Sample records for dynamic behavior analysis

  1. Symbolic dynamic filtering and language measure for behavior identification of mobile robots.

    PubMed

    Mallapragada, Goutham; Ray, Asok; Jin, Xin

    2012-06-01

    This paper presents a procedure for behavior identification of mobile robots, which requires limited or no domain knowledge of the underlying process. While the features of robot behavior are extracted by symbolic dynamic filtering of the observed time series, the behavior patterns are classified based on language measure theory. The behavior identification procedure has been experimentally validated on a networked robotic test bed by comparison with commonly used tools, namely, principal component analysis for feature extraction and Bayesian risk analysis for pattern classification.

  2. Single Molecule Cluster Analysis Identifies Signature Dynamic Conformations along the Splicing Pathway

    PubMed Central

    Blanco, Mario R.; Martin, Joshua S.; Kahlscheuer, Matthew L.; Krishnan, Ramya; Abelson, John; Laederach, Alain; Walter, Nils G.

    2016-01-01

    The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines. PMID:26414013

  3. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.

  4. Development of an analysis for the determination of coupled helicopter rotor/control system dynamic response. Part 2: Program listing

    NASA Technical Reports Server (NTRS)

    Sutton, L. R.

    1975-01-01

    A theoretical analysis is developed for a coupled helicopter rotor system to allow determination of the loads and dynamic response behavior of helicopter rotor systems in both steady-state forward flight and maneuvers. The effects of an anisotropically supported swashplate or gyroscope control system and a deformed free wake on the rotor system dynamic response behavior are included.

  5. MSC products for the simulation of tire behavior

    NASA Technical Reports Server (NTRS)

    Muskivitch, John C.

    1995-01-01

    The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.

  6. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  7. Mathematical modelling and linear stability analysis of laser fusion cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  8. The Dynamics of Online User Behavior and IS Policy Implications

    ERIC Educational Resources Information Center

    Kim, Keehyung

    2016-01-01

    This dissertation, which comprises three independent essays, explores the dynamics of online user behavior and provides IS policy implications across three different applications. The first essay employs an econometric empirical analysis to examine the role of IT interventions on online users' gambling behavior, based on field data collected over…

  9. Archetypes for Organisational Safety

    NASA Technical Reports Server (NTRS)

    Marais, Karen; Leveson, Nancy G.

    2003-01-01

    We propose a framework using system dynamics to model the dynamic behavior of organizations in accident analysis. Most current accident analysis techniques are event-based and do not adequately capture the dynamic complexity and non-linear interactions that characterize accidents in complex systems. In this paper we propose a set of system safety archetypes that model common safety culture flaws in organizations, i.e., the dynamic behaviour of organizations that often leads to accidents. As accident analysis and investigation tools, the archetypes can be used to develop dynamic models that describe the systemic and organizational factors contributing to the accident. The archetypes help clarify why safety-related decisions do not always result in the desired behavior, and how independent decisions in different parts of the organization can combine to impact safety.

  10. Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2012-01-01

    Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.

  11. Dynamics of Self-Injurious Behaviors.

    ERIC Educational Resources Information Center

    Newell, Karl M.; Sprague, Robert L.; Pain, Matthew T.; Deutsch, Katherine M.; Meinhold, Patricia

    1999-01-01

    Self-injurious behavior was examined in a case study of head-banging by an 8-year-old girl with profound mental retardation and an autistic disorder. Trajectories of arm movements and impact forces were determined from dynamic analysis of videotapes. Cycle-to-cycle consistency in the qualitative dynamics of the limb motions and impact forces…

  12. Job Performance as Multivariate Dynamic Criteria: Experience Sampling and Multiway Component Analysis.

    PubMed

    Spain, Seth M; Miner, Andrew G; Kroonenberg, Pieter M; Drasgow, Fritz

    2010-08-06

    Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of analyzing momentary work behavior using experience sampling methods. The article also examines a previously unused set of methods for analyzing data produced by experience sampling. These methods are known collectively as multiway component analysis. Two archetypal techniques of multimode factor analysis, the Parallel factor analysis and the Tucker3 models, are used to analyze data from Miner, Glomb, and Hulin's (2010) experience sampling study of work behavior. The efficacy of these techniques for analyzing experience sampling data is discussed as are the substantive multimode component models obtained.

  13. Dynamic fracture mechanics analysis for an edge delamination crack

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Doyle, James F.

    1994-01-01

    A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.

  14. Bifurcation and Stability Analysis of the Equilibrium States in Thermodynamic Systems in a Small Vicinity of the Equilibrium Values of Parameters

    NASA Astrophysics Data System (ADS)

    Barsuk, Alexandr A.; Paladi, Florentin

    2018-04-01

    The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.

  15. Job Performance as Multivariate Dynamic Criteria: Experience Sampling and Multiway Component Analysis

    ERIC Educational Resources Information Center

    Spain, Seth M.; Miner, Andrew G.; Kroonenberg, Pieter M.; Drasgow, Fritz

    2010-01-01

    Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of…

  16. Scaling behavior of online human activity

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Dan; Cai, Shi-Min; Huang, Junming; Fu, Yan; Zhou, Tao

    2012-11-01

    The rapid development of the Internet technology enables humans to explore the web and record the traces of online activities. From the analysis of these large-scale data sets (i.e., traces), we can get insights about the dynamic behavior of human activity. In this letter, the scaling behavior and complexity of human activity in the e-commerce, such as music, books, and movies rating, are comprehensively investigated by using the detrended fluctuation analysis technique and the multiscale entropy method. Firstly, the interevent time series of rating behaviors of these three types of media show similar scaling properties with exponents ranging from 0.53 to 0.58, which implies that the collective behaviors of rating media follow a process embodying self-similarity and long-range correlation. Meanwhile, by dividing the users into three groups based on their activities (i.e., rating per unit time), we find that the scaling exponents of the interevent time series in the three groups are different. Hence, these results suggest that a stronger long-range correlations exist in these collective behaviors. Furthermore, their information complexities vary in the three groups. To explain the differences of the collective behaviors restricted to the three groups, we study the dynamic behavior of human activity at the individual level, and find that the dynamic behaviors of a few users have extremely small scaling exponents associated with long-range anticorrelations. By comparing the interevent time distributions of four representative users, we can find that the bimodal distributions may bring forth the extraordinary scaling behaviors. These results of the analysis of the online human activity in the e-commerce may not only provide insight into its dynamic behaviors but may also be applied to acquire potential economic interest.

  17. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.

    PubMed

    Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru

    2011-03-01

    We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.

  18. Possibilities of fractal analysis of the competitive dynamics: Approaches and procedures

    NASA Astrophysics Data System (ADS)

    Zagornaya, T. O.; Medvedeva, M. A.; Panova, V. L.; Isaichik, K. F.; Medvedev, A. N.

    2017-11-01

    The possibilities of the fractal approach are used for the study of non-linear nature of the competitive dynamics of the market of trading intermediaries. Based on a statistical study of the functioning of retail indicators in the region, the approach to the analysis of the characteristics of the competitive behavior of market participants is developed. The authors postulate the principles of studying the dynamics of competition as a result of changes in the characteristics of the vector and the competitive behavior of market agents.

  19. A Categorization of Dynamic Analyzers

    NASA Technical Reports Server (NTRS)

    Lujan, Michelle R.

    1997-01-01

    Program analysis techniques and tools are essential to the development process because of the support they provide in detecting errors and deficiencies at different phases of development. The types of information rendered through analysis includes the following: statistical measurements of code, type checks, dataflow analysis, consistency checks, test data,verification of code, and debugging information. Analyzers can be broken into two major categories: dynamic and static. Static analyzers examine programs with respect to syntax errors and structural properties., This includes gathering statistical information on program content, such as the number of lines of executable code, source lines. and cyclomatic complexity. In addition, static analyzers provide the ability to check for the consistency of programs with respect to variables. Dynamic analyzers in contrast are dependent on input and the execution of a program providing the ability to find errors that cannot be detected through the use of static analysis alone. Dynamic analysis provides information on the behavior of a program rather than on the syntax. Both types of analysis detect errors in a program, but dynamic analyzers accomplish this through run-time behavior. This paper focuses on the following broad classification of dynamic analyzers: 1) Metrics; 2) Models; and 3) Monitors. Metrics are those analyzers that provide measurement. The next category, models, captures those analyzers that present the state of the program to the user at specified points in time. The last category, monitors, checks specified code based on some criteria. The paper discusses each classification and the techniques that are included under them. In addition, the role of each technique in the software life cycle is discussed. Familiarization with the tools that measure, model and monitor programs provides a framework for understanding the program's dynamic behavior from different, perspectives through analysis of the input/output data.

  20. Limit Cycle Analysis Applied to the Oscillations of Decelerating Blunt-Body Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.

    2008-01-01

    Many blunt-body entry vehicles have nonlinear dynamic stability characteristics that produce self-limiting oscillations in flight. Several different test techniques can be used to extract dynamic aerodynamic coefficients to predict this oscillatory behavior for planetary entry mission design and analysis. Most of these test techniques impose boundary conditions that alter the oscillatory behavior from that seen in flight. Three sets of test conditions, representing three commonly used test techniques, are presented to highlight these effects. Analytical solutions to the constant-coefficient planar equations-of-motion for each case are developed to show how the same blunt body behaves differently depending on the imposed test conditions. The energy equation is applied to further illustrate the governing dynamics. Then, the mean value theorem is applied to the energy rate equation to find the effective damping for an example blunt body with nonlinear, self-limiting dynamic characteristics. This approach is used to predict constant-energy oscillatory behavior and the equilibrium oscillation amplitudes for the various test conditions. These predictions are verified with planar simulations. The analysis presented provides an overview of dynamic stability test techniques and illustrates the effects of dynamic stability, static aerodynamics and test conditions on observed dynamic motions. It is proposed that these effects may be leveraged to develop new test techniques and refine test matrices in future tests to better define the nonlinear functional forms of blunt body dynamic stability curves.

  1. A novel system for tracking social preference dynamics in mice reveals sex- and strain-specific characteristics.

    PubMed

    Netser, Shai; Haskal, Shani; Magalnik, Hen; Wagner, Shlomo

    2017-01-01

    Deciphering the biological mechanisms underlying social behavior in animal models requires standard behavioral paradigms that can be unbiasedly employed in an observer- and laboratory-independent manner. During the past decade, the three-chamber test has become such a standard paradigm used to evaluate social preference (sociability) and social novelty preference in mice. This test suffers from several caveats, including its reliance on spatial navigation skills and negligence of behavioral dynamics. Here, we present a novel experimental apparatus and an automated analysis system which offer an alternative to the three-chamber test while solving the aforementioned caveats. The custom-made apparatus is simple for production, and the analysis system is publically available as an open-source software, enabling its free use. We used this system to compare the dynamics of social behavior during the social preference and social novelty preference tests between male and female C57BL/6J mice. We found that in both tests, male mice keep their preference towards one of the stimuli for longer periods than females. We then employed our system to define several new parameters of social behavioral dynamics in mice and revealed that social preference behavior is segregated in time into two distinct phases. An early exploration phase, characterized by high rate of transitions between stimuli and short bouts of stimulus investigation, is followed by an interaction phase with low transition rate and prolonged interactions, mainly with the preferred stimulus. Finally, we compared the dynamics of social behavior between C57BL/6J and BTBR male mice, the latter of which are considered as asocial strain serving as a model for autism spectrum disorder. We found that BTBR mice ( n  = 8) showed a specific deficit in transition from the exploration phase to the interaction phase in the social preference test, suggesting a reduced tendency towards social interaction. We successfully employed our new experimental system to unravel previously unidentified sex- and strain-specific differences in the dynamics of social behavior in mice. Thus, the system presented here facilitates a more thorough and detailed analysis of social behavior in small rodent models, enabling a better comparison between strains and treatments.

  2. The analysis of non-linear dynamic behavior (including snap-through) of postbuckled plates by simple analytical solution

    NASA Technical Reports Server (NTRS)

    Ng, C. F.

    1988-01-01

    Static postbuckling and nonlinear dynamic analysis of plates are usually accomplished by multimode analyses, although the methods are complicated and do not give straightforward understanding of the nonlinear behavior. Assuming single-mode transverse displacement, a simple formula is derived for the transverse load displacement relationship of a plate under in-plane compression. The formula is used to derive a simple analytical expression for the static postbuckling displacement and nonlinear dynamic responses of postbuckled plates under sinusoidal or random excitation. Regions with softening and hardening spring behavior are identified. Also, the highly nonlinear motion of snap-through and its effects on the overall dynamic response can be easily interpreted using the single-mode formula. Theoretical results are compared with experimental results obtained using a buckled aluminum panel, using discrete frequency and broadband point excitation. Some important effects of the snap-through motion on the dynamic response of the postbuckled plates are found.

  3. Evolving dynamics of trading behavior based on coordination game in complex networks

    NASA Astrophysics Data System (ADS)

    Bian, Yue-tang; Xu, Lu; Li, Jin-sheng

    2016-05-01

    This work concerns the modeling of evolvement of trading behavior in stock markets. Based on the assumption of the investors' limited rationality, the evolution mechanism of trading behavior is modeled according to the investment strategy of coordination game in network, that investors are prone to imitate their neighbors' activity through comprehensive analysis on the risk dominance degree of certain investment behavior, the network topology of their relationship and its heterogeneity. We investigate by mean-field analysis and extensive simulations the evolution of investors' trading behavior in various typical networks under different risk dominance degree of investment behavior. Our results indicate that the evolution of investors' behavior is affected by the network structure of stock market and the effect of risk dominance degree of investment behavior; the stability of equilibrium states of investors' behavior dynamics is directly related with the risk dominance degree of some behavior; connectivity and heterogeneity of the network plays an important role in the evolution of the investment behavior in stock market.

  4. Symmetry analysis for hyperbolic equilibria using a TB/dengue fever model

    NASA Astrophysics Data System (ADS)

    Massoukou, R. Y. M.'Pika; Govinder, K. S.

    2016-08-01

    We investigate the interplay between Lie symmetry analysis and dynamical systems analysis. As an example, we take a toy model describing the spread of TB and dengue fever. We first undertake a comprehensive dynamical systems analysis including a discussion about local stability. For those regions in which such analyzes cannot be translated to global behavior, we undertake a Lie symmetry analysis. It is shown that the Lie analysis can be useful in providing information for systems where the (local) dynamical systems analysis breaks down.

  5. Bayesian dynamic mediation analysis.

    PubMed

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Hamiltonian Analysis of Subcritical Stochastic Epidemic Dynamics

    PubMed Central

    2017-01-01

    We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of the Hamiltonian system away from its deterministic subsystem. This yields a novel, general technique of approximation of the quasistationary distribution of stochastic epidemic and birth-death models and may lead to techniques for analysis of these models beyond the quasistationary distribution. For a classic SIS model, the approximation found for the quasistationary distribution is very similar to published approximations but not identical. For a birth-death process without depletion of susceptibles, the approximation is exact. Dynamics on the phase plane similar to those predicted by the Hamiltonian analysis are demonstrated in cross-sectional data from trachoma treatment trials in Ethiopia, in which declining prevalences are consistent with subcritical epidemic dynamics. PMID:28932256

  7. Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems

    NASA Technical Reports Server (NTRS)

    Fields, Chris

    1989-01-01

    Continuous dynamical systems intuitively seem capable of more complex behavior than discrete systems. If analyzed in the framework of the traditional theory of computation, a continuous dynamical system with countably many quasistable states has at least the computational power of a universal Turing machine. Such an analysis assumes, however, the classical notion of measurement. If measurement is viewed nonclassically, a continuous dynamical system cannot, even in principle, exhibit behavior that cannot be simulated by a universal Turing machine.

  8. Behavior dynamics: One perspective

    PubMed Central

    Marr, M. Jackson

    1992-01-01

    Behavior dynamics is a field devoted to analytic descriptions of behavior change. A principal source of both models and methods for these descriptions is found in physics. This approach is an extension of a long conceptual association between behavior analysis and physics. A theme common to both is the role of molar versus molecular events in description and prediction. Similarities and differences in how these events are treated are discussed. Two examples are presented that illustrate possible correspondence between mechanical and behavioral systems. The first demonstrates the use of a mechanical model to describe the molar properties of behavior under changing reinforcement conditions. The second, dealing with some features of concurrent schedules, focuses on the possible utility of nonlinear dynamical systems to the description of both molar and molecular behavioral events as the outcome of a deterministic, but chaotic, process. PMID:16812655

  9. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.

    PubMed

    Siettos, Constantinos; Starke, Jens

    2016-09-01

    The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  10. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors

    NASA Astrophysics Data System (ADS)

    Cenek, Martin; Dahl, Spencer K.

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  11. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors.

    PubMed

    Cenek, Martin; Dahl, Spencer K

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  12. Dynamic stall characterization using modal analysis of phase-averaged pressure distributions

    NASA Astrophysics Data System (ADS)

    Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan

    2017-11-01

    Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.

  13. Analysis of the dynamic behavior of structures using the high-rate GNSS-PPP method combined with a wavelet-neural model: Numerical simulation and experimental tests

    NASA Astrophysics Data System (ADS)

    Kaloop, Mosbeh R.; Yigit, Cemal O.; Hu, Jong W.

    2018-03-01

    Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10 Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.

  14. An application of holographic interferometry for dynamic vibration analysis of a jet engine turbine compressor rotor

    NASA Astrophysics Data System (ADS)

    Fein, Howard

    2003-09-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as critical operational parameters of turbine structural components or unit turbine components fabricated from advanced and exotic new materials or using new fabrication methods. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects.

  15. A Formal Investigation of the Organization of Guidance Behavior: Implications for Humans and Autonomous Guidance

    NASA Astrophysics Data System (ADS)

    Kong, Zhaodan

    Guidance behavior generated either by artificial agents or humans has been actively studied in the fields of both robotics and cognitive science. The goals of these two fields are different. The former is the automatic generation of appropriate or even optimal behavior, while the latter is the understanding of the underlying mechanism. Their challenges, though, are closely related, the most important one being the lack of a unified, formal and grounded framework where the guidance behavior can be modeled and studied. This dissertation presents such a framework. In this framework, guidance behavior is analyzed as the closed-loop dynamics of the whole agent-environment system. The resulting dynamics give rise to interaction patterns. The central points of this dissertation are that: first of all, these patterns, which can be explained in terms of symmetries that are inherent to the guidance behavior, provide building blocks for the organization of behavior; second, the existence of these patterns and humans' organization of their guidance behavior based on these patterns are the reasons that humans can generate successful behavior in spite of all the complexities involved in the planning and control. This dissertation first gives an overview of the challenges existing in both scientific endeavors, such as human and animal spatial behavior study, and engineering endeavors, such as autonomous guidance system design. It then lays out the foundation for our formal framework, which states that guidance behavior should be interpreted as the collection of the closed-loop dynamics resulting from the agent's interaction with the environment. The following, illustrated by examples of three different UAVs, shows that the study of the closed-loop dynamics should not be done without the consideration of vehicle dynamics, as is the common practice in some of the studies in both autonomous guidance and human behavior analysis. The framework, the core concepts of which are symmetries and interaction patterns, is then elaborated on with the example of Dubins' vehicle's guidance behavior. The dissertation then describes the details of the agile human guidance experiments using miniature helicopters, the technique that is developed for the analysis of the experimental data and the analysis results. The results confirm that human guidance behavior indeed exhibits invariance as defined by interaction patterns. Subsequently, the behavior in each interaction pattern is investigated using piecewise affine model identification. Combined, the results provide a natural and formal decomposition of the behavior that can be unified under a hierarchical hidden Markov model. By employing the languages of dynamical system and control and by adopting algorithms from system identification and machine learning, the framework presented in this dissertation provides a fertile ground where these different disciplines can meet. It also promises multiple potential directions where future research can be headed.

  16. Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi

    1996-01-01

    Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.

  17. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    NASA Astrophysics Data System (ADS)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  18. A nonlinear dynamical system for combustion instability in a pulse model combustor

    NASA Astrophysics Data System (ADS)

    Takagi, Kazushi; Gotoda, Hiroshi

    2016-11-01

    We theoretically and numerically study the bifurcation phenomena of nonlinear dynamical system describing combustion instability in a pulse model combustor on the basis of dynamical system theory and complex network theory. The dynamical behavior of pressure fluctuations undergoes a significant transition from steady-state to deterministic chaos via the period-doubling cascade process known as Feigenbaum scenario with decreasing the characteristic flow time. Recurrence plots and recurrence networks analysis we adopted in this study can quantify the significant changes in dynamic behavior of combustion instability that cannot be captured in the bifurcation diagram.

  19. Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu

    2018-01-01

    Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.

  20. Recurrence analysis of ant activity patterns

    PubMed Central

    2017-01-01

    In this study, we used recurrence quantification analysis (RQA) and recurrence plots (RPs) to compare the movement activity of individual workers of three ant species, as well as a gregarious beetle species. RQA and RPs quantify the number and duration of recurrences of a dynamical system, including a detailed quantification of signals that could be stochastic, deterministic, or both. First, we found substantial differences between the activity dynamics of beetles and ants, with the results suggesting that the beetles have quasi-periodic dynamics and the ants do not. Second, workers from different ant species varied with respect to their dynamics, presenting degrees of predictability as well as stochastic signals. Finally, differences were found among minor and major caste of the same (dimorphic) ant species. Our results underscore the potential of RQA and RPs in the analysis of complex behavioral patterns, as well as in general inferences on animal behavior and other biological phenomena. PMID:29016648

  1. TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics.

    PubMed

    Hou, Yue; Konen, Jessica; Brat, Daniel J; Marcus, Adam I; Cooper, Lee A D

    2018-05-08

    Spheroid cultures derived from explanted cancer specimens are an increasingly utilized resource for studying complex biological processes like tumor cell invasion and metastasis, representing an important bridge between the simplicity and practicality of 2-dimensional monolayer cultures and the complexity and realism of in vivo animal models. Temporal imaging of spheroids can capture the dynamics of cell behaviors and microenvironments, and when combined with quantitative image analysis methods, enables deep interrogation of biological mechanisms. This paper presents a comprehensive open-source software framework for Temporal Analysis of Spheroid Imaging (TASI) that allows investigators to objectively characterize spheroid growth and invasion dynamics. TASI performs spatiotemporal segmentation of spheroid cultures, extraction of features describing spheroid morpho-phenotypes, mathematical modeling of spheroid dynamics, and statistical comparisons of experimental conditions. We demonstrate the utility of this tool in an analysis of non-small cell lung cancer spheroids that exhibit variability in metastatic and proliferative behaviors.

  2. The dynamics of recreation participation: ski touring in Minnesota

    Treesearch

    Timothy B. Knopp; G. Ballman; L. C. Merriam

    1980-01-01

    A realistic model or framework for the analysis of recreation behavior must be both comprehensive and dynamic. Most attempts to explain recreation behavior are static in that they do not allow for changes in the character of an activity or the evolution of a participant's involvement. Even predictive models tend to assume that relationships remain constant over...

  3. Dynamic and static fatigue behavior of sintered silicon nitrides

    NASA Technical Reports Server (NTRS)

    Chang, J.; Khandelwal, P.; Heitman, P. W.

    1987-01-01

    The dynamic and static fatigue behavior of Kyocera SN220M sintered silicon nitride at 1000 C was studied. Fractographic analysis of the material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 41 MPa/min. Under conditions of static fatigue this material also displayed SCG at stresses below 345 MPa. SCG appears to be controlled by microcracking of the grain boundaries. The crack velocity exponent (n) determined from both dynamic and static fatigue tests ranged from 11 to 16.

  4. Coupled disease-behavior dynamics on complex networks: A review

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  5. Using nonlinear methods to quantify changes in infant limb movements and vocalizations.

    PubMed

    Abney, Drew H; Warlaumont, Anne S; Haussman, Anna; Ross, Jessica M; Wallot, Sebastian

    2014-01-01

    The pairing of dynamical systems theory and complexity science brings novel concepts and methods to the study of infant motor development. Accordingly, this longitudinal case study presents a new approach to characterizing the dynamics of infant limb and vocalization behaviors. A single infant's vocalizations and limb movements were recorded from 51-days to 305-days of age. On each recording day, accelerometers were placed on all four of the infant's limbs and an audio recorder was worn on the child's chest. Using nonlinear time series analysis methods, such as recurrence quantification analysis and Allan factor, we quantified changes in the stability and multiscale properties of the infant's behaviors across age as well as how these dynamics relate across modalities and effectors. We observed that particular changes in these dynamics preceded or coincided with the onset of various developmental milestones. For example, the largest changes in vocalization dynamics preceded the onset of canonical babbling. The results show that nonlinear analyses can help to understand the functional co-development of different aspects of infant behavior.

  6. Using nonlinear methods to quantify changes in infant limb movements and vocalizations

    PubMed Central

    Abney, Drew H.; Warlaumont, Anne S.; Haussman, Anna; Ross, Jessica M.; Wallot, Sebastian

    2014-01-01

    The pairing of dynamical systems theory and complexity science brings novel concepts and methods to the study of infant motor development. Accordingly, this longitudinal case study presents a new approach to characterizing the dynamics of infant limb and vocalization behaviors. A single infant's vocalizations and limb movements were recorded from 51-days to 305-days of age. On each recording day, accelerometers were placed on all four of the infant's limbs and an audio recorder was worn on the child's chest. Using nonlinear time series analysis methods, such as recurrence quantification analysis and Allan factor, we quantified changes in the stability and multiscale properties of the infant's behaviors across age as well as how these dynamics relate across modalities and effectors. We observed that particular changes in these dynamics preceded or coincided with the onset of various developmental milestones. For example, the largest changes in vocalization dynamics preceded the onset of canonical babbling. The results show that nonlinear analyses can help to understand the functional co-development of different aspects of infant behavior. PMID:25161629

  7. Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience

    PubMed Central

    Turm, Hagit; Mukherjee, Diptendu; Haritan, Doron; Tahor, Maayan; Citri, Ami

    2014-01-01

    The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies. PMID:25225819

  8. MSEE: Stochastic Cognitive Linguistic Behavior Models for Semantic Sensing

    DTIC Science & Technology

    2013-09-01

    recognition, a Gaussian Process Dynamic Model with Social Network Analysis (GPDM-SNA) for a small human group action recognition, an extended GPDM-SNA...44  3.2. Small Human Group Activity Modeling Based on Gaussian Process Dynamic Model and Social Network Analysis (SN-GPDM...51  Approved for public release; distribution unlimited. 3 3.2.3. Gaussian Process Dynamical Model and

  9. Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction

    NASA Technical Reports Server (NTRS)

    Makikallio, T. H.; Seppanen, T.; Airaksinen, K. E.; Koistinen, J.; Tulppo, M. P.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1997-01-01

    Dynamics analysis of RR interval behavior and traditional measures of heart rate variability were compared between postinfarction patients with and without vulnerability to ventricular tachyarrhythmias in a case-control study. Short-term fractal correlation of heart rate dynamics was better than traditional measures of heart rate variability in differentiating patients with and without life-threatening arrhythmias.

  10. Nonlinear analysis of dynamic signature

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Fallah, A.; Towhidkhah, F.

    2013-12-01

    Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.

  11. Transcriptional and Chromatin Dynamics of Muscle Regeneration After Severe Trauma

    DTIC Science & Technology

    2016-10-12

    performed pathway analysis of the time-clustered RNA- Seq data16 and showed an initial burst of pro-inflammatory and immune-response transcripts in the...143 showed dynamic behavior (See Methods) and analysis of the dynamic miRNAs reinforced many of the results observed from the RNA-Seq datasets...excellent agreement was viewed. Hierarchical clustering of the datasets through time revealed 5 clusters, and gene ontology (GO) analysis of the

  12. Engine dynamic analysis with general nonlinear finite element codes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1991-01-01

    A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.

  13. Dynamics of early planetary gear trains

    NASA Technical Reports Server (NTRS)

    August, R.; Kasuba, R.; Frater, J. L.; Pintz, A.

    1984-01-01

    A method to analyze the static and dynamic loads in a planetary gear train was developed. A variable-variable mesh stiffness (VVMS) model was used to simulate the external and internal spur gear mesh behavior, and an equivalent conventional gear train concept was adapted for the dynamic studies. The analysis can be applied either involute or noninvolute spur gearing. By utilizing the equivalent gear train concept, the developed method may be extended for use for all types of epicyclic gearing. The method is incorporated into a computer program so that the static and dynamic behavior of individual components can be examined. Items considered in the analysis are: (1) static and dynamic load sharing among the planets; (2) floating or fixed Sun gear; (3) actual tooth geometry, including errors and modifications; (4) positioning errors of the planet gears; (5) torque variations due to noninvolute gear action. A mathematical model comprised of power source, load, and planetary transmission is used to determine the instantaneous loads to which the components are subjected. It considers fluctuating output torque, elastic behavior in the system, and loss of contact between gear teeth. The dynamic model has nine degrees of freedom resulting in a set of simultaneous second order differential equations with time varying coefficients, which are solved numerically. The computer program was used to determine the effect of manufacturing errors, damping and component stiffness, and transmitted load on dynamic behavior. It is indicated that this methodology offers the designer/analyst a comprehensive tool with which planetary drives may be quickly and effectively evaluated.

  14. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    NASA Astrophysics Data System (ADS)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  15. Nonlinear Dynamic Models in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  16. Linking brain, mind and behavior.

    PubMed

    Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard

    2009-08-01

    Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.

  17. An investigation into NVC characteristics of vehicle behaviour using modal analysis

    NASA Astrophysics Data System (ADS)

    Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini

    2017-03-01

    NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.

  18. Modeling and Analysis of Structural Dynamics for a One-Tenth Scale Model NGST Sunshield

    NASA Technical Reports Server (NTRS)

    Johnston, John; Lienard, Sebastien; Brodeur, Steve (Technical Monitor)

    2001-01-01

    New modeling and analysis techniques have been developed for predicting the dynamic behavior of the Next Generation Space Telescope (NGST) sunshield. The sunshield consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. Modeling the structural dynamic behavior of the sunshield is a challenging aspect of the problem due to the effects of membrane wrinkling. A finite element model of the sunshield was developed using an approximate engineering approach, the cable network method, to account for membrane wrinkling effects. Ground testing of a one-tenth scale model of the NGST sunshield were carried out to provide data for validating the analytical model. A series of analyses were performed to predict the behavior of the sunshield under the ground test conditions. Modal analyses were performed to predict the frequencies and mode shapes of the test article and transient response analyses were completed to simulate impulse excitation tests. Comparison was made between analytical predictions and test measurements for the dynamic behavior of the sunshield. In general, the results show good agreement with the analytical model correctly predicting the approximate frequency and mode shapes for the significant structural modes.

  19. Numerical investigation of bubble nonlinear dynamics characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jie, E-mail: shijie@hrbeu.edu.cn; Yang, Desen; Shi, Shengguo

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  20. Comparing the Cognitive Process of Circular Causality in Two Patients with Strokes through Qualitative Analysis.

    PubMed

    Derakhshanrad, Seyed Alireza; Piven, Emily; Ghoochani, Bahareh Zeynalzadeh

    2017-10-01

    Walter J. Freeman pioneered the neurodynamic model of brain activity when he described the brain dynamics for cognitive information transfer as the process of circular causality at intention, meaning, and perception (IMP) levels. This view contributed substantially to establishment of the Intention, Meaning, and Perception Model of Neuro-occupation in occupational therapy. As described by the model, IMP levels are three components of the brain dynamics system, with nonlinear connections that enable cognitive function to be processed in a circular causality fashion, known as Cognitive Process of Circular Causality (CPCC). Although considerable research has been devoted to study the brain dynamics by sophisticated computerized imaging techniques, less attention has been paid to study it through investigating the adaptation process of thoughts and behaviors. To explore how CPCC manifested thinking and behavioral patterns, a qualitative case study was conducted on two matched female participants with strokes, who were of comparable ages, affected sides, and other characteristics, except for their resilience and motivational behaviors. CPCC was compared by matrix analysis between two participants, using content analysis with pre-determined categories. Different patterns of thinking and behavior may have happened, due to disparate regulation of CPCC between two participants.

  1. Interaction Dynamics Between a Flexible Rotor and an Auxiliary Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Lawen, James L., Jr.; Flowers, George T.

    1996-01-01

    This study investigates the application of synchronous interaction dynamics methodology to the design of auxiliary bearing systems. The technique is applied to a flexible rotor system and comparisons are made between the behavior predicted by this analysis method and the observed simulation response characteristics. Of particular interest is the influence of coupled shaft/bearing vibration modes on rotordynamical behavior. Experimental studies are also perFormed to validate the simulation results and provide insight into the expected behavior of such a system.

  2. Fractal analysis on human dynamics of library loans

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Guo, Jin-Li; Zha, Yi-Long

    2012-12-01

    In this paper, the fractal characteristic of human behaviors is investigated from the perspective of time series constructed with the amount of library loans. The values of the Hurst exponent and length of non-periodic cycle calculated through rescaled range analysis indicate that the time series of human behaviors and their sub-series are fractal with self-similarity and long-range dependence. Then the time series are converted into complex networks by the visibility algorithm. The topological properties of the networks such as scale-free property and small-world effect imply that there is a close relationship among the numbers of repetitious behaviors performed by people during certain periods of time. Our work implies that there is intrinsic regularity in the human collective repetitious behaviors. The conclusions may be helpful to develop some new approaches to investigate the fractal feature and mechanism of human dynamics, and provide some references for the management and forecast of human collective behaviors.

  3. Coupled disease-behavior dynamics on complex networks: A review.

    PubMed

    Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dynamical Systems in Psychology: Linguistic Approaches

    NASA Astrophysics Data System (ADS)

    Sulis, William

    Major goals for psychoanalysis and psychology are the description, analysis, prediction, and control of behaviour. Natural language has long provided the medium for the formulation of our theoretical understanding of behavior. But with the advent of nonlinear dynamics, a new language has appeared which offers promise to provide a quantitative theory of behaviour. In this paper, some of the limitations of natural and formal languages are discussed. Several approaches to understanding the links between natural and formal languages, as applied to the study of behavior, are discussed. These include symbolic dynamics, Moore's generalized shifts, Crutchfield's ɛ machines, and dynamical automata.

  5. The Applied Behavior Analytic Heritage of PBS: A Dynamic Model of Action-Oriented Research

    ERIC Educational Resources Information Center

    Dunlap, Glen; Horner, Robert H., Ed.

    2006-01-01

    In the past two decades, positive behavior support (PBS) has emerged from applied behavior analysis (ABA) as a newly fashioned approach to problems of behavioral adaptation. ABA was established in the 1960s as a science in which learning principles are systematically applied to produce socially important changes in behavior, whereas PBS was…

  6. Active Structural Acoustic Control as an Approach to Acoustic Optimization of Lightweight Structures

    DTIC Science & Technology

    2001-06-01

    appropriate approach based on Statistical Energy Analysis (SEA) would facilitate investigations of the structural behavior at a high modal density. On the way...higher frequency investigations an approach based on the Statistical Energy Analysis (SEA) is recommended to describe the structural dynamic behavior

  7. RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS

    PubMed Central

    Purcell, Braden A.; Palmeri, Thomas J.

    2016-01-01

    Accumulator models explain decision-making as an accumulation of evidence to a response threshold. Specific model parameters are associated with specific model mechanisms, such as the time when accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary when a model is fitted to observed behavior. The recent identification of neural activity with evidence accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of inferences can be made about decision-making mechanisms based on measures of neural dynamics, we measured simulated accumulator model dynamics while systematically varying model parameters. In some cases, decision- making mechanisms can be directly inferred from dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful approach to understand decision-making and likely other aspects of cognition and perception. PMID:28392584

  8. Dynamic Investigation of Static Divergence: Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2000-01-01

    The phenomenon known as aeroelastic divergence is the focus of this work. The analyses and experiment presented here show that divergence can occur without a structural dynamic mode losing its oscillatory nature. Aeroelastic divergence occurs when the structural restorative capability or stiffness of a structure is overwhelmed by the static aerodynamic moment. This static aeroelastic coupling does not require the structural dynamic system behavior to cease, however. Aeroelastic changes in the dynamic mode behavior are governed not only by the stiffness, but by damping and inertial properties. The work presented here supports these fundamental assertions by examining a simple system: a typical section airfoil with only a rotational structural degree of freedom. Analytical results identified configurations that exhibit different types of dynamic mode behavior as the system encounters divergence. A wind tunnel model was designed and tested to examine divergence experimentally. The experimental results validate the analytical calculations and explicitly examine the divergence phenomenon where the dynamic mode persists. Three configurations of the wind tunnel model were tested. The experimental results agree very well with the analytical predictions of subcritical characteristics, divergence velocity, and behavior of the noncritical dynamic mode at divergence.

  9. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    NASA Astrophysics Data System (ADS)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen; Sun, Wenjing

    2015-01-01

    In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C1/C2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  10. Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

    PubMed

    Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash

    2018-04-24

    Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.

  11. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics.

    PubMed

    Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

    2016-01-01

    Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.

  12. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks

    PubMed Central

    Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the “information networks” different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed. PMID:28796797

  13. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks.

    PubMed

    Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.

  14. Drosophila learn efficient paths to a food source.

    PubMed

    Navawongse, Rapeechai; Choudhury, Deepak; Raczkowska, Marlena; Stewart, James Charles; Lim, Terrence; Rahman, Mashiur; Toh, Alicia Guek Geok; Wang, Zhiping; Claridge-Chang, Adam

    2016-05-01

    Elucidating the genetic, and neuronal bases for learned behavior is a central problem in neuroscience. A leading system for neurogenetic discovery is the vinegar fly Drosophila melanogaster; fly memory research has identified genes and circuits that mediate aversive and appetitive learning. However, methods to study adaptive food-seeking behavior in this animal have lagged decades behind rodent feeding analysis, largely due to the challenges presented by their small scale. There is currently no method to dynamically control flies' access to food. In rodents, protocols that use dynamic food delivery are a central element of experimental paradigms that date back to the influential work of Skinner. This method is still commonly used in the analysis of learning, memory, addiction, feeding, and many other subjects in experimental psychology. The difficulty of microscale food delivery means this is not a technique used in fly behavior. In the present manuscript we describe a microfluidic chip integrated with machine vision and automation to dynamically control defined liquid food presentations and sensory stimuli. Strikingly, repeated presentations of food at a fixed location produced improvements in path efficiency during food approach. This shows that improved path choice is a learned behavior. Active control of food availability using this microfluidic system is a valuable addition to the methods currently available for the analysis of learned feeding behavior in flies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Complex social contagion makes networks more vulnerable to disease outbreaks.

    PubMed

    Campbell, Ellsworth; Salathé, Marcel

    2013-01-01

    Social network analysis is now widely used to investigate the dynamics of infectious disease spread. Vaccination dramatically disrupts disease transmission on a contact network, and indeed, high vaccination rates can potentially halt disease transmission altogether. Here, we build on mounting evidence that health behaviors - such as vaccination, and refusal thereof - can spread across social networks through a process of complex contagion that requires social reinforcement. Using network simulations that model health behavior and infectious disease spread, we find that under otherwise identical conditions, the process by which the health behavior spreads has a very strong effect on disease outbreak dynamics. This dynamic variability results from differences in the topology within susceptible communities that arise during the health behavior spreading process, which in turn depends on the topology of the overall social network. Our findings point to the importance of health behavior spread in predicting and controlling disease outbreaks.

  16. Multiscale analysis of the intensity fluctuation in a time series of dynamic speckle patterns.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2007-04-10

    We propose the application of a method based on the discrete wavelet transform to detect, identify, and measure scaling behavior in dynamic speckle. The multiscale phenomena presented by a sample and displayed by its speckle activity are analyzed by processing the time series of dynamic speckle patterns. The scaling analysis is applied to the temporal fluctuation of the speckle intensity and also to the two derived data sets generated by its magnitude and sign. The application of the method is illustrated by analyzing paint-drying processes and bruising in apples. The results are discussed taking into account the different time organizations obtained for the scaling behavior of the magnitude and the sign of the intensity fluctuation.

  17. Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sweby, Peter K.

    1997-01-01

    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.

  18. Seasonal frost effects on the dynamic behavior of a twenty-story office building

    USGS Publications Warehouse

    Yang, Z.; Dutta, U.; Xiong, F.; Biswas, N.; Benz, H.

    2008-01-01

    Studies have shown that seasonal frost can significantly affect the seismic behavior of a bridge foundation system in cold regions. However, little information could be found regarding seasonal frost effects on the dynamic behavior of buildings. Based on the analysis of building vibration data recorded by a permanent strong-motion instrumentation system, the objective of this paper is to show that seasonal frost can impact the building dynamic behavior and the magnitude of impact may be different for different structures. Ambient noise and seismic data recorded on a twenty-story steel-frame building have been analyzed to examine the building dynamic characteristics in relationship to the seasonal frost and other variables including ground shaking intensity. Subsequently, Finite Element modeling of the foundation-soil system and the building superstructure was conducted to verify the seasonal frost effects. The Finite Element modeling was later extended to a reinforced-concrete (RC) type building assumed to exist at a similar site as the steel-frame building. Results show that the seasonal frost has great impact on the foundation stiffness in the horizontal direction and a clear influence on the building dynamic behavior. If other conditions remain the same, the effects of seasonal frost on structural dynamic behavior may be much more prominent for RC-type buildings than for steel-frame buildings. ?? 2007 Elsevier B.V. All rights reserved.

  19. Multiscale Analysis of Structurally-Graded Microstructures Using Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Crystal Plasticity

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri

    2014-01-01

    A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.

  20. A Fracture Mechanics Approach to Thermal Shock Investigation in Alumina-Based Refractory

    NASA Astrophysics Data System (ADS)

    Volkov-Husović, T.; Heinemann, R. Jančić; Mitraković, D.

    2008-02-01

    The thermal shock behavior of large grain size, alumina-based refractories was investigated experimentally using a standard water quench test. A mathematical model was employed to simulate the thermal stability behavior. Behavior of the samples under repeated thermal shock was monitored using ultrasonic measurements of dynamic Young's modulus. Image analysis was used to observe the extent of surface degradation. Analysis of the obtained results for the behavior of large grain size samples under conditions of rapid temperature changes is given.

  1. Dynamic analysis of a geared rotor system considering a slant crack on the shaft

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Zhao, Jingshan; Chu, Fulei

    2012-12-01

    The vibration problems associated with geared systems have been the focus of research in recent years. As the torque is mainly transmitted by the geared system, a slant crack is more likely to appear on the gear shaft. Due to the slant crack and its breathing mechanism, the dynamic behavior of cracked geared system would differ distinctly with that of uncracked system. Relatively less work is reported on slant crack in the geared rotor system during the past research. Thus, the dynamic analysis of a geared rotor-bearing system with a breathing slant crack is performed in the paper. The finite element model of a geared rotor with slant crack is presented. Based on fracture mechanics, the flexibility matrix for the slant crack is derived that accounts for the additional stress intensity factors. Three methods for whirling analysis, parametric instability analysis and steady-state response analysis are introduced. Then, by taking a widely used one-stage geared rotor-bearing system as an example, the whirling frequencies of the equivalent time-invariant system, two types of instability regions and steady-state response under the excitations of unbalance forces and tooth transmission errors, are computed numerically. The effects of crack depth, position and type (transverse or slant) on the system dynamic behaviors are considered in the discussion. The comparative study with slant cracked geared rotor is carried out to explore distinctive features in their modal, parametric instability and frequency response behaviors.

