Controlling aliased dynamics in motion systems? An identification for sampled-data control approach
NASA Astrophysics Data System (ADS)
Oomen, Tom
2014-07-01
Sampled-data control systems occasionally exhibit aliased resonance phenomena within the control bandwidth. The aim of this paper is to investigate the aspect of these aliased dynamics with application to a high performance industrial nano-positioning machine. This necessitates a full sampled-data control design approach, since these aliased dynamics endanger both the at-sample performance and the intersample behaviour. The proposed framework comprises both system identification and sampled-data control. In particular, the sampled-data control objective necessitates models that encompass the intersample behaviour, i.e., ideally continuous time models. Application of the proposed approach on an industrial wafer stage system provides a thorough insight and new control design guidelines for controlling aliased dynamics.
Nonlinear dynamics as an engine of computation.
Kia, Behnam; Lindner, John F; Ditto, William L
2017-03-06
Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).
Nonlinear dynamics as an engine of computation
Lindner, John F.; Ditto, William L.
2017-01-01
Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics—cybernetical physics—opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation. This article is part of the themed issue ‘Horizons of cybernetical physics’. PMID:28115619
Mechatronics by Analogy and Application to Legged Locomotion
NASA Astrophysics Data System (ADS)
Ragusila, Victor
A new design methodology for mechatronic systems, dubbed as Mechatronics by Analogy (MbA), is introduced and applied to designing a leg mechanism. The new methodology argues that by establishing a similarity relation between a complex system and a number of simpler models it is possible to design the former using the analysis and synthesis means developed for the latter. The methodology provides a framework for concurrent engineering of complex systems while maintaining the transparency of the system behaviour through making formal analogies between the system and those with more tractable dynamics. The application of the MbA methodology to the design of a monopod robot leg, called the Linkage Leg, is also studied. A series of simulations show that the dynamic behaviour of the Linkage Leg is similar to that of a combination of a double pendulum and a spring-loaded inverted pendulum, based on which the system kinematic, dynamic, and control parameters can be designed concurrently. The first stage of Mechatronics by Analogy is a method of extracting significant features of system dynamics through simpler models. The goal is to determine a set of simpler mechanisms with similar dynamic behaviour to that of the original system in various phases of its motion. A modular bond-graph representation of the system is determined, and subsequently simplified using two simplification algorithms. The first algorithm determines the relevant dynamic elements of the system for each phase of motion, and the second algorithm finds the simple mechanism described by the remaining dynamic elements. In addition to greatly simplifying the controller for the system, using simpler mechanisms with similar behaviour provides a greater insight into the dynamics of the system. This is seen in the second stage of the new methodology, which concurrently optimizes the simpler mechanisms together with a control system based on their dynamics. Once the optimal configuration of the simpler system is determined, the original mechanism is optimized such that its dynamic behaviour is analogous. It is shown that, if this analogy is achieved, the control system designed based on the simpler mechanisms can be directly implemented to the more complex system, and their dynamic behaviours are close enough for the system performance to be effectively the same. Finally it is shown that, for the employed objective of fast legged locomotion, the proposed methodology achieves a better design than Reduction-by-Feedback, a competing methodology that uses control layers to simplify the dynamics of the system.
Role of graph architecture in controlling dynamical networks with applications to neural systems
NASA Astrophysics Data System (ADS)
Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.
2018-01-01
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
Dynamic risk control by human nucleus accumbens
Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio
2015-01-01
Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667
Use of statecharts in the modelling of dynamic behaviour in the ATLAS DAQ prototype-1
NASA Astrophysics Data System (ADS)
Croll, P.; Duval, P.-Y.; Jones, R.; Kolos, S.; Sari, R. F.; Wheeler, S.
1998-08-01
Many applications within the ATLAS DAQ prototype-1 system have complicated dynamic behaviour which can be successfully modelled in terms of states and transitions between states. Previously, state diagrams implemented as finite-state machines have been used. Although effective, they become ungainly as system size increases. Harel statecharts address this problem by implementing additional features such as hierarchy and concurrency. The CHSM object-oriented language system is freeware which implements Harel statecharts as concurrent, hierarchical, finite-state machines (CHSMs). An evaluation of this language system by the ATLAS DAQ group has shown it to be suitable for describing the dynamic behaviour of typical DAQ applications. The language is currently being used to model the dynamic behaviour of the prototype-1 run-control system. The design is specified by means of a CHSM description file, and C++ code is obtained by running the CHSM compiler on the file. In parallel with the modelling work, a code generator has been developed which translates statecharts, drawn using the StP CASE tool, into the CHSM language. C++ code, describing the dynamic behaviour of the run-control system, has been successfully generated directly from StP statecharts using the CHSM generator and compiler. The validity of the design was tested using the simulation features of the Statemate CASE tool.
Dynamic behaviour of a rolling tyre: Experimental and numerical analyses
NASA Astrophysics Data System (ADS)
Gonzalez Diaz, Cristobal; Kindt, Peter; Middelberg, Jason; Vercammen, Stijn; Thiry, Christophe; Close, Roland; Leyssens, Jan
2016-03-01
Based on the results of experimental and numerical analyses, the effect of rotation on the tyre dynamic behaviour is investigated. Better understanding of these effects will further improve the ability to control and optimize the noise and vibrations that result from the interaction between the road surface and the rolling tyre. Therefore, more understanding in the complex tyre dynamic properties will contribute to develop tyre design strategies to lower the tyre/road noise while less affecting other tyre performances. The presented work is performed in the framework of the European industry-academia project TIRE-DYN, with partners Goodyear, Katholieke Universiteit Leuven and LMS International. The effect of rotation on the tyre dynamic behaviour is quantified for different operating conditions of the tyre, such as load, air pressure and rotation speed. By means of experimental and numerical analyses, the effects of rotation on the tyre dynamic behaviour are studied.
Dynamic causal modelling of brain-behaviour relationships.
Rigoux, L; Daunizeau, J
2015-08-15
In this work, we expose a mathematical treatment of brain-behaviour relationships, which we coin behavioural Dynamic Causal Modelling or bDCM. This approach aims at decomposing the brain's transformation of stimuli into behavioural outcomes, in terms of the relative contribution of brain regions and their connections. In brief, bDCM places the brain at the interplay between stimulus and behaviour: behavioural outcomes arise from coordinated activity in (hidden) neural networks, whose dynamics are driven by experimental inputs. Estimating neural parameters that control network connectivity and plasticity effectively performs a neurobiologically-constrained approximation to the brain's input-outcome transform. In other words, neuroimaging data essentially serves to enforce the realism of bDCM's decomposition of input-output relationships. In addition, post-hoc artificial lesions analyses allow us to predict induced behavioural deficits and quantify the importance of network features for funnelling input-output relationships. This is important, because this enables one to bridge the gap with neuropsychological studies of brain-damaged patients. We demonstrate the face validity of the approach using Monte-Carlo simulations, and its predictive validity using empirical fMRI/behavioural data from an inhibitory control task. Lastly, we discuss promising applications of this work, including the assessment of functional degeneracy (in the healthy brain) and the prediction of functional recovery after lesions (in neurological patients). Copyright © 2015 Elsevier Inc. All rights reserved.
Functional coordination of muscles underlying changes in behavioural dynamics.
Vernooij, Carlijn A; Rao, Guillaume; Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K; Temprado, Jean-Jacques
2016-06-10
The dynamical systems approach addresses Bernstein's degrees of freedom problem by assuming that the neuro-musculo-skeletal system transiently assembles and dismantles its components into functional units (or synergies) to meet task demands. Strikingly, little is known from a dynamical point of view about the functioning of the muscular sub-system in this process. To investigate the interaction between the dynamical organisation at muscular and behavioural levels, we searched for specific signatures of a phase transition in muscular coordination when a transition is displayed at the behavioural level. Our results provide evidence that, during Fitts' task when behaviour switches to a different dynamical regime, muscular activation displays typical signatures of a phase transition; a reorganisation in muscular coordination patterns accompanied by a peak in the variability of muscle activation. This suggests that consistent changes occur in coordination processes across the different levels of description (i.e., behaviour and muscles). Specifically, in Fitts' task, target size acts as a control parameter that induces a destabilisation and a reorganisation of coordination patterns at different levels of the neuro-musculo-skeletal system.
Analysis of the dynamics of multi-team Bertrand game with heterogeneous players
NASA Astrophysics Data System (ADS)
Ding, Zhanwen; Hang, Qinglan; Yang, Honglin
2011-06-01
In this article, we study the dynamics of a two-team Bertrand game with players having heterogeneous expectations. We study the equilibrium solutions and the conditions of their locally asymptotic stability. Numerical simulations are used to illustrate the complex behaviours of the proposed model of the Bertrand game. We demonstrate that some parameters of the model have great influence on the stability of Nash equilibrium and on the speed of convergence to Nash equilibrium. The chaotic behaviour of the model has been controlled by using feedback control method.
Dynamical Systems in Psychology: Linguistic Approaches
NASA Astrophysics Data System (ADS)
Sulis, William
Major goals for psychoanalysis and psychology are the description, analysis, prediction, and control of behaviour. Natural language has long provided the medium for the formulation of our theoretical understanding of behavior. But with the advent of nonlinear dynamics, a new language has appeared which offers promise to provide a quantitative theory of behaviour. In this paper, some of the limitations of natural and formal languages are discussed. Several approaches to understanding the links between natural and formal languages, as applied to the study of behavior, are discussed. These include symbolic dynamics, Moore's generalized shifts, Crutchfield's ɛ machines, and dynamical automata.
The experimental identification of magnetorheological dampers and evaluation of their controllers
NASA Astrophysics Data System (ADS)
Metered, H.; Bonello, P.; Oyadiji, S. O.
2010-05-01
Magnetorheological (MR) fluid dampers are semi-active control devices that have been applied over a wide range of practical vibration control applications. This paper concerns the experimental identification of the dynamic behaviour of an MR damper and the use of the identified parameters in the control of such a damper. Feed-forward and recurrent neural networks are used to model both the direct and inverse dynamics of the damper. Training and validation of the proposed neural networks are achieved by using the data generated through dynamic tests with the damper mounted on a tensile testing machine. The validation test results clearly show that the proposed neural networks can reliably represent both the direct and inverse dynamic behaviours of an MR damper. The effect of the cylinder's surface temperature on both the direct and inverse dynamics of the damper is studied, and the neural network model is shown to be reasonably robust against significant temperature variation. The inverse recurrent neural network model is introduced as a damper controller and experimentally evaluated against alternative controllers proposed in the literature. The results reveal that the neural-based damper controller offers superior damper control. This observation and the added advantages of low-power requirement, extended service life of the damper and the minimal use of sensors, indicate that a neural-based damper controller potentially offers the most cost-effective vibration control solution among the controllers investigated.
Social and economic influences on human behavioural response in an emerging epidemic
NASA Astrophysics Data System (ADS)
Phang, P.; Wiwatanapataphee, B.; Wu, Y. H.
2017-10-01
The human behavioural changes have been recognized as an important key in shaping the disease spreading and determining the success of control measures in the course of epidemic outbreaks. However, apart from cost-benefit considerations, in reality, people are heterogeneous in their preferences towards adopting certain protective actions to reduce their risk of infection, and social norms have a function in individuals’ decision making. Here, we studied the interplay between the epidemic dynamics, imitation dynamics and the heterogeneity of individual protective behavioural response under the considerations of both economic and social factors, with a simple mathematical compartmental model and multi-population game dynamical replicator equations. We assume that susceptibles in different subpopulations have different preferences in adopting either normal or altered behaviour. By incorporating both intra- and inter-group social pressure, the outcome of the strategy distribution depends on the initial proportion of susceptible with normal and altered strategies in both subpopulations. The increase of additional cost to susceptible with altered behaviour will discourage people to take up protective actions and hence results in higher epidemic final size. For a specific cost of altered behaviour, the social group pressure could be a “double edge sword”, though. We conclude that the interplays between individual protective behaviour adoption, imitation and epidemic dynamics are necessarily complex if both economic and social factors act on populations with existing preferences.
USDA-ARS?s Scientific Manuscript database
Diptera Tephritidae are an enormous threat to fruit and vegetable production throughout the world, causing both quantitative and qualitative losses. Investigating mating behavioural sequences could help to unravel mate choice dynamics, adding useful information to build behaviour-based control strat...
Modelling the influence of human behaviour on the spread of infectious diseases: a review.
Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A A
2010-09-06
Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps.
Modelling the influence of human behaviour on the spread of infectious diseases: a review
Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A. A.
2010-01-01
Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps. PMID:20504800
Modeling of the dynamic response of a Francis turbine
NASA Astrophysics Data System (ADS)
Pennacchi, Paolo; Chatterton, Steven; Vania, Andrea
2012-05-01
The paper presents a detailed numerical model of the dynamic behaviour of a Francis turbine installed in a hydroelectric plant. The model considers in detail the Francis turbine with all the electromechanical subsystems, such as the main speed governor, the controller and the servo actuator of the turbine distributor, and the electrical generator. In particular, it reproduces the effects of pipeline elasticity in the penstock, the water inertia and the water compressibility on the turbine behaviour. The dynamics of the surge tank on low frequency pressure waves is also modelled together with the main governor speed loop and the position controllers of the distributor actuator and of the hydraulic electrovalve. Model validation has been made by means of experimental data of a 75 MW—470 m hydraulic head—Francis turbine acquired during some starting tests after a partial revamping, which also involved the control system of the distributor.
Disorder-mediated crowd control in an active matter system
NASA Astrophysics Data System (ADS)
Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio
2016-03-01
Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium.
Strategic roles for behaviour change communication in a changing malaria landscape.
Koenker, Hannah; Keating, Joseph; Alilio, Martin; Acosta, Angela; Lynch, Matthew; Nafo-Traore, Fatoumata
2014-01-02
Strong evidence suggests that quality strategic behaviour change communication (BCC) can improve malaria prevention and treatment behaviours. As progress is made towards malaria elimination, BCC becomes an even more important tool. BCC can be used 1) to reach populations who remain at risk as transmission dynamics change (e.g. mobile populations), 2) to facilitate identification of people with asymptomatic infections and their compliance with treatment, 3) to inform communities of the optimal timing of malaria control interventions, and 4) to explain changing diagnostic concerns (e.g. increasing false negatives as parasite density and multiplicity of infections fall) and treatment guidelines. The purpose of this commentary is to highlight the benefits and value for money that BCC brings to all aspects of malaria control, and to discuss areas of operations research needed as transmission dynamics change.
Strategic roles for behaviour change communication in a changing malaria landscape
2014-01-01
Strong evidence suggests that quality strategic behaviour change communication (BCC) can improve malaria prevention and treatment behaviours. As progress is made towards malaria elimination, BCC becomes an even more important tool. BCC can be used 1) to reach populations who remain at risk as transmission dynamics change (e.g. mobile populations), 2) to facilitate identification of people with asymptomatic infections and their compliance with treatment, 3) to inform communities of the optimal timing of malaria control interventions, and 4) to explain changing diagnostic concerns (e.g. increasing false negatives as parasite density and multiplicity of infections fall) and treatment guidelines. The purpose of this commentary is to highlight the benefits and value for money that BCC brings to all aspects of malaria control, and to discuss areas of operations research needed as transmission dynamics change. PMID:24383426
A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles.
Li, Wenbin; Xu, Weilin; Wang, Hao; Wang, Xin
2016-01-01
The thermal and moisture behaviour of the microclimate of textiles is crucial in determining the physiological comfort of apparel, but it has not been investigated sufficiently due to the lack of particular evaluation techniques. Based on sensing, temperature controlling and wireless communicating technology, a specially designed tester has been developed in this study to evaluate the thermal and moisture behaviour of the surface of textiles in moving status. A temperature acquisition system and a temperature controllable hotplate have been established to test temperature and simulate the heat of human body, respectively. Relative humidity of the surface of fabric in the dynamic process has been successfully tested through sensing. Meanwhile, wireless communication technology was applied to transport the acquired data of temperature and humidity to computer for further processing. Continuous power supply was achieved by intensive contact between an elastic copper plate and copper ring on the rotating shaft. This tester provides the platform to evaluate the thermal and moisture behaviour of textiles. It enables users to conduct a dynamic analysis on the temperature and humidity together with the thermal and moisture transport behaviour of the surface of fabric in moving condition. Development of this tester opens the door of investigation on the micro-climate of textiles in real time service, and eventually benefits the understanding of the sensation comfort and wellbeing of apparel wearers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modelling and analysis of gene regulatory network using feedback control theory
NASA Astrophysics Data System (ADS)
El-Samad, H.; Khammash, M.
2010-01-01
Molecular pathways are a part of a remarkable hierarchy of regulatory networks that operate at all levels of organisation. These regulatory networks are responsible for much of the biological complexity within the cell. The dynamic character of these pathways and the prevalence of feedback regulation strategies in their operation make them amenable to systematic mathematical analysis using the same tools that have been used with success in analysing and designing engineering control systems. In this article, we aim at establishing this strong connection through various examples where the behaviour exhibited by gene networks is explained in terms of their underlying control strategies. We complement our analysis by a survey of mathematical techniques commonly used to model gene regulatory networks and analyse their dynamic behaviour.
Impact of individual behaviour change on the spread of emerging infectious diseases.
Yan, Q L; Tang, S Y; Xiao, Y N
2018-03-15
Human behaviour plays an important role in the spread of emerging infectious diseases, and understanding the influence of behaviour changes on epidemics can be key to improving control efforts. However, how the dynamics of individual behaviour changes affects the development of emerging infectious disease is a key public health issue. To develop different formula for individual behaviour change and introduce how to embed it into a dynamic model of infectious diseases, we choose A/H1N1 and Ebola as typical examples, combined with the epidemic reported cases and media related news reports. Thus, the logistic model with the health belief model is used to determine behaviour decisions through the health belief model constructs. Furthermore, we propose 4 candidate infectious disease models without and with individual behaviour change and use approximate Bayesian computation based on sequential Monte Carlo method for model selection. The main results indicate that the classical compartment model without behaviour change and the model with average rate of behaviour change depicted by an exponential function could fit the observed data best. The results provide a new way on how to choose an infectious disease model to predict the disease prevalence trend or to evaluate the influence of intervention measures on disease control. However, sensitivity analyses indicate that the accumulated number of hospital notifications and deaths could be largely reduced as the rate of behaviour change increases. Therefore, in terms of mitigating emerging infectious diseases, both media publicity focused on how to guide people's behaviour change and positive responses of individuals are critical. Copyright © 2017 John Wiley & Sons, Ltd.
Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics
Im, Mi-Young; Lee, Ki-Suk; Vogel, Andreas; ...
2014-12-17
The non-trivial spin configuration in a magnetic vortex is a prototype for fundamental studies of nanoscale spin behaviour with potential applications in magnetic information technologies. Arrays of magnetic vortices interfacing with perpendicular thin films have recently been proposed as enabler for skyrmionic structures at room temperature, which has opened exciting perspectives on practical applications of skyrmions. An important milestone for achieving not only such skyrmion materials but also general applications of magnetic vortices is a reliable control of vortex structures. However, controlling magnetic processes is hampered by stochastic behaviour, which is associated with thermal fluctuations in general. Here we showmore » that the dynamics in the initial stages of vortex formation on an ultrafast timescale plays a dominating role for the stochastic behaviour observed at steady state. Our results show that the intrinsic stochastic nature of vortex creation can be controlled by adjusting the interdisk distance in asymmetric disk arrays.« less
Management of complex dynamical systems
NASA Astrophysics Data System (ADS)
MacKay, R. S.
2018-02-01
Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.
Dynamics of hemispheric specialization and integration in the context of motor control.
Serrien, Deborah J; Ivry, Richard B; Swinnen, Stephan P
2006-02-01
Behavioural and neurophysiological evidence convincingly establish that the left hemisphere is dominant for motor skills that are carried out with either hand or those that require bimanual coordination. As well as this prioritization, we argue that specialized functions of the right hemisphere are also indispensable for the realization of goal-directed behaviour. As such, lateralization of motor function is a dynamic and multifaceted process that emerges across different timescales and is contingent on task- and performer-related determinants.
Control dynamics of interaction quenched ultracold bosons in periodically driven lattices
NASA Astrophysics Data System (ADS)
Mistakidis, Simeon; Schmelcher, Peter; Group of Fundamental Processes in Quantum Physics Team
2016-05-01
The out-of-equilibrium dynamics of ultracold bosons following an interaction quench upon a periodically driven optical lattice is investigated. It is shown that an interaction quench triggers the inter-well tunneling dynamics, while for the intra-well dynamics breathing and cradle-like processes can be generated. In particular, the occurrence of a resonance between the cradle and tunneling modes is revealed. On the other hand, the employed periodic driving enforces the bosons in the mirror wells to oscillate out-of-phase and to exhibit a dipole mode, while in the central well the cloud experiences a breathing mode. The dynamical behaviour of the system is investigated with respect to the driving frequency revealing a resonant behaviour of the intra-well dynamics. To drive the system in a highly non-equilibrium state an interaction quench upon the driving is performed giving rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result of the quench the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Kralj-Fiser, Simona; Scheiber, Isabella B R; Kotrschal, Kurt; Weiss, Brigitte M; Wascher, Claudia A F
2010-06-16
Stress responses involve autonomic, endocrine and behavioural changes. Each of these responses has been studied thoroughly in avian species, but hardly in an integrative way, in free-living birds. This is necessary to reveal the temporal dynamics of the stress response. Towards that goal, we recorded heart rate (HR) and behaviour in free-ranging male greylag geese (Anser anser) simultaneously over 2h. The geese were subjected to (a) unmanipulated control condition, (b) capture, handling and injection of ACTH, and (c) capture, handling and injection of a saline solution (SHAM). Fecal samples for the non-invasive determination of immuno-reactive glucocorticoid metabolite (BM) concentrations were collected for 7h thereafter. The SHAM control caused a significant BM increase, a transient increase in HR, an initial increase of preening behaviour and a delay in feeding. ACTH treatment, relative to SHAM, produced significantly higher BM concentrations, and activation of "displacement behaviours" such as wing flapping, body shaking and preening. Also, feeding activity as well as resting was postponed and/or lower for a longer period of time after ACTH than after SHAM. ACTH injection had a greater effect than SHAM injection on HR increase in the first hour, but particularly on HR decline in the second hour following the injection. Hence, glucocorticoids had time- and dose-dependent stimulatory and suppressive effects on cardiovascular activity and behaviour. HR dynamics after ACTH actually matched with behavioural dynamics: both were first enhanced and later suppressed, which is in alignment with adaptive stress management involving the fight-flight response and recovery from stress, respectively. (c) 2010 Elsevier Inc. All rights reserved.
Canalization and Control in Automata Networks: Body Segmentation in Drosophila melanogaster
Marques-Pita, Manuel; Rocha, Luis M.
2013-01-01
We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level). This way, our approach provides a method to link micro- to macro-level dynamics – a crux of complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the dynamics rather than in the structure of networks), identification of minimal conditions and critical nodes to control the convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought), the identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized) control that orchestrates cellular activity – with the ultimate goal of explaining how do cells and tissues ‘compute’. PMID:23520449
Canalization and control in automata networks: body segmentation in Drosophila melanogaster.
Marques-Pita, Manuel; Rocha, Luis M
2013-01-01
We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level). This way, our approach provides a method to link micro- to macro-level dynamics--a crux of complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the dynamics rather than in the structure of networks), identification of minimal conditions and critical nodes to control the convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought), the identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized) control that orchestrates cellular activity--with the ultimate goal of explaining how do cells and tissues 'compute'.
Using Movies to Analyse Gene Circuit Dynamics in Single Cells
Locke, James CW; Elowitz, Michael B
2010-01-01
Preface Many bacterial systems rely on dynamic genetic circuits to control critical processes. A major goal of systems biology is to understand these behaviours in terms of individual genes and their interactions. However, traditional techniques based on population averages wash out critical dynamics that are either unsynchronized between cells or driven by fluctuations, or ‘noise,’ in cellular components. Recently, the combination of time-lapse microscopy, quantitative image analysis, and fluorescent protein reporters has enabled direct observation of multiple cellular components over time in individual cells. In conjunction with mathematical modelling, these techniques are now providing powerful insights into genetic circuit behaviour in diverse microbial systems. PMID:19369953
ERIC Educational Resources Information Center
Rogers, William A.
This book explores the relationship between effective teaching, behavior management, discipline, and colleague support. After an introduction, "I Never Thought I'd Become a Teacher," eight chapters include: (1) "The Dynamics of Classroom Behavior" (how student and teacher behavior affect each other, and control for the purpose…
Todorović, Dajana; Marković, Tamara; Prolić, Zlatko; Mihajlović, Spomenko; Rauš, Snežana; Nikolić, Ljiljana; Janać, Branka
2013-01-01
There is considerable concern about potential effects associated with exposure to magnetic fields on organisms. Therefore, duration of pupa-adult development and motor behaviour of adults were analyzed in Tenebrio obscursus and T. molitor after exposure to static magnetic field (50 mT). The experimental groups were: Control (kept 5 m from the magnets), groups which pupae and adults were placed closer to the North pole, or closer to the South pole of magnetic dipole. The pupae were exposed to the magnetic field until the moment of adult eclosion. The pupa-adult development dynamics were recorded daily. Subsequently, behaviour (distance travelled, average speed and immobility) of adults exposed to the magnetic field was monitored in a circular open field arena. Static magnetic field did not affect pupa-adult developmental dynamic of examined Tenebrio species. Exposure to magnetic field did not significantly change motor behaviour of T. obscurus adults. The changes in the motor behaviour of T. molitor induced by static magnetic field were opposite in two experimental groups developed closer to the North pole or closer to the South pole of magnetic dipole. Static magnetic field (50 mT) did not affect on pupa-adult development dynamic of two examined Tenebrio species, but modulated their motor behaviour.
Modelling Parasite Transmission in a Grazing System: The Importance of Host Behaviour and Immunity
Fox, Naomi J.; Marion, Glenn; Davidson, Ross S.; White, Piran C. L.; Hutchings, Michael R.
2013-01-01
Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts’ immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites’ free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to fully understand transmission dynamics. Understanding of both physiological and behavioural defence strategies will aid the development of novel approaches for control. PMID:24223133
Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition
NASA Astrophysics Data System (ADS)
Siegel, Stefan G.; Seidel, J.?Rgen; Fagley, Casey; Luchtenburg, D. M.; Cohen, Kelly; McLaughlin, Thomas
For the systematic development of feedback flow controllers, a numerical model that captures the dynamic behaviour of the flow field to be controlled is required. This poses a particular challenge for flow fields where the dynamic behaviour is nonlinear, and the governing equations cannot easily be solved in closed form. This has led to many versions of low-dimensional modelling techniques, which we extend in this work to represent better the impact of actuation on the flow. For the benchmark problem of a circular cylinder wake in the laminar regime, we introduce a novel extension to the proper orthogonal decomposition (POD) procedure that facilitates mode construction from transient data sets. We demonstrate the performance of this new decomposition by applying it to a data set from the development of the limit cycle oscillation of a circular cylinder wake simulation as well as an ensemble of transient forced simulation results. The modes obtained from this decomposition, which we refer to as the double POD (DPOD) method, correctly track the changes of the spatial modes both during the evolution of the limit cycle and when forcing is applied by transverse translation of the cylinder. The mode amplitudes, which are obtained by projecting the original data sets onto the truncated DPOD modes, can be used to construct a dynamic mathematical model of the wake that accurately predicts the wake flow dynamics within the lock-in region at low forcing amplitudes. This low-dimensional model, derived using nonlinear artificial neural network based system identification methods, is robust and accurate and can be used to simulate the dynamic behaviour of the wake flow. We demonstrate this ability not just for unforced and open-loop forced data, but also for a feedback-controlled simulation that leads to a 90% reduction in lift fluctuations. This indicates the possibility of constructing accurate dynamic low-dimensional models for feedback control by using unforced and transient forced data only.
Suppression of chaos via control of energy flow
NASA Astrophysics Data System (ADS)
Guo, Shengli; Ma, Jun; Alsaedi, Ahmed
2018-03-01
Continuous energy supply is critical and important to support oscillating behaviour; otherwise, the oscillator will die. For nonlinear and chaotic circuits, enough energy supply is also important to keep electric devices working. In this paper, Hamilton energy is calculated for dimensionless dynamical system (e.g., the chaotic Lorenz system) using Helmholtz's theorem. The Hamilton energy is considered as a new variable and then the dynamical system is controlled by using the scheme of energy feedback. It is found that chaos can be suppressed even when intermittent feedback scheme is applied. This scheme is effective to control chaos and to stabilise other dynamical systems.
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-01
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-20
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.
An adaptive control system for a shell-and-tube heat exchanger
NASA Astrophysics Data System (ADS)
Skorospeshkin, M. V.; Sukhodoev, M. S.; Skorospeshkin, V. N.; Rymashevskiy, P. O.
2017-01-01
This article suggests an adaptive control system for a hydrocarbon perspiration temperature control. This control system consists of a PI-controller and a pseudolinear compensating device that modifies control system dynamic properties. As a result, the behaviour research of the developed temperature control system has been undertaken. This article shows high effectiveness of the represented adaptive control system during changing control object parameters.
A gradient field defeats the inherent repulsion between magnetic nanorods
Gu, Yu; Burtovyy, Ruslan; Custer, John; Luzinov, Igor; Kornev, Konstantin G.
2014-01-01
When controlling the assembly of magnetic nanorods and chains of magnetic nanoparticles, it is extremely challenging to bring them together side by side while keeping a desired spacing between their axes. We show that this challenge can be successfully resolved by using a non-uniform magnetic field that defeats an inherent repulsion between nanorods. Nickel nanorods were suspended in a viscous film and a non-uniform field was used to control their placement. The in-plane movement of nanorods was tracked with a high-speed camera and a detailed image analysis was conducted to quantitatively characterize the behaviour of the nanorods. The analysis focused on the behaviour of a pair of neighbour nanorods, and a corresponding dynamic model was formulated and investigated. The complex two-dimensional dynamics of a nanorod pair was analysed analytically and numerically, and a phase portrait was constructed. Using this phase portrait, we classified the nanorod behaviour and revealed the experimental conditions in which nanorods could be placed side by side. Dependence of the distance between a pair of neighbour nanorods on physical parameters was analysed. With the aid of the proposed theory, one can build different lattices and control their spacing by applying different field gradients. PMID:26064550
Frederick C. Meinzer; Duncan D. Smith; David R. Woodruff; Danielle E. Marias; Katherine A. McCulloh; Ava R. Howard; Alicia L. Magedman
2017-01-01
Speciesâ differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this...
Nielsen, Emma; Sayal, Kapil; Townsend, Ellen
2017-01-01
Although emotional avoidance may be a critical factor in the pathway from psychological distress to self-injury and/or suicidality, little is known about the relative importance of differing functional coping dynamics and experiential avoidance between people with self-injury histories of differing intent (e.g., Non-Suicidal Self-Injury only vs. Non-Suicidal Self-Injury plus Suicidal Behaviour; NSSI vs. NSSI + SB). A community-based survey (N = 313; female, 81%; ages 16–49 years, M = 19.78, SD = 3.48) explored self-reported experiential avoidance and functional coping dynamics in individuals with (i) no self-injury history (controls); (ii) a history of NSSI only; and (iii) a history of NSSI + SB. Jonckheere-Terpstra trend tests indicated that avoidance coping was higher in the NSSI and NSSI + SB groups than in controls. Emotion regulation was higher in controls than those with a history of self-injury (NSSI and NSSI + SB). Approach and reappraisal coping demonstrated significant ordered effects such that control participants were higher in these coping dynamics than those with a history of NSSI only, who, in turn, were higher than those with a history of NSSI + SB (Control > NSSI > NSSI + SB). Endorsement of the reappraisal/denial facet of experiential avoidance was most pronounced in those with a history of NSSI + SB (Control < NSSI < NSSI + SB). No significant ordered effects were observed for other dimensions of experiential avoidance. Understanding how the endorsement of functional coping dynamics and which components of experiential avoidance vary between groups with differing self-injury intent histories has important implications for treatment planning. PMID:28555056
Nielsen, Emma; Sayal, Kapil; Townsend, Ellen
2017-05-29
Although emotional avoidance may be a critical factor in the pathway from psychological distress to self-injury and/or suicidality, little is known about the relative importance of differing functional coping dynamics and experiential avoidance between people with self-injury histories of differing intent (e.g., Non-Suicidal Self-Injury only vs. Non-Suicidal Self-Injury plus Suicidal Behaviour; NSSI vs. NSSI + SB). A community-based survey (N = 313; female, 81%; ages 16-49 years, M = 19.78, SD = 3.48) explored self-reported experiential avoidance and functional coping dynamics in individuals with (i) no self-injury history (controls); (ii) a history of NSSI only; and (iii) a history of NSSI + SB. Jonckheere-Terpstra trend tests indicated that avoidance coping was higher in the NSSI and NSSI + SB groups than in controls. Emotion regulation was higher in controls than those with a history of self-injury (NSSI and NSSI + SB). Approach and reappraisal coping demonstrated significant ordered effects such that control participants were higher in these coping dynamics than those with a history of NSSI only, who, in turn, were higher than those with a history of NSSI + SB (Control > NSSI > NSSI + SB). Endorsement of the reappraisal/denial facet of experiential avoidance was most pronounced in those with a history of NSSI + SB (Control < NSSI < NSSI + SB). No significant ordered effects were observed for other dimensions of experiential avoidance. Understanding how the endorsement of functional coping dynamics and which components of experiential avoidance vary between groups with differing self-injury intent histories has important implications for treatment planning.
Phase-space dynamics of opposition control in wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Hwang, Yongyun; Ibrahim, Joseph; Yang, Qiang; Doohan, Patrick
2017-11-01
The phase-space dynamics of wall-bounded shear flow in the presence of opposition control is explored by examining the behaviours of a pair of nonlinear equilibrium solutions (exact coherent structures), edge state and life time of turbulence at low Reynolds numbers. While the control modifies statistics and phase-space location of the edge state and the lower-branch equilibrium solution very little, it is also found to regularise the periodic orbit on the edge state by reverting a period-doubling bifurcation. Only the upper-branch equilibrium solution and mean turbulent state are significantly modified by the control, and, in phase space, they gradually approach the edge state on increasing the control gain. It is found that this behaviour results in a significant reduction of the life time of turbulence, indicating that the opposition control significantly increases the probability that the turbulent solution trajectory passes through the edge state. Finally, it is shown that the opposition control increases the critical Reynolds number of the onset of the equilibrium solutions, indicating its capability of transition delay. This work is sponsored by the Engineering and Physical Sciences Research Council (EPSRC) in the UK (EP/N019342/1).
NASA Astrophysics Data System (ADS)
Mahmud, M. N.
2018-04-01
The chaotic dynamical behaviour of thermal convection in an anisotropic porous layer subject to gravity, heated from below and cooled from above, is studied based on theory of dynamical system in the presence of feedback control. The extended Darcy model, which includes the time derivative has been employed in the momentum equation to derive a low dimensional Lorenz-like equation by using Galerkin-truncated approximation. The classical fourth-order Runge-Kutta method is used to obtain the numerical solution in order to exemplify the dynamics of the nonlinear autonomous system. The results show that stability enhancement of chaotic convection is feasible via feedback control.
Review of the dynamic behaviour of sports balls during normal and oblique impacts
NASA Astrophysics Data System (ADS)
Haron, Muhammad Adli; Jailani, Azrol; Abdullah, Nik Ahmad Faris Nik; Ismail, Rafis Suizwan; Rahim, Shayfull Zamree Abd; Ghazali, Mohd Fathullah
2017-09-01
In this paper are review of impact experiment to study the dynamic behaviour of sports ball during oblique and normal impacts. In previous studies, the investigation was done on the dynamic behaviour of a sports ball during oblique and normal impacts from experimental, numerical, and theoretical viewpoints. The experimental results are analysed and compared with the theories, in order to understand the dynamics behaviours based on the phenomenological occurrence. Throughout the experimental studies previously, there are results of dynamics behaviours examined by many researchers such as the coefficient of restitution, tangential coefficient, local deformation, dynamic impact force, contact time, angle of impact (inbound and rebound), spin rate of the ball, ball stiffness and damping coefficient which dependable of the initial or impact velocity.
Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling
NASA Astrophysics Data System (ADS)
Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.
2017-12-01
Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.
Preliminary results from a four-working space, double-acting piston, Stirling engine controls model
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Lorenzo, C. F.
1980-01-01
A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Schönhof, Martin; Kern, Daniel
2002-06-01
The coordinated and efficient distribution of limited resources by individual decisions is a fundamental, unsolved problem. When individuals compete for road capacities, time, space, money, goods, etc, they normally make decisions based on aggregate rather than complete information, such as TV news or stock market indices. In related experiments, we have observed a volatile decision dynamics and far-from-optimal payoff distributions. We have also identified methods of information presentation that can considerably improve the overall performance of the system. In order to determine optimal strategies of decision guidance by means of user-specific recommendations, a stochastic behavioural description is developed. These strategies manage to increase the adaptibility to changing conditions and to reduce the deviation from the time-dependent user equilibrium, thereby enhancing the average and individual payoffs. Hence, our guidance strategies can increase the performance of all users by reducing overreaction and stabilizing the decision dynamics. These results are highly significant for predicting decision behaviour, for reaching optimal behavioural distributions by decision support systems and for information service providers. One of the promising fields of application is traffic optimization.
Dynamic actuation of a novel laser-processed NiTi linear actuator
NASA Astrophysics Data System (ADS)
Pequegnat, A.; Daly, M.; Wang, J.; Zhou, Y.; Khan, M. I.
2012-09-01
A novel laser processing technique, capable of locally modifying the shape memory effect, was applied to enhance the functionality of a NiTi linear actuator. By altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi wire to enable dynamic actuation via controlled resistive heating. Characterizations of the actuator load, displacement and cyclic properties were conducted using a custom-built spring-biased test set-up. Monotonic tensile testing was also implemented to characterize the deformation behaviour of the martensite phase. Observed differences in the deformation behaviour of laser-processed material were found to affect the magnitude of the active strain. Furthermore, residual strain during cyclic actuation testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser-processed actuator will allow for the realization of new applications and improved control methods for shape memory alloys.
A dynamic Monte Carlo study of anomalous current voltage behaviour in organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feron, K., E-mail: Krishna.Feron@csiro.au; Fell, C. J.; CSIRO Energy Flagship, Newcastle, NSW 2300
2014-12-07
We present a dynamic Monte Carlo (DMC) study of s-shaped current-voltage (I-V) behaviour in organic solar cells. This anomalous behaviour causes a substantial decrease in fill factor and thus power conversion efficiency. We show that this s-shaped behaviour is induced by charge traps that are located at the electrode interface rather than in the bulk of the active layer, and that the anomaly becomes more pronounced with increasing trap depth or density. Furthermore, the s-shape anomaly is correlated with interface recombination, but not bulk recombination, thus highlighting the importance of controlling the electrode interface. While thermal annealing is known tomore » remove the s-shape anomaly, the reason has been not clear, since these treatments induce multiple simultaneous changes to the organic solar cell structure. The DMC modelling indicates that it is the removal of aluminium clusters at the electrode, which act as charge traps, that removes the anomalous I-V behaviour. Finally, this work shows that the s-shape becomes less pronounced with increasing electron-hole recombination rate; suggesting that efficient organic photovoltaic material systems are more susceptible to these electrode interface effects.« less
NASA Astrophysics Data System (ADS)
Ibrahim, K. M.; Jamal, R. K.; Ali, F. H.
2018-05-01
The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems’ variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.
Melidis, Christos; Iizuka, Hiroyuki; Marocco, Davide
2018-05-01
In this paper, we present a novel approach to human-robot control. Taking inspiration from behaviour-based robotics and self-organisation principles, we present an interfacing mechanism, with the ability to adapt both towards the user and the robotic morphology. The aim is for a transparent mechanism connecting user and robot, allowing for a seamless integration of control signals and robot behaviours. Instead of the user adapting to the interface and control paradigm, the proposed architecture allows the user to shape the control motifs in their way of preference, moving away from the case where the user has to read and understand an operation manual, or it has to learn to operate a specific device. Starting from a tabula rasa basis, the architecture is able to identify control patterns (behaviours) for the given robotic morphology and successfully merge them with control signals from the user, regardless of the input device used. The structural components of the interface are presented and assessed both individually and as a whole. Inherent properties of the architecture are presented and explained. At the same time, emergent properties are presented and investigated. As a whole, this paradigm of control is found to highlight the potential for a change in the paradigm of robotic control, and a new level in the taxonomy of human in the loop systems.
An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.
Rañó, Iñaki
2012-07-01
Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.
A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion
Song, Seungmoon; Geyer, Hartmut
2015-01-01
Neural networks along the spinal cord contribute substantially to generating locomotion behaviours in humans and other legged animals. However, the neural circuitry involved in this spinal control remains unclear. We here propose a specific circuitry that emphasizes feedback integration over central pattern generation. The circuitry is based on neurophysiologically plausible muscle-reflex pathways that are organized in 10 spinal modules realizing limb functions essential to legged systems in stance and swing. These modules are combined with a supraspinal control layer that adjusts the desired foot placements and selects the leg that is to transition into swing control during double support. Using physics-based simulation, we test the proposed circuitry in a neuromuscular human model that includes neural transmission delays, musculotendon dynamics and compliant foot–ground contacts. We find that the control network is sufficient to compose steady and transitional 3-D locomotion behaviours including walking and running, acceleration and deceleration, slope and stair negotiation, turning, and deliberate obstacle avoidance. The results suggest feedback integration to be functionally more important than central pattern generation in human locomotion across behaviours. In addition, the proposed control architecture may serve as a guide in the search for the neurophysiological origin and circuitry of spinal control in humans. PMID:25920414
Malik, Nadia Shamshad; Ahmad, Mahmood; Minhas, Muhammad Usman
2017-01-01
To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N’ N’-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy (FTIR) revealed successful grafting of components into the polymeric network. Thermal and morphological characterization confirmed the formation of thermodynamically stable hydrogels having porous structure. The pH-responsive behaviour of hydrogels has been documented by swelling dynamics and drug release behaviour in simulated gastrointestinal fluids. Drug release kinetics revealed controlled release behaviour of the antiviral drug acyclovir in developed polymeric network. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels can be used as promising candidates for the design and development of controlled drug-delivery systems. PMID:28245257
Dual aging behaviour in a clay-polymer dispersion.
Zulian, Laura; Augusto de Melo Marques, Flavio; Emilitri, Elisa; Ruocco, Giancarlo; Ruzicka, Barbara
2014-07-07
Clay-polymer compounds have recently attracted increasing attention due to their intriguing physical properties in colloidal science and their rheological non-trivial behaviour in technological applications. Aqueous solutions of Laponite clay spontaneously age from a liquid up to an arrested state of different nature (gel or glass) depending on the colloidal volume fraction and ionic strength. We have investigated, through dynamic light scattering, how the aging dynamics of Laponite dispersions at fixed clay concentration (Cw = 2.0%) is modified by the addition of various amounts of poly(ethylene oxide) (PEO) (CPEO = (0.05 ÷ 0.50) %) at two different molecular weights (Mw = 100 kg mol(-1) and Mw = 200 kg mol(-1)). A surprising and intriguing phenomenon has been observed: the existence of a critical polymer concentration C that discriminates between two different aging dynamics. With respect to pure Laponite systems the aging will be assisted (faster) or hindered (slower) for PEO concentrations respectively lower (CPEO < C) or higher (CPEO > C) than the critical concentration. In this way a control on the aging dynamics of PEO-Laponite systems is obtained. A possible explanation based on the balance of competitive mechanisms related to the progressive saturation of the clay surface by polymers is proposed. This study shows how a real control on the aging speed of the PEO-Laponite system is at hand and renders possible a real control of the complex interparticle interaction potential.
Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice.
