films with the same sheet resistance.

  1. Atmospheric composition as a potential taphonomic filter for the fossil leaf record

    NASA Astrophysics Data System (ADS)

    Bacon, Karen; Haworth, Matthew; McElwain, Jennifer

    2016-04-01

    Controlled environment chambers provide a unique opportunity to investigate plant responses to simulated palaeoatmospheric compositions that reflect previous periods of Earth history. One potentially important role of atmospheric composition that has not been considered in detail, is how it may affect plant preservation in the fossil record. Previous work has shown that plants, particularly angiosperms, have a tendency to increase leaf mass per area (LMA) when grown in above-ambient CO2. We tested the response of six nearest living equivalent taxa for Mesozoic floras to a range of simulated Mesozoic palaeoatmospheric treatments in controlled environment chambers. Exposure to high CO2 (~1,500 ppm) led to a statistically significant (p < 0.001) increase in LMA in four out of 6 species and exposure to high CO2 and low O2 (~13%) led to a statistically significant (p < 0.001) increase in LMA in all six species. These findings suggest that atmospheric composition has a highly significant impact on LMA. If this is also the case in fossil floras, then this suggests that atmospheric composition may influence leaf preservation potential in the fossil record. Based on these results, we put forward the hypothesis that atmospheric composition is an important taphonomic filter of the fossil leaf record. Further research is now required to test the significance of atmospheric composition versus other well-known taphonomic filters.

  2. Implications of isotopic compositions of N and Ne in the Martian atmosphere to temporal evolution of its atmosphere and regolith

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1992-01-01

    The isotopic compositions of N and Ne in the Martian atmosphere are governed by several factors, principal among which are the temporal evolution in (1) the absolute surface pressure of oxygen, (2) the physicochemical characteristics of the regolith, and finally (3) the N-15 enrichment expected due to preferential hydrodynamical escape of N-14 (due to solar wind bombardment). Each of these factors is unique to Mars. In fact, no other planet offers the uniquely favorable situations for N-15 and Ne-21 enrichments. The cosmogenic production of N-15 is, in particular, unique. It promises to provide very valuable constraints on the temporal evolution of the martian CO2 and H2O, both in the atmosphere and regolith. The rate of production of cosmogenic (spallation) N-15 is dependent on the surface pressure of oxygen, the principal target element for formation of N-15. In view of the relatively high O/N ratio in the martian atmosphere, relatively high N-15/N ratio are expected to arise from cosmogenic reactions. The added bonus comes from the fact that an appreciable production of N-15 is expected in the martian regolith because of its thin atmosphere. From model calculations it is shown that if accurate isotopic composition data become available for N and Ne, it should be possible to put robust constraints on the time averages martian oxygen surface pressure and subsurface water in the upper layers.

  3. Spatial and temporal variability of PM levels and composition in a complex summer atmospheric scenario in Barcelona (NE Spain)

    NASA Astrophysics Data System (ADS)

    Viana, M.; Pérez, C.; Querol, X.; Alastuey, A.; Nickovic, S.; Baldasano, J. M.

    Summer atmospheric coastal dynamics exert a significant influence on the levels and composition of atmospheric particulate matter (PM) in the North-Eastern Iberian Peninsula. Summer atmospheric scenarios in this region present a high degree of complexity as they are characterised by the absence of synoptic-scale air mass advections, the development of breeze circulations, enhanced photochemistry, local mineral dust re-suspension and the occurrence of African dust outbreaks. Three sampling sites were selected in Barcelona (NE Spain), an urban coastal site surrounded by complex topography. Regional dust modelling (DREAM) and high resolution meteorological modelling (MM5) were used to interpret PM levels and composition at the three sites. The results outline the effect of breeze dynamics and thermal internal boundary layer formation as the main meteorological drivers of the hourly evolution of PM levels. Levels of crustal components, secondary inorganic and carbon species are higher during the night, and only the marine aerosol content is higher during the day. Nitrate levels are higher during the night due to the thermal stability on NH 4NO 3. Sulphate levels are higher during the night as a consequence of the drainage flows. Lidar measurements and model results signalled the occurrence of two African dust episodes during the study period which mainly affected the free troposphere over Barcelona.

  4. Prediction of moisture and temperature changes in composites during atmospheric exposure

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Tenney, D. R.; Unnan, J.

    1978-01-01

    The effects of variations in diffusion coefficients, surface properties of the composite, panel tilt, ground reflection, and geographical location on the moisture concentration profiles and average moisture content of composite laminates were studied analytically. A heat balance which included heat input due to direct and sky diffuse solar radiation, ground reflection, and heat loss due to reradiation and convection was used to determine the temperature of composites during atmospheric exposure. The equilibrium moisture content was assumed proportional to the relative humidity of the air in the boundary layer of the composite. Condensation on the surface was neglected. Histograms of composite temperatures were determined and compared with those for the ambient environment.

  5. Martian atmospheric photochemistry and composition during periods of low obliquity

    NASA Astrophysics Data System (ADS)

    Lindner, B. L.; Jakosky, B. M.

    1985-04-01

    During periods of low obliquity, previous work has shown that martian CO2 partial pressures decreased to 0.1 mbar; CO2 partial pressure decreased to 0.02 mbar prior to the formation of the Tharsis bulge. The permanent polar caps act as a cold trap and projected global average water vapor abundances drop to possibly as low as 10-5 precipitable μm. As a result, the odd hydrogen catalytic cycle would not be effective at recombining CO and O back into CO2, and as much as 0.12 mbar of CO and 0.06 mbar of O2 could exist. These increased abundances would radically affect surface oxidation, change the lower atmospheric thermal structure, and completely alter the upper atmosphere.

  6. Martian atmospheric photochemistry and composition during periods of low obliquity

    NASA Technical Reports Server (NTRS)

    Lindner, B. L.; Jakosky, B. M.

    1985-01-01

    During periods of low obliquity, previous work has shown that martian CO2 partial pressures decreased to 0.1 mbar; CO2 partial pressures decreased to 0.02 mbar prior to the formation of the Tharsis bulge. The permanent polar caps act as a cold trap and projected global average water vapor abundances drop to possibly as low as 0.00001 precipitable micron. As a result, the odd hydrogen catalytic cycle would not be effective at recombining CO and O back into CO2, and as much as 0.12 mbar of CO and 0.06 mbar of O2 could exist. These increased abundances would radically affect surface oxidation, change the lower atmospheric thermal structure, and completely alter the upper atmosphere.

  7. Measurement of the atmospheric neutrino flavour composition in Soudan 2

    NASA Astrophysics Data System (ADS)

    Allison, W. W. M.; Alner, G. J.; Ayres, D. S.; Barrett, W. L.; Bode, C.; Border, P. M.; Brooks, C. B.; Cobb, J. H.; Cockerill, D. J. A.; Cotton, R. J.; Courant, H.; Demuth, D. M.; Fields, T. H.; Gallagher, H. R.; Garcia-Garcia, C.; Goodman, M. C.; Gray, R. N.; Johns, K.; Kafka, T.; Kasahara, S. M. S.; Leeson, W.; Litchfield, P. J.; Longley, N. P.; Lowe, M. J.; Mann, W. A.; Marshak, M. L.; May, E. N.; Milburn, R. H.; Miller, W. H.; Mualem, L.; Napier, A.; Oliver, W.; Pearce, G. F.; Perkins, D. H.; Peterson, E. A.; Petyt, D. A.; Price, L. E.; Roback, D. M.; Ruddick, K.; Schmid, D. J.; Schneps, J.; Schub, M. H.; Seidlein, R. V.; Shupe, M. A.; Stassinakis, A.; Sundaralingam, N.; Thomas, J.; Thron, J. L.; Vassiliev, V.; Villaume, G.; Wakely, S. P.; Wall, D.; Werkema, S. J.; West, N.; Wielgosz, U. M.

    1997-02-01

    The atmospheric neutrino flavour ratio measured using a 1.52 kton-year exposure of Soudan 2 is found to be 0.72 +/- 0.19+0.05-0.07 relative to the expected value from a Monte Carlo calculation. The possible background of interactions of neutrons and photons produced in muon interactions in the rock surrounding the detector has been investigated and is shown not to produce low values of the ratio.

  8. Charge dynamics in ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Porfiri, Maurizio

    2008-11-01

    In this paper, we study the charge dynamics in ionic polymer metal composites (IPMCs) in response to a voltage difference applied across their electrodes. We use the Poisson-Nernst-Planck equations to model the time evolution of the electric potential and the concentration of mobile counterions. We present an analytical solution of the nonlinear initial-boundary value problem by using matched asymptotic expansions. We determine the charge and electric potential distributions as functions of time in the whole IPMC region. We show that in the bulk polymer region the IPMC is approximately electroneutral; in contrast, charge distribution boundary layers arise at the polymer-electrode interfaces. Prominent charge depletion and enrichment at the polymer-electrode interface are present even at moderately low input-voltage levels. We use the proposed analytical solution to derive a physics-based circuit model of IPMCs. The equivalent circuit comprises a linear resistor in series connection with a nonlinear capacitor. We derive closed-form expressions for the resistance and the capacitance by conducting a qualitative phase-plane analysis of the inner approximation of the asymptotic expansion. The circuit conductivity is independent of the IPMC dielectric constant and is proportional to the ion diffusivity; whereas, the capacitance is proportional to the square root of the dielectric constant and is independent of the diffusivity. The conductivity depends on the polymer thickness, while the capacitance is independent of it. The capacitance nonlinearity is extremely pronounced, and dramatic capacitance reduction is observed for moderately low voltage levels. We validate the proposed analytical solution along with the derived circuit model through extensive comparisons with finite element results available in the technical literature.

  9. COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b

    SciTech Connect

    Moses, J. I.; Line, M. R.; Visscher, C.; Richardson, M. R.; Nettelmann, N.; Fortney, J. J.; Barman, T. S.; Stevenson, K. B.; Madhusudhan, N.

    2013-11-01

    Neptune-sized extrasolar planets that orbit relatively close to their host stars—often called {sup h}ot Neptunes{sup —}are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000 times solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H{sub 2}-dominated atmospheres to more Venus-like, CO{sub 2}-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find that the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H{sub 2}O, CO, CO{sub 2}, and even O{sub 2}-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH{sub 4}-poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible in terms of the relative abundance of major constituents. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes.

  10. An Indirect and Dynamically Induced Energy Mechanism in a Plasma-Neutral Atmosphere

    NASA Astrophysics Data System (ADS)

    Hsu, Vicki W.

    Plasma-neutral interactions play an integral role in governing the dynamics and energy of an upper atmosphere. In the Earth's ionosphere-thermosphere (I/T) region, these interactions can produce significant structure in neutral temperature, winds, mass density, and composition. External sources of momentum and energy that directly affect these properties of the upper atmosphere have been extensively investigated, but these investigations are not sufficient to fully describe thermosphere phenomenology. Considering the strong plasma-neutral coupling in the I/T region, an internal and indirect energy mechanism, or a feedback exchange between hydrodynamics and thermodynamics, can contribute to the resultant structure. The complex, indirect consequences of internal momentum changes on neutral gas properties have not been thoroughly assessed due to the multivariate nature of the problem and limited observations. Through the use of the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model, this thesis seeks to simulate, understand, and quantify how plasma-neutral interactions affect the energy distribution of the upper thermosphere via an indirect, dynamically induced mechanism, and to establish that this mechanism can explain the existence of thermospheric density features. The main conclusions that stem from this dissertation are as follows: (1) Changes in the field-aligned ion drag force alter neutral temperature and mass density by means of a divergent neutral wind field, commanding the formation, local time, and solar cycle variations of the equatorial thermosphere anomaly trough; (2) Ion and viscous drag forces produce balanced motion with sustained, divergent winds that change thermal and mass density structure through adiabatic heating; (3) A boundary that delineates the lower and upper thermosphere is recognized and deemed the "thermopause", and helium is demonstrated to be an effective dynamic tracer for a

  11. Dynamical characteristics of atmospheric aerosols over IG region

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Singh, Ramesh P.; Kumar, Rajesh

    2016-05-01

    The dynamical characteristics of atmospheric aerosols over the Indo-Gangetic (IG) region are primarily dependent on the geographical settings and meteorological conditions. Detailed analysis of multi satellite data and ground observations have been carried out over three different cities i.e. Kanpur, Greater Noida and Amritsar during 2010-2013. Level-3 Moderate Resolution Imaging Spectroradiometer (MODIS) terra daily global grid product with spatial resolution of 1° × 1° shows the mean AOD at 500 nm wavelength value of 0.73, 0.70 and 0.67 with the standard deviation of 0.43, 0.39 and 0.36 respectively over Amritsar, Greater Noida and Kanpur. Our detailed analysis shows characteristic behavior of aerosols from west to east in the IG region depending upon the proximity of desert regions of Arabia. We have observed large influx of dusts from the Thar desert and Arabia peninsula during pre-monsoon season (April-June), highly affecting Amritsar which is close to the desert region.

  12. A dynamical model of upper-atmospheric helium

    NASA Technical Reports Server (NTRS)

    Straus, J. M.; Creekmore, S. P.; Ching, B. K.

    1977-01-01

    This numerical study of the global distribution of helium in the terrestrial thermosphere is based on the extension of a three-dimensional single-fluid numerical model of the thermosphere previously developed by the authors to treat the dynamics of a minor gas imbedded in a background gas made up of N2, O2, and O. The Cira (1972) model of the upper atmosphere, based on satellite drag data, is used to specify the background gas density and temperature as functions of altitude, latitude, and local time for a given day of the year. Specific emphasis is placed on a study of the helium distribution at solstice, i.e., the 'winter helium bulge'. Effects of solar activity, eddy diffusion, and exospheric transport on the global distribution of helium are investigated. The model reproduces the general features of the winter helium bulge, including the variation of its amplitude with solar activity, as determined by comparison of data from several recent satellite-borne mass spectrometers.

  13. Dynamics and Predictability of Deep Propagating Atmospheric Gravity Waves

    NASA Astrophysics Data System (ADS)

    Doyle, J.; Fritts, D. C.; Smith, R.; Eckermann, S. D.

    2012-12-01

    An overview will be provided of the first field campaign that attempts to follow deeply propagating gravity waves (GWs) from their tropospheric sources to their mesospheric breakdown. The DEEP propagating gravity WAVE experiment over New Zealand (DEEPWAVE-NZ) is a comprehensive, airborne and ground-based measurement and modeling program focused on providing a new understanding of GW dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program will employ the new NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. The NGV will be equipped with new lidar and airglow instruments for the DEEPWAVE measurement program, providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand is chosen since all the relevant GW sources occur strongly here, and upper-level winds in austral winter permit GWs to propagate to very high altitudes. Given large-amplitude GWs that propagate routinely into the MLT, the New Zealand region offers an ideal natural laboratory for studying these important GW dynamics and effects impacting weather and climate over a much deeper atmospheric layer than previous campaigns have attempted (0-100 km altitude). The logistics of making measurements in the vicinity of New Zealand are potentially easier than from the Andes and Drake Passage region. A suite of GW-focused modeling and predictability tools will be used to guide NGV flight planning to GW events of greatest scientific significance. These models will also drive scientific interpretation of the GW measurements, together providing answers to the key science questions posed by DEEPWAVE about GW dynamics, morphology, predictability and impacts from 0-100 km. Preliminary results will be presented from high-resolution and adjoint models applied over areas featuring deep wave propagation. The high

  14. Observations and Modeling of Solar Flare Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-09-01

    Solar flares are one of the most energetic events in solar atmosphere, which last minutes to tens of minutes. The eruption of a solar flare involves energy release, plasma heating, particle acceleration, mass flows, waves, etc. A solar flare releases a large amount of energy, and its emission spans a wide wavelength range. Solar flares are usually accompanied by coronal mass ejections (CMEs); therefore they could significantly affect the space environments between the Earth and the Sun. At present, we do not fully understand the whole flare process. There are still many important questions to be resolved, such as when and where is the energy released? How long does the energy release last? What are the main ways of energy release? And how does the solar atmosphere respond to the energy release? To address these questions, we study in detail the flare heating and dynamic evolution. We first give a brief review of previous flare studies (Chapter 1), and introduce the observing instruments (Chapter 2) and the modeling method (Chapter 3) related to this thesis work. Then we use spectral data to investigate the chromospheric evaporation (Chapter 4). Based on the results, we further explore the flare heating problem. With observationally inferred heating functions, we model two flare loops, and compare the results with observations (Chapter 5). A consistency is achieved between modeling and observations. In addition, we model two different sets of flare loop systems with quite different heating profiles and dynamic evolutions (Chapter 6). The details are described as below. Firstly, we investigate the chromospheric evaporation in the flare on 2007 January 16 using line profiles observed by the Extreme-ultraviolet (EUV) Imaging Spectrometer (EIS) on board Hinode. Three points with different magnetic polarities at flare ribbons are analyzed in detail. We find that the three points show different patterns of upflows and downflows in the impulsive phase of the flare. The

  15. The carbon isotope composition of atmospheric CO 2 in Paris

    NASA Astrophysics Data System (ADS)

    Widory, David; Javoy, Marc

    2003-10-01

    One characteristic of air pollution in the urban environment is high CO 2 concentrations resulting from human activities. Determining the relative contributions of the different CO 2 sources can be addressed simply and elegantly by combining isotope and concentration measurements. Using this approach on atmospheric CO 2 samples collected in Paris, its suburbs and the open country provides fairly accurate conclusions. Our results show that air pollution within the first few metres above ground results basically from binary mixtures among which road traffic is the main contributor and, in particular, vehicles using unleaded gasoline (˜90% of the total). Heating sources, which account for 50% of the CO 2 input below the atmospheric inversion level, and vehicles using diesel contribute very little. Human respiration has a recognisable signature at street level under certain circumstances. The combined isotope and concentration analysis provides a sensitive tracer of local variations, even detecting the occasional prevalence of human respiration and the onset of actions in which natural gas is burnt. It also detects surprising inlets of 'clean air' (CO 2-wise) in the very centre of the city.

  16. Modeling and Recent Shift in the Composition of Atmospheric ...

    EPA Pesticide Factsheets

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human activity has perturbed this cycle through the combustion of fossil fuels and synthesis of fertilizers. In excess reactive nitrogen can lead to ozone and particulate matter formation in the atmosphere, biodiversity loss in terrestrial ecosystems and eutrophication in aquatic ecosystems. The anthropogenic contribution to this cycle is now larger than natural sources in the United States and globally. There is a need to improve the modeling of the cycling of reactive nitrogen in the environment to better understand how anthropogenic inputs are perturbing air quality and ecosystem health. Here we will present the parameterizations of the multimedia transport processes in the Community Multiscale Air Quality Model and the parameterization of agricultural practices, primarily through mineral fertilizer application to crops, the largest source of environmental reactive nitrogen. Here we will focus on modeling of the atmospheric and soil components of the nitrogen cascade, with an emphasis on ammonia, emerging measurement techniques, and the potential for model improvements using emerging measurements, existing networks and modeling. The U.S. EPA’s Community Mulitscale Air Quality (CMAQ) model

  17. Nonlinear Dynamic Properties of Layered Composite Materials

    SciTech Connect

    Andrianov, Igor V.; Topol, Heiko; Weichert, Dieter; Danishevs'kyy, Vladyslav V.

    2010-09-30

    We present an application of the asymptotic homogenization method to study wave propagation in a one-dimensional composite material consisting of a matrix material and coated inclusions. Physical nonlinearity is taken into account by considering the composite's components as a Murnaghan material, structural nonlinearity is caused by the bonding condition between the components.

  18. The dynamic atmospheres of red giant stars. Spectral synthesis in high resolution

    NASA Astrophysics Data System (ADS)

    Nowotny, W.

    2005-11-01

    Light is the only source of information we have to study distant stars. Our knowledge about the state of the matter inside stars has been gathered by analysing star light (photometry, spectroscopy, interferometry, polarimetry, etc.). Of central importance in this context are stellar atmospheres, which are the transition regions from the optically thick stellar interiors where the electromagnetic radiation is generated to the optically thin outer layers from where the photons can leave the star. However, the atmosphere of a star is not only the region where most of the observable radiation is emitted or in other words the layers which are "visible from outside". The atmosphere also leaves an imprint on the stellar spectrum as the radiation passes through, most of the line spectrum is formed there. Thus, the light serves as a probe for the physical processes within stellar atmospheres, especially spectroscopy is one of the major tools in stellar astrophysics. Applying the underlying physical principles in numerical simulations (model atmospheres, synthetic spectra) is the second -- complementary and necessary -- step towards a deeper understanding of stellar atmospheres and for deriving stellar parameters (e.g. T_eff, L, log g, chemical composition) of observed objects. This thesis is dedicated to the outer layers of Asymptotic Giant Branch (AGB) stars, which have rather remarkable properties compared to atmospheres of most other types of stars. AGB stars represent low- to intermediate mass stars at a late stage of their evolution. Forming a sub-group among all red giants, they exhibit large extensions, low effective temperatures and high luminosities. The evolutionary phase of the AGB -- complex but decisive for stellar evolution -- is characterised by several important phenomena as for example nucleo-synthesis in explosively burning shells (thermal pulses), convective processes (dredge up), large-amplitude pulsations with long periods or a pronounced mass loss. Red

  19. Satellite Remote Sensing Atmospheric Compositions and their Application in Air Quality Monitoring in China

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Zhang, X. Y.; Bai, W. G.; Wang, W. H.; Huang, F. X.; Li, X. J.; Sun, L.; Wang, G.; Qi, J.; Qiu, H.; Zhang, Y.; van der A, R. J.; Mijling, B.