  2. Dynamics of Robertson–Walker spacetimes with diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alho, A., E-mail: aalho@math.ist.utl.pt; Calogero, S., E-mail: calogero@chalmers.se; Machado Ramos, M.P., E-mail: mpr@mct.uminho.pt

    2015-03-15

    We study the dynamics of spatially homogeneous and isotropic spacetimes containing a fluid undergoing microscopic velocity diffusion in a cosmological scalar field. After deriving a few exact solutions of the equations, we continue by analyzing the qualitative behavior of general solutions. To this purpose we recast the equations in the form of a two dimensional dynamical system and perform a global analysis of the flow. Among the admissible behaviors, we find solutions that are asymptotically de-Sitter both in the past and future time directions and which undergo accelerated expansion at all times.

  3. Linear modeling of steady-state behavioral dynamics.

    PubMed Central

    Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert

    2002-01-01

    The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782

  4. Coagulation dynamics of a blood sample by multiple scattering analysis

    NASA Astrophysics Data System (ADS)

    Faivre, Magalie; Peltié, Philippe; Planat-Chrétien, Anne; Cosnier, Marie-Line; Cubizolles, Myriam; Nougier, Christophe; Négrier, Claude; Pouteau, Patrick

    2011-05-01

    We report a new technique to measure coagulation dynamics on whole-blood samples. The method relies on the analysis of the speckle figure resulting from a whole-blood sample mixed with coagulation reagent and introduced in a thin chamber illuminated with a coherent light. A dynamic study of the speckle reveals a typical behavior due to coagulation. We compare our measured coagulation times to a reference method obtained in a medical laboratory.

  5. Study nonlinear dynamics of stratospheric ozone concentration at Pakistan Terrestrial region

    NASA Astrophysics Data System (ADS)

    Jan, Bulbul; Zai, Muhammad Ayub Khan Yousuf; Afradi, Faisal Khan; Aziz, Zohaib

    2018-03-01

    This study investigates the nonlinear dynamics of the stratospheric ozone layer at Pakistan atmospheric region. Ozone considered now the most important issue in the world because of its diverse effects on earth biosphere, including human health, ecosystem, marine life, agriculture yield and climate change. Therefore, this paper deals with total monthly time series data of stratospheric ozone over the Pakistan atmospheric region from 1970 to 2013. Two approaches, basic statistical analysis and Fractal dimension (D) have adapted to study the nature of nonlinear dynamics of stratospheric ozone level. Results obtained from this research have shown that the Hurst exponent values of both methods of fractal dimension revealed an anti-persistent behavior (negatively correlated), i.e. decreasing trend for all lags and Rescaled range analysis is more appropriate as compared to Detrended fluctuation analysis. For seasonal time series all month follows an anti-persistent behavior except in the month of November which shown persistence behavior i.e. time series is an independent and increasing trend. The normality test statistics also confirmed the nonlinear behavior of ozone and the rejection of hypothesis indicates the strong evidence of the complexity of data. This study will be useful to the researchers working in the same field in the future to verify the complex nature of stratospheric ozone.

  6. Vehicle dynamic analysis using neuronal network algorithms

    NASA Astrophysics Data System (ADS)

    Oloeriu, Florin; Mocian, Oana

    2014-06-01

    Theoretical developments of certain engineering areas, the emergence of new investigation tools, which are better and more precise and their implementation on-board the everyday vehicles, all these represent main influence factors that impact the theoretical and experimental study of vehicle's dynamic behavior. Once the implementation of these new technologies onto the vehicle's construction had been achieved, it had led to more and more complex systems. Some of the most important, such as the electronic control of engine, transmission, suspension, steering, braking and traction had a positive impact onto the vehicle's dynamic behavior. The existence of CPU on-board vehicles allows data acquisition and storage and it leads to a more accurate and better experimental and theoretical study of vehicle dynamics. It uses the information offered directly by the already on-board built-in elements of electronic control systems. The technical literature that studies vehicle dynamics is entirely focused onto parametric analysis. This kind of approach adopts two simplifying assumptions. Functional parameters obey certain distribution laws, which are known in classical statistics theory. The second assumption states that the mathematical models are previously known and have coefficients that are not time-dependent. Both the mentioned assumptions are not confirmed in real situations: the functional parameters do not follow any known statistical repartition laws and the mathematical laws aren't previously known and contain families of parameters and are mostly time-dependent. The purpose of the paper is to present a more accurate analysis methodology that can be applied when studying vehicle's dynamic behavior. A method that provides the setting of non-parametrical mathematical models for vehicle's dynamic behavior is relying on neuronal networks. This method contains coefficients that are time-dependent. Neuronal networks are mostly used in various types' system controls, thus being a non-linear process identification algorithm. The common use of neuronal networks for non-linear processes is justified by the fact that both have the ability to organize by themselves. That is why the neuronal networks best define intelligent systems, thus the word `neuronal' is sending one's mind to the biological neuron cell. The paper presents how to better interpret data fed from the on-board computer and a new way of processing that data to better model the real life dynamic behavior of the vehicle.

  7. Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    DOE PAGES

    Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...

    2015-04-10

    Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less

  8. Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuzhan; Pruitt, Cole; Rios, Orlando

    Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less

  9. A cluster phase analysis for collective behavior in team sports.

    PubMed

    López-Felip, Maurici A; Davis, Tehran J; Frank, Till D; Dixon, James A

    2018-06-01

    Collective behavior can be defined as the ability of humans to coordinate with others through a complex environment. Sports offer exquisite examples of this dynamic interplay, requiring decision making and other perceptual-cognitive skills to adjust individual decisions to the team self-organization and vice versa. Considering players of a team as periodic phase oscillators, synchrony analyses can be used to model the coordination of a team. Nonetheless, a main limitation of current models is that collective behavior is context independent. In other words, players on a team can be highly synchronized without this corresponding to a meaningful coordination dynamics relevant to the context of the game. Considering these issues, the aim of this study was to develop a method of analysis sensitive to the context for evidence-based measures of collective behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nonlinear dynamics of the magnetosphere and space weather

    NASA Technical Reports Server (NTRS)

    Sharma, A. Surjalal

    1996-01-01

    The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.

  11. Model and Dynamic Behavior of Malware Propagation over Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Song, Yurong; Jiang, Guo-Ping

    Based on the inherent characteristics of wireless sensor networks (WSN), the dynamic behavior of malware propagation in flat WSN is analyzed and investigated. A new model is proposed using 2-D cellular automata (CA), which extends the traditional definition of CA and establishes whole transition rules for malware propagation in WSN. Meanwhile, the validations of the model are proved through theoretical analysis and simulations. The theoretical analysis yields closed-form expressions which show good agreement with the simulation results of the proposed model. It is shown that the malware propaga-tion in WSN unfolds neighborhood saturation, which dominates the effects of increasing infectivity and limits the spread of the malware. MAC mechanism of wireless sensor networks greatly slows down the speed of malware propagation and reduces the risk of large-scale malware prevalence in these networks. The proposed model can describe accurately the dynamic behavior of malware propagation over WSN, which can be applied in developing robust and efficient defense system on WSN.

  12. Aeroelastic Analysis for Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1982-01-01

    Aeroelastic-analysis computer program incorporates an analytical model of aeroelastic behavior of wide range of rotorcraft. Such an analytical model is desirable for both pretest predictions and posttest correlations. Program can be applied in investigations of isolated rotor aeroelasticity and helicopter-flight dynamics and could be employed as basis for more-extensive investigations or aeroelastic behavior, such as automatic control system design.

  13. Smoking Behavior and Friendship Formation: The Importance of Time Heterogeneity in Studying Social Network Dynamics

    DTIC Science & Technology

    2010-01-01

    Smoking Behavior and Friendship Formation: The Importance of Time Heterogeneity in Studying Social Network Dynamics Joshua A. Lospinoso Department of...djsatchell@gmail.com Abstract—This study illustrates the importance of assessing and accounting for time heterogeneity in longitudinal social net- work...analysis. We apply the time heterogeneity model selection procedure of [1] to a dataset collected on social tie formation for university freshman in the

  14. [Three-dimensional stress analysis of periodontal ligament of mandible incisors fixed bridge abutments under dynamic loads by finite element method].

    PubMed

    Ma, Da; Tang, Liang; Pan, Yan-Huan

    2007-12-01

    Three-dimensional finite method was used to analyze stress and strain distributions of periodontal ligament of abutments under dynamic loads. Finite element analysis was performed on the model under dynamic loads with vertical and oblique directions. The stress and strain distributions and stress-time curves were analyzed to study the biomechanical behavior of periodontal ligament of abutments. The stress and strain distributions of periodontal ligament under dynamic load were same with the static load. But the maximum stress and strain decreased apparently. The rate of change was between 60%-75%. The periodontal ligament had time-dependent mechanical behaviors. Some level of residual stress in periodontal ligament was left after one mastication period. The stress-free time under oblique load was shorter than that of vertical load. The maximum stress and strain decrease apparently under dynamic loads. The periodontal ligament has time-dependent mechanical behaviors during one mastication. There is some level of residual stress left after one mastication period. The level of residual stress is related to the magnitude and the direction of loads. The direction of applied loads is one important factor that affected the stress distribution and accumulation and release of abutment periodontal ligament.

  15. Self-Editing: On the Relation Between behavioral and Psycholinguistic Approaches

    PubMed Central

    Kimberly Epting, L; Critchfield, Thomas S

    2006-01-01

    In Skinner's (1957) conceptual analysis, the process of self-editing is integral to the dynamic complexities of multiply determined verbal behavior, but the analysis has generated little in the way of an experimental analysis. The majority of scientific work on self-editing has taken place within linguistics and cognitive psycholinguistics. Here we compare and contrast behavioral and cognitive psycholinguistic approaches to self-editing, highlighting points of contact that can be identified despite fundamental differences in theoretical styles. We conclude that the two approaches are not mutually exclusive on all dimensions, and suggest that a consideration of cognitive psycholinguistic research may help to spur an experimental analysis of self-editing from a behavioral perspective. PMID:22478464

  16. Can a simple dynamical system describe the interplay between drag and buoyancy in terrain-induced canopy flows?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Roo, Frederik; Banerjee, Tirtha

    Under non-neutral stratification and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among others, serious implications for the measurement of surface – atmosphere exchange by means of eddy-covariance: for example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, we investigate the dynamics of turbulent flow within sloped canopies,more » focusing on the slope wind and potential temperature. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.« less

  17. Can a simple dynamical system describe the interplay between drag and buoyancy in terrain-induced canopy flows?

    DOE PAGES

    De Roo, Frederik; Banerjee, Tirtha

    2018-02-23

    Under non-neutral stratification and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among others, serious implications for the measurement of surface – atmosphere exchange by means of eddy-covariance: for example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, we investigate the dynamics of turbulent flow within sloped canopies,more » focusing on the slope wind and potential temperature. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.« less

  18. Application of holographic interferometry for analysis of the dynamic and modal characteristics of an advanced exotic metal airfoil structure

    NASA Astrophysics Data System (ADS)

    Fein, Howard

    1999-03-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.

  19. Emergent user behavior on Twitter modelled by a stochastic differential equation.

    PubMed

    Mollgaard, Anders; Mathiesen, Joachim

    2015-01-01

    Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise.

  20. Emergent User Behavior on Twitter Modelled by a Stochastic Differential Equation

    PubMed Central

    Mollgaard, Anders; Mathiesen, Joachim

    2015-01-01

    Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise. PMID:25955783

  1. Application of finite-element methods to dynamic analysis of flexible spatial and co-planar linkage systems, part 2

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1989-01-01

    An approach is described to modeling the flexibility effects in spatial mechanisms and manipulator systems. The method is based on finite element representations of the individual links in the system. However, it should be noted that conventional finite element methods and software packages will not handle the highly nonlinear dynamic behavior of these systems which results form their changing geometry. In order to design high-performance lightweight systems and their control systems, good models of their dynamic behavior which include the effects of flexibility are required.

  2. Interaction between Liénard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed bandpass feedback.

    PubMed

    Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime

    2016-12-01

    We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.

  3. Detrended fluctuation analysis of human brain electroencephalogram

    NASA Astrophysics Data System (ADS)

    Pan, C. P.; Zheng, B.; Wu, Y. Z.; Wang, Y.; Tang, X. W.

    2004-08-01

    With the detrended fluctuation analysis, we investigate dynamics of human brain electroencephalogram. Long-range temporal correlation and scaling behavior are observed, and certain characteristic of the Alzheimer's disease is revealed.

  4. Relative phase asynchrony and long-range correlation of long-term solar magnetic activity

    NASA Astrophysics Data System (ADS)

    Deng, Linhua

    2017-07-01

    Statistical signal processing is one of the most important tasks in a large amount of areas of scientific studies, such as astrophysics, geophysics, and space physics. Phase recurrence analysis and long-range persistence are the two dynamical structures of the underlying processes for the given natural phenomenon. Linear and nonlinear time series analysis approaches (cross-correlation analysis, cross-recurrence plot, wavelet coherent transform, and Hurst analysis) are combined to investigate the relative phase interconnection and long-range correlation between solar activity and geomagnetic activity for the time interval from 1932 January to 2017 January. The following prominent results are found: (1) geomagnetic activity lags behind sunspot numbers with a phase shift of 21 months, and they have a high level of asynchronous behavior; (2) their relative phase interconnections are in phase for the periodic scales during 8-16 years, but have a mixing behavior for the periodic belts below 8 years; (3) both sunspot numbers and geomagnetic activity can not be regarded as a stochastic phenomenon because their dynamical behaviors display a long-term correlation and a fractal nature. We believe that the presented conclusions could provide further information on understanding the dynamical coupling of solar dynamo process with geomagnetic activity variation, and the crucial role of solar and geomagnetic activity in the long-term climate change.

  5. Social Insects: A Model System for Network Dynamics

    NASA Astrophysics Data System (ADS)

    Charbonneau, Daniel; Blonder, Benjamin; Dornhaus, Anna

    Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.

  6. Simultaneous quantification of actin monomer and filament dynamics with modeling-assisted analysis of photoactivation

    PubMed Central

    Kapustina, Maryna; Read, Tracy-Ann

    2016-01-01

    ABSTRACT Photoactivation allows one to pulse-label molecules and obtain quantitative data about their behavior. We have devised a new modeling-based analysis for photoactivatable actin experiments that simultaneously measures properties of monomeric and filamentous actin in a three-dimensional cellular environment. We use this method to determine differences in the dynamic behavior of β- and γ-actin isoforms, showing that both inhabit filaments that depolymerize at equal rates but that β-actin exists in a higher monomer-to-filament ratio. We also demonstrate that cofilin (cofilin 1) equally accelerates depolymerization of filaments made from both isoforms, but is only required to maintain the β-actin monomer pool. Finally, we used modeling-based analysis to assess actin dynamics in axon-like projections of differentiating neuroblastoma cells, showing that the actin monomer concentration is significantly depleted as the axon develops. Importantly, these results would not have been obtained using traditional half-time analysis. Given that parameters of the publicly available modeling platform can be adjusted to suit the experimental system of the user, this method can easily be used to quantify actin dynamics in many different cell types and subcellular compartments. PMID:27831495

  7. The developmental dynamics of behavioral growth processes in rodent egocentric and allocentric space.

    PubMed

    Golani, Ilan

    2012-06-01

    In this review I focus on how three methodological principles advocated by Philip Teitelbaum influenced my work to this day: that similar principles of organization should be looked for in ontogeny and recovery of function; that the order of emergence of behavioral components provides a view on the organization of that behavior; and that the components of behavior should be exhibited by the animal itself in relatively pure form. I start by showing how these principles influenced our common work on the developmental dynamics of rodent egocentric space, and then proceed to describe how these principles affected my work with Yoav Benjamini and others on the developmental dynamics of rodent allocentric space. We analyze issues traditionally addressed by physiological psychologists with methods borrowed from ethology, EW (Eshkol-Wachman) movement notation, dynamical systems and exploratory data analysis. Then we show how the natural origins of axes embodied by the behavior of the organism itself, are used by us as the origins of axes for the measurement of the developmental moment-by-moment dynamics of behavior. Using this methodology we expose similar principles of organization across situations, species and preparations, provide a developmental view on the organization of behavior, expose the natural components of behavior in relatively pure form, and reveal how low level primitives generate higher level constructs. Advances in tracking technology should allow us to study how movements in egocentric and allocentric spaces interlace. Tracking of multi-limb coordination, progress in online recording of neural activity in freely moving animals, and the unprecedented accumulation of genetically engineered mouse preparations makes the behavioral ground plan exposed in this review essential for a systematic study of the brain/behavior interface. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Molecular dynamics simulation of hepatitis C virus IRES IIId domain: structural behavior, electrostatic and energetic analysis.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Di-Giorgio, Audrey; Condom, Roger; Cabrol-Bass, Daniel

    2004-02-01

    The dynamic behavior of the HCV IRES IIId domain is analyzed by means of a 2.6-ns molecular dynamics simulation, starting from an NMR structure. The simulation is carried out in explicit water with Na+ counterions, and particle-mesh Ewald summation is used for the electrostatic interactions. In this work, we analyze selected patterns of the helix that are crucial for IRES activity and that could be considered as targets for the intervention of inhibitors, such as the hexanucleotide terminal loop (more particularly its three consecutive guanines) and the loop-E motif. The simulation has allowed us to analyze the dynamics of the loop substructure and has revealed a behavior among the guanine bases that might explain the different role of the third guanine of the GGG triplet upon molecular recognition. The accessibility of the loop-E motif and the loop major and minor groove is also examined, as well as the effect of Na+ or Mg2+ counterion within the simulation. The electrostatic analysis reveals several ion pockets, not discussed in the experimental structure. The positions of these ions are useful for locating specific electrostatic recognition sites for potential inhibitor binding.

  9. The dynamic and steady state behavior of a PEM fuel cell as an electric energy source

    NASA Astrophysics Data System (ADS)

    Costa, R. A.; Camacho, J. R.

    The main objective of this work is to extract information on the internal behavior of three small polymer electrolyte membrane fuel cells under static and dynamic load conditions. A computational model was developed using Scilab [SCILAB 4, Scilab-a free scientific software package, http://www.scilab.org/, INRIA, France, December, 2005] to simulate the static and dynamic performance [J.M. Correa, A.F. Farret, L.N. Canha, An analysis of the dynamic performance of proton exchange membrane fuel cells using an electrochemical model, in: 27th Annual Conference of IEEE Industrial Electronics Society, 2001, pp. 141-146] of this particular type of fuel cell. This dynamic model is based on electrochemical equations and takes into consideration most of the chemical and physical characteristics of the device in order to generate electric power. The model takes into consideration the operating, design parameters and physical material properties. The results show the internal losses and concentration effects behavior, which are of interest for power engineers and researchers.

  10. Patient-specific modeling and analysis of dynamic behavior of individual sickle red blood cells under hypoxic conditions

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Du, E.; Li, Zhen; Tang, Yu-Hang; Lu, Lu; Dao, Ming; Karniadakis, George

    2015-11-01

    Sickle cell anemia is an inherited blood disorder exhibiting heterogeneous morphology and abnormal dynamics under hypoxic conditions. We developed a time-dependent cell model that is able to simulate the dynamic processes of repeated sickling and unsickling of red blood cells (RBCs) under physiological conditions. By using the kinetic cell model with parameters derived from patient-specific data, we present a mesoscopic computational study of the dynamic behavior of individual sickle RBCs flowing in a microfluidic channel with multiple microgates. We investigate how individual sickle RBCs behave differently from healthy ones in channel flow, and analyze the alteration of cellular behavior and response to single-cell capillary obstruction induced by cell rheologic rigidification and morphological change due to cell sickling under hypoxic conditions. We also simulate the flow dynamics of sickle RBCs treated with hydroxyurea (HU) and quantify the relative enhancement of hemodynamic performance of HU. This work was supported by the National Institutes of Health (NIH) Grant U01HL114476.

  11. Finite element dynamic analysis on CDC STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  12. Maternal Depressive Symptomatology and Child Behavior: Transactional Relationship with Simultaneous Bidirectional Coupling

    PubMed Central

    Nicholson, Jody S.; Deboeck, Pascal; Farris, Jaelyn R.; Boker, Steven M.; Borkowski, John G.

    2011-01-01

    The present study investigated reciprocal relationships between adolescent mothers and their children’s well-being through an analysis of the coupling relationship of mothers’ depressive symptomatology and children’s internalizing and externalizing behaviors. Unlike studies using discrete time analyses, the present study used dynamical systems to model time continuously, which allowed for the study of dynamic, transactional effects between members of each dyad. Findings provided evidence of coupling between maternal depressive symptoms and children’s behaviors. The most robust finding was that as maternal depressive symptoms became more or less severe, children’s behavior problems increased or decreased in a reciprocal manner. Results from this study extended upon theoretical contributions of authors such as Richters (1997) and Granic and Hollenstein (2003), providing empirical validation from a longitudinal study for understanding the ongoing, dynamic relationships between at-risk mothers and their children. PMID:21639624

  13. Analysis and Fem Simulation Methodology of Dynamic Behavior of Human Rotator Cuff in Repetitive Routines: Musician Case Study.

    PubMed

    Islan, Manuel; Blaya, Fernando; Pedro, Pilar San; D'Amato, Roberto; Urquijo, Emilio Lechosa; Juanes, Juan Antonio

    2018-02-05

    The majority of musculoskeletal injuries located in the shoulder are often due to repetitive or sustained movements that occur in work routines in different areas. In the case of musicians, such as violinists, who have long and daily training routines, the repetitive movements they perform are forced and sometimes the postures are not natural. Therefore, this article aims to study and simulate the dynamic behavior of the glenohumeral joint under repetitive conditions that represent the different postures assumed by a violinist during his daily training. For this purpose, the criteria provided by the RULA (rapid upper limb assessment) method have been used. Subsequently, by using as a reference geometry that of the articulation under study generated and modeled in CATIA®[VERSIÓN 5R21], a FEM analysis has been proposed with the software ANSYS®[VERSIÓN 17.1] simulating the short and cyclic movements of the Humerus of the violinists. With the analysis carried out, thanks to linear and isotropic approximations of the joint, it has been possible to know the approximate dynamic behavior of tissues, muscles and tendons, and the response of the joint in terms of fatigue.

  14. Josephson-CMOS Hybrid Memories

    DTIC Science & Technology

    2007-04-25

    threshold voltage. The subthreshold behavior is critical for dynamic circuits since it determines the static power and retention time of a dynamic memory...results of subthreshold behaviors for different temperatures are shown in Fig. 2.9, the simulated results con- firm the analysis above. Also, experimental...0.5-26.5 GHz 25 dB gain), but they are not on-chip because they comsume so much power (9 W) that you cannot afford to build them on chip. [52] Another

  15. Specialized data analysis of SSME and advanced propulsion system vibration measurements

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi

    1993-01-01

    The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.

  16. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    NASA Astrophysics Data System (ADS)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  17. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.

    PubMed

    Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R

    2015-10-01

    Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.

  18. Detecting Non-Markovianity of Quantum Evolution via Spectra of Dynamical Maps.

    PubMed

    Chruściński, Dariusz; Macchiavello, Chiara; Maniscalco, Sabrina

    2017-02-24

    We provide an analysis on non-Markovian quantum evolution based on the spectral properties of dynamical maps. We introduce the dynamical analog of entanglement witness to detect non-Markovianity and we illustrate its behavior with several instructive examples. It is shown that for several important classes of dynamical maps the corresponding evolution of singular values and/or eigenvalues of the map provides a simple non-Markovianity witness.

  19. Dropping vs. Restarting: A Dynamic Analysis of Two Newspaper Subscribing Behaviors.

    ERIC Educational Resources Information Center

    Zhu, Jian-Hua

    In an effort to help describe and explain why people do not read and subscribe to newspapers, a study built on previous research by adding two new contributions: (1) reliance on a four-wave panel data-set rather than on a one-shot survey; and (2) use of a dynamic modeling procedure rather than cross-sectional analysis. The problem with previous…

  20. Artificial Epigenetic Networks: Automatic Decomposition of Dynamical Control Tasks Using Topological Self-Modification.

    PubMed

    Turner, Alexander P; Caves, Leo S D; Stepney, Susan; Tyrrell, Andy M; Lones, Michael A

    2017-01-01

    This paper describes the artificial epigenetic network, a recurrent connectionist architecture that is able to dynamically modify its topology in order to automatically decompose and solve dynamical problems. The approach is motivated by the behavior of gene regulatory networks, particularly the epigenetic process of chromatin remodeling that leads to topological change and which underlies the differentiation of cells within complex biological organisms. We expected this approach to be useful in situations where there is a need to switch between different dynamical behaviors, and do so in a sensitive and robust manner in the absence of a priori information about problem structure. This hypothesis was tested using a series of dynamical control tasks, each requiring solutions that could express different dynamical behaviors at different stages within the task. In each case, the addition of topological self-modification was shown to improve the performance and robustness of controllers. We believe this is due to the ability of topological changes to stabilize attractors, promoting stability within a dynamical regime while allowing rapid switching between different regimes. Post hoc analysis of the controllers also demonstrated how the partitioning of the networks could provide new insights into problem structure.

  1. Nonlinear problems in flight dynamics

    NASA Technical Reports Server (NTRS)

    Chapman, G. T.; Tobak, M.

    1984-01-01

    A comprehensive framework is proposed for the description and analysis of nonlinear problems in flight dynamics. Emphasis is placed on the aerodynamic component as the major source of nonlinearities in the flight dynamic system. Four aerodynamic flows are examined to illustrate the richness and regularity of the flow structures and the nature of the flow structures and the nature of the resulting nonlinear aerodynamic forces and moments. A framework to facilitate the study of the aerodynamic system is proposed having parallel observational and mathematical components. The observational component, structure is described in the language of topology. Changes in flow structure are described via bifurcation theory. Chaos or turbulence is related to the analogous chaotic behavior of nonlinear dynamical systems characterized by the existence of strange attractors having fractal dimensionality. Scales of the flow are considered in the light of ideas from group theory. Several one and two degree of freedom dynamical systems with various mathematical models of the nonlinear aerodynamic forces and moments are examined to illustrate the resulting types of dynamical behavior. The mathematical ideas that proved useful in the description of fluid flows are shown to be similarly useful in the description of flight dynamic behavior.

  2. CADLIVE toolbox for MATLAB: automatic dynamic modeling of biochemical networks with comprehensive system analysis.

    PubMed

    Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki

    2014-09-01

    Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.

  3. Noise-driven switching and chaotic itinerancy among dynamic states in a three-mode intracavity second-harmonic generation laser operating on a Λ transition

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Ohtomo, Takayuki; Maniwa, Tsuyoshi; Kawasaki, Hazumi; Ko, Jing-Yuan

    2003-09-01

    We studied the antiphase self-pulsation in a globally coupled three-mode laser operating in different optical spectrum configurations. We observed locking of modal pulsation frequencies, quasiperiodicity, clustering behaviors, and chaos, resulting from the nonlinear interaction among modes. The robustness of [p:q:r] three-frequency locking states and quasiperiodic oscillations against residual noise has been examined by using joint time-frequency analysis of long-term experimental time series. Two sharply antithetical types of switching behaviors among different dynamic states were observed during temporal evolutions; noise-driven switching and self-induced switching, which manifests itself in chaotic itinerancy. The modal interplay behind observed behaviors was studied by using the statistical dynamic quantity of the information circulation. Well-organized information flows among modes, which correspond to the number of degeneracies of modal pulsation frequencies, were found to be established in accordance with the inherent antiphase dynamics. Observed locking behaviors, quasiperiodic motions, and chaotic itinerancy were reproduced by numerical simulation of the model equations.

  4. Model Of Neural Network With Creative Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  5. Heart rate dynamics before spontaneous onset of ventricular fibrillation in patients with healed myocardial infarcts

    NASA Technical Reports Server (NTRS)

    Makikallio, T. H.; Koistinen, J.; Jordaens, L.; Tulppo, M. P.; Wood, N.; Golosarsky, B.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1999-01-01

    The traditional methods of analyzing heart rate (HR) variability have failed to predict imminent ventricular fibrillation (VF). We sought to determine whether new methods of analyzing RR interval variability based on nonlinear dynamics and fractal analysis may help to detect subtle abnormalities in RR interval behavior before the onset of life-threatening arrhythmias. RR interval dynamics were analyzed from 24-hour Holter recordings of 15 patients who experienced VF during electrocardiographic recording. Thirty patients without spontaneous or inducible arrhythmia events served as a control group in this retrospective case control study. Conventional time- and frequency-domain measurements, the short-term fractal scaling exponent (alpha) obtained by detrended fluctuation analysis, and the slope (beta) of the power-law regression line (log power - log frequency, 10(-4)-10(-2) Hz) of RR interval dynamics were determined. The short-term correlation exponent alpha of RR intervals (0.64 +/- 0.19 vs 1.05 +/- 0.12; p <0.001) and the power-law slope beta (-1.63 +/- 0.28 vs -1.31 +/- 0.20, p <0.001) were lower in the patients before the onset of VF than in the control patients, but the SD and the low-frequency spectral components of RR intervals did not differ between the groups. The short-term scaling exponent performed better than any other measurement of HR variability in differentiating between the patients with VF and controls. Altered fractal correlation properties of HR behavior precede the spontaneous onset of VF. Dynamic analysis methods of analyzing RR intervals may help to identify abnormalities in HR behavior before VF.

  6. Wind Turbine Dynamics

    NASA Technical Reports Server (NTRS)

    Thresher, R. W. (Editor)

    1981-01-01

    Recent progress in the analysis and prediction of the dynamic behavior of wind turbine generators is discussed. The following areas were addressed: (1) the adequacy of state of the art analysis tools for designing the next generation of wind power systems; (2) the use of state of the art analysis tools designers; and (3) verifications of theory which might be lacking or inadequate. Summaries of these informative discussions as well as the questions and answers which followed each paper are documented in the proceedings.

  7. Cortical oscillatory dynamics in a social interaction model.

    PubMed

    Knyazev, Gennady G; Slobodskoj-Plusnin, Jaroslav Y; Bocharov, Andrey V; Pylkova, Liudmila V

    2013-03-15

    In this study we sought to investigate cortical oscillatory dynamics accompanying three major kinds of social behavior: aggressive, friendly, and avoidant. Behavioral and EEG data were collected in 48 participants during a computer game modeling social interactions with virtual 'persons'. 3D source reconstruction and independent component analysis were applied to EEG data. Results showed that social behavior was partly reactive and partly proactive with subject's personality playing an important role in shaping this behavior. Most salient differences were found between avoidance and approach behaviors, whereas the two kinds of approach behavior (i.e., aggression and friendship) did not differ from each other. Comparative to avoidance, approach behaviors were associated with higher induced responses in most frequency bands which were mostly observed in cortical areas overlapping with the default mode network. The difference between approach- and avoidance-related oscillatory dynamics was more salient in subjects predisposed to approach behaviors (i.e., in aggressive or sociable subjects) and was less pronounced in subjects predisposed to avoidance behavior (i.e., in high trait anxiety scorers). There was a trend to higher low frequency phase-locking in motor area in approach than in avoid condition. Results are discussed in light of the concept linking induced responses with top-down and evoked responses with bottom-up processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-12-01

    A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.

  9. Application of largest Lyapunov exponent analysis on the studies of dynamics under external forces

    NASA Astrophysics Data System (ADS)

    Odavić, Jovan; Mali, Petar; Tekić, Jasmina; Pantić, Milan; Pavkov-Hrvojević, Milica

    2017-06-01

    Dynamics of driven dissipative Frenkel-Kontorova model is examined by using largest Lyapunov exponent computational technique. Obtained results show that besides the usual way where behavior of the system in the presence of external forces is studied by analyzing its dynamical response function, the largest Lyapunov exponent analysis can represent a very convenient tool to examine system dynamics. In the dc driven systems, the critical depinning force for particular structure could be estimated by computing the largest Lyapunov exponent. In the dc+ac driven systems, if the substrate potential is the standard sinusoidal one, calculation of the largest Lyapunov exponent offers a more sensitive way to detect the presence of Shapiro steps. When the amplitude of the ac force is varied the behavior of the largest Lyapunov exponent in the pinned regime completely reflects the behavior of Shapiro steps and the critical depinning force, in particular, it represents the mirror image of the amplitude dependence of critical depinning force. This points out an advantage of this technique since by calculating the largest Lyapunov exponent in the pinned regime we can get an insight into the dynamics of the system when driving forces are applied. Additionally, the system is shown to be not chaotic even in the case of incommensurate structures and large amplitudes of external force, which is a consequence of overdampness of the model and the Middleton's no passing rule.

  10. Cycles, scaling and crossover phenomenon in length of the day (LOD) time series

    NASA Astrophysics Data System (ADS)

    Telesca, Luciano

    2007-06-01

    The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.

  11. Origami-based mechanical metamaterials with tunable frequency band structures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yasuda, Hiromi; Pratt, Riley; Yang, Jinkyu

    2017-04-01

    We investigate wave dynamics in origami-based mechanical metamaterials composed of bellows-like origami structures, specifically the Tachi-Miura Polyhedron (TMP). One of the unique features of the TMP is that its structural deformations take place only along the crease lines, therefore the structure can be made of rigid plates and hinges. By utilizing this feature, we introduce linear torsional springs to model the crease lines and derive the force and displacement relationship of the TMP structure along the longitudinal direction. Our analysis shows strain softening/hardening behaviors in compression/tensile regions respectively, and the force-displacement curve can be manipulated by altering the initial configuration of the TMP (e.g., the initial folding angle). We also fabricate physical prototypes and measure the force-displacement behavior to verify our analytical model. Based on this static analysis on the TMP, we simplify the TMP structure into a linkage model, preserving the tunable strain softening/hardening behaviors. Dynamic analysis is also conducted numerically to analyze the frequency response of the simplified TMP unit cell under harmonic excitations. The simplified TMP exhibits a transition between linear and nonlinear behaviors, which depends on the amplitude of the excitation and the initial configuration. In addition, we design a 1D system composed of simplified TMP unit cells and analyze the relationship between frequency and wave number. If two different configurations of the unit cell (e.g., different initial folding angles) are connected in an alternating arrangement, the system develops frequency bandgaps. These unique static/dynamic behaviors can be exploited to design engineering devices which can handle vibrations and impact in an efficient manner.

  12. Can Multilayer Networks Advance Animal Behavior Research?

    PubMed

    Silk, Matthew J; Finn, Kelly R; Porter, Mason A; Pinter-Wollman, Noa

    2018-06-01

    Interactions among individual animals - and between these individuals and their environment - yield complex, multifaceted systems. The development of multilayer network analysis offers a promising new approach for studying animal social behavior and its relation to eco-evolutionary dynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Bifurcation and response analysis of a nonlinear flexible rotating disc immersed in bounded compressible fluid

    NASA Astrophysics Data System (ADS)

    Remigius, W. Dheelibun; Sarkar, Sunetra; Gupta, Sayan

    2017-03-01

    Use of heavy gases in centrifugal compressors for enhanced oil extraction have made the impellers susceptible to failures through acousto-elastic instabilities. This study focusses on understanding the dynamical behavior of such systems by considering the effects of the bounded fluid housed in a casing on a rotating disc. First, a mathematical model is developed that incorporates the interaction between the rotating impeller - modelled as a flexible disc - and the bounded compressible fluid medium in which it is immersed. The nonlinear effects arising due to large deformations of the disc have been included in the formulation so as to capture the post flutter behavior. A bifurcation analysis is carried out with the disc rotational speed as the bifurcation parameter to investigate the dynamical behavior of the coupled system and estimate the stability boundaries. Parametric studies reveal that the relative strengths of the various dissipation mechanisms in the coupled system play a significant role that affect the bifurcation route and the post flutter behavior in the acousto-elastic system.

  14. Development of a helicopter rotor/propulsion system dynamics analysis

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Hull, R.

    1982-01-01

    A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.

  15. Signal Processing in Periodically Forced Gradient Frequency Neural Networks

    PubMed Central

    Kim, Ji Chul; Large, Edward W.

    2015-01-01

    Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858

  16. Non-stationary dynamics in the bouncing ball: A wavelet perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in

    2014-12-01

    The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding tomore » neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.« less

  17. Comparison of Dynamical Behaviors Between Monofunctional and Bifunctional Two-Component Signaling Modules

    NASA Astrophysics Data System (ADS)

    Yang, Xiyan; Wu, Yahao; Yuan, Zhanjiang

    2015-06-01

    Two-component signaling modules exist extensively in bacteria and microbes. These modules can be, based on their distinct network structures, divided into two types: the monofunctional system (denoted by MFS) where the sensor kinase (SK) modulates only phosphorylation of the response regulator (RR), and the bifunctional system (denoted by BFS) where the SK catalyzes both phosphorylation and dephosphorylation of the RR. Here, we analyze dynamical behaviors of these two systems based on stability theory, focusing on differences between them. The analysis of the deterministic behavior indicates that there is no difference between the two modules, that is, each system has the unique stable steady state. However, there are significant differences in stochastic behavior between them. Specifically, if the mean phosphorylated SK level is kept the same for the two modules, then the variance and the Fano factor for the phosphorylated RR in the BFS are always no less than those in the MFS, indicating that bifunctionality always enhances fluctuations. The correlation between the phosphorylated SK and the phosphorylated RR in the BFS is always positive mainly due to competition between system components, but this correlation in the MFS may be positive, almost zero, or negative, depending on the ratio between two rate constants. Our overall analysis indicates that differences between dynamical behaviors of monofunctional and bifunctional signaling modules are mainly in the stochastic rather than deterministic aspect.

  18. Progression of 3D Protein Structure and Dynamics Measurements

    NASA Astrophysics Data System (ADS)

    Sato-Tomita, Ayana; Sekiguchi, Hiroshi; Sasaki, Yuji C.

    2018-06-01

    New measurement methodologies have begun to be proposed with the recent progress in the life sciences. Here, we introduce two new methodologies, X-ray fluorescence holography for protein structural analysis and diffracted X-ray tracking (DXT), to observe the dynamic behaviors of individual single molecules.

  19. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework.

    PubMed

    Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong

    2017-09-20

    Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.

  20. Transient behavior of redox flow battery connected to circuit based on global phase structure

    NASA Astrophysics Data System (ADS)

    Mannari, Toko; Hikihara, Takashi

    A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.

  1. The Shock and Vibration Bulletin. Part 2. Model Test and Analysis, Testing Techniques, Machinery Dynamics, Isolation and Damping, Structural Dynamics

    DTIC Science & Technology

    1986-08-01

    each subsystem wist include more than a set of rigid body and normal modes to properly represent the dynamics of the entire system. Various types of...MCM 1 AUGMENTATION HETNO-MrifaOII FIELD TflACKER »f Tl BASIC EXPERIMENT Figure 3. Dynamics augmentation experiment. i i mnc...Villeurbanne - France Today the dynamic behavior of rotors must be predicted with the greatest care. This work deals with the influence of disc flexi

  2. Dynamic analysis of space structures including elastic, multibody, and control behavior

    NASA Technical Reports Server (NTRS)

    Pinson, Larry; Soosaar, Keto

    1989-01-01

    The problem is to develop analysis methods, modeling stategies, and simulation tools to predict with assurance the on-orbit performance and integrity of large complex space structures that cannot be verified on the ground. The problem must incorporate large reliable structural models, multi-body flexible dynamics, multi-tier controller interaction, environmental models including 1g and atmosphere, various on-board disturbances, and linkage to mission-level performance codes. All areas are in serious need of work, but the weakest link is multi-body flexible dynamics.

  3. Fractal and chaotic laws on seismic dissipated energy in an energy system of engineering structures

    NASA Astrophysics Data System (ADS)

    Cui, Yu-Hong; Nie, Yong-An; Yan, Zong-Da; Wu, Guo-You

    1998-09-01

    Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.

  4. Bifurcation Analysis of an Electrostatically Actuated Nano-Beam Based on Modified Couple Stress Theory

    NASA Astrophysics Data System (ADS)

    Rezaei Kivi, Araz; Azizi, Saber; Norouzi, Peyman

    2017-12-01

    In this paper, the nonlinear size-dependent static and dynamic behavior of an electrostatically actuated nano-beam is investigated. A fully clamped nano-beam is considered for the modeling of the deformable electrode of the NEMS. The governing differential equation of the motion is derived using Hamiltonian principle based on couple stress theory; a non-classical theory for considering length scale effects. The nonlinear partial differential equation of the motion is discretized to a nonlinear Duffing type ODE's using Galerkin method. Static and dynamic pull-in instabilities obtained by both classical theory and MCST are compared. At the second stage of analysis, shooting technique is utilized to obtain the frequency response curve, and to capture the periodic solutions of the motion; the stability of the periodic solutions are gained by Floquet theory. The nonlinear dynamic behavior of the deformable electrode due to the AC harmonic accompanied with size dependency is investigated.

  5. Dynamic Task Performance, Cohesion, and Communications in Human Groups.

    PubMed

    Giraldo, Luis Felipe; Passino, Kevin M

    2016-10-01

    In the study of the behavior of human groups, it has been observed that there is a strong interaction between the cohesiveness of the group, its performance when the group has to solve a task, and the patterns of communication between the members of the group. Developing mathematical and computational tools for the analysis and design of task-solving groups that are not only cohesive but also perform well is of importance in social sciences, organizational management, and engineering. In this paper, we model a human group as a dynamical system whose behavior is driven by a task optimization process and the interaction between subsystems that represent the members of the group interconnected according to a given communication network. These interactions are described as attractions and repulsions among members. We show that the dynamics characterized by the proposed mathematical model are qualitatively consistent with those observed in real-human groups, where the key aspect is that the attraction patterns in the group and the commitment to solve the task are not static but change over time. Through a theoretical analysis of the system we provide conditions on the parameters that allow the group to have cohesive behaviors, and Monte Carlo simulations are used to study group dynamics for different sets of parameters, communication topologies, and tasks to solve.

  6. Subsynchronous instability of a geared centrifugal compressor of overhung design

    NASA Technical Reports Server (NTRS)

    Hudson, J. H.; Wittman, L. J.

    1980-01-01

    The original design analysis and shop test data are presented for a three stage (poster) air compressor with impellers mounted on the extensions of a twin pinion gear, and driven by an 8000 hp synchronous motor. Also included are field test data, subsequent rotor dynamics analysis, modifications, and final rotor behavior. A subsynchronous instability existed on a geared, overhung rotor. State-of-the-art rotor dynamics analysis techniques provided a reasonable analytical model of the rotor. A bearing modification arrived at analytically eliminated the instability.

  7. An approach to predict the shape-memory behavior of amorphous polymers from Dynamic Mechanical Analysis (DMA) data

    NASA Astrophysics Data System (ADS)

    Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor

    2015-02-01

    The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.