Stilling, Roman M; Moloney, Gerard M; Ryan, Feargal J; Hoban, Alan E; Bastiaanssen, Thomaz Fs; Shanahan, Fergus; Clarke, Gerard; Claesson, Marcus J; Dinan, Timothy G; Cryan, John F
2018-05-29
Social behaviour is regulated by activity of host-associated microbiota across multiple species. However, the molecular mechanisms mediating this relationship remain elusive. We therefore determined the dynamic, stimulus-dependent transcriptional regulation of germ-free (GF) and GF mice colonised post weaning (exGF) in the amygdala, a brain region critically involved in regulating social interaction. In GF mice the dynamic response seen in controls was attenuated and replaced by a marked increase in expression of splicing factors and alternative exon usage in GF mice upon stimulation, which was even more pronounced in exGF mice. In conclusion, we demonstrate a molecular basis for how the host microbiome is crucial for a normal behavioural response during social interaction. Our data further suggest that social behaviour is correlated with the gene-expression response in the amygdala, established during neurodevelopment as a result of host-microbe interactions. Our findings may help toward understanding neurodevelopmental events leading to social behaviour dysregulation, such as those found in autism spectrum disorders (ASDs). © 2018, Stilling et al.
Analysis and control of the dynamical response of a higher order drifting oscillator
Páez Chávez, Joseph; Pavlovskaia, Ekaterina; Wiercigroch, Marian
2018-01-01
This paper studies a position feedback control strategy for controlling a higher order drifting oscillator which could be used in modelling vibro-impact drilling. Special attention is given to two control issues, eliminating bistability and suppressing chaos, which may cause inefficient and unstable drilling. Numerical continuation methods implemented via the continuation platform COCO are adopted to investigate the dynamical response of the system. Our analyses show that the proposed controller is capable of eliminating coexisting attractors and mitigating chaotic behaviour of the system, providing that its feedback control gain is chosen properly. Our investigations also reveal that, when the slider’s property modelling the drilled formation changes, the rate of penetration for the controlled drilling can be significantly improved. PMID:29507508
Analysis and control of the dynamical response of a higher order drifting oscillator
NASA Astrophysics Data System (ADS)
Liu, Yang; Páez Chávez, Joseph; Pavlovskaia, Ekaterina; Wiercigroch, Marian
2018-02-01
This paper studies a position feedback control strategy for controlling a higher order drifting oscillator which could be used in modelling vibro-impact drilling. Special attention is given to two control issues, eliminating bistability and suppressing chaos, which may cause inefficient and unstable drilling. Numerical continuation methods implemented via the continuation platform COCO are adopted to investigate the dynamical response of the system. Our analyses show that the proposed controller is capable of eliminating coexisting attractors and mitigating chaotic behaviour of the system, providing that its feedback control gain is chosen properly. Our investigations also reveal that, when the slider's property modelling the drilled formation changes, the rate of penetration for the controlled drilling can be significantly improved.
REVIEW: Widespread access to predictive models in the motor system: a short review
NASA Astrophysics Data System (ADS)
Davidson, Paul R.; Wolpert, Daniel M.
2005-09-01
Recent behavioural and computational studies suggest that access to internal predictive models of arm and object dynamics is widespread in the sensorimotor system. Several systems, including those responsible for oculomotor and skeletomotor control, perceptual processing, postural control and mental imagery, are able to access predictions of the motion of the arm. A capacity to make and use predictions of object dynamics is similarly widespread. Here, we review recent studies looking at the predictive capacity of the central nervous system which reveal pervasive access to forward models of the environment.
Control mechanisms for stochastic biochemical systems via computation of reachable sets.
Lakatos, Eszter; Stumpf, Michael P H
2017-08-01
Controlling the behaviour of cells by rationally guiding molecular processes is an overarching aim of much of synthetic biology. Molecular processes, however, are notoriously noisy and frequently nonlinear. We present an approach to studying the impact of control measures on motifs of molecular interactions that addresses the problems faced in many biological systems: stochasticity, parameter uncertainty and nonlinearity. We show that our reachability analysis formalism can describe the potential behaviour of biological (naturally evolved as well as engineered) systems, and provides a set of bounds on their dynamics at the level of population statistics: for example, we can obtain the possible ranges of means and variances of mRNA and protein expression levels, even in the presence of uncertainty about model parameters.
Control mechanisms for stochastic biochemical systems via computation of reachable sets
Lakatos, Eszter
2017-01-01
Controlling the behaviour of cells by rationally guiding molecular processes is an overarching aim of much of synthetic biology. Molecular processes, however, are notoriously noisy and frequently nonlinear. We present an approach to studying the impact of control measures on motifs of molecular interactions that addresses the problems faced in many biological systems: stochasticity, parameter uncertainty and nonlinearity. We show that our reachability analysis formalism can describe the potential behaviour of biological (naturally evolved as well as engineered) systems, and provides a set of bounds on their dynamics at the level of population statistics: for example, we can obtain the possible ranges of means and variances of mRNA and protein expression levels, even in the presence of uncertainty about model parameters. PMID:28878957
Information-educational environment with adaptive control of learning process
NASA Astrophysics Data System (ADS)
Modjaev, A. D.; Leonova, N. M.
2017-01-01
Recent years, a new scientific branch connected with the activities in social sphere management developing intensively and it is called "Social Cybernetics". In the framework of this scientific branch, theory and methods of management of social sphere are formed. Considerable attention is paid to the management, directly in real time. However, the decision of such management tasks is largely constrained by the lack of or insufficiently deep study of the relevant sections of the theory and methods of management. The article discusses the use of cybernetic principles in solving problems of control in social systems. Applying to educational activities a model of composite interrelated objects representing the behaviour of students at various stages of educational process is introduced. Statistical processing of experimental data obtained during the actual learning process is being done. If you increase the number of features used, additionally taking into account the degree and nature of variability of levels of current progress of students during various types of studies, new properties of students' grouping are discovered. L-clusters were identified, reflecting the behaviour of learners with similar characteristics during lectures. It was established that the characteristics of the clusters contain information about the dynamics of learners' behaviour, allowing them to be used in additional lessons. The ways of solving the problem of adaptive control based on the identified dynamic characteristics of the learners are planned.
Ocean acidification alters predator behaviour and reduces predation rate.
Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L
2017-02-01
Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).
Ocean acidification alters predator behaviour and reduces predation rate
Fields, Jennifer B.; Munday, Philip L.
2017-01-01
Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO2) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus. Projected near-future seawater CO2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min−1) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO2 reduced predation rate during predator–prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator–prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator–prey relationship are altered by elevated CO2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. PMID:28148828
Wnt signalling controls the response to mechanical loading during zebrafish joint development
Brunt, Lucy H.; Begg, Katie; Kague, Erika; Cross, Stephen
2017-01-01
Joint morphogenesis requires mechanical activity during development. Loss of mechanical strain causes abnormal joint development, which can impact long-term joint health. Although cell orientation and proliferation are known to shape the joint, dynamic imaging of developing joints in vivo has not been possible in other species. Using genetic labelling techniques in zebrafish we were able, for the first time, to dynamically track cell behaviours in intact moving joints. We identify that proliferation and migration, which contribute to joint morphogenesis, are mechanically controlled and are significantly reduced in immobilised larvae. By comparison with strain maps of the developing skeleton, we identify canonical Wnt signalling as a candidate for transducing mechanical forces into joint cell behaviours. We show that, in the jaw, Wnt signalling is reduced specifically in regions of high strain in response to loss of muscle activity. By pharmacological manipulation of canonical Wnt signalling, we demonstrate that Wnt acts downstream of mechanical activity and is required for joint patterning and chondrocyte maturation. Wnt16, which is also downstream of muscle activity, controls proliferation and migration, but plays no role in chondrocyte intercalation. PMID:28684625
Johnson-Chavarria, Eric M.; Agrawal, Utsav; Tanyeri, Melikhan; Kuhlman, Thomas E.
2014-01-01
We report an automated microfluidic-based platform for single cell analysis that allows for cell culture in free solution with the ability to control the cell growth environment. Using this approach, cells are confined by the sole action of gentle fluid flow, thereby enabling non-perturbative analysis of cell growth away from solid boundaries. In addition, the single cell microbioreactor allows for precise and time-dependent control over cell culture media, with the combined ability to observe the dynamics of non-adherent cells over long time scales. As a proof-of-principle demonstration, we used the platform to observe dynamic cell growth, gene expression, and intracellular diffusion of repressor proteins while precisely tuning the cell growth environment. Overall, this microfluidic approach enables the direct observation of cellular dynamics with exquisite control over environmental conditions, which will be useful for quantifying the behaviour of single cells in well-defined media. PMID:24836754
Development of Nonlinear Flight Mechanical Model of High Aspect Ratio Light Utility Aircraft
NASA Astrophysics Data System (ADS)
Bahri, S.; Sasongko, R. A.
2018-04-01
The implementation of Flight Control Law (FCL) for Aircraft Electronic Flight Control System (EFCS) aims to reduce pilot workload, while can also enhance the control performance during missions that require long endurance flight and high accuracy maneuver. In the development of FCL, a quantitative representation of the aircraft dynamics is needed for describing the aircraft dynamics characteristic and for becoming the basis of the FCL design. Hence, a 6 Degree of Freedom nonlinear model of a light utility aircraft dynamics, also called the nonlinear Flight Mechanical Model (FMM), is constructed. This paper shows the construction of FMM from mathematical formulation, the architecture design of FMM, the trimming process and simulations. The verification of FMM is done by analysis of aircraft behaviour in selected trimmed conditions.
Reinforcement learning or active inference?
Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J
2009-07-29
This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.
Controlling wetting and self-assembly dynamics by tailored hydrophobic and oleophobic surfaces.
Miele, Ermanno; Malerba, Mario; Dipalo, Michele; Rondanina, Eliana; Toma, Andrea; De Angelis, Francesco
2014-06-25
Tailored hydrophobic and oleophobic surfaces are exploited for controlling the wetting behaviour and evaporation process of solution dropped on them. This enables molecules and nano-objects that are dissolved in water or organic solvents to be delivered and arranged in a well-defined 2D layout. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yoon, T; Shin, D-M; Kim, S; Lee, S; Lee, T G; Kim, K
2017-04-01
We investigated the temperature-dependent locomotion of Caenorhabditis elegans by using the mobile phone-based microscope. We developed the customized imaging system with mini incubator and smartphone to effectively control the thermal stimulation for precisely observing the temperature-dependent locomotory behaviours of C. elegans. Using the mobile phone-based microscope, we successfully followed the long-term progress of specimens of C. elegans in real time as they hatched and explored their temperature-dependent locomotory behaviour. We are convinced that the mobile phone-based microscope is a useful device for real time and long-term observations of biological samples during incubation, and can make it possible to carry out live observations via wireless communications regardless of location. In addition, this microscope has the potential for widespread use owing to its low cost and compact design. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Beekman, Janine B; Ferrer, Rebecca A; Klein, William M P; Persky, Susan
2016-01-01
Weight-based discrimination negatively influences health, potentially via increased willingness to engage in unhealthful behaviours. This study examines whether the provision of genomic obesity information in a clinical context can lead to less willingness to engage in unhealthy eating and alcohol consumption through a mediated process including reduced perceptions of blame and discrimination. A total of 201 overweight or obese women aged 20-50 interacted with a virtual physician in a simulated clinical primary care environment, which included physician-delivered information that emphasised either genomic or behavioural underpinnings of weight and weight loss. Perceived blame and weight discrimination from the doctor, and willingness to eat unhealthy foods and consume alcohol. Controlling for BMI and race, participants who received genomic information perceived less blame from the doctor than participants who received behavioural information. In a serial multiple mediation model, reduced perceived blame was associated with less perceived discrimination, and in turn, lower willingness to eat unhealthy foods and drink alcohol. Providing patients with genomic information about weight and weight loss may positively influence interpersonal dynamics between patients and providers by reducing perceived blame and perceived discrimination. These improved dynamics, in turn, positively influence health cognitions.
2007-09-01
behaviour based on past experience of interacting with the operator), and mobile (i.e., can move themselves from one machine to another). Edwards argues that...Sofge, D., Bugajska, M., Adams, W., Perzanowski, D., and Schultz, A. (2003). Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots...based architecture can provide a natural and scalable approach to implementing a multimodal interface to control mobile robots through dynamic
Focal adhesion kinase (FAK) perspectives in mechanobiology: implications for cell behaviour.
Tomakidi, Pascal; Schulz, Simon; Proksch, Susanne; Weber, Wilfried; Steinberg, Thorsten
2014-09-01
Mechanobiology is a scientific interface discipline emerging from engineering and biology. With regard to tissue-regenerative cell-based strategies, mechanobiological concepts, including biomechanics as a target for cell and human mesenchymal stem cell behaviour, are on the march. Based on the periodontium as a paradigm, this mini-review discusses the key role of focal-adhesion kinase (FAK) in mechanobiology, since it is involved in mediating the transformation of environmental biomechanical signals into cell behavioural responses via mechanotransducing signalling cascades. These processes enable cells to adjust quickly to environmental cues, whereas adjustment itself relies on the specific intramolecular phosphorylation of FAK tyrosine residues and the multiple interactions of FAK with distinct partners. Furthermore, interaction-triggered mechanotransducing pathways govern the dynamics of focal adhesion sites and cell behaviour. Facets of behaviour not only include cell spreading and motility, but also proliferation, differentiation and apoptosis. In translational terms, identified and characterized biomechanical parameters can be incorporated into innovative concepts of cell- and tissue-tailored clinically applied biomaterials controlling cell behaviour as desired.
Measuring energetics and behaviour using accelerometry in cane toads Bufo marinus.
Halsey, Lewis G; White, Craig R
2010-04-21
Cane toads Bufo marinus were introduced to Australia as a control agent but now have a rapidly progressing invasion front and damage new habitats they enter. Predictive models that can give expansion rates as functions of energy supply and feeding ground distribution could help to maximise control efficiency but to date no study has measured rates of field energy expenditure in an amphibian. In the present study we used the accelerometry technique to generate behavioural time budgets and, through the derivation of ODBA (overall dynamic body acceleration), to obtain estimates of energetics in free ranging cane toads. This represents the first time that accelerometers have been used to not only quantify the behaviour of animals but also assign to those behaviours rates of energy expenditure. Firstly, laboratory calibrations between ODBA and metabolic rate were obtained and used to generate a common prediction equation for the subject toads (R(2) = 0.74). Furthermore, acceleration data recorded during different behaviours was studied to ascertain threshold values for objectively defining behaviour categories. Importantly, while subsequent accelerometer field deployments were relatively short they agreed with previous studies on the proportion of time that cane toads locomote yet suggest that the metabolic rate of cane toads in the wild may sometimes be considerably higher than might be assumed based on data for other species.
Willems, A; Embregts, P; Hendriks, L; Bosman, A
2016-02-01
Training support staff in dealing with challenging behaviour in clients with intellectual disabilities (ID) is needed. The goal of this study is to determine which elements need to be incorporated in a training on staff interactions with these clients, building upon a framework and an interpersonal model. As in functional analysis, this study tests the influence of client interpersonal behaviour, three types of staff reactions to challenging behaviour, two types of staff psychological resources and staff team climate on four styles of staff interpersonal behaviour. A total of 318 support staff members completed a questionnaire on staff interpersonal behaviour for 44 clients with ID and challenging behaviour, as well as seven questionnaires on client interpersonal behaviour, staff emotions, attributions, self-efficacy, self-reflection, coping styles and team climate. The influence of these seven factors on four staff interpersonal behaviours was examined using multilevel multiple regression analysis. Friendly-warm and dominant client interpersonal behaviour had a significant positive impact on friendly and assertive control staff behaviour, respectively. Also, there was a strong influence of staff negative and positive emotions, as well as their self-efficacy, on most of the staff interpersonal behaviours. Staff self-reflection, insight and avoidance-focused coping style had an impact on some staff interpersonal behaviours. Staff team climate only predicted higher support-seeking staff behaviour. In conducting a functional analysis of staff interpersonal behaviour, the results of this study can be used both as a framework in staff-client interaction training and in clinical practice for treating challenging behaviour. The emphasis in training and practice should not only be on the bidirectional dynamics of control and affiliation between staff and clients, but also - in order of importance - on the impact of staff emotions, self-efficacy, self-reflection and insight, coping style, team climate and attributions on staff interpersonal behaviour. © 2015 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan
2016-01-01
In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.
Stigmergy based behavioural coordination for satellite clusters
NASA Astrophysics Data System (ADS)
Tripp, Howard; Palmer, Phil
2010-04-01
Multi-platform swarm/cluster missions are an attractive prospect for improved science return as they provide a natural capability for temporal, spatial and signal separation with further engineering and economic advantages. As spacecraft numbers increase and/or the round-trip communications delay from Earth lengthens, the traditional "remote-control" approach begins to break down. It is therefore essential to push control into space; to make spacecraft more autonomous. An autonomous group of spacecraft requires coordination, but standard terrestrial paradigms such as negotiation, require high levels of inter-spacecraft communication, which is nontrivial in space. This article therefore introduces the principals of stigmergy as a novel method for coordinating a cluster. Stigmergy is an agent-based, behavioural approach that allows for infrequent communication with decisions based on local information. Behaviours are selected dynamically using a genetic algorithm onboard. supervisors/ground stations occasionally adjust parameters and disseminate a "common environment" that is used for local decisions. After outlining the system, an analysis of some crucial parameters such as communications overhead and number of spacecraft is presented to demonstrate scalability. Further scenarios are considered to demonstrate the natural ability to deal with dynamic situations such as the failure of spacecraft, changing mission objectives and responding to sudden bursts of high priority tasks.
Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan
2016-01-01
In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743
Nonlinear control of high-frequency phonons in spider silk
NASA Astrophysics Data System (ADS)
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Biologically inspired rate control of chaos.
Olde Scheper, Tjeerd V
2017-10-01
The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.
A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics.
Jaffe, Jules S; Franks, Peter J S; Roberts, Paul L D; Mirza, Diba; Schurgers, Curt; Kastner, Ryan; Boch, Adrien
2017-01-24
Measuring the ever-changing 3-dimensional (3D) motions of the ocean requires simultaneous sampling at multiple locations. In particular, sampling the complex, nonlinear dynamics associated with submesoscales (<1-10 km) requires new technologies and approaches. Here we introduce the Mini-Autonomous Underwater Explorer (M-AUE), deployed as a swarm of 16 independent vehicles whose 3D trajectories are measured near-continuously, underwater. As the vehicles drift with the ambient flow or execute preprogrammed vertical behaviours, the simultaneous measurements at multiple, known locations resolve the details of the flow within the swarm. We describe the design, construction, control and underwater navigation of the M-AUE. A field programme in the coastal ocean using a swarm of these robots programmed with a depth-holding behaviour provides a unique test of a physical-biological interaction leading to plankton patch formation in internal waves. The performance of the M-AUE vehicles illustrates their novel capability for measuring submesoscale dynamics.
The study of micro-inextensible piezoelectric cantilever plate
NASA Astrophysics Data System (ADS)
Chen, L. H.; Xu, J. W.; Zhang, W.
2018-06-01
In this paper, a micro-inextensible piezoelectric cantilever plate is analyzed and its nonlinear dynamic behaviour is studied. The nonlinear oscillation differential equation is established by using Hamilton’s principle with the application of strain gradient theory to consider the size effect, and inextensible theory to consider the large deformation and rotation effect of cantilever plate. Based on MATLAB software, using the Runge-Kuta method, we can obtain the response of the nonlinear oscillation differential equation. The influences of the strain gradient length scale parameter and voltage on the dynamic response of micro piezoelectric cantilever plate are investigated separately. The results confirmed an increase of the stiffness of the system by using the strain gradient theory and the amplitude of the vibration is reduced. The vibration of the system can be controlled by applying an active voltage. The effect of external excitation frequency on nonlinear dynamic behaviour is considered by using Poincare surface of section and diagrams of waveforms, phase and bifurcation.
A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics
NASA Astrophysics Data System (ADS)
Jaffe, Jules S.; Franks, Peter J. S.; Roberts, Paul L. D.; Mirza, Diba; Schurgers, Curt; Kastner, Ryan; Boch, Adrien
2017-01-01
Measuring the ever-changing 3-dimensional (3D) motions of the ocean requires simultaneous sampling at multiple locations. In particular, sampling the complex, nonlinear dynamics associated with submesoscales (<1-10 km) requires new technologies and approaches. Here we introduce the Mini-Autonomous Underwater Explorer (M-AUE), deployed as a swarm of 16 independent vehicles whose 3D trajectories are measured near-continuously, underwater. As the vehicles drift with the ambient flow or execute preprogrammed vertical behaviours, the simultaneous measurements at multiple, known locations resolve the details of the flow within the swarm. We describe the design, construction, control and underwater navigation of the M-AUE. A field programme in the coastal ocean using a swarm of these robots programmed with a depth-holding behaviour provides a unique test of a physical-biological interaction leading to plankton patch formation in internal waves. The performance of the M-AUE vehicles illustrates their novel capability for measuring submesoscale dynamics.
Hoijman, Esteban; Fargas, L; Blader, Patrick; Alsina, Berta
2017-01-01
Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification. DOI: http://dx.doi.org/10.7554/eLife.25543.001 PMID:28537554
Sudarov, Anamaria; Gooden, Frank; Tseng, Debbie; Gan, Wen-Biao; Ross, Margaret Elizabeth
2013-01-01
LIS1 (PAFAH1B1) mutation can impair neuronal migration, causing lissencephaly in humans. LIS1 loss is associated with dynein protein motor dysfunction, and disrupts the actin cytoskeleton through disregulated RhoGTPases. Recently, LIS1 was implicated as an important protein-network interaction node with high-risk autism spectrum disorder genes expressed in the synapse. How LIS1 might participate in this disorder has not been investigated. We examined the role of LIS1 in synaptogenesis of post-migrational neurons and social behaviour in mice. Two-photon imaging of actin-rich dendritic filopodia and spines in vivo showed significant reductions in elimination and turnover rates of dendritic protrusions of layer V pyramidal neurons in adolescent Lis1+/− mice. Lis1+/− filopodia on immature hippocampal neurons in vitro exhibited reduced density, length and RhoA dependent impaired dynamics compared to Lis1+/+. Moreover, Lis1+/− adolescent mice exhibited deficits in social interaction. Lis1 inactivation restricted to the postnatal hippocampus resulted in similar deficits in dendritic protrusion density and social interactions. Thus, LIS1 plays prominently in dendritic filopodia dynamics and spine turnover implicating reduced dendritic spine plasticity as contributing to developmental autistic-like behaviour. PMID:23483716
Venhorst, Andreas; Micklewright, Dominic; Noakes, Timothy D
2017-08-23
The Central Governor Model (CGM) ignited a paradigm shift from concepts of catastrophic failure towards central regulation of exercise performance. However, the CGM has focused on the central integration of afferent feedback in homeostatic control. Accordingly, it neglected the important role of volitional self-regulatory control and the integration of affective components inherently attached to all physiological cues. Another limitation is the large reliance on the Gestalt phenomenon of perceived exertion. Thus, progress towards a comprehensive multidimensional model of perceived fatigability and exercise regulation is needed. Drawing on Gate Control Theory of pain, we propose a three-dimensional framework of centrally regulated and goal-directed exercise behaviour, which differentiates between sensory, affective and cognitive processes shaping the perceptual milieu during exercise. We propose that: (A) perceived mental strain and perceived physical strain are primary determinants of pacing behaviour reflecting sensory-discriminatory processes necessary to align planned behaviour with current physiological state, (B) core affect plays a primary and mediatory role in exercise and performance regulation, and its underlying two dimensions hedonicity and arousal reflect affective-motivational processes triggering approach and avoidance behaviour, and (C) the mindset-shift associated with an action crisis plays a primary role in volitional self-regulatory control reflecting cognitive-evaluative processes between further goal-pursuit and goal-disengagement. The proposed framework has the potential to enrich theory development in centrally regulated and goal-directed exercise behaviour by emphasising the multidimensional dynamic processes underpinning perceived fatigability and provides a practical outline for investigating the complex interplay between the psychophysiological determinants of pacing and performance during prolonged endurance exercise. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Prevalence of overweight in children with bone fractures: a case control study.
Valerio, Giuliana; Gallè, Francesca; Mancusi, Caterina; Di Onofrio, Valeria; Guida, Pasquale; Tramontano, Antonino; Ruotolo, Edoardo; Liguori, Giorgio
2012-10-22
Children's fractures have been enlisted among orthopaedics complaints of childhood obesity. Unhealthy lifestyle behaviours may contribute to increased risk. This study described the prevalence of overweight/obesity in children and adolescents reporting a recent fracture in relation to gender, dynamic of trauma, and site of fracture. Four-hundred-forty-nine children and adolescents with fracture and 130 fracture-free controls were recruited from a large children's hospital. The interaction between overweight and gender, dynamic of trauma, site of fracture was explored. Sports participation, television viewing, and calcium intake were also investigated. Overweight/obesity rate was increased in girls with fracture either at the upper or the lower limb (p= 0.004), while it was increased only in boys with fracture at the lower limb (p <0.02). Overweight/obesity rate did not differ between groups with low or moderate trauma. TV viewing ≥ 2 hrs was more frequent in children with fractures than controls (61.5% vs 34.5%, p =0.015) in the overweight/obese group. The increased prevalence of overweight/obesity in children with fractures is related to gender and site of fracture. Higher levels of sedentary behaviours characterize overweight children reporting fractures.
Prevalence of overweight in children with bone fractures: a case control study
2012-01-01
Background Children's fractures have been enlisted among orthopaedics complaints of childhood obesity. Unhealthy lifestyle behaviours may contribute to increased risk. This study described the prevalence of overweight/obesity in children and adolescents reporting a recent fracture in relation to gender, dynamic of trauma, and site of fracture. Methods Four-hundred-forty-nine children and adolescents with fracture and 130 fracture-free controls were recruited from a large children’s hospital. The interaction between overweight and gender, dynamic of trauma, site of fracture was explored. Sports participation, television viewing, and calcium intake were also investigated. Results Overweight/obesity rate was increased in girls with fracture either at the upper or the lower limb (p= 0.004), while it was increased only in boys with fracture at the lower limb (p <0.02). Overweight/obesity rate did not differ between groups with low or moderate trauma. TV viewing ≥ 2 hrs was more frequent in children with fractures than controls (61.5% vs 34.5%, p =0.015) in the overweight/obese group. Conclusions The increased prevalence of overweight/obesity in children with fractures is related to gender and site of fracture. Higher levels of sedentary behaviours characterize overweight children reporting fractures. PMID:23088687
Complex double-mass dynamic model of rotor on thrust foil gas dynamic bearings
NASA Astrophysics Data System (ADS)
Sytin, A.; Babin, A.; Vasin, S.
2017-08-01
The present paper considers simulation of a rotor’s dynamics behaviour on thrust foil gas dynamic bearings based on simultaneous solution of gas dynamics differential equations, equations of theory of elasticity, motion equations and some additional equations. A double-mass dynamic system was considered during the rotor’s motion simulation which allows not only evaluation of rotor’s dynamic behaviour, but also to evaluate the influence of operational and load parameters on the dynamics of the rotor-bearing system.
Proprioceptive feedback determines visuomotor gain in Drosophila
Bartussek, Jan; Lehmann, Fritz-Olaf
2016-01-01
Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neural activation of wing steering muscles (WSM) within narrow temporal phase bands of the stroke cycle. This phase-locked activation relies on mechanoreceptors distributed over wings and gyroscopic halteres. Here we investigate visual steering performance of tethered flying fruit flies with reduced haltere and wing feedback signalling. Using a flight simulator, we evaluated visual object fixation behaviour, optomotor altitude control and saccadic escape reflexes. The behavioural assays show an antagonistic effect of wing and haltere signalling on visuomotor gain during flight. Compared with controls, suppression of haltere feedback attenuates while suppression of wing feedback enhances the animal’s wing steering range. Our results suggest that the generation of motor commands owing to visual perception is dynamically controlled by proprioception. We outline a potential physiological mechanism based on the biomechanical properties of WSM and sensory integration processes at the level of motoneurons. Collectively, the findings contribute to our general understanding how moving animals integrate sensory information with dynamically changing temporal structure. PMID:26909184
Are there reliable constitutive laws for dynamic friction?
Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew
2015-09-28
Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).
Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex
NASA Astrophysics Data System (ADS)
Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F.; Schnitzer, Mark J.; Anderson, David J.
2017-10-01
All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1+ neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a ‘hard-wired’ system.
Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex.
Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F; Schnitzer, Mark J; Anderson, David J
2017-10-18
All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1 + ) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1 + neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a 'hard-wired' system.
Learning and adaptation: neural and behavioural mechanisms behind behaviour change
NASA Astrophysics Data System (ADS)
Lowe, Robert; Sandamirskaya, Yulia
2018-01-01
This special issue presents perspectives on learning and adaptation as they apply to a number of cognitive phenomena including pupil dilation in humans and attention in robots, natural language acquisition and production in embodied agents (robots), human-robot game play and social interaction, neural-dynamic modelling of active perception and neural-dynamic modelling of infant development in the Piagetian A-not-B task. The aim of the special issue, through its contributions, is to highlight some of the critical neural-dynamic and behavioural aspects of learning as it grounds adaptive responses in robotic- and neural-dynamic systems.
A heuristic mathematical model for the dynamics of sensory conflict and motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1982-01-01
By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstance, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviours. The model admits several possibilities for adaptive mechanisms which do not involve internal model updating. Further systematic efforts to experimentally refine and validate the model are indicated.
Mercken, Liesbeth; Snijders, Tom A B; Steglich, Christian; Vertiainen, Erkki; de Vries, Hein
2010-07-01
The main goal of this study was to examine differences between adolescent male and female friendship networks regarding smoking-based selection and influence processes using newly developed social network analysis methods that allow the current state of continuously changing friendship networks to act as a dynamic constraint for changes in smoking behaviour, while allowing current smoking behaviour to be simultaneously a dynamic constraint for changes in friendship networks. Longitudinal design with four measurements. Nine junior high schools in Finland. A total of 1163 adolescents (mean age = 13.6 years) who participated in the control group of the ESFA (European Smoking prevention Framework Approach) study, including 605 males and 558 females. Smoking behaviour of adolescents, parents, siblings and friendship ties. Smoking-based selection of friends was found in male as well as female networks. However, support for influence among friends was found only in female networks. Furthermore, females and males were both influenced by parental smoking behaviour. In Finnish adolescents, both male and female smokers tend to select other smokers as friends but it appears that only females are influenced to smoke by their peer group. This suggests that prevention campaigns targeting resisting peer pressure may be more effective in adolescent girls than boys.
NASA Astrophysics Data System (ADS)
Gao, Gang; Wang, Jinzhi; Wang, Xianghua
2017-05-01
This paper investigates fault-tolerant control (FTC) for feedback linearisable systems (FLSs) and its application to an aircraft. To ensure desired transient and steady-state behaviours of the tracking error under actuator faults, the dynamic effect caused by the actuator failures on the error dynamics of a transformed model is analysed, and three control strategies are designed. The first FTC strategy is proposed as a robust controller, which relies on the explicit information about several parameters of the actuator faults. To eliminate the need for these parameters and the input chattering phenomenon, the robust control law is later combined with the adaptive technique to generate the adaptive FTC law. Next, the adaptive control law is further improved to achieve the prescribed performance under more severe input disturbance. Finally, the proposed control laws are applied to an air-breathing hypersonic vehicle (AHV) subject to actuator failures, which confirms the effectiveness of the proposed strategies.
Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P
2017-03-01
In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liang, Juhua; Tang, Sanyi; Cheke, Robert A.
2016-07-01
Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel discrete pest population growth models with both impulsive chemical control and the evolution of pesticide resistance. Strong and weak threshold conditions which guarantee the extinction of the pest population, based on the threshold values of the analytical formula for the optimal switching time, were derived. Further, we addressed switching strategies in the light of chosen economic injury levels. Moreover, the effects of the complex dynamical behaviour of the pest population on the pesticide switching times were also studied. The pesticide application period, the evolution of pesticide resistance and the dynamic complexity of the pest population may result in complex outbreak patterns, with consequent effects on the pesticide switching strategies.
Controllability of structural brain networks
NASA Astrophysics Data System (ADS)
Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.
2015-10-01
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.
Connected cruise control: modelling, delay effects, and nonlinear behaviour
NASA Astrophysics Data System (ADS)
Orosz, Gábor
2016-08-01
Connected vehicle systems (CVS) are considered in this paper where vehicles exchange information using wireless vehicle-to-vehicle (V2V) communication. The concept of connected cruise control (CCC) is established that allows control design at the level of individual vehicles while exploiting V2V connectivity. Due to its high level of modularity the proposed design can be applied to large heterogeneous traffic systems. The dynamics of a simple CVS is analysed in detail while taking into account nonlinearities in the vehicle dynamics as well as in the controller. Time delays that arise due to intermittencies and packet drops in the communication channels are also incorporated. The results are summarised using stability charts which allow one to select control gains to maintain stability and ensure disturbance attenuation when the delay is below a critical value.
Kaur, Gurpreet; Costa, Mauro W; Nefzger, Christian M; Silva, Juan; Fierro-González, Juan Carlos; Polo, Jose M; Bell, Toby D M; Plachta, Nicolas
2013-01-01
Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.
NASA Astrophysics Data System (ADS)
Conti, Roberto; Meli, Enrico; Pugi, Luca; Malvezzi, Monica; Bartolini, Fabio; Allotta, Benedetto; Rindi, Andrea; Toni, Paolo
2012-05-01
Scaled roller rigs used for railway applications play a fundamental role in the development of new technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction of the economic investments. The main problem of the scaled roller rig with respect to the full scale ones is the improved complexity due to the scaling factors. For this reason, before building the test rig, the development of a software model of the HIL system can be useful to analyse the system behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced on the rig. The main purpose of this work is the development of a complete model that satisfies the previous requirements and in particular the performance analysis of the controller and of the dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate and realistic wheel-roller contact model also has to be included in the model. The contact model consists of two parts: the contact point detection and the adhesion model. The first part is based on a numerical method described in some previous studies for the wheel-rail case and modified to simulate the three-dimensional contact between revolute surfaces (wheel-roller). The second part consists in the evaluation of the contact forces by means of the Hertz theory for the normal problem and the Kalker theory for the tangential problem. Some numerical tests were performed, in particular low adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets were introduced. The tests were devoted to verify the robustness of control system with respect to some of the more frequent disturbances that may influence the roller rig dynamics. In particular we verified that the wheelset imbalance could significantly influence system performance, and to reduce the effect of this disturbance a multistate filter was designed.
Birds achieve high robustness in uneven terrain through active control of landing conditions.
Birn-Jeffery, Aleksandra V; Daley, Monica A
2012-06-15
We understand little about how animals adjust locomotor behaviour to negotiate uneven terrain. The mechanical demands and constraints of such behaviours likely differ from uniform terrain locomotion. Here we investigated how common pheasants negotiate visible obstacles with heights from 10 to 50% of leg length. Our goal was to determine the neuro-mechanical strategies used to achieve robust stability, and address whether strategies vary with obstacle height. We found that control of landing conditions was crucial for minimising fluctuations in stance leg loading and work in uneven terrain. Variation in touchdown leg angle (θ(TD)) was correlated with the orientation of ground force during stance, and the angle between the leg and body velocity vector at touchdown (β(TD)) was correlated with net limb work. Pheasants actively targeted obstacles to control body velocity and leg posture at touchdown to achieve nearly steady dynamics on the obstacle step. In the approach step to an obstacle, the birds produced net positive limb work to launch themselves upward. On the obstacle, body dynamics were similar to uniform terrain. Pheasants also increased swing leg retraction velocity during obstacle negotiation, which we suggest is an active strategy to minimise fluctuations in peak force and leg posture in uneven terrain. Thus, pheasants appear to achieve robustly stable locomotion through a combination of path planning using visual feedback and active adjustment of leg swing dynamics to control landing conditions. We suggest that strategies for robust stability are context specific, depending on the quality of sensory feedback available, especially visual input.
A network of molecular switches controls the activation of the two-component response regulator NtrC
NASA Astrophysics Data System (ADS)
Vanatta, Dan K.; Shukla, Diwakar; Lawrenz, Morgan; Pande, Vijay S.
2015-06-01
Recent successes in simulating protein structure and folding dynamics have demonstrated the power of molecular dynamics to predict the long timescale behaviour of proteins. Here, we extend and improve these methods to predict molecular switches that characterize conformational change pathways between the active and inactive state of nitrogen regulatory protein C (NtrC). By employing unbiased Markov state model-based molecular dynamics simulations, we construct a dynamic picture of the activation pathways of this key bacterial signalling protein that is consistent with experimental observations and predicts new mutants that could be used for validation of the mechanism. Moreover, these results suggest a novel mechanistic paradigm for conformational switching.
NASA Astrophysics Data System (ADS)
Tchatchueng, Sylvin; Siewe Siewe, Martin; Marie Moukam Kakmeni, François; Tchawoua, Clément
2017-03-01
We investigate the dynamics of a Bose-Einstein condensate with attractive two-body and repulsive three-body interactions between atoms trapped into a moving optical lattice and subjected to some inelastic processes (a linear atomic feeding and two dissipative terms related to dipolar relaxation and three-body recombination). We are interested in finding out how the nonconservative terms mentioned above act on the dynamical behaviour of the condensate, and how they can be used in the control of possible chaotic dynamics. Seeking the wave function of condensate on the form of Bloch waves, we notice that the real amplitude of the condensate is governed by an integro-differential equation. As theoretical tool of prediction of homoclinic and heteroclinic chaos, we use the Melnikov method, which provides two Melnikov functions related to homoclinic and heteroclinic bifurcations. Applying the Melnikov criterion, some regions of instability are plotted in the parameter space and reveal complex dynamics (solitonic stable solutions, weak and strong instabilities leading to collapse, growth-collapse cycles and finally to chaotic oscillations). It comes from some parameter space that coupling the optical intensity and parameters related to atomic feeding and atomic losses (dissipations) as control parameters can help to reduce or annihilate chaotic behaviours of the condensate. Moreover, the theoretical study reveals that there is a certain ratio between the atomic feeding parameter and the parameters related to the dissipation for the occurrence of chaotic oscillations in the dynamics of condensate. The theoretical predictions are verified by numerical simulations (Poincaré sections), and there is a certain reliability of our analytical treatment.
Anelone, Anet J N; Spurgeon, Sarah K
2016-01-01
Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.
Dynamic contraction behaviour of pneumatic artificial muscle
NASA Astrophysics Data System (ADS)
Doumit, Marc D.; Pardoel, Scott
2017-07-01
The development of a dynamic model for the Pneumatic Artificial Muscle (PAM) is an imperative undertaking for understanding and analyzing the behaviour of the PAM as a function of time. This paper proposes a Newtonian based dynamic PAM model that includes the modeling of the muscle geometry, force, inertia, fluid dynamic, static and dynamic friction, heat transfer and valve flow while ignoring the effect of bladder elasticity. This modeling contribution allows the designer to predict, analyze and optimize PAM performance prior to its development. Thus advancing successful implementations of PAM based powered exoskeletons and medical systems. To date, most muscle dynamic properties are determined experimentally, furthermore, no analytical models that can accurately predict the muscle's dynamic behaviour are found in the literature. Most developed analytical models adequately predict the muscle force in static cases but neglect the behaviour of the system in the transient response. This could be attributed to the highly challenging task of deriving such a dynamic model given the number of system elements that need to be identified and the system's highly non-linear properties. The proposed dynamic model in this paper is successfully simulated through MATLAB programing and validated the pressure, contraction distance and muscle temperature with experimental testing that is conducted with in-house built prototype PAM's.
NASA Astrophysics Data System (ADS)
Li, Ni; Huai, Wenqing; Wang, Shaodan
2017-08-01
C2 (command and control) has been understood to be a critical military component to meet an increasing demand for rapid information gathering and real-time decision-making in a dynamically changing battlefield environment. In this article, to improve a C2 behaviour model's reusability and interoperability, a behaviour modelling framework was proposed to specify a C2 model's internal modules and a set of interoperability interfaces based on the C-BML (coalition battle management language). WTA (weapon target assignment) is a typical C2 autonomous decision-making behaviour modelling problem. Different from most WTA problem descriptions, here sensors were considered to be available resources of detection and the relationship constraints between weapons and sensors were also taken into account, which brought it much closer to actual application. A modified differential evolution (MDE) algorithm was developed to solve this high-dimension optimisation problem and obtained an optimal assignment plan with high efficiency. In case study, we built a simulation system to validate the proposed C2 modelling framework and interoperability interface specification. Also, a new optimisation solution was used to solve the WTA problem efficiently and successfully.
Entanglement dynamics in itinerant fermionic and bosonic systems
NASA Astrophysics Data System (ADS)
Pillarishetty, Durganandini
2017-04-01
The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.
Modeling nuclear processes by Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my
2015-04-29
Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox softwaremore » that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.« less
Climate collective risk dilemma with feedback of real-time temperatures
NASA Astrophysics Data System (ADS)
Du, Jinming; Wu, Bin; Wang, Long
2014-09-01
Controlling global warming through collective cooperation is a non-optional threshold public goods game. Previous models assume that the disaster is a sudden event and it happens with a given probability. It is shown that high risk can pave the way for reaching the cooperative target. These models, however, neglect the temperature dynamics, which is influenced by the collective behaviours. Here, we establish a temperature dynamics, and introduce the feedback between human strategy updating and the temperature change: high temperature will discount individuals' payoffs; while sufficient public goods may decrease the ever-rising temperature. We investigate how the temperature is affected by human behaviour and vice versa. It is found that, on the one hand, the temperature can be stabilized to a relatively safe level in the long run. On the other hand, the cooperation can be promoted and be maintained at a higher level, compared with public goods game models with no such feedback.
NASA Astrophysics Data System (ADS)
Barbera, Andrea N.; Bucca, Giuseppe; Corradi, Roberto; Facchinetti, Alan; Mapelli, Ferdinando
2014-05-01
The dynamic behaviour of railway vehicles depends on the wheelset configuration, i.e. solid axle wheelset or independently rotating wheels (IRWs). The self-centring behaviour, peculiar of the solid axle wheelset, makes this kind of wheelset very suitable for tangent track running at low speed: the absence of the self-centring mechanism in the IRWs may lead to anomalous wheel/rail wear, reduced vehicle safety and passengers' discomfort. On the contrary, during negotiation of the sharp curves typical of urban tramways, solid axle wheelsets produce lateral contact forces higher than those of IRWs. This paper illustrates an electronic differential system to be applied to tramcar bogies equipped with wheel-hub motors which allows switching from solid axle in tangent track to IRWs in sharp curve (and vice versa). An electro-mechanical vehicle model is adopted for the design of the control system and for the evaluation of the vehicle dynamic performances.
Numerical Simulation Of Shock Response To Wall Changes In High Speed Intakes
NASA Astrophysics Data System (ADS)
Fincham, J.; Taylor, N. V.
2011-05-01
Hypersonic flight presents a number of challenges to the designer, one of which is the intake behaviour. Minimising drag requires careful positioning of the intake shock structure, while accurate understanding of the dynamic behaviour is required to allow minimisation of margins. In this paper, a two shock external compression intake derived from the Reaction Engines Limited SABRE engine is examined using inviscid axisymmetric CFD analysis to determine the response of the normal shockwave to axial motion of the intake centrebody. An approximately linear relationship between centrebody position and both the normal shock position and additive drag in steady flow is demonstrated. Initial results from an unsteady analysis are also given, which show complex behaviours may be triggered by rapid motion of the centrebody in response to control input.
Embarked electrical network robust control based on singular perturbation model.