    2013-01-01

    This paper summarizes the achievements related to atmospheric compositions remote sensing from the bilateral cooperation under the framework of MOST-ESA Dragon Programme. The algorithms to retrieve Aerosol, ozone amount and profile, NO2, SO2, CH4, CO2, etc. have been developed since 2004. Such algorithms are used to process FY-3 series (Chinese second generation polar orbit satellites) observation and ground based FTIR observation. The results are validated with in-situ measurements. Aerosol, total ozone amount shows the very good consistent with the ground measurements. The temporal and spatial characteristics of the important atmospheric compositions, such as aerosol, O3, NO2, SO2, CH4, CO etc., have been analysed from satellite derived products. These works demonstrate the satellite’s capacity on atmospheric composition monitoring, as well as the possible application in the air quality monitoring and climate change research.

  20. Radiolytic Model for Chemical Composition of Europa's Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2004-01-01

    The overall objective of the present effort is to produce models for major and selected minor components of Europa s neutral atmosphere in 1-D versus altitude and in 2-D versus altitude and longitude or latitude. A 3-D model versus all three coordinates (alt, long, lat) will be studied but development on this is at present limited by computing facilities available to the investigation team. In this first year we have focused on 1-D modeling with Co-I Valery Shematovich s Direct Simulation Monte Carlo (DSMC) code for water group species (H2O, O2, O, OH) and on 2-D with Co-I Mau Wong's version of a similar code for O2, O, CO, CO2, and Na. Surface source rates of H2O and O2 from sputtering and radiolysis are used in the 1-D model, while observations for CO2 at the Europa surface and Na detected in a neutral cloud ejected from Europa are used, along with the O2 sputtering rate, to constrain source rates in the 2-D version. With these separate approaches we are investigating a range of processes important to eventual implementation of a comprehensive 3-D atmospheric model which could be used to understand present observations and develop science requirements for future observations, e.g. from Earth and in Europa orbit. Within the second year we expect to merge the full water group calculations into the 2-D version of the DSMC code which can then be extended to 3-D, pending availability of computing resources. Another important goal in the second year would be the inclusion of sulk and its more volatile oxides (SO, SO2).

  1. Chemical composition and sources of atmospheric aerosols at Djougou (Benin)

    NASA Astrophysics Data System (ADS)

    Ouafo-Leumbe, Marie-Roumy; Galy-Lacaux, Corinne; Liousse, Catherine; Pont, Veronique; Akpo, Aristide; Doumbia, Thierno; Gardrat, Eric; Zouiten, Cyril; Sigha-Nkamdjou, Luc; Ekodeck, Georges Emmanuel

    2017-06-01

    In the framework of the INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) program, atmospheric aerosols were collected in PM2.5 and PM10 size fractions at Djougou, Benin, in the West Africa, from November, 2005 to October, 2009. Particulate carbon, ionic species, and trace metals were analyzed. Weekly PM2.5 and PM10 total mass concentrations varied between 0.7 and 47.3 µg m-3 and 1.4-148.3 µg m-3, respectively. We grouped the aerosol chemical compounds into four classes: dust, particulate organic matter (POM), elemental carbon (EC), and ions. We studied the annual variation of each class to determine their contribution in the total aerosol mass concentration and finally to investigate their potential emission sources. On an annual basis, the species presented a well-marked seasonality, with the peak of mass concentration for both sizes registered in dry season, 67 ± 2 to 86 ± 9 versus 14 ± 9 to 34 ± 5% in wet season. These values emphasized the seasonality of the emissions and the relative weak interannual standard deviation indicates the low variability of the seasonality. At the seasonal scale, major contributions to the aerosol chemistry in the dry season are: dust (26-59%), POM (30-59%), EC (5-9%), and ions (3-5%), suggesting a predominance of Sahelian and Saharan dust emissions and biomass burning source in this season. In the wet season, POM is predominant, followed by dust, EC, and ions. These results point out the contribution of surrounded biofuel combustion used for cooking and biogenic emissions during the wet season.

  2. Isothermal evaporation of ethanol in a dynamic gas atmosphere.

    PubMed

    Milev, Adriyan S; Wilson, Michael A; Kannangara, G S Kamali; Feng, Hai; Newman, Phillip A

    2012-01-12

    Optimization of evaporation and pyrolysis conditions for ethanol are important in carbon nanotube (CNT) synthesis. The activation enthalpy (ΔH(‡)), the activation entropy (ΔS(‡)), and the free energy barrier (ΔG(‡)) to evaporation have been determined by measuring the molar coefficient of evaporation, k(evap), at nine different temperatures (30-70 °C) and four gas flow rates (25-200 mL/min) using nitrogen and argon as carrier gases. At 70 °C in argon, the effect of the gas flow rate on k(evap) and ΔG(‡) is small. However, this is not true at temperatures as low as 30 °C, where the increase of the gas flow rate from 25 to 200 mL/min results in a nearly 6 times increase of k(evap) and decrease of ΔG(‡) by ~5 kJ/mol. Therefore, at 30 °C, the effect of the gas flow rate on the ethanol evaporation rate is attributed to interactions of ethanol with argon molecules. This is supported by simultaneous infrared spectroscopic analysis of the evolved vapors, which demonstrates the presence of different amounts of linear and cyclic hydrogen bonded ethanol aggregates. While the amount of these aggregates at 30 °C depends upon the gas flow rate, no such dependence was observed during evaporation at 70 °C. When the evaporation was carried out in nitrogen, ΔG(‡) was almost independent of the evaporation temperature (30-70 °C) and the gas flow rate (25-200 mL/min). Thus the evaporation of ethanol in a dynamic gas atmosphere at different temperatures may go via different mechanisms depending on the nature of the carrier gas.

  3. The long-term carbon cycle, fossil fuels and atmospheric composition.

    PubMed

    Berner, Robert A

    2003-11-20

    The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

  4. Transport composite fuselage technology: Impact dynamics and acoustic transmission

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.

    1986-01-01

    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.

  5. Interactive modelling of forest fires and their impacts on atmospheric composition

    NASA Astrophysics Data System (ADS)

    Mangeon, S.; Voulgarakis, A.; Folberth, G.

    2016-12-01

    Forest and wildland fires are a significant emission source of gases and aerosols to the atmosphere. In particular, biomass burning has been shown to be a significant driver of interannual variability and short-term climate forcings. Fires emit a wide variety of compounds to the atmosphere, from greenhouse gases to aerosols. Conversely, weather and climate also drive fire occurrence, creating potential feedbacks between climate, atmospheric composition, and fire. Here, we will present INFERNO (INteractive Fires and Emissions algoRithm for Natural envirOnments, described in Mangeon et al., 2016), a reduced complexity approach to global fire modelling coupled to interactive atmospheric composition in the UK Met Office's Unified Model. We will first show the coupled model's performance in capturing burnt area and fire emissions. We will then demonstrate how fires impact atmospheric composition in the global model for present-day scenarios: with our interactive scheme but also with reference datasets of global fire emissions, as well as in simulations assuming no fire emissions. In particular, we will investigate the role of fires on the mean present-day state, the seasonal cycle, and the interannual variability of important atmospheric constituents (e.g., CO and aerosols).

  6. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  7. Investigation of the small-scale structure and dynamics of Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.; Hinson, David P.

    1991-01-01

    This document constitutes the final technical report of the Uranus Analysis Program. Papers and/or abstracts resulting from this research are presented. The following topics are covered: (1) past and future of radio occultation studies of planetary atmospheres; (2) equatorial waves in the stratosphere of Uranus; (3) the atmosphere of Uranus- results of radio occultation measurements with Voyager 2; (4) Uranus' atmospheric dynamics and circulation; (5) small-scale structure and dynamics in the atmosphere of Uranus; (6) evidence for inertia-gravity waves in the stratosphere of Uranus derived from Voyager 2 radio occultation data; and (7) planetary waves in the equatorial stratosphere of Uranus.

  8. Dynamic Loading Characteristics in Metals and Composites

    DTIC Science & Technology

    2009-12-01

    and appreciated. While the static strengths of composite materials , for example, have been considerably explored and documented, fewer studies have...yield of the woven laminates varied linearly with the strain rate. As noted by Taniguchi et al. [13], most composite materials displayed strain rate...EXPERIMENTAL SETUP AND PROCEDURES The material of the specimens tested is aluminum alloy AA3003-H14. The dimensions of the specimens are given in

  9. Introduction to the dynamics of the ocean and the atmosphere

    NASA Astrophysics Data System (ADS)

    Berroir, Andre

    1987-09-01

    The general characteristics of the atmospheric and oceanic circulation are described including stratification, geostrophy, zone distribution, Walker circulation, ocean stratification, ocean geostrophic circulation, surface circulation, Eckman pumping, and deep circulation. The energetic balance of the atmosphere-ocean system is discussed, and the Earth radiation budget is described.

  10. Composition of atmospheric suspensions of Ussuriisk City according to snow pollution

    NASA Astrophysics Data System (ADS)

    Golokhvast, Kirill S.; Soboleva, Elena V.; Borisovsky, Andrey O.; Khristoforova, Nadezhda K.

    2014-11-01

    The results of the study by scanning electron microscopy with energy dispersive analysis of microparticles of atmospheric suspensions contained in Ussuriysk winter snows (2012/2013) are presented. Particles of rocks and technogenic (mainly metal and soot) formations to prevail in the atmospheric suspensions of Ussuriysk are shown. There is a large amount of metal particles of automobile and industrial - Fe, Au, Pt, Pd, Cu, Sn, Pb, Ti, W. The analysis of the qualitative composition of atmospheric suspensions Ussuriysk confirms its status as a city with a strong impact of automobile transportation and high levels of air pollution.

  11. Integration of ice core, marine and terrestrial records: new insights into Holocene atmospheric circulation dynamics over NW Europe

    NASA Astrophysics Data System (ADS)

    Muschitiello, F.; Hammarlund, D.; Wohlfarth, B.

    2012-12-01

    We analyzed the oxygen (δ18O) and carbon (δ13C) isotope composition of lacustrine carbonates (Chara sp. and Bithynia tentaculata) from a lake sediment sequence (Lake Bjärsträsk) on the island of Gotland, southern Sweden. Our new isotopic records show a significant consistency with existing regional climatic reconstructions, as well as with paleorecords reflecting large-scale circulation dynamics. By comparing our data to ice core records from Greenland and to regional- and global-scale terrestrial and marine climate records, we explore potential couplings of Mid- and Late Holocene extreme summer climate conditions in northwestern Europe to orbital forcing and low-latitude atmospheric circulation dynamics. Specifically, we discuss the relationship between long-term changes in the position of the North Atlantic subtropical front and the frequency of summer blocking anticyclones over southern Sweden. Furthermore, we tentatively outline the spatial structure of predominant modes of atmospheric variability over the North Atlantic sector throughout the Holocene.

  12. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    NASA Astrophysics Data System (ADS)

    Li, Ying; Manolache, Sorin; Qiu, Yiping; Sarmadi, Majid

    2016-02-01

    In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  13. Dynamics of atmospheric-methane oxidation in glacier-forefield soils

    NASA Astrophysics Data System (ADS)

    Chiri, Eleonora; Nauer, Philipp A.; Rainer, Edda-Marie; Henneberger, Ruth; Zeyer, Josef; Schroth, Martin H.

    2015-04-01

    Mature upland soils are currently considered the sole terrestrial sink for atmospheric methane (CH4). But little is known about CH4 dynamics in young, developing soil ecosystems such as glacier forefields formed by progressive glacial retreat. Glacier forefields are situated on diverse bedrock types, exhibit a continuum of soil age (chronosequence), and are comprised of various geomorphological landforms, which may differ in physicochemical properties. These features may affect activity and community structure of aerobic methane-oxidizing bacteria (MOB) catalyzing atmospheric CH4 oxidation. Moreover, MOB activity and community structure may be affected by environmental parameters subject to seasonal variability such as soil temperature, water content, and nutrient availability. The aim of this study was to assess spatial and seasonal variability in atmospheric CH4 oxidation in glacier-forefield soils derived from siliceous and calcareous bedrock. Specifically, we quantified soil-atmosphere CH4 flux and CH4 oxidation activity using the soil-gas-profile method and static flux chambers in soils of different age and belonging to different landforms. In these soils MOB abundance and variation in community structure were assessed by targeting the functional gene pmoA using quantitative PCR, TRFLP-based cluster analysis, and high-throughput DNA-sequencing technology. Seasonal variability in atmospheric CH4 oxidation was assessed based on the same attributes measured with high temporal resolution throughout one snow-free season. Most glacier-forefield soils acted as a sink for atmospheric CH4 regardless of bedrock type, and CH4 flux (-0.082 to -2.2 mg CH4 m-2 d-1) and MOB abundance (2.4×103 to 5.5×105 pmoA genecopies (g soil w.w.)-1) increased significantly with soil age. Cluster analysis revealed variations in MOB community composition related to bedrock type rather than soil age, suggesting that distinct MOB communities provided a similar ecosystem service in soils on

  14. The effect of protein composition on hydration dynamics.

    PubMed

    Rahaman, O; Melchionna, S; Laage, D; Sterpone, F

    2013-03-14

    Water dynamics at the surface of two homologous proteins with different thermal resistances is found to be unaffected by the different underlying amino-acid compositions, and when proteins are folded it responds similarly to temperature variations. Upon unfolding the water dynamics slowdown with respect to bulk decreases by a factor of two. Our findings are explained by the dominant topological perturbation induced by the protein on the water hydrogen bond dynamics.

  15. Simulation of the impact of thunderstorm activity on atmospheric gas composition

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, S. P.; Mareev, E. A.; Galin, V. Ya.

    2010-08-01

    A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.

  16. The Network for the Detection of Atmospheric Composition Change (NDACC): Satellite Validation Activities

    NASA Astrophysics Data System (ADS)

    Kurylo, Michael

    The international Network for the Detection of Atmospheric Composition Change, formerly the Network for the Detection of Stratospheric Change (NDSC) was formed to provide a consistent standardized set of long-term measurements of atmospheric trace gases, particles, and physical parameters via a suite of globally distributed research stations. Since its inception in the late 1980's and onset of official operations in 1991, the NDACC objectives have grown considerably. While the NDACC remains committed to its initial objective of monitoring changes in the stratosphere, with an emphasis on the long-term evolution of the ozone layer (its decay, likely stabilization and expected recovery), it's measurement and analysis priorities have broadened to encompass both the stratosphere and free troposphere as well as to explore the interface between changing atmospheric composition and climate. These can be summarized as • detecting trends in overall atmospheric composition and understanding their impacts on the stratosphere and troposphere, • establishing links between climate change and atmospheric composition, • calibrating and validating space-based measurements of the atmosphere, • supporting process-focused scientific field campaigns, and • testing and improving theoretical models of the atmosphere. Remote sensing measurements at the NDACC primary and complementary stations have successfully addressed each of the above objectives through participation in numerous international projects. While highlighting the network's dual goal of long-term global measurement and understanding, this talk will focus on recent satellite validation and science activities. Additional examples of NDACC measurement and analysis accomplishments as well as details about the network (its implementation, structure and operation, data archiving, and related protocols and publications) can be found at the NDACC web site - www.NDACC.org.

  17. A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin.

    PubMed

    Atreya, S K; Wong, M H; Owen, T C; Mahaffy, P R; Niemann, H B; de Pater, I; Drossart, P; Encrenaz, T h

    1999-01-01

    We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is consistent with the depletion of condensable volatiles to great depths, which is attributed to local meteorology. Somewhat similar depletion of water may be present in the 5-micron bright regions of Saturn also. The supersolar abundances of heavy elements, particularly C and S in Jupiter's atmosphere and C in Saturn's, as well as the progressive increase of C from Jupiter to Saturn and beyond, tend to support the icy planetesimal model of the formation of the giant planets and their atmospheres. However, much work remains to be done, especially in the area of laboratory studies, including identification of possible new microwave absorbers, and modelling, in order to resolve the controversy surrounding the large discrepancy between Jupiter's global ammonia abundance, hence the nitrogen elemental ratio, derived from the earth-based microwave observations and that inferred from the analysis of the Galileo probe-orbiter radio attenuation data for the hotspot. We look forward to the observations from Cassini-Huygens spacecraft which are expected to result not only in a rich harvest of information for Saturn, but a better understanding of the formation of the giant planets and their atmospheres when these data are combined with those that exist for Jupiter.

  18. Exact Dynamic Stiffness Matrix for Composite Timoshenko Beams with Applications

    NASA Astrophysics Data System (ADS)

    Bannerjee, J. R.; Williams, F. W.

    1996-07-01

    In this paper, an exact dynamic stiffness matrix is presented for a composite beam. It includes the effects of shear deformation and rotatory inertia: i.e., it is for a composite Timoshenko beam. The theory accounts for the (material) coupling between the bending and torsional deformations which usually occurs for such beams due to the anisotropic nature of fibrous composites. An explicit analytical expression for each of the elements of the dynamic stiffness matrix is derived by rigorous use of the symbolic computing package REDUCE. It is proved that the use of such expressions leads to substantial savings in computer time when compared with the matrix inversion method. The use of this dynamic stiffness matrix to investigate the free vibration characteristics of composite beams (with or without the effects of shear deformation and/or rotatory inertia included) is demonstrated by applying the Wittrick-Williams algorithm. Numerical results for which comparative results are available in the literature are discussed.

  19. Dynamic Deformation Properties of Energetic Composite Materials

    DTIC Science & Technology

    2002-12-01

    the dynamic mechanical properties and detonation of energetic materials. It also included some preliminary data on the effect of particle size on the...study of the dynamic mechanical properties and detonation of energetic materials. It also included some preliminary data on the effect of particle size...qualitative only. 33 5. DEFLAGRATION-TO- DETONATION (DDT) STUDIES As part of an on-going programme to investigate the properties of ultrafine energetic

  20. Energy balance and plume dynamics in Triton's lower atmosphere

    SciTech Connect

    Yelle, R.V.; Lunine, J.I.; Hunten, D.M. )

    1991-02-01

    The present study of the thermal balance-affecting relationships among Triton lower atmosphere thermal conduction, eddy mixing, condensation, and radiative heating indicates that, while the temperature gradient is negative in the lower atmosphere, it becomes positive at higher altitudes due to the downward conduction of ionospheric heat. This temperature profile is essentially consistent with radio-occultation experiment data; the geyser-like plumes observed by Voyager suggest that the Trioton atmosphere's convective and conductive regions join near 10-km altitude, and that the values inferred for the eddy diffusion and heat-transport coefficients indicate a profile reminiscent of the earth's. 28 refs.

  1. Sequential composition of dynamically dexterous robot behaviors

    SciTech Connect

    Burridge, R.R.; Rizzi, A.A.; Koditschek, D.E.

    1999-06-01

    The authors report on efforts to develop a sequential robot controller-composition technique in the context of dexterous batting maneuvers. A robot with a flat paddle is required to strike repeatedly at a thrown ball until the ball is brought to rest on the paddle at a specified location. The robot`s reachable workspace is blocked by an obstacle that disconnects the free space formed when the ball and paddle remain in contact, forcing the machine to let go for a time to bring the ball to the desired state. The controller compositions the authors create guarantee that a ball introduced in the safe workspace remains there and is ultimately brought to the goal. They report on experimental results from an implementation of these formal composition methods, and present descriptive statistics characterizing the experiments.