  8. Gender, Health Behavior, and Intimate Relationships: Lesbian, Gay, and Straight Contexts

    PubMed Central

    Reczek, Corinne; Umberson, Debra

    2012-01-01

    Many studies focus on health behavior within the context of intimate ties. However, this literature is limited by reliance on gender socialization theory and a focus on straight (i.e., heterosexual) marriage. We extend this work with an analysis of relationship dynamics around health behavior in 20 long-term straight marriages as well as 15 gay and 15 lesbian long-term cohabiting partnerships in the United States (N=100 individual in-depth interviews). We develop the concept of “health behavior work” to align activities done to promote health behavior with theories on unpaid work in the home. Respondents in all couple types describe specialized health behavior work, wherein one partner works to shape the other partner’s health behavior. In straight couples, women perform the bulk of specialized health behavior work. Most gay and lesbian respondents—but few straight respondents—also describe cooperative health behavior work, wherein partners mutually influence one another’s health behaviors. Findings suggest that the gendered relational context of an intimate partnership shapes the dynamics of and explanations for health behavior work. PMID:22227238

  9. Data-Flow Based Model Analysis

    NASA Technical Reports Server (NTRS)

    Saad, Christian; Bauer, Bernhard

    2010-01-01

    The concept of (meta) modeling combines an intuitive way of formalizing the structure of an application domain with a high expressiveness that makes it suitable for a wide variety of use cases and has therefore become an integral part of many areas in computer science. While the definition of modeling languages through the use of meta models, e.g. in Unified Modeling Language (UML), is a well-understood process, their validation and the extraction of behavioral information is still a challenge. In this paper we present a novel approach for dynamic model analysis along with several fields of application. Examining the propagation of information along the edges and nodes of the model graph allows to extend and simplify the definition of semantic constraints in comparison to the capabilities offered by e.g. the Object Constraint Language. Performing a flow-based analysis also enables the simulation of dynamic behavior, thus providing an "abstract interpretation"-like analysis method for the modeling domain.

  10. Chaotic behavior in Malaysian stock market: A study with recurrence quantification analysis

    NASA Astrophysics Data System (ADS)

    Niu, Betty Voon Wan; Noorani, Mohd Salmi Md; Jaaman, Saiful Hafizah

    2016-11-01

    The dynamics of stock market has been questioned for decades. Its behavior appeared random yet some found it behaves as chaos. Up to 5000 daily adjusted closing data of FTSE Bursa Malaysia Kuala Lumpur Composite Index (KLSE) was investigated through recurrence plot and recurrence quantification analysis. Results were compared between stochastic system, chaotic system and deterministic system. Results show that KLSE daily adjusted closing data behaves chaotically.

  11. Interferometric characterization of tear film dynamics

    NASA Astrophysics Data System (ADS)

    Primeau, Brian Christopher

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. When a contact lens is on worn, the tear film covers the contact lens as it would a bare cornea, and is affected by the contact lens material properties. Tear film irregularity can cause both discomfort and vision quality degradation. Under normal conditions, the tear film is less than 10 microns thick and the thickness and topography change in the time between blinks. In order to both better understand the tear film, and to characterize how contact lenses affect tear film behavior, two interferometers were designed and built to separately measure tear film behavior in vitro and in vivo. An in vitro method of characterizing dynamic fluid layers applied to contact lenses mounted on mechanical substrates has been developed using a phase-shifting Twyman-Green interferometer. This interferometer continuously measures light reflected from the surface of the fluid layer, allowing precision analysis of the dynamic fluid layer. Movies showing this fluid layer behavior can be generated. The fluid behavior on the contact lens surface is measured, allowing quantitative analysis beyond what typical contact angle or visual inspection methods provide. The in vivo interferometer is a similar system, with additional modules included to provide capability for human testing. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or videokeratometry and provides better sensitivity and resolution than shearing interferometry methods.

  12. Chaos and insect ecology

    Treesearch

    Jesse A. Logan; Fred P. Hain

    1990-01-01

    Recent advances in applied mathematical analysis have uncovered a fascinating and unexpected dynamical richness that underlies behavior of even the simplest non-linear mathematical models. Due to the complexity of solutions to these non-linear equations, a new mathematical term, chaos, has been coined to describe the resulting dynamics. This term captures the notion...

  13. Interaction-Dominant Dynamics in Human Cognition: Beyond 1/f[superscript [alpha

    ERIC Educational Resources Information Center

    Ihlen, Espen A. F.; Vereijken, Beatrix

    2010-01-01

    It has been suggested that human behavior in general and cognitive performance in particular emerge from coordination between multiple temporal scales. In this article, we provide quantitative support for such a theory of interaction-dominant dynamics in human cognition by using wavelet-based multifractal analysis and accompanying multiplicative…

  14. Payload vehicle aerodynamic reentry analysis

    NASA Astrophysics Data System (ADS)

    Tong, Donald

    An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.

  15. Hypernetworks Reveal Compound Variables That Capture Cooperative and Competitive Interactions in a Soccer Match.

    PubMed

    Ramos, João; Lopes, Rui J; Marques, Pedro; Araújo, Duarte

    2017-01-01

    The combination of sports sciences theorization and social networks analysis (SNA) has offered useful new insights for addressing team behavior. However, SNA typically represents the dynamics of team behavior during a match in dyadic interactions and in a single cumulative snapshot. This study aims to overcome these limitations by using hypernetworks to describe illustrative cases of team behavior dynamics at various other levels of analyses. Hypernetworks simultaneously access cooperative and competitive interactions between teammates and opponents across space and time during a match. Moreover, hypernetworks are not limited to dyadic relations, which are typically represented by edges in other types of networks. In a hypernetwork, n-ary relations (with n > 2) and their properties are represented with hyperedges connecting more than two players simultaneously (the so-called simplex -plural, simplices ). Simplices can capture the interactions of sets of players that may include an arbitrary number of teammates and opponents. In this qualitative study, we first used the mathematical formalisms of hypernetworks to represent a multilevel team behavior dynamics, including micro (interactions between players), meso (dynamics of a given critical event, e.g., an attack interaction), and macro (interactions between sets of players) levels. Second, we investigated different features that could potentially explain the occurrence of critical events, such as, aggregation or disaggregation of simplices relative to goal proximity. Finally, we applied hypernetworks analysis to soccer games from the English premier league (season 2010-2011) by using two-dimensional player displacement coordinates obtained with a multiple-camera match analysis system provided by STATS (formerly Prozone). Our results show that (i) at micro level the most frequently occurring simplices configuration is 1vs.1 (one attacker vs. one defender); (ii) at meso level, the dynamics of simplices transformations near the goal depends on significant changes in the players' speed and direction; (iii) at macro level, simplices are connected to one another, forming "simplices of simplices" including the goalkeeper and the goal. These results validate qualitatively that hypernetworks and related compound variables can capture and be used in the analysis of the cooperative and competitive interactions between players and sets of players in soccer matches.

  16. Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan

    1995-01-01

    Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.

  17. Dynamic mechanical characterization of aluminum: analysis of strain-rate-dependent behavior

    NASA Astrophysics Data System (ADS)

    Rahmat, Meysam

    2018-05-01

    A significant number of materials show different mechanical behavior under dynamic loads compared to quasi-static (Salvado et al. in Prog. Mater. Sci. 88:186-231, 2017). Therefore, a comprehensive study of material dynamic behavior is essential for applications in which dynamic loads are dominant (Li et al. in J. Mater. Process. Technol. 255:373-386, 2018). In this work, aluminum 6061-T6, as an example of ductile alloys with numerous applications including in the aerospace industry, has been studied under quasi-static and dynamic tensile tests with strain rates of up to 156 s^{-1}. Dogbone specimens were designed, instrumented and tested with a high speed servo-hydraulic load frame, and the results were validated with the literature. It was observed that at a strain rate of 156 s^{-1} the yield and ultimate strength increased by 31% and 33% from their quasi-static values, respectively. Moreover, the failure elongation and fracture energy per unit volume also increased by 18% and 52%, respectively. A Johnson-Cook model was used to capture the behavior of the material at different strain rates, and a modified version of this model was presented to enhance the capabilities of the original model, especially in predicting material properties close to the failure point. Finally, the fracture surfaces of specimens tested under quasi-static and dynamic loads were compared and conclusions about the differences were drawn.

  18. Using Social Network Analysis to Better Understand Compulsive Exercise Behavior Among a Sample of Sorority Members.

    PubMed

    Patterson, Megan S; Goodson, Patricia

    2017-05-01

    Compulsive exercise, a form of unhealthy exercise often associated with prioritizing exercise and feeling guilty when exercise is missed, is a common precursor to and symptom of eating disorders. College-aged women are at high risk of exercising compulsively compared with other groups. Social network analysis (SNA) is a theoretical perspective and methodology allowing researchers to observe the effects of relational dynamics on the behaviors of people. SNA was used to assess the relationship between compulsive exercise and body dissatisfaction, physical activity, and network variables. Descriptive statistics were conducted using SPSS, and quadratic assignment procedure (QAP) analyses were conducted using UCINET. QAP regression analysis revealed a statistically significant model (R 2 = .375, P < .0001) predicting compulsive exercise behavior. Physical activity, body dissatisfaction, and network variables were statistically significant predictor variables in the QAP regression model. In our sample, women who are connected to "important" or "powerful" people in their network are likely to have higher compulsive exercise scores. This result provides healthcare practitioners key target points for intervention within similar groups of women. For scholars researching eating disorders and associated behaviors, this study supports looking into group dynamics and network structure in conjunction with body dissatisfaction and exercise frequency.

  19. The dynamic failure behavior of tungsten heavy alloys subjected to transverse loads

    NASA Astrophysics Data System (ADS)

    Tarcza, Kenneth Robert

    Tungsten heavy alloys (WHA), a category of particulate composites used in defense applications as kinetic energy penetrators, have been studied for many years. Even so, their dynamic failure behavior is not fully understood and cannot be predicted by numerical models presently in use. In this experimental investigation, a comprehensive understanding of the high-rate transverse-loading fracture behavior of WHA has been developed. Dynamic fracture events spanning a range of strain rates and loading conditions were created via mechanical testing and used to determine the influence of surface condition and microstructure on damage initiation, accumulation, and sample failure under different loading conditions. Using standard scanning electron microscopy metallographic and fractographic techniques, sample surface condition is shown to be extremely influential to the manner in which WHA fails, causing a fundamental change from externally to internally nucleated failures as surface condition is improved. Surface condition is characterized using electron microscopy and surface profilometry. Fracture surface analysis is conducted using electron microscopy, and linear elastic fracture mechanics is used to understand the influence of surface condition, specifically initial flaw size, on sample failure behavior. Loading conditions leading to failure are deduced from numerical modeling and experimental observation. The results highlight parameters and considerations critical to the understanding of dynamic WHA fracture and the development of dynamic WHA failure models.

  20. Effect of Fractal Dimension on the Strain Behavior of Particulate Media

    NASA Astrophysics Data System (ADS)

    Altun, Selim; Sezer, Alper; Goktepe, A. Burak

    2016-12-01

    In this study, the influence of several fractal identifiers of granular materials on dynamic behavior of a flexible pavement structure as a particulate stratum is considered. Using experimental results and numerical methods as well, 15 different grain-shaped sands obtained from 5 different sources were analyzed as pavement base course materials. Image analyses were carried out by use of a stereomicroscope on 15 different samples to obtain quantitative particle shape information. Furthermore, triaxial compression tests were conducted to determine stress-strain and shear strength parameters of sands. Additionally, the dynamic response of the particulate media to standard traffic loads was computed using finite element modeling (FEM) technique. Using area-perimeter, line divider and box counting methods, over a hundred grains for each sand type were subjected to fractal analysis. Relationships among fractal dimension descriptors and dynamic strain levels were established for assessment of importance of shape descriptors of sands at various scales on the dynamic behavior. In this context, the advantage of fractal geometry concept to describe irregular and fractured shapes was used to characterize the sands used as base course materials. Results indicated that fractal identifiers can be preferred to analyze the effect of shape properties of sands on dynamic behavior of pavement base layers.

  1. Effecting Change in Attitudes and Behavior of Teachers: An Analysis.

    ERIC Educational Resources Information Center

    Marshall, Bernice Solomon

    The author presents a model for inservice teacher training entitled the Process Oriented In-Service Experience (POISE) and attempts to identify changes occurring in the process movement and dynamics of interaction as reflected in attitudes and behaviors of teachers participating in this modified, small-group, process learning experience under…

  2. Maternal Depressive Symptomatology and Child Behavior: Transactional Relationship with Simultaneous Bidirectional Coupling

    ERIC Educational Resources Information Center

    Nicholson, Jody S.; Deboeck, Pascal R.; Farris, Jaelyn R.; Boker, Steven M.; Borkowski, John G.

    2011-01-01

    The present study investigated reciprocal relationships between adolescent mothers and their children's well-being through an analysis of the coupling relationship of mothers' depressive symptomatology and children's internalizing and externalizing behaviors. Unlike studies using discrete time analyses, the present study used dynamical systems to…

  3. The dynamics of human behavior in the public goods game with institutional incentives.

    PubMed

    Dong, Yali; Zhang, Boyu; Tao, Yi

    2016-06-24

    The empirical research on the public goods game (PGG) indicates that both institutional rewards and institutional punishment can curb free-riding and that the punishment effect is stronger than the reward effect. Self-regarding models that are based on Nash equilibrium (NE) strategies or evolutionary game dynamics correctly predict which incentives are best at promoting cooperation, but individuals do not play these rational strategies overall. The goal of our study is to investigate the dynamics of human decision making in the repeated PGG with institutional incentives. We consider that an individual's contribution is affected by four factors, which are self-interest, the behavior of others, the reaction to rewards, and the reaction to punishment. We find that people on average do not react to rewards and punishment, and that self-interest and the behavior of others sufficiently explain the dynamics of human behavior. Further analysis suggests that institutional incentives promote cooperation by affecting the self-regarding preference and that the other-regarding preference seems to be independent of incentive schemes. Because individuals do not change their behavioral patterns even if they were not rewarded or punished, the mere potential to punish defectors and reward cooperators can lead to considerable increases in the level of cooperation.

  4. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    NASA Astrophysics Data System (ADS)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) - an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  5. Collective Behavior of Camphor Floats Migrating on the Water Surface

    NASA Astrophysics Data System (ADS)

    Nishimori, Hiraku; Suematsu, Nobuhiko J.; Nakata, Satoshi

    2017-10-01

    As simple and easily controllable objects among various self-propelled particles, camphor floats on the water surface have been widely recognized. In this paper, we introduce characteristic behaviors and discuss the background mechanism of camphor floats on water, both in isolated and non-isolated conditions. In particular, we focus on: (i) the transition of dynamical characters through bifurcations exhibited by systems with small number of camphor floats and (ii) the emergence of a rich variety of complex dynamics observed in systems with large number camphor floats, and attempt to elucidate these phenomena through mathematical modeling as well as experimental analysis. Finally, we discuss the connection of the dynamics of camphor floats to that of a wider class of complex and sophisticated dynamics exhibited by various types of self-propelled particles.

  6. Integrated microfluidic technology for sub-lethal and behavioral marine ecotoxicity biotests

    NASA Astrophysics Data System (ADS)

    Huang, Yushi; Reyes Aldasoro, Constantino Carlos; Persoone, Guido; Wlodkowic, Donald

    2015-06-01

    Changes in behavioral traits exhibited by small aquatic invertebrates are increasingly postulated as ethically acceptable and more sensitive endpoints for detection of water-born ecotoxicity than conventional mortality assays. Despite importance of such behavioral biotests, their implementation is profoundly limited by the lack of appropriate biocompatible automation, integrated optoelectronic sensors, and the associated electronics and analysis algorithms. This work outlines development of a proof-of-concept miniaturized Lab-on-a-Chip (LOC) platform for rapid water toxicity tests based on changes in swimming patterns exhibited by Artemia franciscana (Artoxkit M™) nauplii. In contrast to conventionally performed end-point analysis based on counting numbers of dead/immobile specimens we performed a time-resolved video data analysis to dynamically assess impact of a reference toxicant on swimming pattern of A. franciscana. Our system design combined: (i) innovative microfluidic device keeping free swimming Artemia sp. nauplii under continuous microperfusion as a mean of toxin delivery; (ii) mechatronic interface for user-friendly fluidic actuation of the chip; and (iii) miniaturized video acquisition for movement analysis of test specimens. The system was capable of performing fully programmable time-lapse and video-microscopy of multiple samples for rapid ecotoxicity analysis. It enabled development of a user-friendly and inexpensive test protocol to dynamically detect sub-lethal behavioral end-points such as changes in speed of movement or distance traveled by each animal.

  7. Analysis of poetic literature using B. F. Skinner's theoretical framework from verbal behavior

    PubMed Central

    Luke, Nicole M.

    2003-01-01

    This paper examines Skinner's work on verbal behavior in the context of literature as a particular class of written verbal behavior. It looks at contemporary literary theory and analysis and the contributions that Skinner's theoretical framework can make. Two diverse examples of poetic literature are chosen and analyzed following Skinner's framework, examining the dynamic interplay between the writer and reader that take place within the bounds of the work presented. It is concluded that Skinner's hypotheses about verbal behavior and the functional approach to understanding it have much to offer literary theorists in their efforts to understand literary works and should be more carefully examined.

  8. Interaction dynamics of multiple mobile robots with simple navigation strategies

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.

  9. The Dynamical Behaviors for a Class of Immunogenic Tumor Model with Delay

    PubMed Central

    Muthoni, Mutei Damaris; Pang, Jianhua

    2017-01-01

    This paper aims at studying the model proposed by Kuznetsov and Taylor in 1994. Inspired by Mayer et al., time delay is introduced in the general model. The dynamic behaviors of this model are studied, which include the existence and stability of the equilibria and Hopf bifurcation of the model with discrete delays. The properties of the bifurcated periodic solutions are studied by using the normal form on the center manifold. Numerical examples and simulations are given to illustrate the bifurcation analysis and the obtained results. PMID:29312457

  10. A study of the dynamics of rotating space stations with elastically connected counterweight and attached flexible appendages. Volume 1: Theory

    NASA Technical Reports Server (NTRS)

    Austin, F.; Markowitz, J.; Goldenberg, S.; Zetkov, G. A.

    1973-01-01

    The formulation of a mathematical model for predicting the dynamic behavior of rotating flexible space station configurations was conducted. The overall objectives of the study were: (1) to develop the theoretical techniques for determining the behavior of a realistically modeled rotating space station, (2) to provide a versatile computer program for the numerical analysis, and (3) to present practical concepts for experimental verification of the analytical results. The mathematical model and its associated computer program are described.

  11. A philosophy of science perspective on the quantitative analysis of behavior.

    PubMed

    Smith, Terry L

    2015-05-01

    B.F. Skinner argued that the science of behavior would progress more rapidly without appealing to theories of learning. He also suggested that theories in a quite different sense were possible, but that the science of behavior as of 1950 was not ready for them. The following analysis distinguishes between Skinner's two concepts of theory. It argues that theory in the second sense has arisen in the quantitative analysis of behavior. The attempt to give a dynamic account of the static regularities of this theory, however, has produced a theory in the first sense. Within its limited domain, this theory offers a rigorous alternative to cognitive accounts of behavior. Rather than distracting attention from actual behavior, it has now led to novel predictions about it. This article is part of a Special Issue entitled 'SQAB 2014'. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A complex systems analysis of stick-slip dynamics of a laboratory fault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, David M.; Tordesillas, Antoinette, E-mail: atordesi@unimelb.edu.au; Small, Michael

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructedmore » by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.« less

  13. Dynamic piezoresistive response of hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Anees, Muhammad; Namilae, Sirish; Kim, Daewon

    2017-04-01

    Hybrid nanocomposites with carbon nanotubes and graphitic platelets as fillers are known to exhibit remarkable electrical and mechanical properties with many potential strain and damage sensing applications. In this work, we fabricate hybrid nanocomposites with carbon nanotube sheet and coarse graphite platelets as fillers with epoxy matrix. We then examine the electromechanical behavior of these nanocomposites under dynamic loading. The electrical resistivity responses of the nanocomposites are measured in frequency range of 1 Hz to 50 Hz with different levels of induced strains. Axial cycling loading is applied using a uniaxial electrodynamic shaker, and transverse loading is applied on end-clamped specimen using modified speakers. In addition, a dynamic mechanical analysis of nanocomposite specimen is performed to characterize the thermal and dynamic behavior of the nanocomposite. Our results indicate that these hybrid nanocomposites exhibit a distinct piezoresistive response under a wide range of dynamic loading conditions, which can be beneficial for potential sensing applications.

  14. Nonlinear modeling and dynamic analysis of a hydro-turbine governing system in the process of sudden load increase transient

    NASA Astrophysics Data System (ADS)

    Li, Huanhuan; Chen, Diyi; Zhang, Hao; Wang, Feifei; Ba, Duoduo

    2016-12-01

    In order to study the nonlinear dynamic behaviors of a hydro-turbine governing system in the process of sudden load increase transient, we establish a novel nonlinear dynamic model of the hydro-turbine governing system which considers the elastic water-hammer model of the penstock and the second-order model of the generator. The six nonlinear dynamic transfer coefficients of the hydro-turbine are innovatively proposed by utilizing internal characteristics and analyzing the change laws of the characteristic parameters of the hydro-turbine governing system. Moreover, from the point of view of engineering, the nonlinear dynamic behaviors of the above system are exhaustively investigated based on bifurcation diagrams and time waveforms. More importantly, all of the above analyses supply theoretical basis for allowing a hydropower station to maintain a stable operation in the process of sudden load increase transient.

  15. Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Gu, J. L.; Chen, S. Q.; Shao, Y.; Wang, H.; Yao, K. F.

    2016-11-01

    To understand the plastic behavior and shear band dynamics of metallic glasses (MGs) being tuned by the external constraint, uniaxial compression tests were performed on Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 MG samples with aspect ratios of 0.5:1, 1:1, 1.5:1, 2:1, 2.5:1, and 3:1. Better plasticity was observed for the samples with smaller aspect ratio (under higher constraint degree). In the beginning of yielding, increasing serration (jerky stress drop) size on the loading curves was noticed for all samples. Statistical analysis of the serration patterns indicated that the small stress-drop serrations and large stress-drop serrations follow self-organized critical and chaotic dynamics, respectively. Under constrained loading, the large stress-drop serrations are depressed, while the small stress-drop serrations are less affected. When changing the external constraint level by varying the sample aspect ratio, the serration pattern, shear band dynamics, and plastic behavior will change accordingly. This study provides a perspective from tuning shear band dynamics to understand the plastic behavior of MGs under different external constraint.

  16. Brain-wide neuronal dynamics during motor adaptation in zebrafish

    PubMed Central

    Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben

    2013-01-01

    A fundamental question in neuroscience is how entire neural circuits generate behavior and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record activity of large populations of neurons at the cellular level throughout the brain of larval zebrafish expressing a genetically-encoded calcium sensor, while the paralyzed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neural response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioral adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behavior. PMID:22622571

  17. A nanobiosensor for dynamic single cell analysis during microvascular self-organization.

    PubMed

    Wang, S; Sun, J; Zhang, D D; Wong, P K

    2016-10-14

    The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization. Dynamic single cell analysis reveals that endothelial cells self-organize into subpopulations with specialized phenotypes to form microvascular networks and identifies the involvement of Notch1-Dll4 signaling in regulating the cell subpopulations. The cell phenotype correlates with the initial Dll4 mRNA expression level and each subpopulation displays a unique dynamic Dll4 mRNA expression profile. Pharmacological perturbations and RNA interference of Notch1-Dll4 signaling modulate the cell subpopulations and modify the morphology of the microvascular network. Taken together, a nanobiosensor enables a dynamic single cell analysis approach underscoring the importance of Notch1-Dll4 signaling in microvascular self-organization.

  18. The neural dynamics of updating person impressions

    PubMed Central

    Cai, Yang; Todorov, Alexander

    2013-01-01

    Person perception is a dynamic, evolving process. Because other people are an endless source of social information, people need to update their impressions of others based upon new information. We devised an fMRI study to identify brain regions involved in updating impressions. Participants saw faces paired with valenced behavioral information and were asked to form impressions of these individuals. Each face was seen five times in a row, each time with a different behavioral description. Critically, for half of the faces the behaviors were evaluatively consistent, while for the other half they were inconsistent. In line with prior work, dorsomedial prefrontal cortex (dmPFC) was associated with forming impressions of individuals based on behavioral information. More importantly, a whole-brain analysis revealed a network of other regions associated with updating impressions of individuals who exhibited evaluatively inconsistent behaviors, including rostrolateral PFC, superior temporal sulcus, right inferior parietal lobule and posterior cingulate cortex. PMID:22490923

  19. Efficient digital implementation of a conductance-based globus pallidus neuron and the dynamics analysis

    NASA Astrophysics Data System (ADS)

    Yang, Shuangming; Wei, Xile; Deng, Bin; Liu, Chen; Li, Huiyan; Wang, Jiang

    2018-03-01

    Balance between biological plausibility of dynamical activities and computational efficiency is one of challenging problems in computational neuroscience and neural system engineering. This paper proposes a set of efficient methods for the hardware realization of the conductance-based neuron model with relevant dynamics, targeting reproducing the biological behaviors with low-cost implementation on digital programmable platform, which can be applied in wide range of conductance-based neuron models. Modified GP neuron models for efficient hardware implementation are presented to reproduce reliable pallidal dynamics, which decode the information of basal ganglia and regulate the movement disorder related voluntary activities. Implementation results on a field-programmable gate array (FPGA) demonstrate that the proposed techniques and models can reduce the resource cost significantly and reproduce the biological dynamics accurately. Besides, the biological behaviors with weak network coupling are explored on the proposed platform, and theoretical analysis is also made for the investigation of biological characteristics of the structured pallidal oscillator and network. The implementation techniques provide an essential step towards the large-scale neural network to explore the dynamical mechanisms in real time. Furthermore, the proposed methodology enables the FPGA-based system a powerful platform for the investigation on neurodegenerative diseases and real-time control of bio-inspired neuro-robotics.

  20. The numerical dynamic for highly nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  1. Mother-Infant Dyadic State Behaviour: Dynamic Systems in the Context of Risk

    ERIC Educational Resources Information Center

    Coburn, Shayna S.; Crnic, Keith A.; Ross, Emily K.

    2015-01-01

    Dynamic systems methods offer invaluable insight into the nuances of the early parent-child relationship. This prospective study aimed to highlight the characteristics of mother-infant dyadic behavior at 12?weeks post-partum using state space grid analysis (total n?=?322). We also examined whether maternal prenatal depressive symptoms and…

  2. A comparison of dynamic mechanical properties of processing-tomato peel as affected by hot lye and infrared radiation heating for peeling

    USDA-ARS?s Scientific Manuscript database

    This study investigated the viscoelastic characteristics of tomato skins subjected to conventional hot lye peeling and emerging infrared-dry peeling by using dynamic mechanical analysis (DMA). Three DMA testing modes, including temperature ramp, frequency sweep, and creep behavior test, were conduct...

  3. Multifractal Approach to the Analysis of Crime Dynamics: Results for Burglary in San Francisco

    NASA Astrophysics Data System (ADS)

    Melgarejo, Miguel; Obregon, Nelson

    This paper provides evidence of fractal, multifractal and chaotic behaviors in urban crime by computing key statistical attributes over a long data register of criminal activity. Fractal and multifractal analyses based on power spectrum, Hurst exponent computation, hierarchical power law detection and multifractal spectrum are considered ways to characterize and quantify the footprint of complexity of criminal activity. Moreover, observed chaos analysis is considered a second step to pinpoint the nature of the underlying crime dynamics. This approach is carried out on a long database of burglary activity reported by 10 police districts of San Francisco city. In general, interarrival time processes of criminal activity in San Francisco exhibit fractal and multifractal patterns. The behavior of some of these processes is close to 1/f noise. Therefore, a characterization as deterministic, high-dimensional, chaotic phenomena is viable. Thus, the nature of crime dynamics can be studied from geometric and chaotic perspectives. Our findings support that crime dynamics may be understood from complex systems theories like self-organized criticality or highly optimized tolerance.

  4. Mathematical Modeling and Nonlinear Dynamical Analysis of Cell Growth in Response to Antibiotics

    NASA Astrophysics Data System (ADS)

    Jin, Suoqin; Niu, Lili; Wang, Gang; Zou, Xiufen

    2015-06-01

    This study is devoted to the revelation of the dynamical mechanisms of cell growth in response to antibiotics. We establish a mathematical model of ordinary differential equations for an antibiotic-resistant growth system with one positive feedback loop. We perform a dynamical analysis of the behavior of this model system. We present adequate sets of conditions that can guarantee the existence and stability of biologically-reasonable steady states. Using bifurcation analysis and numerical simulation, we show that the relative growth rate, which is defined as the ratio of the cell growth rate to the basal cell growth rate in the absence of antibiotics, can exhibit bistable behavior in an extensive range of parameters that correspond to a growth state and a nongrowth state in biology. We discover that both antibiotic and antibiotic resistance genes can cooperatively enhance bistability, whereas the cooperative coefficient of feedback can contribute to the onset of bistability. These results would contribute to a better understanding of not only the evolution of antibiotics but also the emergence of drug resistance in other diseases.

  5. A Novel Experimental and Analytical Approach to the Multimodal Neural Decoding of Intent During Social Interaction in Freely-behaving Human Infants.

    PubMed

    Cruz-Garza, Jesus G; Hernandez, Zachery R; Tse, Teresa; Caducoy, Eunice; Abibullaev, Berdakh; Contreras-Vidal, Jose L

    2015-10-04

    Understanding typical and atypical development remains one of the fundamental questions in developmental human neuroscience. Traditionally, experimental paradigms and analysis tools have been limited to constrained laboratory tasks and contexts due to technical limitations imposed by the available set of measuring and analysis techniques and the age of the subjects. These limitations severely limit the study of developmental neural dynamics and associated neural networks engaged in cognition, perception and action in infants performing "in action and in context". This protocol presents a novel approach to study infants and young children as they freely organize their own behavior, and its consequences in a complex, partly unpredictable and highly dynamic environment. The proposed methodology integrates synchronized high-density active scalp electroencephalography (EEG), inertial measurement units (IMUs), video recording and behavioral analysis to capture brain activity and movement non-invasively in freely-behaving infants. This setup allows for the study of neural network dynamics in the developing brain, in action and context, as these networks are recruited during goal-oriented, exploration and social interaction tasks.

  6. Piping benchmark problems. Volume 1. Dynamic analysis uniform support motion response spectrum method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezler, P.; Hartzman, M.; Reich, M.

    1980-08-01

    A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.

  7. Fluid dynamic and thermodynamic analysis of a model pertaining to cryogenic fluid management in low gravity environments for a system with dynamically induced settling

    NASA Technical Reports Server (NTRS)

    Rios, J.

    1982-01-01

    The settling behavior of the liquid and gaseous phases of a fluid in a propellant and in a zero-g environment, when such settling is induced through the use of a dynamic device, in this particular case, a helical screw was studied. Particular emphasis was given to: (1) the description of a fluid mechanics model which seems applicable to the system under consideration, (2) a First Law of Thermodynamics analysis of the system, and (3) a discussion of applicable scaling rules.

  8. Moisture dynamics in masticated fuelbeds: A preliminary analysis

    Treesearch

    Jesse Kreye; J. Morgan Varner

    2007-01-01

    Mastication has become a popular fuels treatment in the Western United States, but predicting subsequent fire behavior and effects has proven difficult. Fire behavior and effects in masticated fuelbeds have been more intense and erratic in comparison with model predictions. While various particle or fuelbed characteristics in these fuels may contribute to the...

  9. Rheological behaviors of edible casein-based packaging films under extreme environmental conditions, using humidity-controlled dynamic mechanical analysis

    USDA-ARS?s Scientific Manuscript database

    Thin casein films for food packaging applications possess good strength and low oxygen permeability but low water-resistance and elasticity. Customizing the mechanical properties of the films to target specific behaviors depending on temperature and humidity changes would enable a variety of commerc...

  10. NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Simon, A. L.

    1981-01-01

    The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.

  11. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    PubMed

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  12. Behavioral and Emotional Dynamics of Two People Struggling to Reach Consensus about a Topic on Which They Disagree

    PubMed Central

    Kurt, Levent; Kugler, Katharina G.; Coleman, Peter T.; Liebovitch, Larry S.

    2014-01-01

    We studied the behavioral and emotional dynamics displayed by two people trying to resolve a conflict. 59 groups of two people were asked to talk for 20 minutes to try to reach a consensus about a topic on which they disagreed. The topics were abortion, affirmative action, death penalty, and euthanasia. Behavior data were determined from audio recordings where each second of the conversation was assessed as proself, neutral, or prosocial. We determined the probability density function of the durations of time spent in each behavioral state. These durations were well fit by a stretched exponential distribution, with an exponent, , of approximately 0.3. This indicates that the switching between behavioral states is not a random Markov process, but one where the probability to switch behavioral states decreases with the time already spent in that behavioral state. The degree of this “memory” was stronger in those groups who did not reach a consensus and where the conflict grew more destructive than in those that did. Emotion data were measured by having each person listen to the audio recording and moving a computer mouse to recall their negative or positive emotional valence at each moment in the conversation. We used the Hurst rescaled range analysis and power spectrum to determine the correlations in the fluctuations of the emotional valence. The emotional valence was well described by a random walk whose increments were uncorrelated. Thus, the behavior data demonstrated a “memory” of the duration already spent in a behavioral state while the emotion data fluctuated as a random walk whose steps did not have a “memory” of previous steps. This work demonstrates that statistical analysis, more commonly used to analyze physical phenomena, can also shed interesting light on the dynamics of processes in social psychology and conflict management. PMID:24427290

  13. Dynamic functional connectivity: Promise, issues, and interpretations

    PubMed Central

    Hutchison, R. Matthew; Womelsdorf, Thilo; Allen, Elena A.; Bandettini, Peter A.; Calhoun, Vince D.; Corbetta, Maurizio; Penna, Stefania Della; Duyn, Jeff H.; Glover, Gary H.; Gonzalez-Castillo, Javier; Handwerker, Daniel A.; Keilholz, Shella; Kiviniemi, Vesa; Leopold, David A.; de Pasquale, Francesco; Sporns, Olaf; Walter, Martin; Chang, Catie

    2013-01-01

    The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations. PMID:23707587

  14. Dynamic response of a fiber-optic ring resonator: Analysis with influences of light-source parameters

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.

    2009-03-01

    In practice, dynamic behavior of fiber-optic ring resonator (FORR) appears as a detrimental factor to influence the transmission response of the FORR. This paper presents dynamic response analysis of the FORR by considering phase modulation of the FORR loop and sinewave modulation of input signal applied to the FORR from a laser diode. The analysis investigates the influences of modulation frequency and amplitude modulation index of laser diode, loop delay time of the FORR, phase angle between FM and AM response of laser diode, and laser diode line-width on dynamic response of the FORR. The analysis shows that the transient response of the FORR strongly depends on the product of modulation frequency and loop delay time, coupling and transmission coefficients of the FORR. The analyses presented here may have applications in optical systems employing an FORR with a laser diode source.

  15. Investigation of the nonlinear seismic behavior of knee braced frames using the incremental dynamic analysis method

    NASA Astrophysics Data System (ADS)

    Sheidaii, Mohammad Reza; TahamouliRoudsari, Mehrzad; Gordini, Mehrdad

    2016-06-01

    In knee braced frames, the braces are attached to the knee element rather than the intersection of beams and columns. This bracing system is widely used and preferred over the other commonly used systems for reasons such as having lateral stiffness while having adequate ductility, damage concentration on the second degree convenience of repairing and replacing of these elements after Earthquake. The lateral stiffness of this system is supplied by the bracing member and the ductility of the frame attached to the knee length is supplied through the bending or shear yield of the knee member. In this paper, the nonlinear seismic behavior of knee braced frame systems has been investigated using incremental dynamic analysis (IDA) and the effects of the number of stories in a building, length and the moment of inertia of the knee member on the seismic behavior, elastic stiffness, ductility and the probability of failure of these systems has been determined. In the incremental dynamic analysis, after plotting the IDA diagrams of the accelerograms, the collapse diagrams in the limit states are determined. These diagrams yield that for a constant knee length with reduced moment of inertia, the probability of collapse in limit states heightens and also for a constant knee moment of inertia with increasing length, the probability of collapse in limit states increases.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Anja, E-mail: hartmann@ipk-gatersleben.de; Schreiber, Falk; Martin-Luther-University Halle-Wittenberg, Halle

    The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the contextmore » of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM{sup 2} – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato.« less

  17. Patterns of Stochastic Behavior in Dynamically Unstable High-Dimensional Biochemical Networks

    PubMed Central

    Rosenfeld, Simon

    2009-01-01

    The question of dynamical stability and stochastic behavior of large biochemical networks is discussed. It is argued that stringent conditions of asymptotic stability have very little chance to materialize in a multidimensional system described by the differential equations of chemical kinetics. The reason is that the criteria of asymptotic stability (Routh-Hurwitz, Lyapunov criteria, Feinberg’s Deficiency Zero theorem) would impose the limitations of very high algebraic order on the kinetic rates and stoichiometric coefficients, and there are no natural laws that would guarantee their unconditional validity. Highly nonlinear, dynamically unstable systems, however, are not necessarily doomed to collapse, as a simple Jacobian analysis would suggest. It is possible that their dynamics may assume the form of pseudo-random fluctuations quite similar to a shot noise, and, therefore, their behavior may be described in terms of Langevin and Fokker-Plank equations. We have shown by simulation that the resulting pseudo-stochastic processes obey the heavy-tailed Generalized Pareto Distribution with temporal sequence of pulses forming the set of constituent-specific Poisson processes. Being applied to intracellular dynamics, these properties are naturally associated with burstiness, a well documented phenomenon in the biology of gene expression. PMID:19838330

  18. Role of dopamine D2 receptors in optimizing choice strategy in a dynamic and uncertain environment

    PubMed Central

    Kwak, Shinae; Huh, Namjung; Seo, Ji-Seon; Lee, Jung-Eun; Han, Pyung-Lim; Jung, Min W.

    2014-01-01

    In order to investigate roles of dopamine receptor subtypes in reward-based learning, we examined choice behavior of dopamine D1 and D2 receptor-knockout (D1R-KO and D2R-KO, respectively) mice in an instrumental learning task with progressively increasing reversal frequency and a dynamic two-armed bandit task. Performance of D2R-KO mice was progressively impaired in the former as the frequency of reversal increased and profoundly impaired in the latter even with prolonged training, whereas D1R-KO mice showed relatively minor performance deficits. Choice behavior in the dynamic two-armed bandit task was well explained by a hybrid model including win-stay-lose-switch and reinforcement learning terms. A model-based analysis revealed increased win-stay, but impaired value updating and decreased value-dependent action selection in D2R-KO mice, which were detrimental to maximizing rewards in the dynamic two-armed bandit task. These results suggest an important role of dopamine D2 receptors in learning from past choice outcomes for rapid adjustment of choice behavior in a dynamic and uncertain environment. PMID:25389395

  19. Comparison of analysis and experiment for dynamics of low-contact-ratio spur gears

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Rebbechi, Brian; Zakrajsek, James J.; Townsend, Dennis P.; Lin, Hsiang Hsi

    1991-01-01

    Low-contact-ratio spur gears were tested in NASA gear-noise-rig to study gear dynamics including dynamic load, tooth bending stress, vibration, and noise. The experimental results were compared with a NASA gear dynamics code to validate the code as a design tool for predicting transmission vibration and noise. Analytical predictions and experimental data for gear-tooth dynamic loads and tooth-root bending stress were compared at 28 operating conditions. Strain gage data were used to compute the normal load between meshing teeth and the bending stress at the tooth root for direct comparison with the analysis. The computed and measured waveforms for dynamic load and stress were compared for several test conditions. These are very similar in shape, which means the analysis successfully simulates the physical behavior of the test gears. The predicted peak value of the dynamic load agrees with the measurement results within an average error of 4.9 percent except at low-torque, high-speed conditions. Predictions of peak dynamic root stress are generally within 10 to 15 percent of the measured values.

  20. Mechanistic Insights into Human Brain Impact Dynamics through Modal Analysis

    NASA Astrophysics Data System (ADS)

    Laksari, Kaveh; Kurt, Mehmet; Babaee, Hessam; Kleiven, Svein; Camarillo, David

    2018-03-01

    Although concussion is one of the greatest health challenges today, our physical understanding of the cause of injury is limited. In this Letter, we simulated football head impacts in a finite element model and extracted the most dominant modal behavior of the brain's deformation. We showed that the brain's deformation is most sensitive in low frequency regimes close to 30 Hz, and discovered that for most subconcussive head impacts, the dynamics of brain deformation is dominated by a single global mode. In this Letter, we show the existence of localized modes and multimodal behavior in the brain as a hyperviscoelastic medium. This dynamical phenomenon leads to strain concentration patterns, particularly in deep brain regions, which is consistent with reported concussion pathology.

  1. On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system

    NASA Astrophysics Data System (ADS)

    Hajipour, Ahamad; Hajipour, Mojtaba; Baleanu, Dumitru

    2018-05-01

    This manuscript mainly focuses on the construction, dynamic analysis and control of a new fractional-order financial system. The basic dynamical behaviors of the proposed system are studied such as the equilibrium points and their stability, Lyapunov exponents, bifurcation diagrams, phase portraits of state variables and the intervals of system parameters. It is shown that the system exhibits hyperchaotic behavior for a number of system parameters and fractional-order values. To stabilize the proposed hyperchaotic fractional system with uncertain dynamics and disturbances, an efficient adaptive sliding mode controller technique is developed. Using the proposed technique, two hyperchaotic fractional-order financial systems are also synchronized. Numerical simulations are presented to verify the successful performance of the designed controllers.

  2. Political Dynamics Affected by Turncoats

    NASA Astrophysics Data System (ADS)

    Di Salvo, Rosa; Gorgone, Matteo; Oliveri, Francesco

    2017-11-01

    An operatorial theoretical model based on raising and lowering fermionic operators for the description of the dynamics of a political system consisting of macro-groups affected by turncoat-like behaviors is presented. The analysis of the party system dynamics is carried on by combining the action of a suitable quadratic Hamiltonian operator with specific rules (depending on the variations of the mean values of the observables) able to adjust periodically the conservative model to the political environment.

  3. Suppression of epidemic spreading in complex networks by local information based behavioral responses.

    PubMed

    Zhang, Hai-Feng; Xie, Jia-Rong; Tang, Ming; Lai, Ying-Cheng

    2014-12-01

    The interplay between individual behaviors and epidemic dynamics in complex networks is a topic of recent interest. In particular, individuals can obtain different types of information about the disease and respond by altering their behaviors, and this can affect the spreading dynamics, possibly in a significant way. We propose a model where individuals' behavioral response is based on a generic type of local information, i.e., the number of neighbors that has been infected with the disease. Mathematically, the response can be characterized by a reduction in the transmission rate by a factor that depends on the number of infected neighbors. Utilizing the standard susceptible-infected-susceptible and susceptible-infected-recovery dynamical models for epidemic spreading, we derive a theoretical formula for the epidemic threshold and provide numerical verification. Our analysis lays on a solid quantitative footing the intuition that individual behavioral response can in general suppress epidemic spreading. Furthermore, we find that the hub nodes play the role of "double-edged sword" in that they can either suppress or promote outbreak, depending on their responses to the epidemic, providing additional support for the idea that these nodes are key to controlling epidemic spreading in complex networks.