Abdeljalil Belhaj, Lamya; Ait-Ahmed, Mourad; Benkhoris, Mohamed Fouad
2014-07-01
This paper deals with an approach of modelling in view of control for embarked networks which can be described as strongly coupled multi-sources, multi-loads systems with nonlinear and badly known characteristics. This model has to be representative of the system behaviour and easy to handle for easy regulators synthesis. As a first step, each alternator is modelled and linearized around an operating point and then it is subdivided into two lower order systems according to the singular perturbation theory. RST regulators are designed for each subsystem and tested by means of a software test-bench which allows predicting network behaviour in both steady and transient states. Finally, the designed controllers are implanted on an experimental benchmark constituted by two alternators supplying loads in order to test the dynamic performances in realistic conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Generalisation benefits of output gating in a model of prefrontal cortex
NASA Astrophysics Data System (ADS)
Kriete, Trent; Noelle, David C.
2011-06-01
The prefrontal cortex (PFC) plays a central role in flexible cognitive control, including the suppression of habitual responding in favour of situation-appropriate behaviours that can be quite novel. PFC provides a kind of working memory, maintaining the rules, goals, and/or actions that are to control behaviour in the current context. For flexible control, these PFC representations must be sufficiently componential to support systematic generalisation to novel situations. The anatomical structure of PFC can be seen as implementing a componential 'slot-filler' structure, with different components encoded over isolated pools of neurons. Previous PFC models have highlighted the importance of a dynamic gating mechanism to selectively update individual 'slot' contents. In this article, we present simulation results that suggest that systematic generalisation also requires an 'output gating' mechanism that limits the influence of PFC on more posterior brain areas to reflect a small number of representational components at any one time.
Active inference and robot control: a case study
Nizard, Ange; Friston, Karl; Pezzulo, Giovanni
2016-01-01
Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours. PMID:27683002
Chaotic Ising-like dynamics in traffic signals
Suzuki, Hideyuki; Imura, Jun-ichi; Aihara, Kazuyuki
2013-01-01
The green and red lights of a traffic signal can be viewed as the up and down states of an Ising spin. Moreover, traffic signals in a city interact with each other, if they are controlled in a decentralised way. In this paper, a simple model of such interacting signals on a finite-size two-dimensional lattice is shown to have Ising-like dynamics that undergoes a ferromagnetic phase transition. Probabilistic behaviour of the model is realised by chaotic billiard dynamics that arises from coupled non-chaotic elements. This purely deterministic model is expected to serve as a starting point for considering statistical mechanics of traffic signals. PMID:23350034
Sea King Mk. 50 Helicopter Sonar Dynamics Study. A Simplified Control Systems Mathematical Model
1979-02-01
cable mode signal (CAB P) comprises: (i) The propotional . trimmed, longitudinal cable angle error signal, THE ERT. THE ERT itself comprises: (a) The...used for body axes in the aircraft. (vi) Because the model has not yet been validated, the behaviour shown still has to be confirmed as an accurate
Dynamic camouflage by Nassau groupers Epinephelus striatus on a Caribbean coral reef.
Watson, A C; Siemann, L A; Hanlon, R T
2014-11-01
This field study describes the camouflage pattern repertoire, associated behaviours and speed of pattern change of Nassau groupers Epinephelus striatus at Little Cayman Island, British West Indies. Three basic camouflaged body patterns were observed under natural conditions and characterized quantitatively. The mean speed of pattern change across the entire body was 4.44 s (range = 0.97-9.87 s); the fastest pattern change as well as contrast change within a fixed pattern occurred within 1 s. Aside from apparent defensive camouflage, E. striatus used camouflage offensively to approach crustacean or fish prey, and three successful predation events were recorded. Although animal camouflage is a widespread tactic, dynamic camouflage is relatively uncommon and has been studied rarely in marine teleosts under natural conditions. The rapid changes observed in E. striatus suggest direct neural control of some skin colouration elements, and comparative studies of functional morphology and behaviour of colour change in other coral-reef teleosts are likely to reveal new mechanisms and adaptations of dynamic colouration. © 2014 The Fisheries Society of the British Isles.
Mutual influence in shared decision making: a collaborative study of patients and physicians.
Lown, Beth A; Clark, William D; Hanson, Janice L
2009-06-01
To explore how patients and physicians describe attitudes and behaviours that facilitate shared decision making. Background Studies have described physician behaviours in shared decision making, explored decision aids for informing patients and queried whether patients and physicians want to share decisions. Little attention has been paid to patients' behaviors that facilitate shared decision making or to the influence of patients and physicians on each other during this process. Qualitative analysis of data from four research work groups, each composed of patients with chronic conditions and primary care physicians. Eighty-five patients and physicians identified six categories of paired physician/patient themes, including act in a relational way; explore/express patient's feelings and preferences; discuss information and options; seek information, support and advice; share control and negotiate a decision; and patients act on their own behalf and physicians act on behalf of the patient. Similar attitudes and behaviours were described for both patients and physicians. Participants described a dynamic process in which patients and physicians influence each other throughout shared decision making. This study is unique in that clinicians and patients collaboratively defined and described attitudes and behaviours that facilitate shared decision making and expand previous descriptions, particularly of patient attitudes and behaviours that facilitate shared decision making. Study participants described relational, contextual and affective behaviours and attitudes for both patients and physicians, and explicitly discussed sharing control and negotiation. The complementary, interactive behaviours described in the themes for both patients and physicians illustrate mutual influence of patients and physicians on each other.
Characteristic Analysis and Experiment of a Dynamic Flow Balance Valve
NASA Astrophysics Data System (ADS)
Bin, Li; Song, Guo; Xuyao, Mao; Chao, Wu; Deman, Zhang; Jin, Shang; Yinshui, Liu
2017-12-01
Comprehensive characteristics of a dynamic flow balance valve of water system were analysed. The flow balance valve can change the drag efficient automatically according to the condition of system, and the effective control flowrate is constant in the range of job pressure. The structure of the flow balance valve was introduced, and the theoretical calculation formula for the variable opening of the valve core was derived. A rated pressure of 20kPa to 200kPa and a rated flowrate of 10m3/h were offered in the numerical work. Static and fluent CFX analyses show good behaviours: through the valve core structure optimization and improve design of the compressive spring, the dynamic flow balance valve can stabilize the flowrate of system evidently. And experiments show that the flow control accuracy is within 5%.
Finite-time consensus for controlled dynamical systems in network
NASA Astrophysics Data System (ADS)
Zoghlami, Naim; Mlayeh, Rhouma; Beji, Lotfi; Abichou, Azgal
2018-04-01
The key challenges in networked dynamical systems are the component heterogeneities, nonlinearities, and the high dimension of the formulated vector of state variables. In this paper, the emphasise is put on two classes of systems in network include most controlled driftless systems as well as systems with drift. For each model structure that defines homogeneous and heterogeneous multi-system behaviour, we derive protocols leading to finite-time consensus. For each model evolving in networks forming a homogeneous or heterogeneous multi-system, protocols integrating sufficient conditions are derived leading to finite-time consensus. Likewise, for the networking topology, we make use of fixed directed and undirected graphs. To prove our approaches, finite-time stability theory and Lyapunov methods are considered. As illustrative examples, the homogeneous multi-unicycle kinematics and the homogeneous/heterogeneous multi-second order dynamics in networks are studied.
Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.
Markowitz, Jared; Krishnaswamy, Pavitra; Eilenberg, Michael F; Endo, Ken; Barnhart, Chris; Herr, Hugh
2011-05-27
Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.
Towards a neuro-computational account of prism adaptation.
Petitet, Pierre; O'Reilly, Jill X; O'Shea, Jacinta
2017-12-14
Prism adaptation has a long history as an experimental paradigm used to investigate the functional and neural processes that underlie sensorimotor control. In the neuropsychology literature, prism adaptation behaviour is typically explained by reference to a traditional cognitive psychology framework that distinguishes putative functions, such as 'strategic control' versus 'spatial realignment'. This theoretical framework lacks conceptual clarity, quantitative precision and explanatory power. Here, we advocate for an alternative computational framework that offers several advantages: 1) an algorithmic explanatory account of the computations and operations that drive behaviour; 2) expressed in quantitative mathematical terms; 3) embedded within a principled theoretical framework (Bayesian decision theory, state-space modelling); 4) that offers a means to generate and test quantitative behavioural predictions. This computational framework offers a route towards mechanistic neurocognitive explanations of prism adaptation behaviour. Thus it constitutes a conceptual advance compared to the traditional theoretical framework. In this paper, we illustrate how Bayesian decision theory and state-space models offer principled explanations for a range of behavioural phenomena in the field of prism adaptation (e.g. visual capture, magnitude of visual versus proprioceptive realignment, spontaneous recovery and dynamics of adaptation memory). We argue that this explanatory framework can advance understanding of the functional and neural mechanisms that implement prism adaptation behaviour, by enabling quantitative tests of hypotheses that go beyond merely descriptive mapping claims that 'brain area X is (somehow) involved in psychological process Y'. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim
2016-12-01
Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.
A malaria transmission-directed model of mosquito life cycle and ecology
2011-01-01
Background Malaria is a major public health issue in much of the world, and the mosquito vectors which drive transmission are key targets for interventions. Mathematical models for planning malaria eradication benefit from detailed representations of local mosquito populations, their natural dynamics and their response to campaign pressures. Methods A new model is presented for mosquito population dynamics, effects of weather, and impacts of multiple simultaneous interventions. This model is then embedded in a large-scale individual-based simulation and results for local elimination of malaria are discussed. Mosquito population behaviours, such as anthropophily and indoor feeding, are included to study their effect upon the efficacy of vector control-based elimination campaigns. Results Results for vector control tools, such as bed nets, indoor spraying, larval control and space spraying, both alone and in combination, are displayed for a single-location simulation with vector species and seasonality characteristic of central Tanzania, varying baseline transmission intensity and vector bionomics. The sensitivities to habitat type, anthropophily, indoor feeding, and baseline transmission intensity are explored. Conclusions The ability to model a spectrum of local vector species with different ecologies and behaviours allows local customization of packages of interventions and exploration of the effect of proposed new tools. PMID:21999664
Fornito, Alex; Bullmore, Edward T
2010-05-01
Resting-state functional MRI (rs-fMRI) is an increasingly popular technique for studying brain dysfunction in psychiatric patients, and is widely assumed to measure intrinsic properties of functional brain organization. Here, we review rs-fMRI studies of psychiatric populations and consider how recent evidence concerning the neuronal basis, behavioural relevance, and the stability of rs-fMRI measures can inform and constrain interpretation of findings obtained using case-control designs. A range of rs-fMRI measures have been applied to different patient groups, although the findings have not always been consistent. The large-scale organization of rs-fMRI networks is robust and reproducible, and rs-fMRI measures show correlations with behavioural phenotypes relevant to psychiatry. However, evidence that such measures are also influenced by preceding psychological states and contexts, as well as individual variations in physiological arousal, may help to explain inconsistent findings in case-control comparisons. rs-fMRI measures show both stable and dynamic properties, the nature of which are only beginning to be uncovered. As such, interpreting significant differences between patients and controls on rs-fMRI measures as evidence for alterations in intrinsic functional brain organization should be done cautiously. Better understanding of the relationship between stable and transient aspects of spontaneous brain dynamics will be necessary to constrain interpretation of case-control studies and inform pathophysiological models.
ERIC Educational Resources Information Center
Brymer, Eric; Davids, Keith
2013-01-01
This paper proposes how the theoretical framework of ecological dynamics can provide an influential model of the learner and the learning process to pre-empt effective behaviour changes. Here we argue that ecological dynamics supports a well-established model of the learner ideally suited to the environmental education context because of its…
Integrating human behaviour dynamics into flood disaster risk assessment
NASA Astrophysics Data System (ADS)
Aerts, J. C. J. H.; Botzen, W. J.; Clarke, K. C.; Cutter, S. L.; Hall, J. W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther, H.
2018-03-01
The behaviour of individuals, businesses, and government entities before, during, and immediately after a disaster can dramatically affect the impact and recovery time. However, existing risk-assessment methods rarely include this critical factor. In this Perspective, we show why this is a concern, and demonstrate that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments. Such multidisciplinary approaches can inform flood-risk management policy development.
Understanding Dynamic Soil Water Repellency and its Hydrological Implications
NASA Astrophysics Data System (ADS)
Beatty, S. M.; Smith, J. E.
2009-05-01
The adverse effects of water repellent soils on vadose zone hydrology are being increasingly identified worldwide in both rural and urban landscapes. Among the affected landscapes are agricultural fields, forests, effluent application sites, golf greens, wetlands, and wildfire sites. In spite of cross-discipline research efforts put forth in recent years, understanding of fundamental parameters controlling soil water behaviour in these systems is lacking. This is due, in part, to inherent complexities of water repellent soil systems and logistical shortcomings of methods commonly used by researchers in-situ and in the lab. As a result, modeling flow in these systems has further proven to be a difficult task. The objectives of our study were 1) to systematically measure and quantify water infiltration and distribution in dynamic water repellent systems and 2) to identify fundamental hydraulic behaviours that lead to the expression of changes in soil water repellency. To achieve this, we combined techniques to elucidate soil- water interactions at a post-wildfire site. Field tests and subsequent lab work reveal essential hydrological information on fire-affected water repellent soils at variable scales and under different burn conditions. Through the use of traditional and newer techniques, our work shows unique and previously unreported behaviour of soil water in these systems. We also address limitations of current field methods used to study repellency and associated infiltration behaviours.
Bullock, R W; Guttridge, T L; Cowx, I G; Elliott, M; Gruber, S H
2015-12-01
Behavioural responses of lemon sharks Negaprion brevirostris to a fin-mounted tag package (CEFAS G6A tri-axial accelerometer with epoxied Sonotronics PT4 acoustic transmitter) were measured in a controlled captive environment (n = 10, total length, LT range 80-140 cm) and in free-ranging sharks upon release (n = 7, LT range 100-160 cm). No changes were detected in behaviour (i.e. swimming speed, tailbeat frequency, time spent resting and frequency of chafing) between control and tagged captive shark trials, suggesting that the tag package itself does not alter behaviour. In the free-ranging trials, an initial period of elevated swimming activity was found in all individuals (represented by overall dynamic body acceleration). Negaprion brevirostris, however, appeared to recover quickly, returning to a steady swimming state between 2 and 35 min after release. Post-release tracking found that all sharks swim immediately for the shoreline and remain within 100 m of shore for prolonged periods. Hence, although N. brevirostris are capable of quick adaptation to stressors and demonstrate rapid recovery in terms of activity, tracking data suggest that they may modify their spatial use patterns post release. This research is important in separating deviation in behaviour due to environmental stressors from artefacts caused by experimental techniques. © 2015 The Fisheries Society of the British Isles.
Liao, C-M; You, S-H; Cheng, Y-H
2015-01-01
Influenza poses a significant public health burden worldwide. Understanding how and to what extent people would change their behaviour in response to influenza outbreaks is critical for formulating public health policies. We incorporated the information-theoretic framework into a behaviour-influenza (BI) transmission dynamics system in order to understand the effects of individual behavioural change on influenza epidemics. We showed that information transmission of risk perception played a crucial role in the spread of health-seeking behaviour throughout influenza epidemics. Here a network BI model provides a new approach for understanding the risk perception spread and human behavioural change during disease outbreaks. Our study allows simultaneous consideration of epidemiological, psychological, and social factors as predictors of individual perception rates in behaviour-disease transmission systems. We suggest that a monitoring system with precise information on risk perception should be constructed to effectively promote health behaviours in preparation for emerging disease outbreaks.
Yordanova, Juliana; Albrecht, Björn; Uebel, Henrik; Kirov, Roumen; Banaschewski, Tobias; Rothenberger, Aribert; Kolev, Vasil
2011-06-01
The maintenance of stable goal-directed behaviour is a hallmark of conscious executive control in humans. Notably, both correct and error human actions may have a subconscious activation-based determination. One possible source of subconscious interference may be the default mode network that, in contrast to attentional network, manifests intrinsic oscillations at very low (<0.1 Hz) frequencies. In the present study, we analyse the time dynamics of performance accuracy to search for multisecond periodic fluctuations of error occurrence. Attentional lapses in attention deficit/hyperactivity disorder are proposed to originate from interferences from intrinsically oscillating networks. Identifying periodic error fluctuations with a frequency<0.1 Hz in patients with attention deficit/hyperactivity disorder would provide a behavioural evidence for such interferences. Performance was monitored during a visual flanker task in 92 children (7- to 16-year olds), 47 with attention deficit/hyperactivity disorder, combined type and 45 healthy controls. Using an original approach, the time distribution of error occurrence was analysed in the frequency and time-frequency domains in order to detect rhythmic periodicity. Major results demonstrate that in both patients and controls, error behaviour was characterized by multisecond rhythmic fluctuations with a period of ∼12 s, appearing with a delay after transition to task. Only in attention deficit/hyperactivity disorder, was there an additional 'pathological' oscillation of error generation, which determined periodic drops of performance accuracy each 20-30 s. Thus, in patients, periodic error fluctuations were modulated by two independent oscillatory patterns. The findings demonstrate that: (i) attentive behaviour of children is determined by multisecond regularities; and (ii) a unique additional periodicity guides performance fluctuations in patients. These observations may re-conceptualize the understanding of attentive behaviour beyond the executive top-down control and may reveal new origins of psychopathological behaviours in attention deficit/hyperactivity disorder.
Chadee, Dave D; Martinez, Raymond
2016-04-01
Within Latin America and the Caribbean region the impact of climate change has been associated with the effects of rainfall and temperature on seasonal outbreaks of dengue but few studies have been conducted on the impacts of climate on the behaviour and ecology of Aedes aegypti mosquitoes.This study was conducted to examine the adaptive behaviours currently being employed by A. aegypti mosquitoes exposed to the force of climate change in LAC countries. The literature on the association between climate and dengue incidence is small and sometimes speculative. Few laboratory and field studies have identified research gaps. Laboratory and field experiments were designed and conducted to better understand the container preferences, climate-associated-adaptive behaviour, ecology and the effects of different temperatures and light regimens on the life history of A. aegypti mosquitoes. A. aegypti adaptive behaviours and changes in container preferences demonstrate how complex dengue transmission dynamics is, in different ecosystems. The use of underground drains and septic tanks represents a major behaviour change identified and compounds an already difficult task to control A. aegypti populations. A business as usual approach will exacerbate the problem and lead to more frequent outbreaks of dengue and chikungunya in LAC countries unless both area-wide and targeted vector control approaches are adopted. The current evidence and the results from proposed transdisciplinary research on dengue within different ecosystems will help guide the development of new vector control strategies and foster a better understanding of climate change impacts on vector-borne disease transmission. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Yagang; Zega, Valentina; Su, Yan; Corigliano, Alberto
2018-07-01
In this work the nonlinear dynamic behaviour under varying temperature conditions of the resonating beams of a differential resonant accelerometer is studied from the theoretical, numerical and experimental points of view. A complete analytical model based on the Hamilton’s principle is proposed to describe the nonlinear behaviour of the resonators under varying temperature conditions and numerical solutions are presented in comparison with experimental data. This provides a novel perspective to examine the relationship between temperature and nonlinearity, which helps predicting the dynamic behaviour of resonant devices and can guide their optimal design.
Mantovani, Franco
2017-06-30
Premature ejaculation (PE) is a sexual disorder characterised by excessive rapidity of orgasm. It is defined as either primary (60%), present since the onset of sexual activity, or secondary (40%), manifesting later in life. To date, dapoxetine is the only preparation approved for the on-demand treatment of PE. However, side effects, costs associated with the treatment of chronic PE, drug dependence and its variable effectiveness leads to a not insignificant drop-out rate. Dynamic rehabilitative/behavioural therapy may be a viable therapeutic option, working alongside pharmacological treatment, as long as the participation and involvement of both the individual and the couple is optimal. 18 patients were enrolled, aged between 25 and 55 (mean: 40), all with primary PE, free of comorbidities and with their partners involved. Six patients were prescribed 30 mg dapoxetine two hours before sexual relations for 3 months (group A); 6 patients began the dynamic rehabilitative treatment (group B); 6 other couples were assigned to pharmacological treatment in association with dynamic rehabilitative behavioural treatment for 3 months (group C). Division of subjects was carried out by simple randomisation, excluding patients with a short frenulum, phimosis, ED, chronic prostatitis or experiencing results from previous treatment. Outcomes of treatment were evaluated at the end of the 3 months of treatment and 3 months after discontinuing treatment. In Group A 75% of patients were cured at 3 months and 25% at 6 months. In Group B 25% patients were cured at 3 months and 25% at 6 months. In Group C 75% of patients were cured 3 months and 50% at 6 months. "Cured" means a Premature Ejaculation Diagnostic Tool (PEDT) score reduced from an average of 12 to an average of 6 and Intravaginal Ejaculation Latency Time (IELT) values from < 1 to > 6 minutes. the integration of pharmacological treatment with dynamic behavioural rehabilitation has the specific aim of optimising and stabilising the results, supporting a more efficient recovery of ejaculatory control. The close involvement of the partner is extremely useful for all results.
Dynamics of a neural system with a multiscale architecture
Breakspear, Michael; Stam, Cornelis J
2005-01-01
The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448
NASA Astrophysics Data System (ADS)
Bocian, Mateusz; Burn, Jeremy F.; Macdonald, John H. G.; Brownjohn, James M. W.
2017-03-01
The subject of this paper pertains to the contentious issue of synchronisation of walking pedestrians to lateral structural motion, which is the mechanism most commonly purported to cause lateral dynamic instability. Tests have been conducted on a custom-built experimental setup consisting of an instrumented treadmill laterally driven by a hydraulic shaking table. The experimental setup can accommodate adaptive pedestrian behaviour via a bespoke speed feedback control mechanism that allows automatic adjustment of the treadmill belt speed to that of the walker. 15 people participated in a total of 137 walking tests during which the treadmill underwent lateral sinusoidal motion. The amplitude of this motion was set from 5 to 15 mm and the frequency was set from 0.54 to 1.1 Hz. A variety of stepping behaviours are identified in the kinematic data obtained using a motion capture system. The most common behaviour is for the timing of footsteps to be essentially unaffected by the structural motion, but a few instances of synchronisation are found. A plausible mechanism comprising an intermediate state between unsynchronised and synchronised pedestrian and structural motion is observed. This mechanism, characterised by a weak form of modulation of the timing of footsteps, could possibly explain the under-estimation of negative damping coefficients in models and laboratory trials compared with previously reported site measurements. The results from tests conducted on the setup for which synchronisation is identified are evaluated in the context of structural stability and related to the predictions of the inverted pendulum model, providing insight into fundamental relations governing pedestrian behaviour on laterally oscillating structures.
NASA Astrophysics Data System (ADS)
Delile, Julien; Herrmann, Matthieu; Peyriéras, Nadine; Doursat, René
2017-01-01
The study of multicellular development is grounded in two complementary domains: cell biomechanics, which examines how physical forces shape the embryo, and genetic regulation and molecular signalling, which concern how cells determine their states and behaviours. Integrating both sides into a unified framework is crucial to fully understand the self-organized dynamics of morphogenesis. Here we introduce MecaGen, an integrative modelling platform enabling the hypothesis-driven simulation of these dual processes via the coupling between mechanical and chemical variables. Our approach relies upon a minimal `cell behaviour ontology' comprising mesenchymal and epithelial cells and their associated behaviours. MecaGen enables the specification and control of complex collective movements in 3D space through a biologically relevant gene regulatory network and parameter space exploration. Three case studies investigating pattern formation, epithelial differentiation and tissue tectonics in zebrafish early embryogenesis, the latter with quantitative comparison to live imaging data, demonstrate the validity and usefulness of our framework.
Hu, Xiaochen; Ackermann, Hermann; Martin, Jason A; Erb, Michael; Winkler, Susanne; Reiterer, Susanne M
2013-12-01
Individual differences in second language (L2) aptitude have been assumed to depend upon a variety of cognitive and personality factors. Especially, the cognitive factor phonological working memory has been conceptualised as language learning device. However, strong associations between phonological working memory and L2 aptitude have been previously found in early-stage learners only, not in advanced learners. The current study aimed at investigating the behavioural and neurobiological predictors of advanced L2 learning. Our behavioural results showed that phonetic coding ability and empathy, but not phonological working memory, predict L2 pronunciation aptitude in advanced learners. Second, functional neuroimaging revealed this behavioural trait to be correlated with hemodynamic responses of the cerebral network of speech motor control and auditory-perceptual areas. We suggest that the acquisition of L2 pronunciation aptitude is a dynamic process, requiring a variety of neural resources at different processing stages over time. Copyright © 2012 Elsevier Inc. All rights reserved.
Ridderinkhof, K. Richard; Elias, William J.; Frysinger, Robert C.; Bashore, Theodore R.; Downs, Kara E.; van Wouwe, Nelleke C.; van den Wildenberg, Wery P. M.
2010-01-01
Past studies show beneficial as well as detrimental effects of subthalamic nucleus deep-brain stimulation on impulsive behaviour. We address this paradox by investigating individuals with Parkinson’s disease treated with subthalamic nucleus stimulation (n = 17) and healthy controls without Parkinson’s disease (n = 17) on performance in a Simon task. In this reaction time task, conflict between premature response impulses and goal-directed action selection is manipulated. We applied distributional analytic methods to separate the strength of the initial response impulse from the proficiency of inhibitory control engaged subsequently to suppress the impulse. Patients with Parkinson’s disease were tested when stimulation was either turned on or off. Mean conflict interference effects did not differ between controls and patients, or within patients when stimulation was on versus off. In contrast, distributional analyses revealed two dissociable effects of subthalamic nucleus stimulation. Fast response errors indicated that stimulation increased impulsive, premature responding in high conflict situations. Later in the reaction process, however, stimulation improved the proficiency with which inhibitory control was engaged to suppress these impulses selectively, thereby facilitating selection of the correct action. This temporal dissociation supports a conceptual framework for resolving past paradoxical findings and further highlights that dynamic aspects of impulse and inhibitory control underlying goal-directed behaviour rely in part on neural circuitry inclusive of the subthalamic nucleus. PMID:20861152
Cellular nanotechnology: making biological interfaces smarter.
Mendes, Paula M
2013-12-21
Recently, there has been an outburst of research on engineered cell-material interfaces driven by nanotechnology and its tools and techniques. This tutorial review begins by providing a brief introduction to nanostructured materials, followed by an overview of the wealth of nanoscale fabrication and analysis tools available for their development. This background serves as the basis for a discussion of early breakthroughs and recent key developments in the endeavour to develop nanostructured materials as smart interfaces for fundamental cellular studies, tissue engineering and regenerative medicine. The review covers three major aspects of nanostructured interfaces - nanotopographical control, dynamic behaviour and intracellular manipulation and sensing - where efforts are continuously being made to further understand cell function and provide new ways to control cell behaviour. A critical reflection of the current status and future challenges are discussed as a conclusion to the review.
Dynamic photosynthesis in different environmental conditions.
Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M
2015-05-01
Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Azami, J; Green, D L; Roberts, M H; Monhemius, R
2001-05-01
We have recently demonstrated (J Physiol 506 (1998) 459) that the dynamic activation of descending inhibition of the nociceptive response of spinal multireceptive cells occurs in the nucleus reticularis gigantocellularis pars alpha (GiA). In the same paper we have shown that Lamina I dorsal horn cells are responsible for activating this inhibition via a pathway which runs in the contralateral dorsolateral funiculus. The effects of dynamically activating this system by noxious stimulation on behavioural responses to noxious stimuli have not been established. Here we demonstrate the effects of GiA on the behavioural response during application of standardized noxious stimuli. As this system is activated in response to noxious stimulation (J Physiol 506 (1998) 459), it is possible that chronic pain states may also activate GiA. We have therefore investigated this possibility in animals following partial sciatic nerve ligation (an animal model of chronic pain; Pain 43 (1990) 205). Male Wistar rats (280-310 g) were anaesthetized with halothane (0.5-2% in O(2)). Guide cannulae for microinjections were stereotaxically placed above GiA. In one group of animals the sciatic nerve was partially ligated. Animals were allowed to recover for 4-6 days. The responses of each animal during the formalin test (Pain 4 (1977) 161) and the tail flick test (Pain 12 (1982) 229) were recorded on different days. Microinjections (0.5 microl) of either gamma-aminobutyric acid (GABA, 200 mM), D-L homocysteic acid (DLH, 25 mM) or 0.9% saline (as control) into GiA were performed during these tests in a randomized, blind manner. In animals without sciatic nerve ligation, microinjection of GABA to GiA did not significantly affect the animal's response during the tail flick test. However microinjection of DLH significantly increased the latency of tail flick from 6.2 +/- 0.8 to 8.4 +/- 0.5 s for up to 15 min (n = 7, P < 0.01, Mann-Whitney U-test). Microinjection of GABA to GiA increased the behavioural response to formalin between 10 and 20 min post-injection, while microinjection of DLH reduced this response at all time points except 10 min post-injection (n = 8, P < 0.05, Mann-Whitney U-test). In animals with sciatic nerve ligation, microinjections (0.5 microl) of either GABA (200 mM), or saline (as control) into GiA contralateral to the partial sciatic ligation were performed during these tests in a randomized, blind manner. Partial sciatic ligation significantly reduced the behavioural response to contralaterally applied formalin from 15 min post-injection onwards, compared to controls without sciatic nerve ligation. Microinjection of GABA to GiA significantly increased the behavioural response to formalin from 20 to 50 min post-injection. The inactivation of GiA only causes behavioural effects in nociceptive tests of a long enough duration to activate the system (i.e. the formalin test but not the tail flick test). Chemical activation of the system affects both tests. These data strongly support the concept of an important analgesic system which is activated in response to noxious stimulation, and subsequently acts to reduce behavioural responses to noxious stimuli.
The influence of dielectric relaxation on intramolecular electron transfer
NASA Astrophysics Data System (ADS)
Heitele, H.; Michel-Beyerle, M. E.; Finckh, P.
1987-07-01
An unusually strong temperature dependence on the intramolecular electron-transfer rate has been observed for bridged donor-acceptor compounds in propylene glycol solution. In the frame of recent electron-transfer theories this effect reflects the influence of dielectric relaxation dynamics on electron transfer. With increasing dielectric relaxation time a smooth transition from non-adiabatic to solvent-controlled adiabatic behaviour is observed. The electron transfer rate in the solvent-controlled adiabatic limit is dominated by an inhomogeneous distribution of relaxation times.
NASA Astrophysics Data System (ADS)
Trucu, Dumitru
2016-09-01
In this comprehensive review concerning the modelling of human behaviours in crowd dynamics [3], the authors explore a wide range of mathematical approaches spanning over multiple scales that are suitable to describe emerging crowd behaviours in extreme situations. Focused on deciphering the key aspects leading to emerging crowd patterns evolutions in challenging times such as those requiring an evacuation on a complex venue, the authors address this complex dynamics at both microscale (individual level), mesoscale (probability distributions of interacting individuals), and macroscale (population level), ultimately aiming to gain valuable understanding and knowledge that would inform decision making in managing crisis situations.
Linear modal stability analysis of bowed-strings.
Debut, V; Antunes, J; Inácio, O
2017-03-01
Linearised models are often invoked as a starting point to study complex dynamical systems. Besides their attractive mathematical simplicity, they have a central role for determining the stability properties of static or dynamical states, and can often shed light on the influence of the control parameters on the system dynamical behaviour. While the bowed string dynamics has been thoroughly studied from a number of points of view, mainly by time-domain computer simulations, this paper proposes to explore its dynamical behaviour adopting a linear framework, linearising the friction force near an equilibrium state in steady sliding conditions, and using a modal representation of the string dynamics. Starting from the simplest idealisation of the friction force given by Coulomb's law with a velocity-dependent friction coefficient, the linearised modal equations of the bowed string are presented, and the dynamical changes of the system as a function of the bowing parameters are studied using linear stability analysis. From the computed complex eigenvalues and eigenvectors, several plots of the evolution of the modal frequencies, damping values, and modeshapes with the bowing parameters are produced, as well as stability charts for each system mode. By systematically exploring the influence of the parameters, this approach appears as a preliminary numerical characterisation of the bifurcations of the bowed string dynamics, with the advantage of being very simple compared to sophisticated numerical approaches which demand the regularisation of the nonlinear interaction force. To fix the idea about the potential of the proposed approach, the classic one-degree-of-freedom friction-excited oscillator is first considered, and then the case of the bowed string. Even if the actual stick-slip behaviour is rather far from the linear description adopted here, the results show that essential musical features of bowed string vibrations can be interpreted from this simple approach, at least qualitatively. Notably, the technique provides an instructive and original picture of bowed motions, in terms of groups of well-defined unstable modes, which is physically intuitive to discuss tonal changes observed in real bowed string.
Modelling the control of interceptive actions.
Beek, P J; Dessing, J C; Peper, C E; Bullock, D
2003-01-01
In recent years, several phenomenological dynamical models have been formulated that describe how perceptual variables are incorporated in the control of motor variables. We call these short-route models as they do not address how perception-action patterns might be constrained by the dynamical properties of the sensory, neural and musculoskeletal subsystems of the human action system. As an alternative, we advocate a long-route modelling approach in which the dynamics of these subsystems are explicitly addressed and integrated to reproduce interceptive actions. The approach is exemplified through a discussion of a recently developed model for interceptive actions consisting of a neural network architecture for the online generation of motor outflow commands, based on time-to-contact information and information about the relative positions and velocities of hand and ball. This network is shown to be consistent with both behavioural and neurophysiological data. Finally, some problems are discussed with regard to the question of how the motor outflow commands (i.e. the intended movement) might be modulated in view of the musculoskeletal dynamics. PMID:14561342
Nonlinear dynamical systems for theory and research in ergonomics.
Guastello, Stephen J
2017-02-01
Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.
Jaksic, V.; O'Shea, R.; Cahill, P.; Murphy, J.; Mandic, D. P.; Pakrashi, V.
2015-01-01
Understanding of dynamic behaviour of offshore wind floating substructures is extremely important in relation to design, operation, maintenance and management of floating wind farms. This paper presents assessment of nonlinear signatures of dynamic responses of a scaled tension-leg platform (TLP) in a wave tank exposed to different regular wave conditions and sea states characterized by the Bretschneider, the Pierson–Moskowitz and the JONSWAP spectra. Dynamic responses of the TLP were monitored at different locations using load cells, a camera-based motion recognition system and a laser Doppler vibrometer. The analysis of variability of the TLP responses and statistical quantification of their linearity or nonlinearity, as non-destructive means of structural monitoring from the output-only condition, remains a challenging problem. In this study, the delay vector variance (DVV) method is used to statistically study the degree of nonlinearity of measured response signals from a TLP. DVV is observed to create a marker estimating the degree to which a change in signal nonlinearity reflects real-time behaviour of the structure and also to establish the sensitivity of the instruments employed to these changes. The findings can be helpful in establishing monitoring strategies and control strategies for undesirable levels or types of dynamic response and can help to better estimate changes in system characteristics over the life cycle of the structure. PMID:25583866
Motion-mode energy method for vehicle dynamics analysis and control
NASA Astrophysics Data System (ADS)
Zhang, Nong; Wang, Lifu; Du, Haiping
2014-01-01
Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.
Numerical continuation and bifurcation analysis in aircraft design: an industrial perspective.
Sharma, Sanjiv; Coetzee, Etienne B; Lowenberg, Mark H; Neild, Simon A; Krauskopf, Bernd
2015-09-28
Bifurcation analysis is a powerful method for studying the steady-state nonlinear dynamics of systems. Software tools exist for the numerical continuation of steady-state solutions as parameters of the system are varied. These tools make it possible to generate 'maps of solutions' in an efficient way that provide valuable insight into the overall dynamic behaviour of a system and potentially to influence the design process. While this approach has been employed in the military aircraft control community to understand the effectiveness of controllers, the use of bifurcation analysis in the wider aircraft industry is yet limited. This paper reports progress on how bifurcation analysis can play a role as part of the design process for passenger aircraft. © 2015 The Author(s).
Wimmer, Klaus; Compte, Albert; Roxin, Alex; Peixoto, Diogo; Renart, Alfonso; de la Rocha, Jaime
2015-01-01
Neuronal variability in sensory cortex predicts perceptual decisions. This relationship, termed choice probability (CP), can arise from sensory variability biasing behaviour and from top-down signals reflecting behaviour. To investigate the interaction of these mechanisms during the decision-making process, we use a hierarchical network model composed of reciprocally connected sensory and integration circuits. Consistent with monkey behaviour in a fixed-duration motion discrimination task, the model integrates sensory evidence transiently, giving rise to a decaying bottom-up CP component. However, the dynamics of the hierarchical loop recruits a concurrently rising top-down component, resulting in sustained CP. We compute the CP time-course of neurons in the medial temporal area (MT) and find an early transient component and a separate late contribution reflecting decision build-up. The stability of individual CPs and the dynamics of noise correlations further support this decomposition. Our model provides a unified understanding of the circuit dynamics linking neural and behavioural variability. PMID:25649611
Malaria control in rural Malawi: implementing peer health education for behaviour change.
Malenga, Tumaini; Kabaghe, Alinune Nathanael; Manda-Taylor, Lucinda; Kadama, Asante; McCann, Robert S; Phiri, Kamija Samuel; van Vugt, Michèle; van den Berg, Henk
2017-11-20
Interventions to reduce malaria burden are effective if communities use them appropriately and consistently. Several tools have been suggested to promote uptake and use of malaria control interventions. Community workshops on malaria, using the 'Health Animator' approach, are a potential behaviour change strategy for malaria control. The strategy aims to influence a change in mind-set of vulnerable populations to encourage self-reliance, using community volunteers known as Health Animators. The aim of the paper is to describe the process of implementing community workshops on malaria by Health Animators to improve uptake and use of malaria control interventions in rural Malawi. This is a descriptive study reporting feasibility, acceptability, appropriateness and fidelity of using Health Animator-led community workshops for malaria control. Quantitative data were collected from self-reporting and researcher evaluation forms. Qualitative assessments were done with Health Animators, using three focus groups (October-December 2015) and seven in-depth interviews (October 2016-February 2017). Seventy seven health Animators were trained from 62 villages. A total of 2704 workshops were conducted, with consistent attendance from January 2015 to June 2017, representing 10-17% of the population. Attendance was affected by social responsibilities and activities, relationship of the village leaders and their community and involvement of Community Health Workers. Active discussion and participation were reported as main strengths of the workshops. Health Animators personally benefited from the mind-set change and were proactive peer influencers in the community. Although the information was comprehended and accepted, availability of adequate health services was a challenge for maintenance of behaviour change. Community workshops on malaria are a potential tool for influencing a positive change in behaviour towards malaria, and applicable for other health problems in rural African communities. Social structures of influence and power dynamics affect community response. There is need for systematic monitoring of community workshops to ensure implementation fidelity and strengthening health systems to ensure sustainability of health behaviour change.
Generation and precise control of dynamic biochemical gradients for cellular assays
NASA Astrophysics Data System (ADS)
Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.
2017-03-01
Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.
How to control chaotic behaviour and population size with proportional feedback
NASA Astrophysics Data System (ADS)
Liz, Eduardo
2010-01-01
We study the control of chaos in one-dimensional discrete maps as they often occur in modelling population dynamics. For managing the population, we seek to suppress any possible chaotic behavior, leading the system to a stable equilibrium. In this Letter, we make a rigorous analysis of the proportional feedback method under certain conditions fulfilled by a wide family of maps. We show that it is possible to stabilize the chaotic dynamics towards a globally stable positive equilibrium, that can be chosen among a broad range of possible values. In particular, the size of the population can be enhanced by control in form of population reduction. This paradoxical phenomenon is known as the hydra effect, and it has important implications in the design of strategies in such areas as fishing, pest management, and conservation biology.
NASA Astrophysics Data System (ADS)
Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.
2012-08-01
We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.
NASA Astrophysics Data System (ADS)
Ercan, Ziya; Carvalho, Ashwin; Tseng, H. Eric; Gökaşan, Metin; Borrelli, Francesco
2018-05-01
Haptic shared control framework opens up new perspectives on the design and implementation of the driver steering assistance systems which provide torque feedback to the driver in order to improve safety. While designing such a system, it is important to account for the human-machine interactions since the driver feels the feedback torque through the hand wheel. The controller should consider the driver's impact on the steering dynamics to achieve a better performance in terms of driver's acceptance and comfort. In this paper we present a predictive control framework which uses a model of driver-in-the-loop steering dynamics to optimise the torque intervention with respect to the driver's neuromuscular response. We first validate the system in simulations to compare the performance of the controller in nominal and model mismatch cases. Then we implement the controller in a test vehicle and perform experiments with a human driver. The results show the effectiveness of the proposed system in avoiding hazardous situations under different driver behaviours.
Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals.
Herbert-Read, James E; Kremer, Louise; Bruintjes, Rick; Radford, Andrew N; Ioannou, Christos C
2017-09-27
Noise produced from a variety of human activities can affect the physiology and behaviour of individual animals, but whether noise disrupts the social behaviour of animals is largely unknown. Animal groups such as flocks of birds or shoals of fish use simple interaction rules to coordinate their movements with near neighbours. In turn, this coordination allows individuals to gain the benefits of group living such as reduced predation risk and social information exchange. Noise could change how individuals interact in groups if noise is perceived as a threat, or if it masked, distracted or stressed individuals, and this could have impacts on the benefits of grouping. Here, we recorded trajectories of individual juvenile seabass ( Dicentrarchus labrax ) in groups under controlled laboratory conditions. Groups were exposed to playbacks of either ambient background sound recorded in their natural habitat, or playbacks of pile-driving, commonly used in marine construction. The pile-driving playback affected the structure and dynamics of the fish shoals significantly more than the ambient-sound playback. Compared to the ambient-sound playback, groups experiencing the pile-driving playback became less cohesive, less directionally ordered, and were less correlated in speed and directional changes. In effect, the additional-noise treatment disrupted the abilities of individuals to coordinate their movements with one another. Our work highlights the potential for noise pollution from pile-driving to disrupt the collective dynamics of fish shoals, which could have implications for the functional benefits of a group's collective behaviour. © 2017 The Authors.
Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals
Kremer, Louise; Bruintjes, Rick
2017-01-01
Noise produced from a variety of human activities can affect the physiology and behaviour of individual animals, but whether noise disrupts the social behaviour of animals is largely unknown. Animal groups such as flocks of birds or shoals of fish use simple interaction rules to coordinate their movements with near neighbours. In turn, this coordination allows individuals to gain the benefits of group living such as reduced predation risk and social information exchange. Noise could change how individuals interact in groups if noise is perceived as a threat, or if it masked, distracted or stressed individuals, and this could have impacts on the benefits of grouping. Here, we recorded trajectories of individual juvenile seabass (Dicentrarchus labrax) in groups under controlled laboratory conditions. Groups were exposed to playbacks of either ambient background sound recorded in their natural habitat, or playbacks of pile-driving, commonly used in marine construction. The pile-driving playback affected the structure and dynamics of the fish shoals significantly more than the ambient-sound playback. Compared to the ambient-sound playback, groups experiencing the pile-driving playback became less cohesive, less directionally ordered, and were less correlated in speed and directional changes. In effect, the additional-noise treatment disrupted the abilities of individuals to coordinate their movements with one another. Our work highlights the potential for noise pollution from pile-driving to disrupt the collective dynamics of fish shoals, which could have implications for the functional benefits of a group's collective behaviour. PMID:28954915
Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels
Fox, Courtney H.; ter Hurrne, Gijs M.; Wojtecki, Rudy J.; Jones, Gavin O.; Horn, Hans W.; Meijer, E. W.; Frank, Curtis W.; Hedrick, James L.; García, Jeannette M.
2015-01-01
Dynamic covalent materials are stable materials that possess reversible behaviour triggered by stimuli such as light, redox conditions or temperature; whereas supramolecular crosslinks depend on the equilibrium constant and relative concentrations of crosslinks as a function of temperature. The combination of these two reversible chemistries can allow access to materials with unique properties. Here, we show that this combination of dynamic covalent and supramolecular chemistry can be used to prepare organogels comprising distinct networks. Two materials containing hemiaminal crosslink junctions were synthesized; one material is comprised of dynamic covalent junctions and the other contains hydrogen-bonding bis-hemiaminal moieties. Under specific network synthesis conditions, these materials exhibited self-healing behaviour. This work reports on both the molecular-level detail of hemiaminal crosslink junction formation as well as the macroscopic behaviour of hemiaminal dynamic covalent network (HDCN) elastomeric organogels. These materials have potential applications as elastomeric components in printable materials, cargo carriers and adhesives. PMID:26174864
Network traffic behaviour near phase transition point
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-03-01
We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.