  2. The effect of fuel composition on flame dynamics

    SciTech Connect

    Hendricks, Adam G.; Vandsburger, Uri

    2007-10-15

    As fuel sources diversify, the gas turbine industry is under increasing pressure to develop fuel-flexible plants, able to use fuels with a variety of compositions from a large range of sources. However, the dynamic characteristics vary considerably with composition, in many cases altering the thermoacoustic stability of the combustor. We compare the flame dynamics, or the response in heat release rate of the flame to acoustic perturbations, of the three major constituents of natural gas: methane, ethane, and propane. The heat release rate is quantified using OH* chemiluminescence and product gas temperature. Gas temperature is measured by tracking the absorption of two high-temperature water lines, via Tunable Diode Laser Absorption Spectroscopy. The flame dynamics of the three fuels differ significantly. The changes in flame dynamics due to variations in fuel composition have the potential to have a large effect on the thermoacoustic stability of the combustor. (author)

  3. Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon

    SciTech Connect

    Lee, Hyun Ji; Aiona, Paige K.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2014-09-02

    Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of solar photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol prepared by high-NOx photooxidation of naphthalene (NAP SOA). The aqueous solutions of NAP SOA was observed to photobleach with an effective half-time of ~15 hours (with sun in its zenith) for the loss of the near-UV (300 -400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.08 to C11.8H14.9O4.5N0.02 after 4 hours of irradiation. The average O/C ratio did not change significantly, however, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photolysis of BrC material produced by aqueous reaction of limonene+O3 SOA (LIM/O3 SOA) with ammonium sulfate was much faster, but it did not result in a significant change in the molecular level composition. The characteristic absorbance of the aged LIM/O3 SOA in the 450-600 nm range decayed with an effective half-time of <0.5 hour. This result emphasizes the highly variable and dynamic nature of different types of atmospheric BrC.

  4. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon.

    PubMed

    Lee, Hyun Ji Julie; Aiona, Paige Kuuipo; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2014-09-02

    Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol (SOA) prepared by high-NOx photooxidation of naphthalene (NAP SOA). Our experiments were designed to model photolysis processes of NAP SOA compounds dissolved in cloud or fog droplets. Aqueous solutions of NAP SOA were observed to photobleach (i.e., lose their ability to absorb visible radiation) with an effective half-life of ∼15 h (with sun in its zenith) for the loss of near-UV (300-400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.085 to C11.8H14.9O4.5N0.023 after 4 h of irradiation. However, the average O/C ratio did not change significantly, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photobleaching of BrC material produced by the reaction of limonene + ozone SOA with ammonia vapor (aged LIM/O3 SOA) was much faster, but it did not result in a significant change in average molecular composition. The characteristic absorbance of the aged LIM/O3 SOA in the 450-600 nm range decayed with an effective half-life of <0.5 h. These results emphasize the highly variable and dynamic nature of different types of atmospheric BrC.

  5. Crossed molecular beam studies of atmospheric chemical reaction dynamics

    SciTech Connect

    Zhang, Jingsong

    1993-04-01

    The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O3 → ClO + O2 reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O3 → ClO + O2 reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O3 reaction. The Br + O3 reaction has a direct reaction mechanism similar to that of the Cl + O3 reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO2 → ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO2

  6. Subarctic atmospheric aerosol composition: 2. Hygroscopic growth properties

    SciTech Connect

    Herich, Hanna; Kammermann, Lukas; Friedman, Beth; Gross, Deborah S.; Weingartner, E.; Lohmann, U.; Spichtinger, Peter; Gysel, Martin; Baltensperger, Urs; Cziczo, Daniel J.

    2009-07-10

    Sub-arctic aerosols were sampled during July 2007 at the Abisko Scientific Research Station Stordalen site in northern Sweden with an instrument setup consisting of a custom-built Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) connected in series to a single particle mass spectrometer. Aerosol chemical composition in the form of bipolar single particle mass spectra was determined as a function of hygroscopic growth both in situ and in real time. The HTDMA was deployed at a relative humidity of 82% and particles with a dry mobility diameter of 260 nm were selected. Aerosols from two distinct airmasses were analyzed during the sampling period. Sea salt aerosols were found to be the dominant particle group with the highest hygroscopicity. High intensities of sodium and related peaks in the mass spectra were identified as exclusive markers for large hygroscopic growth. Particles from biomass combustion were found to be the least hygroscopic aerosol category. Species normally considered soluble (e.g., sulfates and nitrates) were found in particles ranging from high to low hygroscopicity. Furthermore, the signal intensities of the peaks related to these species did not correlate with hygroscopicity.

  7. Dynamic Mechanical Behavior of Nickel-Aluminum Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Martin, M.; Hanagud, S.; Thadhani, N. N.

    2006-07-01

    Epoxy-based composites reinforced with micron-sized Ni and micron or nano-sized Al powders were fabricated by casting/curing. The mechanical behavior of the composites was evaluated using elastic and plastic property measurements performed on rod-shaped samples. Dynamic reverse Taylor anvil-on-rod impact tests gave qualitative and quantitative information about the transient deformation and failure response of the composites. The composite containing 20wt% epoxy and nano-sized Al powder showed the most superior mechanical properties in terms of elastic modulus, static compressive strength, and dynamic incremental areal and axial strains, as compared to the other cast materials. The results illustrate that nano-sized Al particles alter the deformation response of the composite and provide significant enhancement to the strength by dispersing in the epoxy and generating a nano Al-containing epoxy matrix with embedded Ni particles.

  8. Dynamics of elastic nonlinear rotating composite beams with embedded actuators

    NASA Astrophysics Data System (ADS)

    Ghorashi, Mehrdaad

    2009-08-01

    A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.

  9. Martian Chronology and Atmospheric Composition: In Situ Measurements versus Sample Return

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.

    2008-01-01

    I examine two significant issues of martian science from the point of view of in situ measurements by robotic spacecraft versus sample return and analysis in terrestrial labs. (1) To define martian history, ages of geological processes and surface features are required. Estimated ages from surface crater densities have limitations, and the ages measured for martian meteorites cannot be associated with specific martian locales. Whereas returned martian rocks could be accurately dated, some have suggested sending a robotic spacecraft to Mars to measure rock ages using the classical K- Ar-40 technique, considered the easiest to implement. (2) To understand the evolution of the martian atmosphere and its interactions with the surface, requires precise measurements of atmospheric composition. A significant amount of information has derived from measurements by Viking and of martian meteorites. Instrumentation on the Mars Science Lander (MSL) spacecraft to be launched in the near future promises to determine atmospheric composition even more precisely. If MSL is successful, which questions about atmospheric composition will remain and thus will require atmospheric sample return to answer?

  10. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  11. Atmospheric aerosols: A literature summary of their physical characteristics and chemical composition

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1976-01-01

    This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis.

  12. Atmospheric Dynamics of Sub-Tropical Dust Storms

    NASA Astrophysics Data System (ADS)

    Pokharel, Ashok Kumar

    Meso-alpha/beta scale observational and meso-beta/gamma scale numerical model analyses were performed to study the atmospheric dynamics responsible for generating Harmattan, Saudi Arabian, and Bodele Depression dust storms. For each dust storm case study, MERRA reanalysis datasets, WRF simulated very high resolution datasets, MODIS/Aqua and Terra images, EUMETSAT images, NAAPS aerosol modelling plots, CALIPSO images, surface observations, and rawinsonde soundings were analyzed. The analysis of each dust storm carried out separately and an in-depth comparison of the events shows some similarities among the three case studies: (1) the presence of a well-organized baroclinic synoptic scale system, (2) small scale dust emission events which occurred prior to the formation of the primary large-scale dust storms, (3) cross mountain flows which produced a strong leeside inversion layer prior to the large scale dust storm, (4) the presence of thermal wind imbalance in the exit region of the mid-tropospheric jet streak in the lee of the mountains shortly after the time of the inversion formation, (5) major dust storm formation was accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-beta scale adjustment process, (6) substantial low-level turbulence kinetic energy (TKE), (7) formation in the lee of nearby mountains, and (8) the emission of the dust occurred initially in narrow meso-beta scale zones parallel to the mountains, and later reached the meso-alpha scale when suspended dust was transported away from the mountains. In addition to this there were additional meso-beta scale and meso-gamma scale adjustment processes resulting in Kelvin waves in the Harmattan and the Bodele Depression cases and the thermally-forced MPS circulation in all of these three cases. The Kelvin wave preceded a cold pool accompanying the air behind the large scale cold front instrumental in the major dust storm. The Kelvin wave organized the major dust

  13. A strategic outlook for coordination of ground-based measurement networks of atmospheric state variables and atmospheric composition

    NASA Astrophysics Data System (ADS)

    Bodeker, G. E.; Thorne, P.; Braathen, G.; De Maziere, M.; Thompson, A. M.; Kurylo, M. J., III

    2016-12-01

    There are a number of ground-based global observing networks that collectively aim to make key measurements of atmospheric state variables and atmospheric chemical composition. These networks include, but are not limited to:NDACC: Network for the Detection of Atmospheric Composition Change GUAN: GCOS Upper Air Network GRUAN: GCOS Reference Upper Air Network EARLINET: the European Aerosol Research Lidar Network GAW: Global Atmosphere Watch SHADOZ: Southern Hemisphere ADditional OZonesondes TCCON: Total Carbon Column Observing Network BSRN: Baseline Surface Radiation Network While each network brings unique capabilities to the global observing system, there are many instances where the activities and capabilities of the networks overlap. These commonalities across multiple networks can confound funding agencies when allocating scarce financial resources. Overlaps between networks may also result in some duplication of effort and a resultant sub-optimal use of funding resource for the global observing system. While some degree of overlap is useful for quality assurance, it is essential to identify the degree to which one network can take on a specific responsibility on behalf of all other networks to avoid unnecessary duplication, to identify where expertise in any one network may serve other networks, and to develop a long-term strategy for the evolution of these networks that clarifies to funding agencies where new investment is required. This presentation will briefly summarise the key characteristics of each network listed above, adopt a matrix approach to identify commonalities and, in particular, where there may be a danger of duplication of effort, and where gaps between the networks may be compromising the services that these networks are expected to collectively deliver to the global atmospheric and climate science research communities. The presentation will also examine where sharing of data and tools between networks may result in a more efficient delivery

  14. Dynamic tests of composite panels of an aircraft wing

    NASA Astrophysics Data System (ADS)

    Splichal, Jan; Pistek, Antonin; Hlinka, Jiri

    2015-10-01

    The paper describes the analysis of aerospace composite structures under dynamic loading. Today, it is common to use design procedures based on assumption of static loading only, and dynamic loading is rarely assumed and applied in design and certification of aerospace structures. The paper describes the application of dynamic loading for the design of aircraft structures, and the validation of the procedure on a selected structure. The goal is to verify the possibility of reducing the weight through improved design/modelling processes using dynamic loading instead of static loading. The research activity focuses on the modelling and testing of a composite panel representing a local segment of an aircraft wing section, investigating in particular the buckling behavior under dynamic loading. Finite Elements simulation tools are discussed, as well as the advantages of using a digital optical measurement system for the evaluation of the tests. The comparison of the finite element simulations with the results of the tests is presented.

  15. Thermal Mapping to Achieve 3-D Structure and Dynamics of Planetary Atmospheres Throughout the Solar System

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Retherford, K. D.; Mandt, K. E.; Wyrick, D. Y.

    2017-02-01

    We have completed our first look at all planets in the solar system. It is now time to move forward with more complete studies of solar system planetary atmospheres to further our understanding of atmospheric dynamics of planets unlike the Earth.

  16. Global climate modeling of Saturn's atmosphere: exploration of seasonal variability and stratospheric dynamics

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Guerlet, S.; Millour, E.; Sylvestre, M.; Fouchet, T.; Wordsworth, R.; Leconte, J.; Forget, F.; Hourdin, F.

    2013-12-01

    A leap forward on our knowledge of Saturn's stratosphere has resulted from the combination of orbital observations on board the Cassini spacecraft and state-of-the-art ground-based observations. Maps of temperature and hydrocarbons in Saturn's stratosphere revealed puzzling anomalies: equatorial oscillations with a period of about half a Saturn year, meridional circulations affecting the hydrocarbons' distribution, including possible effects of rings shadowing, "beacons" associated with the powerful 2010 Great White Spot. Those signatures, reminiscent of fundamental wave-driven phenomena in the Earth's middle atmosphere (e.g., Quasi-Biennal Oscillation, Brewer-Dobson circulation), cannot be reproduced by 1D photochemical and radiative models. This motivated us to develop a complete 3D General Circulation Model (GCM) for Saturn, based on the LMDz hydrodynamical core, to explore the circulation, seasonal variability, and wave activity in Saturn's atmosphere. In order to closely reproduce Saturn's radiative forcing, a particular emphasis was put in obtaining fast and accurate radiative transfer calculations. Our radiative model uses correlated-k distributions and spectral discretization tailored for Saturn's atmospheric composition (methane, ethane, acetylene). In addition to this, we include CIA absorption (hydrogen and helium), internal heat flux, ring shadowing, and aerosols. A systematic study is carried out on the sensitivity of the model to spectral discretization, spectroscopic databases, and aerosol scenarios (varying particle sizes, opacities and vertical structures). Temperature fields obtained with this new radiative equilibrium model are compared to that inferred from Cassini/CIRS observations. In the troposphere, our model reproduces the observed temperature knee caused by heating at the top of the tropospheric aerosol layer. In the lower stratosphere, the overall meridional gradient between the summer and the winter hemispheres agrees with observations

  17. Coupled conduit and atmospheric dispersal dynamics of the AD 79 Plinian eruption of Vesuvius

    NASA Astrophysics Data System (ADS)

    Neri, Augusto; Papale, Paolo; Del Seppia, Dario; Santacroce, Roberto

    2003-01-01

    The AD 79 eruption of Vesuvius is certainly one of the most investigated explosive eruptions in the world. This makes it particularly suitable for the application of numerical models since we can be quite confident about input data, and the model predictions can be compared with field-based reconstruction of the eruption dynamics. Magma ascent along the volcanic conduit and the dispersal of pyroclasts in the atmosphere were simulated. The conduit and atmospheric domain were coupled through the flow conditions computed at the conduit exit. We simulated two different peak phases of the eruption which correspond to the emplacement of the white and gray magma types that produced Plinian fallout deposits with interlayered pyroclastic flow units during the gray phase. The input data, independently constrained and representative of each of the two eruptive phases, consist of liquid magma composition, crystal and water content, mass flow rate, and pressure-temperature-depth of the magma at the conduit entrance. A parametric study was performed on the less constrained variables such as microlite content of magma, pressure at the conduit entrance, and particle size representative of the eruptive mixture. Numerical results are substantially consistent with the reconstructed eruptive dynamics. In particular, the white eruption phase is found to lead to a fully buoyant eruption plume in all cases investigated, whereas the gray phase shows a more transitional character, i.e. the simultaneous production of a buoyant convective plume and pyroclastic surges, with a significant influence of the microlite content of magma in determining the partition of pyroclast mass between convective plumes and pyroclastic flows.

  18. Tailoring the electron dynamics and chemical kinetics in radio-frequency driven atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Gans, Timo

    2015-09-01

    Radio-frequency atmospheric pressure plasmas are versatile and efficient sources for reactive species at ambient room temperature. The non-equilibrium chemical kinetics is initiated and determined by the electron dynamics. Due to the strongly collisional environment and associated short electron energy relaxation times the electron dynamics can be tailored using multi-frequency power coupling techniques, enabling separate control of key parameters like electron density and electron mean energy. Details of the chemical kinetics depend on the feedgas composition and desired application. Measurements and predictive simulations of key reactive species are equally challenging due to the strongly collisional environment and their multi-scale nature in space and time. The most promising approach is the exploitation of complementary advantages in direct measurements combined with specifically designed numerical simulations. The employed diagnostic techniques include picosecond laser spectroscopy, synchrotron VUV spectroscopy, IR absorption spectroscopy and nanosecond optical imaging spectroscopy. The presentation will focus on examples of He-O2-N2 mixtures for bio-medical applications and He/Ar-CO2 mixtures for CO2 conversion into value-added chemicals. This work has been supported by the UK EPSRC (EP/K018388/1 & EP/H003797/1).

  19. Testing our Understanding of Biogenic Emissions and their Impacts on Atmospheric Composition above the Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Levine, J. G.; MacKenzie, A. R.; Squire, O. J.; Archibald, A. T.; Griffiths, P. T.; Oram, D.; Forster, G.; Lee, J. D.; Hopkins, J. R.; Bauguitte, S.; Demarco, C. F.; Artaxo, P.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) have a profound effect on atmospheric chemistry and composition, and thereby affect global air quality and climate. The Amazon rainforest constitutes an intense source of BVOCs and is thus a key location in which to probe these effects. Notable uncertainties remain regarding the amount of BVOCs emitted from the rainforest (a function of plant type, environmental conditions and physiological factors) and the quantitative influence they have on atmospheric oxidants, such as OH and O3 (a function of physical conditions and ambient atmospheric composition, not least the concentration of nitrogen oxides; NOx=NO+NO2). The effect that isoprene oxidation at low NOx concentrations has on the concentrations of OH and O3 proves a particular challenge to reproduce in atmospheric chemistry-transport models. We present here the results of a series of experiments aimed at testing our understanding of BVOC emissions from the Brazilian Amazon and the atmospheric chemistry stemming from these. We attempt to reproduce aircraft measurements of BVOCs, NOx and O3 from the South American Biomass Burning Analysis (SAMBBA) campaign in 2012, including those made close to the site of recent BVOC emission measurements, just north of Manaus, in the Cooperative LBA Atmospheric Regional Experiment (CLAIRE-UK). We compare the abilities of a variety of atmospheric chemistry mechanisms to capture the measurements in both a global atmospheric chemistry-transport model and a trajectory model of chemistry and transport. The exploration in both Eulerian and Lagrangian frameworks, with their contrasting treatments of mixing, is pertinent in view of: the sensitivity that the chemistry stemming from BVOCs shows to ambient NOx concentrations; and the episodic influence of anthropogenic emissions in this environment, for example from Manaus.

  20. Study of the Dynamics of Meteoroids Through the Earth's Atmosphere and Retrieval of Meteorites: The Mexican Meteor Network

    NASA Astrophysics Data System (ADS)

    Cordero Tercero, M. G.; Farah Simon, A.; Velazquez-Villegas, F.

    2016-12-01

    When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f) recover and study meteorites. During this meeting, the progress of the project will be presented.

  1. Improved ambiguity resolution for URTK with dynamic atmosphere constraints

    NASA Astrophysics Data System (ADS)

    Tang, Weiming; Liu, Wenjian; Zou, Xuan; Li, Zongnan; Chen, Liang; Deng, Chenlong; Shi, Chuang

    2016-12-01

    Raw observation processing method with prior knowledge of ionospheric delay could strengthen the ambiguity resolution (AR), but it does not make full use of the relatively longer wavelength of wide-lane (WL) observation. Furthermore, the accuracy of calculated atmospheric delays from the regional augmentation information has quite different in quality, while the atmospheric constraint used in the current methods is usually set to an empirical value. A proper constraint, which matches the accuracy of calculated atmospheric delays, can most effectively compensate the residual systematic biases caused by large inter-station distances. Therefore, the standard deviation of the residual atmospheric parameters should be fine-tuned. This paper presents an atmosphere-constrained AR method for undifferenced network RTK (URTK) rover, whose ambiguities are sequentially fixed according to their wavelengths. Furthermore, this research systematically analyzes the residual atmospheric error and finds that it mainly varies along the positional relationship between the rover and the chosen reference stations. More importantly, its ionospheric part of certain location will also be cyclically influenced every day. Therefore, the standard deviation of residual ionospheric error can be modeled by a daily repeated cosine or other functions with the help of data one day before, and applied by rovers as pseudo-observation. With the data collected at 29 stations from a continuously operating reference station network in Guangdong Province (GDCORS) in China, the efficiency of the proposed approach is confirmed by improving the success and error rates of AR for 10-20 % compared to that of the WL-L1-IF one, as well as making much better positioning accuracy.

  2. Comparison of Fully-Compressible Equation Sets for Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.

    2016-01-01

    Traditionally, the equation for the conservation of energy used in atmospheric models is based on potential temperature and is used in place of the total energy conservation. This paper compares the application of the two equations sets for both the Euler and the Navier-Stokes solutions using several benchmark test cases. A high-resolution wave-propagation method which accurately takes into account the source term due to gravity is used for computing the non-hydrostatic atmospheric flows. It is demonstrated that there is little to no difference between the results obtained using the two different equation sets for Euler as well as Navier-Stokes solutions.

  3. Dynamics and Aeroelasticity of Composite Structures.

    DTIC Science & Technology

    1987-04-22

    UNCLASSIFIED/UNLIMITEO SAME AS aPT Z OTIC USERS C3UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL flncliads A’Wa...support related dynamic instability which could be eliminated by 3roper adjustment of the sutnport stiffness. Good agreement with linear thoery was found...Aeroelastic analysis 38 2.3 Wind Tunnel Support Stability Analysis 40 Chapter 3 Experiment 50 3.1 Wind Tunnel Model, Support System, and 50

  4. Ion composition and dynamics at comet Halley

    NASA Technical Reports Server (NTRS)

    Balsiger, H.; Altwegg, K.; Buehler, F.; Geiss, J.; Ghielmetti, A. G.; Goldstein, B. E.; Goldstein, R.; Huntress, W. T.