  4. Suppression of epidemic spreading in complex networks by local information based behavioral responses

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Xie, Jia-Rong; Tang, Ming; Lai, Ying-Cheng

    2014-12-01

    The interplay between individual behaviors and epidemic dynamics in complex networks is a topic of recent interest. In particular, individuals can obtain different types of information about the disease and respond by altering their behaviors, and this can affect the spreading dynamics, possibly in a significant way. We propose a model where individuals' behavioral response is based on a generic type of local information, i.e., the number of neighbors that has been infected with the disease. Mathematically, the response can be characterized by a reduction in the transmission rate by a factor that depends on the number of infected neighbors. Utilizing the standard susceptible-infected-susceptible and susceptible-infected-recovery dynamical models for epidemic spreading, we derive a theoretical formula for the epidemic threshold and provide numerical verification. Our analysis lays on a solid quantitative footing the intuition that individual behavioral response can in general suppress epidemic spreading. Furthermore, we find that the hub nodes play the role of "double-edged sword" in that they can either suppress or promote outbreak, depending on their responses to the epidemic, providing additional support for the idea that these nodes are key to controlling epidemic spreading in complex networks.

  5. Using dynamic mode decomposition to extract cyclic behavior in the stock market

    NASA Astrophysics Data System (ADS)

    Hua, Jia-Chen; Roy, Sukesh; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2016-04-01

    The presence of cyclic expansions and contractions in the economy has been known for over a century. The work reported here searches for similar cyclic behavior in stock valuations. The variations are subtle and can only be extracted through analysis of price variations of a large number of stocks. Koopman mode analysis is a natural approach to establish such collective oscillatory behavior. The difficulty is that even non-cyclic and stochastic constituents of a finite data set may be interpreted as a sum of periodic motions. However, deconvolution of these irregular dynamical facets may be expected to be non-robust, i.e., to depend on specific data set. We propose an approach to differentiate robust and non-robust features in a time series; it is based on identifying robust features with reproducible Koopman modes, i.e., those that persist between distinct sub-groupings of the data. Our analysis of stock data discovered four reproducible modes, one of which has period close to the number of trading days/year. To the best of our knowledge these cycles were not reported previously. It is particularly interesting that the cyclic behaviors persisted through the great recession even though phase relationships between stocks within the modes evolved in the intervening period.

  6. Quincke rotation of an ellipsoid

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia; Brosseau, Quentin

    2016-11-01

    The Quincke effect - spontaneous spinning of a sphere in a uniform DC electric field - has attracted considerable interest in recent year because of the intriguing dynamics exhibited by a Quincke-rotating drop and the emergent collective behavior of confined suspensions of Quincke-rotating spheres. Shape anisotropy, e.g., due to drop deformation or particle asphericity, is predicted to give rise to complex particle dynamics. Analysis of the dynamics of rigid prolate ellipsoid in a uniform DC electric field shows two possible stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field : spinless (parallel) and spinning (perpendicular). Here we report an experimental study testing the theoretical predictions. The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with theory. We also investigated the dynamics of the ellipsoidal Quincke "roller": an ellipsoid near a planar surface with normal perpendicular to the field direction. We find novel behaviors such as swinging (long axis oscillating around the applied field direction) and tumbling due to the confinement. Supported by NSF CBET awards 1437545 and 1544196.

  7. Pou5f1-dependent EGF expression controls E-cad endocytosis, cell adhesion, and zebrafish epiboly movements

    PubMed Central

    Song, Sungmin; Eckerle, Stephanie; Onichtchouk, Daria; Marrs, James A.; Nitschke, Roland; Driever, Wolfgang

    2013-01-01

    Summary Initiation of motile cell behavior in embryonic development occurs during late blastula stages when gastrulation begins. At this stage, the strong adhesion of blastomeres has to be modulated to enable dynamic behavior, similar to epithelial-to-mesenchymal transitions. We show that in zebrafish MZspg embryos mutant for the stem cell transcription factor Pou5f1/Oct4, which are severely delayed in the epiboly gastrulation movement, all blastomeres are defective in E-cad endosomal trafficking and E-cad accumulates at the plasma membrane. We find that Pou5f1-dependent control of EGF expression regulates endosomal E-cad trafficking. EGFR may act via modulation of p120 activity. Loss of E-cad dynamics reduces cohesion of cells in reaggregation assays. Quantitative analysis of cell behavior indicates that dynamic E-cad endosomal trafficking is required for epiboly cell movements. We hypothesize that dynamic control of E-cad trafficking is essential to effectively generate new adhesion sites when cells move relative to each other. PMID:23484854

  8. Cyclic Game Dynamics Driven by Iterated Reasoning

    PubMed Central

    Frey, Seth; Goldstone, Robert L.

    2013-01-01

    Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, economists have argued that iterated reasoning–what you think I think you think–will suppress complex dynamics by stabilizing or accelerating convergence to Nash equilibrium. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point solution concept. These cycles are driven by a “hopping” behavior that is consistent with other accounts of iterated reasoning: agents are constrained to about two steps of iterated reasoning and learn an additional one-half step with each session. If higher-order reasoning can be complicit in complex emergent dynamics, then cyclic and chaotic patterns may be endogenous features of real-world social and economic systems. PMID:23441191

  9. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  10. Inferring the Limit Behavior of Some Elementary Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.

    Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.

  11. Going Places: Exploring the Impact of Intra-Sectoral Mobility on Research Productivity and Communication Behaviors in Japanese Academia

    ERIC Educational Resources Information Center

    Horta, Hugo; Yonezawa, Akiyoshi

    2013-01-01

    This study analyzes the impact of intra-sectoral mobility of academics on research productivity and R&D information exchange dynamics in Japan. The analysis shows intra-sectoral mobility impacting positively both research productivity and information exchange dynamics, but that this effect--except for information exchange with peers based…

  12. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    USDA-ARS?s Scientific Manuscript database

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  13. A System Dynamics Approach to Understanding Cost and Revenue Interactions in the Community College Financial System.

    ERIC Educational Resources Information Center

    Howard, James E.

    After identifying the components of a community college financial system as enrollment, costs, revenues and tuition, this paper addresses the need for a system dynamics analysis of a California community college district. This systems approach would assess the possible effects of alternative policies on the characteristic behavior modes of the…

  14. Effects of imperfect mixing on low-density polyethylene reactor dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, C.M.; Dihora, J.O.; Ray, W.H.

    1998-07-01

    Earlier work considered the effect of feed conditions and controller configuration on the runaway behavior of LDPE autoclave reactors assuming a perfectly mixed reactor. This study provides additional insight on the dynamics of such reactors by using an imperfectly mixed reactor model and bifurcation analysis to show the changes in the stability region when there is imperfect macroscale mixing. The presence of imperfect mixing substantially increases the range of stable operation of the reactor and makes the process much easier to control than for a perfectly mixed reactor. The results of model analysis and simulations are used to identify somemore » of the conditions that lead to unstable reactor behavior and to suggest ways to avoid reactor runaway or reactor extinction during grade transitions and other process operation disturbances.« less

  15. Frequency domain analysis of the random loading of cracked panels

    NASA Technical Reports Server (NTRS)

    Doyle, James F.

    1994-01-01

    The primary effort concerned the development of analytical methods for the accurate prediction of the effect of random loading on a panel with a crack. Of particular concern was the influence of frequency on the stress intensity factor behavior. Many modern structures, such as those found in advanced aircraft, are lightweight and susceptible to critical vibrations, and consequently dynamic response plays a very important role in their analysis. The presence of flaws and cracks can have catastrophic consequences. The stress intensity factor, K, emerges as a very significant parameter that characterizes the crack behavior. In analyzing the dynamic response of panels that contain cracks, the finite element method is used, but because this type of problem is inherently computationally intensive, a number of ways of calculating K more efficiently are explored.

  16. Application of GRASP (General Rotorcraft Aeromechanical Stability Program) to nonlinear analysis of a cantilever beam

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.; Hodges, Dewey H.

    1987-01-01

    The General Rotorcraft Aeromechanical Stability Program (GRASP) was developed to analyse the steady-state and linearized dynamic behavior of rotorcraft in hovering and axial flight conditions. Because of the nature of problems GRASP was created to solve, the geometrically nonlinear behavior of beams is one area in which the program must perform well in order to be of any value. Numerical results obtained from GRASP are compared to both static and dynamic experimental data obtained for a cantilever beam undergoing large displacements and rotations caused by deformations. The correlation is excellent in all cases.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  18. [The structure of psychopathology associated with addictive disorders, against alcohol addiction and the possibility of it's neurometabolic correction in the elderly].

    PubMed

    Belov, V G; Parfenov, Iu A; Zaplutanov, V A; Khaĭrutdinov, D R

    2013-01-01

    The article presents the analysis of the structure and dynamics of psychopathology associated with addictive disorders in elderly patients with alcohol dependence. In terms of syndromic approach the structure of neurotic disease in elderly patients with a verified diagnosis of mental and behavioral disorders associated with alcohol consumption was evaluated. In the overall structure of neurotic pathology in these patients the analysis of symptoms of neurotic diseases, the research of the structure of syndromes and their dynamics were carried out, as well as the patient's attitude to the disease and to its manifestations was determined. A factor model of the pathogenesis of neurotic pathology connected with mental and behavioral disorders due to alcohol use in elderly patients was developed. The high clinical effectiveness of the drug "Cytoflavin" used in the reduction of psychiatric symptoms in patients aged from 62 to 74 years with a diagnosis of mental and behavioral disorders associated with alcohol consumption has been shown.

  19. Dynamic response of a monorail steel bridge under a moving train

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Kawatani, M.; Kim, C. W.; Nishimura, N.; Kobayashi, Y.

    2006-06-01

    This study proposes a dynamic response analysis procedure for traffic-induced vibration of a monorail bridge and train. Each car in the monorail train is idealized as a dynamic system of 15-degrees-of-freedom. The governing equations of motion for a three-dimensional monorail bridge-train interaction system are derived using Lagrange's formulation for monorail trains, and a finite-element method for modal analysis of monorail bridges. Analytical results on dynamic response of the monorail train and bridge are compared with field-test data in order to verify the validity of the proposed analysis procedure, and a positive correlation is found. An interesting feature of the monorail bridge response is that sway motion is caused by torsional behavior resulting from eccentricity between the shear center of the bridge section and the train load.

  20. Architectural Analysis of Systems Based on the Publisher-Subscriber Style

    NASA Technical Reports Server (NTRS)

    Ganesun, Dharmalingam; Lindvall, Mikael; Ruley, Lamont; Wiegand, Robert; Ly, Vuong; Tsui, Tina

    2010-01-01

    Architectural styles impose constraints on both the topology and the interaction behavior of involved parties. In this paper, we propose an approach for analyzing implemented systems based on the publisher-subscriber architectural style. From the style definition, we derive a set of reusable questions and show that some of them can be answered statically whereas others are best answered using dynamic analysis. The paper explains how the results of static analysis can be used to orchestrate dynamic analysis. The proposed method was successfully applied on the NASA's Goddard Mission Services Evolution Center (GMSEC) software product line. The results show that the GMSEC has a) a novel reusable vendor-independent middleware abstraction layer that allows the NASA's missions to configure the middleware of interest without changing the publishers' or subscribers' source code, and b) some high priority bugs due to behavioral discrepancies, which were eluded during testing and code reviews, among different implementations of the same APIs for different vendors.

  1. Dynamics of Abusive IPv6 Networks

    DTIC Science & Technology

    2014-09-01

    analysis tools to detect, classify, and associate IPv6 spamming behavior , both at the victim mail exchanger and among IPv6 wide-area routes. Furthermore...popular mail transfer agents were tested in an effort to profile their IPv6 behavior and correlate with spam obtained from the real world production...domain. Results show that while IPv6 spamming behavior is growing, it is still in its infancy and no outstanding characteristics emerged that allow

  2. Dynamical modeling and analysis of large cellular regulatory networks

    NASA Astrophysics Data System (ADS)

    Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.

    2013-06-01

    The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.

  3. Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes [Structural Relaxation and Dynamics of Ionic-Neutral Block Copolymer Surfactant Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  4. Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes [Structural Relaxation and Dynamics of Ionic-Neutral Block Copolymer Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-06-21

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  5. Assessing the Internal Dynamics of Mathematical Problem Solving in Small Groups.

    ERIC Educational Resources Information Center

    Artzt, Alice F.; Armour-Thomas, Eleanor

    The purpose of this exploratory study was to examine the problem-solving behaviors and perceptions of (n=27) seventh-grade students as they worked on solving a mathematical problem within a small-group setting. An assessment system was developed that allowed for this analysis. To assess problem-solving behaviors within a small group a Group…

  6. The Shock and Vibration Bulletin. Part 2. Modal and Impedance Analysis, Human Response to Vibration and Shock, Isolation and Damping, Dynamic Analysis

    DTIC Science & Technology

    1979-09-01

    a " high performance fast timing" engine thrust with a mismatch between right and left SRfls...examine the dynamic behavior of a blade having a root geometry compatible with low frictional forces at high rotational speeds , somewhat like a "Christmas...Tree" root, but with a gap introduced which will close up only at high speed . Approximate non-linear equations of motion are derived and solved

  7. Geomagnetic field models for satellite angular motion studies

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.

    2018-03-01

    Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.

  8. Dynamical analysis of cigarette smoking model with a saturated incidence rate

    NASA Astrophysics Data System (ADS)

    Zeb, Anwar; Bano, Ayesha; Alzahrani, Ebraheem; Zaman, Gul

    2018-04-01

    In this paper, we consider a delayed smoking model in which the potential smokers are assumed to satisfy the logistic equation. We discuss the dynamical behavior of our proposed model in the form of Delayed Differential Equations (DDEs) and show conditions for asymptotic stability of the model in steady state. We also discuss the Hopf bifurcation analysis of considered model. Finally, we use the nonstandard finite difference (NSFD) scheme to show the results graphically with help of MATLAB.

  9. Examining inter-family differences in intra-family (parent-adolescent) dynamics using grid-sequence analysis.

    PubMed

    Brinberg, Miriam; Fosco, Gregory M; Ram, Nilam

    2017-12-01

    Family systems theorists have forwarded a set of theoretical principles meant to guide family scientists and practitioners in their conceptualization of patterns of family interaction-intra-family dynamics-that, over time, give rise to family and individual dysfunction and/or adaptation. In this article, we present an analytic approach that merges state space grid methods adapted from the dynamic systems literature with sequence analysis methods adapted from molecular biology into a "grid-sequence" method for studying inter-family differences in intra-family dynamics. Using dyadic data from 86 parent-adolescent dyads who provided up to 21 daily reports about connectedness, we illustrate how grid-sequence analysis can be used to identify a typology of intrafamily dynamics and to inform theory about how specific types of intrafamily dynamics contribute to adolescent behavior problems and family members' mental health. Methodologically, grid-sequence analysis extends the toolbox of techniques for analysis of family experience sampling and daily diary data. Substantively, we identify patterns of family level microdynamics that may serve as new markers of risk/protective factors and potential points for intervention in families. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Optical vortices as potential indicators of biophysical dynamics

    NASA Astrophysics Data System (ADS)

    Majumdar, Anindya; Kirkpatrick, Sean J.

    2017-03-01

    Laser speckle patterns are granular patterns produced as a result of random interference of light waves. Optical vortices (OVs) are phase singularities in such speckle fields, characterized by zero intensity and an undefined phase. Decorrelation of the speckle fields causes these OVs to move in both time and space. In this work, a variety of parameters of these OVs have been studied. The speckle fields were simulated to undergo three distinct decorrelation behaviors- Gaussian, Lorentzian and constant decorrelations. Different decorrelation behaviors represent different dynamics. For example, Lorentzian and Gaussian decorrelations represent Brownian and ordered motions, respectively. Typical dynamical systems in biophysics are generally argued to be a combination of these. For each of the decorrelation behaviors under study, the vortex trails were tracked while varying the rate of decorrelation. Parameters such as the decorrelation length, average trail length and the deviation of the vortices as they traversed in the speckle field, were studied. Empirical studies were also performed to define the distinction between trails arising from different speckle decorrelation behaviors. The initial studies under stationary speckle fields were followed up by similar studies on shifting fields. A new idea to employ Poincaŕe plots in speckle analysis has also been introduced. Our studies indicate that tracking OVs can be a potential method to study cell and tissue dynamics.

  11. Investigation of visually induced motion sickness in dynamic 3D contents based on subjective judgment, heart rate variability, and depth gaze behavior.

    PubMed

    Wibirama, Sunu; Hamamoto, Kazuhiko

    2014-01-01

    Visually induced motion sickness (VIMS) is an important safety issue in stereoscopic 3D technology. Accompanying subjective judgment of VIMS with objective measurement is useful to identify not only biomedical effects of dynamic 3D contents, but also provoking scenes that induce VIMS, duration of VIMS, and user behavior during VIMS. Heart rate variability and depth gaze behavior are appropriate physiological indicators for such objective observation. However, there is no information about relationship between subjective judgment of VIMS, heart rate variability, and depth gaze behavior. In this paper, we present a novel investigation of VIMS based on simulator sickness questionnaire (SSQ), electrocardiography (ECG), and 3D gaze tracking. Statistical analysis on SSQ data shows that nausea and disorientation symptoms increase as amount of dynamic motions increases (nausea: p<;0.005; disorientation: p<;0.05). To reduce VIMS, SSQ and ECG data suggest that user should perform voluntary gaze fixation at one point when experiencing vertical motion (up or down) and horizontal motion (turn left and right) in dynamic 3D contents. Observation of 3D gaze tracking data reveals that users who experienced VIMS tended to have unstable depth gaze than ones who did not experience VIMS.

  12. Nouvelles techniques pratiques pour la modelisation du comportement dynamique des systèmes eau-structure

    NASA Astrophysics Data System (ADS)

    Miquel, Benjamin

    The dynamic or seismic behavior of hydraulic structures is, as for conventional structures, essential to assure protection of human lives. These types of analyses also aim at limiting structural damage caused by an earthquake to prevent rupture or collapse of the structure. The particularity of these hydraulic structures is that not only the internal displacements are caused by the earthquake, but also by the hydrodynamic loads resulting from fluid-structure interaction. This thesis reviews the existing complex and simplified methods to perform such dynamic analysis for hydraulic structures. For the complex existing methods, attention is placed on the difficulties arising from their use. Particularly, interest is given in this work on the use of transmitting boundary conditions to simulate the semi infinity of reservoirs. A procedure has been developed to estimate the error that these boundary conditions can introduce in finite element dynamic analysis. Depending on their formulation and location, we showed that they can considerably affect the response of such fluid-structure systems. For practical engineering applications, simplified procedures are still needed to evaluate the dynamic behavior of structures in contact with water. A review of the existing simplified procedures showed that these methods are based on numerous simplifications that can affect the prediction of the dynamic behavior of such systems. One of the main objectives of this thesis has been to develop new simplified methods that are more accurate than those existing. First, a new spectral analysis method has been proposed. Expressions for the fundamental frequency of fluid-structure systems, key parameter of spectral analysis, have been developed. We show that this new technique can easily be implemented in a spreadsheet or program, and that its calculation time is near instantaneous. When compared to more complex analytical or numerical method, this new procedure yields excellent prediction of the dynamic behavior of fluid-structure systems. Spectral analyses ignore the transient and oscillatory nature of vibrations. When such dynamic analyses show that some areas of the studied structure undergo excessive stresses, time history analyses allow a better estimate of the extent of these zones as well as a time notion of these excessive stresses. Furthermore, the existing spectral analyses methods for fluid-structure systems account only for the static effect of higher modes. Thought this can generally be sufficient for dams, for flexible structures the dynamic effect of these modes should be accounted for. New methods have been developed for fluid-structure systems to account for these observations as well as the flexibility of foundations. A first method was developed to study structures in contact with one or two finite or infinite water domains. This new technique includes flexibility of structures and foundations as well as the dynamic effect of higher vibration modes and variations of the levels of the water domains. Extension of this method was performed to study beam structures in contact with fluids. These new developments have also allowed extending existing analytical formulations of the dynamic properties of a dry beam to a new formulation that includes effect of fluid-structure interaction. The method yields a very good estimate of the dynamic behavior of beam-fluid systems or beam like structures in contact with fluid. Finally, a Modified Accelerogram Method (MAM) has been developed to modify the design earthquake into a new accelerogram that directly accounts for the effect of fluid-structure interaction. This new accelerogram can therefore be applied directly to the dry structure (i.e. without water) in order to calculate the dynamic response of the fluid-structure system. This original technique can include numerous parameters that influence the dynamic response of such systems and allows to treat analytically the fluid-structure interaction while keeping the advantages of finite element modeling.

  13. Statistical errors in molecular dynamics averages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.; Wallace, D.C.

    1985-11-15

    A molecular dynamics calculation produces a time-dependent fluctuating signal whose average is a thermodynamic quantity of interest. The average of the kinetic energy, for example, is proportional to the temperature. A procedure is described for determining when the molecular dynamics system is in equilibrium with respect to a given variable, according to the condition that the mean and the bandwidth of the signal should be sensibly constant in time. Confidence limits for the mean are obtained from an analysis of a finite length of the equilibrium signal. The role of serial correlation in this analysis is discussed. The occurence ofmore » unstable behavior in molecular dynamics data is noted, and a statistical test for a level shift is described.« less

  14. Novel tunable dynamic tweezers using dark-bright soliton collision control in an optical add/drop filter.

    PubMed

    Teeka, Chat; Jalil, Muhammad Arif; Yupapin, Preecha P; Ali, Jalil

    2010-12-01

    We propose a novel system of the dynamic optical tweezers generated by a dark soliton in the fiber optic loop. A dark soliton known as an optical tweezer is amplified and tuned within the microring resonator system. The required tunable tweezers with different widths and powers can be controlled. The analysis of dark-bright soliton conversion using a dark soliton pulse propagating within a microring resonator system is analyzed. The dynamic behaviors of soliton conversion in add/drop filter is also analyzed. The control dark soliton is input into the system via the add port of the add/drop filter. The dynamic behavior of the dark-bright soliton conversion is observed. The required stable signal is obtained via a drop and throughput ports of the add/drop filter with some suitable parameters. In application, the trapped light/atom and transportation can be realized by using the proposed system.

  15. Coarsening Dynamics of Inclusions and Thermocapillary Phenomena in Smectic Liquid Crystal Bubbles

    NASA Astrophysics Data System (ADS)

    Park, Cheol; Maclennan, Joseph; Glaser, Matthew; Clark, Noel; Trittel, Torsten; Eremin, Alexey; Stannarius, Ralf; Tin, Padetha; Hall, Nancy

    The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that probe interfacial and hydrodynamic behavior of thin spherical-bubbles of smectic liquid crystal in microgravity. Smectic films are the thinnest known stable condensed phase structures, making them ideal for studies of two-dimensional (2D) coarsening dynamics and thermocapillary phenomena in microgravity. The OASIS flight hardware was launched on SpaceX-6 in April 2015 and experiments were carried out on the International Space Station using four different smectic A and C liquid crystal materials in separate sample chambers. We will describe the behavior of collective island dynamics on the bubbles, including temperature gradient-induced themomigration, and the diffusion and coalescence-driven coarsening dynamics of island emulsions in microgravity. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  16. Dynamic stability and bifurcation analysis in fractional thermodynamics

    NASA Astrophysics Data System (ADS)

    Béda, Péter B.

    2018-02-01

    In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.

  17. Dynamics of regional brain activity in epilepsy: a cross-disciplinary study on both intracranial and scalp-recorded epileptic seizures.

    PubMed

    Minadakis, George; Ventouras, Errikos; Gatzonis, Stylianos D; Siatouni, Anna; Tsekou, Hara; Kalatzis, Ioannis; Sakas, Damianos E; Stonham, John

    2014-04-01

    Recent cross-disciplinary literature suggests a dynamical analogy between earthquakes and epileptic seizures. This study extends the focus of inquiry for the applicability of models for earthquake dynamics to examine both scalp-recorded and intracranial electroencephalogram recordings related to epileptic seizures. First, we provide an updated definition of the electric event in terms of magnitude and we focus on the applicability of (i) a model for earthquake dynamics, rooted in a nonextensive Tsallis framework, (ii) the traditional Gutenberg and Richter law and (iii) an alternative method for the magnitude-frequency relation for earthquakes. Second, we apply spatiotemporal analysis in terms of nonextensive statistical physics and we further examine the behavior of the parameters included in the nonextensive formula for both types of electroencephalogram recordings under study. We confirm the previously observed power-law distribution, showing that the nonextensive formula can adequately describe the sequences of electric events included in both types of electroencephalogram recordings. We also show the intermittent behavior of the epileptic seizure cycle which is analogous to the earthquake cycles and we provide evidence of self-affinity of the regional electroencephalogram epileptic seizure activity. This study may provide a framework for the analysis and interpretation of epileptic brain activity and other biological phenomena with similar underlying dynamical mechanisms.

  18. Dynamic evolution characteristics of a fractional order hydropower station system

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Chen, Diyi; Yan, Donglin; Xu, Beibei; Wang, Xiangyu

    2018-01-01

    This paper investigates the dynamic evolution characteristics of the hydropower station by introducing the fractional order damping forces. A careful analysis of the dynamic characteristics of the generator shaft system is carried out under different values of fractional order. It turns out the vibration state of the axis coordinates has a certain evolution law with the increase of the fractional order. Significantly, the obtained law exists in the horizontal evolution and vertical evolution of the dynamical behaviors. Meanwhile, some interesting dynamical phenomena were found in this process. The outcomes of this study enrich the nonlinear dynamic theory from the engineering practice of hydropower stations.

  19. Relevance of deterministic chaos theory to studies in functioning of dynamical systems

    NASA Astrophysics Data System (ADS)

    Glagolev, S. N.; Bukhonova, S. M.; Chikina, E. D.

    2018-03-01

    The paper considers chaotic behavior of dynamical systems typical for social and economic processes. Approaches to analysis and evaluation of system development processes are studies from the point of view of controllability and determinateness. Explanations are given for necessity to apply non-standard mathematical tools to explain states of dynamical social and economic systems on the basis of fractal theory. Features of fractal structures, such as non-regularity, self-similarity, dimensionality and fractionality are considered.

  20. Protein stability and dynamics influenced by ligands in extremophilic complexes - a molecular dynamics investigation.

    PubMed

    Khan, Sara; Farooq, Umar; Kurnikova, Maria

    2017-08-22

    In this study, we explore the structural and dynamic adaptations of the Tryptophan synthase α-subunit in a ligand bound state in psychrophilic, mesophilic and hyperthermophilic organisms at different temperatures by MD simulations. We quantify the global and local fluctuations in the 40 ns time scale by analyzing the root mean square deviation/fluctuations. The distinct behavior of the active site and loop 6 is observed with the elevation of temperature. Protein stability relies more on electrostatic interactions, and these interactions might be responsible for the stability of varying temperature evolved proteins. The paper also focuses on the effect of temperature on protein dynamics and stability governed by the distinct behavior of the ligand associated with its retention, binding and dissociation over the course of time. The integration of principle component analysis and a free energy landscape was useful in identifying the conformational space accessible to ligand bound homologues and how the presence of the ligand alters the conformational and dynamic properties of the protein.

  1. Branching dynamics of viral information spreading.

    PubMed

    Iribarren, José Luis; Moro, Esteban

    2011-10-01

    Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants' decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31,000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the "tipping point" and can be used for prediction and management of viral information spreading processes.

  2. Branching dynamics of viral information spreading

    NASA Astrophysics Data System (ADS)

    Iribarren, José Luis; Moro, Esteban

    2011-10-01

    Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants’ decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31 000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the “tipping point” and can be used for prediction and management of viral information spreading processes.

  3. Complexity multiscale asynchrony measure and behavior for interacting financial dynamics

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Niu, Hongli

    2016-08-01

    A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.

  4. Ground shake test of the UH-60A helicopter airframe and comparison with NASTRAN finite element model predictions

    NASA Technical Reports Server (NTRS)

    Howland, G. R.; Durno, J. A.; Twomey, W. J.

    1990-01-01

    Sikorsky Aircraft, together with the other major helicopter airframe manufacturers, is engaged in a study to improve the use of finite element analysis to predict the dynamic behavior of helicopter airframes, under a rotorcraft structural dynamics program called DAMVIBS (Design Analysis Methods for VIBrationS), sponsored by the NASA-Langley. The test plan and test results are presented for a shake test of the UH-60A BLACK HAWK helicopter. A comparison is also presented of test results with results obtained from analysis using a NASTRAN finite element model.

  5. Regime Behavior in Paleo-Reconstructed Streamflow: Attributions to Atmospheric Dynamics, Synoptic Circulation and Large-Scale Climate Teleconnection Patterns

    NASA Astrophysics Data System (ADS)

    Ravindranath, A.; Devineni, N.

    2017-12-01

    Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.

  6. Analysis of the anomalous mean-field like properties of Gaussian core model in terms of entropy

    NASA Astrophysics Data System (ADS)

    Nandi, Manoj Kumar; Maitra Bhattacharyya, Sarika

    2018-01-01

    Studies of the Gaussian core model (GCM) have shown that it behaves like a mean-field model and the properties are quite different from standard glass former. In this work, we investigate the entropies, namely, the excess entropy (Sex) and the configurational entropy (Sc) and their different components to address these anomalies. Our study corroborates most of the earlier observations and also sheds new light on the high and low temperature dynamics. We find that unlike in standard glass former where high temperature dynamics is dominated by two-body correlation and low temperature by many-body correlations, in the GCM both high and low temperature dynamics are dominated by many-body correlations. We also find that the many-body entropy which is usually positive at low temperatures and is associated with activated dynamics is negative in the GCM suggesting suppression of activation. Interestingly despite the suppression of activation, the Adam-Gibbs (AG) relation that describes activated dynamics holds in the GCM, thus suggesting a non-activated contribution in AG relation. We also find an overlap between the AG relation and mode coupling power law regime leading to a power law behavior of Sc. From our analysis of this power law behavior, we predict that in the GCM the high temperature dynamics will disappear at dynamical transition temperature and below that there will be a transition to the activated regime. Our study further reveals that the activated regime in the GCM is quite narrow.

  7. Speculative behavior and asset price dynamics.

    PubMed

    Westerhoff, Frank

    2003-07-01

    This paper deals with speculative trading. Guided by empirical observations, a nonlinear deterministic asset pricing model is developed in which traders repeatedly choose between technical and fundamental analysis to determine their orders. The interaction between the trading rules produces complex dynamics. The model endogenously replicates the stylized facts of excess volatility, high trading volumes, shifts in the level of asset prices, and volatility clustering.

  8. Nonlinear dynamics behavior analysis of the spatial configuration of a tendril-bearing plant

    NASA Astrophysics Data System (ADS)

    Feng, Jingjing; Zhang, Qichang; Wang, Wei; Hao, Shuying

    2017-03-01

    Tendril-bearing plants appear to have a spiraling shape when tendrils climb along a support during growth. The growth characteristics of a tendril-bearer can be simplified to a model of a thin elastic rod with a cylindrical constraint. In this paper, the connection between some typical configuration characteristics of tendrils and complex nonlinear dynamic behavior are qualitatively analyzed. The space configuration problem of tendrils can be explained through the study of the nonlinear dynamic behavior of the thin elastic rod system equation. In this study, the complex non-Z2 symmetric critical orbits in the system equation under critical parameters were presented. A new function transformation method that can effectively maintain the critical orbit properties was proposed, and a new nonlinear differential equations system containing complex nonlinear terms can been obtained to describe the cross section position and direction of a rod during climbing. Numerical simulation revealed that the new system can describe the configuration of a rod with reasonable accuracy. To adequately explain the growing regulation of the rod shape, the critical orbit and configuration of rod are connected in a direct way. The high precision analytical expressions of these complex non-Z2 symmetric critical orbits are obtained by introducing a suitable analytical method, and then these expressions are used to draw the corresponding three-dimensional configuration figures of an elastic thin rod. Combined with actual tendrils on a live plant, the space configuration of the winding knots of tendril is explained by the concept of heteroclinic orbit from the perspective of nonlinear dynamics, and correctness of the theoretical analysis was verified. This theoretical analysis method could also be effectively applied to other similar slender structures.

  9. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics.

    PubMed

    Fang, Jing; Nevin, Philip; Kairys, Visvaldas; Venclovas, Česlovas; Engen, John R; Beuning, Penny J

    2014-04-08

    The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Dynamic strain aging and plastic instabilities

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    1995-05-01

    A constitutive model proposed by McCormick [(1988) Theory of flow localization due to dynamic strain ageing. Acta. Metall.36, 3061-3067] based on dislocation-solute interaction and describing dynamic strain aging behavior, is analyzed for the simple loading case of uniaxial tension. The model is rate dependent and includes a time-varying state variable, representing the local concentration of the impurity atoms at dislocations. Stability of the system and its post-instability behavior are considered. The methods used include analytical and numerical stability and bifurcation analysis with a numerical continuation technique. Yield point behavior and serrated yielding are found to result for well defined intervals of temperature and strain rate. Serrated yielding emerges as a branch of periodic solutions of the relaxation oscillation type, similar to frictional stick-slip. The distinction between the temporal and spatial (loss of homogeneity of strain) instability is emphasized. It is found that a critical machine stiffness exists above which a purely temporal instability cannot occur. The results are compared to the available experimental data.

  11. Origin of dielectric relaxor behavior in PVDF-based copolymer and terpolymer films

    NASA Astrophysics Data System (ADS)

    Pramanick, Abhijit; Osti, Naresh C.; Jalarvo, Niina; Misture, Scott T.; Diallo, Souleymane Omar; Mamontov, Eugene; Luo, Y.; Keum, Jong-Kahk; Littrell, Ken

    2018-04-01

    Relaxor ferroelectrics exhibit frequency-dispersion of their dielectric permittivity peak as a function of temperature, the origin of which has been widely debated. Microscopic understanding of such behavior for polymeric ferroelectrics has presented new challenges since unlike traditional ceramic ferroelectrics, dielectric relaxation in polymers is a consequence of short-range molecular dynamics that are difficult to measure directly. Here, through careful analysis of atomic-level H-atom dynamics as determined by Quasi-elastic Neutron Scattering (QENS), we show that short-range molecular dynamics within crystalline domains cannot explain the macroscopic frequency-dispersion of dielectric properties observed in prototypical polyvinylidene-fluoride (PVDF)-based relaxor ferroelectrics. Instead, from multiscale quantitative microstructural characterization, a clear correlation between the amount of crystalline-amorphous interfaces and dielectric relaxation is observed, which indicates that such interfaces play a central role. These results provide critical insights into the role of atomic and microscopic structures towards relaxor behavior in ferroelectric polymers, which will be important for their future design.

  12. Modeling, numerical simulation, and nonlinear dynamic behavior analysis of PV microgrid-connected inverter with capacitance catastrophe

    NASA Astrophysics Data System (ADS)

    Li, Sichen; Liao, Zhixian; Luo, Xiaoshu; Wei, Duqu; Jiang, Pinqun; Jiang, Qinghong

    2018-02-01

    The value of the output capacitance (C) should be carefully considered when designing a photovoltaic (PV) inverter since it can cause distortion in the working state of the circuit, and the circuit produces nonlinear dynamic behavior. According to Kirchhoff’s laws and the characteristics of an ideal operational amplifier for a strict piecewise linear state equation, a circuit simulation model is constructed to study the system parameters (time, C) for the current passing through an inductor with an inductance of L and the voltage across the capacitor with a capacitance of C. The developed simulation model uses Runge-Kutta methods to solve the state equations. This study focuses on predicting the fault of the circuit from the two aspects of the harmonic distortion and simulation results. Moreover, the presented model is also used to research the working state of the system in the case of a load capacitance catastrophe. The nonlinear dynamic behaviors in the inverter are simulated and verified.

  13. Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior

    NASA Astrophysics Data System (ADS)

    Huang, Qingdao; Qian, Hong

    2009-09-01

    We establish a mathematical model for a cellular biochemical signaling module in terms of a planar differential equation system. The signaling process is carried out by two phosphorylation-dephosphorylation reaction steps that share common kinase and phosphatase with saturated enzyme kinetics. The pair of equations is particularly simple in the present mathematical formulation, but they are singular. A complete mathematical analysis is developed based on an elementary perturbation theory. The dynamics exhibits the canonical competition behavior in addition to bistability. Although widely understood in ecological context, we are not aware of a full range of biochemical competition in a simple signaling network. The competition dynamics has broad implications to cellular processes such as cell differentiation and cancer immunoediting. The concepts of homogeneous and heterogeneous multisite phosphorylation are introduced and their corresponding dynamics are compared: there is no bistability in a heterogeneous dual phosphorylation system. A stochastic interpretation is also provided that further gives intuitive understanding of the bistable behavior inside the cells.

  14. An extended car-following model to describe connected traffic dynamics under cyberattacks

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Yu, Guizhen; Wu, Xinkai; Qin, Hongmao; Wang, Yunpeng

    2018-04-01

    In this paper, the impacts of the potential cyberattacks on vehicles are modeled through an extended car-following model. To better understand the mechanism of traffic disturbance under cyberattacks, the linear and nonlinear stability analysis are conducted respectively. Particularly, linear stability analysis is performed to obtain different neutral stability conditions with various parameters; and nonlinear stability analysis is carried out by using reductive perturbation method to derive the soliton solution of the modified Korteweg de Vries equation (mKdV) near the critical point, which is used to draw coexisting stability lines. Furthermore, by applying linear and nonlinear stability analysis, traffic flow state can be divided into three states, i.e., stable, metastable and unstable states which are useful to describe shockwave dynamics and driving behaviors under cyberattacks. The theoretical results show that the proposed car-following model is capable of successfully describing the car-following behavior of connected vehicles with cyberattacks. Finally, numerical simulation using real values has confirmed the validity of theoretical analysis. The results further demonstrate our model can be used to help avoid collisions and relieve traffic congestion with cybersecurity threats.

  15. Feasibility of using PZT actuators to study the dynamic behavior of a rotating disk due to rotor-stator interaction.

    PubMed

    Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich

    2014-07-07

    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids-air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction.

  16. Mean-field behavior as a result of noisy local dynamics in self-organized criticality: Neuroscience implications

    NASA Astrophysics Data System (ADS)

    Moosavi, S. Amin; Montakhab, Afshin

    2014-05-01

    Motivated by recent experiments in neuroscience which indicate that neuronal avalanches exhibit scale invariant behavior similar to self-organized critical systems, we study the role of noisy (nonconservative) local dynamics on the critical behavior of a sandpile model which can be taken to mimic the dynamics of neuronal avalanches. We find that despite the fact that noise breaks the strict local conservation required to attain criticality, our system exhibits true criticality for a wide range of noise in various dimensions, given that conservation is respected on the average. Although the system remains critical, exhibiting finite-size scaling, the value of critical exponents change depending on the intensity of local noise. Interestingly, for a sufficiently strong noise level, the critical exponents approach and saturate at their mean-field values, consistent with empirical measurements of neuronal avalanches. This is confirmed for both two and three dimensional models. However, the addition of noise does not affect the exponents at the upper critical dimension (D =4). In addition to an extensive finite-size scaling analysis of our systems, we also employ a useful time-series analysis method to establish true criticality of noisy systems. Finally, we discuss the implications of our work in neuroscience as well as some implications for the general phenomena of criticality in nonequilibrium systems.

  17. Delamination and debonding of materials

    NASA Technical Reports Server (NTRS)

    Johnson, W. S. (Editor)

    1985-01-01

    The general topics consist of stress analysis, mechanical behavior, and fractography/NDI of composite laminates. Papers are presented on a dynamic hybrid finite-element analysis for interfacial cracks in composites, energy release rate during delamination crack growth in composite laminates, matrix deformation and fracture in graphite-reinforced epoxies, and the role of delamination and damage development on the strength of thick notched laminates. In addition, consideration is given to a new ply model for interlaminar stress analysis, a fracture mechanics approach for designing adhesively bonded joints, the analysis of local delaminations and their influence on composite laminate behavior, and moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy.

  18. Foundations to the unified psycho-cognitive engine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Michael Lewis; Bier, Asmeret Brooke; Backus, George A.

    This document outlines the key features of the SNL psychological engine. The engine is designed to be a generic presentation of cognitive entities interacting among themselves and with the external world. The engine combines the most accepted theories of behavioral psychology with those of behavioral economics to produce a unified simulation of human response from stimuli through executed behavior. The engine explicitly recognizes emotive and reasoned contributions to behavior and simulates the dynamics associated with cue processing, learning, and choice selection. Most importantly, the model parameterization can come from available media or survey information, as well subject-matter-expert information. The frameworkmore » design allows the use of uncertainty quantification and sensitivity analysis to manage confidence in using the analysis results for intervention decisions.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx; Campos-Cantón, I.

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enablemore » future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.« less

  20. Dynamic analysis of a hepatitis B model with three-age-classes

    NASA Astrophysics Data System (ADS)

    Zhang, Suxia; Zhou, Yicang

    2014-07-01

    Based on the fact that the likelihood of becoming chronically infected is dependent on age at primary infection Kane (1995) [2], Edmunds et al. (1993) [3], Medley et al. (2001) [4], and Ganem and Prince (2004) [6], we formulate a hepatitis B transmission model with three age classes. The reproduction number, R0 is defined and the dynamical behavior of the model is analyzed. It is proved that the disease-free equilibrium is globally stable if R0<1, and there exists at least one endemic equilibrium and that the disease is uniformly persistent if R0>1. The unique endemic equilibrium and its global stability is obtained in a special case. Simulations are also conducted to compare the dynamical behavior of the model with and without age classes.

  1. Nonlinear dynamic response of a uni-directional model for the tile/pad space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Edighoffer, H. H.; Park, K. C.

    1980-01-01

    A unidirectional analysis of the nonlinear dynamic behavior of the space shuttle tile/pad thermal protection system is developed and examined for imposed sinusoidal and random motions of the shuttle skin and/or applied tile pressure. The analysis accounts for the highly nonlinear stiffening hysteresis and viscous behavior of the pad which joins the tile to the shuttle skin. Where available, experimental data are used to confirm the validity of the analysis. Both analytical and experimental studies reveal that the system resonant frequency is very high for low amplitude oscillations but decreases rapidly to a minimum value with increasing amplitude. Analytical studies indicate that with still higher amplitude the resonant frequency increases slowly. The nonlinear pad is also responsible for the analytically and experimentally observed distorted response wave shapes having high sharp peaks when the system is subject to sinusoidal loads. Furthermore, energy dissipation in the pad is studied analytically and it is found that the energy dissipated is sufficiently high to cause rapid decay of dynamic transients. Nevertheless, the sharp peaked nonlinear responses of the system lead to higher magnification factors than would be expected in such a highly damped linear system.