A uniform Tauberian theorem in dynamic games
NASA Astrophysics Data System (ADS)
Khlopin, D. V.
2018-01-01
Antagonistic dynamic games including games represented in normal form are considered. The asymptotic behaviour of value in these games is investigated as the game horizon tends to infinity (Cesàro mean) and as the discounting parameter tends to zero (Abel mean). The corresponding Abelian-Tauberian theorem is established: it is demonstrated that in both families the game value uniformly converges to the same limit, provided that at least one of the limits exists. Analogues of one-sided Tauberian theorems are obtained. An example shows that the requirements are essential even for control problems. Bibliography: 31 titles.
On the effect of unsupported sleepers on the dynamic behaviour of a railway track
NASA Astrophysics Data System (ADS)
Zhu, J. Y.; Thompson, D. J.; Jones, C. J. C.
2011-09-01
The effect of unsupported sleepers on the dynamic behaviour of a railway track is studied based on vehicle-track dynamic interaction theory, using a model of the track as a Timoshenko beam supported on a periodic elastic foundation. Considering the vehicle's running speed and the number of unsupported sleepers, the track dynamic characteristics are investigated and verified in the time and frequency domains by experiments on a 1:5 scale model wheel-rail test rig. The results show that when hanging sleepers are present, leading to a discontinuous and irregular track support, additional wheel-rail interaction forces are generated. These forces increase as further sleepers become unsupported and as the vehicle's running speed increases. The adjacent supports experience increased dynamic forces which will lead to further deterioration of track quality and the formation of long wavelength track irregularities, which worsen the vehicles' running stability and riding comfort. Stationary transfer functions measurements of the dynamic behaviour of the track are also presented to support the findings.
Ecological implications of behavioural syndromes.
Sih, Andrew; Cote, Julien; Evans, Mara; Fogarty, Sean; Pruitt, Jonathan
2012-03-01
Interspecific trait variation has long served as a conceptual foundation for our understanding of ecological patterns and dynamics. In particular, ecologists recognise the important role that animal behaviour plays in shaping ecological processes. An emerging area of interest in animal behaviour, the study of behavioural syndromes (animal personalities) considers how limited behavioural plasticity, as well as behavioural correlations affects an individual's fitness in diverse ecological contexts. In this article we explore how insights from the concept and study of behavioural syndromes provide fresh understanding of major issues in population ecology. We identify several general mechanisms for how population ecology phenomena can be influenced by a species or population's average behavioural type, by within-species variation in behavioural type, or by behavioural correlations across time or across ecological contexts. We note, in particular, the importance of behavioural type-dependent dispersal in spatial ecology. We then review recent literature and provide new syntheses for how these general mechanisms produce novel insights on five major issues in population ecology: (1) limits to species' distribution and abundance; (2) species interactions; (3) population dynamics; (4) relative responses to human-induced rapid environmental change; and (5) ecological invasions. © 2012 Blackwell Publishing Ltd/CNRS.
Leff, Daniel Richard; Orihuela-Espina, Felipe; Leong, Julian; Darzi, Ara; Yang, Guang-Zhong
2008-01-01
Learning to perform Minimally Invasive Surgery (MIS) requires considerable attention, concentration and spatial ability. Theoretically, this leads to activation in executive control (prefrontal) and visuospatial (parietal) centres of the brain. A novel approach is presented in this paper for analysing the flow of fronto-parietal haemodynamic behaviour and the associated variability between subjects. Serially acquired functional Near Infrared Spectroscopy (fNIRS) data from fourteen laparoscopic novices at different stages of learning is projected into a low-dimensional 'geospace', where sequentially acquired data is mapped to different locations. A trip distribution matrix based on consecutive directed trips between locations in the geospace reveals confluent fronto-parietal haemodynamic changes and a gravity model is applied to populate this matrix. To model global convergence in haemodynamic behaviour, a Markov chain is constructed and by comparing sequential haemodynamic distributions to the Markov's stationary distribution, inter-subject variability in learning an MIS task can be identified.
How Inhomogeneous Site Percolation Works on Bethe Lattices: Theory and Application
NASA Astrophysics Data System (ADS)
Ren, Jingli; Zhang, Liying; Siegmund, Stefan
2016-03-01
Inhomogeneous percolation, for its closer relationship with real-life, can be more useful and reasonable than homogeneous percolation to illustrate the critical phenomena and dynamical behaviour of complex networks. However, due to its intricacy, the theoretical framework of inhomogeneous percolation is far from being complete and many challenging problems are still open. In this paper, we first investigate inhomogeneous site percolation on Bethe Lattices with two occupation probabilities, and then extend the result to percolation with m occupation probabilities. The critical behaviour of this inhomogeneous percolation is shown clearly by formulating the percolation probability with given occupation probability p, the critical occupation probability , and the average cluster size where p is subject to . Moreover, using the above theory, we discuss in detail the diffusion behaviour of an infectious disease (SARS) and present specific disease-control strategies in consideration of groups with different infection probabilities.
[The relation of circadian variations of heuristic behavior and CNS radioresistance in animals].
Ushakov, I B; Davydova, O E
1996-01-01
There has been studied the influence of g-radiation (60Co, 62.5 Gy, craniocaudal) on circadian dynamics of heuristic behaviour (the elements of rational-discriminative activity) of male white rats. There has been found equivocal nature of radiation action: mostly manifestations of some symptoms of neurologic disturbances observed in definite daily periods make difficult realizing behavioural act, but in the other cases such event is not observed (acrophases of both processes coincide). After disappearance of observed neurologic manifestations of central nervous system damage (symptoms of early transitory neurologic disturbances) during the short period of time after exposure to radiation the inversion of circadian rhythm of heuristic behaviour has not been found. The changes are expressed in significant increase of values of extremums and mesor in comparison with control groups not exposed to radiation. By 30 minute after exposure the process loses signs of rhythm, acquires smooth character and mesor response significantly decreases.
NASA Astrophysics Data System (ADS)
Saksala, Timo
2016-10-01
This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.
Gaffney, E A; Lee, S Seirin
2015-03-01
Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing's ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing's model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106: , 8429-8434; Yamaguchi et al., 2007, PNAS, 104: , 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
NASA Astrophysics Data System (ADS)
van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François
2016-07-01
Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.
Universality of clone dynamics during tissue development
NASA Astrophysics Data System (ADS)
Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.
2018-05-01
The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.
NASA Astrophysics Data System (ADS)
Knopoff, Damián A.
2016-09-01
The recent review paper [4] constitutes a valuable contribution on the understanding, modeling and simulation of crowd dynamics in extreme situations. It provides a very comprehensive revision about the complexity features of the system under consideration, scaling and the consequent justification of the used methods. In particular, macro and microscopic models have so far been used to model crowd dynamics [9] and authors appropriately explain that working at the mesoscale is a good choice to deal with the heterogeneous behaviour of walkers as well as with the difficulty of their deterministic identification. In this way, methods based on the kinetic theory and statistical dynamics are employed, more precisely the so-called kinetic theory for active particles [7]. This approach has successfully been applied in the modeling of several complex dynamics, with recent applications to learning [2,8] that constitutes the key to understand communication and is of great importance in social dynamics and behavioral sciences.
The quick and the dead: when reaction beats intention.
Welchman, Andrew E; Stanley, James; Schomers, Malte R; Miall, R Chris; Bülthoff, Heinrich H
2010-06-07
Everyday behaviour involves a trade-off between planned actions and reaction to environmental events. Evidence from neurophysiology, neurology and functional brain imaging suggests different neural bases for the control of different movement types. Here we develop a behavioural paradigm to test movement dynamics for intentional versus reaction movements and provide evidence for a 'reactive advantage' in movement execution, whereby the same action is executed faster in reaction to an opponent. We placed pairs of participants in competition with each other to make a series of button presses. Within-subject analysis of movement times revealed a 10 per cent benefit for reactive actions. This was maintained when opponents performed dissimilar actions, and when participants competed against a computer, suggesting that the effect is not related to facilitation produced by action observation. Rather, faster ballistic movements may be a general property of reactive motor control, potentially providing a useful means of promoting survival.
The control of tonic pain by active relief learning
Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W
2018-01-01
Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. PMID:29482716
NASA Astrophysics Data System (ADS)
Petley, D. N.; Carey, J.; Massey, C. I.; Brain, M.
2015-12-01
The mechanisms of pre- and post-failure movement of translational landslides remain surprisingly poorly investigated. Previous approaches have focussed on field monitoring, for example through high resolution automated surveying and/or GPS measurements, or from modelling using dedicated codes. There has been some experimental work too, most notably using ring shear devices, although there are limitations as to the type of analyses that can be completed in these devices. In recent years the author has been involved in a series of studies that have sought to understand pre- and post-failure behaviour in translational landslides using both high precision monitoring and experimental investigation using novel apparatus. The latter approach has involved the use of the back pressured shear box, a direct shear machine that allows near-infinite variation of the normal and shear stress state, and measurement and control of the pore water pressure. More recently, a more advanced version of this machine has been developed that allows dynamic loading of both direct and normal shear stresses. This paper presents key lessons learnt about the behaviour of translational landslides from these approaches. The data highlight a number of key elements: The important differences in pre-failure behaviour for materials that show a brittle response compared with those that are ductile. In particular, some aspects of behaviour (e.g. the hyperbolic acceleration to failure) can only be replicated in materials that show brittle cracking processes; In the post-failure domain, all materials show a high level of sensitivity to small changes in pore water pressure when the Factor of Safety is close to unity; Rates of strain are not simply related to pore water pressure / stress state. In particular, some materials show a different deformation response during phases of increasing pore water pressure to that during periods of pore water pressure reduction. The reasons for this require further study; Dynamic behaviour is complex, with variations in behaviour between different materials types being greater than expected. These results show that the behaviour of materials in the post-failure domain is more complex than had been appreciated previously, suggesting that more work is needed to explain landslide behaviour in this regime.
NASA Astrophysics Data System (ADS)
Poussot-Vassal, Charles; Tanelli, Mara; Lovera, Marco
The complexity of Information Technology (IT) systems is steadily increasing and system complexity has been recognised as the main obstacle to further advancements of IT. This fact has recently raised energy management issues. Control techniques have been proposed and successfully applied to design Autonomic Computing systems, trading-off system performance with energy saving goals. As users behaviour is highly time varying and workload conditions can change substantially within the same business day, the Linear Parametrically Varying (LPV) framework is particularly promising for modeling such systems. In this chapter, a control-theoretic method to investigate the trade-off between Quality of Service (QoS) requirements and energy saving objectives in the case of admission control in Web service systems is proposed, considering as control variables the server CPU frequency and the admission probability. To quantitatively evaluate the trade-off, a dynamic model of the admission control dynamics is estimated via LPV identification techniques. Based on this model, an optimisation problem within the Model Predictive Control (MPC) framework is setup, by means of which it is possible to investigate the optimal trade-off policy to manage QoS and energy saving objectives at design time and taking into explicit account the system dynamics.
Hydrodynamic cavitation for sonochemical effects.
Moholkar, V S; Kumar, P S; Pandit, A B
1999-03-01
A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.
NASA Astrophysics Data System (ADS)
Vakis, Antonis I.; Polycarpou, Andreas A.
2010-06-01
In the effort to achieve Tbit/inch2 recording densities, thermal fly-height control (TFC) nanotechnology was developed to effectively reduce the clearance (which is of the order of a few nanometres) at the head-disk interface (HDI) of hard-disk drives. In this work, we present a model of the HDI that can predict the dynamic flying and nanotribological contacting behaviour, allowing for accurate predictions and characterization of the operating regime as a function of TFC actuation. A geometric model for TFC is presented and an improved definition of contact at the interface is developed in the presence of nanoscale topographical roughness and dynamic microwaviness. A new methodology is proposed for the calculation of the nominal area of contact, which affects both near- and at-contact behaviour, while the stiffening of the air bearing force with TFC actuation is also accounted for. Slider behaviour is analysed by quantifying the approach, jump-to-contact, lubricant and solid contact regimes of operation and identifying the critical and optimum TFC actuations. The feasibility of near-contact, light molecularly thin lubricant contact versus solid contact recording is explored under the effect of the interfacial forces and stresses present at the HDI. The clearance and the state of vibrations are analysed and design guidelines are proposed for improved performance.
Navarro-Barrientos, J.-Emeterio; Rivera, Daniel E.; Collins, Linda M.
2011-01-01
We present a dynamical model incorporating both physiological and psychological factors that predicts changes in body mass and composition during the course of a behavioral intervention for weight loss. The model consists of a three-compartment energy balance integrated with a mechanistic psychological model inspired by the Theory of Planned Behavior (TPB). The latter describes how important variables in a behavioural intervention can influence healthy eating habits and increased physical activity over time. The novelty of the approach lies in representing the behavioural intervention as a dynamical system, and the integration of the psychological and energy balance models. Two simulation scenarios are presented that illustrate how the model can improve the understanding of how changes in intervention components and participant differences affect outcomes. Consequently, the model can be used to inform behavioural scientists in the design of optimised interventions for weight loss and body composition change. PMID:21673826
Verstuyf, Joke; Vansteenkiste, Maarten; Soetens, Barbara; Soenens, Bart
2016-06-01
To investigate whether type of goals and motives underlying females' eating regulation are associated differentially with daily eating behaviours, dependent upon weight and age category. 99 late adolescent female dieters (Mage = 18.94) and 98 adult female dieters (Mage = 45.06), 23.6% of which were overweight, completed a questionnaire and a 7-day diary assessment. Descriptive analysis and path analysis were performed to investigate the research questions. Healthy eating behaviours (HEHS), drive for thinness and binge eating symptoms (EDI). Appearance-focused and controlled eating regulation were positively related to disordered eating symptoms throughout the week. In contrast, autonomous and health-focused eating regulation were associated positively with healthy eating behaviours and were either related negatively or unrelated to disordered eating symptoms. Mean level differences in motivation and eating behaviours emerged according to age and weight status. However, the examined structural model was similar for late adolescent and adult dieters and only few differences emerged between normal-weight and overweight dieters. Dieters' type of motivation helps to explain when eating regulation relates to healthy and disordered eating symptoms.
NASA Astrophysics Data System (ADS)
Kunita, Itsuki; Ueda, Kei-Ichi; Akita, Dai; Kuroda, Shigeru; Nakagaki, Toshiyuki
2017-09-01
Organisms choose from among various courses of action in response to a wide variety of environmental conditions and the mechanism by which various behaviours are induced is an open question. Interesting behaviour was recently reported: that a unicellular organism of slime mold Physarum polycephalum known as an amoeba had multiple responses (crossing, returning, etc) when the amoeba encounters a zone with toxic levels of quinine, even under carefully controlled conditions. We here examined this elegant example in more detail to obtain insight into behavioural differentiation. We found that the statistical distribution of passage times across a quinine zone switch from unimodal to bimodal (with peaks corresponding to fast crossing and no crossing) when a periodic light stimulation to modulate a biorhythm in amoeba is applied homogeneously across the space, even under the same level of chemical stimuli. Based on a mathematical model for cell movement in amoeba, we successfully reproduced the stimulation-induced differentiation, which was observed experimentally. These dynamics may be explained by a saddle structure around a canard solution. Our results imply that the differentiation of behavioural types in amoeba is modified step-by-step via the compounding of stimulation inputs. The complex behaviour like the differentiation in amoeba may provide a basis for understanding the mechanism of behaviour selection in higher animals from an ethological perspective.
Application of the Virtual Fields Method to a relaxation behaviour of rubbers
NASA Astrophysics Data System (ADS)
Yoon, Sung-ho; Siviour, Clive R.
2018-07-01
This paper presents the application of the Virtual Fields Method (VFM) for the characterization of viscoelastic behaviour of rubbers. The relaxation behaviour of the rubbers following a dynamic loading event is characterized using the dynamic VFM in which full-field (two dimensional) strain and acceleration data, obtained from high-speed imaging, are analysed by the principle of virtual work without traction force data, instead using the acceleration fields in the specimen to provide stress information. Two (silicone and nitrile) rubbers were tested in tension using a drop-weight apparatus. It is assumed that the dynamic behaviour is described by the combination of hyperelastic and Prony series models. A VFM based procedure is designed and used to produce the identification of the modulus term of a hyperelastic model and the Prony series parameters within a time scale determined by two experimental factors: imaging speed and loading duration. Then, the time range of the data is extended using experiments at different temperatures combined with the time-temperature superposition principle. Prior to these experimental analyses, finite element simulations were performed to validate the application of the proposed VFM analysis. Therefore, for the first time, it has been possible to identify relaxation behaviour of a material following dynamic loading, using a technique that can be applied to both small and large deformations.
NASA Astrophysics Data System (ADS)
Tasquier, Giulia; Pongiglione, Francesca
2017-09-01
Climate change is one of the significant global challenges currently facing humanity. Even though its seriousness seems to be common knowledge among the public, the reaction of individuals to it has been slow and uncertain. Many studies assert that simply knowing about climate change is not enough to generate people's behavioural response. They claim, indeed, that in some cases scientific literacy can even obstruct behavioural response instead. However, recent surveys show a rather poor understanding of climate dynamics and argue that lack of knowledge about causal relationships within climate dynamics can hinder behavioural response, since the individual is not able to understand his/her role as causal agent and therefore doesn't know how to take proper action. This study starts from the hypothesis that scientific knowledge focused on clarifying climate dynamics can make people understand not only dynamics themselves, but also their interactive relationship with the environment. Teaching materials on climate change based on such considerations were designed and implemented in a course for secondary-school students with the aim of investigating whether this kind of knowledge had an influence on students' willingness to adopt pro-environmental behaviours. Questionnaires were delivered for testing the effect of the teaching experience on knowledge and behaviour.
Cooperative behaviour and prosocial reputation dynamics in a Dominican village.
Macfarlan, Shane J; Quinlan, Robert; Remiker, Mark
2013-06-22
Prosocial reputations play an important role, from the evolution of language to Internet transactions; however, questions remain about their behavioural correlates and dynamics. Formal models assume prosocial reputations correlate with the number of cooperative acts one performs; however, if reputations flow through information networks, then the number of individuals one assists may be a better proxy. Formal models demonstrate indirect experience must track behaviour with the same fidelity as direct experience for reputations to become viable; however, research on corporate reputations suggests performance change does not always affect reputation change. Debate exists over the cognitive mechanisms employed for assessing reputation dynamics. Image scoring suggests reputations fluctuate relative to the number of times one fails to assist others in need, while standing strategy claims reputations fluctuate relative to the number of times one fails to assist others in good standing. This study examines the behavioural correlates of prosocial reputations and their dynamics over a 20-month period in an Afro-Caribbean village. Analyses suggest prosocial reputations: (i) are correlated with the number of individuals one assists in economic production, not the number of cooperative acts; (ii) track cooperative behaviour, but are anchored across time; and (iii) are captured neither by image scoring nor standing strategy-type mechanisms.
O'Mara, Shane M; Sanchez-Vives, Maria V; Brotons-Mas, Jorge R; O'Hare, Eugene
2009-08-01
The subiculum is in a pivotal position governing the output of the hippocampal formation. Despite this, it is a rather under-explored and sometimes ignored structure. Here, we discuss recent data indicating that the subiculum participates in a wide range of neurocognitive functions and processes. Some of the functions of subiculum are relatively well-known-these include providing a relatively coarse representation of space and participating in, and supporting certain aspects of, memory (particularly in the dynamic bridging of temporal intervals). The subiculum also participates in a wide variety of other neurocognitive functions too, however. Much less well-known are roles for the subiculum, and particularly the ventral subiculum, in the response to fear, stress and anxiety, and in the generation of motivated behaviour (particularly the behaviour that underlies drug addiction and the response to reward). There is an emerging suggestion that the subiculum participates in the temporal control of behaviour. It is notable that these latter findings have emerged from a consideration of instrumental behaviour using operant techniques; it may well be the case that the use of the watermaze or similar spatial tasks to assess subicular function (on the presumption that its functions are very similar to the hippocampus proper) has obscured rather than revealed neurocognitive functions of subiculum. The anatomy of subiculum suggests it participates in a rather subtle fashion in a very broad range of functions, rather than in a relatively more isolated fashion in a narrower range of functions, as might be the case for "earlier" components of hippocampal circuitry, such as the CA1 and CA3 subfields. Overall, there appears to a strong dorso-ventral segregation of function within subiculum, with the dorsal subiculum relatively more concerned with space and memory, and the ventral hippocampus concerned with stress, anxiety and reward. Finally, it may be the case that the whole subiculum participates in the temporal control of reinforced behaviour, although further experimentation is required to clarify this hypothesis.
Stationary and structural control in gene regulatory networks: basic concepts
NASA Astrophysics Data System (ADS)
Dougherty, Edward R.; Pal, Ranadip; Qian, Xiaoning; Bittner, Michael L.; Datta, Aniruddha
2010-01-01
A major reason for constructing gene regulatory networks is to use them as models for determining therapeutic intervention strategies by deriving ways of altering their long-run dynamics in such a way as to reduce the likelihood of entering undesirable states. In general, two paradigms have been taken for gene network intervention: (1) stationary external control is based on optimally altering the status of a control gene (or genes) over time to drive network dynamics; and (2) structural intervention involves an optimal one-time change of the network structure (wiring) to beneficially alter the long-run behaviour of the network. These intervention approaches have mainly been developed within the context of the probabilistic Boolean network model for gene regulation. This article reviews both types of intervention and applies them to reducing the metastatic competence of cells via intervention in a melanoma-related network.
Reynolds, Jennifer J H; Hirsch, Ben T; Gehrt, Stanley D; Craft, Meggan E
2015-11-01
Infectious disease transmission often depends on the contact structure of host populations. Although it is often challenging to capture the contact structure in wild animals, new technology has enabled biologists to obtain detailed temporal information on wildlife social contacts. In this study, we investigated the effects of raccoon contact patterns on rabies spread using network modelling. Raccoons (Procyon lotor) play an important role in the maintenance of rabies in the United States. It is crucial to understand how contact patterns influence the spread of rabies in raccoon populations in order to design effective control measures and to prevent transmission to human populations and other animals. We constructed a dynamic system of contact networks based on empirical data from proximity logging collars on a wild suburban raccoon population and then simulated rabies spread across these networks. Our contact networks incorporated the number and duration of raccoon interactions. We included differences in contacts according to sex and season, and both short-term acquaintances and long-term associations. Raccoons may display different behaviours when infectious, including aggression (furious behaviour) and impaired mobility (dumb behaviour); the network model was used to assess the impact of potential behavioural changes in rabid raccoons. We also tested the effectiveness of different vaccination coverage levels. Our results demonstrate that when rabies enters a suburban raccoon population, the likelihood of a disease outbreak affecting the majority of the population is high. Both the magnitude of rabies outbreaks and the speed of rabies spread depend strongly on the time of year that rabies is introduced into the population. When there is a combination of dumb and furious behaviours in the rabid raccoon population, there are similar outbreak sizes and speed of spread to when there are no behavioural changes due to rabies infection. By incorporating detailed data describing the variation in raccoon contact rates into a network modelling approach, we were able to show that suburban raccoon populations are highly susceptible to rabies outbreaks, that the risk of large outbreaks varies seasonally and that current vaccination target levels may be inadequate to prevent the spread of rabies within these populations. Our findings provide new insights into rabies dynamics in raccoon populations and have important implications for disease control. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Dynamics of bow-tie shaped bursting: Forced pendulum with dynamic feedback.
Hongray, Thotreithem; Balakrishnan, Janaki
2016-12-01
A detailed study is performed on the parameter space of the mechanical system of a driven pendulum with damping and constant torque under feedback control. We report an interesting bow-tie shaped bursting oscillatory behaviour, which is exhibited for small driving frequencies, in a certain parameter regime, which has not been reported earlier in this forced system with dynamic feedback. We show that the bursting oscillations are caused because of a transition of the quiescent state to the spiking state by a saddle-focus bifurcation, and because of another saddle-focus bifurcation, which leads to cessation of spiking, bringing the system back to the quiescent state. The resting period between two successive bursts (T rest ) is estimated analytically.
Effects of predation efficiencies on the dynamics of a tritrophic food chain.
Cassinari, Maria Paola; Groppi, Maria; Tebaldi, Claudio
2007-07-01
In this paper the dynamics of a tritrophic food chain (resource, consumer, top predator) is investigated, with particular attention not only to equilibrium states but also to cyclic behaviours that the system may exhibit. The analysis is performed in terms of two bifurcation parameters, denoted by p and q, which measure the efficiencies of the interaction processes. The persistence of the system is discussed, characterizing in the (p; q) plane the regions of existence and stability of biologically significant steady states and those of existence of limit cycles. The bifurcations occurring are discussed, and their implications with reference to biological control problems are considered. Examples of the rich dynamics exhibited by the model, including a chaotic regime, are described.
Costs for switching partners reduce network dynamics but not cooperative behaviour
Bednarik, Peter; Fehl, Katrin; Semmann, Dirk
2014-01-01
Social networks represent the structuring of interactions between group members. Above all, many interactions are profoundly cooperative in humans and other animals. In accordance with this natural observation, theoretical work demonstrates that certain network structures favour the evolution of cooperation. Yet, recent experimental evidence suggests that static networks do not enhance cooperative behaviour in humans. By contrast, dynamic networks do foster cooperation. However, costs associated with dynamism such as time or resource investments in finding and establishing new partnerships have been neglected so far. Here, we show that human participants are much less likely to break links when costs arise for building new links. Especially, when costs were high, the network was nearly static. Surprisingly, cooperation levels in Prisoner's Dilemma games were not affected by reduced dynamism in social networks. We conclude that the mere potential to quit collaborations is sufficient in humans to reach high levels of cooperative behaviour. Effects of self-structuring processes or assortment on the network played a minor role: participants simply adjusted their cooperative behaviour in response to the threats of losing a partner or of being expelled. PMID:25122233
Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.
Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio
2018-05-30
Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.
NASA Astrophysics Data System (ADS)
Miguel, António F.
2016-09-01
Walking is the most basic form of transportation. A good understanding of pedestrian's dynamics is essential in meeting the mobility and accessibility needs of people by providing a safe and quick walking flow [1]. Advances in the dynamics of pedestrians in crowds are of great theoretical and practical interest, as they lead to new insights regarding the planning of pedestrian facilities, crowd management, or evacuation analysis. Nicola Bellomo's et al. article [2] is a very timely review of the related research on modelling approaches, computational simulations, decision-making and crisis response. It also includes an attempt to accurately define commonly used terms, as well as a critical analysis of crowd dynamics and safety problems. As noted by the authors, ;models and simulations offer a virtual representation of real dynamics; that are essential to understand and predict the ;behavioural dynamics of crowds; [2]. As a physicist, I would like to put forward some additional theoretical and practical contributions that could be interesting to explore, regarding the perspective of physics on about human crowd dynamics (panic as a specific form of behaviour excluded).
The dynamics of consumer behaviour. On habit, discontent, and other fish to fry.
Scholderer, Joachim; Trondsen, Torbjørn
2008-11-01
Recent research has drawn attention to the role of past behaviour and habit in the overall structure of consumer behaviour. We argue that in cross-sectional data past behaviour and habit must be confounded with present beliefs and attitudes when the behaviour in question has been enacted numerous times before. To disentangle the effects, longitudinal data were collected from a large panel of Norwegian consumers (effective N=4184) in 1996, 2000, and 2004. Cross-lagged panel analysis indicated that higher consumption of traditional seafood led to increasingly negative evaluations of the product supply. These negative evaluations, in turn, prompted substitution of traditional seafood with newly available, processed seafood products and an increasing dominance of aqua-cultured species. The theoretical discussion focuses on the inability of static models of consumer behaviour (in particular, the theory of planned behaviour) to capture such dynamic effects. Marketing and policy implications related to the changing structure of the seafood market are outlined.
Saaristo, Minna; McLennan, Alisha; Johnstone, Christopher P; Clarke, Bradley O; Wong, Bob B M
2017-02-01
Chemical pollution from pharmaceuticals is increasingly recognised as a major threat to aquatic communities. One compound of great concern is fluoxetine, which is one of the most widely prescribed psychoactive drugs in the world and frequently detected in the environment. The aim of this study was to investigate the effects of 28-d fluoxetine exposure at two environmentally relevant levels (measured concentrations: 4ng/L and 16ng/L) on anti-predator behaviour in wild guppies (Poecilia reticulata). This was achieved by subjecting fluoxetine-exposed and unexposed guppies to a simulated bird strike and recording their subsequent behavioural responses. We found that exposure to fluoxetine affected the anti-predator behaviour of guppies, with exposed fish remaining stationary for longer (i.e. 'freezing' behaviour) after the simulated strike and also spending more time under plant cover. By contrast, control fish were significantly more active and explored the tank more, as indicated by the distance covered per minute over the period fish spent swimming. Furthermore, behavioural shifts were sex-dependent, with evidence of a non-monotonic dose-response among the fluoxetine-exposed fish. This is one of the first studies to show that exposure to environmentally relevant concentrations of fluoxetine can alter the anti-predator behaviour of adult fish. In addition to the obvious repercussions for survival, impaired anti-predator behaviour can have direct impacts on fitness and influence the overall population dynamics of species. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru
2016-07-01
Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00569a
Moioli, Renan C; Vargas, Patricia A; Husbands, Phil
2012-09-01
Oscillatory activity is ubiquitous in nervous systems, with solid evidence that synchronisation mechanisms underpin cognitive processes. Nevertheless, its informational content and relationship with behaviour are still to be fully understood. In addition, cognitive systems cannot be properly appreciated without taking into account brain-body- environment interactions. In this paper, we developed a model based on the Kuramoto Model of coupled phase oscillators to explore the role of neural synchronisation in the performance of a simulated robotic agent in two different minimally cognitive tasks. We show that there is a statistically significant difference in performance and evolvability depending on the synchronisation regime of the network. In both tasks, a combination of information flow and dynamical analyses show that networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally and to adapt to different behavioural conditions. The results highlight the asymmetry of information flow and its behavioural correspondence. Importantly, it also shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, can generate minimally cognitive embodied behaviour.
Jaksic, V; O'Shea, R; Cahill, P; Murphy, J; Mandic, D P; Pakrashi, V
2015-02-28
Understanding of dynamic behaviour of offshore wind floating substructures is extremely important in relation to design, operation, maintenance and management of floating wind farms. This paper presents assessment of nonlinear signatures of dynamic responses of a scaled tension-leg platform (TLP) in a wave tank exposed to different regular wave conditions and sea states characterized by the Bretschneider, the Pierson-Moskowitz and the JONSWAP spectra. Dynamic responses of the TLP were monitored at different locations using load cells, a camera-based motion recognition system and a laser Doppler vibrometer. The analysis of variability of the TLP responses and statistical quantification of their linearity or nonlinearity, as non-destructive means of structural monitoring from the output-only condition, remains a challenging problem. In this study, the delay vector variance (DVV) method is used to statistically study the degree of nonlinearity of measured response signals from a TLP. DVV is observed to create a marker estimating the degree to which a change in signal nonlinearity reflects real-time behaviour of the structure and also to establish the sensitivity of the instruments employed to these changes. The findings can be helpful in establishing monitoring strategies and control strategies for undesirable levels or types of dynamic response and can help to better estimate changes in system characteristics over the life cycle of the structure. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Optimal intervention strategies for cholera outbreak by education and chlorination
NASA Astrophysics Data System (ADS)
Bakhtiar, Toni
2016-01-01
This paper discusses the control of infectious diseases in the framework of optimal control approach. A case study on cholera control was studied by considering two control strategies, namely education and chlorination. We distinct the former control into one regarding person-to-person behaviour and another one concerning person-to-environment conduct. Model are divided into two interacted populations: human population which follows an SIR model and pathogen population. Pontryagin maximum principle was applied in deriving a set of differential equations which consists of dynamical and adjoin systems as optimality conditions. Then, the fourth order Runge-Kutta method was exploited to numerically solve the equation system. An illustrative example was provided to assess the effectiveness of the control strategies toward a set of control scenarios.
Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Savić, Dragan A; Kapelan, Zoran
2012-12-01
A System Dynamics Model (SDM) assessing water scarcity and potential impacts of socio-economic policies in a complex hydrological system is developed. The model, simulating water resources deriving from numerous catchment sources and demand from four sectors (domestic, industrial, agricultural, external pumping), contains multiple feedback loops and sub-models. The SDM is applied to the Merguellil catchment, Tunisia; the first time such an integrated model has been developed for the water scarce Kairouan region. The application represents an early step in filling a critical research gap. The focus of this paper is to a) assess the applicability of SDM for assessment of the evolution of a water-scarce catchment and b) to analyse the current and future behaviour of the catchment to evaluate water scarcity, focusing on understanding trends to inform policy. Baseline results indicate aquifer over-exploitation, agreeing with observed trends. If current policy and social behaviour continue, serious aquifer depletion is possible in the not too distant future, with implications for the economy and environment. This is unlikely to occur because policies preventing depletion will be implemented. Sensitivity tests were carried out to show which parameters most impacted aquifer behaviour. Results show non-linear model behaviour. Some tests showed negligible change in behaviour. Others showed unrealistic exponential changes in demand, revenue and aquifer water volume. Policy-realistic parameters giving the greatest positive impact on model behaviour were those controlling per-capita domestic water demand and the pumped volume to coastal cities. All potentially beneficial policy options should be considered, giving the best opportunity for preservation of Kairouan aquifer water quantity/quality, ecologically important habitats and the agricultural socio-economic driver of regional development. SDM is a useful tool for assessing the potential impacts of possible policy measures with respect to the evolution of water scarcity in critical regions. This work was undertaken for the EC FP7 project 'WASSERMed'. Copyright © 2012 Elsevier B.V. All rights reserved.
Mixed-mode oscillations in a three-store calcium dynamics model
NASA Astrophysics Data System (ADS)
Liu, Peng; Liu, Xijun; Yu, Pei
2017-11-01
Calcium ions are important in cell process, which control cell functions. Many models on calcium oscillation have been proposed. Most of existing literature analyzed calcium oscillations using numerical methods, and found rich dynamical behaviours. In this paper, we explore a further study on an established three-store model, which contains endoplasmic reticulum (ER), mitochondria and calcium binding proteins. We conduct bifurcation analysis to identify two Hopf bifurcations, and apply normal form theory to study their stability and show that one of them is supercritical while the other is subcritical. Further, we transform the model into a slow-fast system, and then apply the geometrical singular perturbation theory to investigate the mechanism of generating slow-fast motions. The study reveals that the mechanism of generating the slow-fast oscillating behaviour in the three-store calcium model for certain parameter values is due to the relative fast change in the free calcium in cytosol, and relative slow changes in the free calcium in mitochondria and in the bounded Ca2+ binding sites on the cytosolic proteins. A further parametric study may provide some useful information for controlling harmful effect, by adjusting the amount of calcium in a human body. Numerical simulations are present to demonstrate the correct analytical predictions.
NASA Astrophysics Data System (ADS)
Morecroft, John
System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.
Fatigue behaviour of core-spun yarns containing filament by means of cyclic dynamic loading
NASA Astrophysics Data System (ADS)
Esin, S.; Osman, B.
2017-10-01
The behaviour of yarns under dynamic loading is important that leads to understand the growth characteristics which is exposed to repetitive loadings during usage of fabric made from these yarns. Fabric growth is undesirable property that originated from low resilience characteristics of fabric. In this study, the effects of the filament fineness and yarn linear density on fatigue behaviour of rigid-core spun yarns were determined. Cotton covered yarns containing different filament fineness of polyester (PET) draw textured yarns (DTY) (100d/36f, 100d/96f, 100d/144f, 100d/192f and 100d/333f) and yarn linear densities (37 tex, 30 tex, 25 tex and 21 tex) were manufactured by using a modified ring spinning system at the same spinning parameters. Repetitive loads were applied for 25 cycles at levels between 0.1 and 3 N. Dynamic modulus and dynamic strain of yarn samples were analyzed statistically. Results showed that filament fineness and yarn linear density have significance effect on dynamic modulus and dynamic strain after cyclic loading.
Dynamism or Disorder at High Pressures?
NASA Astrophysics Data System (ADS)
Angel, R. J.; Bismayer, U.; Marshall, W. G.
2002-12-01
Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.
Applying Dynamic Fuzzy Petri Net to Web Learning System
ERIC Educational Resources Information Center
Chen, Juei-Nan; Huang, Yueh-Min; Chu, William
2005-01-01
This investigation presents a DFPN (Dynamic Fuzzy Petri Net) model to increase the flexibility of the tutoring agent's behaviour and thus provide a learning content structure for a lecture course. The tutoring agent is a software assistant for a single user, who may be an expert in an e-Learning course. Based on each learner's behaviour, the…
True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.
Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio
2013-09-01
Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.
Jiang, Lili; Wang, Hongyan; Xu, Hui; Qiao, Kang; Xia, Xiaoming; Wang, Kaiyun
2015-07-01
Fluopicolide, a novel benzamide fungicide, was registered for control of oomycete pathogens, including Phytophthora capsici. In this study, fluopicolide (5% SC) was applied in soil at rates of 1.5, 3 and 6 L ha(-1) [the normal (ND), double (DD) and quadruple dosages (QD) respectively] to investigate its transportation behaviour and control efficiency on tomato blight as a soil treatment agent. The results showed that fluopicolide applied to soil could be absorbed by tomato roots and then transplanted to stems and leaves. It could exist in tomato roots for more than 30 days, and in leaves and stems until day 20 after application. The decline in fluopicolide in soil was in accordance with a first-order dynamics equation, with half-lives of 5.33, 4.75 and 5.42 days for the ND, DD and QD treatments respectively. The control efficiencies of fluopicolide were better with soil application than with spraying application, and the inhibition ratios were 93.02, 97.67 and 100 on day 21 for the ND, DD and QD treatments respectively. Soil application of fluopicolide could control P. capsici in greenhouse tomatoes with high efficiency and long persistence. © 2014 Society of Chemical Industry.
Modelling and Control of Robotic Leg as Assistive Device
NASA Astrophysics Data System (ADS)
Jingye, Yee; Zain, Badrul Aisham bin Md
2017-10-01
The ageing population (people older than 60 years old) is expected to constitute 21.8% of global population by year 2050. When human ages, bodily function including locomotors will deteriorate. Besides, there are hundreds of thousands of victims who suffer from multiple health conditions worldwide that leads to gait impairment. A promising solution will be the lower limb powered-exoskeleton. This study is to be a start-up platform to design a lower limb powered-exoskeleton for a normal Malaysian male, by designing and simulating the dynamic model of a 2-link robotic leg to observe its behaviour under different input conditions with and without a PID controller. Simulink in MATLAB software is used as the dynamic modelling and simulation software for this study. It is observed that the 2-links robotic leg behaved differently under different input conditions, and perform the best when it is constrained and controlled by PID controller. Simulink model is formed as a foundation for the upcoming researches and can be modified and utilised by the future researchers.
NASA Astrophysics Data System (ADS)
Weiskircher, Thomas; Müller, Steffen
2012-01-01
This article presents a motion controller for a road vehicle equipped with a steer-by-wire system and four independent electric rim-mounted drives. The motion controller separates the control law from the specific actuator setup by the usage of virtual global control variables acting on the vehicle centre of gravity. A control allocation algorithm distributes the virtual control variables to the available actuators. An approximation of the real actuator dynamics is used to analyse the performance of different motion controller types in the linear and nonlinear driving regions. In addition, a vehicle state observer consisting of a traction force observer and an unscented Kalman filter is discussed to analyse the control behaviour in the case of a real sensor setup.
A single predator multiple prey model with prey mutation
NASA Astrophysics Data System (ADS)
Mullan, Rory; Abernethy, Gavin M.; Glass, David H.; McCartney, Mark
2016-11-01
A multiple species predator-prey model is expanded with the introduction of a coupled map lattice for the prey, allowing the prey to mutate discretely into other prey species. The model is examined in its single predator, multiple mutating prey form. Two unimodal maps are used for the underlying dynamics of the prey species, with different predation strategies being used. Conclusions are drawn on how varying the control parameters of the model governs the overall behaviour and survival of the species. It is observed that in such a complex system, with multiple mutating prey, a large range of non-linear dynamics is possible.
The dynamic behaviour of data-driven Δ-M and ΔΣ-M in sliding mode control
NASA Astrophysics Data System (ADS)
Almakhles, Dhafer; Swain, Akshya K.; Nasiri, Alireza
2017-11-01
In recent years, delta (Δ-M) and delta-sigma modulators (ΔΣ-M) are increasingly being used as efficient data converters due to numerous advantages they offer. This paper investigates various dynamical features of these modulators/systems (both in continuous and discrete time domain) and derives their stability conditions using the theory of sliding mode. The upper bound of the hitting time (step) has been estimated. The equivalent mode conditions, i.e. where the outputs of the modulators are equivalent to the inputs, are established. The results of the analysis are validated through simulations considering a numerical example.
Anderson, A F; Qingsi, Z; Hua, X; Jianfeng, B
2003-04-01
Historical, geo-economic and behavioural perspectives are used in an exploratory analysis of China's migrant or 'floating' population as a factor in the spread of HIV on the mainland. Participants in the interview format survey (N = 506) included in-transit individuals in Beijing, and peddlers, restaurant workers, and employment seekers in Shanghai. When viewed in light of various social dynamics, the convenience survey data suggest that elements within this migrant population, as well as their rurally located partners and spouses, may be at increased risk of acquiring the virus. Given the sheer size and broad movement of this population, it is contended that it may well be a 'tipping point' factor in AIDS prevention and control in China.
Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung
Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less
Advanced vehicle dynamics of heavy trucks with the perspective of road safety
NASA Astrophysics Data System (ADS)
Trigell, Annika Stensson; Rothhämel, Malte; Pauwelussen, Joop; Kural, Karel
2017-10-01
This paper presents state-of-the art within advanced vehicle dynamics of heavy trucks with the perspective of road safety. The most common accidents with heavy trucks involved are truck against passenger cars. Safety critical situations are for example loss of control (such as rollover and lateral stability) and a majority of these occur during speed when cornering. Other critical situations are avoidance manoeuvre and road edge recovery. The dynamic behaviour of heavy trucks have significant differences compared to passenger cars and as a consequence, successful application of vehicle dynamic functions for enhanced safety of trucks might differ from the functions in passenger cars. Here, the differences between vehicle dynamics of heavy trucks and passenger cars are clarified. Advanced vehicle dynamics solutions with the perspective of road safety of trucks are presented, beginning with the topic vehicle stability, followed by the steering system, the braking system and driver assistance systems that differ in some way from that of passenger cars as well.
Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy
Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung; ...
2017-05-24
Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less
NASA Astrophysics Data System (ADS)
Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman
2016-09-01
The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.
Design of a bio-inspired controller for dynamic soaring in a simulated unmanned aerial vehicle.
Barate, Renaud; Doncieux, Stéphane; Meyer, Jean-Arcady
2006-09-01
This paper is inspired by the way birds such as albatrosses are able to exploit wind gradients at the surface of the ocean for staying aloft for very long periods while minimizing their energy expenditure. The corresponding behaviour has been partially reproduced here via a set of Takagi-Sugeno-Kang fuzzy rules controlling a simulated glider. First, the rules were hand-designed. Then, they were optimized with an evolutionary algorithm that improved their efficiency at coping with challenging conditions. Finally, the robustness properties of the controller generated were assessed with a view to its applicability to a real platform.
Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions
Hasson, Uri; Frith, Chris D.