    1986-01-01

    The Giotto space probe's ion mass spectrometer has obtained data on the composition and velocity distributions of cometary ions at distances of between 7.5 million and 1300 km from the comet Halley nucleus. Solar wind He(2+) was found throughout the coma, as close as 5000 km, with the He(+) produced by charge exchange being within about 200,000 km. A pile-up of heavy cometary ions was found at about 10,000 km from the nucleus. Inside the contact surface, which was found at about 4600 km, ion temperatures as low as about 340 K and outflow velocities of about 1 km/sec were found.

  5. An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Brasseur, G.; Walters, S.; Hitchman, M. H.; Dymek, M.; Falise, E.

    1990-01-01

    A new two-dimensional model of the stratosphere and the mesosphere was formulated in transformed Eulerian coordinates, in which dynamics, radiation, and chemistry are treated interactively. The model includes a detailed radiative scheme which derives the diabatic heating rates consistently with calculated distributions of temperature and trace species densities. Results are presented on the present-day and perturbed atmosphere, showing that the calculated distributions of source gases, such as nitrous oxide and methane, are very sensitive to the calculated (and parameterized) dynamical quantities, and that species produced in the atmosphere, like carbon monoxide and odd nitrogen, can provide valuable information on the role of atmospheric transport.

  6. Dynamical interactions between the middle atmosphere and thermosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Pesnell, W. D.

    1992-01-01

    Based on modeling some interactions between the middle atmosphere and thermosphere are presented. The interactions studied include the thermospheric circulations driven by radiative and auroral heating affecting the O concentration and temperature of the upper mesosphere through the exchange of chemical energy. Considering Kellog's mechanism, an interaction between the mesosphere and thermosphere that is driven by Joule heating is discussed.

  7. Nonlinear dynamics of global atmospheric and Earth-system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel

    1991-01-01

    General Circulation Model (GCM) studies of the atmospheric response to change boundary conditions are discussed. Results are reported on an extensive series of numerical studies based on the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) general circulation model. In these studies the authors determined the response to systematic changes in atmospheric CO2 ranging from 100 to 1000 ppm; to changes in the prescribed sea surface temperature (SST) in the Gulf of Mexico, such as occurred during the deglaciation phase of the last ice age; to changes in soil moisture over North America; and to changes in sea ice extent in the Southern Hemisphere. Study results show that the response of surface temperature and other variables is nearly logarithmic, with lower levels of CO2 implying greater sensitivity of the atmospheric state to changes in CO2. It was found that the surface temperature of the Gulf of Mexico exerts considerable control over the storm track and behavior of storm systems over the North Atlantic through its influence on evaporation and the source of latent heat. It was found that reductions in soil moisture can play a significant role in amplifying and maintaining North American drought, particularly when a negative soil moisture anomaly prevails late in the spring.

  8. Dynamic evolution of coherent vortex dipole in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Li, Jinhong; Zeng, Jun

    2017-01-01

    The analytical expression for the cross-spectral density function of Gaussian Schell-model (GSM) beams with coherent vortex dipole (CVD) propagating through atmospheric turbulence is derived, which enables us to study the evolution process of CVD propagating through atmospheric turbulence, where the influences of the beams parameters and atmospheric turbulence parameters on the ratio of critical off-axis distance to the waist width are stressed. It shows that the evolution process of the CVD depends on the off-axis distance. The larger the off-axis distance is, the more the number of CVD is. When the off-axis distance is zero, the position of coherent vortices with positive and negative topological charge of CVD propagating through atmospheric turbulence is always symmetry. When the off-axis distance is big enough, compared with the situation at source plane, the orientation of the positive coherent vortex of inherent CVD and negative coherent vortex of that rotates 180° in the far field. The larger the structure constant and the waist width are, as well as the smaller the spatial correlation length and the inner scale are, the smaller the ratio ac/w0 is. Besides, the ratio ac/w0 will no longer change when the spatial correlation length or the inner scale increases to a certain value, whereas the outer scale has no effect on the ratio.

  9. Modeling the Atmospheric Dynamics within and Above Vegetation Layers

    Treesearch

    Warren E. Heilman; John Zasada

    2000-01-01

    A critical component of any silvicultural treatment is the creation of suitable microclimatic conditions for desired plant and animal species. One of the most useful tools for examining the microclimatic implications of different vegetation treatments is the use of atmospheric boundary-layer models that can simulate resulting micrometeorological conditions within and...

  10. Using the Internet to Disseminate Educational Material on Atmospheric Composition Change in ACCENT

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2005-12-01

    ACCENT (2004-08) is a Network of Excellence in Atmospheric Composition Change in Framework Programme VI of the European Union (www.accent-network.org). The task "Training and Education" aims at preparing the next generation of atmospheric scientists (up to 3 years after completion of a Ph.D.) for the future of scientific endeavour in the field. Educational events, courses, and training workshops will be offered both on subjects in the field of atmospheric composition change and on essential skills (e.g., communication, networking, interdisciplinarity), and will be paralleled by leadership sessions and Science Cafes to increase the expertise to a common level across Europe (including Accession countries). Integration of female scientists, and (young) scientists from newly associated and emerging countries will be realized through specific schemes (e.g., mentoring, fellowships). Training and Education in ACCENT also aims at triggering the use of New Information and Communication Technologies (NICT). Examples will be presented on the varied use of NICT to disseminate educational material on atmospheric composition change, both at the undergraduate and at the postgraduate level, and to teachers.

  11. Composite Higgs Dynamics on the Lattice

    NASA Astrophysics Data System (ADS)

    Pica, Claudio; Drach, Vincent; Hansen, Martin; Sannino, Francesco

    2017-03-01

    We investigate the spectrum of the SU(2) gauge theory with Nf = 2 flavors of fermions in the fundamental representation, in the continuum, using lattice simulations. This model provides a minimal template which has been used for different strongly coupled extensions of the Standard Model ranging from composite (Goldstone) Higgs models to intriguing types of dark matter candidates, such as the SIMPs. Here we will focus on the composite Goldstone Higgs paradigm, for which this model provides a minimal UV complete realization in terms of a new strong sector with fermionic matter. After introducing the relevant Lattice methods used in our simulations, we will discuss our numerical results. We show that this model features a SU(4)/Sp(4) SO(6)/SO(5) flavor symmetry breaking pattern, and estimate the value of its chiral condensate. Finally, we present our results for the mass spectrum of the lightest spin one and zero resonances, analogue to the QCD ρ, a1, σ η', a0, resonances, which are relevant for searches of new, exotic resonances at the LHC.

  12. Dynamics, transport and photochemistry in the middle atmosphere of the southern hemisphere. Proceedings.

    NASA Astrophysics Data System (ADS)

    O'Neill, A.

    The workshop was the third one held as part of the Middle Atmosphere in the Southern Hemisphere (MASH) project, an international effort to learn more about dynamics, transport and photochemistry in the middle atmosphere of the southern hemisphere. Before the discovery that, during recent years, a dramatic thinning of the ozone layer takes place over Antarctica in spring - the "ozone hole" - the middle atmosphere of the southern hemisphere had received much less attention than that of the northern hemisphere from meteorologists and atmospheric chemists. The MASH project was instituted to remedy this comparative lack of interest.

  13. Progressive failure of large deformation composites under dynamic tensile loading

    NASA Astrophysics Data System (ADS)

    Xing, Liqun

    The applications of polymer based composite materials in structural components under dynamic loading have increased dramatically. The accurate understanding and modeling of the material mechanical behavior is the basis for the composite structure design and analysis. This research was designed to investigate the progressive failure nature of woven polymer-based composites under dynamic tensile loading conditions. A plain-woven E-glass/vinyl ester composite was selected and a generalized anisotropic material characterization procedure was developed. Off-axial tensile dynamic loading experiments with different strain rates and temperature was conducted. A nonlinear and rate dependent constitutive model used for the polymer-based composites under tensile dynamic tensile loading was constructed. The comparison shows a good match with testing data and a good prediction of stress to failure values. A hybrid method that combined the classical laminate theory with material microstructure analysis was presented to model the large strain to failure phenomenon. A single material parameter failure criteria based on Monkman-Grant concept was built to represent the materials anisotropic and rate dependency natural for tensile loading. And the strength concept based on the material constitution relationship and failure criteria was established to for structure analyses.

  14. [Quantitative estimation source of urban atmospheric CO2 by carbon isotope composition].

    PubMed

    Liu, Wei; Wei, Nan-Nan; Wang, Guang-Hua; Yao, Jian; Zeng, You-Shi; Fan, Xue-Bo; Geng, Yan-Hong; Li, Yan

    2012-04-01

    To effectively reduce urban carbon emissions and verify the effectiveness of currently project for urban carbon emission reduction, quantitative estimation sources of urban atmospheric CO2 correctly is necessary. Since little fractionation of carbon isotope exists in the transportation from pollution sources to the receptor, the carbon isotope composition can be used for source apportionment. In the present study, a method was established to quantitatively estimate the source of urban atmospheric CO2 by the carbon isotope composition. Both diurnal and height variations of concentrations of CO2 derived from biomass, vehicle exhaust and coal burning were further determined for atmospheric CO2 in Jiading district of Shanghai. Biomass-derived CO2 accounts for the largest portion of atmospheric CO2. The concentrations of CO2 derived from the coal burning are larger in the night-time (00:00, 04:00 and 20:00) than in the daytime (08:00, 12:00 and 16:00), and increase with the increase of height. Those derived from the vehicle exhaust decrease with the height increase. The diurnal and height variations of sources reflect the emission and transport characteristics of atmospheric CO2 in Jiading district of Shanghai.

  15. Dynamics of turbulent jets in the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Bernstein, Joseph Jinmoon

    Quasi-zonal jets exist in both the mid-latitude atmosphere and ocean. These jets support a high eddy variance constituting a state of geostrophic turbulence. In addition to the turbulence, there is low frequency variability (LFV) which is not periodic. In the ocean it manifests as the zonal growth and collapse of the jet with a decadal timescale. In the atmosphere large meridional velocities occur producing blocking patterns which frequently persist for weeks. This work advances the idea that the mechanism for the origin of the LFV in both the atmosphere and ocean is eddy/mean flow interactions. In order to analyze these interactions the method of Stochastic Structural Stability Theory (SSST) is used. In the implementation of SSST used in this work the flow equations are split into separate sets governing the fast and slow timescale and a stochastic turbulence model is used to parameterize the nonlinear eddy-eddy interactions in the fast variable equation set. The slow equation is then forced by turbulent fluxes coupling the two together. SSST results in a set of nonlinear deterministic equations describing the interaction between the eddies and mean flow. In the oceanic literature there are two opposing theories concerning the origin of LFV. One claims that turbulent eddy/mean flow interactions cause LFV while the other claims a homoclinic bifurcation of the laminar flow is the origin. Our calculations show that the LFV is produced by a homoclinic bifurcation arising from eddy mean flow interactions providing a framework in which both theories have a role. In the mid-latitude atmosphere the spatial structure of LFV is explained by SSST, but temporally irregular behavior is not found for realistic parameter ranges. However, if assumptions used in the derivation of SSST are relaxed then stochastic fluctuations arise. It is shown that these fluctuations are capable of reproducing the temporal variability of blocking seen in the atmosphere.

  16. The Dynamics and Structure of Titan's Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation. The origin and maintenance of these superrotating atmospheres is not well understood, but Titan has a strong seasonal modulation in the middle atmosphere, and the seasonal changes in the winds may offer clues. The pole in winter and early spring is characterized by temperatures 20-30 K cooler at 100-170 km than those at low latitudes, and strong circumpolar winds as high as 190 m/s at 200-250 km. At these levels the polar region is characterized by enhanced concentrations of several organic gases, and also detectable condensates. All this suggests that the polar vortex provides a mixing barrier between winter polar and lower-latitude air masses, analogous to the winter polar vortices on Earth. Because the concentrations of organic gases increase with altitude in the middle atmosphere, the observed enhancements suggest subsidence over the winter pole. Consistent with this are the observed temperatures approx.200 K at the winter-polar stratopause (280 km), making it the warmest part of the atmosphere. The warm stratopause likely results from adiabatic heating associated with the subsidence. Recent observations in late northern winter and early spring indicate that the warm anomaly at the winter-polar stratopause is weakening, and the strong zonal winds are weakening. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by 4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude.

  17. Advances in geophysics. Volume 28 - issues in atmospheric and oceanic modeling. Part A - climate dynamics

    SciTech Connect

    Manabe, S.

    1985-01-01

    Papers are presented on large-scale eddies and the general circulation of the troposphere; the role of barotropic energy conversions in the general circulation; balance conditions in the earth's climate system, climate sensitivity; CO2 and hydrology; modeling of paleoclimates; and the southern oscillation and El Nino. Topics treated include the stratospheric dynamics of the middle atmosphere, wave-mean-flow interaction in the middle atmosphere, radiative-dynamical interactions in the middle atmosphere, and a mechanistic interpretation of stratospheric tracer transport. Consideration is given to the general circulation of Venus, and Jovian and comparative atmospheric modeling. Also discussed are the modeling of ocean circulation, tropical oceanography, the simulation of mesoscale ocean variability in midlatitude gyres, modeling circulation and mixing in estuaries and coastal oceans, and the modeling of sea-ice dynamics.

  18. Extracting Compositional Variation from THEMIS Data for Features with Large Topography on Mars Via Atmospheric Equalization

    NASA Technical Reports Server (NTRS)

    Anderson, F. S.; Drake, J. S.; Hamilton, V. E.

    2005-01-01

    We have developed a means of equalizing the atmospheric signature in Mars Odyssey Thermal Emission Imaging System (THEMIS) infrared data over regions with large topography such as the Valles Marineris (VM). This equalization allows for the analysis of compositional variations in regions that previously have been difficult to study because of the large differences in atmospheric path length that result from large changes in surface elevation. Specifically, our motivation for this study is to examine deposits that are small at the scales observable by the Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor, but which are more readily resolved with THEMIS.

  19. SIMULATION OF SUMMER-TIME DIURNAL BACTERIAL DYNAMICS IN THE ATMOSPHERIC SURFACE LAYER

    EPA Science Inventory

    A model was prepared to simulate the observed concentration dynamics of culturable bacteria in the diurnal summer atmosphere at a Willamette River Valley, Oregon location. The meteorological and bacterial mechanisms included in a dynamic null-dimensional model with one-second tim...

  20. SIMULATION OF SUMMER-TIME DIURNAL BACTERIAL DYNAMICS IN THE ATMOSPHERIC SURFACE LAYER

    EPA Science Inventory

    A model was prepared to simulate the observed concentration dynamics of culturable bacteria in the diurnal summer atmosphere at a Willamette River Valley, Oregon location. The meteorological and bacterial mechanisms included in a dynamic null-dimensional model with one-second tim...

  1. How atmospheric CO2 concentrations can affect the hydrogen isotope composition of plant organic compounds

    NASA Astrophysics Data System (ADS)

    Cormier, M. A.; Werner, R. A.; Kahmen, A.

    2016-12-01

    In contrast to the stable carbon, nitrogen and oxygen isotope composition of plant materials, the hydrogen isotope composition of plant organic compounds has not yet been established as a tool in ecological or biogeochemical research. With the development of new analytical instruments that allow the hydrogen isotope analysis of selected plant compounds there is, however, a growing interest to explore the power of hydrogen isotopes as tools for ecological and biogeochemical research. In my presentation, I will summarize recent works from greenhouse experiments showing how, mechanistically, the CO2 concentrations in the atmosphere can affect the hydrogen isotope composition of lipids and cellulose via the carbon and energy metabolism in plants: Our experiments revealed that plants growing under lower atmospheric CO2 concentrations (i.e. 140 ppm) are generally 2H enriched compared to plants growing in contemporary and even higher atmospheric CO2 concentrations (i.e. 400 and 800 ppm). We were able to identify various biochemical processes during the biosynthesis of plant tissue that contribute to these patterns and hope that this will help to establish hydrogen isotope composition of plant derived compounds as a robust proxy for the carbon and energy metabolism in plants that could serve as an important new tool in plant ecology, biogeochemistry and paleoclimatology. This new insight in the biosynthetic fractionation of hydrogen isotopes in plants might also explain a large amount of the scatter observed when looking at the relation between the precipitation and the leaf wax n-alkanes hydrogen isotope composition. This might be particularly relevant for paleo-hydrological studies using hydrogen isotopes in geological transitions where the atmospheric CO2 concentrations vary significantly such as during the glacial-interglacial transitions.

  2. Minor Sulfur Isotope Constraints on the composition of Earth's Archean atmosphere

    NASA Astrophysics Data System (ADS)

    Claire, M.

    2016-12-01

    Minor sulfur isotope anomalies in the sedimentary record are direct recorders of ancient chemical reactions that occurred in the atmosphere, and therefore form the most direct proxy for Archean atmospheric composition. The mere presence of mass-independently fractionated sulfur isotopes (MIF-S) in the rock record has resolved nearly a century's worth of debate by constraining atmospheric oxygen to trace levels prior to 2.4 billion years ago, and indirectly indicates the presence of a dominant reducing gas, likely H2 or CH4. The MIF-S database has grown substantially in the past decade, and reveals complex time- and facies-dependent changes in MIF-S magnitudes. The structure within the sedimentary MIF-S record suggests that constraints beyond this simple "on-off" switch for atmospheric O2 are possible once we understand the mechanisms that generate and preserve the signal in the rock record. Recently, I proposed an initial quantitative framework for predictions of atmospheric MIF-S [1], but concluded that new measurements of MIF-S generation mechanisms were needed to provide robust constraints. Since then, identification of MIF-S arising from SO2 photoexcitation [2], and updated absorption cross-sections for SO2 and SO [3-4] provide critical new ground-truth on all 4 isotopes of sulfur. Furthermore, breakthroughs in coupled photochemical-climate modeling have enabled better predictions of UV transparency within hazy atmospheres [5] such as those that might have dominated in the Archean [6-8]. I will present 1-D photochemical modeling results based on these new fundamental constraints, in comparison with MIF-S data from the Archean, to interpret the steady-state composition of the Archean atmosphere and time-dependent perturbations to it. In particular, Δ36S/Δ33S resulting from perturbations to atmospheric species will be discussed as a key tool for constraining the composition of the reducing atmosphere. [1] Claire et al. (2014) GCA; [2] Whitehill et al., PNAS

  3. Exploration of the link between Emiliania huxleyi bloom dynamics and aerosol fluxes to the lower Atmosphere

    NASA Astrophysics Data System (ADS)

    Trainic, M.

    2013-12-01

    shells are emitted as aerosols, but also that aerosol type and therefore chemical composition, microphysical and optical properties depend on the stage of the bloom growth. Unraveling the atmospheric signature of algal bloom dynamics in the ocean will provide novel insights into its ecological and climatic roles.

  4. Atmospheric Dynamics on Uranus in the millimeter and sub-millimeter

    NASA Astrophysics Data System (ADS)

    Schonwald, Anna; Hofstadter, Mark; Butler, Bryan J.; Gurwell, Mark A.; Moullet, Arielle

    2016-10-01

    Characterizing the atmospheric dynamics of Uranus is important to understand its structure, evolution, and energetics. In addition, most of the exoplanets discovered to date are roughly the same size and mass as our solar system's ice giants, therefore a fuller understanding of Uranus will aid in the study of exoplanets. Most observations of Uranus's atmospheric dynamics are derived from infrared observations, but these observations probe to a depth of only a few bars. In contrast, radio wavelength observations can probe up to tens of bars. Early cm-wavelength observations in the 1980's and 1990's from the Very Large Array (VLA) showed enhanced brightness temperatures at the South Pole [1], inferred to be due to a deep Hadley cell circulation [2]. Observations with the Submillimeter Array (SMA) hinted at similar structure, but the signal-to-noise ratio was limiting [3]. The vertical extent of this Hadley cell is an important parameter and can help our understanding of the the circulation itself and the chemical species involved in that circulation; mm-wavelength observations similar to those from the VLA would help determine this. Using the Atacama Large Millimeter Array (ALMA), a sensitive array for mm and submm-wavelength observations, the vertical extent of this circulation can be constrained. We utilized publicly available calibration data at wavelengths of 0.8 and 1.3 mm from October 2011 to December 2012 and combined them to make the most sensitive images of Uranus to date at these wavelengths. Due to the sensitivity of these wavelengths at the 1-5 bar depth on Uranus, and the ability to express variations of brightness temperature latitudinally, we see clear brightness temperature enhancements at the North Pole at both wavelengths and hints of similar enhancements at far southern latitudes. This indicates that the circulation penetrates at least as high as 1 bar. We will discuss the observed features' implications for the composition and temperature

  5. Dynamic initiation and propagation of cracks in unidirectional composite plates

    NASA Astrophysics Data System (ADS)

    Coker, Demirkan

    Dynamic crack growth along weak planes is a significant mode of failure in composites and other layered/sandwiched structures and is also the principal mechanism of shallow crustal earthquakes. In order to shed light on this phenomenon dynamic crack initiation and propagation characteristics of a model fiber-reinforced unidirectional graphite/epoxy composite plate was investigated experimentally. Dynamic fracture experiments were conducted by subjecting the composite plates to in-plane, symmetric and asymmetric, impact loading. The lateral shearing interferometric technique of coherent gradient sensing (CGS) in conjunction with high-speed photography was used to visualize the failure process in real time. It was found that mode-I cracks propagated subsonically with crack speeds increasing to the neighborhood of the Rayleigh wave speed of the composite. Also in mode-I, the dependence of the dynamic initiation fracture toughness on the loading rate was determined and was found to be constant for low loading rates and to increase rapidly above K˙dI>10 5 . The dynamic crack propagation toughness, KID, was observed to decrease with crack tip speed up to the Rayleigh wave speed of the composite. For asymmetric, mode-II, types of loading the results revealed highly unstable and intersonic shear-dominated crack growth along the fibers. These cracks propagated with unprecedented speeds reaching 7400 m/s which is the dilatational wave speed of the composite along the fibers. For intersonic crack growth, the interferograms, featured a shock wave structure typical of disturbances traveling with speeds higher than one of the characteristic wave speeds in the solid. In addition high speed thermographic measurements are conducted that show concentrated hot spots behind the crack tip indicating non-uniform crack face frictional contact. In addition, shear dominated dynamic crack growth is investigated along composite/Homalite interfaces subjected to impact loading. The crack

  6. Plasma dynamics and energetics in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard

    1992-01-01

    Prominence condensation and support, the dynamics of coronal loops, and streamer structure and disconnection are briefly discussed. Prominence condensation and magnetic levitation in a coronal loop and simulations of coronal disconnection events are discussed.