  2. Dynamic analysis of a pumped-storage hydropower plant with random power load

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  3. Parameter Transient Behavior Analysis on Fault Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine (Technical Monitor); Shin, Jong-Yeob

    2003-01-01

    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. This paper illustrates analysis of a FTC system based on estimated fault parameter transient behavior which may include false fault detections during a short time interval. Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the FTC system performance is calculated as a function of a fault detection time and the exponential decay rate of the Lyapunov function.

  4. Data series embedding and scale invariant statistics.

    PubMed

    Michieli, I; Medved, B; Ristov, S

    2010-06-01

    Data sequences acquired from bio-systems such as human gait data, heart rate interbeat data, or DNA sequences exhibit complex dynamics that is frequently described by a long-memory or power-law decay of autocorrelation function. One way of characterizing that dynamics is through scale invariant statistics or "fractal-like" behavior. For quantifying scale invariant parameters of physiological signals several methods have been proposed. Among them the most common are detrended fluctuation analysis, sample mean variance analyses, power spectral density analysis, R/S analysis, and recently in the realm of the multifractal approach, wavelet analysis. In this paper it is demonstrated that embedding the time series data in the high-dimensional pseudo-phase space reveals scale invariant statistics in the simple fashion. The procedure is applied on different stride interval data sets from human gait measurements time series (Physio-Bank data library). Results show that introduced mapping adequately separates long-memory from random behavior. Smaller gait data sets were analyzed and scale-free trends for limited scale intervals were successfully detected. The method was verified on artificially produced time series with known scaling behavior and with the varying content of noise. The possibility for the method to falsely detect long-range dependence in the artificially generated short range dependence series was investigated. (c) 2009 Elsevier B.V. All rights reserved.

  5. An Introduction to the Special Issue on Advances in Process and Dynamic System Analysis of Social Interaction and the Development of Antisocial Behavior

    ERIC Educational Resources Information Center

    Dishion, Thomas J.; Snyder, James

    2004-01-01

    A thorough understanding of how social relationships contribute to child and adolescent trajectories for antisocial behavior may be facilitated by: (a) ascertaining multiple relationship processes (e.g., warmth and reciprocity, coercion and deviancy training); (b) focusing on multiple relationships (e.g., with parents, peers, siblings, and…

  6. Miscibility and thermal behavior of poly (ε-caprolactone)/long-chain ester of cellulose blends

    Treesearch

    Yuzhi Xu; Chunpeng Wang; Nicole M. Stark; Zhiyong Cai; Fuxiang Chu

    2012-01-01

    The long-chain cellulose ester (LCCE) cellulose laurate, poly(ε-caprolactone) (PCL) and their blends were characterized by tensile strength, Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). The compatibility of the blends was...

  7. SPLASH program for three dimensional fluid dynamics with free surface boundaries

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.

    1996-05-01

    This paper describes a three dimensional computer program SPLASH that solves Navier-Stokes equations based on the Arbitrary Lagrangian Eulerian (ALE) finite element method. SPLASH has been developed for application to the fluid dynamics problems including the moving boundary of a liquid metal cooled Fast Breeder Reactor (FBR). To apply SPLASH code to the free surface behavior analysis, a capillary model using a cubic Spline function has been developed. Several sample problems, e.g., free surface oscillation, vortex shedding development, and capillary tube phenomena, are solved to verify the computer program. In the analyses, the numerical results are in good agreement with the theoretical value or experimental observance. Also SPLASH code has been applied to an analysis of a free surface sloshing experiment coupled with forced circulation flow in a rectangular tank. This is a simplified situation of the flow field in a reactor vessel of the FBR. The computational simulation well predicts the general behavior of the fluid flow inside and the free surface behavior. Analytical capability of the SPLASH code has been verified in this study and the application to more practical problems such as FBR design and safety analysis is under way.

  8. Analysis of the behavior of a wiper blade around the reversal in consideration of dynamic and static friction

    NASA Astrophysics Data System (ADS)

    Unno, M.; Shibata, A.; Yabuno, H.; Yanagisawa, D.; Nakano, T.

    2017-04-01

    Reducing noise generated by automobile windshield wipers during reversals is a desirable feature. For this purpose, details of the behavior of the wiper blade need to be ascertained. In this study, we present theoretical and experimental clarification of this behavior during reversals. Using simulation algorithms to consider exactly the effects of dynamic and static friction, we determined theoretical predictions for the vibrational response caused by friction and the response frequency and compared these results with experimental ones obtained from a mock-up incorporating an actual wiper blade. We introduce an analytical link model with two degrees of freedom and consider two types of states at the blade tip. In the stick and the slip states, static friction and dynamic friction, respectively, act on the blade tip. In the theoretical approach, the static friction is expressed by a set-valued function. The transition between the two states is repeated and an evaluation of an exact transition time leads to an accurate prediction of the behavior of the wiper system. In the analysis, the slack variable method is used to find the exact transition time. Assuming low blade speeds during reversal, a parameter study indicates that the blade tip transitions between slip and stick states and the frequency of the vibration caused by this transitions is close to the natural frequency of the neck of the wiper blade. The theoretical predictions are in good agreement with experimental observations.

  9. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  10. Salience network dynamics underlying successful resistance of temptation

    PubMed Central

    Nomi, Jason S; Calhoun, Vince D; Stelzel, Christine; Paschke, Lena M; Gaschler, Robert; Goschke, Thomas; Walter, Henrik; Uddin, Lucina Q

    2017-01-01

    Abstract Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connectivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems outside canonical cognitive control networks in contributing to individual differences in self-control. PMID:29048582

  11. Analysis of utilization of desert habitats with dynamic simulation

    USGS Publications Warehouse

    Williams, B.K.

    1986-01-01

    The effects of climate and herbivores on cool desert shrubs in north-western Utah were investigated with a dynamic simulation model. Cool desert shrublands are extensively managed as grazing lands, and are defoliated annually by domestic livestock. A primary production model was used to simulate harvest yields and shrub responses under a variety of climatic regimes and defoliation patterns. The model consists of six plant components, and it is based on equations of growth analysis. Plant responses were simulated under various combinations of 20 annual weather patterns and 14 defoliation strategies. Results of the simulations exhibit some unexpected linearities in model behavior, and emphasize the importance of both the pattern of climate and the level of plant vigor in determining optimal harvest strategies. Model behaviors are interpreted in terms of shrub morphology, physiology and ecology.

  12. Gold rush - A swarm dynamics in games

    NASA Astrophysics Data System (ADS)

    Zelinka, Ivan; Bukacek, Michal

    2017-07-01

    This paper is focused on swarm intelligence techniques and its practical use in computer games. The aim is to show how a swarm dynamics can be generated by multiplayer game, then recorded, analyzed and eventually controlled. In this paper we also discuss possibility to use swarm intelligence instead of game players. Based on our previous experiments two games, using swarm algorithms are mentioned briefly here. The first one is strategy game StarCraft: Brood War, and TicTacToe in which SOMA algorithm has also take a role of player against human player. Open research reported here has shown potential benefit of swarm computation in the field of strategy games and players strategy based on swarm behavior record and analysis. We propose new game called Gold Rush as an experimental environment for human or artificial swarm behavior and consequent analysis.

  13. Laplace-SGBEM analysis of the dynamic stress intensity factors and the dynamic T-stress for the interaction between a crack and auxetic inclusions

    NASA Astrophysics Data System (ADS)

    Kwon, Kibum

    A dynamic analysis of the interaction between a crack and an auxetic (negative Poisson ratio)/non-auxetic inclusion is presented. The two most important fracture parameters, namely the stress intensity factors and the T-stress are analyzed by using the symmetric Galerkin boundary element method in the Laplace domain for three different models of crack-inclusion interaction. To investigate the effects of auxetic inclusions on the fracture behavior of composites reinforced by this new type of material, comparisons of the dynamic stress intensity factors and the dynamic T-stress are made between the use of auxetic inclusions as opposed to the use of traditional inclusions. Furthermore, the technique presented in this research can be employed to analyze for the interaction between a crack and a cluster of auxetic/non-auxetic inclusions. Results from the latter models can be employed in crack growth analysis in auxetic-fiber-reinforced composites.

  14. Variability of normal vocal fold dynamics for different vocal loading in one healthy subject investigated by phonovibrograms.

    PubMed

    Doellinger, Michael; Lohscheller, Joerg; McWhorter, Andrew; Kunduk, Melda

    2009-03-01

    We investigate the potential of high-speed digital imaging technique (HSI) and the phonovibrogram (PVG) analysis in normal vocal fold dynamics by studying the effects of continuous voice use (vocal loading) during the workday. One healthy subject was recorded at sustained phonation 13 times within 2 consecutive days in the morning before and in the afternoon after vocal loading, respectively. Vocal fold dynamics were extracted and visualized by PVGs. The characteristic PVG patterns were extracted representing vocal fold vibration types. The parameter values were then analyzed by statistics regarding vocal load, left-right PVG asymmetries, anterior-posterior PVG asymmetries, and opening-closing differences. For the first time, the direct impact of vocal load could be determined by analyzing vocal fold dynamics. For same vocal loading conditions, equal dynamical behavior of the vocal folds were confirmed. Comparison of recordings performed in the morning with the recordings after work revealed significant changes in vibration behavior, indicating impact of occurring vocal load. Left-right asymmetries in vocal fold dynamics were found confirming earlier assumptions. Different dynamics between opening and closing procedure as well as for anterior and posterior parts were found. Constant voice usage stresses the vocal folds even in healthy subjects and can be detected by applying the PVG technique. Furthermore, left-right PVG asymmetries do occur in healthy voice to a certain extent. HSI in combination with PVG analysis seems to be a promising tool for investigation of vocal fold fatigue and pathologies resulting in small forms of dynamical changes.

  15. New insights into sucking, swallowing and breathing central generators: A complexity analysis of rhythmic motor behaviors.

    PubMed

    Samson, Nathalie; Praud, Jean-Paul; Quenet, Brigitte; Similowski, Thomas; Straus, Christian

    2017-01-18

    Sucking, swallowing and breathing are dynamic motor behaviors. Breathing displays features of chaos-like dynamics, in particular nonlinearity and complexity, which take their source in the automatic command of breathing. In contrast, buccal/gill ventilation in amphibians is one of the rare motor behaviors that do not display nonlinear complexity. This study aimed at assessing whether sucking and swallowing would also follow nonlinear complex dynamics in the newborn lamb. Breathing movements were recorded before, during and after bottle-feeding. Sucking pressure and the integrated EMG of the thyroartenoid muscle, as an index of swallowing, were recorded during bottle-feeding. Nonlinear complexity of the whole signals was assessed through the calculation of the noise limit value (NL). Breathing and swallowing always exhibited chaos-like dynamics. The NL of breathing did not change significantly before, during or after bottle-feeding. On the other hand, sucking inconsistently and significantly less frequently than breathing exhibited a chaos-like dynamics. Therefore, the central pattern generator (CPG) that drives sucking may be functionally different from the breathing CPG. Furthermore, the analogy between buccal/gill ventilation and sucking suggests that the latter may take its phylogenetic origin in the gill ventilation CPG of the common ancestor of extant amphibians and mammals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Evolutionary game based control for biological systems with applications in drug delivery.

    PubMed

    Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun

    2013-06-07

    Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Scaling analysis of bilateral hand tremor movements in essential tremor patients.

    PubMed

    Blesic, S; Maric, J; Dragasevic, N; Milanovic, S; Kostic, V; Ljubisavljevic, Milos

    2011-08-01

    Recent evidence suggests that the dynamic-scaling behavior of the time-series of signals extracted from separate peaks of tremor spectra may reveal existence of multiple independent sources of tremor. Here, we have studied dynamic characteristics of the time-series of hand tremor movements in essential tremor (ET) patients using the detrended fluctuation analysis method. Hand accelerometry was recorded with (500 g) and without weight loading under postural conditions in 25 ET patients and 20 normal subjects. The time-series comprising peak-to-peak (PtP) intervals were extracted from regions around the first three main frequency components of power spectra (PwS) of the recorded tremors. The data were compared between the load and no-load condition on dominant (related to tremor severity) and non-dominant tremor side and with the normal (physiological) oscillations in healthy subjects. Our analysis shows that, in ET, the dynamic characteristics of the main frequency component of recorded tremors exhibit scaling behavior. Furthermore, they show that the two main components of ET tremor frequency spectra, otherwise indistinguishable without load, become significantly different after inertial loading and that they differ between the tremor sides (related to tremor severity). These results show that scaling, a time-domain analysis, helps revealing tremor features previously not revealed by frequency-domain analysis and suggest that distinct oscillatory central circuits may generate the tremor in ET patients.

  18. Computation of the spectrum of spatial Lyapunov exponents for the spatially extended beam-plasma systems and electron-wave devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hramov, Alexander E.; Saratov State Technical University, Politechnicheskaja str., 77, Saratov 410054; Koronovskii, Alexey A.

    2012-08-15

    The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum ofmore » the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.« less

  19. Modeling of dielectric elastomer as electromechanical resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bo, E-mail: liboxjtu@mail.xjtu.edu.cn; Liu, Lei; Chen, Hualing

    Dielectric elastomers (DEs) feature nonlinear dynamics resulting from an electromechanical coupling. Under alternating voltage, the DE resonates with tunable performances. We present an analysis of the nonlinear dynamics of a DE as electromechanical resonator (DEER) configured as a pure shear actuator. A theoretical model is developed to characterize the complex performance under different boundary conditions. Physical mechanisms are presented and discussed. Chaotic behavior is also predicted, illustrating instabilities in the dynamics. The results provide a guide to the design and application of DEER in haptic devices.

  20. Fractal scaling analysis of groundwater dynamics in confined aquifers

    NASA Astrophysics Data System (ADS)

    Tu, Tongbi; Ercan, Ali; Kavvas, M. Levent

    2017-10-01

    Groundwater closely interacts with surface water and even climate systems in most hydroclimatic settings. Fractal scaling analysis of groundwater dynamics is of significance in modeling hydrological processes by considering potential temporal long-range dependence and scaling crossovers in the groundwater level fluctuations. In this study, it is demonstrated that the groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior. Detrended fluctuation analysis (DFA) was utilized to quantify the monofractality, and multifractal detrended fluctuation analysis (MF-DFA) and multiscale multifractal analysis (MMA) were employed to examine the multifractal behavior. The DFA results indicated that fractals exist in groundwater level time series, and it was shown that the estimated Hurst exponent is closely dependent on the length and specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist, which may be partially due to a broad probability density distribution with infinite moments. Furthermore, it is demonstrated that the underlying distribution of groundwater level fluctuations exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics depending on the site characteristics. However, fractional Brownian motion (fBm), which has been identified as an appropriate model to characterize groundwater level fluctuation, is Gaussian with finite moments. Therefore, fBm may be inadequate for the description of physical processes with infinite moments, such as the groundwater level fluctuations in this study. It is concluded that there is a need for generalized governing equations of groundwater flow processes that can model both the long-memory behavior and the Brownian finite-memory behavior.

  1. A Multilayer Naïve Bayes Model for Analyzing User's Retweeting Sentiment Tendency.

    PubMed

    Wang, Mengmeng; Zuo, Wanli; Wang, Ying

    2015-01-01

    Today microblogging has increasingly become a means of information diffusion via user's retweeting behavior. Since retweeting content, as context information of microblogging, is an understanding of microblogging, hence, user's retweeting sentiment tendency analysis has gradually become a hot research topic. Targeted at online microblogging, a dynamic social network, we investigate how to exploit dynamic retweeting sentiment features in retweeting sentiment tendency analysis. On the basis of time series of user's network structure information and published text information, we first model dynamic retweeting sentiment features. Then we build Naïve Bayes models from profile-, relationship-, and emotion-based dimensions, respectively. Finally, we build a multilayer Naïve Bayes model based on multidimensional Naïve Bayes models to analyze user's retweeting sentiment tendency towards a microblog. Experiments on real-world dataset demonstrate the effectiveness of the proposed framework. Further experiments are conducted to understand the importance of dynamic retweeting sentiment features and temporal information in retweeting sentiment tendency analysis. What is more, we provide a new train of thought for retweeting sentiment tendency analysis in dynamic social networks.

  2. Probabilistic assessment of dynamic system performance. Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhadj, Mohamed

    1993-01-01

    Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safemore » operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.« less

  3. Spatiotemporal properties of microsaccades: Model predictions and experimental tests

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao

    2016-10-01

    Microsaccades are involuntary and very small eye movements during fixation. Recently, the microsaccade-related neural dynamics have been extensively investigated both in experiments and by constructing neural network models. Experimentally, microsaccades also exhibit many behavioral properties. It’s well known that the behavior properties imply the underlying neural dynamical mechanisms, and so are determined by neural dynamics. The behavioral properties resulted from neural responses to microsaccades, however, are not yet understood and are rarely studied theoretically. Linking neural dynamics to behavior is one of the central goals of neuroscience. In this paper, we provide behavior predictions on spatiotemporal properties of microsaccades according to microsaccade-induced neural dynamics in a cascading network model, which includes both retinal adaptation and short-term depression (STD) at thalamocortical synapses. We also successfully give experimental tests in the statistical sense. Our results provide the first behavior description of microsaccades based on neural dynamics induced by behaving activity, and so firstly link neural dynamics to behavior of microsaccades. These results indicate strongly that the cascading adaptations play an important role in the study of microsaccades. Our work may be useful for further investigations of the microsaccadic behavioral properties and of the underlying neural dynamical mechanisms responsible for the behavioral properties.

  4. The brain as a dynamic physical system.

    PubMed

    McKenna, T M; McMullen, T A; Shlesinger, M F

    1994-06-01

    The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.

  5. Dynamical behavior and Jacobi stability analysis of wound strings

    NASA Astrophysics Data System (ADS)

    Lake, Matthew J.; Harko, Tiberiu

    2016-06-01

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.

  6. Dynamical behavior of lean swirling premixed flame generated by change in gravitational orientation

    NASA Astrophysics Data System (ADS)

    Gotoda, Hiroshi; Miyano, Takaya; Shepherd, Ian

    2010-11-01

    The dynamic behavior of flame front instability in lean swirling premixed flame generated by the effect of gravitational orientation has been experimentally investigated in this work. When the gravitational direction is changed relative to the flame front, i.e., in inverted gravity, an unstably fluctuating flame (unstable flame) is formed in a limited domain of equivalence ratio and swirl number (Gotoda. H et al., Physical Review E, vol. 81, 026211, 2010). The time history of flame front fluctuations show that in the buoyancy-dominated region, chaotic irregular fluctuation with low frequencies is superimposed on the dominant periodic oscillation of the unstable flame. This periodic oscillation is produced by unstable large-scale vortex motion in combustion products generated by a change in the buoyancy/swirl interaction due to the inversion of gravitational orientation. As a result, the dynamic behavior of the unstable flame becomes low-dimensional deterministic chaos. Its dynamics maintains low-dimensional deterministic chaos even in the momentum-dominated region, in which vortex breakdown in the combustion products clearly occurs. These results were clearly demonstrated by the use of nonlinear time series analysis based on chaos theory, which has not been widely applied to the investigation of combustion phenomena.

  7. Consideration of Dynamical Balances

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.

    2015-01-01

    The quasi-balance of extra-tropical tropospheric dynamics is a fundamental aspect of nature. If an atmospheric analysis does not reflect such balance sufficiently well, the subsequent forecast will exhibit unrealistic behavior associated with spurious fast-propagating gravity waves. Even if these eventually damp, they can create poor background fields for a subsequent analysis or interact with moist physics to create spurious precipitation. The nature of this problem will be described along with the reasons for atmospheric balance and techniques for mitigating imbalances. Attention will be focused on fundamental issues rather than on recipes for various techniques.

  8. Development and applications of single particle orientation and rotational tracking in dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kuangcai

    The goal of this study is to help with future data analysis and experiment designs in rotational dynamics research using DIC-based SPORT technique. Most of the current studies using DIC-based SPORT techniques are technical demonstrations. Understanding the mechanisms behind the observed rotational behaviors of the imaging probes should be the focus of the future SPORT studies. More efforts are still needed in the development of new imaging probes, particle tracking methods, instrumentations, and advanced data analysis methods to further extend the potential of DIC-based SPORT technique.

  9. Using a Complexity Approach to Study the Interpersonal Dynamics in Teacher-­Student Interactions: A Case Study of Two Teachers

    ERIC Educational Resources Information Center

    Pennings, Helena J. M.

    2017-01-01

    In the present study, complex dynamic systems theory and interpersonal theory are combined to describe the teacher-student interactions of two teachers with different interpersonal styles. The aim was to show and explain the added value of looking at different steps in the analysis of behavioral time-series data (i.e., observations of teacher and…

  10. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  11. On the relationship between the dynamic behavior and nanoscale staggered structure of the bone

    NASA Astrophysics Data System (ADS)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2015-05-01

    Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.

  12. Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.

    PubMed

    Kim, Jason Z; Soffer, Jonathan M; Kahn, Ari E; Vettel, Jean M; Pasqualetti, Fabio; Bassett, Danielle S

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  13. Molecular dynamic simulation of mGluR5 amino terminal domain: essential dynamics analysis captures the agonist or antagonist behaviour of ligands.

    PubMed

    Casoni, Alessandro; Clerici, Francesca; Contini, Alessandro

    2013-04-01

    We describe the application of molecular dynamics followed by principal component analysis to study the inter-domain movements of the ligand binding domain (LBD) of mGluR5 in response to the binding of selected agonists or antagonists. Our results suggest that the method is an attractive alternative to current approaches to predict the agonist-induced or antagonist-blocked LBD responses. The ratio between the eigenvalues of the first and second eigenvectors (R1,2) is also proposed as a numerical descriptor for discriminating the ligand behavior as a mGluR5 agonist or antagonist. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Gross-Pitaevski map as a chaotic dynamical system.

    PubMed

    Guarneri, Italo

    2017-03-01

    The Gross-Pitaevski map is a discrete time, split-operator version of the Gross-Pitaevski dynamics in the circle, for which exponential instability has been recently reported. Here it is studied as a classical dynamical system in its own right. A systematic analysis of Lyapunov exponents exposes strongly chaotic behavior. Exponential growth of energy is then shown to be a direct consequence of rotational invariance and for stationary solutions the full spectrum of Lyapunov exponents is analytically computed. The present analysis includes the "resonant" case, when the free rotation period is commensurate to 2π, and the map has countably many constants of the motion. Except for lowest-order resonances, this case exhibits an integrable-chaotic transition.

  15. An Investigation of the Dynamic Response of Spur Gear Teeth with Moving Loads

    NASA Technical Reports Server (NTRS)

    Passerello, C. E.; Shuey, L. W.

    1987-01-01

    Two concepts relating to gear dynamics were studied. The first phase of the analysis involved the study of the effect of the speed of a moving load on the dynamic deflections of a gear tooth. A single spur gear tooth modelled using finite elements was subjected to moving loads with variable velocities. The tooth tip deflection time histories were plotted, from which it was seen that the tooth tip deflection consisted of a quasistatic response with an oscillatory response superimposed on it whose amplitude was dependent on the type of load engagement. Including the rim in the analysis added flexibility to the model but did not change the general behavior of the system. The second part of the analysis involved an investigation to determine the effect on the dynamic response of the inertia of the gear tooth. A simplified analysis using meshing cantilever beams was used. In one case, the beams were assumed massless. In the other, the mass (inertia) of the beams was included. From this analysis it was found that the inertia of the tooth did not affect the dynamic response of meshing cantilever beams.

  16. Team Synergies in Sport: Theory and Measures

    PubMed Central

    Araújo, Duarte; Davids, Keith

    2016-01-01

    Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual’s behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group behaviors, team sport performance, ecological dynamics, performance analysis. PMID:27708609

  17. Team Synergies in Sport: Theory and Measures.

    PubMed

    Araújo, Duarte; Davids, Keith

    2016-01-01

    Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual's behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group behaviors, team sport performance, ecological dynamics, performance analysis.

  18. Wavelet transform analysis of dynamic speckle patterns texture

    NASA Astrophysics Data System (ADS)

    Limia, Margarita Fernandez; Nunez, Adriana Mavilio; Rabal, Hector; Trivi, Marcelo

    2002-11-01

    We propose the use of the wavelet transform to characterize the time evolution of dynamic speckle patterns. We describe it by using as an example a method used for the assessment of the drying of paint. Optimal texture features are determined and the time evolution is described in terms of the Mahalanobis distance to the final (dry) state. From the behavior of this distance function, two parameters are defined that characterize the evolution. Because detailed knowledge of the involved dynamics is not required, the methodology could be implemented for other complex or poorly understood dynamic phenomena.

  19. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  20. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE PAGES

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu; ...

    2017-12-05

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  1. Effects of local vibrations on the dynamics of space truss structures

    NASA Technical Reports Server (NTRS)

    Warnaar, Dirk B.; Mcgowan, Paul E.

    1987-01-01

    The paper discusses the influence of local member vibrations on the dynamics of repetitive space truss structures. Several focus problems wherein local member vibration modes are in the frequency range of the global truss modes are discussed. Special attention is given to defining methods that can be used to identify the global modes of a truss structure amidst many local modes. Significant interactions between the motions of local member vibrations and the global behavior are shown to occur in truss structures when: (1) the natural frequencies of the individual members for clamped-clamped boundary conditions are in the vicinity of the global truss frequency; and (2) the total mass of the individual members represents a large portion of the mass of the whole structure. The analysis is carried out with a structural analysis code which uses exact member theory. The modeling detail required using conventional finite element codes to adequately represent such a class of problems is examined. The paper concludes with some practical considerations for the design and dynamic testing of structures which might exhibit such behavior.

  2. Vibration analysis of beams traversed by uniform partially distributed moving masses

    NASA Astrophysics Data System (ADS)

    Esmailzadeh, E.; Ghorashi, M.

    1995-07-01

    An investigation into the dynamic behavior of beams with simply supported boundary conditions, carrying either uniform partially distributed moving masses or forces, has been carried out. The present analysis in its general form may well be applied to beams with various boundary conditions. However, the results from the computer simulation model given in this paper are for beams with simply supported end conditions. Results from the numerical solutions of the differential equations of motion are shown graphically and their close agreement, in some extreme cases, with those published previously by the authors is demonstrated. It is shown that the inertial effect of the moving mass is of importance in the dynamic behavior of such structures. Moreover, when considering the maximum deflection for the mid-span of the beam, the critical speeds of the moving load have been evaluated. It is also verified that the length of the distributed moving mass affects the dynamic response considerably. These effects are shown to be of significant practical importance when designing beam-type structures such as long suspension and railway bridges.

  3. The dynamical analysis of modified two-compartment neuron model and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Lin, Qianjin; Wang, Jiang; Yang, Shuangming; Yi, Guosheng; Deng, Bin; Wei, Xile; Yu, Haitao

    2017-10-01

    The complexity of neural models is increasing with the investigation of larger biological neural network, more various ionic channels and more detailed morphologies, and the implementation of biological neural network is a task with huge computational complexity and power consumption. This paper presents an efficient digital design using piecewise linearization on field programmable gate array (FPGA), to succinctly implement the reduced two-compartment model which retains essential features of more complicated models. The design proposes an approximate neuron model which is composed of a set of piecewise linear equations, and it can reproduce different dynamical behaviors to depict the mechanisms of a single neuron model. The consistency of hardware implementation is verified in terms of dynamical behaviors and bifurcation analysis, and the simulation results including varied ion channel characteristics coincide with the biological neuron model with a high accuracy. Hardware synthesis on FPGA demonstrates that the proposed model has reliable performance and lower hardware resource compared with the original two-compartment model. These investigations are conducive to scalability of biological neural network in reconfigurable large-scale neuromorphic system.

  4. Intrinsic fluorescence spectroscopy of glutamate dehydrogenase: Integrated behavior and deconvolution analysis

    NASA Astrophysics Data System (ADS)

    Pompa, P. P.; Cingolani, R.; Rinaldi, R.

    2003-07-01

    In this paper, we present a deconvolution method aimed at spectrally resolving the broad fluorescence spectra of proteins, namely, of the enzyme bovine liver glutamate dehydrogenase (GDH). The analytical procedure is based on the deconvolution of the emission spectra into three distinct Gaussian fluorescing bands Gj. The relative changes of the Gj parameters are directly related to the conformational changes of the enzyme, and provide interesting information about the fluorescence dynamics of the individual emitting contributions. Our deconvolution method results in an excellent fitting of all the spectra obtained with GDH in a number of experimental conditions (various conformational states of the protein) and describes very well the dynamics of a variety of phenomena, such as the dependence of hexamers association on protein concentration, the dynamics of thermal denaturation, and the interaction process between the enzyme and external quenchers. The investigation was carried out by means of different optical experiments, i.e., native enzyme fluorescence, thermal-induced unfolding, and fluorescence quenching studies, utilizing both the analysis of the “average” behavior of the enzyme and the proposed deconvolution approach.

  5. Scaling Behavior in Mitochondrial Redox Fluctuations

    PubMed Central

    Ramanujan, V. Krishnan; Biener, Gabriel; Herman, Brian A.

    2006-01-01

    Scale-invariant long-range correlations have been reported in fluctuations of time-series signals originating from diverse processes such as heart beat dynamics, earthquakes, and stock market data. The common denominator of these apparently different processes is a highly nonlinear dynamics with competing forces and distinct feedback species. We report for the first time an experimental evidence for scaling behavior in NAD(P)H signal fluctuations in isolated mitochondria and intact cells isolated from the liver of a young (5-month-old) mouse. Time-series data were collected by two-photon imaging of mitochondrial NAD(P)H fluorescence and signal fluctuations were quantitatively analyzed for statistical correlations by detrended fluctuation analysis and spectral power analysis. Redox [NAD(P)H / NAD(P)+] fluctuations in isolated mitochondria and intact liver cells were found to display nonrandom, long-range correlations. These correlations are interpreted as arising due to the regulatory dynamics operative in Krebs' cycle enzyme network and electron transport chain in the mitochondria. This finding may provide a novel basis for understanding similar regulatory networks that govern the nonequilibrium properties of living cells. PMID:16565066

  6. Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    2017-10-19

    Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less

  7. A nonlinear delayed model for the immune response in the presence of viral mutation

    NASA Astrophysics Data System (ADS)

    Messias, D.; Gleria, Iram; Albuquerque, S. S.; Canabarro, Askery; Stanley, H. E.

    2018-02-01

    We consider a delayed nonlinear model of the dynamics of the immune system against a viral infection that contains a wild-type virus and a mutant. We consider the finite response time of the immune system and find sustained oscillatory behavior as well as chaotic behavior triggered by the presence of delays. We present a numeric analysis and some analytical results.

  8. Voltage directive drive with claw pole motor and control without rotor position indicator

    NASA Astrophysics Data System (ADS)

    Stroenisch, Volker Ewald

    Design and testing of a voltage directive drive for synchronous variable speed claw pole motor and control without rotor position indicator is described. Economic analysis of the designed regulation is performed. Computations of stationary and dynamic behavior are given and experimental operational behavior is determined. The motors can be used for electric transportation vehicles, diesel motors, and electric railway engines.

  9. Seismic Vulnerability and Performance Level of confined brick walls

    NASA Astrophysics Data System (ADS)

    Ghalehnovi, M.; Rahdar, H. A.

    2008-07-01

    There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material. Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide. Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures. In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.

  10. Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model

    NASA Astrophysics Data System (ADS)

    Wang, Jianhong; Qin, Datong; Ding, Yi

    A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.

  11. A New Real - Time Fault Detection Methodology for Systems Under Test. Phase 1

    NASA Technical Reports Server (NTRS)

    Johnson, Roger W.; Jayaram, Sanjay; Hull, Richard A.

    1998-01-01

    The purpose of this research is focussed on the identification/demonstration of critical technology innovations that will be applied to various applications viz. Detection of automated machine Health Monitoring (BM, real-time data analysis and control of Systems Under Test (SUT). This new innovation using a High Fidelity Dynamic Model-based Simulation (BFDMS) approach will be used to implement a real-time monitoring, Test and Evaluation (T&E) methodology including the transient behavior of the system under test. The unique element of this process control technique is the use of high fidelity, computer generated dynamic models to replicate the behavior of actual Systems Under Test (SUT). It will provide a dynamic simulation capability that becomes the reference truth model, from which comparisons are made with the actual raw/conditioned data from the test elements.

  12. On the mathematical modeling of soccer dynamics

    NASA Astrophysics Data System (ADS)

    Machado, J. A. Tenreiro; Lopes, António M.

    2017-12-01

    This paper addresses the modeling and dynamical analysis of soccer teams. Two modeling perspectives based on the concepts of fractional calculus are adopted. In the first, the power law behavior and fractional-order integration are explored. In the second, a league season is interpreted in the light of a system where the teams are represented by objects (particles) that evolve in time and interact (collide) at successive rounds with dynamics driven by the outcomes of the matches. The two proposed models embed implicitly details of players and coaches, or strategical and tactical maneuvers during the matches. Therefore, the scale of observation focuses on the teams behavior in the scope of the observed variables. Data characterizing two European soccer leagues in the season 2015-2016 are adopted and processed. The model leads to the emergence of patterns that are analyzed and interpreted.

  13. Identifying and tracking dynamic processes in social networks

    NASA Astrophysics Data System (ADS)

    Chung, Wayne; Savell, Robert; Schütt, Jan-Peter; Cybenko, George

    2006-05-01

    The detection and tracking of embedded malicious subnets in an active social network can be computationally daunting due to the quantity of transactional data generated in the natural interaction of large numbers of actors comprising a network. In addition, detection of illicit behavior may be further complicated by evasive strategies designed to camouflage the activities of the covert subnet. In this work, we move beyond traditional static methods of social network analysis to develop a set of dynamic process models which encode various modes of behavior in active social networks. These models will serve as the basis for a new application of the Process Query System (PQS) to the identification and tracking of covert dynamic processes in social networks. We present a preliminary result from application of our technique in a real-world data stream-- the Enron email corpus.

  14. A novel approach to the dynamical complexity of the Earth's magnetosphere at geomagnetic storm time-scales based on recurrences

    NASA Astrophysics Data System (ADS)

    Donner, Reik; Balasis, Georgios; Stolbova, Veronika; Wiedermann, Marc; Georgiou, Marina; Kurths, Jürgen

    2016-04-01

    Magnetic storms are the most prominent global manifestations of out-of-equilibrium magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables can provide valuable insights into relevant physical processes as well as temporal scales associated with this phenomenon. In this work, we introduce several innovative data analysis techniques enabling a quantitative analysis of the Dst index non-stationary behavior. Using recurrence quantification analysis (RQA) and recurrence network analysis (RNA), we obtain a variety of complexity measures serving as markers of quiet- and storm-time magnetospheric dynamics. We additionally apply these techniques to the main driver of Dst index variations, the V BSouth coupling function and interplanetary medium parameters Bz and Pdyn in order to discriminate internal processes from the magnetosphere's response directly induced by the external forcing by the solar wind. The derived recurrence-based measures allow us to improve the accuracy with which magnetospheric storms can be classified based on ground-based observations. The new methodology presented here could be of significant interest for the space weather research community working on time series analysis for magnetic storm forecasts.

  15. Behavioral variability in an evolutionary theory of behavior dynamics.

    PubMed

    Popa, Andrei; McDowell, J J

    2016-03-01

    McDowell's evolutionary theory of behavior dynamics (McDowell, 2004) instantiates populations of behaviors (abstractly represented by integers) that evolve under the selection pressure of the environment in the form of positive reinforcement. Each generation gives rise to the next via low-level Darwinian processes of selection, recombination, and mutation. The emergent patterns can be analyzed and compared to those produced by biological organisms. The purpose of this project was to explore the effects of high mutation rates on behavioral variability in environments that arranged different reinforcer rates and magnitudes. Behavioral variability increased with the rate of mutation. High reinforcer rates and magnitudes reduced these effects; low reinforcer rates and magnitudes augmented them. These results are in agreement with live-organism research on behavioral variability. Various combinations of mutation rates, reinforcer rates, and reinforcer magnitudes produced similar high-level outcomes (equifinality). These findings suggest that the independent variables that describe an experimental condition interact; that is, they do not influence behavior independently. These conclusions have implications for the interpretation of high levels of variability, mathematical undermatching, and the matching theory. The last part of the discussion centers on a potential biological counterpart for the rate of mutation, namely spontaneous fluctuations in the brain's default mode network. © 2016 Society for the Experimental Analysis of Behavior.

  16. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  17. Sensitivity of emergent sociohydrologic dynamics to internal system properties and external sociopolitical factors: Implications for water management

    NASA Astrophysics Data System (ADS)

    Elshafei, Y.; Tonts, M.; Sivapalan, M.; Hipsey, M. R.

    2016-06-01

    It is increasingly acknowledged that effective management of water resources requires a holistic understanding of the coevolving dynamics inherent in the coupled human-hydrology system. One of the fundamental information gaps concerns the sensitivity of coupled system feedbacks to various endogenous system properties and exogenous societal contexts. This paper takes a previously calibrated sociohydrology model and applies an idealized implementation, in order to: (i) explore the sensitivity of emergent dynamics resulting from bidirectional feedbacks to assumptions regarding (a) internal system properties that control the internal dynamics of the coupled system and (b) the external sociopolitical context; and (ii) interpret the results within the context of water resource management decision making. The analysis investigates feedback behavior in three ways, (a) via a global sensitivity analysis on key parameters and assessment of relevant model outputs, (b) through a comparative analysis based on hypothetical placement of the catchment along various points on the international sociopolitical gradient, and (c) by assessing the effects of various direct management intervention scenarios. Results indicate the presence of optimum windows that might offer the greatest positive impact per unit of management effort. Results further advocate management tools that encourage an adaptive learning, community-based approach with respect to water management, which are found to enhance centralized policy measures. This paper demonstrates that it is possible to use a place-based sociohydrology model to make abstractions as to the dynamics of bidirectional feedback behavior, and provide insights as to the efficacy of water management tools under different circumstances.

  18. Dynamics of regional brain activity in epilepsy: a cross-disciplinary study on both intracranial and scalp-recorded epileptic seizures

    NASA Astrophysics Data System (ADS)

    Minadakis, George; Ventouras, Errikos; Gatzonis, Stylianos D.; Siatouni, Anna; Tsekou, Hara; Kalatzis, Ioannis; Sakas, Damianos E.; Stonham, John

    2014-04-01

    Objective. Recent cross-disciplinary literature suggests a dynamical analogy between earthquakes and epileptic seizures. This study extends the focus of inquiry for the applicability of models for earthquake dynamics to examine both scalp-recorded and intracranial electroencephalogram recordings related to epileptic seizures. Approach. First, we provide an updated definition of the electric event in terms of magnitude and we focus on the applicability of (i) a model for earthquake dynamics, rooted in a nonextensive Tsallis framework, (ii) the traditional Gutenberg and Richter law and (iii) an alternative method for the magnitude-frequency relation for earthquakes. Second, we apply spatiotemporal analysis in terms of nonextensive statistical physics and we further examine the behavior of the parameters included in the nonextensive formula for both types of electroencephalogram recordings under study. Main results. We confirm the previously observed power-law distribution, showing that the nonextensive formula can adequately describe the sequences of electric events included in both types of electroencephalogram recordings. We also show the intermittent behavior of the epileptic seizure cycle which is analogous to the earthquake cycles and we provide evidence of self-affinity of the regional electroencephalogram epileptic seizure activity. Significance. This study may provide a framework for the analysis and interpretation of epileptic brain activity and other biological phenomena with similar underlying dynamical mechanisms.

  19. Structural and dynamical characterization of water on the Au (100) and graphene surfaces: A molecular dynamics simulation approach

    NASA Astrophysics Data System (ADS)

    Foroutan, Masumeh; Darvishi, Mehdi; Fatemi, S. Mahmood

    2017-09-01

    The positioning, adsorption, and movement of water on substrates is dependent upon the chemical nature and arrangement of the atoms of the surface. Therefore the behavior of water molecules on a substrate is a reflection of properties of the surface. Based on this premise, graphene and gold substrates were chosen to study this subject from a molecular perspective. In this work, the structural and dynamical behaviors of a water nanodroplet on Au (100) and the graphene interfaces have been studied by molecular dynamics simulation. The results have shown how the structural and dynamical behaviors of water molecules at the interface reflect the characteristics of these surfaces. The results have demonstrated that residence time and hydrogen bonds' lifetime at the water-Au (100) interface are bigger than at the water-graphene interface. Energy contour map analysis indicates a more uniform surface energy on graphene than on the gold surface. The obtained results illustrate that water clusters on gold and graphene form tetramer and hexamer structures, respectively. Furthermore, the water molecules are more ordered on the gold surface than on graphene. The study of hydrogen bonds showed that the order, stability, and the number of hydrogen bonds is higher on the gold surface. The positioning pattern of water molecules is also similar to the arrangement of gold atoms while no regularity was observed on graphene. The study of dynamical behavior of water molecules revealed that the movement of water on gold is much less than on graphene which is in agreement with the strong water-gold interaction in comparison to the water-graphene interaction.

  20. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  1. The research of suspen-dome structure

    NASA Astrophysics Data System (ADS)

    Gong, Shengyuan

    2017-09-01

    After overcoming the shortcomings of single-layer latticed shell and cable dome structure, the suspen-dome was developed by inheriting the advantages of them, and it was recognized and applied as a new type of prestressed force large span space structure. Based on the analysis of the background and mechanical principle, the researches of suspen-dome are reviewed, including form-finding analysis, the analysis of static force and stability, the dynamic behaviors and the earthquake resistant behavior, the analysis of prestressing force and optimization design, and the research status of the design of the fir-resistant performance etc. This thesis summarizes the methods of various researches, being a reference for further structural performance research and structural engineering application.

  2. Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test.

    PubMed

    Huang, Bo; Liu, Jingwen; Lin, Peng; Ling, Daosheng

    2014-01-01

    Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure.

  3. Topological Properties and the Dynamical Crossover from Mixed-Valence to Kondo-Lattice Behavior in the Golden Phase of SmS.

    PubMed

    Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I

    2015-04-24

    We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.

  4. Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes.

    PubMed

    García-Cruz, E E; Rodríguez-Ramírez, J; Méndez Lagunas, L L; Medina-Torres, L

    2013-01-02

    This study examines the rheological behavior of reconstituted spray-dried mucilage isolated from the cladodes of pitahaya (Hylocereus undatus), the effects of concentration and its relationship with physical properties were analyzed in reconstituted solutions. Drying process optimization was carried out through the surface response method, utilizing a factorial 2(3) design with three central points, in order to evaluate yield and rheological properties. The reconstituted mucilage exhibited non-Newtonian shear-thinning behavior, which adequately fit the Cross model (R(2)>0.95). This dynamic response suggests a random coil configuration. The steady-shear viscosity and dynamic response are suitably correlated through the Cox-Merz rule, confirming the mucilage's stability of flow. Analysis of the physical properties of the mucilage (Tg, DTP, and particle morphology) explains the shear-thinning behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Empirical analysis of individual popularity and activity on an online music service system

    NASA Astrophysics Data System (ADS)

    Hu, Hai-Bo; Han, Ding-Yi

    2008-10-01

    Quantitative understanding of human behaviors supplies basic comprehension of the dynamics of many socio-economic systems. Based on the log data of an online music service system, we investigate the statistical characteristics of individual activity and popularity, and find that the distributions of both of them follow a stretched exponential form which interpolates between exponential and power law distribution. We also study the human dynamics on the online system and find that the distribution of interevent time between two consecutive listenings of music shows the fat tail feature. Besides, with the reduction of user activity the fat tail becomes more and more irregular, indicating different behavior patterns for users with diverse activities. The research results may shed some light on the in-depth understanding of collective behaviors in socio-economic systems.