2016-01-01
When people observe one another, behavioural alignment can be detected at many levels, from the physical to the mental. Likewise, when people process the same highly complex stimulus sequences, such as films and stories, alignment is detected in the elicited brain activity. In early sensory areas, shared neural patterns are coupled to the low-level properties of the stimulus (shape, motion, volume, etc.), while in high-order brain areas, shared neural patterns are coupled to high-levels aspects of the stimulus, such as meaning. Successful social interactions require such alignments (both behavioural and neural), as communication cannot occur without shared understanding. However, we need to go beyond simple, symmetric (mirror) alignment once we start interacting. Interactions are dynamic processes, which involve continuous mutual adaptation, development of complementary behaviour and division of labour such as leader–follower roles. Here, we argue that interacting individuals are dynamically coupled rather than simply aligned. This broader framework for understanding interactions can encompass both processes by which behaviour and brain activity mirror each other (neural alignment), and situations in which behaviour and brain activity in one participant are coupled (but not mirrored) to the dynamics in the other participant. To apply these more sophisticated accounts of social interactions to the study of the underlying neural processes we need to develop new experimental paradigms and novel methods of data analysis PMID:27069044
Energy scaling and reduction in controlling complex networks
Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng
2016-01-01
Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220
The hydrogen-bond collective dynamics in liquid methanol
Bellissima, Stefano; Cunsolo, Alessandro; DePanfilis, Simone; ...
2016-12-20
The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HBmore » dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature.« less
Asymptotic sideslip angle and yaw rate decoupling control in four-wheel steering vehicles
NASA Astrophysics Data System (ADS)
Marino, Riccardo; Scalzi, Stefano
2010-09-01
This paper shows that, for a four-wheel steering vehicle, a proportional-integral (PI) active front steering control and a PI active rear steering control from the yaw rate error together with an additive feedforward reference signal for the vehicle sideslip angle can asymptotically decouple the lateral velocity and the yaw rate dynamics; that is the control can set arbitrary steady state values for lateral speed and yaw rate at any longitudinal speed. Moreover, the PI controls can suppress oscillatory behaviours by assigning real stable eigenvalues to a widely used linearised model of the vehicle steering dynamics for any value of longitudinal speed in understeering vehicles. In particular, the four PI control parameters are explicitly expressed in terms of the three real eigenvalues to be assigned. No lateral acceleration and no lateral speed measurements are required. The controlled system maintains the well-known advantages of both front and rear active steering controls: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres and improved manoeuvrability. In particular, zero lateral speed may be asymptotically achieved while controlling the yaw rate: in this case comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced. Also zero yaw rate can be asymptotically achieved: in this case additional stable manoeuvres are obtained in obstacle avoidance. Several simulations, including step references and moose tests, are carried out on a standard small SUV CarSim model to explore the robustness with respect to unmodelled effects such as combined lateral and longitudinal tyre forces, pitch, roll and driver dynamics. The simulations confirm the decoupling between the lateral velocity and the yaw rate and show the advantages obtained by the proposed control: reduced lateral speed or reduced yaw rate, suppressed oscillations and new stable manoeuvres.
Postural control and head stability during natural gaze behaviour in 6- to 12-year-old children.
Schärli, A M; van de Langenberg, R; Murer, K; Müller, R M
2013-06-01
We investigated how the influence of natural exploratory gaze behaviour on postural control develops from childhood into adulthood. In a cross-sectional design, we compared four age groups: 6-, 9-, 12-year-olds and young adults. Two experimental trials were performed: quiet stance with a fixed gaze (fixed) and quiet stance with natural exploratory gaze behaviour (exploratory). The latter was elicited by having participants watch an animated short film on a large screen in front of them. 3D head rotations in space and centre of pressure (COP) excursions on the ground plane were measured. Across conditions, both head rotation and COP displacement decreased with increasing age. Head movement was greater in the exploratory condition in all age groups. In all children-but not in adults-COP displacement was markedly greater in the exploratory condition. Bivariate correlations across groups showed highly significant positive correlations between COP displacement in ML direction and head rotation in yaw, roll, and pitch in both conditions. The regularity of COP displacements did not show a clear developmental trend, which indicates that COP dynamics were qualitatively similar across age groups. Together, the results suggest that the contribution of head movement to eye-head saccades decreases with age and that head instability-in part resulting from such gaze-related head movements-is an important limiting factor in children's postural control. The lack of head stabilisation might particularly affect children in everyday activities in which both postural control and visual exploration are required.
Investigation on pitch system loads by means of an integral multi body simulation approach
NASA Astrophysics Data System (ADS)
Berroth, J.; Jacobs, G.; Kroll, T.; Schelenz, R.
2016-09-01
In modern horizontal axis wind turbines the rotor blades are adjusted by three individual pitch systems to control power output. The pitch system consists of either a hydraulic or an electrical actuator, the blade bearing, the rotor blade itself and the control. In case of an electrical drive a gearbox is used to transmit the high torques that are required for blade pitch angle adjustment. In this contribution a new integral multi body simulation approach is presented that enables detailed assessment of dynamic pitch system loads. The simulation results presented are compared and evaluated with measurement data of a 2 MW-class reference wind turbine. Major focus of this contribution is on the assessment of non linear tooth contact behaviour incorporating tooth backlash for the single gear stages and the impact on dynamic pitch system loads.
NASA Astrophysics Data System (ADS)
Schleussner, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders
2016-08-01
Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.
Schleussner, Carl-Friedrich; Donges, Jonathan F; Engemann, Denis A; Levermann, Anders
2016-08-11
Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.
The salience network causally influences default mode network activity during moral reasoning
Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.
2013-01-01
Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in patients with behavioural variant frontotemporal dementia. These findings are consistent with a broader model in which the salience network modulates the activity of other large-scale networks, and suggest a revision to a previously proposed ‘dual-process’ account of moral reasoning. These findings also characterize network interactions underlying abnormal moral reasoning in frontotemporal dementia, which may serve as a model for the aberrant judgement and interpersonal behaviour observed in this disease and in other disorders of social function. More broadly, these findings link recent work on the dynamic interrelationships between large-scale brain networks to observable impairments in dementia syndromes, which may shed light on how diseases that target one network also alter the function of interrelated networks. PMID:23576128
Learning dynamics explains human behaviour in prisoner's dilemma on networks.
Cimini, Giulio; Sánchez, Angel
2014-05-06
Cooperative behaviour lies at the very basis of human societies, yet its evolutionary origin remains a key unsolved puzzle. Whereas reciprocity or conditional cooperation is one of the most prominent mechanisms proposed to explain the emergence of cooperation in social dilemmas, recent experimental findings on networked Prisoner's Dilemma games suggest that conditional cooperation also depends on the previous action of the player-namely on the 'mood' in which the player is currently in. Roughly, a majority of people behave as conditional cooperators if they cooperated in the past, whereas they ignore the context and free ride with high probability if they did not. However, the ultimate origin of this behaviour represents a conundrum itself. Here, we aim specifically to provide an evolutionary explanation of moody conditional cooperation (MCC). To this end, we perform an extensive analysis of different evolutionary dynamics for players' behavioural traits-ranging from standard processes used in game theory based on pay-off comparison to others that include non-economic or social factors. Our results show that only a dynamic built upon reinforcement learning is able to give rise to evolutionarily stable MCC, and at the end to reproduce the human behaviours observed in the experiments.
Mondal, S; Pawar, S A; Sujith, R I
2017-10-01
Thermoacoustic instability, caused by a positive feedback between the unsteady heat release and the acoustic field in a combustor, is a major challenge faced in most practical combustors such as those used in rockets and gas turbines. We employ the synchronization theory for understanding the coupling between the unsteady heat release and the acoustic field of a thermoacoustic system. Interactions between coupled subsystems exhibiting different collective dynamics such as periodic, quasiperiodic, and chaotic oscillations are addressed. Even though synchronization studies have focused on different dynamical states separately, synchronous behaviour of two coupled systems exhibiting a quasiperiodic route to chaos has not been studied. In this study, we report the first experimental observation of different synchronous behaviours between two subsystems of a thermoacoustic system exhibiting such a transition as reported in Kabiraj et al. [Chaos 22, 023129 (2012)]. A rich variety of synchronous behaviours such as phase locking, intermittent phase locking, and phase drifting are observed as the dynamics of such subsystem change. The observed synchronization behaviour is further characterized using phase locking value, correlation coefficient, and relative mean frequency. These measures clearly reveal the boundaries between different states of synchronization.
Dynamic impact testing with servohydraulic testing machines
NASA Astrophysics Data System (ADS)
Bardenheier, R.; Rogers, G.
2006-08-01
The design concept of “Crashworthiness” requires the information on material behaviour under dynamic impact loading in order to describe and predict the crash behaviour of structures. Especially the transport related industries, like car, railway or aircraft industry, pursue the concept of lightweight design for a while now. The materials' maximum constraint during loading is pushed to permanently increasing figures. This means in terms of crashworthiness that the process of energy absorption in structures and the mechanical behaviour of materials must well understood and can be described appropriately by material models. In close cooperation with experts from various industries and research institutes Instron has developed throughout the past years a new family of servohydraulic testing machines specifically designed to cope with the dynamics of high rate testing. Main development steps are reflected versus their experimental necessities.
Relaxation dynamics of dysprosium(III) single molecule magnets.
Guo, Yun-Nan; Xu, Gong-Feng; Guo, Yang; Tang, Jinkui
2011-10-21
Over the past decade, lanthanide compounds have become of increasing interest in the field of Single Molecule Magnets (SMMs) due to the large inherent anisotropy of the metal ions. Heavy lanthanide metal systems, in particular those containing the dysprosium(III) ion, have been extensively employed to direct the formation of a series of SMMs. Although remarkable progress is being made regarding the synthesis and characterization of lanthanide-based SMMs, the understanding and control of the relaxation dynamics of strongly anisotropic systems represents a formidable challenge, since the dynamic behaviour of lanthanide-based SMMs is significantly more complex than that of transition metal systems. This perspective paper describes illustrative examples of pure dysprosium(III)-based SMMs, published during the past three years, showing new and fascinating phenomena in terms of magnetic relaxation, aiming at shedding light on the features relevant to modulating relaxation dynamics of polynuclear lanthanide SMMs. This journal is © The Royal Society of Chemistry 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Vramori; Sarma, Bornali; Sarma, Arun
Recurrence is an ubiquitous feature which provides deep insights into the dynamics of real dynamical systems. A suitable tool for investigating recurrences is recurrence quantification analysis (RQA). It allows, e.g., the detection of regime transitions with respect to varying control parameters. We investigate the complexity of different coexisting nonlinear dynamical regimes of the plasma floating potential fluctuations at different magnetic fields and discharge voltages by using recurrence quantification variables, in particular, DET, L{sub max}, and Entropy. The recurrence analysis reveals that the predictability of the system strongly depends on discharge voltage. Furthermore, the persistent behaviour of the plasma time seriesmore » is characterized by the Detrended fluctuation analysis technique to explore the complexity in terms of long range correlation. The enhancement of the discharge voltage at constant magnetic field increases the nonlinear correlations; hence, the complexity of the system decreases, which corroborates the RQA analysis.« less
Itthivadhanapong, Pimchada; Jantathai, Srinual; Schleining, Gerhard
2016-06-01
This study aimed to compare the effects of 1 % addition of four selected hydrocolloids (xanthan, guar, hypdroxypropylmethylcellulose and carrageenan) on quality characteristics of batter and of black waxy rice steamed cake compared to a control without hydrocolloids. Dynamic frequency sweeps of the batters at 25 °C indicated that all formulations exhibited gel-like behaviour with storage moduli (G') higher than loss moduli (G″). Hydrocolloids increased the apparent viscosity and the thixotropic behaviour, depending on the type of hydrocolloids. Xanthan had the greatest effects on both moduli, whereas carrageenan had the smallest effects. During a storage period of 4 days the cakes with xanthan remained softer than control samples. The overall acceptability of cake with xanthan and guar were higher than control. This study is the first report on using black waxy rice flour as a main raw material in gluten free cake. The results of this study provided useful information for selection hydrocolloids as ingredients that can help to improve the physical properties of waxy rice steamed cake.
Simulating dynamical features of escape panic
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Farkas, Illés; Vicsek, Tamás
2000-09-01
One of the most disastrous forms of collective human behaviour is the kind of crowd stampede induced by panic, often leading to fatalities as people are crushed or trampled. Sometimes this behaviour is triggered in life-threatening situations such as fires in crowded buildings; at other times, stampedes can arise during the rush for seats or seemingly without cause. Although engineers are finding ways to alleviate the scale of such disasters, their frequency seems to be increasing with the number and size of mass events. But systematic studies of panic behaviour and quantitative theories capable of predicting such crowd dynamics are rare. Here we use a model of pedestrian behaviour to investigate the mechanisms of (and preconditions for) panic and jamming by uncoordinated motion in crowds. Our simulations suggest practical ways to prevent dangerous crowd pressures. Moreover, we find an optimal strategy for escape from a smoke-filled room, involving a mixture of individualistic behaviour and collective `herding' instinct.
Toward the modelling of safety violations in healthcare systems.
Catchpole, Ken
2013-09-01
When frontline staff do not adhere to policies, protocols, or checklists, managers often regard these violations as indicating poor practice or even negligence. More often than not, however, these policy and protocol violations reflect the efforts of well intentioned professionals to carry out their work efficiently in the face of systems poorly designed to meet the diverse demands of patient care. Thus, non-compliance with institutional policies and protocols often signals a systems problem, rather than a people problem, and can be influenced among other things by training, competing goals, context, process, location, case complexity, individual beliefs, the direct or indirect influence of others, job pressure, flexibility, rule definition, and clinician-centred design. Three candidates are considered for developing a model of safety behaviour and decision making. The dynamic safety model helps to understand the relationship between systems designs and human performance. The theory of planned behaviour suggests that intention is a function of attitudes, social norms and perceived behavioural control. The naturalistic decision making paradigm posits that decisions are based on a wider view of multiple patients, expertise, systems complexity, behavioural intention, individual beliefs and current understanding of the system. Understanding and predicting behavioural safety decisions could help us to encourage compliance to current processes and to design better interventions.
Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks
Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir
2014-01-01
Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques. PMID:25157950
Peolsson, Anneli; Peterson, Gunnel; Trygg, Johan; Nilsson, David
2016-08-03
Whiplash Associated Disorders (WAD) refers to the multifaceted and chronic burden that is common after a whiplash injury. Tools to assist in the diagnosis of WAD and an increased understanding of neck muscle behaviour are needed. We examined the multilayer dorsal neck muscle behaviour in nine women with chronic WAD versus healthy controls during the entire sequence of a dynamic low-loaded neck extension exercise, which was recorded using real-time ultrasound movies with high frame rates. Principal component analysis and orthogonal partial least squares were used to analyse mechanical muscle strain (deformation in elongation and shortening). The WAD group showed more shortening during the neck extension phase in the trapezius muscle and during both the neck extension and the return to neutral phase in the multifidus muscle. For the first time, a novel non-invasive method is presented that is capable of detecting altered dorsal muscle strain in women with WAD during an entire exercise sequence. This method may be a breakthrough for the future diagnosis and treatment of WAD.
Predicting physical time series using dynamic ridge polynomial neural networks.
Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir
2014-01-01
Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.
Peolsson, Anneli; Peterson, Gunnel; Trygg, Johan; Nilsson, David
2016-01-01
Whiplash Associated Disorders (WAD) refers to the multifaceted and chronic burden that is common after a whiplash injury. Tools to assist in the diagnosis of WAD and an increased understanding of neck muscle behaviour are needed. We examined the multilayer dorsal neck muscle behaviour in nine women with chronic WAD versus healthy controls during the entire sequence of a dynamic low-loaded neck extension exercise, which was recorded using real-time ultrasound movies with high frame rates. Principal component analysis and orthogonal partial least squares were used to analyse mechanical muscle strain (deformation in elongation and shortening). The WAD group showed more shortening during the neck extension phase in the trapezius muscle and during both the neck extension and the return to neutral phase in the multifidus muscle. For the first time, a novel non-invasive method is presented that is capable of detecting altered dorsal muscle strain in women with WAD during an entire exercise sequence. This method may be a breakthrough for the future diagnosis and treatment of WAD. PMID:27484361
NASA Astrophysics Data System (ADS)
Peolsson, Anneli; Peterson, Gunnel; Trygg, Johan; Nilsson, David
2016-08-01
Whiplash Associated Disorders (WAD) refers to the multifaceted and chronic burden that is common after a whiplash injury. Tools to assist in the diagnosis of WAD and an increased understanding of neck muscle behaviour are needed. We examined the multilayer dorsal neck muscle behaviour in nine women with chronic WAD versus healthy controls during the entire sequence of a dynamic low-loaded neck extension exercise, which was recorded using real-time ultrasound movies with high frame rates. Principal component analysis and orthogonal partial least squares were used to analyse mechanical muscle strain (deformation in elongation and shortening). The WAD group showed more shortening during the neck extension phase in the trapezius muscle and during both the neck extension and the return to neutral phase in the multifidus muscle. For the first time, a novel non-invasive method is presented that is capable of detecting altered dorsal muscle strain in women with WAD during an entire exercise sequence. This method may be a breakthrough for the future diagnosis and treatment of WAD.
NASA Astrophysics Data System (ADS)
Matabos, M.; Cuvelier, D.; Brouard, J.; Shillito, B.; Ravaux, J.; Zbinden, M.; Barthelemy, D.; Sarradin, P. M.; Sarrazin, J.
2015-11-01
Identifying the factors driving community dynamics in hydrothermal vent communities, and in particular biological interactions, is challenged by our ability to make direct observations and the difficulty to conduct experiments in those remote ecosystems. As a result, we have very limited knowledge on species' behaviour and interactions in these communities and how they in turn influence community dynamics. Interactions such as competition or predation significantly affect community structure in vent communities, and video time-series have successfully been used to gain insights in biological interactions and species behaviour, including responses to short-term changes in temperature or feeding strategies. In this study, we combined in situ and ex situ approaches to characterise the behaviour and interactions among two key species encountered along the Mid-Atlantic Ridge (MAR): the shrimp Mirocaris fortunata and the crab Segonzacia mesatlantica. In situ, species small-scale distribution, interactions and behaviour were studied using the TEMPO observatory module deployed on the seafloor at the base of the active Eiffel Tower edifice in the Lucky Strike vent field as part of the EMSO-Açores MoMAR observatory. TEMPO sampled 2 min of video four times a day from July 2011 to April 2012. One week of observations per month was used for 'long-term' variations, and a full video data set was analysed for January 2012. In addition, observations of crab and shrimp individuals maintained for the first time under controlled conditions in atmospheric pressure (classic tank) and pressurised (AbyssBox) aquaria allowed better characterisation and description of the different types of behaviour and interactions observed in nature. While the identified in situ spatial distribution pattern was stable over the nine months, both species displayed a significant preference for mussel bed and anhydrite substrata, and preferentially occupied the area located directly in the fluid flow axis. The aggregation behaviour of M. fortunata resulted in the occurrence of numerous intraspecific interactions mainly involving the use of two pairs of sensory organs (antenna/antennule) and fleeing behaviours when in contact or close to individuals of S. mesatlantica. The higher level of passiveness observed in the ex situ artificial environment compared to the in situ environment was attributed to the lack of stimulation related to low densities of congeners and/or of sympatric species compared to the natural environment and the absence of continuous food supply, as both species displayed a significant higher level of activity during feeding time. This result emphasises the role of food supply as a driver of species distribution and behaviour. Direct in situ observations using cameras deployed on deep-sea observatories, combined with experimental set-up in pressurised aquaria, will help investigators understand the factors influencing community dynamics and species biology at vents as well as their underlying mechanisms.
ERIC Educational Resources Information Center
Yan, Zi; Sin, Kuen-fung
2014-01-01
The theory of planned behaviour (TPB) claims that behaviour can be predicted by behavioural intention and perceived behavioural control, while behavioural intention is a function of attitude towards the behaviour, subjective norm, and perceived behavioural control. This study aims at providing explanation and prediction of teachers' inclusive…
Rezaei, Mansour; Zakiei, Ali; Reshadat, Soheyla; Ghasemi, Seyed Ramin
2017-02-01
Investigating previous studies show that personality traits have an important role in controlling risky behaviours related to AIDS; therefore, the aim of this study is to investigate the relationship between AIDS health literacy, personality traits and mental health and controlling risky behaviours related to AIDS through self-efficacy. The statistical population includes all the young people in western provinces of Iran, 2015. Data analysis was carried out for a sample of 756 participants (59% female). The results show that except for the socializing trait, all the other variables are related to controlling risky behaviours. In addition, variables of health literacy related to AIDS, mental health, activity, impulsive sensation seeking and hostility have a direct relation to controlling risky behaviours. Also, the predicting behaviours can predict 62% of the variance in controlling risky behaviours related to AIDS. The analysis results show that health literacy has an indirect impact on controlling risky behaviours through self-efficacy. In other words, health literacy related to AIDS leads to controlling risky behaviours when self-efficacy is high for controlling risky behaviours. Based on the results, it is recommended that the role of self-efficacy in controlling risky behaviours be considered as a strategy for preventing AIDS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
The diminishing role of hubs in dynamical processes on complex networks.
Quax, Rick; Apolloni, Andrea; Sloot, Peter M A
2013-11-06
It is notoriously difficult to predict the behaviour of a complex self-organizing system, where the interactions among dynamical units form a heterogeneous topology. Even if the dynamics of each microscopic unit is known, a real understanding of their contributions to the macroscopic system behaviour is still lacking. Here, we develop information-theoretical methods to distinguish the contribution of each individual unit to the collective out-of-equilibrium dynamics. We show that for a system of units connected by a network of interaction potentials with an arbitrary degree distribution, highly connected units have less impact on the system dynamics when compared with intermediately connected units. In an equilibrium setting, the hubs are often found to dictate the long-term behaviour. However, we find both analytically and experimentally that the instantaneous states of these units have a short-lasting effect on the state trajectory of the entire system. We present qualitative evidence of this phenomenon from empirical findings about a social network of product recommendations, a protein-protein interaction network and a neural network, suggesting that it might indeed be a widespread property in nature.
Siciliano, Velia; Menolascina, Filippo; Marucci, Lucia; Fracassi, Chiara; Garzilli, Immacolata; Moretti, Maria Nicoletta; di Bernardo, Diego
2011-06-01
Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL) by generating a clonal population of mammalian cells (CHO) carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA), whose expression is regulated by a tTA responsive promoter (CMV-TET), thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP), thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL), by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off), and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the "switch off" times, as compared to the non-autoregulated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour.
Veering and nonlinear interactions of a clamped beam in bending and torsion
NASA Astrophysics Data System (ADS)
Ehrhardt, David A.; Hill, Thomas L.; Neild, Simon A.; Cooper, Jonathan E.
2018-03-01
Understanding the linear and nonlinear dynamic behaviour of beams is critical for the design of many engineering structures such as spacecraft antennae, aircraft wings, and turbine blades. When the eigenvalues of such structures are closely-spaced, nonlinearity may lead to interactions between the underlying linear normal modes (LNMs). This work considers a clamped-clamped beam which exhibits nonlinear behaviour due to axial tension from large amplitudes of deformation. An additional cross-beam, mounted transversely and with a movable mass at each tip, allows tuning of the primary torsion LNM such that it is close to the primary bending LNM. Perturbing the location of one mass relative to that of the other leads to veering between the eigenvalues of the bending and torsion LNMs. For a number of selected geometries in the region of veering, a nonlinear reduced order model (NLROM) is created and the nonlinear normal modes (NNMs) are used to describe the underlying nonlinear behaviour of the structure. The relationship between the 'closeness' of the eigenvalues and the nonlinear dynamic behaviour is demonstrated in the NNM backbone curves, and veering-like behaviour is observed. Finally, the forced and damped dynamics of the structure are predicted using several analytical and numerical tools and are compared to experimental measurements. As well as showing a good agreement between the predicted and measured responses, phenomena such as a 1:1 internal resonance and quasi-periodic behaviour are identified.
Single-particle dynamics of the Anderson model: a local moment approach
NASA Astrophysics Data System (ADS)
Glossop, Matthew T.; Logan, David E.
2002-07-01
A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valence and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.
2014-01-01
Background The spread of an infectious disease is determined by biological and social factors. Models based on cellular automata are adequate to describe such natural systems consisting of a massive collection of simple interacting objects. They characterize the time evolution of the global system as the emergent behaviour resulting from the interaction of the objects, whose behaviour is defined through a set of simple rules that encode the individual behaviour and the transmission dynamic. Methods An epidemic is characterized trough an individual–based–model built upon cellular automata. In the proposed model, each individual of the population is represented by a cell of the automata. This way of modeling an epidemic situation allows to individually define the characteristic of each individual, establish different scenarios and implement control strategies. Results A cellular automata model to study the time evolution of a heterogeneous populations through the various stages of disease was proposed, allowing the inclusion of individual heterogeneity, geographical characteristics and social factors that determine the dynamic of the desease. Different assumptions made to built the classical model were evaluated, leading to following results: i) for low contact rate (like in quarantine process or low density population areas) the number of infective individuals is lower than other areas where the contact rate is higher, and ii) for different initial spacial distributions of infected individuals different epidemic dynamics are obtained due to its influence on the transition rate and the reproductive ratio of disease. Conclusions The contact rate and spatial distributions have a central role in the spread of a disease. For low density populations the spread is very low and the number of infected individuals is lower than in highly populated areas. The spacial distribution of the population and the disease focus as well as the geographical characteristic of the area play a central role in the dynamics of the desease. PMID:24725804
López, Leonardo; Burguerner, Germán; Giovanini, Leonardo
2014-04-12
The spread of an infectious disease is determined by biological and social factors. Models based on cellular automata are adequate to describe such natural systems consisting of a massive collection of simple interacting objects. They characterize the time evolution of the global system as the emergent behaviour resulting from the interaction of the objects, whose behaviour is defined through a set of simple rules that encode the individual behaviour and the transmission dynamic. An epidemic is characterized trough an individual-based-model built upon cellular automata. In the proposed model, each individual of the population is represented by a cell of the automata. This way of modeling an epidemic situation allows to individually define the characteristic of each individual, establish different scenarios and implement control strategies. A cellular automata model to study the time evolution of a heterogeneous populations through the various stages of disease was proposed, allowing the inclusion of individual heterogeneity, geographical characteristics and social factors that determine the dynamic of the desease. Different assumptions made to built the classical model were evaluated, leading to following results: i) for low contact rate (like in quarantine process or low density population areas) the number of infective individuals is lower than other areas where the contact rate is higher, and ii) for different initial spacial distributions of infected individuals different epidemic dynamics are obtained due to its influence on the transition rate and the reproductive ratio of disease. The contact rate and spatial distributions have a central role in the spread of a disease. For low density populations the spread is very low and the number of infected individuals is lower than in highly populated areas. The spacial distribution of the population and the disease focus as well as the geographical characteristic of the area play a central role in the dynamics of the desease.
Dynamic performances analysis of a real vehicle driving
NASA Astrophysics Data System (ADS)
Abdullah, M. A.; Jamil, J. F.; Salim, M. A.
2015-12-01
Vehicle dynamic is the effects of movement of a vehicle generated from the acceleration, braking, ride and handling activities. The dynamic behaviours are determined by the forces from tire, gravity and aerodynamic which acting on the vehicle. This paper emphasizes the analysis of vehicle dynamic performance of a real vehicle. Real driving experiment on the vehicle is conducted to determine the effect of vehicle based on roll, pitch, and yaw, longitudinal, lateral and vertical acceleration. The experiment is done using the accelerometer to record the reading of the vehicle dynamic performance when the vehicle is driven on the road. The experiment starts with weighing a car model to get the center of gravity (COG) to place the accelerometer sensor for data acquisition (DAQ). The COG of the vehicle is determined by using the weight of the vehicle. A rural route is set to launch the experiment and the road conditions are determined for the test. The dynamic performance of the vehicle are depends on the road conditions and driving maneuver. The stability of a vehicle can be controlled by the dynamic performance analysis.
Tensile behaviour of geopolymer-based materials under medium and high strain rates
NASA Astrophysics Data System (ADS)
Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio
2015-09-01
Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.
The Down Syndrome Behavioural Phenotype: Taking a Developmental Approach
ERIC Educational Resources Information Center
Fidler, Deborah; Most, David; Philofsky, Amy
2009-01-01
Individuals with Down syndrome are predisposed to show a specific behavioural phenotype, or a pattern of strengths and challenges in functioning across different domains of development. It is argued that a developmental approach to researching the Down syndrome behavioural phenotype, including an examination of the dynamic process of the unfolding…
NASA Astrophysics Data System (ADS)
Zarchi, Milad; Attaran, Behrooz
2017-11-01
This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.
Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments
Crabit, Armand; Colin, François; Bailly, Jean Stéphane; Ayroles, Hervé; Garnier, François
2011-01-01
An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels…) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance. PMID:22163868
Use of the dynamic stiffness method to interpret experimental data from a nonlinear system
NASA Astrophysics Data System (ADS)
Tang, Bin; Brennan, M. J.; Gatti, G.
2018-05-01
The interpretation of experimental data from nonlinear structures is challenging, primarily because of dependency on types and levels of excitation, and coupling issues with test equipment. In this paper, the use of the dynamic stiffness method, which is commonly used in the analysis of linear systems, is used to interpret the data from a vibration test of a controllable compressed beam structure coupled to a test shaker. For a single mode of the system, this method facilitates the separation of mass, stiffness and damping effects, including nonlinear stiffness effects. It also allows the separation of the dynamics of the shaker from the structure under test. The approach needs to be used with care, and is only suitable if the nonlinear system has a response that is predominantly at the excitation frequency. For the structure under test, the raw experimental data revealed little about the underlying causes of the dynamic behaviour. However, the dynamic stiffness approach allowed the effects due to the nonlinear stiffness to be easily determined.
Timescales for exploratory tactical behaviour in football small-sided games.
Ric, Angel; Hristovski, Robert; Gonçalves, Bruno; Torres, Lorena; Sampaio, Jaime; Torrents, Carlota
2016-09-01
The aim of this study was to identify the dynamics of tactical behaviour emerging on different timescales in football small-sided games and to quantify short- and long-term exploratory behaviour according to the number of opponents. Two teams of four professional male footballers played small-sided games against two different teams with a variable number of opponents (3, 5 and 7). Data were collected using a combination of systematic observation and a non-differential global positioning system (15 Hz). The temporal diversity and structural flexibility of the players were determined by calculating the dynamic overlap order parameter q, entropy and trapping strength. Analysis of the exploratory dynamics revealed two different timescales, forming a different metastable landscape of action for each constraint. Fast dynamics lasted on average a few seconds and consisted of changes in tactical patterns. The long timescale corresponded to the shared tasks of offence and defence lasting tens of seconds. The players' tactical diversity decreased with an increasing number of opponents, especially in defence. Manipulating numerical imbalance is likely to promote changes in the diversity, unpredictability and flexibility of tactical solutions. The fact that the temporally nested structure of constraints shaped the emergence of tactical behaviour provides a new rationale for practice task design. The manipulation of numerical imbalance on the timescale of a few tens of seconds, on which the exploratory behaviour of players saturates, may help coaches to optimise the exploratory efficiency of the small-sided games.
Impact Capacity Reduction in Railway Prestressed Concrete Sleepers with Surface Abrasions
NASA Astrophysics Data System (ADS)
Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat
2017-10-01
Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted railway tracks are a main part of railway track structures. Its important role is to transfer the loads evenly from the rails to a wider area of ballast bed and to secure rail gauge and enable safe passages of rolling stocks. By nature, railway infrastructure is nonlinear, evidenced by its behaviours, geometry and alignment, wheel-rail contact and operational parameters such as tractive efforts. Based on our critical review, the dynamic behaviour of railway sleepers has not been fully investigated, especially when the sleepers are deteriorated by excessive wears. In fact, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions in concrete sleepers due to the unbalanced loading conditions. This paper presents a structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers under impact loading will be highlighted in this study. The influences of surface abrasions, including surface abrasion and soffit abrasion, on the dynamic behaviour of prestressed concrete sleepers, are firstly highlighted. The outcome of this study will improve the rail maintenance and inspection criteria in order to establish appropriate and sensible remote track condition monitoring network in practice. Moreover, this study will also improve the understanding of the fundamental dynamic behaviour of prestressed concrete sleepers with surface abrasions. The insight into these behaviours will not only improve safety and reliability of railway infrastructure but will enhance the structural safety of other concrete structures.
Reflections on the nature of non-linear responses of the climate to forcing
NASA Astrophysics Data System (ADS)
Ditlevsen, Peter
2017-04-01
On centennial to multi-millennial time scales the paleoclimatic record shows that climate responds in a very non-linear way to the external forcing. Perhaps most puzzling is the change in glacial period duration at the Middle Pleistocene Transition. From a dynamical systems perspective, this could be a change in frequency locking between the orbital forcing and the climatic response or it could be a non-linear resonance phenomenon. In both cases the climate system shows a non-trivial oscillatory behaviour. From the records it seems that this behaviour can be described by an effective dynamics on a low-dimensional slow manifold. These different possible dynamical behaviours will be discussed. References: Arianna Marchionne, Peter Ditlevsen, and Sebastian Wieczorek, "Three types of nonlinear resonances", arXiv:1605.00858 Peter Ashwin and Peter Ditlevsen, "The middle Pleistocene transition as a generic bifurcation on a slow manifold", Climate Dynamics, 45, 2683, 2015. Peter D. Ditlevsen, "The bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles", Paleoceanography, 24, PA3204, 2009
Lattice gas simulations of dynamical geometry in one dimension.
Love, Peter J; Boghosian, Bruce M; Meyer, David A
2004-08-15
We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evolution be reproducible. The average size of the lattice exhibits power-law growth with exponent at late times. The deviation of the macroscopic behaviour from reproducibility for particular initial conditions ('rogue states') is investigated as a function of system size. The number of such 'rogue states' is observed to decrease with increasing system size. Two mean-field analyses of the macroscopic behaviour are also presented. Copyright 2004 The Royal Society
Bio-inspired network optimization in soft materials — Insights from the plant cell wall
NASA Astrophysics Data System (ADS)
Vincent, R. R.; Cucheval, A.; Hemar, Y.; Williams, M. A. K.
2009-01-01
The dynamic-mechanical responses of ionotropic gels made from the biopolymer pectin have recently been investigated by microrheological experiments and found to exhibit behaviour indicative of semi-flexible polymer networks. In this work we investigate the gelling behaviour of pectin systems in which an enzyme (pectinmethylesterase, PME) is used to liberate ion-binding sites on initially inert polymers, while in the presence of ions. This is in contrast to the previous work, where it was the release of ions (rather than ion-binding groups) that was controlled and the polymers had pre-existing cross-linkable moieties. In stark contrast to the semi-flexible network paradigm of biological gels and the previous work on pectin, the gels studied herein exhibit the properties of chemically cross-linked networks of flexible polymers.
NASA Astrophysics Data System (ADS)
Kalenchuk, K. S.; Hutchinson, D.; Diederichs, M. S.
2013-12-01
Downie Slide, one of the world's largest landslides, is a massive, active, composite, extremely slow rockslide located on the west bank of the Revelstoke Reservoir in British Columbia. It is a 1.5 billion m3 rockslide measuring 2400 m along the river valley, 3300m from toe to headscarp and up to 245 m thick. Significant contributions to the field of landslide geomechanics have been made by analyses of spatially and temporally discriminated slope deformations, and how these are controlled by complex geological and geotechnical factors. Downie Slide research demonstrates the importance of delineating massive landslides into morphological regions in order to characterize global slope behaviour and identify localized events, which may or may not influence the overall slope deformation patterns. Massive slope instabilities do not behave as monolithic masses, rather, different landslide zones can display specific landslide processes occurring at variable rates of deformation. The global deformation of Downie Slide is extremely slow moving; however localized regions of the slope incur moderate to high rates of movement. Complex deformation processes and composite failure mechanism are contributed to by topography, non-uniform shear surfaces, heterogeneous rockmass and shear zone strength and stiffness characteristics. Further, from the analysis of temporal changes in landslide behaviour it has been clearly recognized that different regions of the slope respond differently to changing hydrogeological boundary conditions. State-of-the-art methodologies have been developed for numerical simulation of large landslides; these provide important tools for investigating dynamic landslide systems which account for complex three-dimensional geometries, heterogenous shear zone strength parameters, internal shear zones, the interaction of discrete landslide zones and piezometric fluctuations. Numerical models of Downie Slide have been calibrated to reproduce observed slope behaviour, and the calibration process has provided important insight to key factors controlling massive slope mechanics. Through numerical studies it has been shown that the three-dimensional interpretation of basal slip surface geometry and spatial heterogeneity in shear zone stiffness are important factors controlling large-scale slope deformation processes. The role of secondary internal shears and the interaction between landslide morphological zones has also been assessed. Further, numerical simulation of changing groundwater conditions has produced reasonable correlation with field observations. Calibrated models are valuable tools for the forward prediction of landslide dynamics. Calibrated Downie Slide models have been used to investigate how trigger scenarios may accelerate deformations at Downie Slide. The ability to reproduce observed behaviour and forward test hypothesized changes to boundary conditions has valuable application in hazard management of massive landslides. The capacity of decision makers to interpret large amounts of data, respond to rapid changes in a system and understand complex slope dynamics has been enhanced.
Neural substrates of defensive reactivity in two subtypes of specific phobia
Hilbert, Kevin; Stolyar, Veronika; Maslowski, Nina I.; Beesdo-Baum, Katja; Wittchen, Hans-Ulrich
2014-01-01
Depending on threat proximity, different defensive behaviours are mediated by a descending neural network involving forebrain (distal threat) vs midbrain areas (proximal threat). Compared to healthy subjects, it can be assumed that phobics are characterized by shortened defensive distances on a behavioural and neural level. This study aimed at characterizing defensive reactivity in two subtypes of specific phobia [snake (SP) and dental phobics (DP)]. Using functional magnetic resonance imaging (fMRI), n = 39 subjects (13 healthy controls, HC; 13 SP; 13 DP) underwent an event-related fMRI task employing an anticipation (5–10 s) and immediate perception phase (phobic pictures and matched neutral stimuli; 1250 ms) to modulate defensive distance. Although no differential brain activity in any comparisons was observed in DP, areas associated with defensive behaviours (e.g. amygdala, hippocampus, midbrain) were activated in SP. Decreasing defensive distance in SP was characterized by a shift to midbrain activity. Present findings substantiate differences between phobia types in their physiological and neural organization that can be expanded to early stages of defensive behaviours. Findings may contribute to a better understanding of the dynamic organization of defensive reactivity in different types of phobic fear. PMID:24174207
Integrated Environmental Modelling: Human decisions, human challenges
Glynn, Pierre D.
2015-01-01
Integrated Environmental Modelling (IEM) is an invaluable tool for understanding the complex, dynamic ecosystems that house our natural resources and control our environments. Human behaviour affects the ways in which the science of IEM is assembled and used for meaningful societal applications. In particular, human biases and heuristics reflect adaptation and experiential learning to issues with frequent, sharply distinguished, feedbacks. Unfortunately, human behaviour is not adapted to the more diffusely experienced problems that IEM typically seeks to address. Twelve biases are identified that affect IEM (and science in general). These biases are supported by personal observations and by the findings of behavioural scientists. A process for critical analysis is proposed that addresses some human challenges of IEM and solicits explicit description of (1) represented processes and information, (2) unrepresented processes and information, and (3) accounting for, and cognizance of, potential human biases. Several other suggestions are also made that generally complement maintaining attitudes of watchful humility, open-mindedness, honesty and transparent accountability. These suggestions include (1) creating a new area of study in the behavioural biogeosciences, (2) using structured processes for engaging the modelling and stakeholder communities in IEM, and (3) using ‘red teams’ to increase resilience of IEM constructs and use.
A study on atomic diffusion behaviours in an Al-Mg compound casting process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongning; Chen, Yiqing; Yang, Chunhui, E-mail: r.yang@uws.edu.au
Al and Mg alloys are main lightweight alloys of research interest and they both have superb material properties, i.e., low density and high specific strength, etc. Being different from Al alloys, the corrosion of Mg alloys is much more difficult to control. Therefore to combine merits of these two lightweight alloys as a composite-like structure is an ideal solution through using Al alloys as a protective layer for Mg alloys. Compound casting is a realistic technique to manufacture such a bi-metal structure. In this study, a compound casting technique is employed to fabricate bi-layered samples using Al and Mg andmore » then the samples are analysed using electron probe micro-analyzer (EPMA) to determine diffusion behaviours between Al and Mg. The diffusion mechanism and behaviours between Al and Mg are studied numerically at atomic scale using molecular dynamics (MD) and parametric studies are conducted to find out influences of ambient temperature and pressure on the diffusion behaviours between Al and Mg. The results obtained clearly show the effectiveness of the compound casting process to increase the diffusion between Al and Mg and thus create the Al-base protection layer for Mg.« less
Spatial constancy mechanisms in motor control
Medendorp, W. Pieter
2011-01-01
The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye–head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals. PMID:21242137
Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle.
Shalymov, Dmitry S; Fradkov, Alexander L
2016-01-01
We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined.
Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle
2016-01-01
We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined. PMID:26997886
LQ optimal and reaching law-based sliding modes for inventory management systems
NASA Astrophysics Data System (ADS)
Ignaciuk, Przemysław; Bartoszewicz, Andrzej
2012-01-01
In this article, the theory of discrete sliding-mode control is used to design new supply strategies for periodic-review inventory systems. In the considered systems, the stock used to fulfil an unknown, time-varying demand can be replenished from a single supply source or from multiple suppliers procuring orders with different delays. The proposed strategies guarantee that demand is always entirely satisfied from the on-hand stock (yielding the maximum service level), and the warehouse capacity is not exceeded (which eliminates the cost of emergency storage). In contrast to the classical, stochastic approaches, in this article, we focus on optimising the inventory system dynamics. The parameters of the first control strategy are selected by minimising a quadratic cost functional. Next, it is shown how the system dynamical performance can be improved by applying the concept of a reaching law with the appropriately adjusted reaching phase. The stable, nonoscillatory behaviour of the closed-loop system is demonstrated and the properties of the designed controllers are discussed and strictly proved.
Dynamic environmental control mechanisms for pneumatic foil constructions
NASA Astrophysics Data System (ADS)
Flor, Jan-Frederik; Wu, Yupeng; Beccarelli, Paolo; Chilton, John
2017-11-01
Membrane and foil structures have become over the last decades an attractive alternative to conventional materials and building systems with increasing implementation in different typologies and scale. The development of transparent, light, flexible and resistant materials like Ethylene Tetrafluoroethylene (ETFE) has triggered a rethinking of the building envelope in the building industry towards lightweight systems. ETFE foil cushions have proven to fulfil the design requirements in terms of structural efficiency and aesthetic values. But the strategies to satisfy increasing demands of energy efficiency and comfort conditions are still under development. The prediction and manipulation of the thermo-optical behaviour of ETFE foil cushion structures currently remain as one of the main challenges for designers and manufacturers. This paper reviews ongoing research regarding the control of the thermo-optical performance of ETFE cushion structures and highlights challenges and possible improvements. An overview of different dynamic and responsive environmental control mechanisms for multilayer foil constructions is provided and the state of the art in building application outlined by the discussion of case studies.
Wells, C R; Bauch, C T
2012-08-01
Personal experiences with past infection events, or perceived vaccine failures and complications, are known to drive vaccine uptake. We coupled a model of individual vaccinating decisions, influenced by these drivers, with a contact network model of influenza transmission dynamics. The impact of non-influenzal influenza-like illness (niILI) on decision-making was also incorporated: it was possible for individuals to mistake niILI for true influenza. Our objectives were to (1) evaluate the impact of personal experiences on vaccine coverage; (2) understand the impact of niILI on behaviour-incidence dynamics; (3) determine which factors influence vaccine coverage stability; and (4) determine whether vaccination strategies can become correlated on the network in the absence of social influence. We found that certain aspects of personal experience can significantly impact behaviour-incidence dynamics. For instance, longer term memory for past events had a strong stabilising effect on vaccine coverage dynamics, although it could either increase or decrease average vaccine coverage depending on whether memory of past infections or past vaccine failures dominated. When vaccine immunity wanes slowly, vaccine coverage is low and stable, and infection incidence is also very low, unless the effects of niILI are ignored. Strategy correlations can occur in the absence of imitation, on account of the neighbour-neighbour transmission of infection and history-dependent decision making. Finally, niILI weakens the behaviour-incidence coupling and therefore tends to stabilise dynamics, as well as breaking up strategy correlations. Behavioural feedbacks, and the quality of self-diagnosis of niILI, may need to be considered in future programs adopting "universal" flu vaccines conferring long-term immunity. Public health interventions that focus on reminding individuals about their previous influenza infections, as well as communicating facts about vaccine efficacy and the difference between influenza and niILI, may be an effective way to increase vaccine coverage and prevent unexpected drops in coverage. Copyright © 2012 Elsevier B.V. All rights reserved.