  7. Mechanical properties of kenaf composites using dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Loveless, Thomas A.

    Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.

  8. Dynamics, winds, circulation and turbulence in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Counselman, C. C., III; Pettengill, G.; Shapiro, I. I.; Hansen, J.; Travis, L.; Limaye, S. S.; Suomi, V. E.; Seiff, A.; Taylor, F.

    1977-01-01

    With the possible exception of the lowest one or two scale heights, the dominant mode of circulation of Venus' atmosphere is a rapid, zonal, retrograde motion. Global albedo variations in the ultraviolet may reflect planetary scale waves propagating relative to the zonal winds. Other special phenomena such as cellular convection in the subsolar region and internal gravity waves generated in the interaction of the zonal circulation with the subsolar disturbance may also be revealed in ultraviolet imagery of the atmosphere. We discuss the contributions of experiments on the Orbiter and Entry Probes of Pioneer Venus toward unravelling the mystery of the planet's global circulation and the role played by waves, instabilities and convection therein

  9. Lidar studies of atmospheric dynamics near polar mesopause

    NASA Astrophysics Data System (ADS)

    She, C. Y.; Vance, Joe D.; Williams, B. P.; Krueger, David A.; Moosmüller, Hans; Gibson-Wilde, Dorothy; Fritts, Dave

    Global change, space weather, and their possible adverse impacts on human activities are not only of scientific interest, but also of great public concern. Since the Arctic middle and upper atmosphere exhibits significant sensitivity to internal and external perturbations, systematic studies at high latitudes have become a scientific priority.Several international research programs are being conducted at the Arctic Light Detection and Ranging Observatory for Middle Atmosphere Research (ALOMAR), which was established at Andøya, Norway (69°N, 16°E) in 1994 to perform regular Arctic light detection and ranging (lidar) observations in tandem with other radio and optical instrumentation, as well as with in situ rocket and balloon measurements [von Zahn, 1997].

  10. Dynamics of the middle atmosphere as observed by the ARISE project

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth

    2015-04-01

    The atmosphere is a complex system submitted to disturbances in a wide range of scales, including high frequency sources as volcanoes, thunderstorms, tornadoes and at larger scales, gravity waves from deep convection or wind over mountains, atmospheric tides and planetary waves. These waves affect the different atmospheric layers submitted to different temperature and wind systems which strongly control the general atmospheric circulation. The full description of gravity and planetary waves constitutes a challenge for the development of future models of atmosphere and climate. The objective of this paper is to present a review of recent advances obtained in this topic, especially in the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project

  11. CANOES II; Dynamics of Atmospheric Infrared Thermochemical Excitation. Volume 2

    DTIC Science & Technology

    1989-03-01

    4 8 which carried at least 6.5 eV internal energy, in their studies on the excitation of mercuric halides by N2 (A). The energy of the companion...as auroral precursors of infrared radiation ., 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION MUNCLASSIFIED/tINLIMITED...investigate chemiluminescent reactions of atmospherically important radiators which could significantly contribute to emissions in several important

  12. Ionospheric manifestations of earthquakes and tsunamis in a dynamic atmosphere

    NASA Astrophysics Data System (ADS)

    Godin, Oleg A.; Zabotin, Nikolay A.; Zabotina, Liudmila

    2015-04-01

    Observations of the ionosphere provide a new, promising modality for characterizing large-scale physical processes that occur on land and in the ocean. There is a large and rapidly growing body of evidence that a number of natural hazards, including large earthquakes, strong tsunamis, and powerful tornadoes, have pronounced ionospheric manifestations, which are reliably detected by ground-based and satellite-borne instruments. As the focus shifts from detecting the ionospheric features associated with the natural hazards to characterizing the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it becomes imperative to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard. The relation between perturbations at the ground level and their ionospheric manifestations is strongly affected by parameters of the intervening atmosphere. In this paper, we employ the ray theory to model propagation of acoustic-gravity waves in three-dimensionally inhomogeneous atmosphere. Huygens' wavefront-tracing and Hamiltonian ray-tracing algorithms are used to simulate propagation of body waves from an earthquake hypocenter through the earth's crust and ocean to the upper atmosphere. We quantify the influence of temperature stratification and winds, including their seasonal variability, and air viscosity and thermal conductivity on the geometry and amplitude of ionospheric disturbances that are generated by seismic surface waves and tsunamis. Modeling results are verified by comparing observations of the velocity fluctuations at altitudes of 150-160 km by a coastal Dynasonde HF radar system with theoretical predictions of ionospheric manifestations of background infragravity waves in the ocean. Dynasonde radar systems are shown to be a promising means for monitoring acoustic-gravity wave activity and observing ionospheric perturbations due to earthquakes and tsunamis. We will discuss

  13. Composition of early planetary atmospheres - II. Coupled Dust and chemical evolution in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Cridland, A. J.; Pudritz, Ralph E.; Birnstiel, Tilman; Cleeves, L. Ilsedore; Bergin, Edwin A.

    2017-08-01

    We present the next step in a series of papers devoted to connecting the composition of the atmospheres of forming planets with the chemistry of their natal evolving protoplanetary discs. The model presented here computes the coupled chemical and dust evolution of the disc and the formation of three planets per disc model. Our three canonical planet traps produce a Jupiter near 1 AU, a Hot Jupiter and a Super-Earth. We study the dependence of the final orbital radius, mass, and atmospheric chemistry of planets forming in disc models with initial disc masses that vary by 0.02 M⊙ above and below our fiducial model (M_{disc,0} = 0.1 M_{⊙}). We compute C/O and C/N for the atmospheres formed in our three models and find that C/Oplanet ˜ C/O_{disc}, which does not vary strongly between different planets formed in our model. The nitrogen content of atmospheres can vary in planets that grow in different disc models. These differences are related to the formation history of the planet, the time and location that the planet accretes its atmosphere, and are encoded in the bulk abundance of NH3. These results suggest that future observations of atmospheric NH3 and an estimation of the planetary C/O and C/N can inform the formation history of particular planetary systems.

  14. Impact ejecta dynamics in an atmosphere - Experimental results and extrapolations

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1982-01-01

    It is noted that the impacts of 0.635-cm aluminum projectiles at 6 km/sec into fine pumice dust, at 1 atm, generate a ball of ionized gas behind an expanding curtain of upward moving ejecta. The gas ball forms a toroid which dissolves as it is driven along the interior of the ejecta curtain, by contrast to near-surface explosions in which a fireball envelops early-time crater growth. High frame rate Schlieren photographs show that the atmosphere at the base of the ejecta curtain is initially turbulent, but later forms a vortex. These experiments suggest that although small size ejecta may be decelerated by air drag, they are not simply lofted and suspended but become incorporated in an ejecta cloud that is controlled by air flow which is produced by the response of the atmosphere to the impact. The extrapolation of these results to large body impacts on the earth suggests such contrasts with laboratory experiments as a large quantity of impact-generated vapor, the supersonic advance of the ejecta curtain, the lessened effect of air drag due to the tenuous upper atmosphere, and the role of secondary cratering.

  15. Ablation Resistance of C/C Composites with Atmospheric Plasma-Sprayed W Coating

    NASA Astrophysics Data System (ADS)

    Zhou, Zhe; Wang, Yuan; Gong, Jieming; Ge, Yicheng; Peng, Ke; Ran, Liping; Yi, Maozhong

    2016-12-01

    To improve the ablation resistance of carbon/carbon (C/C) composites, tungsten (W) coating with thickness of 1.2 mm was applied by atmospheric plasma spraying. The antiablation property of the coated composites was evaluated by oxyacetylene flame ablation experiments. The phase composition of the coating was investigated by a combination of x-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectroscopy analysis. The ablation resistance of the coated C/C substrates was compared with that of uncoated C/C composites and C/C-CuZr composites after ablation for 30 s. The properties of the coated C/C composites after ablation time of 10, 30, 60, 90, 120, and 180 s were further studied. The results indicated that the mass and linear ablation rates of the W-coated C/C composites were lower than those of uncoated C/C or C/C-CuZr composites after ablation for 30 s. The coating exhibited heat stability after 120 s of ablation, with mass loss and linear ablation rates of 7.39 × 10-3 g/s and 3.50 × 10-3 mm/s, respectively. However, the W coating became ineffective and failed after ablation for 180 s. Three ablation regions could be identified, in which the ablation mechanism of the coating changed from thermochemical to thermophysical erosion to mechanical scouring with increasing ablation time.

  16. The microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Nenes, A.; DeLeon-Rodriguez, N.; Lathem, T. L.; Rodriguez-Rojas, L. M.; Barazesh, J.; Anderson, B. E.; Beyersdorf, A.; Ziemba, L. D.; Bergin, M. H.; Konstantinidis, K.

    2012-12-01

    The composition and prevalence of microorganisms in the middle to upper troposphere (8-15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. Here we report on the microbiome of low and high altitude air masses sampled onboard the NASA DC-8 platform during the 2010 Genesis and Rapid Intensification Processes (GRIP) campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses, before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25-1μm diameter range and were at least an order of magnitude more abundant compared to fungal cells, suggesting that bacteria represent an important and underestimated fraction of micron-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to utilize C1-C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms have developed adaptations to survive in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially profound impacts on the water cycle, clouds, and climate.

  17. Dynamic gold nanoparticle, polymer-based composites

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent; Junghans, Ann; Hayden, Steven; Majeski, Jaroslaw; CINT, Lujan Team

    2014-03-01

    Artificial polymer-based biomembranes may serve as a foundational architecture for the integration and spatial organization of metal nanoparticles forming functional nanocomposites. Nonionic triblock copolymer (PEO-PPO-PEO), lipid-based gels, containing Au nanoparticles (NPs) can be prepared by either external doping of the preformed nanoparticles or by in-situ reduction of Au 3+. Neutron reflectivity on quartz supported thin films of the Au NP -doped polymer-based biomembranes was used to determine the location of the Au. The nanoparticles were found to preferentially reside within the ethylene oxide chains located at the interface of the bulk water channels and the amphiphile bilayers. The embedded Au nanoparticles can act as localized heat sinks, inducing changes in the polymer conformation. The collective, thermally-triggered expansion and contraction of the EO chains modulate the mesophase structure of the gels. Synchrotron X-ray scattering (SAXS) was used to monitor mesophase structure as a function of both temperature and photo-irradiation. These studies represent a first step towards designingexternally-responsive polymer-nanoparticle composites.

  18. Composition, structure, and dynamics of the Illinois Ozark Hills Forest

    Treesearch

    Lisa M. Helmig; James S. Fralish

    2011-01-01

    In the mature oak-hickory ecosystem of the Illinois Ozark Hills, forest community composition, dynamics, and structure were studied to examine the extent of conversion to mesophytic species and eventually predict the broad threshold time of complete conversion. Tree, sapling, and seedling data were collected from 87 plots distributed throughout the region. Data for the...

  19. Trends in Mesospheric Dynamics and Chemistry: Simulations With a Model of the Entire Atmosphere

    NASA Astrophysics Data System (ADS)

    Brasseur, G. P.

    2005-05-01

    The cooling resulting from infrared CO2 radiative transfer is a major contribution to the energy budget of the middle atmosphere and thermosphere. The rapid increase of the atmospheric CO2 concentration resulting from anthropogenic emissions is therefore expected to lead, in general, to a substantial cooling in this height range. This can potentially be counteracted by heating due to absorption of near infrared radiation by CO2. Changes in ozone as a consequence of increasing methane and water vapor may also have an impact on the energy budget as dynamical changes caused by increased tropospheric temperatures. By means of numerical simulations with a general circulation and chemistry model of the entire atmosphere we will address the following questions: 1.) Can state-of-the-art atmospheric modeling explain the mesospheric temperature trends observed during the last decades? 2.)Which part of the temperature changes resulting from an increase of atmospheric CO2 is caused by local changes in the radiative budget and which part is influenced by remote dynamical effects? The model used is the newly developed Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA) that resolves the atmosphere from the Earth's surface up to about 250 km altitude, and is based on the 3-D dynamics from the ECHAM5 general circulation model and the chemistry scheme from MOZART-3. Results from different time slice experiment representative of years 1970 and 2000, and for a doubling of CO2 will be presented.

  20. Mission Objectives Of The Atmospheric Composition Related Sentinels S5p, S4, And S5

    NASA Astrophysics Data System (ADS)

    Ingmann, Paul; Veihelmann, Ben; Langen, Jorg; Meijer, Yasjka

    2013-12-01

    Atmospheric chemistry observations from space have been made for over 30 years, in the beginning mainly by US missions. These missions have always been motivated by the concern about a number of environmental issues. At present European instruments like GOME-2 on MetOp/EPS-A and -B and OMI on NASA's Aura are in space and, despite being designed for research purposes, perform routine observations. The space instruments have helped improving our understanding of processes that govern stratospheric ozone depletion, climate change and the transport of pollutants. However, long-term continuous time series of atmospheric trace gas data have been limited to stratospheric ozone and a few related species. According to current planning, meteorological satellites will maintain these observations over the next decade. They will also add some measurements of tropospheric trace gases critical for climate forcing. However, as their measurements have been motivated by meteorology, vertical sensitivities and accuracies are marginal for atmospheric chemistry applications. With the exception of stratospheric ozone, reliable long-term space-based monitoring of atmospheric constituents with quality attributes sufficient to serve atmospheric chemistry applications still need to be established. The need for a GMES atmospheric service (GAS), its scope and high level requirements were laid down in an orientation papers organised by the European Commission and then updated by an Implementation Group (IG) [1], backed by four working groups, advising the Commission on scope, architecture, in situ and space requirements. The goal of GAS is to provide coherent information on atmospheric variables in support of European policies and for the benefit of European citizens. Services cover air quality, climate change/forcing, stratospheric ozone and solar radiation. To meet the needs of the user community atmospheric composition mission concepts for GEO and LEO have been defined usually referred to

  1. Chemical Composition and Dynamics of the Upper Troposphere and the Lower Stratosphere: Overview of the Project

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Liu, C.; Huang, F.; Kyrola, E.; Liu, E.; Ialongo, I.; Zhang, Y.; Tiinanen, T.

    2014-11-01

    The DRAGON-3 cooperation study on the upper troposphere and the lower stratosphere (UTLS) is based on new satellite data and modern atmospheric models. The objectives of the project are: (i) assessment of sat-ellite data on chemical composition in UTLS, (ii) dy-namical and chemical structures of the UTLS and its variability, (iii) multi-scale variability of stratospheric ozone, (iv) climatology of the stratospheric aerosol layer and its variability, and (v) updated ozone climatology and its relation to tropopause/multiple tropopauses. In this paper, we present the main results of the project.

  2. Chemical Composition and Dynamics of the Upper Troposphere and the Lower Stratosphere: Overview of the Project

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Liu, C.; Huang, F.; Kyrola, E.; Liu, Y.; Ialongo, I.; Hakkarainen, J.; Zhang, Y.

    2016-08-01

    The DRAGON-3 cooperation study on the upper troposphere and the lower stratosphere (UTLS) is based on new satellite data and modern atmospheric models. The objectives of the project are: (i) assessment of satellite data on chemical composition in UTLS, (ii) dynamical and chemical structures of the UTLS and its variability, (iii) multi-scale variability of stratospheric ozone, (iv) climatology of the stratospheric aerosol layer and its variability, and (v) updated ozone climatology and its relation to tropopause/multiple tropopauses.In this paper, we present the main results of the project.

  3. Venus: chemical weathering of igneous rocks and buffering of atmospheric composition.

    PubMed

    Nozette, S; Lewis, J S

    1982-04-09

    Data from the Pioneer Venus radar mapper, combined with measurements of wind velocity and atmospheric composition, suggest that surface erosion on Venus varies with altitude. Calcium- and magnesium-rich weathering products are produced at high altitudes by gas-solid reactions with igneous minerals, then removed into the hotter lowlands by surface winds. These fine-grained weathering products may then rereact with the lower atmosphere and buffer the composition of the observed gases carbon dioxide, water vapor, sulfur dioxide, and hydrogen fluoride in some regions of the surface. This process is a plausible mechanism for the establishment in the lowlands of a calcium-rich mineral assemblage, which had previously been found necessary for the buffering of these species.

  4. Venus - Chemical weathering of igneous rocks and buffering of atmospheric composition

    NASA Technical Reports Server (NTRS)

    Nozette, S.; Lewis, J. S.

    1982-01-01

    Data from the Pioneer Venus radar mapper, combined with measurements of wind velocity and atmospheric composition, suggest that surface erosion on Venus varies with altitude. Calcium- and magnesium-rich weathering products are produced at high altitudes by gas-solid reactions with igneous minerals, then removed into the hotter lowlands by surface winds. These fine-grained weathering products may then rereact with the lower atmosphere and buffer the composition of the observed gases carbon dioxide, water vapor, sulfur dioxide, and hydrogen fluoride in some regions of the surface. This process is a plausible mechanism for the establishment in the lowlands of a calcium-rich mineral assemblage, which had previously been found necessary for the buffering of these species.

  5. Effect of rising atmospheric carbon dioxide concentration on the protein composition of cereal grain.

    PubMed

    Wroblewitz, Stefanie; Hüther, Liane; Manderscheid, Remy; Weigel, Hans-Joachim; Wätzig, Hermann; Dänicke, Sven

    2014-07-16

    The present study investigates effects of rising atmospheric CO2 concentration on protein composition of maize, wheat, and barley grain, especially on the fractions prolamins and glutelins. Cereals were grown at different atmospheric CO2 concentrations to simulate future climate conditions. Influences of two nitrogen fertilization levels were studied for wheat and barley. Enriched CO2 caused an increase of globulin and B-hordein of barley. In maize, the content of globulin, α-zein, and LMW polymers decreased, whereas total glutelin, zein, δ-zein, and HMW polymers rose. Different N supplies resulted in variations of barley subfractions and wheat globulin. Other environmental influences showed effects on the content of nearly all fractions and subfractions. Variations in starch-protein bodies caused by different CO2 treatments could be visualized by scanning electron microscopy. In conclusion, climate change would have impacts on structural composition of proteins and, consequently, on the nutritional value of cereals.

  6. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic.

    PubMed

    Mazankova, V; Torokova, L; Krcma, F; Mason, N J; Matejcik, S

    2016-11-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  7. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    NASA Astrophysics Data System (ADS)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-11-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  8. Constraints on the composition of the ancient terrestrial atmosphere and hydrosphere from fluid inclusion analysis

    NASA Astrophysics Data System (ADS)

    Marty, B.; Avice, G.; Burgess, R.