  6. Stability analysis for a delay differential equations model of a hydraulic turbine speed governor

    NASA Astrophysics Data System (ADS)

    Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.

    2017-01-01

    The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.

  7. Game-theoretic equilibrium analysis applications to deregulated electricity markets

    NASA Astrophysics Data System (ADS)

    Joung, Manho

    This dissertation examines game-theoretic equilibrium analysis applications to deregulated electricity markets. In particular, three specific applications are discussed: analyzing the competitive effects of ownership of financial transmission rights, developing a dynamic game model considering the ramp rate constraints of generators, and analyzing strategic behavior in electricity capacity markets. In the financial transmission right application, an investigation is made of how generators' ownership of financial transmission rights may influence the effects of the transmission lines on competition. In the second application, the ramp rate constraints of generators are explicitly modeled using a dynamic game framework, and the equilibrium is characterized as the Markov perfect equilibrium. Finally, the strategic behavior of market participants in electricity capacity markets is analyzed and it is shown that the market participants may exaggerate their available capacity in a Nash equilibrium. It is also shown that the more conservative the independent system operator's capacity procurement, the higher the risk of exaggerated capacity offers.

  8. The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations.

    PubMed

    Storace, Marco; Linaro, Daniele; de Lange, Enno

    2008-09-01

    This paper provides a global picture of the bifurcation scenario of the Hindmarsh-Rose model. A combination between simulations and numerical continuations is used to unfold the complex bifurcation structure. The bifurcation analysis is carried out by varying two bifurcation parameters and evidence is given that the structure that is found is universal and appears for all combinations of bifurcation parameters. The information about the organizing principles and bifurcation diagrams are then used to compare the dynamics of the model with that of a piecewise-linear approximation, customized for circuit implementation. A good match between the dynamical behaviors of the models is found. These results can be used both to design a circuit implementation of the Hindmarsh-Rose model mimicking the diversity of neural response and as guidelines to predict the behavior of the model as well as its circuit implementation as a function of parameters. (c) 2008 American Institute of Physics.

  9. Scaled boundary finite element simulation and modeling of the mechanical behavior of cracked nanographene sheets

    NASA Astrophysics Data System (ADS)

    Honarmand, M.; Moradi, M.

    2018-06-01

    In this paper, by using scaled boundary finite element method (SBFM), a perfect nanographene sheet or cracked ones were simulated for the first time. In this analysis, the atomic carbon bonds were modeled by simple bar elements with circular cross-sections. Despite of molecular dynamics (MD), the results obtained from SBFM analysis are quite acceptable for zero degree cracks. For all angles except zero, Griffith criterion can be applied for the relation between critical stress and crack length. Finally, despite the simplifications used in nanographene analysis, obtained results can simulate the mechanical behavior with high accuracy compared with experimental and MD ones.

  10. Digital microarray analysis for digital artifact genomics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger; Handley, James; Williams, Deborah

    2013-06-01

    We implement a Spatial Voting (SV) based analogy of microarray analysis for digital gene marker identification in malware code sections. We examine a famous set of malware formally analyzed by Mandiant and code named Advanced Persistent Threat (APT1). APT1 is a Chinese organization formed with specific intent to infiltrate and exploit US resources. Manidant provided a detailed behavior and sting analysis report for the 288 malware samples available. We performed an independent analysis using a new alternative to the traditional dynamic analysis and static analysis we call Spatial Analysis (SA). We perform unsupervised SA on the APT1 originating malware code sections and report our findings. We also show the results of SA performed on some members of the families associated by Manidant. We conclude that SV based SA is a practical fast alternative to dynamics analysis and static analysis.

  11. Tools for Large-Scale Mobile Malware Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierma, Michael

    Analyzing mobile applications for malicious behavior is an important area of re- search, and is made di cult, in part, by the increasingly large number of appli- cations available for the major operating systems. There are currently over 1.2 million apps available in both the Google Play and Apple App stores (the respec- tive o cial marketplaces for the Android and iOS operating systems)[1, 2]. Our research provides two large-scale analysis tools to aid in the detection and analysis of mobile malware. The rst tool we present, Andlantis, is a scalable dynamic analysis system capa- ble of processing over 3000more » Android applications per hour. Traditionally, Android dynamic analysis techniques have been relatively limited in scale due to the compu- tational resources required to emulate the full Android system to achieve accurate execution. Andlantis is the most scalable Android dynamic analysis framework to date, and is able to collect valuable forensic data, which helps reverse-engineers and malware researchers identify and understand anomalous application behavior. We discuss the results of running 1261 malware samples through the system, and provide examples of malware analysis performed with the resulting data. While techniques exist to perform static analysis on a large number of appli- cations, large-scale analysis of iOS applications has been relatively small scale due to the closed nature of the iOS ecosystem, and the di culty of acquiring appli- cations for analysis. The second tool we present, iClone, addresses the challenges associated with iOS research in order to detect application clones within a dataset of over 20,000 iOS applications.« less

  12. Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control.

    PubMed

    Zhao, Jian; Guiraud, Germain; Floissat, Florian; Gouhier, Benoit; Rota-Rodrigo, Sergio; Traynor, Nicholas; Santarelli, Giorgio

    2017-01-09

    Gain dynamics study provides an attractive method to understand the intensity noise behavior in fiber amplifiers. Here, the gain dynamics of a medium power (5 W) clad-pumped Yb-fiber amplifier is experimentally evaluated by measuring the frequency domain transfer functions for the input seed and pump lasers from 10 Hz to 1 MHz. We study gain dynamic behavior of the fiber amplifier in the presence of significant residual pump power (compared to the seed power), showing that the seed transfer function is strongly saturated at low Fourier frequencies while the pump power modulation transfer function is nearly unaffected. The characterization of relative intensity noise (RIN) of the fiber amplifier is well explained by the gain dynamics analysis. Finally, a 600 kHz bandwidth feedback loop using an acoustic-optical modulator (AOM) controlling the seed intensity is successfully demonstrated to suppress the broadband laser intensity noise. A maximum noise reduction of about 30 dB is achieved leading to a RIN of -152 dBc/Hz (~1 kHz-10 MHz) at 2.5 W output power.

  13. What's in a crowd? Analysis of face-to-face behavioral networks.

    PubMed

    Isella, Lorenzo; Stehlé, Juliette; Barrat, Alain; Cattuto, Ciro; Pinton, Jean-François; Van den Broeck, Wouter

    2011-02-21

    The availability of new data sources on human mobility is opening new avenues for investigating the interplay of social networks, human mobility and dynamical processes such as epidemic spreading. Here we analyze data on the time-resolved face-to-face proximity of individuals in large-scale real-world scenarios. We compare two settings with very different properties, a scientific conference and a long-running museum exhibition. We track the behavioral networks of face-to-face proximity, and characterize them from both a static and a dynamic point of view, exposing differences and similarities. We use our data to investigate the dynamics of a susceptible-infected model for epidemic spreading that unfolds on the dynamical networks of human proximity. The spreading patterns are markedly different for the conference and the museum case, and they are strongly impacted by the causal structure of the network data. A deeper study of the spreading paths shows that the mere knowledge of static aggregated networks would lead to erroneous conclusions about the transmission paths on the dynamical networks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Guess-Work and Reasonings on Centennial Evolution of Surface Air Temperature in Russia. Part III: Where is the Joint Between Norms and Hazards from a Bifurcation Analysis Viewpoint?

    NASA Astrophysics Data System (ADS)

    Kolokolov, Yury; Monovskaya, Anna

    2016-06-01

    The paper continues the application of the bifurcation analysis in the research on local climate dynamics based on processing the historically observed data on the daily average land surface air temperature. Since the analyzed data are from instrumental measurements, we are doing the experimental bifurcation analysis. In particular, we focus on the discussion where is the joint between the normal dynamics of local climate systems (norms) and situations with the potential to create damages (hazards)? We illustrate that, perhaps, the criteria for hazards (or violent and unfavorable weather factors) relate mainly to empirical considerations from human opinion, but not to the natural qualitative changes of climate dynamics. To build the bifurcation diagrams, we base on the unconventional conceptual model (HDS-model) which originates from the hysteresis regulator with double synchronization. The HDS-model is characterized by a variable structure with the competition between the amplitude quantization and the time quantization. Then the intermittency between three periodical processes is considered as the typical behavior of local climate systems instead of both chaos and quasi-periodicity in order to excuse the variety of local climate dynamics. From the known specific regularities of the HDS-model dynamics, we try to find a way to decompose the local behaviors into homogeneous units within the time sections with homogeneous dynamics. Here, we present the first results of such decomposition, where the quasi-homogeneous sections (QHS) are determined on the basis of the modified bifurcation diagrams, and the units are reconstructed within the limits connected with the problem of shape defects. Nevertheless, the proposed analysis of the local climate dynamics (QHS-analysis) allows to exhibit how the comparatively modest temperature differences between the mentioned units in an annual scale can step-by-step expand into the great temperature differences of the daily variability at a centennial scale. Then the norms and the hazards relate to the fundamentally different viewpoints, where the time sections of months and, especially, seasons distort the causal effects of natural dynamical processes. The specific circumstances to realize the qualitative changes of the local climate dynamics are summarized by the notion of a likely periodicity. That, in particular, allows to explain why 30-year averaging remains the most common rule so far, but the decadal averaging begins to substitute that rule. We believe that the QHS-analysis can be considered as the joint between the norms and the hazards from a bifurcation analysis viewpoint, where the causal effects of the local climate dynamics are projected into the customary timescale only at the last step. We believe that the results could be interesting to develop the fields connected with climatic change and risk assessment.

  15. Vulcanization characteristics and dynamic mechanical behavior of natural rubber reinforced with silane modified silica.

    PubMed

    Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold

    2011-03-01

    Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.

  16. Dynamical Analysis and Visualization of Tornadoes Time Series

    PubMed Central

    2015-01-01

    In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns. PMID:25790281

  17. Dynamical analysis and visualization of tornadoes time series.

    PubMed

    Lopes, António M; Tenreiro Machado, J A

    2015-01-01

    In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.

  18. Nonlinear stochastic interacting dynamics and complexity of financial gasket fractal-like lattice percolation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Jun

    2018-05-01

    A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.

  19. Time-frequency analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate empirical mode decomposition.

    PubMed

    Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E

    2016-07-15

    Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Generalized topology for resonators having N commensurate harmonics

    NASA Astrophysics Data System (ADS)

    Danzi, Francesco; Gibert, James M.; Frulla, Giacomo; Cestino, Enrico

    2018-04-01

    Despite the ubiquity of both linear and nonlinear multimember resonators in MEMS and kinetic energy harvesting devices very few research efforts examine the orientation of members in the resonator on its dynamic behavior. Previous efforts to design this type of resonator constrains the members to have relative orientations that are 0○ or 90○ to each other, i.e., the elements are connected inline with adjoining members or are perpendicular to adjoining members. The work expands upon the existing body of research by considering the effect of the relative orientation between members on the dynamic behavior of the system. In this manuscript, we derive a generalized reduced-order model for the design of a multi-member planar resonator that has integer multiple modal frequencies. The model is based on a Rayleigh Ritz approximation where the number of degrees of freedom equals the number of structural members in the resonator. The analysis allows the generation of design curves, representing all the possible solutions for modal frequencies that are commensurate. The generalized model, valid for an N-DOF structure, is then restricted for a 2- and 3-DOF system/member resonator, where the linear dynamic behavior of the resonator is investigated in depth. Furthermore, this analysis demonstrates a rule of thumb; relaxing restrictions on the relative orientation of members in a planar structure, allows the structure to exhibit exactly N commensurable frequencies if it contains N members.

  1. Exploring the evolution of node neighborhoods in Dynamic Networks

    NASA Astrophysics Data System (ADS)

    Orman, Günce Keziban; Labatut, Vincent; Naskali, Ahmet Teoman

    2017-09-01

    Dynamic Networks are a popular way of modeling and studying the behavior of evolving systems. However, their analysis constitutes a relatively recent subfield of Network Science, and the number of available tools is consequently much smaller than for static networks. In this work, we propose a method specifically designed to take advantage of the longitudinal nature of dynamic networks. It characterizes each individual node by studying the evolution of its direct neighborhood, based on the assumption that the way this neighborhood changes reflects the role and position of the node in the whole network. For this purpose, we define the concept of neighborhood event, which corresponds to the various transformations such groups of nodes can undergo, and describe an algorithm for detecting such events. We demonstrate the interest of our method on three real-world networks: DBLP, LastFM and Enron. We apply frequent pattern mining to extract meaningful information from temporal sequences of neighborhood events. This results in the identification of behavioral trends emerging in the whole network, as well as the individual characterization of specific nodes. We also perform a cluster analysis, which reveals that, in all three networks, one can distinguish two types of nodes exhibiting different behaviors: a very small group of active nodes, whose neighborhood undergo diverse and frequent events, and a very large group of stable nodes.

  2. Feasibility of Using PZT Actuators to Study the Dynamic Behavior of a Rotating Disk due to Rotor-Stator Interaction

    PubMed Central

    Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich

    2014-01-01

    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids—air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction. PMID:25004151

  3. A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs

    PubMed Central

    Faugeras, Olivier; Touboul, Jonathan; Cessac, Bruno

    2008-01-01

    We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales. PMID:19255631

  4. Live imaging of mouse secondary palate fusion

    PubMed Central

    Kim, Seungil; Prochazka, Jan; Bush, Jeffrey O.

    2017-01-01

    LONG ABSTRACT The fusion of the secondary palatal shelves to form the intact secondary palate is a key process in mammalian development and its disruption can lead to cleft secondary palate, a common congenital anomaly in humans. Secondary palate fusion has been extensively studied leading to several proposed cellular mechanisms that may mediate this process. However, these studies have been mostly performed on fixed embryonic tissues at progressive timepoints during development or in fixed explant cultures analyzed at static timepoints. Static analysis is limited for the analysis of dynamic morphogenetic processes such a palate fusion and what types of dynamic cellular behaviors mediate palatal fusion is incompletely understood. Here we describe a protocol for live imaging of ex vivo secondary palate fusion in mouse embryos. To examine cellular behaviors of palate fusion, epithelial-specific Keratin14-cre was used to label palate epithelial cells in ROSA26-mTmGflox reporter embryos. To visualize filamentous actin, Lifeact-mRFPruby reporter mice were used. Live imaging of secondary palate fusion was performed by dissecting recently-adhered secondary palatal shelves of embryonic day (E) 14.5 stage embryos and culturing in agarose-containing media on a glass bottom dish to enable imaging with an inverted confocal microscope. Using this method, we have detected a variety of novel cellular behaviors during secondary palate fusion. An appreciation of how distinct cell behaviors are coordinated in space and time greatly contributes to our understanding of this dynamic morphogenetic process. This protocol can be applied to mutant mouse lines, or cultures treated with pharmacological inhibitors to further advance understanding of how secondary palate fusion is controlled. PMID:28784960

  5. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  6. Endosomal Interactions during Root Hair Growth.

    PubMed

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2015-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.

  7. Risk patterns and correlated brain activities. Multidimensional statistical analysis of FMRI data in economic decision making study.

    PubMed

    van Bömmel, Alena; Song, Song; Majer, Piotr; Mohr, Peter N C; Heekeren, Hauke R; Härdle, Wolfgang K

    2014-07-01

    Decision making usually involves uncertainty and risk. Understanding which parts of the human brain are activated during decisions under risk and which neural processes underly (risky) investment decisions are important goals in neuroeconomics. Here, we analyze functional magnetic resonance imaging (fMRI) data on 17 subjects who were exposed to an investment decision task from Mohr, Biele, Krugel, Li, and Heekeren (in NeuroImage 49, 2556-2563, 2010b). We obtain a time series of three-dimensional images of the blood-oxygen-level dependent (BOLD) fMRI signals. We apply a panel version of the dynamic semiparametric factor model (DSFM) presented in Park, Mammen, Wolfgang, and Borak (in Journal of the American Statistical Association 104(485), 284-298, 2009) and identify task-related activations in space and dynamics in time. With the panel DSFM (PDSFM) we can capture the dynamic behavior of the specific brain regions common for all subjects and represent the high-dimensional time-series data in easily interpretable low-dimensional dynamic factors without large loss of variability. Further, we classify the risk attitudes of all subjects based on the estimated low-dimensional time series. Our classification analysis successfully confirms the estimated risk attitudes derived directly from subjects' decision behavior.

  8. Psychology and social networks: a dynamic network theory perspective.

    PubMed

    Westaby, James D; Pfaff, Danielle L; Redding, Nicholas

    2014-04-01

    Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  9. Evaluation and Analysis of F-16XL Wind Tunnel Data From Static and Dynamic Tests

    NASA Technical Reports Server (NTRS)

    Kim, Sungwan; Murphy, Patrick C.; Klein, Vladislav

    2004-01-01

    A series of wind tunnel tests were conducted in the NASA Langley Research Center as part of an ongoing effort to develop and test mathematical models for aircraft rigid-body aerodynamics in nonlinear unsteady flight regimes. Analysis of measurement accuracy, especially for nonlinear dynamic systems that may exhibit complicated behaviors, is an essential component of this ongoing effort. In this report, tools for harmonic analysis of dynamic data and assessing measurement accuracy are presented. A linear aerodynamic model is assumed that is appropriate for conventional forced-oscillation experiments, although more general models can be used with these tools. Application of the tools to experimental data is demonstrated and results indicate the levels of uncertainty in output measurements that can arise from experimental setup, calibration procedures, mechanical limitations, and input errors.

  10. Layered interfaces between immiscible liquids studied by density-functional theory and molecular-dynamics simulations.

    PubMed

    Geysermans, P; Elyeznasni, N; Russier, V

    2005-11-22

    We present a study of the structure in the interface between two immiscible liquids by density-functional theory and molecular-dynamics calculations. The liquids are modeled by Lennard-Jones potentials, which achieve immiscibility by suppressing the attractive interaction between unlike particles. The density profiles of the liquids display oscillations only in a limited part of the simple liquid-phase diagram (rho,T). When approaching the liquid-vapor coexistence, a significant depletion appears while the layering behavior of the density profile vanishes. By analogy with the liquid-vapor interface and the analysis of the adsorption this behavior is suggested to be strongly related to the drying transition.

  11. Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions.

    PubMed

    Huang, Mu-Jie; Chen, Hsuan-Yi; Mikhailov, Alexander S

    2012-11-01

    Active protein inclusions in biological membranes can represent nano-swimmers and propel themselves in lipid bilayers. A simple model of an active inclusion with three particles (domains) connected by variable elastic links is considered. First, the membrane is modeled as a two-dimensional viscous fluid and propulsion behavior in two dimensions is examined. After that, an example of a microscopic dynamical simulation is presented, where the lipid bilayer structure of the membrane is resolved and the solvent effects are included by multiparticle collision dynamics. Statistical analysis of data reveals ballistic motion of the swimmer, in contrast to the classical diffusion behavior found in the absence of active transitions between the states.

  12. Dynamic analysis of liquid-lubricated hydrostatic journal bearings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocur, J.A. Jr.

    1990-01-01

    A hybrid bearing reduces the dependency of its behavior on the lubricant viscosity, bearing clearance, bearing surface area by combining the hydrostatic and hydrodynamic effects. The combination permits the hybrid bearing to be incorporated into rotor designs, where the working fluids of the rotor may be used in place of externally supplied lubricants. An effective and practical method to predict the static and dynamic behavior of hybrid bearings is developed. The model includes the three major fluid effects in the bearing; the orifice restriction, inertia losses at the pocket edges, and hydrodynamic effects on the bearing land regions. Lubrication ismore » modeled and calculated using a finite element solution of Reynolds equation with turbulence corrections.« less

  13. Critical behavior of phase interfaces in porous media: Analysis of scaling properties with the use of noncoherent and coherent light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D. A., E-mail: zimnykov@sgu.ru; Sadovoi, A. V.; Vilenskii, M. A.

    2009-02-15

    Image sequences of the surface of disordered layers of porous medium (paper) obtained under noncoherent and coherent illumination during capillary rise of a liquid are analyzed. As a result, principles that govern the critical behavior of the interface between liquid and gaseous phases during its pinning are established. By a cumulant analysis of speckle-modulated images of the surface and by the statistical analysis of binarized difference images of the surface under noncoherent illumination, it is shown that the macroscopic dynamics of the interface at the stage of pinning is mainly controlled by the power law dependence of the appearance ratemore » of local instabilities (avalanches) of the interface on the critical parameter, whereas the growth dynamics of the local instabilities is controlled by the diffusion of a liquid in a layer and weakly depends on the critical parameter. A phenomenological model is proposed for the macroscopic dynamics of the phase interface for interpreting experimental data. The values of critical indices are determined that characterize the samples under test within this model. These values are compared with the results of numerical simulation for discrete models of directed percolation corresponding to the Kardar-Parisi-Zhang equation.« less

  14. Dynamical System Analysis of Reynolds Stress Closure Equations

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1997-01-01

    In this paper, we establish the causality between the model coefficients in the standard pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-strain correlation models to yield observed equilibrium behavior.

  15. Crystalline and dynamic mechanical behaviors of synthesized poly(sebacic anhydride-co-ethylene glycol).

    PubMed

    Chan, Cheng-Kuang; Chu, I-Ming

    2003-01-01

    A novel biomaterial: poly(sebacic anhydride-co-ethylene glycol) was synthesized by introducing poly(ethylene glycol) (PEG) into a polyanhydride system. This copolymer was synthesized using sebacic acid and PEG via melt-condensation polymerization. The crystalline behavior of these synthesized products was studied, and compared to that of polymer blends of poly(sebacic anhydride) (PSA) and PEG. The crystallinity of PSA chain segments can be significantly enhanced by increasing chain mobility via the introduction of PEG. The crystallinity of the PSA component in copolymers was substantially greater than that of blends. However, the crystalline growth of the PEG segments was totally hindered by the presence of PSA chain segments, such that no crystal for PEG component was found in these copolymers. Besides, a dynamic mechanical analysis of these materials was also performed to provide additional information concerning visco-elastic behavior for other biomedical applications, where it was found that the viscous behavior in copolymers was more significant than in neat PSA and PEG. Copyright 2002 Elsevier Science Ltd.

  16. Dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks

    NASA Astrophysics Data System (ADS)

    Wang, Xue-She; Mazzoleni, Michael J.; Mann, Brian P.

    2018-03-01

    This paper presents the results of an investigation on the dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks. The full equation of motion for both rocking disks is derived from first principles. For unforced behavior, Lamb's method is used to derive the linear natural frequency of both disks, and harmonic balance is used to determine their amplitude-dependent rocking frequencies. A stability analysis then reveals that the equilibria and stability of the two disks are considerably different, as the semi-elliptical disk has a super-critical pitchfork bifurcation that enables it to exhibit bistable rocking behavior. Experimental studies were conducted to verify the trends. For vertically forced behavior, numerical investigations show the disk's responses to forward and reverse frequency sweeps. Three modes of periodicity were observed for the steady state behavior. Experiments were performed to verify the frequency responses and the presence of the three rocking modes. Comparisons between the experiments and numerical investigations show good agreement.

  17. Robust Transient Dynamics and Brain Functions

    PubMed Central

    Rabinovich, Mikhail I.; Varona, Pablo

    2011-01-01

    In the last few decades several concepts of dynamical systems theory (DST) have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques) has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc., have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework – heteroclinic sequential dynamics – to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i) within the same modality, (ii) among different modalities from the same family (like perception), and (iii) among modalities from different families (like emotion and cognition). The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential) dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory – a vital cognitive function –, and to find specific dynamical signatures – different kinds of instabilities – of several brain functions and mental diseases. PMID:21716642

  18. Prediction of dynamic behavior of mutant strains from limited wild-type data.

    PubMed

    Song, Hyun-Seob; Ramkrishna, Doraiswami

    2012-03-01

    Metabolic engineering is the field of introducing genetic changes in organisms so as to modify their function towards synthesizing new products of high impact to society. However, engineered cells frequently have impaired growth rates thus seriously limiting the rate at which such products are made. The problem is attributable to inadequate understanding of how a metabolic network functions in a dynamic sense. Predictions of mutant strain behavior in the past have been based on steady state theories such as flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), and regulatory on/off minimization (ROOM). Such predictions are restricted to product yields and cannot address productivity, which is of focal interest to applications. We demonstrate that our framework ( [Song and Ramkrishna, 2010] and [Song and Ramkrishna, 2011]), based on a “cybernetic” view of metabolic systems, makes predictions of the dynamic behavior of mutant strains of Escherichia coli from a limited amount of data obtained from the wild-type. Dynamic frameworks must necessarily address the issue of metabolic regulation, which the cybernetic approach does by postulating that metabolism is an optimal dynamic response of the organism to the environment in driving reactions towards ensuring survival. The predictions made in this paper are without parallel in the literature and lay the foundation for rational metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Preliminary design, analysis, and costing of a dynamic scale model of the NASA space station

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Pinson, E. D.; Voqui, H. L.; Crawley, E. F.; Everman, M. R.

    1987-01-01

    The difficulty of testing the next generation of large flexible space structures on the ground places an emphasis on other means for validating predicted on-orbit dynamic behavior. Scale model technology represents one way of verifying analytical predictions with ground test data. This study investigates the preliminary design, scaling and cost trades for a Space Station dynamic scale model. The scaling of nonlinear joint behavior is studied from theoretical and practical points of view. Suspension system interaction trades are conducted for the ISS Dual Keel Configuration and Build-Up Stages suspended in the proposed NASA/LaRC Large Spacecraft Laboratory. Key issues addressed are scaling laws, replication vs. simulation of components, manufacturing, suspension interactions, joint behavior, damping, articulation capability, and cost. These issues are the subject of parametric trades versus the scale model factor. The results of these detailed analyses are used to recommend scale factors for four different scale model options, each with varying degrees of replication. Potential problems in constructing and testing the scale model are identified, and recommendations for further study are outlined.

  20. Dewetting dynamics of a gold film on graphene: implications for nanoparticle formation.

    PubMed

    Namsani, Sadanandam; Singh, Jayant K

    2016-01-01

    The dynamics of dewetting of gold films on graphene surfaces is investigated using molecular dynamics simulation. The effect of temperature (973-1533 K), film diameter (30-40 nm) and film thickness (0.5-3 nm) on the dewetting mechanism, leading to the formation of nanoparticles, is reported. The dewetting behavior for films ≤5 Å is in contrast to the behavior seen for thicker films. The retraction velocity, in the order of ∼300 m s(-1) for a 1 nm film, decreases with an increase in film thickness, whereas it increases with temperature. However at no point do nanoparticles detach from the surface within the temperature range considered in this work. We further investigated the self-assembly behavior of nanoparticles on graphene at different temperatures (673-1073 K). The process of self-assembly of gold nanoparticles is favorable at lower temperatures than at higher temperatures, based on the free-energy landscape analysis. Furthermore, the shape of an assembled structure is found to change from spherical to hexagonal, with a marked propensity towards an icosahedral structure based on the bond-orientational order parameters.

  1. Contact force history and dynamic response due to the impact of a soft projectile

    NASA Technical Reports Server (NTRS)

    Grady, J. E.

    1988-01-01

    A series of ballistic impact tests on several different instrumented targets was performed to characterize the dynamic contact force history resulting from the impact of a compliant projectile. The results show that the variation of contact force history with impact velocity does not follow the trends predicted by classical impact models. An empirical model was therefore developed to describe this behavior. This model was then used in a finite-element analysis to estimate the force history and calculate the resulting dynamic strain response in a transversely impacted composite laminate.

  2. Importance of Age on the Dynamic Mechanical Behavior of Intertubular and Peritubular Dentin

    PubMed Central

    Ryou, Heonjune; Romberg, Elaine; Pashley, David H.; Tay, Franklin R.; Arola, Dwayne

    2014-01-01

    An experimental evaluation of human coronal dentin was performed using nanoscopic Dynamic Mechanical Analysis (nanoDMA). The primary objectives were to quantify any unique changes in mechanical behavior of intertubular and peritubular dentin with age, and to evaluate the microstructure and mechanical behavior of the mineral deposited within the lumens. Specimens of coronal dentin were evaluated by nanoDMA using single indents and in scanning mode via scanning probe microscopy. Results showed that there were no significant differences in the storage modulus or complex modulus between the two age groups (18–25 versus 54–83 yrs) for either the intertubular or peritubular tissue. However, there were significant differences in the dampening behavior between the young and old dentin, as represented in the loss modulus and tanδ responses. For both the intertubular and peritubular components, the capacity for dampening was significantly lower in the old group. Scanning based nanoDMA showed that the tubules of old dentin exhibit a gradient in elastic behavior, with decrease in elastic modulus from the cuff to the center of tubules filled with newly deposited mineral. PMID:25498296

  3. Scaling Exponents in Financial Markets

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Kim, Cheol-Hyun; Kim, Soo Yong

    2007-03-01

    We study the dynamical behavior of four exchange rates in foreign exchange markets. A detrended fluctuation analysis (DFA) is applied to detect the long-range correlation embedded in the non-stationary time series. It is for our case found that there exists a persistent long-range correlation in volatilities, which implies the deviation from the efficient market hypothesis. Particularly, the crossover is shown to exist in the scaling behaviors of the volatilities.

  4. Identification of the feedforward component in manual control with predictable target signals.

    PubMed

    Drop, Frank M; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus M; Mulder, Max

    2013-12-01

    In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.

  5. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    NASA Astrophysics Data System (ADS)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  6. Pattern dynamics of the reaction-diffusion immune system.

    PubMed

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  7. Flory-Stockmayer analysis on reprocessable polymer networks

    NASA Astrophysics Data System (ADS)

    Li, Lingqiao; Chen, Xi; Jin, Kailong; Torkelson, John

    Reprocessable polymer networks can undergo structure rearrangement through dynamic chemistries under proper conditions, making them a promising candidate for recyclable crosslinked materials, e.g. tires. This research field has been focusing on various chemistries. However, there has been lacking of an essential physical theory explaining the relationship between abundancy of dynamic linkages and reprocessability. Based on the classical Flory-Stockmayer analysis on network gelation, we developed a similar analysis on reprocessable polymer networks to quantitatively predict the critical condition for reprocessability. Our theory indicates that it is unnecessary for all bonds to be dynamic to make the resulting network reprocessable. As long as there is no percolated permanent network in the system, the material can fully rearrange. To experimentally validate our theory, we used a thiol-epoxy network model system with various dynamic linkage compositions. The stress relaxation behavior of resulting materials supports our theoretical prediction: only 50 % of linkages between crosslinks need to be dynamic for a tri-arm network to be reprocessable. Therefore, this analysis provides the first fundamental theoretical platform for designing and evaluating reprocessable polymer networks. We thank McCormick Research Catalyst Award Fund and ISEN cluster fellowship (L. L.) for funding support.

  8. A comparative analysis of alternative approaches for quantifying nonlinear dynamics in cardiovascular system.

    PubMed

    Chen, Yun; Yang, Hui

    2013-01-01

    Heart rate variability (HRV) analysis has emerged as an important research topic to evaluate autonomic cardiac function. However, traditional time and frequency-domain analysis characterizes and quantify only linear and stationary phenomena. In the present investigation, we made a comparative analysis of three alternative approaches (i.e., wavelet multifractal analysis, Lyapunov exponents and multiscale entropy analysis) for quantifying nonlinear dynamics in heart rate time series. Note that these extracted nonlinear features provide information about nonlinear scaling behaviors and the complexity of cardiac systems. To evaluate the performance, we used 24-hour HRV recordings from 54 healthy subjects and 29 heart failure patients, available in PhysioNet. Three nonlinear methods are evaluated not only individually but also in combination using three classification algorithms, i.e., linear discriminate analysis, quadratic discriminate analysis and k-nearest neighbors. Experimental results show that three nonlinear methods capture nonlinear dynamics from different perspectives and the combined feature set achieves the best performance, i.e., sensitivity 97.7% and specificity 91.5%. Collectively, nonlinear HRV features are shown to have the promise to identify the disorders in autonomic cardiovascular function.

  9. Component Cost Analysis of Large Scale Systems

    NASA Technical Reports Server (NTRS)

    Skelton, R. E.; Yousuff, A.

    1982-01-01

    The ideas of cost decomposition is summarized to aid in the determination of the relative cost (or 'price') of each component of a linear dynamic system using quadratic performance criteria. In addition to the insights into system behavior that are afforded by such a component cost analysis CCA, these CCA ideas naturally lead to a theory for cost-equivalent realizations.

  10. Fluctuation dynamics of exchange rates on Polish financial market

    NASA Astrophysics Data System (ADS)

    Orłowski, A.; Struzik, Z. R.; Syczewska, E.; Załuska-Kotur, M. A.

    2004-12-01

    We show results of local fluctuation analysis, probability distributions, and fractional integration analysis for nominal exchange rates of the Polish zloty versus two foreign currencies (US dollar and German mark/euro). The results confirm the rapid change of the volatility pattern in August 1997. We compare the type of the fluctuation behavior before and after this date.

  11. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Wang, Jun; Fang, Wen, E-mail: fangwen@bjtu.edu.cn

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also definedmore » in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.« less

  12. Nonlinear aspects of the EEG during sleep in children

    NASA Astrophysics Data System (ADS)

    Berryman, Matthew J.; Coussens, Scott W.; Pamula, Yvonne; Kennedy, Declan; Lushington, Kurt; Shalizi, Cosma; Allison, Andrew; Martin, A. James; Saint, David; Abbott, Derek

    2005-05-01

    Electroencephalograph (EEG) analysis enables the dynamic behavior of the brain to be examined. If the behavior is nonlinear then nonlinear tools can be used to glean information on brain behavior, and aid in the diagnosis of sleep abnormalities such as obstructive sleep apnea syndrome (OSAS). In this paper the sleep EEGs of a set of normal children and children with mild OSAS are evaluated for nonlinear brain behaviour. We found that there were differences in the nonlinearity of the brain behaviour between different sleep stages, and between the two groups of children.

  13. Using Dynamic Sensitivity Analysis to Assess Testability

    NASA Technical Reports Server (NTRS)

    Voas, Jeffrey; Morell, Larry; Miller, Keith

    1990-01-01

    This paper discusses sensitivity analysis and its relationship to random black box testing. Sensitivity analysis estimates the impact that a programming fault at a particular location would have on the program's input/output behavior. Locations that are relatively \\"insensitive" to faults can render random black box testing unlikely to uncover programming faults. Therefore, sensitivity analysis gives new insight when interpreting random black box testing results. Although sensitivity analysis is computationally intensive, it requires no oracle and no human intervention.

  14. Gain optimization with non-linear controls

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Kandadai, R. D.

    1984-01-01

    An algorithm has been developed for the analysis and design of controls for non-linear systems. The technical approach is to use statistical linearization to model the non-linear dynamics of a system by a quasi-Gaussian model. A covariance analysis is performed to determine the behavior of the dynamical system and a quadratic cost function. Expressions for the cost function and its derivatives are determined so that numerical optimization techniques can be applied to determine optimal feedback laws. The primary application for this paper is centered about the design of controls for nominally linear systems but where the controls are saturated or limited by fixed constraints. The analysis is general, however, and numerical computation requires only that the specific non-linearity be considered in the analysis.

  15. Analysis Methodologies and Ameliorative Techniques for Mitigation of the Risk in Churches with Drum Domes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zingone, Gaetano; Licata, Vincenzo; Calogero, Cucchiara

    2008-07-08

    The present work fits into the interesting theme of seismic prevention for protection of the monumental patrimony made up of churches with drum domes. Specifically, with respect to a church in the historic area of Catania, chosen as a monument exemplifying the typology examined, the seismic behavior is analyzed in the linear field using modern dynamic identification techniques. The dynamically identified computational model arrived at made it possible to identify the macro-element most at risk, the dome-drum system. With respect to this system the behavior in the nonlinear field is analyzed through dynamic tests on large-scale models in the presencemore » of various types of improving reinforcement. The results are used to appraise the ameliorative contribution afforded by each of them and to choose the most suitable type of reinforcement, optimizing the stiffness/ductility ratio of the system.« less

  16. Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow

    NASA Astrophysics Data System (ADS)

    Myung, Jin Suk; Winkler, Roland G.; Gompper, Gerhard

    2015-12-01

    The nonequilibrium dynamical behavior and structure formation of end-functionalized semiflexible polymer suspensions under flow are investigated by mesoscale hydrodynamic simulations. The hybrid simulation approach combines the multiparticle collision dynamics method for the fluid, which accounts for hydrodynamic interactions, with molecular dynamics simulations for the semiflexible polymers. In equilibrium, various kinds of scaffold-like network structures are observed, depending on polymer flexibility and end-attraction strength. We investigate the flow behavior of the polymer networks under shear and analyze their nonequilibrium structural and rheological properties. The scaffold structure breaks up and densified aggregates are formed at low shear rates, while the structural integrity is completely lost at high shear rates. We provide a detailed analysis of the shear- rate-dependent flow-induced structures. The studies provide a deeper understanding of the formation and deformation of network structures in complex materials.

  17. Within- and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory.

    PubMed

    Collins, Anne G E; Frank, Michael J

    2018-03-06

    Learning from rewards and punishments is essential to survival and facilitates flexible human behavior. It is widely appreciated that multiple cognitive and reinforcement learning systems contribute to decision-making, but the nature of their interactions is elusive. Here, we leverage methods for extracting trial-by-trial indices of reinforcement learning (RL) and working memory (WM) in human electro-encephalography to reveal single-trial computations beyond that afforded by behavior alone. Neural dynamics confirmed that increases in neural expectation were predictive of reduced neural surprise in the following feedback period, supporting central tenets of RL models. Within- and cross-trial dynamics revealed a cooperative interplay between systems for learning, in which WM contributes expectations to guide RL, despite competition between systems during choice. Together, these results provide a deeper understanding of how multiple neural systems interact for learning and decision-making and facilitate analysis of their disruption in clinical populations.

  18. Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang

    The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.

  19. Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites

    DOE PAGES

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang; ...

    2017-11-17

    The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.

  20. Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Sergey P.

    2015-05-01

    Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe-Kaneko, Belmonte-Eisenberg-Moses and Andersen-Pesavento-Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).

  1. Effect of helicopter blade dynamics on blade aerodynamic and structural loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main-rotor helicopter using a comprehensive rotorcraft analysis (CAMRAD) and flight-test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from a rigid-blade analysis and an elastic-blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack such as elastic blade twist, blade flap rate, blade slope velocity, and inflow are examined as a function of blade mode. Elastic blade motion changed blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. A correlation study comparing predictions from several elastic-blade analyses with flight-test data revealed that an elastic-blade model consisting of only three elastic bending modes (first and second flap and first lag), and two elastic torsion modes was sufficient for good correlation.

  2. Uplifting Behavior of Shallow Buried Pipe in Liquefiable Soil by Dynamic Centrifuge Test

    PubMed Central

    Liu, Jingwen; Ling, Daosheng

    2014-01-01

    Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure. PMID:25121140

  3. Complexity analysis of dual-channel game model with different managers' business objectives

    NASA Astrophysics Data System (ADS)

    Li, Ting; Ma, Junhai

    2015-01-01

    This paper considers dual-channel game model with bounded rationality, using the theory of bifurcations of dynamical system. The business objectives of retailers are assumed to be different, which is closer to reality than previous studies. We study the local stable region of Nash equilibrium point and find that business objectives can expand the stable region and play an important role in price strategy. One interesting finding is that a fiercer competition tends to stabilize the Nash equilibrium. Simulation shows the complex behavior of two dimensional dynamic system, we find period doubling bifurcation and chaos phenomenon. We measure performances of the model in different period by using the index of average profit. The results show that unstable behavior in economic system is often an unfavorable outcome. So this paper discusses the application of adaptive adjustment mechanism when the model exhibits chaotic behavior and then allows the retailers to eliminate the negative effects.

  4. Stochastic dynamics for idiotypic immune networks

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Agliari, Elena

    2010-12-01

    In this work we introduce and analyze the stochastic dynamics obeyed by a model of an immune network recently introduced by the authors. We develop Fokker-Planck equations for the single lymphocyte behavior and coarse grained Langevin schemes for the averaged clone behavior. After showing agreement with real systems (as a short path Jerne cascade), we suggest, both with analytical and numerical arguments, explanations for the generation of (metastable) memory cells, improvement of the secondary response (both in the quality and quantity) and bell shaped modulation against infections as a natural behavior. The whole emerges from the model without being postulated a-priori as it often occurs in second generation immune networks: so the aim of the work is to present some out-of-equilibrium features of this model and to highlight mechanisms which can replace a-priori assumptions in view of further detailed analysis in theoretical systemic immunology.

  5. A Study Of High Speed Friction Behavior Under Elastic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Crawford, P. J.; Hammerberg, J. E.

    2005-03-01

    The role of interfacial dynamics under high strain-rate conditions is an important constitutive relationship in modern modeling and simulation studies of dynamic events (<100 μs in length). The frictional behavior occurring at the interface between two metal surfaces under high elastic loading and sliding speed conditions is studied using the Rotating Barrel Gas Gun (RBGG) facility. The RBGG utilizes a low-pressure gas gun to propel a rotating annular projectile towards an annular target rod. Upon striking the target, the projectile imparts both an axial and a torsional impulse into the target. Resulting elastic waves are measured using strain gauges attached to the target rod. The kinetic coefficient of friction is obtained through an analysis of the resulting strain wave data. Experiments performed using Cu/Cu, Cu/Stainless steel and Cu/Al interfaces provide some insight into the kinetic coefficient of friction behavior at varying sliding speeds and impact loads.

  6. [Dynamics of bulimia disorders in anorexia nervosa and bulimia nervosa].

    PubMed

    Marilov, V V; Sologub, M B

    2008-01-01

    Thirty-three female patients with anorexia nervosa (AN) with bulimia disorders and 54 with bulimia nervosa (BN) were studied. The analysis of clinical presentations and dynamics of bulimia disorders in these groups revealed the similarity of types of behavior. At the same time, NA differs by the absence of genuine binge attacks characteristic of the patients with BN. Psychopathological basis of the behavior in AN seems to be dysmorphophobic, anxiety, hypochondriac disorders as well as insufficient criticism of a patient's state in the absence of pronounced affective disorders and reduced self-esteem and that in BN - cyclothymic, bipolar affective disorders and disorders of drive, dysmorphophobic concerns related to the changes of self-esteem. Also, patients with BN have criticism towards their behavior. These differences should be taken into account in the choice of therapeutic tactics and methods as well as in rehabilitation of patients with eating disorders.