Searching for forcing signatures in decadal patterns of shoreline change
NASA Astrophysics Data System (ADS)
Burningham, H.; French, J.
2016-12-01
Analysis of shoreline position at spatial scales of the order 10 - 100 km and at a multi-decadal time-scale has the potential to reveal regional coherence (or lack of) in the primary controls on shoreline tendencies and trends. Such information is extremely valuable for the evaluation of climate forcing on coastal behaviour. Segmenting a coast into discrete behaviour units based on these types of analyses is often subjective, however, and in the context of pervasive human interventions and alongshore variability in ocean climate, determining the most important controls on shoreline dynamics can be challenging. Multivariate analyses provide one means to resolve common behaviours across shoreline position datasets, thereby underpinning a more objective evaluation of possible coupling between shorelines at different scales. In an analysis of the Suffolk coast (eastern England) we explore the use of multivariate statistics to understand and classify mesoscale coastal behaviour. Suffolk comprises a relatively linear shoreline that shifts from east-facing in the north to southeast-facing in the south. Although primarily formed of a beach foreshore backed by cliffs or shingle barrier, the shoreline is punctuated at 3 locations by narrow tidal inlets with offset entrances that imply a persistent north to south sediment transport direction. Tidal regime decreases south to north from mesotidal (3.6m STR) to microtidal (1.9m STR), and the bimodal wave climate (northeast and southwest modes) presents complex local-scale variability in nearshore conditions. Shorelines exhibit a range of decadal behaviours from rapid erosion (up to 4m/yr) to quasi-stability that cannot be directly explained by the spatial organisation of contemporary landforms or coastal defences. A multivariate statistical approach to shoreline change analysis helps to define the key modes of change and determine the most likely forcing factors.
Constitutive equations for multiphase TRIP steels at high rates of strain
NASA Astrophysics Data System (ADS)
van Slycken, J.; Verleysen, P.; Degrieck, J.; Bouquerel, J.
2006-08-01
Multiphase TRansformation Induced Plasticity (TRIP) steels show an excellent combination of high strength and high strain values, making them ideally suited for use in vehicle body structures. A complex synergy of three different phases (ferrite, bainite and austenite) on the one hand, and the meta-stable character of the austenite on the other hand, give the material indeed a high energy absorption potential. The knowledge and understanding of the dynamic behaviour of these sheet steels is essential to investigate the impact-dynamic characteristics of the structures. Therefore split Hopkinson tensile tests are performed in a strain rate range of 500 to 2000 s-1. Three TRIP steel grades with a different Al and Si content were studied. The experimental results show that these steels preserve their excellent shock-absorbing properties in dynamic conditions. The typical high strain rate loading conditions and the complex behaviour of TRIP steels offer a unique investigation opportunity. This behaviour can be described with phenomenological material models that can be used for numerical simulations of car crashes. The Johnson-Cook model, a frequently used model in finite element codes, is well-suited to describe the dynamic behaviour of the investigated TRIP steels. This model is compared to the Rusinek-Klepaczko model.
MacDonald, Sarah; Murphy, Simon; Elliott, Eva
2018-04-06
Potential merits of a social practice perspective for examining the meanings and dynamics of family food include moving beyond individual behaviour, and exploring how practices emerge, develop and change. However, researchers have struggled to encourage reflection on mundane practices, and how to understand associated meanings. Drawing on a study of families in South Wales, this article reflects on the value of the diary-interview approach in addressing these methodological challenges, and aims to explore and understand the dynamics of control across family contexts. Contemporary practice theories distinguish between practices as 'performances' and practices as 'entities' and the diary-interview method facilitated an examination of these dimensions. Detailed accounts of daily 'performances' (through diaries), alongside reflection on underlying contexts and 'entities' (through interviews), illustrated the entanglement of control, practices and context. The article adds further complexity to the concept of practice 'bundles' which facilitated an understanding of how food was interrelated with other practices - across family contexts and across generations. Sociological approaches with a practices perspective at the core, offer potential for developing public health interventions by acknowledging: the relational meaning of food; the embeddedness of food within everyday practices; and the need to consider interventions across a range of policy areas. © 2018 Foundation for the Sociology of Health & Illness.
Aguilera, Miguel; Barandiaran, Xabier E.; Bedia, Manuel G.; Seron, Francisco
2015-01-01
During the last two decades, analysis of 1/ƒ noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/ƒ noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/ƒ noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/ƒ noise in our model is the result of three simultaneous conditions: a) non-linear interaction dynamics capable of generating stable collective patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/ƒ noise. The experiments also shown to be useful to test the robustness of 1/ƒ scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically includes sensorimotor coupling among the essential interaction-dominant process giving rise to 1/ƒ noise. PMID:25706744
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
NASA Astrophysics Data System (ADS)
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
Single wheel hub motor failures and their impact on vehicle and driver behaviour
NASA Astrophysics Data System (ADS)
Wanner, Daniel; Kreußlein, Maria; Augusto, Bruno; Drugge, Lars; Stensson Trigell, Annika
2016-10-01
This research work studies the impact of single wheel hub motor failures on the dynamic behaviour of electric vehicles and the corresponding driver reactions. An experimental study in a moving-base driving simulator is conducted to analyse the influence of single wheel hub motor failures for motorway speeds. Driver reaction times are derived from the measured data and discussed in their experimental context. The failure is rated objectively on the dynamic behaviour of the vehicle and compared to the subjective evaluation. Findings indicate that critical traffic situations impairing traffic safety can occur for motorway speeds. Clear counteractions by the drivers had to be taken.
Combes, S A; Crall, J D; Mukherjee, S
2010-06-23
Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop-escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival.
Curvature-induced defect unbinding and dynamics in active nematic toroids
NASA Astrophysics Data System (ADS)
Ellis, Perry W.; Pearce, Daniel J. G.; Chang, Ya-Wen; Goldsztein, Guillermo; Giomi, Luca; Fernandez-Nieves, Alberto
2018-01-01
Nematic order on curved surfaces is often disrupted by the presence of topological defects, which are singular regions in which the orientational order is undefined. In the presence of force-generating active materials, these defects are able to migrate through space like swimming microorganisms. We use toroidal surfaces to show that despite their highly chaotic and non-equilibrium dynamics, pairs of defects unbind and segregate in regions of opposite Gaussian curvature. Using numerical simulations, we find that the degree of defect unbinding can be controlled by tuning the system activity, and even suppressed in strongly active systems. Furthermore, by using the defects as active microrheological tracers and quantitatively comparing our experimental and theoretical results, we are able to determine material properties of the active nematic. Our results illustrate how topology and geometry can be used to control the behaviour of active materials, and introduce a new avenue for the quantitative mechanical characterization of active fluids.
Gurevich, Svetlana V
2014-10-28
The dynamics of a single breathing localized structure in a three-component reaction-diffusion system subjected to time-delayed feedback is investigated. It is shown that variation of the delay time and the feedback strength can lead either to stabilization of the breathing or to delay-induced periodic or quasi-periodic oscillations of the localized structure. A bifurcation analysis of the system in question is provided and an order parameter equation is derived that describes the dynamics of the localized structure in the vicinity of the Andronov-Hopf bifurcation. With the aid of this equation, the boundaries of the stabilization domains as well as the dependence of the oscillation radius on delay parameters can be explicitly derived, providing a robust mechanism to control the behaviour of the breathing localized structure in a straightforward manner. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Analysis of dynamically stable patterns in a maze-like corridor using the Wasserstein metric.
Ishiwata, Ryosuke; Kinukawa, Ryota; Sugiyama, Yuki
2018-04-23
The two-dimensional optimal velocity (2d-OV) model represents a dissipative system with asymmetric interactions, thus being suitable to reproduce behaviours such as pedestrian dynamics and the collective motion of living organisms. In this study, we found that particles in the 2d-OV model form optimal patterns in a maze-like corridor. Then, we estimated the stability of such patterns using the Wasserstein metric. Furthermore, we mapped these patterns into the Wasserstein metric space and represented them as points in a plane. As a result, we discovered that the stability of the dynamical patterns is strongly affected by the model sensitivity, which controls the motion of each particle. In addition, we verified the existence of two stable macroscopic patterns which were cohesive, stable, and appeared regularly over the time evolution of the model.
Experimental feedback linearisation of a vibrating system with a non-smooth nonlinearity
NASA Astrophysics Data System (ADS)
Lisitano, D.; Jiffri, S.; Bonisoli, E.; Mottershead, J. E.
2018-03-01
Input-output partial feedback linearisation is demonstrated experimentally for the first time on a system with non-smooth nonlinearity, a laboratory three degrees of freedom lumped mass system with a piecewise-linear spring. The output degree of freedom is located away from the nonlinearity so that the partial feedback linearisation possesses nonlinear internal dynamics. The dynamic behaviour of the linearised part is specified by eigenvalue assignment and an investigation of the zero dynamics is carried out to confirm stability of the overall system. A tuned numerical model is developed for use in the controller and to produce numerical outputs for comparison with experimental closed-loop results. A new limitation of the feedback linearisation method is discovered in the case of lumped mass systems - that the input and output must share the same degrees of freedom.
Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales
NASA Astrophysics Data System (ADS)
Dongare, Avinash M.
2014-12-01
A computationally efficient modelling method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of molecular dynamics (MD) simulations to model behaviour of metallic materials at the mesoscales. This mesoscale method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and using scaling relationships for the atomic-scale interatomic potentials in MD simulations to define the interactions between representative atoms. The scaling relationships retain the atomic-scale degrees of freedom and therefore energetics of the representative atoms as would be predicted in MD simulations. The total energetics of the system is retained by scaling the energetics and the atomic-scale degrees of freedom of these representative atoms to account for the missing atoms in the microstructure. This scaling of the energetics renders improved time steps for the QCGD simulations. The success of the QCGD method is demonstrated by the prediction of the structural energetics, high-temperature thermodynamics, deformation behaviour of interfaces, phase transformation behaviour, plastic deformation behaviour, heat generation during plastic deformation, as well as the wave propagation behaviour, as would be predicted using MD simulations for a reduced number of representative atoms. The reduced number of atoms and the improved time steps enables the modelling of metallic materials at the mesoscale in extreme environments.
The Influence of Learning Behaviour on Team Adaptability
ERIC Educational Resources Information Center
Murray, Peter A.; Millett, Bruce
2011-01-01
Multiple contexts shape team activities and how they learn, and group learning is a dynamic construct that reflects a repertoire of potential behaviour. The purpose of this developmental paper is to examine how better learning behaviours in semi-autonomous teams improves the level of team adaptability and performance. The discussion suggests that…
Schleussner, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders
2016-01-01
Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking. PMID:27510641
Extensional channel flow revisited: a dynamical systems perspective
Meseguer, Alvaro; Mellibovsky, Fernando; Weidman, Patrick D.
2017-01-01
Extensional self-similar flows in a channel are explored numerically for arbitrary stretching–shrinking rates of the confining parallel walls. The present analysis embraces time integrations, and continuations of steady and periodic solutions unfolded in the parameter space. Previous studies focused on the analysis of branches of steady solutions for particular stretching–shrinking rates, although recent studies focused also on the dynamical aspects of the problems. We have adopted a dynamical systems perspective, analysing the instabilities and bifurcations the base state undergoes when increasing the Reynolds number. It has been found that the base state becomes unstable for small Reynolds numbers, and a transitional region including complex dynamics takes place at intermediate Reynolds numbers, depending on the wall acceleration values. The base flow instabilities are constitutive parts of different codimension-two bifurcations that control the dynamics in parameter space. For large Reynolds numbers, the restriction to self-similarity results in simple flows with no realistic behaviour, but the flows obtained in the transition region can be a valuable tool for the understanding of the dynamics of realistic Navier–Stokes solutions. PMID:28690413
Dynamic Impact Behaviour of High Entropy Alloys Used in the Military Domain
NASA Astrophysics Data System (ADS)
Geantă, V.; Voiculescu, I.; Stefănoiu, R.; Chereches, T.; Zecheru, T.; Matache, L.; Rotariu, A.
2018-06-01
AlFeCrCoNi high entropy alloys (HEA) feature significant compressive strength characteristics, being usable for severe impact applications in the military domain. The research paper presents the results obtained by testing the impact resistance of four HEA samples of different chemical compositions at perforation with 7.62 mm calibre incendiary armour-piercing bullets. The dynamical behaviour was modelled by numerical simulation based on the results of the dynamic tests conducted in the firing range, thus allowing the development of more efficient high entropy alloys, to be used for collective/personal protection.
NASA Astrophysics Data System (ADS)
Van der Kelen, C.; Göransson, P.; Pluymers, B.; Desmet, W.
2014-12-01
The aspects related to modelling the frequency dependence of the elastic properties of air-saturated porous materials have been largely neglected in the past for several reasons. For acoustic excitation of porous materials, the material behaviour can be quite well represented by models where the properties of the solid frame have little influence. Only recently has the importance of the dynamic moduli of the frame come into focus. This is related to a growing interest in the material behaviour due to structural excitation. Two aspects stand out in connection with the elastic-dynamic behaviour. The first is related to methods for the characterisation of the dynamic moduli of porous materials. The second is a perceived lack of numerical methods able to model the complex material behaviour under structural excitation, in particular at higher frequencies. In the current paper, experimental data from a panel under structural excitation, coated with a porous material, are presented. In an attempt to correlate the experimental data to numerical predictions, it is found that the measured quasi-static material parameters do not suffice for an accurate prediction of the measured results. The elastic material parameters are then estimated by correlating the numerical prediction to the experimental data, following the physical behaviour predicted by the augmented Hooke's law. The change in material behaviour due to the frequency-dependent properties is illustrated in terms of the propagation of the slow wave and the shear wave in the porous material.
Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
NASA Astrophysics Data System (ADS)
Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai
2016-02-01
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media.
Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai
2016-01-01
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media. PMID:26876162
Brain-wide neuronal dynamics during motor adaptation in zebrafish.
Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben
2012-05-09
A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.
Groenesteijn, L; Commissaris, D A C M; Van den Berg-Zwetsloot, M; Hiemstra-Van Mastrigt, S
2016-07-19
Working in an office environment is characterised by physical inactivity and sedentary behaviour. This behaviour contributes to several health risks in the long run. Dynamic workstations which allow people to combine desk activities with physical activity, may contribute to prevention of these health risks. A dynamic workstation, called Oxidesk, was evaluated to determine the possible contribution to healthy behaviour and the impact on perceived work performance. A field test was conducted with 22 office workers, employed at a health insurance company in the Netherlands. The Oxidesk was well accepted, positively perceived for fitness and the participants maintained their work performance. Physical activity was lower than the activity level required in the Dutch guidelines for sufficient physical activity. Although there was a slight increase in physical activity, the Oxidesk may be helpful in the reducing health risks involved and seems applicable for introduction to office environments.
A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.
Smith, E R; Müller, E A; Craster, R V; Matar, O K
2016-12-06
Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.
Experimental and modelling of Arthrospira platensis cultivation in open raceway ponds.
Ranganathan, Panneerselvam; Amal, J C; Savithri, S; Haridas, Ajith
2017-10-01
In this study, the growth of Arthrospira platensis was studied in an open raceway pond. Furthermore, dynamic model for algae growth and CFD modelling of hydrodynamics in open raceway pond were developed. The dynamic behaviour of the algal system was developed by solving mass balance equations of various components, considering light intensity and gas-liquid mass transfer. A CFD modelling of the hydrodynamics of open raceway pond was developed by solving mass and momentum balance equations of the liquid medium. The prediction of algae concentration from the dynamic model was compared with the experimental data. The hydrodynamic behaviour of the open raceway pond was compared with the literature data for model validation. The model predictions match the experimental findings. Furthermore, the hydrodynamic behaviour and residence time distribution in our small raceway pond were predicted. These models can serve as a tool to assess the pond performance criteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops
NASA Astrophysics Data System (ADS)
Rahman, Aminur; Jordan, Ian; Blackmore, Denis
2018-01-01
It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.
Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.
Rahman, Aminur; Jordan, Ian; Blackmore, Denis
2018-01-01
It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.
Dynamic response of a sensor element made of magnetic hybrid elastomer with controllable properties
NASA Astrophysics Data System (ADS)
Becker, T. I.; Zimmermann, K.; Borin, D. Yu.; Stepanov, G. V.; Storozhenko, P. A.
2018-03-01
Smart materials like magnetic hybrid elastomers (MHEs) are based on an elastic composite with a complex hybrid filler of magnetically hard and soft particles. Due to their unique magnetic field depending characteristics, these elastomers offer great potential for designing sensor systems with a complex adaptive behaviour and operating sensitivity. The present paper deals with investigations of the material properties and motion behaviour displayed by synthesised MHE beams in the presence of a uniform magnetic field. The distribution and structure formation of the magnetic components inside the elastic matrix depending on the manufacturing conditions are examined. The specific magnetic features of the MHE material during the magnetising process are revealed. Experimental investigations of the in-plane free vibrational behaviour displayed by the MHE beams with the fixed-free end conditions are performed for various magnitudes of an imposed uniform magnetic field. For the samples pre-magnetised along the length axis, it is demonstrated that the deflection of the beam can be identified unambiguously by magnetic field distortion measurements. It is shown that the material properties of the vibrating MHE element can be specifically adjusted by means of an external magnetic field control. The dependence of the first eigenfrequency of free bending vibrations of the MHE beams on the strength of an imposed uniform magnetic field is obtained. The results are aimed to assess the potential of MHEs to design acceleration sensor systems with an adaptive magnetically controllable sensitivity range.
Critical dynamic approach to stationary states in complex systems
NASA Astrophysics Data System (ADS)
Rozenfeld, A. F.; Laneri, K.; Albano, E. V.
2007-04-01
A dynamic scaling Ansatz for the approach to stationary states in complex systems is proposed and tested by means of extensive simulations applied to both the Bak-Sneppen (BS) model, which exhibits robust Self-Organised Critical (SOC) behaviour, and the Game of Life (GOL) of J. Conway, whose critical behaviour is under debate. Considering the dynamic scaling behaviour of the density of sites (ρ(t)), it is shown that i) by starting the dynamic measurements with configurations such that ρ(t=0) →0, one observes an initial increase of the density with exponents θ= 0.12(2) and θ= 0.11(2) for the BS and GOL models, respectively; ii) by using initial configurations with ρ(t=0) →1, the density decays with exponents δ= 0.47(2) and δ= 0.28(2) for the BS and GOL models, respectively. It is also shown that the temporal autocorrelation decays with exponents Ca = 0.35(2) (Ca = 0.35(5)) for the BS (GOL) model. By using these dynamically determined critical exponents and suitable scaling relationships, we also obtain the dynamic exponents z = 2.10(5) (z = 2.10(5)) for the BS (GOL) model. Based on this evidence we conclude that the dynamic approach to stationary states of the investigated models can be described by suitable power-law functions of time with well-defined exponents.
Lagrangian chaos in three- dimensional steady buoyancy-driven flows
NASA Astrophysics Data System (ADS)
Contreras, Sebastian; Speetjens, Michel; Clercx, Herman
2016-11-01
Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).
Conception of the system for traffic measurements based on piezoelectric foils
NASA Astrophysics Data System (ADS)
Płaczek, M.
2016-08-01
A concept of mechatronic system for traffic measurements based on the piezoelectric transducers used as sensors is presented. The aim of the work project is to theoretically and experimentally analyse the dynamic response of road infrastructure forced by vehicles motion. The subject of the project is therefore on the borderline of civil engineering and mechanical and covers a wide range of issues in both these areas. To measure the dynamic response of the tested pieces of road infrastructure application of piezoelectric, in particular piezoelectric transducers in the form of piezoelectric films (MFC - Macro Fiber Composite) is proposed. The purpose is to verify the possibility to use composite piezoelectric transducers as sensors used in traffic surveillance systems - innovative methods of controlling the road infrastructure and traffic. Presented paper reports works that were done in order to receive the basic information about analysed systems and their behaviour under excitation by passing vehicles. It is very important to verify if such kind of systems can be controlled by the analysis of the dynamic response of road infrastructure measured using piezoelectric transducers. Obtained results show that it could be possible.
Advanced Flaw Manufacturing and Crack Growth Control
NASA Astrophysics Data System (ADS)
Kemppainen, M.; Pitkänen, J.; Virkkunen, I.; Hänninen, H.
2004-02-01
Advanced artificial flaw manufacturing method has become available. The method produces true fatigue cracks, which are representative of most service-induced cracks. These cracks can be used to simulate behaviour of realistic cracks under service conditions. This paper introduces studies of the effects of different thermal loading cycles to crack opening and residual stress state as seen at the surface of the sample and in the ultrasonic signal. In-situ measurements were performed under dynamic thermal fatigue loading of a 20 mm long artificial crack.
NASA Astrophysics Data System (ADS)
Abidin, Norhaslinda Zainal; Zaibidi, Nerda Zura; Zulkepli, Jafri Hj
2015-10-01
Obesity is a medical condition where an individual has an excessive amount of body fat. There are many factors contributing to obesity and one of them is the sedentary behaviour. Rapid development in industrialization and urbanization has brought changes to Malaysia's socioeconomic, especially the lifestyles of Malaysians. With this lifestyle transition, one of the impact is on weight and obesity. How does sedentary behaviour have an impact on the growth of Malaysian population's weight and obesity? What is the most effective sedentary behaviour preventing strategy to obesity? Is it through reduction in duration or frequency of sedentary behaviour? Thus, the aim of this paper is to design an intervention to analyse the effect of decreasing duration and frequency of sedentary behaviour on the population reversion trends of average weight (AW), average body mass index (ABMI), and prevalence of overweight and obesity (POVB). This study combines the different strands of sub-models comprised of nutrition, physical activity and body metabolism, and then synthesis these knowledge into a system dynamics of weight behaviour model, namely SIMULObese. Findings from this study revealed that Malaysian's adults spend a lot of time engaged in sedentary behaviour and this resulted in weight gain and obesity. Comparing between frequency and duration of sedentary behaviour, this study reported that reduced in duration or time spend in sedentary behaviour is a better preventing strategy to obesity compared to duration. As a summary, this study highlighted the importance of decreasing the frequency and duration of sedentary behaviour in developing guidelines to prevent obesity.
A graphical vector autoregressive modelling approach to the analysis of electronic diary data
2010-01-01
Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR) models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical) VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED). The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research. PMID:20359333
Using behavioural activation in the treatment of depression: a control theory perspective.
McEvoy, P; Law, A; Bates, R; Hylton, K; Mansell, W
2013-12-01
Behavioural activation is an intervention that can be used to counteract the typical patterns of withdrawal, avoidance and inactivity that characterize depression. This paper examines the processes of change that may occur during behavioural activation from the perspective of control theory. Some of the key concepts that are associated with control theory are introduced and the process of change that may occur during behavioural activation is illustrated using two case studies. The case studies provide anecdotal evidence which supports the hypothesis that the effective implementation of behavioural activation may depend upon clients being able to retain or regain the sense of control that they value. The differences between a control-theory-based approach and more orthodox behavioural and cognitive approaches are highlighted and the implications of these differences are discussed. Flexible approaches that are informed by control theory, may offer a useful alternative to the more established behavioural and cognitive approaches towards behavioural activation. © 2012 John Wiley & Sons Ltd.
Andersson, Neil; Cockcroft, Anne; Shea, Bev
2008-12-01
Gender-based violence (GBV) is common in southern Africa. Here we use GBV to include sexual and non-sexual physical violence, emotional abuse, and forms of child sexual abuse. A sizeable literature now links GBV and HIV infection.Sexual violence can lead to HIV infection directly, as trauma increases the risk of transmission. More importantly, GBV increases HIV risk indirectly. Victims of childhood sexual abuse are more likely to be HIV positive, and to have high risk behaviours.GBV perpetrators are at risk of HIV infection, as their victims have often been victimised before and have a high risk of infection. Including perpetrators and victims, perhaps one third of the southern African population is involved in the GBV-HIV dynamic.A randomised controlled trial of income enhancement and gender training reduced GBV and HIV risk behaviours, and a trial of a learning programme reported a non-significant reduction in HIV incidence and reduction of male risk behaviours (primary prevention). Interventions among survivors of GBV can reduce their HIV risk (secondary prevention). Various strategies can reduce spread of HIV from infected GBV survivors (tertiary prevention). Dealing with GBV could have an important effect on the HIV epidemic.A policy shift is necessary. HIV prevention policy should recognise the direct and indirect implications of GBV for HIV prevention, the importance of perpetrator dynamics, and that reduction of GBV should be part of HIV prevention programmes. Effective interventions are likely to include a structural component, and a GBV awareness component.
MicroRNAs: key regulators of stem cells.
Gangaraju, Vamsi K; Lin, Haifan
2009-02-01
The hallmark of a stem cell is its ability to self-renew and to produce numerous differentiated cells. This unique property is controlled by dynamic interplays between extrinsic signalling, epigenetic, transcriptional and post-transcriptional regulations. Recent research indicates that microRNAs (miRNAs) have an important role in regulating stem cell self-renewal and differentiation by repressing the translation of selected mRNAs in stem cells and differentiating daughter cells. Such a role has been shown in embryonic stem cells, germline stem cells and various somatic tissue stem cells. These findings reveal a new dimension of gene regulation in controlling stem cell fate and behaviour.
Event-triggered consensus tracking of multi-agent systems with Lur'e nonlinear dynamics
NASA Astrophysics Data System (ADS)
Huang, Na; Duan, Zhisheng; Wen, Guanghui; Zhao, Yu
2016-05-01
In this paper, distributed consensus tracking problem for networked Lur'e systems is investigated based on event-triggered information interactions. An event-triggered control algorithm is designed with the advantages of reducing controller update frequency and sensor energy consumption. By using tools of ?-procedure and Lyapunov functional method, some sufficient conditions are derived to guarantee that consensus tracking is achieved under a directed communication topology. Meanwhile, it is shown that Zeno behaviour of triggering time sequences is excluded for the proposed event-triggered rule. Finally, some numerical simulations on coupled Chua's circuits are performed to illustrate the effectiveness of the theoretical algorithms.
A lateral dynamics of a wheelchair: identification and analysis of tire parameters.
Silva, L C A; Corrêa, F C; Eckert, J J; Santiciolli, F M; Dedini, F G
2017-02-01
In vehicle dynamics studies, the tire behaviour plays an important role in planar motion of the vehicle. Therefore, a correct representation of tire is a necessity. This paper describes a mathematical model for wheelchair tire based on the Magic Formula model. This model is widely used to represent forces and moments between the tire and the ground; however some experimental parameters must be determined. The purpose of this work is to identify the tire parameters for the wheelchair tire model, implementing them in a dynamic model of the wheelchair. For this, we developed an experimental test rig to measure the tires parameters for the lateral dynamics of a wheelchair. This dynamic model was made using a multi-body software and the wheelchair behaviour was analysed and discussed according to the tire parameters. The result of this work is one step further towards the understanding of wheelchair dynamics.
Influence of the rotor-stator interaction on the dynamic stresses of Francis runners
NASA Astrophysics Data System (ADS)
Guillaume, R.; Deniau, J. L.; Scolaro, D.; Colombet, C.
2012-11-01
Thanks to advances in computing capabilities and Computational Fluid Dynamics (CFD) techniques, it is now possible to calculate realistic unsteady pressure fields in Francis turbines. This paper will explain methods to calculate the structural loads and the dynamic behaviour in order to optimize the turbine design and maximize its reliability and lifetime. Depending on the operating conditions of a Francis turbine, different hydraulic phenomena may impact the mechanical behaviour of the structure. According to their nature, these highly variable phenomena should be treated differently and specifically in order to estimate the potential risks arising on submerged structures, in particular the runner. The operating condition studied thereafter is the point at maximum power with the maximum head. Under this condition, the runner is excited by only one dynamic phenomenon named the Rotor-Stator Interaction (RSI). The origin of the phenomenon is located on the radial gap of the turbine and is the source of pressure fluctuations. A fluid-structure analysis is performed to observe the influence of that dynamic pressure field on the runner behaviour. The first part of the paper deals with the unsteady fluid computation. The RSI phenomenon is totally unsteady so the fluid simulation must take into account the entire machine and its rotation movement, in order to obtain a dynamic pressure field. In the second part of the paper, a method suitable for the RSI study is developed. It is known that the fluctuating pressure in this gap can be described as a sum of spatial components. By evaluating these components in the CFD results and on the scale model, it is possible to assess the relevance of the numerical results on the whole runner. After this step, the numerical pressure field can be used as the dynamic load of the structure. The final part of the paper presentsthe mechanical finite element calculations. A modal analysis of the runner in water and a harmonic analysis of its dynamic behaviour using the CFD results are carried out. These calculations will show that the RSI on the medium head Francis runner does not create damage on the runner even if the natural frequencies are closed to the wicket gates passing frequency. The numerical results are reinforced by experimental observations done on runner prototypes showing that the wicket gates passing frequency does not have significant influence on low and medium head Francis runner behaviour.
Brief report: Factor structure of parenting behaviour in early adolescence.
Spithoven, Annette W M; Bijttebier, Patricia; Van Leeuwen, Karla; Goossens, Luc
2016-12-01
Researchers have traditionally relied on a tripartite model of parenting behaviour, consisting of the dimensions parental support, psychological control, and behavioural control. However, some scholars have argued to distinguish two dimensions of behavioural control, namely reactive control and proactive control. In line with earlier work, the current study found empirical evidence for these distinct behavioural control dimensions. In addition, the study showed that the four parenting dimensions of parental support, psychological control, reactive control, and proactive control were differentially related to peer-related loneliness as well as parent-related loneliness. Thereby, the current study does not only provide empirical evidence for the distinction between various parenting dimensions, but also shows the utility of this differentiation. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Bleck, W.; Larour, P.
2003-09-01
Crash behaviour and light weight have become the major design criteria for car bodies. Modem high strength steels offer appropriate solutions for these requirements. The prediction of the crash behaviour in simulation programs requires the information on materials behaviour during dynamic testing. The reduction of the signal waviness and the inertia effects at strain rates above 50s^{-1} are major issues in dynamic tensile testing. Damping techniques or load measurement on the sample itself are the common way to reduce oscillations. Strain measurement from the piston displacement or from optical devices on the specimen itself are also compared. Advantages and drawbacks of those various measurement techniques are presented.
A new transiently chaotic flow with ellipsoid equilibria
NASA Astrophysics Data System (ADS)
Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan
2018-03-01
In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.
NASA Astrophysics Data System (ADS)
Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco
2012-04-01
During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.
Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates
Legendre, Pierre; Matabos, Marjolaine; Mihály, Steve; Lee, Raymond W.; Sarradin, Pierre-Marie; Arango, Claudia P.; Sarrazin, Jozée
2017-01-01
Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and hydrothermal vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between hydrothermal community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic hydrothermal species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between hydrothermal fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that hydrothermal species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat. PMID:28381618
NASA Astrophysics Data System (ADS)
García-Santos, Glenda; Madruga de Brito, Mariana; Höllermann, Britta; Taft, Linda; Almoradie, Adrian; Evers, Mariele
2018-06-01
Understanding the interactions between water resources and its social dimensions is crucial for an effective and sustainable water management. The identification of sensitive control variables and feedback loops of a specific human-hydro-scape can enhance the knowledge about the potential factors and/or agents leading to the current water resources and ecosystems situation, which in turn supports the decision-making process of desirable futures. Our study presents the utility of a system dynamics modeling approach for water management and decision-making for the case of a forest ecosystem under risk of wildfires. We use the pluralistic water research concept to explore different scenarios and simulate the emergent behaviour of water interception and net precipitation after a wildfire in a forest ecosystem. Through a case study, we illustrate the applicability of this new methodology.
Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet.
Li, C K; Tzeferacos, P; Lamb, D; Gregori, G; Norreys, P A; Rosenberg, M J; Follett, R K; Froula, D H; Koenig, M; Seguin, F H; Frenje, J A; Rinderknecht, H G; Sio, H; Zylstra, A B; Petrasso, R D; Amendt, P A; Park, H S; Remington, B A; Ryutov, D D; Wilks, S C; Betti, R; Frank, A; Hu, S X; Sangster, T C; Hartigan, P; Drake, R P; Kuranz, C C; Lebedev, S V; Woolsey, N C
2016-10-07
The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.
Cyr, André; Boukadoum, Mounir
2013-03-01
This paper presents a novel bio-inspired habituation function for robots under control by an artificial spiking neural network. This non-associative learning rule is modelled at the synaptic level and validated through robotic behaviours in reaction to different stimuli patterns in a dynamical virtual 3D world. Habituation is minimally represented to show an attenuated response after exposure to and perception of persistent external stimuli. Based on current neurosciences research, the originality of this rule includes modulated response to variable frequencies of the captured stimuli. Filtering out repetitive data from the natural habituation mechanism has been demonstrated to be a key factor in the attention phenomenon, and inserting such a rule operating at multiple temporal dimensions of stimuli increases a robot's adaptive behaviours by ignoring broader contextual irrelevant information.
Exploring dynamic lighting, colour and form with smart textiles
NASA Astrophysics Data System (ADS)
Cabral, I.; Silva, C.; Worbin, L.; Souto, A. P.
2017-10-01
This paper addresses an ongoing research, aiming at the development of smart textiles that transform the incident light that passes through them - light transmittance - to design dynamic light without acting upon the light source. A colour and shape change prototype was developed with the objective of studying textile changes in time; to explore temperature as a dynamic variable through electrical activation of the smart materials and conductive threads integrated in the textile substrate; and to analyse the relation between textile chromic and morphologic behaviour in interaction with light. Based on the experiments conducted, results have highlighted some considerations of the dynamic parameters involved in the behaviour of thermo-responsive textiles and demonstrated design possibilities to create interactive lighting scenarios.
Experimental Chaos - Proceedings of the 3rd Conference
NASA Astrophysics Data System (ADS)
Harrison, Robert G.; Lu, Weiping; Ditto, William; Pecora, Lou; Spano, Mark; Vohra, Sandeep
1996-10-01
The Table of Contents for the full book PDF is as follows: * Preface * Spatiotemporal Chaos and Patterns * Scale Segregation via Formation of Domains in a Nonlinear Optical System * Laser Dynamics as Hydrodynamics * Spatiotemporal Dynamics of Human Epileptic Seizures * Experimental Transition to Chaos in a Quasi 1D Chain of Oscillators * Measuring Coupling in Spatiotemporal Dynamical Systems * Chaos in Vortex Breakdown * Dynamical Analysis * Radial Basis Function Modelling and Prediction of Time Series * Nonlinear Phenomena in Polyrhythmic Hand Movements * Using Models to Diagnose, Test and Control Chaotic Systems * New Real-Time Analysis of Time Series Data with Physical Wavelets * Control and Synchronization * Measuring and Controlling Chaotic Dynamics in a Slugging Fluidized Bed * Control of Chaos in a Laser with Feedback * Synchronization and Chaotic Diode Resonators * Control of Chaos by Continuous-time Feedback with Delay * A Framework for Communication using Chaos Sychronization * Control of Chaos in Switching Circuits * Astrophysics, Meteorology and Oceanography * Solar-Wind-Magnetospheric Dynamics via Satellite Data * Nonlinear Dynamics of the Solar Atmosphere * Fractal Dimension of Scalar and Vector Variables from Turbulence Measurements in the Atmospheric Surface Layer * Mechanics * Escape and Overturning: Subtle Transient Behavior in Nonlinear Mechanical Models * Organising Centres in the Dynamics of Parametrically Excited Double Pendulums * Intermittent Behaviour in a Heating System Driven by Phase Transitions * Hydrodynamics * Size Segregation in Couette Flow of Granular Material * Routes to Chaos in Rotational Taylor-Couette Flow * Experimental Study of the Laminar-Turbulent Transition in an Open Flow System * Chemistry * Order and Chaos in Excitable Media under External Forcing * A Chemical Wave Propagation with Accelerating Speed Accompanied by Hydrodynamic Flow * Optics * Instabilities in Semiconductor Lasers with Optical Injection * Spatio-Temporal Dynamics of a Bimode CO2 Laser with Saturable Absorber * Chaotic Homoclinic Phenomena in Opto-Thermal Devices * Observation and Characterisation of Low-Frequency Chaos in Semiconductor Lasers with External Feedback * Condensed Matter * The Application of Nonlinear Dynamics in the Study of Ferroelectric Materials * Cellular Convection in a Small Aspect Ratio Liquid Crystal Device * Driven Spin-Wave Dynamics in YIG Films * Quantum Chaology in Quartz * Small Signal Amplification Caused by Nonlinear Properties of Ferroelectrics * Composite Materials Evolved from Chaos * Electronics and Circuits * Controlling a Chaotic Array of Pulse-Coupled Fitzhugh-Nagumo Circuits * Experimental Observation of On-Off Intermittency * Phase Lock-In of Chaotic Relaxation Oscillators * Biology and Medicine * Singular Value Decomposition and Circuit Structure in Invertebrate Ganglia * Nonlinear Forecasting of Spike Trains from Neurons of a Mollusc * Ultradian Rhythm in the Sensitive Plants: Chaos or Coloured Noise? * Chaos and the Crayfish Sixth Ganglion * Hardware Coupled Nonlinear Oscillators as a Model of Retina
Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity.
Kesting, Arne; Treiber, Martin; Helbing, Dirk
2010-10-13
With an increasing number of vehicles equipped with adaptive cruise control (ACC), the impact of such vehicles on the collective dynamics of traffic flow becomes relevant. By means of simulation, we investigate the influence of variable percentages of ACC vehicles on traffic flow characteristics. For simulating the ACC vehicles, we propose a new car-following model that also serves as the basis of an ACC implementation in real cars. The model is based on the intelligent driver model (IDM) and inherits its intuitive behavioural parameters: desired velocity, acceleration, comfortable deceleration and desired minimum time headway. It eliminates, however, the sometimes unrealistic behaviour of the IDM in cut-in situations with ensuing small gaps that regularly are caused by lane changes of other vehicles in dense or congested traffic. We simulate the influence of different ACC strategies on the maximum capacity before breakdown and the (dynamic) bottleneck capacity after breakdown. With a suitable strategy, we find sensitivities of the order of 0.3, i.e. 1 per cent more ACC vehicles will lead to an increase in the capacities by about 0.3 per cent. This sensitivity multiplies when considering travel times at actual breakdowns.
[Food behaviour and obesity: insights from decision neuroscience].
Petit, Olivia; Basso, Frédéric; Huguet, Pascal; Plassmann, Hilke; Oullier, Olivier
2011-11-01
Neuroimaging allows to estimate brain activity when individuals are doing something. The location and intensity of this estimated activity provides information on the dynamics and processes that guide choice behaviour and associated actions that should be considered a complement to behavioural studies. Decision neuroscience therefore sheds new light on whether the brain evaluates and compares alternatives when decisions are made, or if other processes are at stake. This work helped to demonstrate that the situations faced by individuals (risky, uncertain, delayed in time) do not all have the same (behavioural) complexity, and are not underlined by activity in the cerebral networks. Taking into account brain dynamics of people (suffering from obesity or not) when making food consumption decisions might allow for improved strategies in public health prevention, far from the rational choice theory promoted by neoclassical economics. © 2011 médecine/sciences – Inserm / SRMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterbone, D.E.; Richards, P.
A microprocessor controlled test bed was built for steady state mapping of petrol engines using a sweep mapping technique. The addition of an electric motor to the fast acting dynamometer allowed rapid load changes to be applied at nominally constant speed. This made it possible to consider the dynamic behaviour of the power generation sub-system of the engine. The engine was initially subjected to ramp changes of torque but these did not give consistent results. PRBS signals were then used for the same variable and a mathematical transfer function model developed for the engine power system. The engine was consideredmore » both as a continuous and sample data system. Results will be presented which show fuel management has an appreciable effect on the engine dynamic response.« less
Experimental quantum simulations of many-body physics with trapped ions.
Schneider, Ch; Porras, Diego; Schaetz, Tobias
2012-02-01
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.
Exploring the quantum critical behaviour in a driven Tavis–Cummings circuit
Feng, M.; Zhong, Y.P.; Liu, T.; Yan, L.L.; Yang, W.L.; Twamley, J.; Wang, H.
2015-01-01
Quantum phase transitions play an important role in many-body systems and have been a research focus in conventional condensed-matter physics over the past few decades. Artificial atoms, such as superconducting qubits that can be individually manipulated, provide a new paradigm of realising and exploring quantum phase transitions by engineering an on-chip quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a highly controllable superconducting circuit, consisting of four qubits coupled to a common resonator mode. By off-resonantly driving the system to renormalize the critical spin-field coupling strength, we have observed a four-qubit nonequilibrium quantum phase transition in a dynamical manner; that is, we sweep the critical coupling strength over time and monitor the four-qubit scaled moments for a signature of a structural change of the system's eigenstates. Our observation of the nonequilibrium quantum phase transition, which is in good agreement with the driven Tavis–Cummings theory under decoherence, offers new experimental approaches towards exploring quantum phase transition-related science, such as scaling behaviours, parity breaking and long-range quantum correlations. PMID:25971985
On the fundamental properties of dynamically hot galaxies
NASA Astrophysics Data System (ADS)
Kritsuk, Alexei G.
1997-01-01
A two-component isothermal equilibrium model is applied to reproduce basic structural properties of dynamically hot stellar systems immersed in their massive dark haloes. The origin of the fundamental plane relation for giant ellipticals is naturally explained as a consequence of dynamical equilibrium in the context of the model. The existence of two galactic families displaying different behaviour in the luminosity-surface-brightness diagram is shown to be a result of a smooth transition from dwarfs, dominated by dark matter near the centre, to giants dominated by the luminous stellar component. The comparison of empirical scaling relations with model predictions suggests that probably a unique dissipative process was operating during the violent stage of development of stellar systems in the dark haloes, and the depth of the potential well controlled the observed luminosity of the resulting galaxies. The interpretation also provides some restrictions on the properties of dark haloes implied by the fundamental scaling laws.
Noise focusing and the emergence of coherent activity in neuronal cultures
NASA Astrophysics Data System (ADS)
Orlandi, Javier G.; Soriano, Jordi; Alvarez-Lacalle, Enrique; Teller, Sara; Casademunt, Jaume
2013-09-01
At early stages of development, neuronal cultures in vitro spontaneously reach a coherent state of collective firing in a pattern of nearly periodic global bursts. Although understanding the spontaneous activity of neuronal networks is of chief importance in neuroscience, the origin and nature of that pulsation has remained elusive. By combining high-resolution calcium imaging with modelling in silico, we show that this behaviour is controlled by the propagation of waves that nucleate randomly in a set of points that is specific to each culture and is selected by a non-trivial interplay between dynamics and topology. The phenomenon is explained by the noise focusing effect--a strong spatio-temporal localization of the noise dynamics that originates in the complex structure of avalanches of spontaneous activity. Results are relevant to neuronal tissues and to complex networks with integrate-and-fire dynamics and metric correlations, for instance, in rumour spreading on social networks.