    2016-12-01

    The evolution of the hydrosphere and atmosphere during the first half of Earth's history is still largely unknown. We are currently investigating the compositions of these reservoirs from the analysis of fluid inclusions trapped in 3.5-2.7 Ga-old hydrothermal quartz. We specifically analyze noble gases and nitrogen which are conservative enough to have survived the long history of their host phases. The samples come from Archean terranes situated in North Pole, the Pilbara, NW Australia, and in the Barberton greenstone belt, South Africa. Their morphologies suggest that the quartz deposition was contemporary with terrane formation. They were selected on the basis of their ages determined by the Ar-Ar method. The results published by our group show that the noble gas isotopic composition of the Archean atmosphere was similar to the modern one, with the outstanding exception of xenon. This heavy noble gas experienced gradual isotopic fractionation through time, as a result of its preferential escape to space, which mechanism remains to be elucidated. In contrast, the isotope composition of atmospheric N was similar to the modern one, suggesting little, if any, loss of this element from the terrestrial atmosphere from 3.5 Ga to Present. The atmospheric partial pressure of N2 was likely to be comparable to, or lower than, the modern one, casting doubt on the possibility of enhanced pN2 as a mean to counterbalance the faint Sun energy flux. Here we shall newly report data on chlorine and potassium in fluid inclusions with, together with noble gases, suggest that the salinity of the Archean oceans was not very different from that of the modern seawater.

  9. Influence of atmospheric processes on the solubility and composition of iron in Saharan dust

    SciTech Connect

    Longo, Amelia F.; Feng, Yan; Lai, Barry; Landing, William M.; Shelley, Rachel U.; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D.

    2016-06-10

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  10. Influence of atmospheric processes on the solubility and composition of iron in Saharan dust

    DOE PAGES

    Longo, Amelia F.; Feng, Yan; Lai, Barry; ...

    2016-06-10

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation statemore » became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.« less

  11. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    PubMed

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  12. Influence of atmospheric processes on the solubility and composition of iron in Saharan dust

    SciTech Connect

    Longo, Amelia F.; Feng, Yan; Lai, Barry; Landing, William M.; Shelley, Rachel U.; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D.

    2016-06-10

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  13. Production, Isotopic Composition, and Atmospheric Fate of Biologically Produced Nitrous Oxide

    NASA Astrophysics Data System (ADS)

    Stein, Lisa Y.

    The anthropogenic production of greenhouse gases and their consequent effects on global climate have garnered international attention for years. A remaining challenge facing scientists is to unambiguously quantify both sources and sinks of targeted gases. Microbiological metabolism accounts for the largest source of nitrous oxide (N2O), mostly due to global conversion of land for agriculture and massive usage of nitrogen-based fertilizers. A most powerful method for characterizing the sources of N2O lies in its multi-isotope signature. This review summarizes mechanisms that lead to biological N2O production and how discriminate placement of 15N into molecules of N2O occurs. Through direct measurements and atmospheric modeling, we can now place a constraint on the isotopic composition of biological sources of N2O and trace its fate in the atmosphere. This powerful interdisciplinary combination of biology and atmospheric chemistry is rapidly advancing the closure of the global N2O budget.

  14. The Structure and Dynamics of Titan's Middle Atmosphere and Troposphere

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation. The origin and maintenance of these superrotating atmospheres is not well understood, but Titan has a strong seasonal modulation in the middle atmosphere, and the seasonal changes in the winds may offer clues. The pole in winter and early spring is characterized by temperatures 20-30 K cooler at 140-170 km than those at low latitudes, and strong circumpolar winds as high as 190 m/s at 200- 250 km. At these levels the polar region is characterized by enhanced concentrations of several organic gases, and also detectable condensates. All this suggests that the polar vortex provides a mixing barrier between winter polar and lower-latitude air masses, analogous to the polar ozone holes on Earth. Because the concentrations of organic gases increase with altitude in the middle atmosphere, the observed enhancements suggest subsidence over the winter pole. Consistent with this are the observed temperatures approximately 200 K at the winter-polar stratopause (280 km), making it the warmest part of the atmosphere. The warm stratopause likely results from adiabatic heating associated with the subsidence. Recent observations in late northern winter and early spring indicate that the warm anomaly at the winter-polar stratopause is weakening;. In contrast to the middle atmosphere, latitude contrasts in tropospheric temperatures are muted. During the northern winter season, they were approximately 5 K at the tropopause and 3 K or less near the surface, being coldest at high northern latitudes. This is understandable in terms of the long radiative relaxation times in the troposphere, compared to times that are much shorter than a season in the upper stratosphere and higher. Curiously, the transition between the small meridional contrast (and presumably seasonal variations) in temperatures observed in the troposphere and the large variations observed at higher

  15. The Structure and Dynamics of Titan's Middle Atmosphere and Troposphere

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation. The origin and maintenance of these superrotating atmospheres is not well understood, but Titan has a strong seasonal modulation in the middle atmosphere, and the seasonal changes in the winds may offer clues. The pole in winter and early spring is characterized by temperatures 20-30 K cooler at 140-170 km than those at low latitudes, and strong circumpolar winds as high as 190 m/s at 200- 250 km. At these levels the polar region is characterized by enhanced concentrations of several organic gases, and also detectable condensates. All this suggests that the polar vortex provides a mixing barrier between winter polar and lower-latitude air masses, analogous to the polar ozone holes on Earth. Because the concentrations of organic gases increase with altitude in the middle atmosphere, the observed enhancements suggest subsidence over the winter pole. Consistent with this are the observed temperatures approximately 200 K at the winter-polar stratopause (280 km), making it the warmest part of the atmosphere. The warm stratopause likely results from adiabatic heating associated with the subsidence. Recent observations in late northern winter and early spring indicate that the warm anomaly at the winter-polar stratopause is weakening;. In contrast to the middle atmosphere, latitude contrasts in tropospheric temperatures are muted. During the northern winter season, they were approximately 5 K at the tropopause and 3 K or less near the surface, being coldest at high northern latitudes. This is understandable in terms of the long radiative relaxation times in the troposphere, compared to times that are much shorter than a season in the upper stratosphere and higher. Curiously, the transition between the small meridional contrast (and presumably seasonal variations) in temperatures observed in the troposphere and the large variations observed at higher

  16. Molecular composition of atmospheric aerosols from Halley Bay, Antarctica, using ultra-high resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Brough, Neil; Rincon, Angela; Jones, Anna; Kalberer, Markus

    2016-04-01

    Antarctica is one of the few pristine places to study natural processes of atmospheric aerosols and anthropogenic impacts on the clean remote atmosphere. Although stratospheric aerosol in Antarctica has now been explored in some detail because of the ozone depletion phenomenon, tropospheric aerosol particles in Antarctica remain very little studied. The main goal of this work is to identify in detail the organic chemical composition of aerosol from Halley Bay station, which is located on the Brunt Ice Shelf floating on the Weddell Sea in Antarctica. In this study we characterise the molecular composition of aerosols from three seasons (summer, autumn and winter in 2012) using ultra-high resolution mass spectrometry (UHRMS). The technique provides high accuracy and high mass resolving power that allows determining unambiguous number of organic compounds present in complex organic mixtures (Noziere et al., 2015). The molecular composition interpretation was facilitated using visualisation methods (e.g. double bond equivalent, Van Krevelen diagrams, Kendrick mass analysis, and carbon oxidation state), which allowed to identify patterns, such as differences between sampling times and atmospheric processes. The majority of the identified compounds were attributed to nitrogen and sulphur containing species which exhibited very strong seasonal trends. Relatively large fraction (up to 30% of the total number of molecules) of these species contained very low hydrogen to carbon ratios (below 1) indicating that the site is impacted by anthropogenic emissions. Influences of the meteorological parameters and air mass trajectories on the molecular composition are discussed. Nozière et al., The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chem. Rev., 115, 3920-3983, 2015.

  17. Dynamical Behavior of Meteor in AN Atmosphere: Theory vs Observations

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria

    Up to now the only quantities which directly follow from the available meteor observations are its brightness, the height above sea level, the length along the trajectory, and as a consequence its velocity as a function of time. Other important parameters like meteoroid's mass, its shape, bulk and grain density, temperature remain unknown and should be found based on physical theories and special experiments. In this study I will consider modern methods for evaluating meteoroid parameters from observational data, and some of their applications. The study in particular takes an approach in modelling the meteoroids' mass and other properties from the aerodynamical point of view, e.g. from the rate of body deceleration in the atmosphere as opposed to conventionally used luminosity [1]. An analytical model of the atmospheric entry is calculated for registered meteors using published observational data and evaluating parameters describing drag, ablation and rotation rate of meteoroid along the luminous segment of the trajectory. One of the special features of this approach is the possibility of considering a change in body shape during its motion in the atmosphere. The correct mathematical modelling of meteor events is necessary for further studies of consequences for collisions of cosmic bodies with the Earth [2]. It also helps us to estimate the key parameters of the meteoroids, including deceleration, pre-entry mass, terminal mass, ablation coefficient, effective destruction enthalpy, and heat-transfer coefficient. With this information, one can use models for the dust influx onto Earth to estimate the number of meteors detected by a camera of a given sensitivity. References 1. Gritsevich M. I. Determination of Parameters of Meteor Bodies based on Flight Obser-vational Data // Advances in Space Research, 44, p. 323-334, 2009. 2. Gritsevich M. I., Stulov V. P. and Turchak L. I. Classification of Consequences for Col-lisions of Natural Cosmic Bodies with the Earth

  18. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Mirin, A; Serban, R; Kosovic, B

    2005-03-14

    This is a collaborative LDRD Exploratory Research project involving four directorates--Energy & Environment, Engineering, NAI and Computation. The project seeks to answer the following critical questions regarding atmospheric releases--''How much material was released? When? Where? and What are the potential consequences?'' Inaccurate estimation of the source term can lead to gross errors, time delays during a crisis, and even fatalities. We are developing a capability that seamlessly integrates observational data streams with predictive models in order to provide the best possible estimates of unknown source term parameters, as well as optimal and timely situation analyses consistent with both models and data. Our approach utilizes Bayesian inference and stochastic sampling methods (Markov Chain and Sequential Monte Carlo) to reformulate the inverse problem into a solution based on efficient sampling of an ensemble of predictive simulations, guided by statistical comparisons with data. We are developing a flexible and adaptable data-driven event-reconstruction capability for atmospheric releases that provides (1) quantitative probabilistic estimates of the principal source-term parameters (e.g., the time-varying release rate and location); (2) predictions of increasing fidelity as an event progresses and additional data become available; and (3) analysis tools for sensor network design and uncertainty studies. Our computational framework incorporates multiple stochastic algorithms, operates with a range and variety of atmospheric models, and runs on multiple computer platforms, from workstations to large-scale computing resources. Our final goal is a multi-resolution capability for both real-time operational response and high fidelity multi-scale applications.

  19. On the role of internal atmospheric variability in ENSO dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    In the first part of this dissertation we use an Intermediate Coupled Model to develop a quantitative test to validate the null hypothesis that low-frequency variation of ENSO predictability may be caused by stochastic processes. Three "perfect model scenario" prediction experiments are carried out, where the model is forced either solely by stochastic forcing or additionally by decadal-varying backgrounds with different amplitudes. These experiments indicate that one can not simply reject the null hypothesis unless the decadal-varying backgrounds are unrealistically strong. The second part of this dissertation investigates the extent to which internal atmospheric variability (IAV) can influence ENSO variation, and examines the underlying physical mechanisms linking IAV to ENSO variability with the aid of a newly developed coupled model consisting of an atmospheric general circulation model and a Zebiak-Cane type of reduced gravity ocean model. A novel noise filter algorithm is developed to suppress IAV in the coupled model. A long control coupled simulation, where the filter is not employed, demonstrates that the coupled model captures many statistical properties of the observed ENSO behavior. It further shows that the development of El Nino is linked to a boreal spring phenomenon referred to as the Pacific Meridional Model (MM). The MM, characterized by an anomalous north-south SST gradient and anomalous surface circulation in the northeasterly trade regime with maximum variance in boreal spring, is inherent to thermodynamic ocean-atmosphere coupling in the Intertropical Convergence Zone latitude. The Northern Pacific Oscillation provides one source of external forcing to excite it. This result supports the hypothesis that the MM works as a conduit for extratropical atmospheric influence on ENSO. A set of coupled simulations, where the filter is used to suppress IAV, indicate that reducing IAV in both wind stress and heat flux substantially weakens ENSO variance

  20. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer.

    PubMed

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D; Vicars, William; Alexander, Becky; Achterberg, Eric P

    2013-10-29

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.

  1. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer

    PubMed Central

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D.; Vicars, William; Alexander, Becky; Achterberg, Eric P.

    2013-01-01

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201

  2. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer

    NASA Astrophysics Data System (ADS)

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D.; Vicars, William; Alexander, Becky; Achterberg, Eric P.

    2013-10-01

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.

  3. Phase stability and dynamics of entangled polymer-nanoparticle composites.

    PubMed

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A

    2015-06-05

    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  4. Phase stability and dynamics of entangled polymer–nanoparticle composites

    PubMed Central

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.

    2015-01-01

    Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host. PMID:26044723

  5. Phase stability and dynamics of entangled polymer-nanoparticle composites

    SciTech Connect

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.

    2015-06-10

    Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  6. Tracing changes in atmospheric sources of lead contamination using lead isotopic compositions in Australian red wine.

    PubMed

    Kristensen, Louise Jane; Taylor, Mark Patrick; Evans, Andrew James

    2016-07-01

    Air quality data detailing changes to atmospheric composition from Australia's leaded petrol consumption is spatially and temporally limited. In order to address this data gap, wine was investigated as a potential proxy for atmospheric lead conditions. Wine spanning sixty years was collected from two wine regions proximal to the South Australian capital city, Adelaide, and analysed for lead concentration and lead and strontium isotopic composition for source apportionment. Maximum wine lead concentrations (328 μg/L) occur prior to the lead-in-air monitoring in South Australia in the later 1970s. Wine lead concentrations mirror available lead-in-air measurements and show a declining trend reflecting parallel reductions in leaded petrol emissions. Lead from petrol dominated the lead in wine ((206)Pb/(207)Pb: 1.086; (208)Pb/(207)Pb: 2.360) until the introduction of unleaded petrol, which resulted in a shift in the wine lead isotopic composition closer to vineyard soil ((206)Pb/(207)Pb: 1.137; (208)Pb/(207)Pb: 2.421). Current mining activities or vinification processes appear to have no impact with recent wine samples containing less than 4 μg/L of lead. This study demonstrates wine can be used to chronicle changes in environmental lead emissions and is an effective proxy for atmospherically sourced depositions of lead in the absence of air quality data.

  7. An Exact Solvable Model of Rocket Dynamics in Atmosphere

    ERIC Educational Resources Information Center

    Rodrigues, H.; Pinho, M. O.; Portes, D., Jr.; Santiago, A.

    2009-01-01

    In basic physics courses at undergraduate level, the dynamics of self-propelled bodies is presented as an example of momentum conservation law applied to systems with time-varying mass. However, is often studied the simple situation of free motion or the motion under the action of a constant gravitational field. In this work, we investigate the…

  8. An Exact Solvable Model of Rocket Dynamics in Atmosphere

    ERIC Educational Resources Information Center

    Rodrigues, H.; Pinho, M. O.; Portes, D., Jr.; Santiago, A.

    2009-01-01

    In basic physics courses at undergraduate level, the dynamics of self-propelled bodies is presented as an example of momentum conservation law applied to systems with time-varying mass. However, is often studied the simple situation of free motion or the motion under the action of a constant gravitational field. In this work, we investigate the…

  9. The Atmospheric Dynamics of Jupiter, Saturn, and Titan

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    2009-01-01

    Comparative studies of Jupiter and Saturn often emphasize their similarities, but recent observations have highlighted important differences. The stratospheres of both planets exhibit an equatorial oscillation reminiscent of that in Earth's middle atmosphere. Jupiter's oscillation has a 4-5 year period, not linked to its season, and it has been modeled as an analog to the terrestrial quasi-biennial oscillation, driven by the stresses associated with vertically propagating waves. Saturn's equatorial oscillation is nearly semiannual, but wave activity may still be a driver. Jupiter's internal rotation rate is inferred from its steady modulated radio emission. Saturn's internal rotation is more enigmatic. It has been inferred from the modulation of the body's kilometric radio emission, but this period has varied by 1% over the last 25 years. Saturn's equatorial winds are also puzzling, as those inferred from cloud tracking by Cassini and more recent HST observations are weaker than those from Voyager. Whether this is attributable to a difference in altitudes of the tracked clouds in winds with vertical shear or a real temporal change in the winds is not known. Both winter and summer poles of Saturn exhibit very compact circumpolar vortices with warm cores, indicating subsidence. Titan's middle atmosphere is characterized by global cyclostrophic winds, particularly the strong circumpolar vortex in the winter hemisphere. In many ways, the spatial distribution of temperature, gaseous constituents, and condensates is reminiscent of conditions in terrestrial winter vortices, albeit with different chemistry. The meridional contrast in Titan's tropospheric temperatures is small, only a few kelvins.

  10. The Structure and Dynamics of Titan's Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Achterberg, R. K.

    2008-01-01

    Titan's middle atmosphere is characterized by cyclostrophic winds and strong seasonal modulation. Cassini CIRS observations, obtained in northern winter, indicate that the stratosphere near l mbar is warmest at low latitudes, with the South Pole a few degrees colder and the North Pole approximately 20 K colder. Associated with the cold northern temperatures are strong circumpolar winds with speeds as high as 190 m/s. Within this vortex, the mixing ratios of several organic gases are enhanced relative to those at low latitudes. Comparison with Voyager thermal infrared measurements, obtained 25 years ago in northern spring, suggests that the enhancement currently observed will increase as the winter progresses. The stratopause height, increases from 0.1 mbar near the equator to 0.01 mbar near the North Pole, where it is the warmest part of the atmosphere, greater than 200 K. This implies subsidence at the pole, which is consistent with the enhanced organics observed. Condensate features, several still not identified, are also apparent in the infrared spectra at high northern latitudes. In many ways, the winter vortex observed on Titan, with cyclostrophic winds, resembles the polar winter vortices on the Earth, where the mean winds are geostrophic.

  11. The Atmospheric Dynamics of Jupiter, Saturn, and Titan

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    2009-01-01

    Comparative studies of Jupiter and Saturn often emphasize their similarities, but recent observations have highlighted important differences. The stratospheres of both planets exhibit an equatorial oscillation reminiscent of that in Earth's middle atmosphere. Jupiter's oscillation has a 4-5 year period, not linked to its season, and it has been modeled as an analog to the terrestrial quasi-biennial oscillation, driven by the stresses associated with vertically propagating waves. Saturn's equatorial oscillation is nearly semiannual, but wave activity may still be a driver. Jupiter's internal rotation rate is inferred from its steady modulated radio emission. Saturn's internal rotation is more enigmatic. It has been inferred from the modulation of the body's kilometric radio emission, but this period has varied by 1% over the last 25 years. Saturn's equatorial winds are also puzzling, as those inferred from cloud tracking by Cassini and more recent HST observations are weaker than those from Voyager. Whether this is attributable to a difference in altitudes of the tracked clouds in winds with vertical shear or a real temporal change in the winds is not known. Both winter and summer poles of Saturn exhibit very compact circumpolar vortices with warm cores, indicating subsidence. Titan's middle atmosphere is characterized by global cyclostrophic winds, particularly the strong circumpolar vortex in the winter hemisphere. In many ways, the spatial distribution of temperature, gaseous constituents, and condensates is reminiscent of conditions in terrestrial winter vortices, albeit with different chemistry. The meridional contrast in Titan's tropospheric temperatures is small, only a few kelvins.

  12. The structure and dynamics of Titan's middle atmosphere.

    PubMed

    Flasar, F M; Achterberg, R K

    2009-02-28

    Titan's middle atmosphere is characterized by cyclostrophic winds and strong seasonal modulation. Cassini CIRS observations, obtained in northern winter, indicate that the stratosphere near 1mbar is warmest at low latitudes, with the South Pole a few degrees colder and the North Pole approximately 20K colder. Associated with the cold northern temperatures are strong circumpolar winds with speeds as high as 190ms-1. Within this vortex, the mixing ratios of several organic gases are enhanced relative to those at low latitudes. Comparison with Voyager thermal infrared measurements, obtained 25 years ago in northern spring, suggests that the enhancement currently observed will increase as the winter progresses. The stratopause height increases from 0.1mbar near the equator to 0.01mbar near the North Pole, where it is the warmest part of the atmosphere, greater than 200K. This implies subsidence at the pole, which is consistent with the enhanced organics observed. Condensate features, several still not identified, are also apparent in the infrared spectra at high northern latitudes. In many ways, the winter vortex observed on Titan, with cyclostrophic winds, resembles the polar winter vortices on the Earth, where the mean winds are geostrophic.