  7. Can a simple dynamical system describe the interplay between drag and buoyancy in terrain-induced canopy flows?

    NASA Astrophysics Data System (ADS)

    De Roo, Frederik; Banerjee, Tirtha

    2017-04-01

    Under non-neutral conditions and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has implications for the measurement of surface-atmosphere exchange by means of eddy-covariance. For example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows happen during night, when the flow within the canopy decouples from the flow aloft. In the present work, we investigate the dynamics of terrain-induced turbulent flow within sloped canopies. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To tackle the full spatiotemporal dynamical system theoretically is beyond the scope of this work, although we can make some qualitative arguments. Additionally, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze phase synchronization behavior of the major terms in the momentum budget to explore the turbulent dynamics in more detail.

  8. Nanoscopic Dynamic Mechanical Properties of Intertubular and Peritubular Dentin

    PubMed Central

    Ryou, Heon; Romberg, Elaine; Pashley, David H.; Tay, Franklin R.; Arola, Dwayne

    2011-01-01

    An experimental evaluation of intertubular and peritubular dentin was performed using nanoindentation and Dynamic Mechanical Analysis (DMA). The objective of the investigation was to evaluate the differences in dynamic mechanical behavior of these two constituents and to assess if their response is frequency dependent. Specimens of hydrated coronal dentin were evaluated by DMA using single indents over a range in parametric conditions and using scanning probe microscopy. The complex (E*), storage (E’) and loss moduli (E”) of the intertubular and peritubular dentin were evaluated as a function of the dynamic loading frequency and static load in the fully hydrated condition. The mean complex E* (19.6 GPa) and storage E’ (19.2 GPa) moduli of the intertubular dentin were significantly lower than those quantities of peritubular dentin (E* = 31.1 GPa, p< 0.05; E’ = 30.3 GPa, p< 0.05). There was no significant influence of dynamic loading frequency on these measures. Though there was no significant difference in the loss modulus (E”) between the two materials (p> 0.05), both constituents exhibited a significant increase in E” with dynamic load frequency and reduction in the quasi-static component of indentation load. The largest difference in dynamic behavior of the two tissues was noted at small quasi-static indentation loads and the highest frequency. PMID:22340680

  9. Emergence of the self-similar property in gene expression dynamics

    NASA Astrophysics Data System (ADS)

    Ochiai, T.; Nacher, J. C.; Akutsu, T.

    2007-08-01

    Many theoretical models have recently been proposed to understand the structure of cellular systems composed of various types of elements (e.g., proteins, metabolites and genes) and their interactions. However, the cell is a highly dynamic system with thousands of functional elements fluctuating across temporal states. Therefore, structural analysis alone is not sufficient to reproduce the cell's observed behavior. In this article, we analyze the gene expression dynamics (i.e., how the amount of mRNA molecules in cell fluctuate in time) by using a new constructive approach, which reveals a symmetry embedded in gene expression fluctuations and characterizes the dynamical equation of gene expression (i.e., a specific stochastic differential equation). First, by using experimental data of human and yeast gene expression time series, we found a symmetry in short-time transition probability from time t to time t+1. We call it self-similarity symmetry (i.e., the gene expression short-time fluctuations contain a repeating pattern of smaller and smaller parts that are like the whole, but different in size). Secondly, we reconstruct the global behavior of the observed distribution of gene expression (i.e., scaling-law) and the local behavior of the power-law tail of this distribution. This approach may represent a step forward toward an integrated image of the basic elements of the whole cell.

  10. Coarsening Dynamics and Marangoni Effects in Thin Liquid Crystal Bubbles in Microgravity

    NASA Technical Reports Server (NTRS)

    Clark, Noel; Glaser, Matthew; Maclennan, Joseph; Park, Cheol; Tin, Padetha; Hall, Nancy R.; Sheehan, Christopher; Storck, Jennifer

    2015-01-01

    The Observation and Analysis of Smectic Islands in Space (OASIS) flight hardware was successfully launched on SpaceX-6 on April 15, 2015 and was operated in the Microgravity Science Glovebox (MSG) on board the International Space Station (ISS). The OASIS project comprises a series of experiments that probe the interfacial and hydrodynamic behavior of spherical-bubble freely suspended liquid crystal (FSLC) membranes in space. These are the thinnest known stable condensed phase structures, making them ideal for studies of two-dimensional (2D) coarsening dynamics and thermocapillary phenomena in microgravity. The OASIS experimental investigation was carried out using four different smectic A and C liquid crystal materials in four separate sample chambers housed inside the MSG. In this report, we present the behavior of collective dynamics on 2D bubble surface, including the equilibrium spatial organization and interaction of islands in electric fields and temperature gradients, and the diffusion and coalescence-driven coarsening dynamics of island emulsions in microgravity. We have observed spontaneous bubble thickening behavior caused by gradients between the bubble-blowing needle and ambient air temperatures. A uniform, thicker band forms during coarsening as a result of non-uniform heating by the LED illumination panels. These are proposed to be a result of Marangoni convection on the bubble surface.

  11. Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems With Switching [Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems

    DOE PAGES

    Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil; ...

    2017-01-24

    Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less

  12. Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems With Switching [Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil

    Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less

  13. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials

    NASA Astrophysics Data System (ADS)

    Gabrieli, Andrea; Sant, Marco; Izadi, Saeed; Shabane, Parviz Seifpanahi; Onufriev, Alexey V.; Suffritti, Giuseppe B.

    2018-02-01

    Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed "globally optimal" point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel-Fulcher-Tammann behavior to a linear trend with increasing temperature was detected at T* ≈ 309 and T* ≈ 285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed at T* ± 315-5 K. We also verified that for the coefficient of thermal expansion α P ( T, P), the isobaric α P ( T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross near T*, where the lifetimes are about 1 ps. For T < T*, hydrogen bonds persist longer than nearest neighbors, suggesting that the hydrogen bonding network dominates the water structure at T < T*, whereas for T > T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.

  14. Numerical modelling of the reinforced concrete influence on a combined system of tunnel support

    NASA Astrophysics Data System (ADS)

    Grujić, Bojana; Jokanović, Igor; Grujić, Žarko; Zeljić, Dragana

    2017-12-01

    The paper presents the experimental, laboratory determined rheological-dynamic analysis of the properties of fiber reinforced concrete, which was then utilized to show nonlinear analysis of combined system of tunnel support structure. According to the performed experiments and calculations, different processes of destructive behavior of tunnel lining were simulated in combination with elastic and elastic-plastic behavior of materials taking into account the tunnel loading, the interaction between the fiber reinforced concrete and soil, as well as the interaction between the fiber reinforced concrete and the inner lining of the tunnel.

  15. A computational framework for prime implicants identification in noncoherent dynamic systems.

    PubMed

    Di Maio, Francesco; Baronchelli, Samuele; Zio, Enrico

    2015-01-01

    Dynamic reliability methods aim at complementing the capability of traditional static approaches (e.g., event trees [ETs] and fault trees [FTs]) by accounting for the system dynamic behavior and its interactions with the system state transition process. For this, the system dynamics is here described by a time-dependent model that includes the dependencies with the stochastic transition events. In this article, we present a novel computational framework for dynamic reliability analysis whose objectives are i) accounting for discrete stochastic transition events and ii) identifying the prime implicants (PIs) of the dynamic system. The framework entails adopting a multiple-valued logic (MVL) to consider stochastic transitions at discretized times. Then, PIs are originally identified by a differential evolution (DE) algorithm that looks for the optimal MVL solution of a covering problem formulated for MVL accident scenarios. For testing the feasibility of the framework, a dynamic noncoherent system composed of five components that can fail at discretized times has been analyzed, showing the applicability of the framework to practical cases. © 2014 Society for Risk Analysis.

  16. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.

    PubMed

    Hofmann, Volker; Sanguinetti-Scheck, Juan I; Künzel, Silke; Geurten, Bart; Gómez-Sena, Leonel; Engelmann, Jacob

    2013-07-01

    Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.

  17. Analysis of dynamic properties for a composite laminated beam at intermediate strain rate

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Pendleton, R. L.; Dolan, D. F.

    The dynamic mechanical behavior of a graphite epoxy composite laminate in flexural vibration has been investigated. The effects of fiber orientation and vibration frequency for both unidirectional tape and Kevlar fabric were studied both analytically and experimentally. Measurement of storage and loss moduli were presented for laminated double cantilever beams of fiber reinforced composite with frequency range from 8 to 1230 Hz (up to 5th mode).

  18. Optimization of reinforced concrete slabs

    NASA Technical Reports Server (NTRS)

    Ferritto, J. M.

    1979-01-01

    Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.

  19. From synthetic modeling of social interaction to dynamic theories of brain-body-environment-body-brain systems.

    PubMed

    Froese, Tom; Iizuka, Hiroyuki; Ikegami, Takashi

    2013-08-01

    Synthetic approaches to social interaction support the development of a second-person neuroscience. Agent-based models and psychological experiments can be related in a mutually informing manner. Models have the advantage of making the nonlinear brain-body-environment-body-brain system as a whole accessible to analysis by dynamical systems theory. We highlight some general principles of how social interaction can partially constitute an individual's behavior.

  20. Real-Time Visualization of Network Behaviors for Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.

    Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less

  1. Shape-and-behavior encoded tracking of bee dances.

    PubMed

    Veeraraghavan, Ashok; Chellappa, Rama; Srinivasan, Mandyam

    2008-03-01

    Behavior analysis of social insects has garnered impetus in recent years and has led to some advances in fields like control systems, flight navigation etc. Manual labeling of insect motions required for analyzing the behaviors of insects requires significant investment of time and effort. In this paper, we propose certain general principles that help in simultaneous automatic tracking and behavior analysis with applications in tracking bees and recognizing specific behaviors exhibited by them. The state space for tracking is defined using position, orientation and the current behavior of the insect being tracked. The position and orientation are parametrized using a shape model while the behavior is explicitly modeled using a three-tier hierarchical motion model. The first tier (dynamics) models the local motions exhibited and the models built in this tier act as a vocabulary for behavior modeling. The second tier is a Markov motion model built on top of the local motion vocabulary which serves as the behavior model. The third tier of the hierarchy models the switching between behaviors and this is also modeled as a Markov model. We address issues in learning the three-tier behavioral model, in discriminating between models, detecting and in modeling abnormal behaviors. Another important aspect of this work is that it leads to joint tracking and behavior analysis instead of the traditional track and then recognize approach. We apply these principles for tracking bees in a hive while they are executing the waggle dance and the round dance.

  2. Very high elevation water ice clouds on Mars: Their morphology and temporal behavior

    NASA Technical Reports Server (NTRS)

    Jaquin, Fred

    1988-01-01

    Quantitative analysis of Viking images of the martian planetary limb has uncovered the existence and temporal behavior of water ice clouds that form between 50 and 90 km elevation. These clouds show a seasonal behavior that may be correlated with lower atmosphere dynamics. Enhanced vertical mixing of the atmosphere as Mars nears perihelion is hypothesized as the cause of the seasonal dependence, and the diurnal dependence is explained by the temporal behavior of the martian diurnal thermal tide. Viking images also provide a data set of the vertical distribution of aerosols in the martian atmosphere. The temporal and spatial distribution of aerosols are characterized.

  3. Identifying compromised systems through correlation of suspicious traffic from malware behavioral analysis

    NASA Astrophysics Data System (ADS)

    Camilo, Ana E. F.; Grégio, André; Santos, Rafael D. C.

    2016-05-01

    Malware detection may be accomplished through the analysis of their infection behavior. To do so, dynamic analysis systems run malware samples and extract their operating system activities and network traffic. This traffic may represent malware accessing external systems, either to steal sensitive data from victims or to fetch other malicious artifacts (configuration files, additional modules, commands). In this work, we propose the use of visualization as a tool to identify compromised systems based on correlating malware communications in the form of graphs and finding isomorphisms between them. We produced graphs from over 6 thousand distinct network traffic files captured during malware execution and analyzed the existing relationships among malware samples and IP addresses.

  4. Dynamic Dependence Analysis : Modeling and Inference of Changing Dependence Among Multiple Time-Series

    DTIC Science & Technology

    2009-06-01

    isolation. In addition to being inherently multi-modal, human perception takes advantages of multiple sources of information within a single modality...restric- tion was reasonable for the applications we looked at. However, consider using a TIM to model a teacher student relationship among moving objects...That is, imagine one teacher object demonstrating a behavior for a student object. The student can observe the teacher and then recreate the behavior

  5. Transition to organized behavior on suspensions of concentrated bacteria

    NASA Astrophysics Data System (ADS)

    Ganguly, Sujoy; Cisneros, Luis; Kessler, John; Goldstein, Raymond

    2008-11-01

    Concentrated populations of the swimming bacterium Bacillus subtilis develop a collective phase, the Zooming BioNematic, that exhibits large-scale coherence analogous to the molecular alignment of nematic liquid crystals. Bacterial suspensions were prepared in order to experimentally measure the transition to organized behavior as a function of the cell number concentration. PIV analysis was used to obtain cell velocities and define an order parameter in order to characterize the dynamics of the system.

  6. Dynamical principles in neuroscience

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-01

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?

  7. Dynamical principles in neuroscience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only amore » few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.« less

  8. Modes and emergent time scales of embayed beach dynamics

    NASA Astrophysics Data System (ADS)

    Ratliff, Katherine M.; Murray, A. Brad

    2014-10-01

    In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.

  9. The theory of reasoned action as parallel constraint satisfaction: towards a dynamic computational model of health behavior.

    PubMed

    Orr, Mark G; Thrush, Roxanne; Plaut, David C

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual's pre-existing belief structure and the beliefs of others in the individual's social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics.

  10. The Theory of Reasoned Action as Parallel Constraint Satisfaction: Towards a Dynamic Computational Model of Health Behavior

    PubMed Central

    Orr, Mark G.; Thrush, Roxanne; Plaut, David C.

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual’s pre-existing belief structure and the beliefs of others in the individual’s social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics. PMID:23671603

  11. Stability analysis of dynamic collaboration model with control signals on two lanes

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Zhang, Run; Xu, Shangzhi; Qian, Yeqing; Xu, Juan

    2014-12-01

    In this paper, the influence of control signals on the stability of two-lane traffic flow is mainly studied by applying control theory with lane changing behaviors. We present the two-lane dynamic collaboration model with lateral friction and the expressions of feedback control signals. What is more, utilizing the delayed feedback control theory to the two-lane dynamic collaboration model with control signals, we investigate the stability of traffic flow theoretically and the stability conditions for both lanes are derived with finding that the forward and lateral feedback signals can improve the stability of traffic flow while the backward feedback signals cannot achieve it. Besides, direct simulations are conducted to verify the results of theoretical analysis, which shows that the feedback signals have a significant effect on the running state of two vehicle groups, and the results are same with the theoretical analysis.

  12. Accuracy of the lattice Boltzmann method for describing the behavior of a gas in the continuum limit.

    PubMed

    Kataoka, Takeshi; Tsutahara, Michihisa

    2010-11-01

    The accuracy of the lattice Boltzmann method (LBM) for describing the behavior of a gas in the continuum limit is systematically investigated. The asymptotic analysis for small Knudsen numbers is carried out to derive the corresponding fluid-dynamics-type equations, and the errors of the LBM are estimated by comparing them with the correct fluid-dynamics-type equations. We discuss the following three important cases: (I) the Mach number of the flow is much smaller than the Knudsen number, (II) the Mach number is of the same order as the Knudsen number, and (III) the Mach number is finite. From the von Karman relation, the above three cases correspond to the flows of (I) small Reynolds number, (II) finite Reynolds number, and (III) large Reynolds number, respectively. The analysis is made with the information only of the fundamental properties of the lattice Boltzmann models without stepping into their detailed form. The results are therefore applicable to various lattice Boltzmann models that satisfy the fundamental properties used in the analysis.

  13. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2016-07-01

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  14. Innovation diffusion on time-varying activity driven networks

    NASA Astrophysics Data System (ADS)

    Rizzo, Alessandro; Porfiri, Maurizio

    2016-01-01

    Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.

  15. Dynamics of social contagions with memory of nonredundant information

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Tang, Ming; Zhang, Hai-Feng; Lai, Ying-Cheng

    2015-07-01

    A key ingredient in social contagion dynamics is reinforcement, as adopting a certain social behavior requires verification of its credibility and legitimacy. Memory of nonredundant information plays an important role in reinforcement, which so far has eluded theoretical analysis. We first propose a general social contagion model with reinforcement derived from nonredundant information memory. Then, we develop a unified edge-based compartmental theory to analyze this model, and a remarkable agreement with numerics is obtained on some specific models. We use a spreading threshold model as a specific example to understand the memory effect, in which each individual adopts a social behavior only when the cumulative pieces of information that the individual received from his or her neighbors exceeds an adoption threshold. Through analysis and numerical simulations, we find that the memory characteristic markedly affects the dynamics as quantified by the final adoption size. Strikingly, we uncover a transition phenomenon in which the dependence of the final adoption size on some key parameters, such as the transmission probability, can change from being discontinuous to being continuous. The transition can be triggered by proper parameters and structural perturbations to the system, such as decreasing individuals' adoption threshold, increasing initial seed size, or enhancing the network heterogeneity.

  16. Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms

    NASA Astrophysics Data System (ADS)

    Kengne, J.; Jafari, S.; Njitacke, Z. T.; Yousefi Azar Khanian, M.; Cheukem, A.

    2017-11-01

    Mathematical models (ODEs) describing the dynamics of almost all continuous time chaotic nonlinear systems (e.g. Lorenz, Rossler, Chua, or Chen system) involve at least a nonlinear term in addition to linear terms. In this contribution, a novel (and singular) 3D autonomous chaotic system without linear terms is introduced. This system has an especial feature of having two twin strange attractors: one ordinary and one symmetric strange attractor when the time is reversed. The complex behavior of the model is investigated in terms of equilibria and stability, bifurcation diagrams, Lyapunov exponent plots, time series and Poincaré sections. Some interesting phenomena are found including for instance, period-doubling bifurcation, antimonotonicity (i.e. the concurrent creation and annihilation of periodic orbits) and chaos while monitoring the system parameters. Compared to the (unique) case previously reported by Xu and Wang (2014) [31], the system considered in this work displays a more 'elegant' mathematical expression and experiences richer dynamical behaviors. A suitable electronic circuit (i.e. the analog simulator) is designed and used for the investigations. Pspice based simulation results show a very good agreement with the theoretical analysis.

  17. The wave attenuation mechanism of the periodic local resonant metamaterial

    NASA Astrophysics Data System (ADS)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  18. EBSD characterization of low temperature deformation mechanisms in modern alloys

    NASA Astrophysics Data System (ADS)

    Kozmel, Thomas S., II

    For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermos-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel, 4140 steel, and Ti-6Al-4V. In both 9310 and 4140 steel, the distribution of carbides throughout the microstructure affected the ability of the material to dynamically recrystallize and determined the size of the dynamically recrystallized grains. Processing the materials at lower temperatures and higher strain rates resulted in finer dynamically recrystallized grains. Microstructural process models that can be used to estimate the resulting microstructure based on the processing parameters were developed for both 9310 and 4140 steel. Heat treatment studies performed on 9310 steel showed that the sub-micron grain size obtained during deformation could not be retained due to the low equilibrium volume fraction of carbides. Commercially available aluminum alloys were investigated to explain their high strain rate deformation behavior. Alloys such as 2139, 2519, 5083, and 7039 exhibit strain softening after an ultimate strength is reached, followed by a rapid degradation of mechanical properties after a critical strain level has been reached. Microstructural analysis showed that the formation of shear bands typically preceded this rapid degradation in properties. Shear band boundary misorientations increased as a function of equivalent strain in all cases. Precipitation behavior was found to greatly influence the microstructural response of the alloys. Additionally, precipitation strengthened alloys were found to exhibit similar flow stress behavior, whereas solid solution strengthened alloys exhibited lower flow stresses but higher ductility during dynamic loading. Schmid factor maps demonstrated that shear band formation behavior was influenced by texturing in these alloys.

  19. Model-based functional neuroimaging using dynamic neural fields: An integrative cognitive neuroscience approach

    PubMed Central

    Wijeakumar, Sobanawartiny; Ambrose, Joseph P.; Spencer, John P.; Curtu, Rodica

    2017-01-01

    A fundamental challenge in cognitive neuroscience is to develop theoretical frameworks that effectively span the gap between brain and behavior, between neuroscience and psychology. Here, we attempt to bridge this divide by formalizing an integrative cognitive neuroscience approach using dynamic field theory (DFT). We begin by providing an overview of how DFT seeks to understand the neural population dynamics that underlie cognitive processes through previous applications and comparisons to other modeling approaches. We then use previously published behavioral and neural data from a response selection Go/Nogo task as a case study for model simulations. Results from this study served as the ‘standard’ for comparisons with a model-based fMRI approach using dynamic neural fields (DNF). The tutorial explains the rationale and hypotheses involved in the process of creating the DNF architecture and fitting model parameters. Two DNF models, with similar structure and parameter sets, are then compared. Both models effectively simulated reaction times from the task as we varied the number of stimulus-response mappings and the proportion of Go trials. Next, we directly simulated hemodynamic predictions from the neural activation patterns from each model. These predictions were tested using general linear models (GLMs). Results showed that the DNF model that was created by tuning parameters to capture simultaneously trends in neural activation and behavioral data quantitatively outperformed a Standard GLM analysis of the same dataset. Further, by using the GLM results to assign functional roles to particular clusters in the brain, we illustrate how DNF models shed new light on the neural populations’ dynamics within particular brain regions. Thus, the present study illustrates how an interactive cognitive neuroscience model can be used in practice to bridge the gap between brain and behavior. PMID:29118459

  20. Invariant density analysis: modeling and analysis of the postural control system using Markov chains.

    PubMed

    Hur, Pilwon; Shorter, K Alex; Mehta, Prashant G; Hsiao-Wecksler, Elizabeth T

    2012-04-01

    In this paper, a novel analysis technique, invariant density analysis (IDA), is introduced. IDA quantifies steady-state behavior of the postural control system using center of pressure (COP) data collected during quiet standing. IDA relies on the analysis of a reduced-order finite Markov model to characterize stochastic behavior observed during postural sway. Five IDA parameters characterize the model and offer physiological insight into the long-term dynamical behavior of the postural control system. Two studies were performed to demonstrate the efficacy of IDA. Study 1 showed that multiple short trials can be concatenated to create a dataset suitable for IDA. Study 2 demonstrated that IDA was effective at distinguishing age-related differences in postural control behavior between young, middle-aged, and older adults. These results suggest that the postural control system of young adults converges more quickly to their steady-state behavior while maintaining COP nearer an overall centroid than either the middle-aged or older adults. Additionally, larger entropy values for older adults indicate that their COP follows a more stochastic path, while smaller entropy values for young adults indicate a more deterministic path. These results illustrate the potential of IDA as a quantitative tool for the assessment of the quiet-standing postural control system.

  1. Experimental Nonlinear Dynamics and Snap-Through of Post-Buckled Thin Laminated Composite Plates

    NASA Astrophysics Data System (ADS)

    Kim, Han-Gyu

    Modern aerospace systems are increasingly being designed with composite panels and plates to achieve light weight and high specific strength and stiffness. For constrained panels, thermally-induced axial loading may cause buckling of the structure, which can lead to nonlinear and potentially chaotic behavior. When post-buckled composite plates experience snap-through, they are subjected to large-amplitude deformations and in-plane compressive loading. These phenomena pose a potential threat to the structural integrity of composite structures. In this work, the nonlinear dynamic behavior of post-buckled composite plates was investigated experimentally and computationally. For the experimental work, an electrodynamic shaker was used to apply harmonic loads and the dynamic response of plate specimens was measured using a single-point displacement-sensing laser, a double-point laser vibrometer (velocity-sensing), and a set of digital image correlation cameras. Both chaotic and periodic steady-state snap-through behaviors were investigated. The experimental data were used to characterize snap-through behaviors of the post-buckled specimens and their boundaries in the harmonic forcing parameter space. The nonlinear behavior of post-buckled plates was modeled using the classical laminated plate theory (CLPT) and the von Karman strain-displacement relations. The static equilibrium paths of the post-buckled plates were analyzed using an arc-length method with a branch-switching technique. For the dynamic analysis, the nonlinear equations of motion were derived based on CLPT and the nonlinear finite element model of the equations was constructed using the Hermite cubic interpolation functions for both conforming and nonconforming elements. The numerical analyses were conducted using the model and were compared with the experimental data.

  2. Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures

    NASA Technical Reports Server (NTRS)

    Makikallio, T. H.; Ristimae, T.; Airaksinen, K. E.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1998-01-01

    Dynamic analysis techniques may uncover abnormalities in heart rate (HR) behavior that are not easily detectable with conventional statistical measures. However, the applicability of these new methods for detecting possible abnormalities in HR behavior in various cardiovascular disorders is not well established. Conventional measures of HR variability were compared with short-term (< or = 11 beats, alpha1) and long-term (> 11 beats, alpha2) fractal correlation properties and with approximate entropy of RR interval data in 38 patients with stable angina pectoris without previous myocardial infarction or cardiac medication at the time of the study and 38 age-matched healthy controls. The short- and long-term fractal scaling exponents (alpha1, alpha2) were significantly higher in the coronary patients than in the healthy controls (1.34 +/- 0.15 vs 1.11 +/- 0.12 [p <0.001] and 1.10 +/- 0.08 vs 1.04 +/- 0.06 [p <0.01], respectively), and they also had lower approximate entropy (p <0.05), standard deviation of all RR intervals (p <0.01), and high-frequency spectral component of HR variability (p <0.05). The short-term fractal scaling exponent performed better than other heart rate variability parameters in differentiating patients with coronary artery disease from healthy subjects, but it was not related to the clinical or angiographic severity of coronary artery disease or any single nonspectral or spectral measure of HR variability in this retrospective study. Patients with stable angina pectoris have altered fractal properties and reduced complexity in their RR interval dynamics relative to age-matched healthy subjects. Dynamic analysis may complement traditional analyses in detecting altered HR behavior in patients with stable angina pectoris.

  3. Microstructure evolution and dynamic recrystallization behavior of a powder metallurgy Ti-22Al-25Nb alloy during hot compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jianbo

    The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s{sup −1} and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationshipmore » between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.« less

  4. Oxygenation of the Root Zone and TCE Remediation: A Plant Model of Rhizosphere Dynamics

    DTIC Science & Technology

    2008-03-01

    Behavior Test .......................................................................................... 128 IV. Results and Analysis ...Circadian Rhythms and Diurnal Cycles. Just as humans have a rhythmic response to the environment, plants also have a periodic cycle governed by light...characteristics, fatty acid carbon lengths, G + C values, and 16S rRNA sequences. 16S RNA sequence analysis has identified eight genera of methanotrophs

  5. Some Implications of Cognitive Theory for Instructional Design.

    ERIC Educational Resources Information Center

    Winn, William

    1990-01-01

    Examines some of the recent developments in cognitive theory and explores their implications for instructional design. Topics discussed include a shift from emphasis on behavioral theory to cognitive theory; task analysis; instructional objectives; learner characteristics; instructional strategies; metacognition; and the dynamic nature of…

  6. Architecture Analysis of Evolving Complex Systems of Systems: Technical Presentation [and Executive Status Report

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly; Ganesan, Dharma; Stratton, William C.; Sibol, Deane E.

    2008-01-01

    Analyze, Visualize, and Evaluate structure and behavior using static and dynamic information, individual systems as well as systems of systems. Next steps: Refine software tool support; Apply to other systems; and Apply earlier in system life cycle.

  7. Dynamic behavior of acrylic acid clusters as quasi-mobile nodes in a model of hydrogel network

    NASA Astrophysics Data System (ADS)

    Zidek, Jan; Milchev, Andrey; Vilgis, Thomas A.

    2012-12-01

    Using a molecular dynamics simulation, we study the thermo-mechanical behavior of a model hydrogel subject to deformation and change in temperature. The model is found to describe qualitatively poly-lactide-glycolide hydrogels in which acrylic acid (AA)-groups are believed to play the role of quasi-mobile nodes in the formation of a network. From our extensive analysis of the structure, formation, and disintegration of the AA-groups, we are able to elucidate the relationship between structure and viscous-elastic behavior of the model hydrogel. Thus, in qualitative agreement with observations, we find a softening of the mechanical response at large deformations, which is enhanced by growing temperature. Several observables as the non-affinity parameter A and the network rearrangement parameter V indicate the existence of a (temperature-dependent) threshold degree of deformation beyond which the quasi-elastic response of the model system turns over into plastic (ductile) one. The critical stretching when the affinity of the deformation is lost can be clearly located in terms of A and V as well as by analysis of the energy density of the system. The observed stress-strain relationship matches that of known experimental systems.

  8. Seismic Vulnerability and Performance Level of confined brick walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghalehnovi, M.; Rahdar, H. A.

    2008-07-08

    There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material.Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iranmore » is located on the earthquake belt of Alpide.Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures.In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.« less

  9. Dynamic Analysis and Test Results for an STC Stirling Generator

    NASA Astrophysics Data System (ADS)

    Qiu, Songgang; Peterson, Allen A.

    2004-02-01

    Long-life, high-efficiency generators based on free-piston Stirling machines are a future energy-conversion solution for both space and commercial applications. To aid in design and system integration efforts, Stirling Technology Company (STC) has developed dynamic simulation models for the internal moving subassemblies and for complete Stirling convertor assemblies. These dynamic models have been validated using test data from operating prototypes. Simplified versions of these models are presented to help explain the operating characteristics of the Stirling convertor. Power spectrum analysis is presented for the test data for casing acceleration, piston motion, displacer motion, and controller current/voltage during full power operation. The harmonics of a Stirling convertor and its moving components are identified for the STC zener-diode control scheme. The dynamic behavior of each moving component and its contribution to the system dynamics and resultant vibration forces are discussed. Additionally, the effects of a passive balancer and external suspension are predicted by another simplified system model.

  10. Dynamic Analyses Including Joints Of Truss Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1991-01-01

    Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.

  11. Characterizing popularity dynamics of online videos

    NASA Astrophysics Data System (ADS)

    Ren, Zhuo-Ming; Shi, Yu-Qiang; Liao, Hao

    2016-07-01

    Online popularity has a major impact on videos, music, news and other contexts in online systems. Characterizing online popularity dynamics is nature to explain the observed properties in terms of the already acquired popularity of each individual. In this paper, we provide a quantitative, large scale, temporal analysis of the popularity dynamics in two online video-provided websites, namely MovieLens and Netflix. The two collected data sets contain over 100 million records and even span a decade. We characterize that the popularity dynamics of online videos evolve over time, and find that the dynamics of the online video popularity can be characterized by the burst behaviors, typically occurring in the early life span of a video, and later restricting to the classic preferential popularity increase mechanism.

  12. Investigating the Structural Impacts of I64T and P311S Mutations in APE1-DNA Complex: A Molecular Dynamics Approach

    PubMed Central

    Doss, C. George Priya; NagaSundaram, N.

    2012-01-01

    Background Elucidating the molecular dynamic behavior of Protein-DNA complex upon mutation is crucial in current genomics. Molecular dynamics approach reveals the changes on incorporation of variants that dictate the structure and function of Protein-DNA complexes. Deleterious mutations in APE1 protein modify the physicochemical property of amino acids that affect the protein stability and dynamic behavior. Further, these mutations disrupt the binding sites and prohibit the protein to form complexes with its interacting DNA. Principal Findings In this study, we developed a rapid and cost-effective method to analyze variants in APE1 gene that are associated with disease susceptibility and evaluated their impacts on APE1-DNA complex dynamic behavior. Initially, two different in silico approaches were used to identify deleterious variants in APE1 gene. Deleterious scores that overlap in these approaches were taken in concern and based on it, two nsSNPs with IDs rs61730854 (I64T) and rs1803120 (P311S) were taken further for structural analysis. Significance Different parameters such as RMSD, RMSF, salt bridge, H-bonds and SASA applied in Molecular dynamic study reveals that predicted deleterious variants I64T and P311S alters the structure as well as affect the stability of APE1-DNA interacting functions. This study addresses such new methods for validating functional polymorphisms of human APE1 which is critically involved in causing deficit in repair capacity, which in turn leads to genetic instability and carcinogenesis. PMID:22384055

  13. CSM solutions of rotating blade dynamics using integrating matrices

    NASA Technical Reports Server (NTRS)

    Lakin, William D.

    1992-01-01

    The dynamic behavior of flexible rotating beams continues to receive considerable research attention as it constitutes a fundamental problem in applied mechanics. Further, beams comprise parts of many rotating structures of engineering significance. A topic of particular interest at the present time involves the development of techniques for obtaining the behavior in both space and time of a rotor acted upon by a simple airload loading. Most current work on problems of this type use solution techniques based on normal modes. It is certainly true that normal modes cannot be disregarded, as knowledge of natural blade frequencies is always important. However, the present work has considered a computational structural mechanics (CSM) approach to rotor blade dynamics problems in which the physical properties of the rotor blade provide input for a direct numerical solution of the relevant boundary-and-initial-value problem. Analysis of the dynamics of a given rotor system may require solution of the governing equations over a long time interval corresponding to many revolutions of the loaded flexible blade. For this reason, most of the common techniques in computational mechanics, which treat the space-time behavior concurrently, cannot be applied to the rotor dynamics problem without a large expenditure of computational resources. By contrast, the integrating matrix technique of computational mechanics has the ability to consistently incorporate boundary conditions and 'remove' dependence on a space variable. For problems involving both space and time, this feature of the integrating matrix approach thus can generate a 'splitting' which forms the basis of an efficient CSM method for numerical solution of rotor dynamics problems.

  14. Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent-Based Model Approach.

    PubMed

    Haer, Toon; Botzen, W J Wouter; de Moel, Hans; Aerts, Jeroen C J H

    2017-10-01

    Recent studies showed that climate change and socioeconomic trends are expected to increase flood risks in many regions. However, in these studies, human behavior is commonly assumed to be constant, which neglects interaction and feedback loops between human and environmental systems. This neglect of human adaptation leads to a misrepresentation of flood risk. This article presents an agent-based model that incorporates human decision making in flood risk analysis. In particular, household investments in loss-reducing measures are examined under three economic decision models: (1) expected utility theory, which is the traditional economic model of rational agents; (2) prospect theory, which takes account of bounded rationality; and (3) a prospect theory model, which accounts for changing risk perceptions and social interactions through a process of Bayesian updating. We show that neglecting human behavior in flood risk assessment studies can result in a considerable misestimation of future flood risk, which is in our case study an overestimation of a factor two. Furthermore, we show how behavior models can support flood risk analysis under different behavioral assumptions, illustrating the need to include the dynamic adaptive human behavior of, for instance, households, insurers, and governments. The method presented here provides a solid basis for exploring human behavior and the resulting flood risk with respect to low-probability/high-impact risks. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  15. Ubiquitous Geo-Sensing for Context-Aware Analysis: Exploring Relationships between Environmental and Human Dynamics

    PubMed Central

    Sagl, Günther; Blaschke, Thomas; Beinat, Euro; Resch, Bernd

    2012-01-01

    Ubiquitous geo-sensing enables context-aware analyses of physical and social phenomena, i.e., analyzing one phenomenon in the context of another. Although such context-aware analysis can potentially enable a more holistic understanding of spatio-temporal processes, it is rarely documented in the scientific literature yet. In this paper we analyzed the collective human behavior in the context of the weather. We therefore explored the complex relationships between these two spatio-temporal phenomena to provide novel insights into the dynamics of urban systems. Aggregated mobile phone data, which served as a proxy for collective human behavior, was linked with the weather data from climate stations in the case study area, the city of Udine, Northern Italy. To identify and characterize potential patterns within the weather-human relationships, we developed a hybrid approach which integrates several spatio-temporal statistical analysis methods. Thereby we show that explanatory factor analysis, when applied to a number of meteorological variables, can be used to differentiate between normal and adverse weather conditions. Further, we measured the strength of the relationship between the ‘global’ adverse weather conditions and the spatially explicit effective variations in user-generated mobile network traffic for three distinct periods using the Maximal Information Coefficient (MIC). The analyses result in three spatially referenced maps of MICs which reveal interesting insights into collective human dynamics in the context of weather, but also initiate several new scientific challenges. PMID:23012571

  16. Bayesian integration of position and orientation cues in perception of biological and non-biological forms.

    PubMed

    Thurman, Steven M; Lu, Hongjing

    2014-01-01

    Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares) comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic form analysis.

  17. Performance Analysis of Garbage Collection and Dynamic Reordering in a Lisp System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Llames, Rene Lim

    1991-01-01

    Generation based garbage collection and dynamic reordering of objects are two techniques for improving the efficiency of memory management in Lisp and similar dynamic language systems. An analysis of the effect of generation configuration is presented, focusing on the effect of a number of generations and generation capabilities. Analytic timing and survival models are used to represent garbage collection runtime and to derive structural results on its behavior. The survival model provides bounds on the age of objects surviving a garbage collection at a particular level. Empirical results show that execution time is most sensitive to the capacity of the youngest generation. A technique called scanning for transport statistics, for evaluating the effectiveness of reordering independent of main memory size, is presented.

  18. Neuromechanical tuning of nonlinear postural control dynamics

    NASA Astrophysics Data System (ADS)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  19. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.

    Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

  20. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

    DOE PAGES

    Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.; ...

    2017-09-13

    Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

  1. Persistence and stochastic periodicity in the intensity dynamics of a fiber laser during the transition to optical turbulence

    NASA Astrophysics Data System (ADS)

    Carpi, Laura; Masoller, Cristina

    2018-02-01

    Many natural systems display transitions among different dynamical regimes, which are difficult to identify when the data are noisy and high dimensional. A technologically relevant example is a fiber laser, which can display complex dynamical behaviors that involve nonlinear interactions of millions of cavity modes. Here we study the laminar-turbulence transition that occurs when the laser pump power is increased. By applying various data analysis tools to empirical intensity time series we characterize their persistence and demonstrate that at the transition temporal correlations can be precisely represented by a surprisingly simple model.

  2. Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation.

    PubMed

    Giraud, Nicolas; Blackledge, Martin; Goldman, Maurice; Böckmann, Anja; Lesage, Anne; Penin, François; Emsley, Lyndon

    2005-12-28

    A detailed analysis of nitrogen-15 longitudinal relaxation times in microcrystalline proteins is presented. A theoretical model to quantitatively interpret relaxation times is developed in terms of motional amplitude and characteristic time scale. Different averaging schemes are examined in order to propose an analysis of relaxation curves that takes into account the specificity of MAS experiments. In particular, it is shown that magic angle spinning averages the relaxation rate experienced by a single spin over one rotor period, resulting in individual relaxation curves that are dependent on the orientation of their corresponding carousel with respect to the rotor axis. Powder averaging thus leads to a nonexponential behavior in the observed decay curves. We extract dynamic information from experimental decay curves, using a diffusion in a cone model. We apply this study to the analysis of spin-lattice relaxation rates of the microcrystalline protein Crh at two different fields and determine differential dynamic parameters for several residues in the protein.

  3. Understanding and Modeling Teams As Dynamical Systems

    PubMed Central

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  4. Molecular dynamics investigation of dynamical properties of phosphatidylethanolamine lipid bilayers

    NASA Astrophysics Data System (ADS)

    Pitman, Michael C.; Suits, Frank; Gawrisch, Klaus; Feller, Scott E.

    2005-06-01

    We describe the dynamic behavior of a 1-stearoyl-2-oleoyl-phosphatidylethanolamine (SOPE) bilayer from a 20ns molecular dynamics simulation. The dynamics of individual molecules are characterized in terms of H2 spin-lattice relaxation rates, nuclear overhauser enhancement spectroscopy (NOESY) cross-relaxation rates, and lateral diffusion coefficients. Additionally, we describe the dynamics of hydrogen bonding through an analysis of hydrogen bond lifetimes and the time evolution of clusters of hydrogen bonded lipids. The simulated trajectory is shown to be consistent with experimental measures of internal, intermolecular, and diffusive motion. Consistent with our analysis of SOPE structure in the companion paper, we see hydrogen bonding dominating the dynamics of the interface region. Comparison of H2 T1 relaxation rates for chain methylene segments in phosphatidylcholine and phosphatidylethanolamine bilayers indicates that slower motion resulting from hydrogen bonding extends at least three carbons into the hydrophobic core. NOESY cross-relaxation rates compare well with experimental values, indicating the observed hydrogen bonding dynamics are realistic. Calculated lateral diffusion rates (4±1×10-8cm2/s) are comparable, though somewhat lower than, those determined by pulsed field gradient NMR methods.

  5. Analysis of the dynamic avalanche of carrier stored trench bipolar transistor (CSTBT) during clamped inductive turn-off transient

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Fu, Guicui

    2017-03-01

    The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.

  6. Energetic Passivity of the Human Ankle Joint.

    PubMed

    Lee, Hyunglae; Hogan, Neville

    2016-12-01

    Understanding the passive or nonpassive behavior of the neuromuscular system is important to design and control robots that physically interact with humans, since it provides quantitative information to secure coupled stability while maximizing performance. This has become more important than ever apace with the increasing demand for robotic technologies in neurorehabilitation. This paper presents a quantitative characterization of passive and nonpassive behavior of the ankle of young healthy subjects, which provides a baseline for future studies in persons with neurological impairments and information for future developments of rehabilitation robots, such as exoskeletal devices and powered prostheses. Measurements using a wearable ankle robot actuating 2 degrees-of-freedom of the ankle combined with curl analysis and passivity analysis enabled characterization of both quasi-static and steady-state dynamic behavior of the ankle, unavailable from single DOF studies. Despite active neuromuscular control over a wide range of muscle activation, in young healthy subjects passive or dissipative ankle behavior predominated.

  7. A Critical Interpersonal Distance Switches between Two Coordination Modes in Kendo Matches

    PubMed Central

    Okumura, Motoki; Kijima, Akifumi; Kadota, Koji; Yokoyama, Keiko; Suzuki, Hiroo; Yamamoto, Yuji

    2012-01-01

    In many competitive sports, players need to quickly and continuously execute movements that co-adapt to various movements executed by their opponents and physical objects. In a martial art such as kendo, players must be able to skillfully change interpersonal distance in order to win. However, very little information about the task and expertise properties of the maneuvers affecting interpersonal distance is available. This study investigated behavioral dynamics underlying opponent tasks by analyzing changes in interpersonal distance made by expert players in kendo matches. Analysis of preferred interpersonal distances indicated that players tended to step toward and away from their opponents based on two distances. The most preferred distance enabled the players to execute both striking and defensive movements immediately. The relative phase analysis of the velocities at which players executed steps toward and away revealed that players developed anti-phase synchronizations at near distances to maintain safe distances from their opponents. Alternatively, players shifted to in-phase synchronization to approach their opponents from far distances. This abrupt phase-transition phenomenon constitutes a characteristic bifurcation dynamics that regularly and instantaneously occurs between in- and anti-phase synchronizations at a critical interpersonal distance. These dynamics are profoundly affected by the task constraints of kendo and the physical constraints of the players. Thus, the current study identifies the clear behavioral dynamics that emerge in a sport setting. PMID:23284799

  8. Static and dynamic stability of pneumatic vibration isolators and systems of isolators

    NASA Astrophysics Data System (ADS)

    Ryaboy, Vyacheslav M.

    2014-01-01

    Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.