Dynamic DNA nanotechnology using strand-displacement reactions
NASA Astrophysics Data System (ADS)
Zhang, David Yu; Seelig, Georg
2011-02-01
The specificity and predictability of Watson-Crick base pairing make DNA a powerful and versatile material for engineering at the nanoscale. This has enabled the construction of a diverse and rapidly growing set of DNA nanostructures and nanodevices through the programmed hybridization of complementary strands. Although it had initially focused on the self-assembly of static structures, DNA nanotechnology is now also becoming increasingly attractive for engineering systems with interesting dynamic properties. Various devices, including circuits, catalytic amplifiers, autonomous molecular motors and reconfigurable nanostructures, have recently been rationally designed to use DNA strand-displacement reactions, in which two strands with partial or full complementarity hybridize, displacing in the process one or more pre-hybridized strands. This mechanism allows for the kinetic control of reaction pathways. Here, we review DNA strand-displacement-based devices, and look at how this relatively simple mechanism can lead to a surprising diversity of dynamic behaviour.
New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems.
Guillemot, Ludivine; Galarneau, Anne; Vigier, Gérard; Abensur, Thierry; Charlaix, Élisabeth
2012-10-01
Lyophobic heterogeneous systems (LHS) are made of mesoporous materials immersed in a non-wetting liquid. One application of LHS is the nonlinear damping of high frequency vibrations. The behaviour of LHS is characterized by P - ΔV cycles, where P is the pressure applied to the system, and ΔV its volume change due to the intrusion of the liquid into the pores of the material, or its extrusion out of the pores. Very few dynamic studies of LHS have been performed until now. We describe here a new apparatus that allows us to carry out dynamic intrusion/extrusion cycles with various liquid/porous material systems, controlling the temperature from ambient to 120 °C and the frequency from 0.01 to 20 Hz. We show that for two LHS: water/MTS and Galinstan/CPG, the energy dissipated during one cycle depends very weakly on the cycle frequency, in strong contrast to conventional dampers.
Williams, Whitney; Goldenberg, Tamar; Andes, Karen L.; Finneran, Catherine; Stephenson, Rob
2016-01-01
Recent studies have called for more nuanced research into the relationships between behaviourally bisexual men and their sexual partners. To address this, we conducted a longitudinal qualitative study with self-identifying gay men; participants took part in timeline-based interviews and relationship diaries. We conducted thematic analysis of verbatim transcripts to understand how relationship motivations, emotions and relationship dynamics influenced perceptions of HIV risk with behaviourally bisexual male partners. Participants described how partnership types (main and casual) and relationship dimensions (exclusivity, commitment, emotional attachment, and relationship designation) strongly influenced perceptions of HIV risk and shaped their decisions to choose behaviourally bisexual male sex partners. Results revealed the crucial role relationship dynamics play in the shaping of HIV risk perceptions, sexual decision-making and HIV risk between partners and provide potential insight on how to message HIV risk to gay men and their behaviourally bisexual male partners. It is imperative that HIV prevention is able to message key concepts of risk, decision-making and partner negotiation in a way that does not act to stereotype or create stigma against behaviourally bisexual men and their male partners. PMID:27297775
Knerr, Sarah; Bowen, Deborah J; Beresford, Shirley A A; Wang, Catharine
2016-01-01
Obesity is a heritable condition with well-established risk-reducing behaviours. Studies have shown that beliefs about the causes of obesity are associated with diet and exercise behaviour. Identifying mechanisms linking causal beliefs and behaviours is important for obesity prevention and control. Cross-sectional multi-level regression analyses of self-efficacy for weight control as a possible mediator of obesity attributions (diet, physical activity, genetic) and preventive behaviours in 487 non-Hispanic White women from South King County, Washington. Self-reported daily fruit and vegetable intake and weekly leisure-time physical activity. Diet causal beliefs were positively associated with fruit and vegetable intake, with self-efficacy for weight control partially accounting for this association. Self-efficacy for weight control also indirectly linked physical activity attributions and physical activity behaviour. Relationships between genetic causal beliefs, self-efficacy for weight control, and obesity-related behaviours differed by obesity status. Self-efficacy for weight control contributed to negative associations between genetic causal attributions and obesity-related behaviours in non-obese, but not obese, women. Self-efficacy is an important construct to include in studies of genetic causal beliefs and behavioural self-regulation. Theoretical and longitudinal work is needed to clarify the causal nature of these relationships and other mediating and moderating factors.
Atay, Christina; Conway, Erin R.; Angus, Daniel; Wiles, Janet; Baker, Rosemary; Chenery, Helen J.
2015-01-01
The progressive neuropathology involved in dementia frequently causes a gradual decline in communication skills. Communication partners who are unaware of the specific communication problems faced by people with dementia (PWD) can inadvertently challenge their conversation partner, leading to distress and a reduced flow of information between speakers. Previous research has produced an extensive literature base recommending strategies to facilitate conversational engagement in dementia. However, empirical evidence for the beneficial effects of these strategies on conversational dynamics is sparse. This study uses a time-efficient computational discourse analysis tool called Discursis to examine the link between specific communication behaviours and content-based conversational engagement in 20 conversations between PWD living in residential aged-care facilities and care staff members. Conversations analysed here were baseline conversations recorded before staff members underwent communication training. Care staff members spontaneously exhibited a wide range of facilitative and non-facilitative communication behaviours, which were coded for analysis of conversation dynamics within these baseline conversations. A hybrid approach combining manual coding and automated Discursis metric analysis provides two sets of novel insights. Firstly, this study revealed nine communication behaviours that, if used by the care staff member in a given turn, significantly increased the appearance of subsequent content-based engagement in the conversation by PWD. Secondly, the current findings reveal alignment between human- and computer-generated labelling of communication behaviour for 8 out of the total 22 behaviours under investigation. The approach demonstrated in this study provides an empirical procedure for the detailed evaluation of content-based conversational engagement associated with specific communication behaviours. PMID:26658135
Ings, Thomas C.; Chittka, Lars
2009-01-01
Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees (Bombus terrestris) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by ‘robotic’ crab spiders. As bees learnt to avoid ‘dangerous’ flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success. PMID:19324797
Neural substrates of defensive reactivity in two subtypes of specific phobia.
Lueken, Ulrike; Hilbert, Kevin; Stolyar, Veronika; Maslowski, Nina I; Beesdo-Baum, Katja; Wittchen, Hans-Ulrich
2014-11-01
Depending on threat proximity, different defensive behaviours are mediated by a descending neural network involving forebrain (distal threat) vs midbrain areas (proximal threat). Compared to healthy subjects, it can be assumed that phobics are characterized by shortened defensive distances on a behavioural and neural level. This study aimed at characterizing defensive reactivity in two subtypes of specific phobia [snake (SP) and dental phobics (DP)]. Using functional magnetic resonance imaging (fMRI), n = 39 subjects (13 healthy controls, HC; 13 SP; 13 DP) underwent an event-related fMRI task employing an anticipation (5-10 s) and immediate perception phase (phobic pictures and matched neutral stimuli; 1250 ms) to modulate defensive distance. Although no differential brain activity in any comparisons was observed in DP, areas associated with defensive behaviours (e.g. amygdala, hippocampus, midbrain) were activated in SP. Decreasing defensive distance in SP was characterized by a shift to midbrain activity. Present findings substantiate differences between phobia types in their physiological and neural organization that can be expanded to early stages of defensive behaviours. Findings may contribute to a better understanding of the dynamic organization of defensive reactivity in different types of phobic fear. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Monk, Christopher T; Barbier, Matthieu; Romanczuk, Pawel; Watson, James R; Alós, Josep; Nakayama, Shinnosuke; Rubenstein, Daniel I; Levin, Simon A; Arlinghaus, Robert
2018-06-01
Understanding how humans and other animals behave in response to changes in their environments is vital for predicting population dynamics and the trajectory of coupled social-ecological systems. Here, we present a novel framework for identifying emergent social behaviours in foragers (including humans engaged in fishing or hunting) in predator-prey contexts based on the exploration difficulty and exploitation potential of a renewable natural resource. A qualitative framework is introduced that predicts when foragers should behave territorially, search collectively, act independently or switch among these states. To validate it, we derived quantitative predictions from two models of different structure: a generic mathematical model, and a lattice-based evolutionary model emphasising exploitation and exclusion costs. These models independently identified that the exploration difficulty and exploitation potential of the natural resource controls the social behaviour of resource exploiters. Our theoretical predictions were finally compared to a diverse set of empirical cases focusing on fisheries and aquatic organisms across a range of taxa, substantiating the framework's predictions. Understanding social behaviour for given social-ecological characteristics has important implications, particularly for the design of governance structures and regulations to move exploited systems, such as fisheries, towards sustainability. Our framework provides concrete steps in this direction. © 2018 John Wiley & Sons Ltd/CNRS.
Hinde, Stephen J; Smith, Tim J; Gilchrist, Iain D
2017-05-01
In the laboratory, the abrupt onset of a visual distractor can generate an involuntary orienting response: this robust oculomotor capture effect has been reported in a large number of studies (e.g. Ludwig & Gilchrist, 2002; Theeuwes, Kramer, Hahn, & Irwin, 1998) suggesting it may be a ubiquitous part of more natural visual behaviour. However the visual stimuli used in these experiments have tended to be static and had none of the complexity, and dynamism of more natural visual environments. In addition, the primary task in the laboratory (typically visual search) can be tedious for the participants with participant's losing interest and becoming stimulus driven and more easily distracted. Both of these factors may have led to an overestimation of the extent to which oculomotor capture occurs and the importance of this phenomena in everyday visual behaviour. To address this issue, in the current series of studies we presented abrupt and highly salient visual distractors away from fixation while participants watched a film. No evidence of oculomotor capture was found. However, the distractor does effect fixation duration: we find an increase in fixation duration analogous to the remote distractor effect (Walker, Deubel, Schneider, & Findlay, 1997). These results suggest that during dynamic scene perception, the oculomotor system may be under far more top-down control than traditional laboratory based-tasks have previously suggested. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kramer, Karen Z.
2012-01-01
Using a longitudinal US dataset (N = 6,134) we examine the relationship between parental behavioural control and academic achievement and explore the moderating role of parental involvement and parental warmth. Analyses using multiple hierarchical regression with clustering controls shows that parental behavioural control is negatively associated…
NASA Astrophysics Data System (ADS)
Schymanski, Stanislaus J.; McDonnell, Jeffrey; Or, Dani
2013-04-01
The behaviour of a catchment is sensitive to the pattern and organisation of its components (hillslopes, land cover etc.). Explaining observed organisation and emergence of pattern requires understanding of key organising principles, recognising that albeit similarities, the larger scale behaviour is likely to differ from that of individual components. In other words, the whole does not necessarily behave like the sum of its parts, because the arrangement of the parts matters. For example, hillslopes involve complex and hydrologically interacting elements (rapid flow pathways, depression storage, slope, and variable soil thickness) that shape hillslope hydrologic response in ways that cannot be represented by a collection of pores as implied by standard hydraulic functions. Additionally, inherent spatial and temporal variability of vegetation prohibits detailed and mechanistic parameterisation of root water uptake and evapotranspiration. The interplay of hydrologic hillslope function, climatic forcing and vegetation dynamics translates into complex catchment behaviour at the outlet. Vegetation, one of the most dynamic determinants of catchment behaviour, may interact with its environment by varying different elements such as root system properties, foliage properties and spatial arrangement. These interactions span different temporal scales from minutes (stomatal conductance) to decades (spatial arrangement) all of which may shape evapotranspiration and hence catchment behaviour. Evidence suggests that vegetation adapts to its environment in a self-organised, predictable way, guided by some overarching goal function, such as maximum net carbon profit or maximum entropy production. Appropriate optimality considerations under prevailing constraints enabled predictions of spatial heterogeneity of vegetation cover, or temporal dynamics of root distribution, canopy properties and water use. The hydrologic hillslope behaviour (e.g., surface and subsurface water fluxes and storage) is a powerful ingredient that defines boundary conditions for vegetation self-organisation. To systematically evaluate the role of this element, we propose a Hillslope Hydraulic Response Function (HHRF) a standardised parameterisation framework based on simplified and analytical representation of a prototypic hillslope. The HHRF uses a few geometrical parameters and intrinsic parameters to represent hillslope response in terms of fluxes and storage dynamics. Such an approach has been instrumental in deducing hydrologic response of watersheds (Kirchner, 2009, WRR) but has not been used for systematic parameterisation of HHRF. Here we separate out the biotic and abiotic components of catchment behaviour and test the sensitivity of vegetation and the catchment water balance to different hypothetical parameterisations of the HHRF.
Intelligent data analysis to model and understand live cell time-lapse sequences.
Paterson, Allan; Ashtari, M; Ribé, D; Stenbeck, G; Tucker, A
2012-01-01
One important aspect of cellular function, which is at the basis of tissue homeostasis, is the delivery of proteins to their correct destinations. Significant advances in live cell microscopy have allowed tracking of these pathways by following the dynamics of fluorescently labelled proteins in living cells. This paper explores intelligent data analysis techniques to model the dynamic behavior of proteins in living cells as well as to classify different experimental conditions. We use a combination of decision tree classification and hidden Markov models. In particular, we introduce a novel approach to "align" hidden Markov models so that hidden states from different models can be cross-compared. Our models capture the dynamics of two experimental conditions accurately with a stable hidden state for control data and multiple (less stable) states for the experimental data recapitulating the behaviour of particle trajectories within live cell time-lapse data. In addition to having successfully developed an automated framework for the classification of protein transport dynamics from live cell time-lapse data our model allows us to understand the dynamics of a complex trafficking pathway in living cells in culture.
Synchronisation of chaos and its applications
NASA Astrophysics Data System (ADS)
Eroglu, Deniz; Lamb, Jeroen S. W.; Pereira, Tiago
2017-07-01
Dynamical networks are important models for the behaviour of complex systems, modelling physical, biological and societal systems, including the brain, food webs, epidemic disease in populations, power grids and many other. Such dynamical networks can exhibit behaviour in which deterministic chaos, exhibiting unpredictability and disorder, coexists with synchronisation, a classical paradigm of order. We survey the main theory behind complete, generalised and phase synchronisation phenomena in simple as well as complex networks and discuss applications to secure communications, parameter estimation and the anticipation of chaos.
Self-organized adaptation of a simple neural circuit enables complex robot behaviour
NASA Astrophysics Data System (ADS)
Steingrube, Silke; Timme, Marc; Wörgötter, Florentin; Manoonpong, Poramate
2010-03-01
Controlling sensori-motor systems in higher animals or complex robots is a challenging combinatorial problem, because many sensory signals need to be simultaneously coordinated into a broad behavioural spectrum. To rapidly interact with the environment, this control needs to be fast and adaptive. Present robotic solutions operate with limited autonomy and are mostly restricted to few behavioural patterns. Here we introduce chaos control as a new strategy to generate complex behaviour of an autonomous robot. In the presented system, 18 sensors drive 18 motors by means of a simple neural control circuit, thereby generating 11 basic behavioural patterns (for example, orienting, taxis, self-protection and various gaits) and their combinations. The control signal quickly and reversibly adapts to new situations and also enables learning and synaptic long-term storage of behaviourally useful motor responses. Thus, such neural control provides a powerful yet simple way to self-organize versatile behaviours in autonomous agents with many degrees of freedom.
Trick, Sarah; Jantzer, Vanessa; Haffner, Johann; Parzer, Peter; Resch, Franz
2016-10-01
Parental Monitoring and its Relation to Behaviour Problems and Risk Behaviour in an Adolescent School Sample Numerous research studies emphasize parental monitoring as a protective factor for adolescent problem behaviour. The purpose of the study presented was to use Stattin and Kerr's (2000) monitoring subscales for the first time in a German-speaking area and to explore the relations to behaviour problems in an adolescent school sample. The two active monitoring strategies "parental control" and "parental solicitation" as well as "parental knowledge" and "child disclosure" relating to behaviour problems and risk behaviour were examined. A sample of 494 pupils, grades 5, 7 and 9, of German secondary schools and their parents answered questions on "parental knowledge", "control", "solicitation" and "child disclosure". Adolescents also answered the German version of the Strengths and Difficulties Questionnaire (SDQ) and items about risk behaviour like frequency of violence, delinquency, substance abuse, self-injuring behaviour and school absenteeism. Behaviour problems in terms of the SDQ could be predicted sufficiently by "parental knowledge", but for the prediction of risk behaviour, the active parental monitoring strategies were of importance, too. More "parental knowledge", more "control" and less "solicitation" could predict less risk behaviour. Results confirm "parental knowledge" as a general protective factor for problem behaviour. However, they show the importance of "parental control" for adolescent risk behaviour.
Janssens, Annelies; Van Den Noortgate, Wim; Goossens, Luc; Verschueren, Karine; Colpin, Hilde; Claes, Stephan; Van Heel, Martijn; Van Leeuwen, Karla
2017-09-01
This study investigated (1) reciprocal links among parental psychological control, peer rejection, and adolescent externalizing (aggressive and rule-breaking behaviour), and (2) the moderating effect of an adolescent genetic factor (biologically informed polygenic score for dopamine signalling). Three-year longitudinal data from 1,116 adolescents (51% boys; M age = 13.79) and their parents included psychological measures (adolescent-reported psychological control, peer-reported rejection, and parent-reported aggressive and rule-breaking behaviour). Cross-lagged analyses showed bidirectional effects between psychological control and both aggressive and rule-breaking behaviour and a unidirectional effect of peer rejection on both forms of problem behaviour over time. Multigroup structural equation modelling revealed genetic moderation only for rule-breaking behaviour: for adolescents with intermediate levels of dopamine signalling significant environmental effects were present, whereas adolescent effects of rule-breaking behaviour on psychological control were significant for adolescents with both intermediate and high profiles and effects on peer rejection only for adolescents with high dopamine profiles. Statement of contribution What is already known on this subject? Parental psychological control is related to adolescent externalizing problems. Experiencing peer rejection reinforces aggressive and rule-breaking behaviour. Single-gene studies show that dopaminergic genes influence externalizing problems directly or in interaction with the environment. What does this study add? Parental psychological control and adolescent aggressive and rule-breaking behaviour exacerbate one another longitudinally. Longitudinal associations between peer rejection and both subtypes of externalizing behaviour are unidirectional. With a polygenic approach, dopaminergic moderation is present for rule-breaking behaviour only. © 2017 The British Psychological Society.
Li, Xiang; Guo, Jia-Yu; Li, Xu; Zhou, Hai-Jun; Zhang, Shu-Hui; Liu, Xiao-Dong; Chen, Dong-Yan; Fang, Yong-Chun; Feng, Xi-Zeng
2017-02-01
The ubiquity of environmental pollution by endocrine disrupting chemicals (EDCs) such as bisphenol A (BPA) is progressively considered as a major threat to aquatic ecosystems worldwide. Numerous toxicological studies have proved that BPA are hazardous to aquatic environment, along with alterations in the development and physiology of aquatic vertebrates. However, generally, there is a paucity in knowledge of behavioural and physiological effects of BPA with low concentration, for example, 0.22 nM (50 ng/L) and 2.2 nM (500 ng/L). Here we show that treatment of adult male zebrafish (Danio rerio) with 7 weeks low-dose (0.22 nM-2.2 nM) BPA, resulted in alteration in histological structure of testis tissue and abnormality in expression levels of genes involved in testicular steroidogenesis. Furthermore, low-dose BPA treatment decreased the male locomotion during courtship; and was associated with less courtship behaviours to female but more aggressive behaviours to mating competitor. Interestingly, during the courtship test, we observed that female preferred control male to male under low-dose BPA exposure. Subsequently, we found that the ability of female to chose optimal mating male through socially mutual interaction and dynamics of male zebrafish, which was based on visual discrimination. In sum, our results shed light on the potential behavioural and physiological effect of low-dose BPA exposure on courtship behaviours of zebrafish, which could exert profound consequences on natural zebrafish populations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vuts, József; Woodcock, Christine M; Caulfield, John C; Powers, Stephen J; Pickett, John A; Birkett, Michael A
2018-03-08
The response of virgin females of the legume pest Acanthoscelides obtectus (Coleoptera: Bruchidae) to headspace extracts of volatiles collected from flowers of a nectar plant, Daucus carota, was investigated using behaviour (four-arm olfactometry) and coupled gas chromatography-electroantennography (GC-EAG). Odours from inflorescences were significantly more attractive to virgin female beetles than clean air. Similarly, a sample of volatile organic compounds (VOCs) collected by air entrainment (dynamic headspace collection) was more attractive to beetles than a solvent control. In coupled GC-EAG experiments with beetle antennae and the VOC extract, six components showed EAG activity. Using coupled GC-mass spectrometry (GC-MS) and GC peak enhancement with authentic standards, the components were identified as α-pinene (S:R 16:1), sabinene, myrcene, limonene (S:R 1:3), terpinolene and (S)-bornyl acetate. Females preferred the synthetic blend of D. carota EAG-active volatiles to the solvent control in bioassays. When compared directly, odours of D. carota inflorescences elicited stronger positive behaviour than the synthetic blend. This is the first report of behaviourally active volatiles linked to pollen location for A. obtectus, and development of the six-component blend is being pursued, which could underpin the design of semiochemical-based field management approaches against this major pest of stored products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Weight-control behaviour and weight-concerns in young elite athletes – a systematic review
2013-01-01
Weight-control behaviour is commonly observed in a wide range of elite sports, especially leanness sports, where control over body weight is crucial for high peak performance. Nonetheless, there is only a fine line between purely functional behaviour and clinically relevant eating disorders. Especially the rapid form of weight manipulation seems to foster later eating disorders. So far, most studies have focussed on adult athletes and concentrated on manifest eating disorders. In contrast, our review concentrates on young athletes and weight-control behaviour as a risk factor for eating disorders. An electronic search according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement was performed using Pubmed, PsychInfo and Spolit. The following search terms were used: weight-control, weight-control behaviour, weight gain, weight loss, pathogenic weight-control behaviour and weight-concerns, each of them combined with elite athlete, young elite athlete, adolescent elite athlete and elite sports. Overall, data are inconsistent. In general, athletes do not seem to be at a higher risk for pathogenic weight concerns and weight-control behaviour. It does seem to be more prevalent in leanness sports, though. There is evidence for pathogenic weight-control behaviour in both genders; male athletes mostly trying to gain weight whereas females emphasise weight reduction. There is not enough data to make predictions about connections with age of onset. Young elite athletes do show weight-control behaviour with varying degrees of frequency and severity. In particular, leanness sports seem to be a risk factor for weight manipulation. Further research is needed for more details and possible connections. PMID:24999399
Flocking algorithm for autonomous flying robots.
Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás
2014-06-01
Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.
Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica
NASA Astrophysics Data System (ADS)
Halberstadt, Anna Ruth W.; Simkins, Lauren M.; Greenwood, Sarah L.; Anderson, John B.
2016-05-01
Studying the history of ice-sheet behaviour in the Ross Sea, Antarctica's largest drainage basin can improve our understanding of patterns and controls on marine-based ice-sheet dynamics and provide constraints for numerical ice-sheet models. Newly collected high-resolution multibeam bathymetry data, combined with two decades of legacy multibeam and seismic data, are used to map glacial landforms and reconstruct palaeo ice-sheet drainage. During the Last Glacial Maximum, grounded ice reached the continental shelf edge in the eastern but not western Ross Sea. Recessional geomorphic features in the western Ross Sea indicate virtually continuous back-stepping of the ice-sheet grounding line. In the eastern Ross Sea, well-preserved linear features and a lack of small-scale recessional landforms signify rapid lift-off of grounded ice from the bed. Physiography exerted a first-order control on regional ice behaviour, while sea floor geology played an important subsidiary role. Previously published deglacial scenarios for Ross Sea are based on low-spatial-resolution marine data or terrestrial observations; however, this study uses high-resolution basin-wide geomorphology to constrain grounding-line retreat on the continental shelf. Our analysis of retreat patterns suggests that (1) retreat from the western Ross Sea was complex due to strong physiographic controls on ice-sheet drainage; (2) retreat was asynchronous across the Ross Sea and between troughs; (3) the eastern Ross Sea largely deglaciated prior to the western Ross Sea following the formation of a large grounding-line embayment over Whales Deep; and (4) our glacial geomorphic reconstruction converges with recent numerical models that call for significant and complex East Antarctic ice sheet and West Antarctic ice sheet contributions to the ice flow in the Ross Sea.
Singular dynamics of a q-difference Painlevé equation in its initial-value space
NASA Astrophysics Data System (ADS)
Joshi, N.; Lobb, S. B.
2016-01-01
We construct the initial-value space of a q-discrete first Painlevé equation explicitly and describe the behaviours of its solutions w(n) in this space as n\\to ∞ , with particular attention paid to neighbourhoods of exceptional lines and irreducible components of the anti-canonical divisor. These results show that trajectories starting in domains bounded away from the origin in initial value space are repelled away from such singular lines. However, the dynamical behaviours in neighbourhoods containing the origin are complicated by the merger of two simple base points at the origin in the limit. We show that these lead to a saddle-point-type behaviour in a punctured neighbourhood of the origin.
Embedding dynamical networks into distributed models
NASA Astrophysics Data System (ADS)
Innocenti, Giacomo; Paoletti, Paolo
2015-07-01
Large networks of interacting dynamical systems are well-known for the complex behaviours they are able to display, even when each node features a quite simple dynamics. Despite examples of such networks being widespread both in nature and in technological applications, the interplay between the local and the macroscopic behaviour, through the interconnection topology, is still not completely understood. Moreover, traditional analytical methods for dynamical response analysis fail because of the intrinsically large dimension of the phase space of the network which makes the general problem intractable. Therefore, in this paper we develop an approach aiming to condense all the information in a compact description based on partial differential equations. By focusing on propagative phenomena, rigorous conditions under which the original network dynamical properties can be successfully analysed within the proposed framework are derived as well. A network of Fitzhugh-Nagumo systems is finally used to illustrate the effectiveness of the proposed method.
Restoration of rhythmicity in diffusively coupled dynamical networks.
Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen
2015-07-15
Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.
Interpersonal ambivalence in obsessive-compulsive disorder.
Moritz, Steffen; Niemeyer, Helen; Hottenrott, Birgit; Schilling, Lisa; Spitzer, Carsten
2013-10-01
The social attitudes and interpersonal relationships of patients with obsessive-compulsive disorder (OCD) are subject to a longstanding controversy. Whereas cognitive-behavioural researchers emphasize exaggerated pro-social attitudes in OCD like inflated responsibility and worry for other people (especially significant others), dynamic theories traditionally focus on anti-social attitudes such as latent aggression and hostility. In two recent studies, we gathered support not only for a co-existence of these seemingly opposing attitudes in OCD, but also for a functional connection: inflated responsibility in part appears to serve as a coping strategy (or “defense”) against negative interpersonal feelings. In the present study, we tested a shortened version of the Responsibility and Interpersonal Behaviours and Attitudes Questionnaire (RIBAQ-R). The scale was administered to 34 participants with OCD and 34 healthy controls. The questionnaire concurrently measures pro-social and anti-social interpersonal attitudes across three subscales. In line with our prior studies, patients displayed higher scores on both exaggerated pro-social attitudes (e.g. “I suffer from a strict conscience concerning my relatives”) as well as latent aggression (e.g. “Sometimes I would like to harm strangers on the street“) and suspiciousness/distrust (e.g. “I cannot even trust my own family”). A total of 59% of the patients but only 12% of the healthy controls showed marked interpersonal ambivalence (defined as scores higher than one standard deviation from the mean of the nonclinical controls on both the prosocial and at least one of the two anti-social subscales). The study asserts high interpersonal ambivalence in OCD. Further research is required to pinpoint both the dynamic and causal links between opposing interpersonal styles. Normalization and social competence training may prove beneficial to resolve the apparent problems of patients with OCD regarding anger expression and social conflict management.
Dynamic modulation of visual and electrosensory gains for locomotor control
Sutton, Erin E.; Demir, Alican; Stamper, Sarah A.; Fortune, Eric S.; Cowan, Noah J.
2016-01-01
Animal nervous systems resolve sensory conflict for the control of movement. For example, the glass knifefish, Eigenmannia virescens, relies on visual and electrosensory feedback as it swims to maintain position within a moving refuge. To study how signals from these two parallel sensory streams are used in refuge tracking, we constructed a novel augmented reality apparatus that enables the independent manipulation of visual and electrosensory cues to freely swimming fish (n = 5). We evaluated the linearity of multisensory integration, the change to the relative perceptual weights given to vision and electrosense in relation to sensory salience, and the effect of the magnitude of sensory conflict on sensorimotor gain. First, we found that tracking behaviour obeys superposition of the sensory inputs, suggesting linear sensorimotor integration. In addition, fish rely more on vision when electrosensory salience is reduced, suggesting that fish dynamically alter sensorimotor gains in a manner consistent with Bayesian integration. However, the magnitude of sensory conflict did not significantly affect sensorimotor gain. These studies lay the theoretical and experimental groundwork for future work investigating multisensory control of locomotion. PMID:27170650
Simplified and advanced modelling of traction control systems of heavy-haul locomotives
NASA Astrophysics Data System (ADS)
Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Cole, Colin
2015-05-01
Improving tractive effort is a very complex task in locomotive design. It requires the development of not only mechanical systems but also power systems, traction machines and traction algorithms. At the initial design stage, traction algorithms can be verified by means of a simulation approach. A simple single wheelset simulation approach is not sufficient because all locomotive dynamics are not fully taken into consideration. Given that many traction control strategies exist, the best solution is to use more advanced approaches for such studies. This paper describes the modelling of a locomotive with a bogie traction control strategy based on a co-simulation approach in order to deliver more accurate results. The simplified and advanced modelling approaches of a locomotive electric power system are compared in this paper in order to answer a fundamental question. What level of modelling complexity is necessary for the investigation of the dynamic behaviours of a heavy-haul locomotive running under traction? The simulation results obtained provide some recommendations on simulation processes and the further implementation of advanced and simplified modelling approaches.
Williams, Stefanie L; French, David P
2014-02-05
Longitudinal studies have shown that objectively measured walking behaviour is subject to seasonal variation, with people walking more in summer compared to winter. Seasonality therefore may have the potential to bias the results of randomised controlled trials if there are not adequate statistical or design controls. Despite this there are no studies that assess the impact of seasonality on walking behaviour in a randomised controlled trial, to quantify the extent of such bias. Further there have been no studies assessing how season impacts on the psychological predictors of walking behaviour to date. The aim of the present study was to assess seasonal differences in a) objective walking behaviour and b) Theory of Planned Behaviour (TPB) variables during a randomised controlled trial of an intervention to promote walking. 315 patients were recruited to a two-arm cluster randomised controlled trial of an intervention to promote walking in primary care. A series of repeated measures ANCOVAs were conducted to examine the effect of season on pedometer measures of walking behaviour and TPB measures, assessed immediately post-intervention and six months later. Hierarchical regression analyses were conducted to assess whether season moderated the prediction of intention and behaviour by TPB measures. There were no significant differences in time spent walking in spring/summer compared to autumn/winter. There was no significant seasonal variation in most TPB variables, although the belief that there will be good weather was significantly higher in spring/summer (F = 19.46, p < .001). Season did not significantly predict intention or objective walking behaviour, or moderate the effects of TPB variables on intention or behaviour. Seasonality does not influence objectively measured walking behaviour or psychological variables during a randomised controlled trial. Consequently physical activity behaviour outcomes in trials will not be biased by the season in which they are measured. Previous studies may have overestimated the extent of seasonality effects by selecting the most extreme summer and winter months to assess PA. In addition, participants recruited to behaviour change interventions might have higher levels of motivation to change and are less affected by seasonal barriers. Current Controlled Trials ISRCTN95932902.
Knerr, Sarah; Bowen, Deborah J.; Beresford, Shirley A.A.; Wang, Catharine
2015-01-01
Objective Obesity is a heritable condition with well-established risk-reducing behaviours. Studies have shown that beliefs about the causes of obesity are associated with diet and exercise behaviour. Identifying mechanisms linking causal beliefs and behaviours is important for obesity prevention and control. Design Cross-sectional multi-level regression analyses of self-efficacy for weight control as a possible mediator of obesity attributions (diet, physical activity, genetic) and preventive behaviours in 487 non-Hispanic White women from South King County, Washington. Main Outcome Measures Self-reported daily fruit and vegetable intake and weekly leisure-time physical activity. Results Diet causal beliefs were positively associated with fruit and vegetable intake, with self-efficacy for weight control partially accounting for this association. Self-efficacy for weight control also indirectly linked physical activity attributions and physical activity behaviour. Relationships between genetic causal beliefs, self-efficacy for weight control, and obesity-related behaviours differed by obesity status. Self-efficacy for weight control contributed to negative associations between genetic causal attributions and obesity-related behaviours in non-obese, but not obese, women. Conclusion Self-efficacy is an important construct to include in studies of genetic causal beliefs and behavioural self-regulation. Theoretical and longitudinal work is needed to clarify the causal nature of these relationships and other mediating and moderating factors. PMID:26542069
Mademli, Lida; Arampatzis, Adamantios; Karamanidis, Kiros
2008-06-01
Many studies report that muscle strength loss may alter the human system's capacity to generate rapid force for balance corrections after perturbations, leading to deficient recovery behaviours. Yet little is known regarding the effect of modifications in the neuromuscular system induced by fatigue on dynamic stability control during postural perturbations. This study investigates the effect of muscle strength decline induced by fatiguing contractions on the dynamic stability control of young and older adults during forward falls. Eleven young and eleven older male adults had to regain balance after sudden falls before and after submaximal fatiguing knee extension-flexion contractions. Young subjects had a higher margin of stability than older ones before and after the fatiguing task. This reflects their enhanced ability in using mechanisms for maintaining dynamic stability (i.e. a greater base of support). The margin of stability, the boundary of the base of support and the position of the extrapolated centre of mass, remained unaffected by the reduction in muscle strength induced by the fatiguing contractions, indicating an appropriate adjustment of the motor commands to compensate the deficit in muscle strength. Both young and older adults were able to counteract the decreased horizontal ground reaction forces after the fatiguing task by flexing their knee to a greater extent, leading to similar decreases in the horizontal velocity of centre of mass as in the pre fatigue condition. The results demonstrate the ability of the central nervous system to rapidly modify the execution of postural corrections including mechanisms for maintaining dynamic stability.
Robbins, A; Robbins, G
1992-01-01
Cost estimates of health care policy changes are extremely important. Historically, however, the US government has done a poor job in projecting the actual cost of new health care programmes. These projections have been inaccurate primarily because government forecasters use 'static' methods that fail to incorporate the change in people's behaviour as a direct result of a new policy. In contrast, 'dynamic' forecasts incorporate the behavioural effects of policy changes on individuals and the economy. Static and dynamic estimates can lead to different results for 4 areas of US health policy: (a) the Medicare Catastrophic Coverage Act; (b) mandated health benefits; (c) health insurance tax subsidies; and (d) national health insurance. Improving health care policy requires the adoption of dynamic estimation practices, periodic appraisals evaluating the accuracy of official estimates in relation to actual experience, and clear presentation of proposed policy changes and estimates to policymakers and the general public.
A study on body weight perception and weight control behaviours among adolescents in Hong Kong.
Cheung, Patrick C H; Ip, Patricia L S; Lam, S T; Bibby, Helen
2007-02-01
To examine the relationships between body weight perceptions, estimated body mass index, gender, and weight control behaviours. Cross-sectional survey. Three secondary schools in Hong Kong. A total of 1132 secondary school forms 1 and 3 students. The strength of agreement between perceived weight and estimated body mass index, and the association between perceived weight, estimated body mass index, and weight control behaviours. A total of 14% of students were estimated to be overweight or obese. The agreement between actual (estimated) body mass index and perceived weight was poor in females and fair in males (Kappa 0.137 and 0.225, respectively). In females, there was no evidence of a relationship between body mass index and weight control behaviours. However, there was a relationship between perceived weight and weight control behaviours such that females who perceived themselves as overweight were more likely to exercise, restrict caloric intake, self medicate with diet pills, purge, or use laxatives. In males, there was evidence of a relationship between perceived weight, body mass index, and weight control behaviours. Males who perceived themselves as overweight or were overweight, were more likely to exercise or restrict caloric intake. Body weight perceptions are not in agreement with actual weight in adolescents. This discrepancy is more marked in females who use a variety of weight control behaviours. These behaviours are motivated by perceived weight rather than actual (estimated) body mass index. Overweight adolescents should be encouraged to adopt appropriate weight control behaviours for their health needs.
Modeling visual-based pitch, lift and speed control strategies in hoverflies
Vercher, Jean-Louis
2018-01-01
To avoid crashing onto the floor, a free falling fly needs to trigger its wingbeats quickly and control the orientation of its thrust accurately and swiftly to stabilize its pitch and hence its speed. Behavioural data have suggested that the vertical optic flow produced by the fall and crossing the visual field plays a key role in this anti-crash response. Free fall behavior analyses have also suggested that flying insect may not rely on graviception to stabilize their flight. Based on these two assumptions, we have developed a model which accounts for hoverflies´ position and pitch orientation recorded in 3D with a fast stereo camera during experimental free falls. Our dynamic model shows that optic flow-based control combined with closed-loop control of the pitch suffice to stabilize the flight properly. In addition, our model sheds a new light on the visual-based feedback control of fly´s pitch, lift and thrust. Since graviceptive cues are possibly not used by flying insects, the use of a vertical reference to control the pitch is discussed, based on the results obtained on a complete dynamic model of a virtual fly falling in a textured corridor. This model would provide a useful tool for understanding more clearly how insects may or not estimate their absolute attitude. PMID:29361632
2012-01-01
Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130
Eusocial insects as emerging models for behavioural epigenetics.
Yan, Hua; Simola, Daniel F; Bonasio, Roberto; Liebig, Jürgen; Berger, Shelley L; Reinberg, Danny
2014-10-01
Understanding the molecular basis of how behavioural states are established, maintained and altered by environmental cues is an area of considerable and growing interest. Epigenetic processes, including methylation of DNA and post-translational modification of histones, dynamically modulate activity-dependent gene expression in neurons and can therefore have important regulatory roles in shaping behavioural responses to environmental cues. Several eusocial insect species - with their unique displays of behavioural plasticity due to age, morphology and social context - have emerged as models to investigate the genetic and epigenetic underpinnings of animal social behaviour. This Review summarizes recent studies in the epigenetics of social behaviour and offers perspectives on emerging trends and prospects for establishing genetic tools in eusocial insects.
NASA Astrophysics Data System (ADS)
Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd
2018-04-01
A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.
NEUROSIS AND SEXUAL BEHAVIOUR IN MEN
Kumar, Sudhir; Agarwal, A.K.; Trivedi, J.K.
1983-01-01
SUMMARY Relationship of neurosis and sexual behaviour has been a matter of dispute till date. In the present study sexual behaviour of 40 married neurotics and 22 matched healthy control males was studied. Sexual behaviour of neurotics was similar to control subjects before the commencement of neurotic illness. But after the onset of the neurotic illness subjects showed significant decrease in frequency of coitus, sexual satisfaction and sexual adequacy in comparison to their pre illness behaviour as well as from healthy controls. PMID:21847285
"No alcohol, no party": an explorative study of young Danish moderate drinkers.
Frederiksen, Nynne Johanne Sahl; Bakke, Sunniva Leonore; Dalum, Peter
2012-11-01
Danish youth has for years had the highest alcohol consumption in Europe, however recent surveys show that consumption levels have diminished slightly and that the age of first intoxication has been raised. To explore young moderate drinkers' attitudes, values, and behaviour in relation to alcohol consumption. Data consists of 10 individual semi-structured interviews with 16-17-year-old moderate drinkers attending high school in Copenhagen, Denmark. The study shows that the respondents perceive drinking as a necessity for feeling included at parties, but also that they do not feel a need to drink large amounts of alcohol in order to feel this social inclusion. The study finds that respondents employ a number of different behavioural and cognitive strategies aimed at controlling their own and close friends' drinking behaviour, and that short-term negative social implications are of much greater concern than long-term health consequences. In addition, the study shows that parents have a limited direct influence in this group. The study identifies a group of young people who have clearly defined restrictions as to what they consider positive drinking behaviour. As parents and long-term health consequences only have an limited influence on the respondents' drinking behaviour, these elements should not have primary focus in future interventions. In stead, interventions should take into account the social dynamics involved in drinking and recognise that the social qualities surrounding alcohol weighs higher among this group of young people than the quantity of alcohol consumed.
Manning, Elizabeth E; van den Buuse, Maarten
2016-05-15
Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Bell, Andrew H; Munoz, Douglas P
2008-10-01
Performance in a behavioural task can be influenced by both bottom-up and top-down processes such as stimulus modality and prior probability. Here, we exploited differences in behavioural strategy to explore the role of the intermediate and deep layers of the superior colliculus (dSC) in covert orienting. Two monkeys were trained on a predictive cued-saccade task in which the cue predicted the target's upcoming location with 80% validity. When the delay between cue and target onset was 250 ms, both monkeys showed faster responses to the uncued (Invalid) location. This was associated with a reduced target-aligned response in the dSC on Valid trials for both monkeys and is consistent with a bottom-up (i.e. involuntary) bias. When the delay was increased to 650 ms, one monkey continued to show faster responses to the Invalid location whereas the other monkey showed faster responses to the Valid location, consistent with a top-down (i.e. voluntary) bias. This latter behaviour was correlated with an increase in activity in dSC neurons preceding target onset that was absent in the other monkey. Thus, using the information provided by the cue shifted the emphasis towards top-down processing, while ignoring this information allowed bottom-up processing to continue to dominate. Regardless of the selected strategy, however, neurons in the dSC consistently reflected the current bias between the two processes, emphasizing its role in both the bottom-up and top-down control of orienting behaviour.
Steinacher, Arno; Wright, Kim A
2013-01-01
Bipolar Disorders affect a substantial minority of the population and result in significant personal, social and economic costs. Understanding of the causes of, and consequently the most effective interventions for, this condition is an area requiring development. Drawing upon theories of Bipolar Disorder that propose the condition to be underpinned by dysregulation of systems governing behavioural activation or approach motivation, we present a mathematical model of the regulation of behavioural activation. The model is informed by non-linear, dynamical principles and as such proposes that the transition from "non-bipolar" to "bipolar" diagnostic status corresponds to a switch from mono- to multistability of behavioural activation level, rather than an increase in oscillation of mood. Consistent with descriptions of the behavioural activation or approach system in the literature, auto-activation and auto-inhibitory feedback is inherent within our model. Comparison between our model and empirical, observational data reveals that by increasing the non-linearity dimension in our model, important features of Bipolar Spectrum disorders are reproduced. Analysis from stochastic simulation of the system reveals the role of noise in behavioural activation regulation and indicates that an increase of nonlinearity promotes noise to jump scales from small fluctuations of activation levels to longer lasting, but less variable episodes. We conclude that further research is required to relate parameters of our model to key behavioural and biological variables observed in Bipolar Disorder.
Rational design of functional and tunable oscillating enzymatic networks
NASA Astrophysics Data System (ADS)
Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.
2015-02-01
Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.
Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet
Li, C. K.; Tzeferacos, P.; Lamb, D.; Gregori, G.; Norreys, P. A.; Rosenberg, M. J.; Follett, R. K.; Froula, D. H.; Koenig, M.; Seguin, F. H.; Frenje, J. A.; Rinderknecht, H. G.; Sio, H.; Zylstra, A. B.; Petrasso, R. D.; Amendt, P. A.; Park, H. S.; Remington, B. A.; Ryutov, D. D.; Wilks, S. C.; Betti, R.; Frank, A.; Hu, S. X.; Sangster, T. C.; Hartigan, P.; Drake, R. P.; Kuranz, C. C.; Lebedev, S. V.; Woolsey, N. C.