  13. The Structure and Dynamics of Titan's Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Achterberg, R. K.

    2008-01-01

    Titan's middle atmosphere is characterized by cyclostrophic winds and strong seasonal modulation. Cassini CIRS observations, obtained in northern winter, indicate that the stratosphere near l mbar is warmest at low latitudes, with the South Pole a few degrees colder and the North Pole approximately 20 K colder. Associated with the cold northern temperatures are strong circumpolar winds with speeds as high as 190 m/s. Within this vortex, the mixing ratios of several organic gases are enhanced relative to those at low latitudes. Comparison with Voyager thermal infrared measurements, obtained 25 years ago in northern spring, suggests that the enhancement currently observed will increase as the winter progresses. The stratopause height, increases from 0.1 mbar near the equator to 0.01 mbar near the North Pole, where it is the warmest part of the atmosphere, greater than 200 K. This implies subsidence at the pole, which is consistent with the enhanced organics observed. Condensate features, several still not identified, are also apparent in the infrared spectra at high northern latitudes. In many ways, the winter vortex observed on Titan, with cyclostrophic winds, resembles the polar winter vortices on the Earth, where the mean winds are geostrophic.

  14. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Fang, Jiabei; Yang, Xiu-Qun

    2016-09-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere

  15. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Fang, Jiabei; Yang, Xiu-qun

    2017-04-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere

  16. Dynamics of the solar atmosphere. VI. Resonant oscillations of an atmospheric cavity: observations.

    NASA Astrophysics Data System (ADS)

    Deubner, F.-L.; Waldschik, T.; Steffens, S.

    1996-03-01

    We have evaluated new, spatially one- and two-dimensional time series of photospheric and chromospheric Fraunhofer lines at a large number of positions in the line profile, with the 'lambdameter' method. As a result we have obtained the velocity and brightness fluctuations corresponding to many closely staggered height levels in the atmosphere, and their respective phase spectra as a diagnostic of the wave fields involved. This material has not only served to define more accurately and specifically the character of the 180deg phase jump observed before in V-I spectra of the NaD_2_ line in internetwork regions, and to reveal the narrow height interval that gives rise to this discontinuity in the phase spectra. We have also discovered another discontinuity in V-V spectra of the same Fraunhofer line at nearly the same frequency (7.0mHz). Since neither running nor standing waves alone can explain the observed solitary phase discontinuities, our results provide strong evidence in favour of an atmosphere that supports (at least, and probably more than) one eigenmode as a component of the wave field.

  17. Evidence of coupling in ocean-atmosphere dynamics over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane; Ghil, Michael

    2017-04-01

    The investigation of low-frequency variability (LFV) in the mid-latitude atmosphere, for instance of the North Atlantic Oscillation (NAO), is currently attracting considerable interest. One of the main reasons is LFV's potential to enable predictions beyond the generally accepted upper bound of weather forecasting skill of 10-15 days in mid-latitudes. To understand the development of the LFV in the atmosphere, it is necessary to clarify how it interacts with the other components of the climate system, in particular the ocean. The usual strategy to clarify the coupling between the ocean and the atmosphere is to analyze the one-way sensitivity of either component to forcing by the other. In the present work, we adopt a different strategy by investigating the projections of atmospheric and oceanic fields, based on reanalysis datasets, onto a reduced phase space. The latter ocean-atmosphere subspace is dynamically defined here by relying on the leading modes of the Vannitsem et al. (2015) idealized low-order model. This approach allows one to isolate the dominant modes of the coupled system's observed variability. The coupled projection is then analyzed using multichannel singular spectrum analysis (M-SSA). The results suggest that a dominant low-frequency signal with a 25-30-yr period already mentioned in the literature is a common mode of variability of the atmosphere and the ocean. A new score for evaluating the internal nature of the common variability is then introduced and it confirms the presence of coupled dynamics in the ocean-atmosphere system that includes a significant large-scale atmospheric component. The physical nature of this coupled dynamics is also discussed. Reference Vannitsem S., J. Demaeyer, L. de Cruz, and M. Ghil, Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model, Physica D, 309, 71-85, 2015.

  18. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Sugiyama, G; Kosovic, B; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J; Mirin, A; Nitao, J; Serban, R; Dyer, K

    2004-10-13

    For atmospheric releases, event reconstruction answers the critical questions - How much material was released? When? Where? and What are the potential consequences? Inaccurate estimation of the source term can lead to gross errors, time delays during a crisis, and even fatalities. We are developing a capability that seamlessly integrates observational data streams with predictive models in order to provide the best possible estimates of unknown source term parameters, as well as optimal and timely situation analyses consistent with both models and data. Our approach utilizes Bayesian inference and stochastic sampling methods (Markov Chain and Sequential Monte Carlo) to reformulate the inverse problem into a solution based on efficient sampling of an ensemble of predictive simulations, guided by statistical comparisons with data.

  19. The spectral element dynamical core in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Taylor, Mark

    2013-11-01

    I will describe our work developing CAM-SE, a highly scalable version of the Community Atmosphere Model (CAM). CAM-SE solves the hydrostatic equations with a spectral element horizontal descritization and the hybrid coordinate Simmons & Burridge (1981) vertical discretization. It uses a mimetic formulation of spectral elements which preserves the adjoint and annihilator properties of the divergence, gradient and curl operations. These mimetic properties result in local conservation (to machine precision) of mass, tracer mass and (2D) potential vorticity, and semi-discrete conservation (exact with exact time-discretization) of total energy. Hyper-viscsoity is used for all numerical dissipation. The spectral element method naturally supports unstructured/variable resolution grids. We are using this capability to perform simulations with 1/8 degree resolution over the central U.S., transitioning to 1 degree over most of the globe. This is a numerically efficient way to study the resolution sensitivity of CAM's many subgrid parameterizations.

  20. Fundamental composite electroweak dynamics: Status at the LHC

    NASA Astrophysics Data System (ADS)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo; Le Corre, Solène; Sannino, Francesco

    2017-01-01

    Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limiting cases of composite Goldstone Higgs and Technicolor-like ones. This is possible due to the existence of a unified description, both at the effective and fundamental Lagrangian levels, of models of composite Higgs dynamics where the Higgs boson itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the condensate. In our template, a mass term for the fermions in the fundamental theory acts as a stabilizer of the Higgs potential, without the need for partners of the top quark. We constrain the available parameter space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider.

  1. Effective dynamic moduli and density of fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Caleap, Mihai; Drinkwater, Bruce W.; Wilcox, Paul D.

    2013-01-01

    A multiple scattering theory is developed to predict the effective dynamic material properties of elastic composites in two dimensions. The system consists of circular fibers distributed randomly in an elastic solid. The coherent wave propagation in the elastic composite is analyzed under the quasi-crystalline approximation. The effective medium equivalent to the original composite material is a medium with space and time dispersion, and hence, its parameters are functions of frequency of the incident field. Although the effective medium is homogeneous and isotropic, its effective dynamic moduli and density depend on the type of propagating wave, e.g., they are different for longitudinal and transverse incident waves. However, they coincide in the long-wave region as expected on physical grounds. Furthermore, the effective material properties are found to be complexvalued, in addition to their dynamic nature. For in-plane waves and in the long-wave limit the effective bulk modulus, mass density and shear modulus are independently determined by a set of monopolar, dipolar and quadrupolar scattering coefficients of the embedded fibers alone, respectively. Likewise, for anti-plane waves, the effective mass density and the shear modulus are specified, respectively, in terms of the monopolar and dipolar scattering coefficients of the corresponding fiberscattering problem. The emerging possibility of designing composite materials to form elastic metamaterials is discussed.

  2. Atmospheric dynamics. Constrained work output of the moist atmospheric heat engine in a warming climate.

    PubMed

    Laliberté, F; Zika, J; Mudryk, L; Kushner, P J; Kjellsson, J; Döös, K

    2015-01-30

    Incoming and outgoing solar radiation couple with heat exchange at Earth's surface to drive weather patterns that redistribute heat and moisture around the globe, creating an atmospheric heat engine. Here, we investigate the engine's work output using thermodynamic diagrams computed from reanalyzed observations and from a climate model simulation with anthropogenic forcing. We show that the work output is always less than that of an equivalent Carnot cycle and that it is constrained by the power necessary to maintain the hydrological cycle. In the climate simulation, the hydrological cycle increases more rapidly than the equivalent Carnot cycle. We conclude that the intensification of the hydrological cycle in warmer climates might limit the heat engine's ability to generate work. Copyright © 2015, American Association for the Advancement of Science.

  3. Lunar atmosphere. How surface composition and meteoroid impacts mediate sodium and potassium in the lunar exosphere.

    PubMed

    Colaprete, A; Sarantos, M; Wooden, D H; Stubbs, T J; Cook, A M; Shirley, M

    2016-01-15

    Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition.

  4. The atmospheric structure and dynamical properties of Neptune derived from ground-based and IUE spectrophotometry

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Smith, Wm. Hayden

    1990-01-01

    A wide range of recent full-disk spectral observations is used to constrain the atmospheric structure and dynamical properties of Neptune; analytical determinations are made of the abundances of such spectrally active gas species as the deep-atmosphere CH4 molar fraction and the mean ortho/para hydrogen ratio in the visible atmosphere, as well as stratospheric and tropospheric aerosol properties. Compared to Uranus, the greater abundance and shorter lifetimes of Neptunian particulates in the stratospheric region irradiated by the solar UV flux indicate that such radiation is the darkening agent of stratospheric aerosols on both planets.

  5. The atmospheric structure and dynamical properties of Neptune derived from ground-based and IUE spectrophotometry

    NASA Astrophysics Data System (ADS)

    Baines, K. H.; Smith, H. Wm.

    1990-05-01

    A wide range of recent full-disk spectral observations is used to constrain the atmospheric structure and dynamical properties of Neptune; analytical determinations are made of the abundances of such spectrally active gas species as the deep-atmosphere CH4 molar fraction and the mean ortho/para hydrogen ratio in the visible atmosphere, as well as stratospheric and tropospheric aerosol properties. Compared to Uranus, the greater abundance and shorter lifetimes of Neptunian particulates in the stratospheric region irradiated by the solar UV flux indicate that such radiation is the darkening agent of stratospheric aerosols on both planets.

  6. Constraints on Earth degassing history from the argon isotope composition of Devonian atmosphere

    NASA Astrophysics Data System (ADS)

    Stuart, F. M.; Mark, D.

    2012-04-01

    The primordial and radiogenic isotopes of the noble gases combine to make them a powerful tool for determining the time and tempo of the outgassing of the Earth's interior. The outgassing history of the Earth is largely constrained from measurements of the isotopic composition of He, Ne, Ar and Xe in samples of modern mantle, crust and atmosphere. There have been few unequivocal measurement of the isotopic composition of noble gases in ancient atmosphere. We have re-visited whether ancient Ar is trapped in the ~400 Ma Rhynie chert [1]. We have analysed samples of pristine Rhynie chert using the ARGUS multi-collector mass spectrometer calibrated against the new determination of atmospheric Ar isotope ratios [2]. 40Ar/36Ar ratios are low, with many lower than the modern air value (298.8). Importantly these are accompanied by atmospheric 38Ar/36Ar ratios indicating that the low 40Ar/36Ar are not due to mass fractionation. We conclude that the Rhynie chert has captured Devonian atmosphere-derived Ar. The data indicate that the Devonian atmosphere 40Ar/36Ar was at least 3 % lower than the modern air value. Thus the Earth's atmosphere has accumulated at least 5 ± 0.2 x 1016 moles of 40Ar in the last 400 million years, at an average rate of 1.24 ± 0.06 x 108 mol 40Ar/year. This overlaps the rate determined from ice cores for the last 800,000 years [3] and implies that there has been no resolvable temporal change in Earth outgassing rate since mid-Palaeozoic times. The new data require the Earth outgassed early, and suggests that pristine samples of Archaean and Proterozoic chert may prove useful as palaeo-atmosphere tracers. [1] G. Turner, J. Geol. Soc. London 146, 147-154 (1989) [2] D. Mark, F.M. Stuart, M. de Podesta, Geochim. Cosmochim. Acta 75, 7494-7501 [3] M. Bender et al., Proc. Nat. Acad. Sci. 105, 8232-8237 (2008)

  7. Predicting atmospheric states from local dynamical properties of the underlying attractor

    NASA Astrophysics Data System (ADS)

    Faranda, Davide; Rodrigues, David; Alvarez-Castro, M. Carmen; Messori, Gabriele; Yiou, Pascal

    2017-04-01

    Mid-latitude flows are characterized by a chaotic dynamics and recurring patterns hinting to the existence of an atmospheric attractor. In 1963 Lorenz described this object as: "the collection of all states that the system can assume or approach again and again, as opposed to those that it will ultimately avoid" and analyzed a low dimensional system describing a convective dynamics whose attractor has the shape of a butterfly. Since then, many studies try to find equivalent of the Lorenz butterfly in the complex atmospheric dynamics. Most of the studies where focused to determine the average dimension D of the attractor i.e. the number of degrees of freedom sufficient to describe the atmospheric circulation. However, obtaining reliable estimates of D has proved challenging. Moreover, D does not provide information on transient atmospheric motions, such as those leading to weather extremes. Using recent developments in dynamical systems theory, we show that such motions can be classified through instantaneous rather than average properties of the attractor. The instantaneous properties are uniquely determined by instantaneous dimension and stability. Their extreme values correspond to specific atmospheric patterns, and match extreme weather occurrences. We further show the existence of a significant correlation between the time series of instantaneous stability and dimension and the mean spread of sea-level pressure fields in an operational ensemble weather forecast at lead times of over two weeks. Instantaneous properties of the attractor therefore provide an efficient way of evaluating and informing operational weather forecasts.

  8. Intraoperative Analysis of Flow Dynamics in Arteriovenous Composite Y Grafts

    PubMed Central

    Lobo Filho, Heraldo Guedis; Lobo Filho, José Glauco; Pimentel, Matheus Duarte; Silva, Bruno Gadelha Bezerra; de Souza, Camylla Santos; Montenegro, Marília Leitão; Leitão, Maria Cláudia de Azevedo; Jamacuru, Francisco Vagnaldo Fechine

    2016-01-01

    Objective Composite graft of left internal thoracic artery and great saphenous vein in revascularization of the left coronary system is a technique well described in literature. The aim of this study is to analyze blood flow dynamics in this configuration of composite graft especially in what concerns left internal thoracic artery's adaptability and influence of great saphenous vein segment on left internal thoracic artery's flow. Methods Revascularization of left coronary system with composite graft, with left internal thoracic artery revascularizing the anterior interventricular artery and a great saphenous vein segment, anastomosed to the left internal thoracic artery, revascularizing another branch of the left coronary system, was performed in 23 patients. Blood flow was evaluated by transit time flowmetry in all segments of the composite graft (left internal thoracic artery proximal segment, left internal thoracic artery distal segment and great saphenous vein segment). Measures were performed in baseline condition and after dobutamine-induced stress, without and with non-traumatic temporary clamping of the distal segments of the composite graft. Results Pharmacological stress resulted in increase of blood flow values in the analyzed segments (P<0.05). Non-traumatic temporary clamping of great saphenous vein segment did not result in statistically significant changes in the flow of left internal thoracic artery distal segment, both in baseline condition and under pharmacological stress. Similarly, non-traumatic temporary clamping of left internal thoracic artery distal segment did not result in statistically significant changes in great saphenous vein segment flow. Conclusion Composite grafts with left internal thoracic artery and great saphenous vein for revascularization of left coronary system, resulted in blood flow dynamics with physiological adaptability, both at rest and after pharmacological stress, according to demand. Presence of great saphenous vein

  9. Unraveling the Dynamics of Aminopolymer/Silica Composites

    SciTech Connect

    Carrillo, Jan-Michael Y.; Sakwa-Novak, Miles A.; Holewinski, Adam; Potter, Matthew E.; Rother, Gernot; Jones, Christopher W.; Sumpter, Bobby G.

    2016-02-25

    Branched poly(ethylenimine) (PEI) encapsulated within mesoporous silica (SBA-15), has proven to be an eective sorbent for developing carbon capture technologies. However, the structure-property correlations which govern their adsorptive properties is not well understood. By combining coarse-grained molecular dynamics simulations and neutron scattering experiments we are able to construct, and validate, a detailed model of the dynamics and morphology of the conned polymer within the mesoporous support. By varying the simulation properties we are able to probe, for the rst time, the direct relationship between the structure of the polymer and the non-monotonic dynamics of the polymer as a function of monomer concentration within an adsorbing cylindrical pore. Overall the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting enhanced carbon dioxide adsorption.

  10. Atmospheric pCO2 control on speleothem stable carbon isotope compositions

    NASA Astrophysics Data System (ADS)

    Breecker, Daniel O.

    2017-01-01

    The stable carbon isotope compositions of C3 plants are controlled by the carbon isotope composition of atmospheric CO2 (δ13Ca) and by the stomatal response to water stress. These relationships permit the reconstruction of ancient environments and assessment of the water use efficiency of forests. It is currently debated whether the δ13C values of C3 plants are also controlled by atmospheric pCO2. Here I show that globally-averaged speleothem δ13C values closely track atmospheric pCO2 over the past 90 kyr. After accounting for other possible effects, this coupling is best explained by a C3 plant δ13C sensitivity of - 1.6 ± 0.3 ‰ / 100 ppmV CO2 during the Quaternary. This is consistent with 20th century European forest tree ring δ13C records, providing confidence in the result and suggesting that the modest pCO2-driven increase in water use efficiency determined for those ecosystems and simulated by land surface models accurately approximates the global average response. The δ13C signal from C3 plants is transferred to speleothems relatively rapidly. Thus, the effect of atmospheric pCO2 should be subtracted from new and existing speleothem δ13C records so that residual δ13C shifts can be interpreted in light of the other factors known to control spleleothem δ13C values. Furthermore, global average speleothem δ13C shifts may be used to develop a continuous radiometric chronology for Pleistocene atmospheric pCO2 fluctuations and, by correlation, ice core climate records.

  11. Atmospheric dynamics in Laboratory Biosphere with wheat and sweet potato crops

    NASA Astrophysics Data System (ADS)

    Dempster, W. F.; Allen, J. P.; Alling, A.; Nelson, M.; Silvertone, S.; van Thillo, M.

    Laboratory Biosphere is a 40 m3 closed life system equipped with 12000 watts of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, eg. hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in millimoles per hour per square meter of planted area. An 85 day crop of USU Apogee wheat under a 16 hour lighted / 8 hour dark regime peaked in fixation rate at about 100 mmol h-1 m-2 approximately 24 days after planting. Light intensity was about 840 mol m-2 s-1. Dark respiration peaked at about 31 mmol h-1 m-2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h-1 m-2 was observed in the dark closed chamber for 100 days after the harvest. A 126 day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 mol m-2 s-1, 18 hour lighted / 6 hour dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h-1 m-2 after 42 days and respiration settled into a range of 12 to 23 mmol h-1 m-2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO2 levels were allowed to range widely from a few hundred ppm to about 3000 ppm, which permitted observation of fixation rates both at varying CO2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more

  12. Atmospheric dynamics in the “Laboratory Biosphere” with wheat and sweet potato crops

    NASA Astrophysics Data System (ADS)

    Dempster, William F.; Allen, J. P.; Alling, A.; Silverstone, S.; Van Thillo, M.

    Laboratory Biosphere is a 40-m 3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m 2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, e.g., hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in mmol h -1 m -2 of planted area. An 85-day crop of USU Apogee wheat under a 16-h lighted/8-h dark regime peaked in fixation rate at about 100 mmol h -1 m -2 approximately 24 days after planting. Light intensity was about 840 μmol m -2 s -1. Dark respiration peaked at about 31 mmol h -1 m -2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h -1 m -2 was observed in the dark closed chamber for 100 days after the harvest. A 126-day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 μmol m -2 s -1, 18-h lighted/6-h dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h -1 m -2 after 42 days and dark respiration settled into a range of 12-23 mmol h -1 m -2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO 2 levels were allowed to range widely from a few hundred to about 3000 ppm, which permitted observation of fixation rates both at varying CO 2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more complex CELSS which

  13. Capillary and micropacked columns for in situ analysis of Titan's atmospheric composition

    NASA Astrophysics Data System (ADS)

    Sternberg, R.; Szopa, C.; Coscia, D.; Raulin, F.; Vidal-Madjar, C.; Niemann, H.

    Since the beginning of the space exploration, most of the many probes which have been sent to explore other planetary atmospheres and surfaces carried instruments to determine their elemental, isotopic and molecular -inorganic as well as organic- compositions. As Mass Spectrometry (MS) and Gas Chromatography (GC) are powerful analytical techniques which fulfil the severe constraints of space instrumentation (mass, size, mechanical strength, automation and energy consumption), they have been the techniques the most frequently used for in situ chemical analysis of extraterrestrial environments, essentially Mars and Venus in the 70s and 80s. After 20 years and the investigation of Venus atmosphere by the Vega probe, they will be used again next year to investigate the atmosphere of a fascinating world : Titan Because of its composition (rich in organics) and density (similar to the Earth's one), the study of the atmosphere of Titan is of primary interest for understanding a reducing chemistry at the scale of a planet, which could have played a role in the prebiotic chemistry of the primitive Earth. The Gas Chromatograph Mass Spectrometer (GCMS) experiment is one of the main instruments of the Huygens probe of the Cassini-Huygens mission to Saturn, and it will aim at analysing the atmospheric composition. This original gas chromatography based experiment will use for the first time capillary chromatographic columns in space. Indeed the GC subsystem includes three columns which operate in parallel, each one targeting a specific series of compounds : i) a carbon molecular sieve micropacked column used for the separation of CO, N2 and other permanent gases ; ii) a capillary column to separate the light hydrocarbons containing up to 3 carbon atoms ; iii) a second capillary column with cyanopropyl dimethyl polysiloxane stationary phase to analyze the heavier hydrocarbons, aromatics, and the low molecular weight nitriles, containing up to 4 carbon atoms. These heavier

  14. Dynamic consolidation of aluminum-silicon carbide composites

    SciTech Connect

    Rabin, B.H.; Korth, G.E.; Williamson, R.L.