  9. Lane-changing model with dynamic consideration of driver's propensity

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyuan; Wang, Jianqiang; Zhang, Jinglei; Ban, Xuegang Jeff

    2015-07-01

    Lane-changing is the driver's selection result of the satisfaction degree in different lane driving conditions. There are many different factors influencing lane-changing behavior, such as diversity, randomicity and difficulty of measurement. So it is hard to accurately reflect the uncertainty of drivers' lane-changing behavior. As a result, the research of lane-changing models is behind that of car-following models. Driver's propensity is her/his emotion state or the corresponding preference of a decision or action toward the real objective traffic situations under the influence of various dynamic factors. It represents the psychological characteristics of the driver in the process of vehicle operation and movement. It is an important factor to influence lane-changing. In this paper, dynamic recognition of driver's propensity is considered during simulation based on its time-varying discipline and the analysis of the driver's psycho-physic characteristics. The Analytic Hierarchy Process (AHP) method is used to quantify the hierarchy of driver's dynamic lane-changing decision-making process, especially the influence of the propensity. The model is validated using real data. Test results show that the developed lane-changing model with the dynamic consideration of a driver's time-varying propensity and the AHP method are feasible and with improved accuracy.

  10. [3D visualization and analysis of vocal fold dynamics].

    PubMed

    Bohr, C; Döllinger, M; Kniesburges, S; Traxdorf, M

    2016-04-01

    Visual investigation methods of the larynx mainly allow for the two-dimensional presentation of the three-dimensional structures of the vocal fold dynamics. The vertical component of the vocal fold dynamics is often neglected, yielding a loss of information. The latest studies show that the vertical dynamic components are in the range of the medio-lateral dynamics and play a significant role within the phonation process. This work presents a method for future 3D reconstruction and visualization of endoscopically recorded vocal fold dynamics. The setup contains a high-speed camera (HSC) and a laser projection system (LPS). The LPS projects a regular grid on the vocal fold surfaces and in combination with the HSC allows a three-dimensional reconstruction of the vocal fold surface. Hence, quantitative information on displacements and velocities can be provided. The applicability of the method is presented for one ex-vivo human larynx, one ex-vivo porcine larynx and one synthetic silicone larynx. The setup introduced allows the reconstruction of the entire visible vocal fold surfaces for each oscillation status. This enables a detailed analysis of the three dimensional dynamics (i. e. displacements, velocities, accelerations) of the vocal folds. The next goal is the miniaturization of the LPS to allow clinical in-vivo analysis in humans. We anticipate new insight on dependencies between 3D dynamic behavior and the quality of the acoustic outcome for healthy and disordered phonation.

  11. Estimation of the behavior factor of existing RC-MRF buildings

    NASA Astrophysics Data System (ADS)

    Vona, Marco; Mastroberti, Monica

    2018-01-01

    In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.

  12. Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling.

    PubMed

    Meng, Pan; Wang, Qingyun; Lu, Qishao

    2013-06-01

    Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as "fold/limit cycle" type of bursting, then anti-phase continuous spiking, followed by the "fold/torus" type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate "fold/Hopf" bursting via "fold/fold" hysteresis loop; whereas, the chemically coupled cells generate "fold/subHopf" bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast-slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.

  13. Analysis of a dynamic model of guard cell signaling reveals the stability of signal propagation

    NASA Astrophysics Data System (ADS)

    Gan, Xiao; Albert, RéKa

    Analyzing the long-term behaviors (attractors) of dynamic models of biological systems can provide valuable insight into biological phenotypes and their stability. We identified the long-term behaviors of a multi-level, 70-node discrete dynamic model of the stomatal opening process in plants. We reduce the model's huge state space by reducing unregulated nodes and simple mediator nodes, and by simplifying the regulatory functions of selected nodes while keeping the model consistent with experimental observations. We perform attractor analysis on the resulting 32-node reduced model by two methods: 1. converting it into a Boolean model, then applying two attractor-finding algorithms; 2. theoretical analysis of the regulatory functions. We conclude that all nodes except two in the reduced model have a single attractor; and only two nodes can admit oscillations. The multistability or oscillations do not affect the stomatal opening level in any situation. This conclusion applies to the original model as well in all the biologically meaningful cases. We further demonstrate the robustness of signal propagation by showing that a large percentage of single-node knockouts does not affect the stomatal opening level. Thus, we conclude that the complex structure of this signal transduction network provides multiple information propagation pathways while not allowing extensive multistability or oscillations, resulting in robust signal propagation. Our innovative combination of methods offers a promising way to analyze multi-level models.

  14. Distributed effects of biological sex define sex-typical motor behavior in Caenorhabditis elegans.

    PubMed

    Mowrey, William R; Bennett, Jessica R; Portman, Douglas S

    2014-01-29

    Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology.

  15. Modeling the Complexity of Post-Treatment Drinking: It’s a Rocky Road to Relapse

    PubMed Central

    Witkiewitz, Katie; Marlatt, G. Alan

    2007-01-01

    The most widely cited road block to successful treatment outcomes for psychological and substance use disorders has been described as the return to the previous behavior, or “relapse.” The operational definition of “relapse” varies from study to study and between clinicians, but in general the term is used to indicate the return to previous levels of symptomatic behavior. One explanation for the variation in the operationalization of relapse is the wide variety of behaviors for which the term is applied, including (but not limited to): depression, substance abuse, schizophrenia, mania, sexual offending, risky sexual behavior, dieting, and the anxiety disorders. A second explanation for the multitude of definitions for relapse is the inherent complexity in the process of behavior change. In this paper we present the most recent treatment outcome research evaluating relapse rates, with a special focus on the substance use disorders. Following this review of the literature we present an argument for the operationalization of relapse as a dynamic process, which can be empirically characterized using dynamical systems theory. We support this argument by presenting results from the analysis of alcohol treatment outcomes using catastrophe modeling techniques. These results demonstrate the utility of catastrophe theory in modeling the alcohol relapse process. The implications of these analyses for the treatment of alcohol use disorders, as well as a discussion of future research incorporating nonlinear dynamical systems theory is provided. PMID:17355897

  16. Distributed Effects of Biological Sex Define Sex-Typical Motor Behavior in Caenorhabditis elegans

    PubMed Central

    Mowrey, William R.; Bennett, Jessica R.

    2014-01-01

    Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology. PMID:24478342

  17. Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques

    DTIC Science & Technology

    2018-04-30

    Title: Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques Subject: Monthly Progress Report Period of...Resources: N/A TOTAL: $18,687 2 TECHNICAL STATUS REPORT Abstract The program goal is analysis of sea ice dynamical behavior using Koopman Mode Decompo...sition (KMD) techniques. The work in the program’s first month consisted of improvements to data processing code, inclusion of additional arctic sea ice

  18. Understanding human dynamics in microblog posting activities

    NASA Astrophysics Data System (ADS)

    Jiang, Zhihong; Zhang, Yubao; Wang, Hui; Li, Pei

    2013-02-01

    Human activity patterns are an important issue in behavior dynamics research. Empirical evidence indicates that human activity patterns can be characterized by a heavy-tailed inter-event time distribution. However, most researchers give an understanding by only modeling the power-law feature of the inter-event time distribution, and those overlooked non-power-law features are likely to be nontrivial. In this work, we propose a behavior dynamics model, called the finite memory model, in which humans adaptively change their activity rates based on a finite memory of recent activities, which is driven by inherent individual interest. Theoretical analysis shows a finite memory model can properly explain various heavy-tailed inter-event time distributions, including a regular power law and some non-power-law deviations. To validate the model, we carry out an empirical study based on microblogging activity from thousands of microbloggers in the Celebrity Hall of the Sina microblog. The results show further that the model is reasonably effective. We conclude that finite memory is an effective dynamics element to describe the heavy-tailed human activity pattern.

  19. CELFE: Coupled Eulerian-Lagrangian Finite Element program for high velocity impact. Part 1: Theory and formulation. [hydroelasto-viscoplastic model

    NASA Technical Reports Server (NTRS)

    Lee, C. H.

    1978-01-01

    A 3-D finite element program capable of simulating the dynamic behavior in the vicinity of the impact point, together with predicting the dynamic response in the remaining part of the structural component subjected to high velocity impact is discussed. The finite algorithm is formulated in a general moving coordinate system. In the vicinity of the impact point contained by a moving failure front, the relative velocity of the coordinate system will approach the material particle velocity. The dynamic behavior inside the region is described by Eulerian formulation based on a hydroelasto-viscoplastic model. The failure front which can be regarded as the boundary of the impact zone is described by a transition layer. The layer changes the representation from the Eulerian mode to the Lagrangian mode outside the failure front by varying the relative velocity of the coordinate system to zero. The dynamic response in the remaining part of the structure described by the Lagrangian formulation is treated using advanced structural analysis. An interfacing algorithm for coupling CELFE with NASTRAN is constructed to provide computational capabilities for large structures.

  20. Analyzing the dynamics of brain circuits with temperature: design and implementation of a miniature thermoelectric device.

    PubMed

    Aronov, Dmitriy; Fee, Michale S

    2011-04-15

    Traditional lesion or inactivation methods are useful for determining if a given brain area is involved in the generation of a behavior, but not for determining if circuit dynamics in that area control the timing of the behavior. In contrast, localized mild cooling or heating of a brain area alters the speed of neuronal and circuit dynamics and can reveal the role of that area in the control of timing. It has been shown that miniaturized solid-state heat pumps based on the Peltier effect can be useful for analyzing brain dynamics in small freely behaving animals (Long and Fee, 2008). Here we present a theoretical analysis of these devices and a procedure for optimizing their design. We describe the construction and implementation of one device for cooling surface brain areas, such as cortex, and another device for cooling deep brain regions. We also present measurements of the magnitude and localization of the brain temperature changes produced by these two devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Heterogeneous Structure of Stem Cells Dynamics: Statistical Models and Quantitative Predictions

    PubMed Central

    Bogdan, Paul; Deasy, Bridget M.; Gharaibeh, Burhan; Roehrs, Timo; Marculescu, Radu

    2014-01-01

    Understanding stem cell (SC) population dynamics is essential for developing models that can be used in basic science and medicine, to aid in predicting cells fate. These models can be used as tools e.g. in studying patho-physiological events at the cellular and tissue level, predicting (mal)functions along the developmental course, and personalized regenerative medicine. Using time-lapsed imaging and statistical tools, we show that the dynamics of SC populations involve a heterogeneous structure consisting of multiple sub-population behaviors. Using non-Gaussian statistical approaches, we identify the co-existence of fast and slow dividing subpopulations, and quiescent cells, in stem cells from three species. The mathematical analysis also shows that, instead of developing independently, SCs exhibit a time-dependent fractal behavior as they interact with each other through molecular and tactile signals. These findings suggest that more sophisticated models of SC dynamics should view SC populations as a collective and avoid the simplifying homogeneity assumption by accounting for the presence of more than one dividing sub-population, and their multi-fractal characteristics. PMID:24769917

  2. Triple grouping and period-three oscillations in minority-game dynamics.

    PubMed

    Dong, Jia-Qi; Huang, Zi-Gang; Huang, Liang; Lai, Ying-Cheng

    2014-12-01

    Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups, each exhibiting an identical oscillation pattern in the attendance of game players. Here we report our finding of spontaneous breakup of resources into three groups, each exhibiting period-three oscillations. An analysis is developed to understand the emergence of the striking phenomenon of triple grouping and period-three oscillations. In the presence of random disturbances, the triple-group/period-three state becomes transient, and we obtain explicit formula for the average transient lifetime using two methods of approximation. Our finding indicates that, period-three oscillation, regarded as one of the most fundamental behaviors in smooth nonlinear dynamical systems, can also occur in much more complex, evolutionary-game dynamical systems. Our result also provides a plausible insight for the occurrence of triple grouping observed, for example, in the U.S. housing market.

  3. Results of an Analysis of Field Studies of the Intrinsic Dynamic Characteristics Important for the Safety of Nuclear Power Plant Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaznovsky, A. P., E-mail: kaznovskyap@atech.ru; Kasiyanov, K. G.; Ryasnyj, S. I.

    2015-01-15

    A classification of the equipment important for the safety of nuclear power plants is proposed in terms of its dynamic behavior under seismic loading. An extended bank of data from dynamic tests over the entire range of thermal and mechanical equipment in generating units with VVER-1000 and RBMK-1000 reactors is analyzed. Results are presented from a study of the statistical behavior of the distribution of vibrational frequencies and damping decrements with the “small perturbation” factor that affects the measured damping decrements taken into account. A need to adjust the regulatory specifications for choosing the values of the damping decrements withmore » specified inertial loads on equipment owing to seismic effects during design calculations is identified. Minimum values of the decrements are determined and proposed for all types of equipment as functions of the directions and natural vibration frequencies of the dynamic interactions to be adopted as conservative standard values in the absence of actual experimental data in the course of design studies of seismic resistance.« less

  4. Quasi-Steady-State Analysis based on Structural Modules and Timed Petri Net Predict System's Dynamics: The Life Cycle of the Insulin Receptor.

    PubMed

    Scheidel, Jennifer; Lindauer, Klaus; Ackermann, Jörg; Koch, Ina

    2015-12-17

    The insulin-dependent activation and recycling of the insulin receptor play an essential role in the regulation of the energy metabolism, leading to a special interest for pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively investigated, experimentally as well as theoretically. We developed a time-resolved, discrete model to describe stochastic dynamics and study the approximation of non-linear dynamics in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we analyzed the structure of the regulatory system and demonstrated the close interrelation of structural network properties with the kinetic behavior. The transition invariants decomposed the model into overlapping subnetworks of various sizes, which represent basic functional modules. Moreover, we computed the quasi-steady states of these subnetworks and demonstrated that they are fundamental to understand the dynamic behavior of the system. The Petri net approach confirms the experimental results of insulin-stimulated degradation of the insulin receptor, which represents a common feature of insulin-resistant, hyperinsulinaemic states.

  5. Impaired recognition of body expressions in the behavioral variant of frontotemporal dementia.

    PubMed

    Van den Stock, Jan; De Winter, François-Laurent; de Gelder, Beatrice; Rangarajan, Janaki Raman; Cypers, Gert; Maes, Frederik; Sunaert, Stefan; Goffin, Karolien; Vandenberghe, Rik; Vandenbulcke, Mathieu

    2015-08-01

    Progressive deterioration of social cognition and emotion processing are core symptoms of the behavioral variant of frontotemporal dementia (bvFTD). Here we investigate whether bvFTD is also associated with impaired recognition of static (Experiment 1) and dynamic (Experiment 2) bodily expressions. In addition, we compared body expression processing with processing of static (Experiment 3) and dynamic (Experiment 4) facial expressions, as well as with face identity processing (Experiment 5). The results reveal that bvFTD is associated with impaired recognition of static and dynamic bodily and facial expressions, while identity processing was intact. No differential impairments were observed regarding motion (static vs. dynamic) or category (body vs. face). Within the bvFTD group, we observed a significant partial correlation between body and face expression recognition, when controlling for performance on the identity task. Voxel-Based Morphometry (VBM) analysis revealed that body emotion recognition was positively associated with gray matter volume in a region of the inferior frontal gyrus (pars orbitalis/triangularis). The results are in line with a supramodal emotion recognition deficit in bvFTD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Mechanical Response of Multifunctional Battery Systems

    NASA Astrophysics Data System (ADS)

    Tsutsui, Waterloo

    The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following research questions: Could we use battery cells and packs as a part of vehicle structures? Could we use battery cells and packs as a part of vehicle impact energy absorption structure? Based on the research results, the answer to the first question is "yes." However, the granular battery assembly configuration is not suitable as a load-bearing battery structure since the main purpose of granular battery assembly, apart from energy storage for vehicle propulsion, is to work as a kinetic energy dissipation device. The answer to the second question is also "yes." However, the kinetic energy dissipation is mainly performed by the sacrificial elements surrounding the battery cells.

  7. Digit replacement: A generic map for nonlinear dynamical systems.

    PubMed

    García-Morales, Vladimir

    2016-09-01

    A simple discontinuous map is proposed as a generic model for nonlinear dynamical systems. The orbit of the map admits exact solutions for wide regions in parameter space and the method employed (digit manipulation) allows the mathematical design of useful signals, such as regular or aperiodic oscillations with specific waveforms, the construction of complex attractors with nontrivial properties as well as the coexistence of different basins of attraction in phase space with different qualitative properties. A detailed analysis of the dynamical behavior of the map suggests how the latter can be used in the modeling of complex nonlinear dynamics including, e.g., aperiodic nonchaotic attractors and the hierarchical deposition of grains of different sizes on a surface.

  8. Analysis of dynamic properties for a composite robotic arm at intermediate strain rate

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Chein

    The dynamic mechanical properties of any structure are governed by the storage moduli representing the stiffness and loss moduli representing the internal damping capacity. The dynamic mechanical behavior of a graphite epoxy composite laminate in flexural vibration has been investigated. This study presents the results of a theoretical and experimental effort to determine the dynamic properties of multilaminate composites. The effects of fiber orientation and vibration frequency for both unidirectional tape and Kevlar fabric were studied both analytically and experimentally. Measurement of storage and loss moduli were presented for laminated double cantilever beams of fiber reinforced composite with frequency range from 8 to 1230 Hz (up to 5th mode).

  9. Wave Journal Bearings Under Dynamic Loads

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Dimofte, Florin

    2002-01-01

    The dynamic behavior of the wave journal bearing was determined by running a three-wave bearing with an eccentrically mounted shaft. A transient analysis was developed and used to predict numerical data for the experimental cases. The three-wave journal bearing ran stably under dynamic loads with orbits well inside the bearing clearance. The orbits were almost circular and nearly free of the influence of, but dynamically dependent on, bearing wave shape. Experimental observations for both the absolute bearing-housing-center orbits and the relative bearing-housing-center-to-shaft-center orbits agreed well with the predictions. Moreover, the subsynchronous whirl motion generated by the fluid film was found experimentally and predicted theoretically for certain speeds.

  10. Acquisition and production of skilled behavior in dynamic decision-making tasks

    NASA Technical Reports Server (NTRS)

    Kirlik, Alex

    1993-01-01

    Summaries of the four projects completed during the performance of this research are included. The four projects described are: Perceptual Augmentation Aiding for Situation Assessment, Perceptual Augmentation Aiding for Dynamic Decision-Making and Control, Action Advisory Aiding for Dynamic Decision-Making and Control, and Display Design to Support Time-Constrained Route Optimization. Papers based on each of these projects are currently in preparation. The theoretical framework upon which the first three projects are based, Ecological Task Analysis, was also developed during the performance of this research, and is described in a previous report. A project concerned with modeling strategies in human control of a dynamic system was also completed during the performance of this research.

  11. Effect of gold nanoparticles on structure and dynamics of binary Lennard-Jones liquid: Wave-vector space analysis

    NASA Astrophysics Data System (ADS)

    Separdar, L.; Davatolhagh, S.

    2016-12-01

    Molecular dynamics simulations at constant (N , V , T) are used to study the mutual effects of gold nanoparticles on the structure and dynamics of Kob-Andersen binary Lennard-Jones (BLJ) liquid within the framework of mode coupling theory of dynamic glass transition in the reciprocal space. The results show the 'softening' effect of the gold nanoparticles on the liquid dynamics in terms of (i) reducing the mode coupling crossover temperature Tc with respect to that of the bulk BLJ (i.e. BLJ without nanoparticles), (ii) decreasing the time interval of β-relaxation, and (iii) decreasing the exponent γ characterizing the power-law behavior of the α-relaxation time. This softening effect is explained in terms of the van der Waals attraction between the gold atoms comprising the nanoparticle and the BLJ host atoms, such that adsorption of host atoms onto the nanoparticle surface creates more space or free-volume for the other atoms to diffuse. By the same token interactions of purely excluded-volume-type are expected to result in the opposite effect. It is also noted that, much unlike BLJ host particles, the dynamics of gold nanoparticles is much less dependent on the wave-vector and that it exhibits a nearly exponential behavior in the α-relaxation regime.

  12. Social Sensor Analytics: Making Sense of Network Models in Social Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Chase P.; Harrison, Joshua J.; Sathanur, Arun V.

    Social networks can be thought of as noisy sensor networks mapping real world information to the web. Owing to the extensive body of literature in sensor network analysis, this work sought to apply several novel and traditional methods in sensor network analysis for the purposes of efficiently interrogating social media data streams from raw data. We carefully revisit our definition of a social media signal from previous work both in terms of time-varying features within the data and the networked nature of the medium. Further, we detail our analysis of global patterns in Twitter over the months of November 2013more » and June 2014, detect and categorize events, and illustrate how these analyses can be used to inform graph-based models of Twitter, namely using a recent network influence model called PhySense: similar to PageRank but tuned to behavioral analysis by leveraging a sociologically inspired probabilistic model. We ultimately identify forms of information dissemination via analysis of time series and dynamic graph spectra and corroborate these findings through manual investigation of the data as a requisite step in modeling the diffusion process with PhySense. We hope to sufficiently characterize global behavior in a medium such as Twitter as a means of learning global model parameters one may use to predict or simulate behavior on a large scale. We have made our time series and dynamic graph analytical code available via a GitHub repository https://github.com/cpatdowling/salsa and our data are available upon request.« less

  13. Unique rheological behavior of chitosan-modified nanoclay at highly hydrated state.

    PubMed

    Liang, Songmiao; Liu, Linshu; Huang, Qingrong; Yam, Kit L

    2009-04-30

    This work attempts to explore the dynamic and steady-state rheological properties of chitosan modified clay (CMCs) at highly hydrated state. CMCs with different initial chitosan/clay weight ratios (s) were prepared from pre-exfoliated clay via electrostatic adsorption process. Thermogravimetric analysis and optical microscopy were used to determine the adsorbed content of chitosan (m) in CMCs and the microstructure of CMCs at highly hydrated state, respectively. Dynamic rheological results indicate that both stress-strain behavior and moduli of CMCs exhibit strong dependence on m. Shear-thinning behavior for all of CMCs is observed and further confirmed by steady-state shear test. Interestingly, two unique transitions, denoted as a small peak region of the shear viscosity for CMCs with m > 2.1% and a sharp drop region of the shear viscosity for CMCs with m

  14. Competitive Modes for the Detection of Chaotic Parameter Regimes in the General Chaotic Bilinear System of Lorenz Type

    NASA Astrophysics Data System (ADS)

    Mallory, Kristina; van Gorder, Robert A.

    We study chaotic behavior of solutions to the bilinear system of Lorenz type developed by Celikovsky and Vanecek [1994] through an application of competitive modes. This bilinear system of Lorenz type is one possible canonical form holding the Lorenz equation as a special case. Using a competitive modes analysis, which is a completely analytical method allowing one to identify parameter regimes for which chaos may occur, we are able to demonstrate a number of parameter regimes which admit a variety of distinct chaotic behaviors. Indeed, we are able to draw some interesting conclusions which relate the behavior of the mode frequencies arising from writing the state variables for the Celikovsky-Vanecek model as coupled oscillators, and the types of emergent chaotic behaviors observed. The competitive modes analysis is particularly useful if all but one of the model parameters are fixed, and the remaining free parameter is used to modify the chaos observed, in a manner analogous to a bifurcation parameter. Through a thorough application of the method, we are able to identify several parameter regimes which give new dynamics (such as specific forms of chaos) which were not observed or studied previously in the Celikovsky-Vanecek model. Therefore, the results demonstrate the advantage of the competitive modes approach for detecting new parameter regimes leading to chaos in third-order dynamical systems.

  15. Seismic performance evaluation of RC frame-shear wall structures using nonlinear analysis methods

    NASA Astrophysics Data System (ADS)

    Shi, Jialiang; Wang, Qiuwei

    To further understand the seismic performance of reinforced concrete (RC) frame-shear wall structures, a 1/8 model structure is scaled from a main factory structure with seven stories and seven bays. The model with four-stories and two-bays was pseudo-dynamically tested under six earthquake actions whose peak ground accelerations (PGA) vary from 50gal to 400gal. The damage process and failure patterns were investigated. Furthermore, nonlinear dynamic analysis (NDA) and capacity spectrum method (CSM) were adopted to evaluate the seismic behavior of the model structure. The top displacement curve, story drift curve and distribution of hinges were obtained and discussed. It is shown that the model structure had the characteristics of beam-hinge failure mechanism. The two methods can be used to evaluate the seismic behavior of RC frame-shear wall structures well. What’s more, the NDA can be somewhat replaced by CSM for the seismic performance evaluation of RC structures.

  16. Thermal and fluid-dynamics behavior of circulating systems in the case of pressure relief

    NASA Astrophysics Data System (ADS)

    Moeller, L.

    Aspects of safety in the case of large-scale installations with operational high-pressure conditions must be an important consideration already during the design of such installations, taking into account all conceivable disturbances. Within an analysis of such disturbances, studies related to pressure relief processes will have to occupy a central position. For such studies, it is convenient to combine experiments involving small-scale models of the actual installation with suitable computational programs. The experiments can be carried out at lower pressures and temperatures if the actual fluid is replaced by another medium, such as, for instance, a refrigerant. This approach has been used in the present investigation. The obtained experimental data are employed as a basis for a verification of the results provided by the computational model 'Frelap-UK' which has been expressly developed for the analysis of system behavior in the case of pressure relief. It is found that the computer fluid-dynamics characteristics agree with the experimental results.

  17. Bursting patterns and mixed-mode oscillations in reduced Purkinje model

    NASA Astrophysics Data System (ADS)

    Zhan, Feibiao; Liu, Shenquan; Wang, Jing; Lu, Bo

    2018-02-01

    Bursting discharge is a ubiquitous behavior in neurons, and abundant bursting patterns imply many physiological information. There exists a closely potential link between bifurcation phenomenon and the number of spikes per burst as well as mixed-mode oscillations (MMOs). In this paper, we have mainly explored the dynamical behavior of the reduced Purkinje cell and the existence of MMOs. First, we adopted the codimension-one bifurcation to illustrate the generation mechanism of bursting in the reduced Purkinje cell model via slow-fast dynamics analysis and demonstrate the process of spike-adding. Furthermore, we have computed the first Lyapunov coefficient of Hopf bifurcation to determine whether it is subcritical or supercritical and depicted the diagrams of inter-spike intervals (ISIs) to examine the chaos. Moreover, the bifurcation diagram near the cusp point is obtained by making the codimension-two bifurcation analysis for the fast subsystem. Finally, we have a discussion on mixed-mode oscillations and it is further investigated using the characteristic index that is Devil’s staircase.

  18. Modelling chaotic vibrations using NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1993-01-01

    Due to the unavailability and, later, prohibitive cost of the computational power required, many phenomena in nonlinear dynamic systems have in the past been addressed in terms of linear systems. Linear systems respond to periodic inputs with periodic outputs, and may be characterized in the time domain or in the frequency domain as convenient. Reduction to the frequency domain is frequently desireable to reduce the amount of computation required for solution. Nonlinear systems are only soluble in the time domain, and may exhibit a time history which is extremely sensitive to initial conditions. Such systems are termed chaotic. Dynamic buckling, aeroelasticity, fatigue analysis, control systems and electromechanical actuators are among the areas where chaotic vibrations have been observed. Direct transient analysis over a long time period presents a ready means of simulating the behavior of self-excited or externally excited nonlinear systems for a range of experimental parameters, either to characterize chaotic behavior for development of load spectra, or to define its envelope and preclude its occurrence.

  19. Detrended fluctuation analysis based on higher-order moments of financial time series

    NASA Astrophysics Data System (ADS)

    Teng, Yue; Shang, Pengjian

    2018-01-01

    In this paper, a generalized method of detrended fluctuation analysis (DFA) is proposed as a new measure to assess the complexity of a complex dynamical system such as stock market. We extend DFA and local scaling DFA to higher moments such as skewness and kurtosis (labeled SMDFA and KMDFA), so as to investigate the volatility scaling property of financial time series. Simulations are conducted over synthetic and financial data for providing the comparative study. We further report the results of volatility behaviors in three American countries, three Chinese and three European stock markets by using DFA and LSDFA method based on higher moments. They demonstrate the dynamics behaviors of time series in different aspects, which can quantify the changes of complexity for stock market data and provide us with more meaningful information than single exponent. And the results reveal some higher moments volatility and higher moments multiscale volatility details that cannot be obtained using the traditional DFA method.

  20. Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Hu, Ming

    2018-05-01

    Due to the high surface-to-volume ratio of nanostructured components in microelectronics and other advanced devices, the thermal resistance at material interfaces can strongly affect the overall thermal behavior in these devices. Therefore, the thermal boundary resistance, R, must be taken into account in the thermal analysis of nanoscale structures and devices. This article is a tutorial on the determination of R and the analysis of interfacial thermal transport via molecular dynamics (MD) simulations. In addition to reviewing the commonly used equilibrium and non-equilibrium MD models for the determination of R, we also discuss several MD simulation methods which can be used to understand interfacial thermal transport behavior. To illustrate how these MD models work for various interfaces, we will show several examples of MD simulation results on thermal transport across solid-solid, solid-liquid, and solid-gas interfaces. The advantages and drawbacks of a few other MD models such as approach-to-equilibrium MD and first-principles MD are also discussed.

  1. Constraints based analysis of extended cybernetic models.

    PubMed

    Mandli, Aravinda R; Venkatesh, Kareenhalli V; Modak, Jayant M

    2015-11-01

    The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The Effects of Shoe Traction and Obstacle Height on Lower Extremity Coordination Dynamics during Walking

    PubMed Central

    Decker, Leslie; Houser, Jeremy J.; Noble, John M.; Karst, Gregory M.; Stergiou, Nicholas

    2009-01-01

    This study aims to investigate the effects of shoe traction and obstacle height on lower extremity relative phase dynamics (analysis of intralimb coordination) during walking to better understand the mechanisms employed to avoid slippage following obstacle clearance. Ten participants walked at a self-selected pace during eight conditions: four obstacle heights (0%, 10%, 20%, and 40% of limb length) while wearing two pairs of shoes (low and high traction). A coordination analysis was used and phasing relationships between lower extremity segments were examined. The results demonstrated that significant behavioral changes were elicited under varied obstacle heights and frictional conditions. Both decreasing shoe traction and increasing obstacle height resulted in a more in-phase relationship between the interacting lower limb segments. The higher the obstacle and the lower the shoe traction, the more unstable the system became. These changes in phasing relationship and variability are indicators of alterations in coordinative behavior, which if pushed further may have lead to falling. PMID:19187929

  3. Improved dynamic analysis method using load-dependent Ritz vectors

    NASA Technical Reports Server (NTRS)

    Escobedo-Torres, J.; Ricles, J. M.

    1993-01-01

    The dynamic analysis of large space structures is important in order to predict their behavior under operating conditions. Computer models of large space structures are characterized by having a large number of degrees of freedom, and the computational effort required to carry out the analysis is very large. Conventional methods of solution utilize a subset of the eigenvectors of the system, but for systems with many degrees of freedom, the solution of the eigenproblem is in many cases the most costly phase of the analysis. For this reason, alternate solution methods need to be considered. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. The load dependent Ritz vector method is presented as an alternative to the classical normal mode methods for obtaining dynamic responses of large space structures. A simplified model of a space station is used to compare results. Results show that the load dependent Ritz vector method predicts the dynamic response better than the classical normal mode method. Even though this alternate method is very promising, further studies are necessary to fully understand its attributes and limitations.

  4. Flexible modulation of network connectivity related to cognition in Alzheimer's disease.

    PubMed

    McLaren, Donald G; Sperling, Reisa A; Atri, Alireza

    2014-10-15

    Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer's disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54-82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and encoding repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive control network (p<0.05, cluster corrected). Psychophysiological interactions revealed significantly more extensive and robust associations between paired-associate encoding task-dependent hippocampal-whole brain connectivity and performance on memory and behavioral/clinical measures than previously revealed by standard activity-behavior analysis. Compared to resting state and task-activation methods, gPPI analyses may be more sensitive to reveal additional complementary information regarding subtle within- and between-network relations. The patterns of robust correlations between hippocampal-whole brain connectivity and behavioral measures identified here suggest that there are 'coordinated states' in the brain; that the dynamic range of these states is related to behavior and cognition; and that these states can be observed and quantified, even in individuals with mild AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Implementation of DSC model and application for analysis of field pile tests under cyclic loading

    NASA Astrophysics Data System (ADS)

    Shao, Changming; Desai, Chandra S.

    2000-05-01

    The disturbed state concept (DSC) model, and a new and simplified procedure for unloading and reloading behavior are implemented in a nonlinear finite element procedure for dynamic analysis for coupled response of saturated porous materials. The DSC model is used to characterize the cyclic behavior of saturated clays and clay-steel interfaces. In the DSC, the relative intact (RI) behavior is characterized by using the hierarchical single surface (HISS) plasticity model; and the fully adjusted (FA) behavior is modeled by using the critical state concept. The DSC model is validated with respect to laboratory triaxial tests for clay and shear tests for clay-steel interfaces. The computer procedure is used to predict field behavior of an instrumented pile subjected to cyclic loading. The predictions provide very good correlation with the field data. They also yield improved results compared to those from a HISS model with anisotropic hardening, partly because the DSC model allows for degradation or softening and interface response.

  6. What Studying Leadership Can Teach Us About the Science of Behavior.

    PubMed

    Malott, Maria E

    2016-05-01

    Throughout history, individuals have changed the world in significant ways, forging new paths; demonstrating remarkable capacity to inspire others to follow; and repeatedly showing independence, resilience, consistency, and commitment to principle. However, significant cultural change is rarely accomplished single-handedly; instead, it results from the complex and dynamic interaction of groups of individuals. To illustrate how leaders participate in cultural phenomena, I describe how a few individuals helped to establish the Cold War. In this analysis, I distinguish two types of cultural phenomena: metacontingencies, involving lineages of interlocking behavioral contingencies, and cultural cusps, involving complicated, unique, and nonreplicable interrelations between individuals and circumstances. I conclude that by analyzing leaders' actions and their results, we can appreciate that cultural and behavioral phenomena are different, and although cultural phenomena are inherently complex and in many cases do not lend themselves to replication, not only should the science of behavior account for them, cultural phenomena should also constitute a major area of behavior analysis study and application.

  7. Dynamic analysis of six-bar mechanical press for deep drawing

    NASA Astrophysics Data System (ADS)

    Mitsi, S.; Tsiafis, I.; Bouzakis, K. D.

    2017-02-01

    This paper analyzes the dynamical behavior of a six-bar linkage used in mechanical presses for metal forming such as deep drawing. In the under study mechanism, a four-bar linkage is connected to a slider through an articulated binary link. The motion of the six-bar linkage is studied by kinematic analysis developing an analytical method. Furthermore, using an iterative method and d’ Alembert’s principle, the joint forces and drive moment are evaluated considering joint frictions. The simulation results obtained with a MATLAB program are validated by comparing the theoretical values of the input moment with the ones obtained from the conservation of energy law.

  8. Architectural Analysis of Dynamically Reconfigurable Systems

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly

    2010-01-01

    oTpics include: the problem (increased flexibility of architectural styles decrease analyzability, behavior emerges and varies depending on the configuration, does the resulting system run according to the intended design, and architectural decisions can impede or facilitate testing); top down approach to architecture analysis, detection of defects and deviations, and architecture and its testability; currently targeted projects GMSEC and CFS; analyzing software architectures; analyzing runtime events; actual architecture recognition; GMPUB in Dynamic SAVE; sample output from new approach; taking message timing delays into account; CFS examples of architecture and testability; some recommendations for improved testablity; and CFS examples of abstract interfaces and testability; CFS example of opening some internal details.

  9. RP and RQA Analysis for Floating Potential Fluctuations in a DC Magnetron Sputtering Plasma

    NASA Astrophysics Data System (ADS)

    Sabavath, Gopikishan; Banerjee, I.; Mahapatra, S. K.

    2016-04-01

    The nonlinear dynamics of a direct current magnetron sputtering plasma is visualized using recurrence plot (RP) technique. RP comprises the recurrence quantification analysis (RQA) which is an efficient method to observe critical regime transitions in dynamics. Further, RQA provides insight information about the system’s behavior. We observed the floating potential fluctuations of the plasma as a function of discharge voltage by using Langmuir probe. The system exhibits quasi-periodic-chaotic-quasi-periodic-chaotic transitions. These transitions are quantified from determinism, Lmax, and entropy of RQA. Statistical investigations like kurtosis and skewness also studied for these transitions which are in well agreement with RQA results.

  10. Temporal scaling and spatial statistical analyses of groundwater level fluctuations

    NASA Astrophysics Data System (ADS)

    Sun, H.; Yuan, L., Sr.; Zhang, Y.

    2017-12-01

    Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.

  11. Structural crashworthiness; International Symposium, 1st, University of Liverpool, Liverpool, England, September 14-16, 1983, Invited Lectures

    NASA Astrophysics Data System (ADS)

    Jones, N.; Wierzbicki, T.

    The application of solid, structural, and experimental mechanics to predict the crumpling behavior and energy absorption of thin-walled structures under quasi-static compression and various dynamic crash loadings is examined in reviews of current research. Both fundamental aspects and specific problems in the design of crashworthy aircraft, automobiles, railroad cars, ships, and offshore installations are considered. Topics discussed include laterally compressed metal tubes as impact-energy absorbers, crushing behavior of plate intersections, axial crushing of fiber-reinforced composite tubes, finite-element analysis of structural crashworthiness in the automotive and aerospace industries, crash behavior of aircraft fuselage structures, aircraft crash analysis, ship collisions, and structural damage in airship and rolling-stock collisions. Photographs, graphs, drawings, and diagrams are provided.

  12. A roadmap to computational social neuroscience.

    PubMed

    Tognoli, Emmanuelle; Dumas, Guillaume; Kelso, J A Scott

    2018-02-01

    To complement experimental efforts toward understanding human social interactions at both neural and behavioral levels, two computational approaches are presented: (1) a fully parameterizable mathematical model of a social partner, the Human Dynamic Clamp which, by virtue of experimentally controlled interactions between Virtual Partners and real people, allows for emergent behaviors to be studied; and (2) a multiscale neurocomputational model of social coordination that enables exploration of social self-organization at all levels-from neuronal patterns to people interacting with each other. These complementary frameworks and the cross product of their analysis aim at understanding the fundamental principles governing social behavior.

  13. The behavioral dynamics of clinical trials.

    PubMed

    Leventhal, H; Nerenz, D R; Leventhal, E A; Love, R R; Bendena, L M

    1991-01-01

    Two ways of approaching the design of long-term clinical trials are presented and contrasted. The first, termed the "static" view, emphasizes close adherence to formal rules of study design. The second, termed the "dynamic" view, emphasizes the behavioral aspects of patient participation in trials of long duration. The dynamic view is discussed in detail, with discussion of how recruitment of participants, random assignment to conditions, compliance with protocol, and measurement of outcomes are affected by behavioral dynamics. Data from a recently completed tamoxifen toxicity trial are used to illustrate the points and to focus the discussion of behavioral dynamics on the design of a chemoprevention trial for breast cancer using tamoxifen.

  14. Effects of behavioral response and vaccination policy on epidemic spreading--an approach based on evolutionary-game dynamics.

    PubMed

    Zhang, Hai-Feng; Wu, Zhi-Xi; Tang, Ming; Lai, Ying-Cheng

    2014-07-11

    How effective are governmental incentives to achieve widespread vaccination coverage so as to prevent epidemic outbreak? The answer largely depends on the complex interplay among the type of incentive, individual behavioral responses, and the intrinsic epidemic dynamics. By incorporating evolutionary games into epidemic dynamics, we investigate the effects of two types of incentives strategies: partial-subsidy policy in which certain fraction of the cost of vaccination is offset, and free-subsidy policy in which donees are randomly selected and vaccinated at no cost. Through mean-field analysis and computations, we find that, under the partial-subsidy policy, the vaccination coverage depends monotonically on the sensitivity of individuals to payoff difference, but the dependence is non-monotonous for the free-subsidy policy. Due to the role models of the donees for relatively irrational individuals and the unchanged strategies of the donees for rational individuals, the free-subsidy policy can in general lead to higher vaccination coverage. Our findings indicate that any disease-control policy should be exercised with extreme care: its success depends on the complex interplay among the intrinsic mathematical rules of epidemic spreading, governmental policies, and behavioral responses of individuals.

  15. Effects of behavioral response and vaccination policy on epidemic spreading - an approach based on evolutionary-game dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Wu, Zhi-Xi; Tang, Ming; Lai, Ying-Cheng

    2014-07-01

    How effective are governmental incentives to achieve widespread vaccination coverage so as to prevent epidemic outbreak? The answer largely depends on the complex interplay among the type of incentive, individual behavioral responses, and the intrinsic epidemic dynamics. By incorporating evolutionary games into epidemic dynamics, we investigate the effects of two types of incentives strategies: partial-subsidy policy in which certain fraction of the cost of vaccination is offset, and free-subsidy policy in which donees are randomly selected and vaccinated at no cost. Through mean-field analysis and computations, we find that, under the partial-subsidy policy, the vaccination coverage depends monotonically on the sensitivity of individuals to payoff difference, but the dependence is non-monotonous for the free-subsidy policy. Due to the role models of the donees for relatively irrational individuals and the unchanged strategies of the donees for rational individuals, the free-subsidy policy can in general lead to higher vaccination coverage. Our findings indicate that any disease-control policy should be exercised with extreme care: its success depends on the complex interplay among the intrinsic mathematical rules of epidemic spreading, governmental policies, and behavioral responses of individuals.

  16. The trajectories of EAEC countries development: Numerical analysis of competitive strategies in investments

    NASA Astrophysics Data System (ADS)

    Shelomentsev, A. G.; Medvedev, M. A.; Isaichik, K. F.; Dyomina, M. I.; Berg, I. A.; Kit, M.

    2017-12-01

    This paper discusses comparative analysis of trajectories in the development of participating countries of the Eurasian Economic Union (EAEC) in a two-dimensional phase space. The coordinates in the space is represented by the value of a dynamic variable that is a key indicator of the country's development, and the rate of its relative growth. This allows for construction of a ternary classification diagram describing competitive behavior strategies of countries in question. The comparative analysis was run for two primary factors: the size of investment in the main capital and R&D spendings. The authors carried out analysis and identification of competitive strategies for the behavior of the EAEC countries, as well as he proposed conclusions and recommendations on improving the policy of economic development.

  17. Order parameter analysis of synchronization transitions on star networks

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bin; Sun, Yu-Ting; Gao, Jian; Xu, Can; Zheng, Zhi-Gang

    2017-12-01

    The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe-Strogatz transformation, Ott-Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.

  18. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system.

    PubMed

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  19. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  20. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Balmforth, Neil J.; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize experimental data, even though it is a crude oversimplification of true rheological behavior. The popularity of the model is in its apparent simplicity. Despite this, the sudden transition between solid-like behavior and flow introduces significant complications into the dynamics, which, as a result, has resisted much analysis. Over recent decades, theoretical developments, both analytical and computational, have provided a better understanding of the effect of the yield stress. Simultaneously, greater insight into the material behavior of real fluids has been afforded by advances in rheometry. These developments have primed us for a better understanding of the various applications in the natural and engineering sciences.

Top