    1990-01-01

    Dynamic consolidation was investigated as a potential method for producing P/M metal matrix composites. In this study, 2124 aluminum powders were mixed with silicon carbide particulate and consolidated using explosives. Numerical simulations were performed to provide insight into the consolidation process and to aid in the selection of experimental conditions. The microstructure of the as-consolidated product was dependent upon processing variables. Careful control of the shock parameters allowed full density, crack free composites to be achieved in cylindrical geometries. Although full density was obtained, low fracture strengths suggested a lack of interparticle bonding, probably resulting from the limited ability to redistribute surface oxides during consolidation. 10 refs., 9 figs.

  15. Metal matrix composites from dynamic consolidation of powder mixtures

    SciTech Connect

    Korth, G.E.; Williamson, R.L.; Rabin, B.H.

    1989-01-01

    Mixtures of 2124 aluminum alloy and silicon carbide powders were dynamically consolidated using explosives. This process results in a fully dense product and has the potential of becoming an economical method of producing metal matrix composites, especially where undesirable reactions would normally occur between the metal and ceramic reinforcement. With the correct processing parameters, the aluminum powder plastically deforms to form a continuous matrix with minimum interaction with SiC. Microstructure and mechanical properties of the composite are presented. Numerical simulations were performed to better understand the consolidation process and determine test parameters difficult to obtain by experimentation. 7 refs., 3 figs., 2 tabs.

  16. Constraining the atmospheric composition of the day-night terminators of HD 189733b: Atmospheric retrieval with aerosols

    SciTech Connect

    Lee, Jae-Min; Irwin, Patrick G. J.; Fletcher, Leigh N.; Barstow, Joanna K.; Heng, Kevin

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO{sub 3}, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  17. Nanoscopic dynamics in hybrid hydroxyapatite-CTAB composite

    NASA Astrophysics Data System (ADS)

    Dubey, P. S.; Sharma, V. K.; Mitra, S.; Verma, G.; Hassan, P. A.; Dutta, B.; Johnson, M.; Mukhopadhyay, R.

    2017-06-01

    Synthetic hydroxyapatite (HAp) is an important material in biomedical engineering due to its excellent biocompatibility and bioactivity. HAp nanoparticles were synthesized by the co-precipitation method using cetyltrimethylammonium bromide (CTAB) micelles as a template and are characterized using x-ray diffraction, electron microscopy, and thermal gravimetric measurements. Transmission electron microscope (TEM) demonstrates the formation of rod-shaped HAp. Dynamics of CTAB in HAp-CTAB composite as studied by using quasielastic neutron scattering (QENS) technique is reported here. HAp-CTAB composite provides an ideal system for studying the dynamics of CTAB micelles without any aqueous media. QENS data indicate that the observed dynamics are reminiscent of localized motions in ionic micellar systems, consisting of segmental and fast torsional motions. Segmental dynamics has been described with a model, in which hydrogen atoms in the alkyl chain undergoes localized translation diffusion and the CH3 unit associated with the head group undergo 3-fold jump rotation. Within this model, the hydrogen atoms in the alkyl chain undergo diffusion within spherical domains having different radii and diffusivities. A simple linear distribution of the radius and diffusivity has been assumed, in which the CH2 unit nearest to the head group has the least value and the ones furthest from the head group, that is, at the end of the alkyl chain has the largest value. The fast torsional motion is described by a 2-fold jump rotation model. Quantitative estimate of the different parameters characterizing various dynamical motions active within the time scale of the instrument is also presented. We have provided a detailed description of the observed dynamical features in hybrid HAp-CTAB composite, a potential candidate for biomedical applications.

  18. Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Madhusudhan, N.; Knutson, H.; Fortney, J. J.; Barman, T.

    The study of exoplanetary atmospheres is one of the most exciting and dynamic frontiers in astronomy. Over the past two decades ongoing surveys have revealed an astonishing diversity in the planetary masses, radii, temperatures, orbital parameters, and host stellar properties of exoplanetary systems. We are now moving into an era where we can begin to address fundamental questions concerning the diversity of exoplanetary compositions, atmospheric and interior processes, and formation histories, just as have been pursued for solar system planets over the past century. Exoplanetary atmospheres provide a direct means to address these questions via their observable spectral signatures. In the last decade, and particularly in the last five years, tremendous progress has been made in detecting atmospheric signatures of exoplanets through photometric and spectroscopic methods using a variety of spaceborne and/or groundbased observational facilities. These observations are beginning to provide important constraints on a wide gamut of atmospheric properties, including pressure-temperature profiles, chemical compositions, energy circulation, presence of clouds, and nonequilibrium processes. The latest studies are also beginning to connect the inferred chemical compositions to exoplanetary formation conditions. In the present chapter, we review the most recent developments in the area of exoplanetary atmospheres. Our review covers advances in both observations and theory of exoplanetary atmospheres, and spans a broad range of exoplanet types (gas giants, ice giants, and super-Earths) and detection methods (transiting planets, direct imaging, and radial velocity). A number of upcoming planet-finding surveys will focus on detecting exoplanets orbiting nearby bright stars, which are the best targets for detailed atmospheric characterization. We close with a discussion of the bright prospects for future studies of exoplanetary atmospheres.

  19. Three-dimensional dynamical and chemical modelling of the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.

    1976-01-01

    Progress in coding a 3-D upper atmospheric model and in modeling the ozone perturbation resulting from the shuttle booster exhaust is reported. A time-dependent version of a 2-D model was studied and the sulfur cycle in the stratosphere was investigated. The role of meteorology in influencing stratospheric composition measurements was also studied.

  20. Fluid Dynamics of Urban Atmospheres in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Fernando, H. J. S.

    2010-01-01

    A majority of the world's urban centers are located in complex terrain, in which local airflow patterns are driven by pressure gradients and thermal forcing, while being strongly influenced by topographic effects and human (anthropogenic) activities. A paradigm in this context is a city located in a valley surrounded by mountains, slopes, and escarpments, in which the airflow is determined by terrain-induced perturbations to synoptic (background) flow, mesoscale thermal circulation (valley/slope flows) generated by local heating or cooling, and by their interaction with factitious (e.g., buildings and roads) and natural (e.g., vegetation and terrain) elements. The dynamics of airflows intrinsic to urban areas in complex terrain is reviewed here by employing idealized flow configurations to illustrate fundamental processes. Urban flows span a wide range of space and time scales and the emphasis here is on mesoscales (1-100 km). Basic fluid dynamics plays a central role in explaining observations of urban flow and in developing subgrid parameterizations for predictive models.

  1. Mass conservative, positive definite integrator for atmospheric chemical dynamics

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi; Caboussat, Alexandre; Dabdub, Donald

    2009-12-01

    Air quality models compute the transformation of species in the atmosphere undergoing chemical and physical changes. The numerical algorithms used to predict these transformations should obey mass conservation and positive definiteness properties. Among all physical phenomena, the chemical kinetics solver provides the greatest challenge to attain these two properties. In general, most chemical kinetics solvers are mass conservative but not positive definite. In this article, a new numerical algorithm for the computation of chemical kinetics is presented. The integrator is called Split Single Reaction Integrator (SSRI). It is both mass conservative and positive definite. It solves each chemical reaction exactly and uses operator splitting techniques (symmetric split) to combine them into the entire system. The method can be used within a host integrator to fix the negative concentrations while preserving the mass, or it can be used as a standalone integrator that guarantees positive definiteness and mass conservation. Numerical results show that the new integrator, used as a standalone integrator, is second order accurate and stable under large fixed time steps when other conventional integrators are unstable.

  2. Dynamics of apokamp-type atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Panarin, Victor A.; Skakun, Victor S.; Baksht, Evgeny Kh.; Tarasenko, Victor F.

    2017-02-01

    The paper describes a new discharge source of atmospheric pressure plasma jets (APPJs) in air with no gas supply through the discharge region. In this discharge mode, plasma jets develop from the bending point of a bright current channel between two electrodes and are therefore termed an apokamp (from Greek `off' and `bend'). The apokamp can represent single plasma jets of length up 6 cm or several jets, and the temperature of such jets can range from more than 1000 °C at their base to 100-250 °C at their tip. Apokamps are formed at maximum applied voltage of positive polarity, provided that the second electrode is capacitively decoupled with ground. According to high-speed photography with time resolution from several nanoseconds to several tens of nanoseconds, the apokamp consists of a set of plasma bullets moving with a velocity of 100-220 km/s, which excludes the convective mechanism of plasma decay. Estimates on a 100-ns scale show that the near-electrode zones and the zones from which apokamps develop are close in temperature.

  3. The Atmospheric Dynamics Mission on the International Space Station--A new technique for observing winds in the atmosphere

    SciTech Connect

    Ingmann, P.; Readings, C. J.; Knott, K.

    1999-01-22

    For the post-2000 time-frame two general classes of Earth Observation missions have been identified to address user requirements (see e.g. ESA, 1995), namely Earth Watch and Earth Explorer missions. One of the candidate Earth Explorer Missions selected for Phase A study is the Atmospheric Dynamics Mission which is intended to exploit a Doppler wind lidar, ALADIN, to measure winds in clear air (ESA, 1995 and ESA, 1996). It is being studied as a candidate for flight on the International Space Station (ISS) as an externally attached payload. The primary, long-term objective of the Atmospheric Dynamics Mission is to provide observations of wind profiles (e.g. radial wind component). Such data would be assimilated into numerical forecasting models leading to an improvement in objective analyses and hence in Numerical Weather Prediction. The mission would also provide data needed to address some of the key concerns of the World Climate Research Programme (WCRP) i.e. quantification of climate variability, validation and improvement of numerical models and process studies relevant to climate change. The newly acquired data would also help realize some of the objectives of the Global Climate Observing System (GCOS)

  4. Titan's Surface Reflectivity and Composition from Empirical Atmospheric Correction of Cassini/VIMS Data

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; McCord, T. B.

    2009-12-01

    One of the primary challenges to constraining Titan's surface composition from visible and near infrared reflectance measurements is the moon's optically-thick atmosphere. We present a simple radiative transfer model, constrained by atmospheric transmission measurements from solar occultations, which we apply to reflectance data from the Cassini Visual and Infrared Mapping Spectrometer (VIMS). Using an inverse model for absorption and scattering in the atmosphere, we recover corrected reflectance spectra and map the distribution of compositional units. Our results suggest that exposed water ice is concentrated in fluvial channels and along the margins of topographically higher infrared-bright terrain. The latter, exemplified by the anomalously bright (and possibly active) features Tui Regio and Hotei Regio, appear depleted in water ice relative to the darker "bedrock” unit, and their reflectance spectra are consistent with enrichment in cyanoacetylene (HC3N), ammonia, and/or small quantities of carbon dioxide. A narrow absorption band at 4.92 μm promotes HC3N over the other two candidates, though CO2 also has a band within 25 nm of the observed wavelength, so that a shift due to the particular bonding configuration (e.g. with water ice) may be consistent with this component. If Tui Regio and Hotei Regio are enriched in precipitated aerosols such as HC3N, this implies an unknown concentration mechanism. Dune material is spectrally more neutral than water ice, consistent with a hydrocarbon heteropolymer.

  5. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy

    2016-09-01

    Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.

  6. The Sturgeon Falls paleosol and the composition of the atmosphere 1.1 Ga BP

    NASA Technical Reports Server (NTRS)

    Zbinden, E. A.; Holland, H. D.; Feakes, C. R.

    1988-01-01

    A paleosol is exposed along the north bank of the Sturgeon River, some 25 km SW of Baraga, Michigan. The paleosol was developed on hydrothermally altered Keweenawan basalt and is overlain by the Jacobsville sandstone. Textures, mineralogy, and chemical composition change gradually upwards from unweathered metabasalt, through the paleosol, to the contact of the paleosol with the Jacobsville sandstone. Many of these changes are similar to those in modern soils developed on basaltic rocks. However, K has clearly been added to the paleosol, probably by solutions which had equilibrated with K-feldspar in the Jacobsville sandstone. The Keweenawan basalt was oxidized quite extensively during its conversion to greenstone. During weathering, the remaining Fe2+ was oxidized to Fe3+ and was retained in the paleosol. The composition of the parent greenstone and its change during weathering can be used to define an approximate lower limit to the ratio of the O2 pressure to the CO2 pressure in the atmosphere during the formation of the paleosol [formula: see text]. Free O2 must have been present in the atmosphere 1.1 Ga ago, but its partial pressure could have been 10(3) times lower than in the atmosphere today.

  7. Detecting the dynamical state of the atmosphere from the orbital decay of the ODERACS spheres

    NASA Technical Reports Server (NTRS)

    Tan, Arjun

    1996-01-01

    The orbital decay curve of a satellite having constant cross-sectional area and in circular orbit can furnish valuable information regarding the dynamical state of the atmosphere. It is shown that a rectilinear decay curve having constant downward slope (zero curvature) should indicate that the atmosphere was undergoing compression during that period. A decay curve having concavity upwards (positive curvature) will strongly indicate that the atmosphere was in a contracting phase. A decay curve with downward concavity (negative curvature) may indicate an expanding, a stationary or a contracting atmosphere. This theory, when applied to the orbital decay of the Orbital Debris Radar Calibration Spheres (ODERACS) satellites, indicates that during the period from Day 90 through Day 240 in the year 1994, the atmosphere was very definitely in a compression mode. During this period, ODERACS Sphere 1 faced nearly constant densities while Sphere 6 actually encountered progressively smaller air densities as they descended. The atmospheric scale height as calculated from the orbital data of Spheres 1 and 6 diminished steadily during the same period. It is shown that Spheres 1 and 6 descended faster and slower respectively, than the level of constant air density equal to 5 x 10 kg/m . During a brief period from Day 240 through Day 290, the atmosphere reversed to a strongly expanding mode. Thereafter, the atmosphere reverted back to a compression mode from Day 290 through Day 390, 1994.

  8. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust

    NASA Astrophysics Data System (ADS)

    Ingall, E. D.; Longo, A.; Feng, Y.; Lai, B.; Landing, W. M.; Shelley, R.; Nenes, A.; Mihalopoulos, N.; Violaki, K.

    2016-12-01

    Iron is a key micronutrient that is vital for all organisms. The supply of bioavailable, soluble iron controls primary productivity in approximately 30% of the world's oceans. The significant contribution of atmospheric aerosols to the bioavailable iron budget in vast ocean regions, underscores the need to understand the controls and transformations of aerosol iron solubility during atmospheric transport. The Sahara Desert contains the largest and most active sources of aerosol dust globally and can be a key source of nutrients to the Mediterranean Sea, much of the North Atlantic Ocean, and even as far as the Gulf of Mexico. Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated aerosol iron in Mediterranean samples. In Atlantic samples, iron(II & III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing, including acidic reactions and photo-reduction, likely influence the form of iron minerals and the oxidation state in Saharan dust aerosols and contribute to increases in aerosol iron solubility. Overall, these findings suggest that a combination of factors affects aerosol iron solubility during long-distance atmospheric transport and emphasize the need to consider reductive mechanisms as well as proton-induced solubilization of aerosol iron in modeling studies.

  9. Towards an energy-conserving quasi-hydrostatic deep-atmosphere dynamical core

    NASA Astrophysics Data System (ADS)

    Tort, Marine; Dubos, Thomas

    2014-05-01

    Towards an energy-conserving quasi-hydrostatic deep-atmosphere dynamical core Marine Tort1 & Thomas Dubos1 1 Laboratoire Météorologique Dynamique, Ecole Polytechnique, Palaiseau, FRANCE Atmosphere dynamics of our planet is quite well described by traditional primitive equations based on the so-called shallow-atmosphere approximation. Thus, the model is dynamically consistent (in the sense that it possesses conservation principles for mass, energy, potential vorticity and angular momentum) when certain metric terms and the cosφ Coriolis terms are neglected (Phillips, 1966). Nevertheless, to simulate planetary atmospheres, the shallow-atmosphere approximation should be relaxed because of the low planet radius (such as Titan) or the depth of their atmospheres (such as Jupiter or Saturne). Non-traditional terms have some dynamical effects (Gerkema and al., 2008) but they are little-known and rarely integrated into general circulation dynamical cores (Wood and Staniforth, 2002). As an example, the french GCM of the Laboratoire Météorologique Dynamique (LMD-Z) integrates the traditional primitive equations discretized from their curl (vector-invariant) form based on a finite different scheme whose conserves exactly potential vorticity (Sadourny, 1975a,b). We considered an orthogonal curvilinear system and we first derived a curl form of global, deep-atmosphere quasi-hydrostatic model in which prognostic variable is absolute axial momentum instead of relative velocity vector. Given the close relationship between the curl form and Hamiltonian formulation of the previous equations, we generalized Sadourny's energy-conserving formulation by discretizing the Poisson bracket and the energy themselves (Salmon, 1983; Gassmann, 2013). The substantial computing infrastructure of the dynamical core is the same but the modification of the hydrostatic balance requires a mass-based vertical coordinate (Wood and Staniforth, 2003). The new discretization has been implemented into

  10. [Composition characteristics of atmospheric volatile organic compounds in the urban area of Beibei District, Chongqing].

    PubMed

    Qi, Xin; Hao, Qing-ju; Ji, Dong-sheng; Zhang, Jun-ke; Liu, Zi-rui; Hu, Bo; Wang, Yue-si; Jiang, Chang-sheng

    2014-09-01

    In order to study the composition and distribution of VOCs (Volatile Organic Compounds) in the atmosphere in the urban area of Beibei district, Chongqing, atmospheric samples were collected from March 2012 to February 2013 with special stainless steel cylinders, and analyzed with a three-stage preconcentration method coupled with GC-MS. 78 species of VOCs were detected in this study, of which there were 25 species of alkanes, 15 species of olefins, 28 species of aromatic hydrocarbons and 10 species of halogenated hydrocarbons. The results showed that the top seven species of VOCs according to the order of annual average concentration in the atmosphere of Beibei were: Dichloromethane (3. 08 x 10(-9) ) , Benzene (2. 09 x 10-9) , Isopentane (1. 85 x 10 -9) , Toluene (1. 51 x 10(-9)) , Propane (1. 51 x 10(-9)), m/p-xylene (1.43 x 10(-9)) and Styrene (1. 39 x 10-9). The concentration of TVOCs (Total Volatile Organic Compounds) in the atmosphere of Beibei was 33. 89 x 10 -9 during the measuring period, and the seasonal variation was obvious with the order of spring (42. 57 x 10 -9) > autumn (33.89 x 10-9) > winter (31.91 x 10 -9) > summer (27.04 x 10(-9)). In the composition of TVOCs, alkanes and aromatic hydrocarbons provided the largest contribution to TVOCs (31.5% and 30.7% ) , followed by halogenated hydrocarbon, accounting for 27.4% , and the last one was olefins, with only 10.4%. By means of ozone formation potential, the analysis results showed that olefins and aromatic hydrocarbon compounds were the two important materials which made the biggest contribution to the formation of ozone in the atmosphere of Beibei. We further analyzed the sources of VOCs in atmosphere of Beibei by the method of Principal Component Analysis (PCA). Vehicle exhaust was the biggest source and its contribution to VOCs was 50. 41%. The calculated results with T/B value also confirmed that traffic was the biggest source contributing to the VOCs in atmosphere of Beibei.

  11. Higgs Discovery: Impact on Composite Dynamics Technicolor & eXtreme Compositeness Thinking Fast and Slow

    NASA Astrophysics Data System (ADS)

    Sannino, Francesco

    I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within a Weyl-consistent computation. I will carefully examine the fundamental reasons why what has been discovered might not be the standard model Higgs. Dynamical electroweak breaking naturally addresses a number of the fundamental issues unsolved by the standard model interpretation. However this paradigm has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery1 that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired experimental value. Not only we have a natural and testable working framework but we have also suggested specic gauge theories that can realise, at the fundamental level, these minimal models of dynamical electroweak symmetry breaking. These strongly coupled gauge theories are now being heavily investigated via first principle lattice simulations with encou