2016-01-01
The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet. PMID:27713403
Ric, Angel; Torrents, Carlota; Gonçalves, Bruno; Torres-Ronda, Lorena; Sampaio, Jaime; Hristovski, Robert
2017-01-01
The analysis of positional data in association football allows the spatial distribution of players during matches to be described in order to improve the understanding of tactical-related constraints on the behavioural dynamics of players. The aim of this study was to identify how players' spatial restrictions affected the exploratory tactical behaviour and constrained the perceptual-motor workspace of players in possession of the ball, as well as inter-player passing interactions. Nineteen professional outfield male players were divided into two teams of 10 and 9 players, respectively. The game was played under three spatial constraints: a) players were not allowed to move out of their allocated zones, except for the player in possession of the ball; b) players were allowed to move to an adjacent zone, and; c) non-specific spatial constraints. Positional data was captured using a 5 Hz interpolated GPS tracking system and used to define the configuration states of players for each second in time. The configuration state comprised 37 categories derived from tactical actions, distance from the nearest opponent, distance from the target and movement speed. Notational analysis of players in possession of the ball allowed the mean time of ball possession and the probabilities of passing the ball between players to be calculated. The results revealed that the players' long-term exploratory behaviour decreased and their short-term exploration increased when restricting their space of interaction. Relaxing players' positional constraints seemed to increase the speed of ball flow dynamics. Allowing players to move to an adjacent sub-area increased the probabilities of interaction with the full-back during play build-up. The instability of the coordinative state defined by being free from opponents when players had the ball possession was an invariant feature under all three task constraints. By allowing players to move to adjacent sub-areas, the coordinative state became highly unstable when the distance from the target decreased. Ball location relative to the scoring zone and interpersonal distance constitute key environmental information that constrains the players' coordinative behaviour. Based on our results, dynamic overlap is presented as a good option to capture tactical performance. Moreover, the selected collective (i.e. relational) variables would allow coaches to identify the effects of training drills on teams and players' behaviour. More research is needed considering these type variables to understand how the manipulation of constraints induce a more stable or flexible dynamical structure of tactical behaviour.
Torrents, Carlota; Gonçalves, Bruno; Torres-Ronda, Lorena; Sampaio, Jaime; Hristovski, Robert
2017-01-01
The analysis of positional data in association football allows the spatial distribution of players during matches to be described in order to improve the understanding of tactical-related constraints on the behavioural dynamics of players. The aim of this study was to identify how players’ spatial restrictions affected the exploratory tactical behaviour and constrained the perceptual-motor workspace of players in possession of the ball, as well as inter-player passing interactions. Nineteen professional outfield male players were divided into two teams of 10 and 9 players, respectively. The game was played under three spatial constraints: a) players were not allowed to move out of their allocated zones, except for the player in possession of the ball; b) players were allowed to move to an adjacent zone, and; c) non-specific spatial constraints. Positional data was captured using a 5 Hz interpolated GPS tracking system and used to define the configuration states of players for each second in time. The configuration state comprised 37 categories derived from tactical actions, distance from the nearest opponent, distance from the target and movement speed. Notational analysis of players in possession of the ball allowed the mean time of ball possession and the probabilities of passing the ball between players to be calculated. The results revealed that the players’ long-term exploratory behaviour decreased and their short-term exploration increased when restricting their space of interaction. Relaxing players’ positional constraints seemed to increase the speed of ball flow dynamics. Allowing players to move to an adjacent sub-area increased the probabilities of interaction with the full-back during play build-up. The instability of the coordinative state defined by being free from opponents when players had the ball possession was an invariant feature under all three task constraints. By allowing players to move to adjacent sub-areas, the coordinative state became highly unstable when the distance from the target decreased. Ball location relative to the scoring zone and interpersonal distance constitute key environmental information that constrains the players’ coordinative behaviour. Based on our results, dynamic overlap is presented as a good option to capture tactical performance. Moreover, the selected collective (i.e. relational) variables would allow coaches to identify the effects of training drills on teams and players’ behaviour. More research is needed considering these type variables to understand how the manipulation of constraints induce a more stable or flexible dynamical structure of tactical behaviour. PMID:28708868
Liu, Li; Liu, Yue-Ping; Wang, Jing; An, Li-Wei; Jiao, Jian-Mei
2016-06-01
To investigate the effects of a knowledge-attitude-behaviour health education model on acquisition of disease-related knowledge and self-management behaviour by patients undergoing maintenance haemodialysis. Patients recently prescribed MHD were randomly assigned to a control group or an intervention group. Control group patients were treated with usual care and general education models. A specialist knowledge-attitude-behaviour health education model was applied to patients in the intervention group. Eighty-six patients were included (n = 43 per group). Before intervention, there were no significant between-group differences in disease knowledge and self-management behaviour. After 6 months' intervention, a significant between-group difference in acquisition of disease knowledge was observed. Self-management behaviour scores (control of body mass, reasonable diet, correct drug intake, physical activity, correct fistula care, disease condition monitoring, psychological and social behaviours) for the intervention group were also higher than those for the control group. These preliminary findings suggest that the knowledge-attitude-behaviour model appears to be a valuable tool for the health education of MHD patients. © The Author(s) 2016.
Liu, Li; Wang, Jing; An, Li-Wei; Jiao, Jian-Mei
2016-01-01
Objective To investigate the effects of a knowledge-attitude-behaviour health education model on acquisition of disease-related knowledge and self-management behaviour by patients undergoing maintenance haemodialysis. Methods Patients recently prescribed MHD were randomly assigned to a control group or an intervention group. Control group patients were treated with usual care and general education models. A specialist knowledge-attitude-behaviour health education model was applied to patients in the intervention group. Results Eighty-six patients were included (n = 43 per group). Before intervention, there were no significant between-group differences in disease knowledge and self-management behaviour. After 6 months’ intervention, a significant between-group difference in acquisition of disease knowledge was observed. Self-management behaviour scores (control of body mass, reasonable diet, correct drug intake, physical activity, correct fistula care, disease condition monitoring, psychological and social behaviours) for the intervention group were also higher than those for the control group. Conclusion These preliminary findings suggest that the knowledge-attitude-behaviour model appears to be a valuable tool for the health education of MHD patients. PMID:26951842
The behaviour of a vehicle’s suspension system on dynamic testing conditions
NASA Astrophysics Data System (ADS)
Mihon, L.; Lontiş, N.; Deac, S.
2018-01-01
The paper presents a car suspension’s behaviour on dynamic testing conditions through theoretical and mathematical simulation on specific model, on the single traction wheel, according to the real vehicle and by experiment on the test bench by reproducing the road’s geometry and vehicle’s speed and measuring the acceleration and damping response of the suspension system on that wheel. There are taking in consideration also the geometry and properties of the tyre-wheel model and physical wheel’s properties. The results are important due to the suspension’s model properties which allows to extend the theory and applications to the whole vehicle for improving the vehicle’s dynamics.
Robust linear parameter-varying control of blood pressure using vasoactive drugs
NASA Astrophysics Data System (ADS)
Luspay, Tamas; Grigoriadis, Karolos
2015-10-01
Resuscitation of emergency care patients requires fast restoration of blood pressure to a target value to achieve hemodynamic stability and vital organ perfusion. A robust control design methodology is presented in this paper for regulating the blood pressure of hypotensive patients by means of the closed-loop administration of vasoactive drugs. To this end, a dynamic first-order delay model is utilised to describe the vasoactive drug response with varying parameters that represent intra-patient and inter-patient variability. The proposed framework consists of two components: first, an online model parameter estimation is carried out using a multiple-model extended Kalman-filter. Second, the estimated model parameters are used for continuously scheduling a robust linear parameter-varying (LPV) controller. The closed-loop behaviour is characterised by parameter-varying dynamic weights designed to regulate the mean arterial pressure to a target value. Experimental data of blood pressure response of anesthetised pigs to phenylephrine injection are used for validating the LPV blood pressure models. Simulation studies are provided to validate the online model estimation and the LPV blood pressure control using phenylephrine drug injection models representing patients showing sensitive, nominal and insensitive response to the drug.
Dynamics of vaccination strategies via projected dynamical systems.
Cojocaru, Monica-Gabriela; Bauch, Chris T; Johnston, Matthew D
2007-07-01
Previous game theoretical analyses of vaccinating behaviour have underscored the strategic interaction between individuals attempting to maximise their health states, in situations where an individual's health state depends upon the vaccination decisions of others due to the presence of herd immunity. Here, we extend such analyses by applying the theories of variational inequalities (VI) and projected dynamical systems (PDS) to vaccination games. A PDS provides a dynamics that gives the conditions for existence, uniqueness and stability properties of Nash equilibria. In this paper, it is used to analyse the dynamics of vaccinating behaviour in a population consisting of distinct social groups, where each group has different perceptions of vaccine and disease risks. In particular, we study populations with two groups, where the size of one group is strictly larger than the size of the other group (a majority/minority population). We find that a population with a vaccine-inclined majority group and a vaccine-averse minority group exhibits higher average vaccine coverage than the corresponding homogeneous population, when the vaccine is perceived as being risky relative to the disease. Our model also reproduces a feature of real populations: In certain parameter regimes, it is possible to have a majority group adopting high vaccination rates and simultaneously a vaccine-averse minority group adopting low vaccination rates. Moreover, we find that minority groups will tend to exhibit more extreme changes in vaccinating behaviour for a given change in risk perception, in comparison to majority groups. These results emphasise the important role played by social heterogeneity in vaccination behaviour, while also highlighting the valuable role that can be played by PDS and VI in mathematical epidemiology.
Factors Relating to Staff Attributions of Control over Challenging Behaviour
ERIC Educational Resources Information Center
Dilworth, Jennifer A.; Phillips, Neil; Rose, John
2011-01-01
Background: Previous research has suggested that severity of intellectual disability (ID) and topography of behaviour may influence staff causal attributions regarding challenging behaviour. Subsequently, these causal attributions may influence helping behaviours. This study investigated the relationship between attributions of control over…
Souza, Naiara M; Giacon, Thais R; Pacagnelli, Francis L; Barbosa, Marianne P C R; Valenti, Vitor E; Vanderlei, Luiz C M
2016-10-01
Autonomic diabetic neuropathy is one of the most common complications of type 1 diabetes mellitus, and studies using heart rate variability to investigate these individuals have shown inconclusive results regarding autonomic nervous system activation. Aims To investigate the dynamics of heart rate in young subjects with type 1 diabetes mellitus through nonlinear and linear methods of heart rate variability. We evaluated 20 subjects with type 1 diabetes mellitus and 23 healthy control subjects. We obtained the following nonlinear indices from the recurrence plot: recurrence rate (REC), determinism (DET), and Shanon entropy (ES), and we analysed indices in the frequency (LF and HF in ms2 and normalised units - nu - and LF/HF ratio) and time domains (SDNN and RMSSD), through analysis of 1000 R-R intervals, captured by a heart rate monitor. There were reduced values (p<0.05) for individuals with type 1 diabetes mellitus compared with healthy subjects in the following indices: DET, REC, ES, RMSSD, SDNN, LF (ms2), and HF (ms2). In relation to the recurrence plot, subjects with type 1 diabetes mellitus demonstrated lower recurrence and greater variation in their plot, inter-group and intra-group, respectively. Young subjects with type 1 diabetes mellitus have autonomic nervous system behaviour that tends to randomness compared with healthy young subjects. Moreover, this behaviour is related to reduced sympathetic and parasympathetic activity of the autonomic nervous system.
An event-triggered control approach for the leader-tracking problem with heterogeneous agents
NASA Astrophysics Data System (ADS)
Garcia, Eloy; Cao, Yongcan; Casbeer, David W.
2018-05-01
This paper presents an event-triggered control and communication framework for the cooperative leader-tracking problem with communication constraints. Continuous communication among agents is not assumed in this work and decentralised event-based strategies are proposed for agents with heterogeneous linear dynamics. Also, the leader dynamics are unknown and only intermittent measurements of its states are obtained by a subset of the followers. The event-based method not only represents a way to restrict communication among agents, but it also provides a decentralised scheme for scheduling information broadcasts. Notably, each agent is able to determine its own broadcasting instants independently of any other agent in the network. In an extension, the case where transmission of information is affected by time-varying communication delays is addressed. Finally, positive lower-bounds on the inter-event time intervals are obtained in order to show that Zeno behaviour does not exist and, therefore, continuous exchange of information is never needed in this framework.
Combes, S. A.; Crall, J. D.; Mukherjee, S.
2010-01-01
Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop–escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival. PMID:20236968
Psikuta, Agnes; Kuklane, Kalev; Bogdan, Anna; Havenith, George; Annaheim, Simon; Rossi, René M
2016-03-01
Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.
Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system
NASA Astrophysics Data System (ADS)
Mobayen, Saleh; Kingni, Sifeu Takougang; Pham, Viet-Thanh; Nazarimehr, Fahimeh; Jafari, Sajad
2018-02-01
This paper investigates a three-dimensional autonomous chaotic flow without linear terms. Dynamical behaviour of the proposed system is investigated through eigenvalue structures, phase portraits, bifurcation diagram, Lyapunov exponents and basin of attraction. For a suitable choice of the parameters, the proposed system can exhibit anti-monotonicity, periodic oscillations and double-scroll chaotic attractor. Basin of attraction of the proposed system shows that the chaotic attractor is self-excited. Furthermore, feasibility of double-scroll chaotic attractor in the real word is investigated by using the OrCAD-PSpice software via an electronic implementation of the proposed system. A good qualitative agreement is illustrated between the numerical simulations and the OrCAD-PSpice results. Finally, a finite-time control method based on dynamic sliding surface for the synchronisation of master and slave chaotic systems in the presence of external disturbances is performed. Using the suggested control technique, the superior master-slave synchronisation is attained. Illustrative simulation results on the studied chaotic system are presented to indicate the effectiveness of the suggested scheme.
Balaban-Feld, Jesse; Valone, Thomas J
2017-09-01
Work on the repeatability of reproductive behaviour has mainly focused on the consistency of female preferences. We characterised the consistency of individual male Drosophila melanogaster reproductive behaviour in two experiments. In the first experiment, we allowed males to interact with a pair of live females that differed in body size. We then controlled female behaviour in a second experiment by examining the courtship behaviour of individual males interacting with a pair of decapitated females that varied in body size. In both experiments, we examined the consistency of individual male reproductive behaviour across two repeated trials on the same day. Males did not exhibit a courtship preference for the larger female in either experiment, but, in experiment 1, males did exhibit post-copulatory choice by copulating for longer durations with the large female, and males that mated with the same type of female in both trials exhibited repeatable behaviour. In general, we found weak evidence of consistent male courtship behaviour in the presence of behaving females. However, when female behaviour was controlled in experiment 2, we found that male courtship behaviour was highly repeatable. These results indicate that individual male D. melanogaster exhibit consistent reproductive behaviour and demonstrate the importance of controlling female behaviour when attempting to characterise the repeatability of male reproductive behaviour. Copyright © 2017 Elsevier B.V. All rights reserved.
First step in managing bulimia nervosa: controlled trial of therapeutic manual.
Treasure, J.; Schmidt, U.; Troop, N.; Tiller, J.; Todd, G.; Keilen, M.; Dodge, E.
1994-01-01
OBJECTIVE--To test the short term efficacy of a self directed treatment manual for bulimia nervosa. DESIGN--Randomised controlled trial of the manual against cognitive behavioural therapy and a waiting list. SETTING--Tertiary referral centre. SUBJECTS--81 consecutive referrals presenting with bulimia nervosa or atypical bulimia nervosa. MAIN OUTCOME MEASURES--Frequency of binge eating, vomiting, and other behaviours to control weight as well as abstinence from these behaviours. RESULTS--Cognitive behavioural treatment produced a significant reduction in the frequency of binge eating, vomiting, and other behaviours to control weight. The manual significantly reduced frequency of binge eating and weight control behaviours other than vomiting, and there was no change in the group on the waiting list. Full remission was achieved in five (24%) of the group assigned to cognitive behavioural treatment, nine (22%) of the group who used the manual, and two (11%) of the group on the waiting list. CONCLUSIONS--A self directed treatment manual may be a useful first intervention in the treatment of bulimia nervosa. PMID:8142791
Gilchrist, Gail; Canfield, Martha; Radcliffe, Polly; D'Oliveira, Ana Flavia Pires Lucas
2017-01-01
Controlling behaviours are highly prevalent forms of non-physical intimate partner violence (IPV). The prevalence of perpetrating controlling behaviours and technology-facilitated abuse (TFA) was compared by men receiving substance use treatment in England (n = 223) and Brazil (n = 280). Factors associated with perpetrating these behaviours towards their current/most recent partner and their association with other types of IPV were explored. Secondary analysis from two cross-sectional studies was performed. Data on socio-demographic characteristics, infidelity, IPV perpetration and victimisation, adverse childhood experiences (ACE), attitudes towards gender relations and roles, substance use, depressive symptoms and anger expression were collected. Sixty-four percent (143/223) and 33% (73/223) of participants in England and 65% (184/280) and 20% (57/280) in Brazil reported controlling behaviours and TFA, respectively, during their current/most recent relationship. Excluding IPV victimisation from the multivariate models; perpetrating controlling behaviours was associated with a higher number of ACE, higher anger expression (England) and severe physical IPV perpetration (Brazil), and perpetrating TFA was associated with younger age. Including both IPV victimisation and perpetration in the multivariate models; perpetrating controlling behaviour was associated with experiencing a higher number of ACE, higher anger expression (England), emotional IPV victimisation (England) and experiencing controlling behaviour from a partner (England). The perpetration of TFA was associated with younger age and experiencing TFA from a partner. Technological progress provides opportunities for perpetrators to control and abuse their partners. Controlling behaviours and TFA should be addressed to reduce IPV perpetration by males in substance use treatment. [Gilchrist G, Canfield M,Radcliffe P, d'Oliveira AFPL. Controlling behaviours and technology-facilitated abuse perpetrated by men receiving substance use treatment in England and Brazil: Prevalence and risk factors. Drug Alcohol Rev 2017;36:52-63]. © 2017 The Authors. Drug and Alcohol Review published by John Wiley & Sons Australia, Ltd on behalf of Australasian Professional Society on Alcohol and other Drugs.
Canfield, Martha; Radcliffe, Polly; D'Oliveira, Ana Flavia Pires Lucas
2017-01-01
Abstract Introduction and Aims Controlling behaviours are highly prevalent forms of non‐physical intimate partner violence (IPV). The prevalence of perpetrating controlling behaviours and technology‐facilitated abuse (TFA) was compared by men receiving substance use treatment in England (n = 223) and Brazil (n = 280). Factors associated with perpetrating these behaviours towards their current/most recent partner and their association with other types of IPV were explored. Design and Methods Secondary analysis from two cross‐sectional studies was performed. Data on socio‐demographic characteristics, infidelity, IPV perpetration and victimisation, adverse childhood experiences (ACE), attitudes towards gender relations and roles, substance use, depressive symptoms and anger expression were collected. Results Sixty‐four percent (143/223) and 33% (73/223) of participants in England and 65% (184/280) and 20% (57/280) in Brazil reported controlling behaviours and TFA, respectively, during their current/most recent relationship. Excluding IPV victimisation from the multivariate models; perpetrating controlling behaviours was associated with a higher number of ACE, higher anger expression (England) and severe physical IPV perpetration (Brazil), and perpetrating TFA was associated with younger age. Including both IPV victimisation and perpetration in the multivariate models; perpetrating controlling behaviour was associated with experiencing a higher number of ACE, higher anger expression (England), emotional IPV victimisation (England) and experiencing controlling behaviour from a partner (England). The perpetration of TFA was associated with younger age and experiencing TFA from a partner. Conclusions Technological progress provides opportunities for perpetrators to control and abuse their partners. Controlling behaviours and TFA should be addressed to reduce IPV perpetration by males in substance use treatment. [Gilchrist G, Canfield M,Radcliffe P, d'Oliveira AFPL. Controlling behaviours and technology‐facilitated abuse perpetrated by men receiving substance use treatment in England and Brazil: Prevalence and risk factors. Drug Alcohol Rev 2017;36:52–63] PMID:28134494
On the study of the dynamical aspects of parasitemia in the blood cycle of malaria
NASA Astrophysics Data System (ADS)
Zorzenon Dos Santos, R. M.; Pinho, S. T. R.; Ferreira, C. P.; da Silva, P. C. A.
2007-04-01
Malaria is an important cause of morbidity and mortality worldwide. One striking aspect regarding malaria is the fact that individuals living in endemic areas do not develop immunity against the parasite, falling ill whenever they are exposed to the parasite. The understanding of why immunity is not developed in the usual way against Plasmodium is crucial to the improvement of treatment and prevention. In this work, we study some aspects of the dynamics of the blood cycle of malaria using both modelling and data analysis of observed case-histories described by parasitemia time series. By comparing our simulations with experimental results we have shown that the different behaviour observed among patients may be associated to differences in the efficiency of the immune system to control the infection.
The landscape of nonlinear structural dynamics: an introduction
Butlin, T.; Woodhouse, J.; Champneys, A. R.
2015-01-01
Nonlinear behaviour is ever-present in vibrations and other dynamical motions of engineering structures. Manifestations of nonlinearity include amplitude-dependent natural frequencies, buzz, squeak and rattle, self-excited oscillation and non-repeatability. This article primarily serves as an extended introduction to a theme issue in which such nonlinear phenomena are highlighted through diverse case studies. More ambitiously though, there is another goal. Both the engineering context and the mathematical techniques that can be used to identify, analyse, control or exploit these phenomena in practice are placed in the context of a mind-map, which has been created through expert elicitation. This map, which is available in software through the electronic supplementary material, attempts to provide a practitioner’s guide to what hitherto might seem like a vast and complex research landscape. PMID:26303925
The landscape of nonlinear structural dynamics: an introduction.
Butlin, T; Woodhouse, J; Champneys, A R
2015-09-28
Nonlinear behaviour is ever-present in vibrations and other dynamical motions of engineering structures. Manifestations of nonlinearity include amplitude-dependent natural frequencies, buzz, squeak and rattle, self-excited oscillation and non-repeatability. This article primarily serves as an extended introduction to a theme issue in which such nonlinear phenomena are highlighted through diverse case studies. More ambitiously though, there is another goal. Both the engineering context and the mathematical techniques that can be used to identify, analyse, control or exploit these phenomena in practice are placed in the context of a mind-map, which has been created through expert elicitation. This map, which is available in software through the electronic supplementary material, attempts to provide a practitioner's guide to what hitherto might seem like a vast and complex research landscape. © 2015 The Authors.
Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights
2018-01-01
Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities—including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species—and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution. This article is part of the theme issue ‘Bridging cultural gaps: interdisciplinary studies in human cultural evolution’. PMID:29440515
Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights.
Kolodny, Oren; Feldman, Marcus W; Creanza, Nicole
2018-04-05
Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities-including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species-and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).
Understanding nonlinear vibration behaviours in high-power ultrasonic surgical devices
Mathieson, Andrew; Cardoni, Andrea; Cerisola, Niccolò; Lucas, Margaret
2015-01-01
Ultrasonic surgical devices are increasingly used in oral, craniofacial and maxillofacial surgery to cut mineralized tissue, offering the surgeon high accuracy with minimal risk to nerve and vessel tissue. Power ultrasonic devices operate in resonance, requiring their length to be a half-wavelength or multiple-half-wavelength. For bone surgery, devices based on a half-wavelength have seen considerable success, but longer multiple-half-wavelength endoscopic devices have recently been proposed to widen the range of surgeries. To provide context for these developments, some examples of surgical procedures and the associated designs of ultrasonic cutting tips are presented. However, multiple-half-wavelength components, typical of endoscopic devices, have greater potential to exhibit nonlinear dynamic behaviours that have a highly detrimental effect on device performance. Through experimental characterization of the dynamic behaviour of endoscopic devices, it is demonstrated how geometrical features influence nonlinear dynamic responses. Period doubling, a known route to chaotic behaviour, is shown to be significantly influenced by the cutting tip shape, whereas the cutting tip has only a limited effect on Duffing-like responses, particularly the shape of the hysteresis curve, which is important for device stability. These findings underpin design, aiming to pave the way for a new generation of ultrasonic endoscopic surgical devices. PMID:27547081
Protecting young children against skin cancer: Parental beliefs, roles, and regret.
Hamilton, Kyra; Kirkpatrick, Aaron; Rebar, Amanda; White, Katherine M; Hagger, Martin S
2017-12-01
To examine the role of parental beliefs, roles, and anticipated regret toward performing childhood sun-protective behaviours. Parents (N = 230; 174 mothers, 56 fathers), recruited using a nonrandom convenience sample, of at least 1 child aged between 2 and 5 years completed an initial questionnaire assessing demographics and past behaviour as well as theory of planned behaviour global (attitude, subjective norm, and perceived behavioural control) and belief-based (behavioural, normative, and control beliefs) measures, role construction, and anticipated regret regarding their intention and behaviour to protect their child from the sun. Two weeks later, participants completed a follow-up questionnaire assessing their sun protection of their child during the previous 2 weeks. Hierarchical multiple regression analysis identified attitude, perceived behavioural control, role construction, anticipated regret, past behaviour, and a normative belief ("current partner/other family members") as significant predictors of parents' intention to participate in sun-protective behaviour for their child. Intention and past behaviour were significant predictors of parents' follow-up sun-protective behaviour. The regression models explained 64% and 36% of the variance in intention and behaviour, respectively. The findings of this study highlight the importance of anticipated regret and role-related beliefs alongside personal, normative, and control beliefs in determining parents' intentional sun-protective behaviour for their children. Findings may inform the development of parent- and community-based sun protection intervention programs to promote parents' sun-safety behaviours for their children to prevent future skin cancer incidence. Copyright © 2017 John Wiley & Sons, Ltd.
General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.
Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng
2017-05-02
As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helsen, Jan; Guo, Yi; Keller, Jonathan
This work investigates the behaviour of the high speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full scale wind turbine nacelle is used. A combination of external and internal gearbox measurements is analysed. Particular focus is on the characterization of the high speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as potential bearing failure initiator. However only limited full scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used tomore » characterize the bearing behaviour in detail. It is shown that during the transient event the high speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing.« less
The importance of correct specification of tribological parameters in dynamical systems modelling
NASA Astrophysics Data System (ADS)
Alaci, S.; Ciornei, F. C.; Romanu, I. C.; Ciornei, M. C.
2018-01-01
When modelling the behaviour of dynamical systems, the friction phenomenon cannot be neglected. Dry and fluid friction may occur, but dry friction has more severe effects upon the behaviour of the systems, based on the fact that the introduced discontinuities are more important. In the modelling of dynamical systems, dry friction is the main cause of occurrence of the bifurcation phenomenon. These aspects become more complex if, in the case of dry friction, static and dynamic frictions are put forward. The behaviour of a simple dynamical system is studied, consisting in a prismatic body linked to the ground by a spring, placed on a conveyor belt. The theoretical model is described by a nonlinear differential equation which after numerical integration leads to the conclusion that the steady motion of the prism is an un-damped oscillatory motion. The system was qualitatively modelled using specialised software for dynamical analysis. It was impractical to obtain a steady uniform translational motion of a rigid, therefore the conveyor belt was replaced by a metallic disc in uniform rotation motion. The attempts to compare the CAD model to the theoretical model were unsuccessful because the efforts of selecting the tribological parameters directed to the conclusion that the motion of the prism is a damped oscillation. To decide which of the methods depicts reality, a test-rig was assembled and it indicated a sustained oscillation. The conclusion is that the model employed by the dynamical analysis software cannot describe the actual model and a more complex model is required in the description of the friction phenomenon.
Influence of a Levelness Defect in a Thrust Bearing on the Dynamic Behaviour of AN Elastic Shaft
NASA Astrophysics Data System (ADS)
BERGER, S.; BONNEAU, O.; FRÊNE, J.
2002-01-01
This paper examines the non-linear dynamic behaviour of a flexible shaft. The shaft is mounted on two journal bearings and the axial load is supported by a defective hydrodynamic thrust bearing at one end. The defect is a levelness defect of the rotor. The thrust bearing behaviour must be considered to be non-linear because of the effects of the defect. The shaft is modelled with typical beam finite elements including effects such as the gyroscopic effects. A modal technique is used to reduce the number of degrees of freedom. Results show that the thrust bearing defects introduce supplementary critical speeds. The linear approach is unable to show the supplementary critical speeds which are obtained only by using non-linear analysis.
Criaud, Marion; Longcamp, Marieke; Anton, Jean-Luc; Nazarian, Bruno; Roth, Muriel; Sescousse, Guillaume; Strafella, Antonio P; Ballanger, Bénédicte; Boulinguez, Philippe
2017-08-30
The neural mechanisms underlying response inhibition and related disorders are unclear and controversial for several reasons. First, it is a major challenge to assess the psychological bases of behaviour, and ultimately brain-behaviour relationships, of a function which is precisely intended to suppress overt measurable behaviours. Second, response inhibition is difficult to disentangle from other parallel processes involved in more general aspects of cognitive control. Consequently, different psychological and anatomo-functional models coexist, which often appear in conflict with each other even though they are not necessarily mutually exclusive. The standard model of response inhibition in go/no-go tasks assumes that inhibitory processes are reactively and selectively triggered by the stimulus that participants must refrain from reacting to. Recent alternative models suggest that action restraint could instead rely on reactive but non-selective mechanisms (all automatic responses are automatically inhibited in uncertain contexts) or on proactive and non-selective mechanisms (a gating function by which reaction to any stimulus is prevented in anticipation of stimulation when the situation is unpredictable). Here, we assessed the physiological plausibility of these different models by testing their respective predictions regarding event-related BOLD modulations (forward inference using fMRI). We set up a single fMRI design which allowed for us to record simultaneously the different possible forms of inhibition while limiting confounds between response inhibition and parallel cognitive processes. We found BOLD dynamics consistent with non-selective models. These results provide new theoretical and methodological lines of inquiry for the study of basic functions involved in behavioural control and related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Annesi, James J; Mareno, Nicole
2015-12-01
To assess effects of cognitive-behavioural weight-loss treatments on self-efficacy to control emotionally cued eating and whether those changes mediate relationships between body satisfaction and emotional eating. Emotional eating is common, especially in women with obesity. A better understanding of relationships of its psychosocial correlates might benefit behavioural weight-loss treatments. A field-based, quantitative study incorporated two theoretically derived weight-loss treatments using repeated measures analyses that employed validated surveys. Women with obesity volunteered for a community-based weight-loss study and were assigned to either a treatment of a manual plus phone support (n = 47), or in-person contacts emphasizing self-regulation (n = 48), over 6 months. Both emphasized physical activity, healthy eating and building self-efficacy for enabling the health-behaviour changes. Data were collected between 2013-2014. Multiple regression analyses assessed predictors of self-efficacy change. Mixed-model analysis of variances assessed treatment differences in psychosocial changes. Mediation analyses assessed mediation of the relationships between body satisfaction and emotional eating changes. Changes in Overall mood and Self-regulation significantly predicted change in Self-efficacy to control emotionally cued eating. Changes in Body satisfaction, Emotional eating, Mood, Self-regulating eating and Self-efficacy were significant overall, and each significantly greater in the in-person treatment. Self-efficacy significantly mediated the relationship between changes in Body satisfaction and Emotional eating total (and Emotional eating when depressed or anxious, but not when frustrated/angry). Results clarified mediation of the dynamic relationship between body satisfaction and emotional eating, which might enable behavioural weight-loss treatments to better-address emotional eating. © 2015 John Wiley & Sons Ltd.
Host attraction and biting behaviour of Anopheles mosquitoes in South Halmahera, Indonesia.
St Laurent, Brandyce; Burton, Timothy A; Zubaidah, Siti; Miller, Helen C; Asih, Puji B; Baharuddin, Amirullah; Kosasih, Sully; Shinta; Firman, Saya; Hawley, William A; Burkot, Thomas R; Syafruddin, Din; Sukowati, Supratman; Collins, Frank H; Lobo, Neil F
2017-08-02
Indonesia is home to a variety of malaria vectors whose specific bionomic traits remain largely uncharacterized. Species-specific behaviours, such as host feeding preferences, impact the dynamics of malaria transmission and the effectiveness of vector control interventions. To examine species-specific host attraction and feeding behaviours, a Latin square design was used to compare Anopheles mosquitoes attracted to human, cow, and goat-baited tents. Anopheles mosquitoes were collected hourly from the inside walls of each baited tent. Species were morphologically and then molecularly identified using rDNA ITS2 sequences. The head and thorax of individual specimens were analysed for Plasmodium DNA using PCR. Bloodmeals were identified using a multiplex PCR. A total of 1024, 137, and 74 Anopheles were collected over 12 nights in cow, goat, and human-baited tents, respectively. The species were identified as Anopheles kochi, Anopheles farauti s.s., Anopheles hackeri, Anopheles hinesorum, Anopheles indefinitus, Anopheles punctulatus, Anopheles tessellatus, Anopheles vagus, and Anopheles vanus, many of which are known to transmit human malaria. Molecular analysis of blood meals revealed a high level of feeding on multiple host species in a single night. Anopheles kochi, An. indefinitus, and An. vanus were infected with Plasmodium vivax at rates comparable to primary malaria vectors. The species distributions of Anopheles mosquitoes attracted to human, goat, and cow hosts were similar. Eight of nine sporozoite positive samples were captured with animal-baited traps, indicating that even predominantly zoophilic mosquitoes may be contributing to malaria transmission. Multiple host feeding and flexibility in blood feeding behaviour have important implications for malaria transmission, malaria control, and the effectiveness of intervention and monitoring methods, particularly those that target human-feeding vectors.
Damage and fracture in fabric-reinforced composites under quasi-static and dynamic bending
NASA Astrophysics Data System (ADS)
Ullah, H.; Harland, A. R.; Silberschmidt, V. V.
2013-07-01
Fabric-reinforced polymer composites used in sports products can be exposed to different in-service conditions such as large deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such behaviour needs adequate means of analysis and investigation, the main approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests were carried out to characterise the behaviour of a CFRP material under large-deflection bending, first in quasi-static and then in dynamic conditions. Izod-type impact bending tests were performed on un-notched specimens of CFRP using a Resil impactor to assess the transient response and energy absorbing capability of the material. X-ray micro computed tomography (micro-CT) was used to analyse various damage modes in the tested specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply and intra-ply delamination such as tow debonding, and fabric fracture were the prominent damage modes both in quasi-static and dynamic test specimens. However, the inter-ply damage was localised at impact location in dynamically tested specimens, whereas in the quasi-static specimens, it spread almost over the entire interface.
Dickens, M.J.; Balthazart, J.; Cornil, C. A.
2012-01-01
Neural production of 17β-oestradiol via aromatisation of testosterone may play a critical role in rapid, non-genomic regulation of physiological and behavioural processes. In brain nuclei implicated in the control of sexual behaviour, sexual or stressfull stimuli induce respectively a rapid inhibition or increase in preoptic aromatase activity (AA). Here, we tested quail that were either non-stressed or acutely stressed (15 min restraint) immediately prior to sexual interaction (5 min) with stressed or non-stressed partners. We measured nuclei-specific AA changes, corresponding behavioural output, fertilisation rates and corticosterone (CORT) concentrations. In males, sexual interaction rapidly reversed stress-induced increases of AA in the medial preoptic nucleus (POM). This time scale (<5min) highlights the dynamic potential of the aromatase system to integrate input from stimuli that drive AA in opposing directions. Moreover, acute stress had minimal effects on male behaviour suggesting that the input from the sexual stimuli on POM AA may actively preserve sexual behaviour despite stress exposure. We also found distinct sex differences in contextual physiological responses: while males did not show any effect of partner status, females responded to both their stress exposure and the male partner’s stress exposure at the level of circulating CORT and AA. In addition, fertilisation rates and female CORT correlated with the male partner’s exhibition of sexually aggressive behaviour suggesting that female perception of the male can affect their physiology as much as direct stress. Overall, male reproduction appears relatively simple – sexual stimuli, irrespective of stress, drives major neural changes including rapid reversal of stress-induced changes of AA. In contrast, female reproduction appears more nuanced and context specific, with subjects responding physiologically and behaviourally to stress, the male partner’s stress exposure, and female-directed male behaviour. PMID:22612582
Hicks, Olivia; Burthe, Sarah; Daunt, Francis; Butler, Adam; Bishop, Charles; Green, Jonathan A
2017-05-15
Two main techniques have dominated the field of ecological energetics: the heart rate and doubly labelled water methods. Although well established, they are not without their weaknesses, namely expense, intrusiveness and lack of temporal resolution. A new technique has been developed using accelerometers; it uses the overall dynamic body acceleration (ODBA) of an animal as a calibrated proxy for energy expenditure. This method provides high-resolution data without the need for surgery. Significant relationships exist between the rate of oxygen consumption ( V̇ O 2 ) and ODBA in controlled conditions across a number of taxa; however, it is not known whether ODBA represents a robust proxy for energy expenditure consistently in all natural behaviours and there have been specific questions over its validity during diving, in diving endotherms. Here, we simultaneously deployed accelerometers and heart rate loggers in a wild population of European shags ( Phalacrocorax aristotelis ). Existing calibration relationships were then used to make behaviour-specific estimates of energy expenditure for each of these two techniques. Compared with heart rate-derived estimates, the ODBA method predicts energy expenditure well during flight and diving behaviour, but overestimates the cost of resting behaviour. We then combined these two datasets to generate a new calibration relationship between ODBA and V̇ O 2 that accounts for this by being informed by heart rate-derived estimates. Across behaviours we found a good relationship between ODBA and V̇ O 2 Within individual behaviours, we found useable relationships between ODBA and V̇ O 2 for flight and resting, and a poor relationship during diving. The error associated with these new calibration relationships mostly originates from the previous heart rate calibration rather than the error associated with the ODBA method. The equations provide tools for understanding how energy constrains ecology across the complex behaviour of free-living diving birds. © 2017. Published by The Company of Biologists Ltd.
McCloughen, Andrea; Foster, Kim
2018-07-01
To identify challenging interpersonal interactions experienced by nursing and pharmacy students during clinical placement, and strategies used to manage those situations. Healthcare students and staff experience elevated stress when exposed to dynamic clinical environments, complex care and challenging professional relationships. Emotionally intelligent behaviours are associated with appropriate recognition and management of emotions evoked by stressful experiences and development of effective relationships. Nursing and pharmacy students' use of emotionally intelligent behaviours to manage challenging interpersonal situations is not well known. A qualitative design, using semi-structured interviews to explore experiences of challenging interpersonal situations during clinical placement (Phase two of a larger mixed-methods study). Final-year Australian university nursing and pharmacy students (n = 20) were purposefully recruited using a range of Emotional Intelligence scores (derived in Phase one), measured using the GENOS Emotional intelligence Inventory (concise version). Challenging interpersonal situations involving student-staff and intrastaff conflict, discourteous behaviour and criticism occurred during clinical placement. Students used personal and relational strategies, incorporating emotionally intelligent behaviours, to manage these encounters. Strategies included reflecting and reframing, being calm, controlling discomfort and expressing emotions appropriately. Emotionally intelligent behaviours are effective to manage stressful interpersonal interactions. Methods for strengthening these behaviours should be integrated into education of nursing and pharmacy students and qualified professionals. Education within the clinical/workplace environment can incorporate key interpersonal skills of collaboration, social interaction and reflection, while also attending to sociocultural contexts of the healthcare setting. Students and staff are frequently exposed to stressful clinical environments and challenging interpersonal encounters within healthcare settings. Use of emotionally intelligent behaviours to recognise and effectively manage these encounters may contribute to greater stress tolerance and enhanced professional relationships. Nursing and pharmacy students, and their qualified counterparts, need to be educated to strengthen their emotional intelligence skills. © 2017 John Wiley & Sons Ltd.
Dickens, M J; Balthazart, J; Cornil, C A
2012-10-01
Neural production of 17β-oestradiol via aromatisation of testosterone may play a critical role in rapid, nongenomic regulation of physiological and behavioural processes. In brain nuclei implicated in the control of sexual behaviour, sexual or stressfull stimuli induce, respectively, a rapid inhibition or increase in preoptic aromatase activity (AA). In the present study, we tested quail that were either nonstressed or acutely stressed (15 min of restraint) immediately before sexual interaction (5 min) with stressed or nonstressed partners. We measured nuclei-specific AA changes, corresponding behavioural output, fertilisation rates and corticosterone (CORT) concentrations. In males, sexual interaction rapidly reversed stress-induced increases of AA in the medial preoptic nucleus (POM). This time scale (< 5 min) highlights the dynamic potential of the aromatase system to integrate input from stimuli that drive AA in opposing directions. Moreover, acute stress had minimal effects on male behaviour, suggesting that the input from the sexual stimuli on POM AA may actively preserve sexual behaviour despite stress exposure. We also found distinct sex differences in contextual physiological responses: males did not show any effect of partner status, whereas females responded to both their stress exposure and the male partner's stress exposure at the level of circulating CORT and AA. In addition, fertilisation rates and female CORT correlated with the male partner's exhibition of sexually aggressive behaviour, suggesting that female perception of the male can affect their physiology as much as direct stress. Overall, male reproduction appears relatively simple: sexual stimuli, irrespective of stress, drives major neural changes including rapid reversal of stress-induced changes of AA. By contrast, female reproduction appears more nuanced and context specific, with subjects responding physiologically and behaviourally to stress, the male partner's stress exposure, and female-directed male behaviour. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.
Optimal exploitation of spatially distributed trophic resources and population stability
Basset, A.; Fedele, M.; DeAngelis, D.L.
2002-01-01
The relationships between optimal foraging of individuals and population stability are addressed by testing, with a spatially explicit model, the effect of patch departure behaviour on individual energetics and population stability. A factorial experimental design was used to analyse the relevance of the behavioural factor in relation to three factors that are known to affect individual energetics; i.e. resource growth rate (RGR), assimilation efficiency (AE), and body size of individuals. The factorial combination of these factors produced 432 cases, and 1000 replicate simulations were run for each case. Net energy intake rates of the modelled consumers increased with increasing RGR, consumer AE, and consumer body size, as expected. Moreover, through their patch departure behaviour, by selecting the resource level at which they departed from the patch, individuals managed to substantially increase their net energy intake rates. Population stability was also affected by the behavioural factors and by the other factors, but with highly non-linear responses. Whenever resources were limiting for the consumers because of low RGR, large individual body size or low AE, population density at the equilibrium was directly related to the patch departure behaviour; on the other hand, optimal patch departure behaviour, which maximised the net energy intake at the individual level, had a negative influence on population stability whenever resource availability was high for the consumers. The consumer growth rate (r) and numerical dynamics, as well as the spatial and temporal fluctuations of resource density, which were the proximate causes of population stability or instability, were affected by the behavioural factor as strongly or even more strongly than by the others factors considered here. Therefore, patch departure behaviour can act as a feedback control of individual energetics, allowing consumers to optimise a potential trade-off between short-term individual fitness and long-term population stability. ?? 2002 Elsevier Science B.V. All rights reserved.
van den Bos, Ruud
2015-02-01
Early work by Lex Cools suggested that the caudate nucleus (dorsal striatum) plays a role in programming social behaviour: enhanced activity in the caudate nucleus increased the extent to which ongoing behaviour is controlled by the individual's own behaviour (internal control) rather than by that of its partners (external control). Interestingly, later studies by others have indicated that the ventral striatum plays a role in external rather than internal control. Here, I discuss the role of these different striatal areas - and the emotional (ventral striatum) and cognitive control (dorsal striatum) system in which they are embedded - in the organization of social behaviour in the context of locus of control. Following on from this discussion, I will pay particular attention to individual differences in social behaviour (individuals with more internal or external control), focusing on the role of dopamine, serotonin and the effects of stress-related challenges in relation to their different position in a dominance hierarchy. I will subsequently allude to potential psychological and behavioural problems in the social domain following on from these differences in locus of control ['social obliviousness' (dorsal stratum) and 'social impulsivity' (ventral striatum)]. In doing so, I provide as a tribute a historical account of the early research by Lex Cools.
Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.
Semenov, Sergey N; Kraft, Lewis J; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E; Kang, Kyungtae; Fox, Jerome M; Whitesides, George M
2016-09-29
Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving chemical systems.
Multiphysics modelling of multibody systems: application to car semi-active suspensions
NASA Astrophysics Data System (ADS)
Docquier, N.; Poncelet, A.; Delannoy, M.; Fisette, P.
2010-12-01
The goal of the present article is to analyse the performances of a modern vehicle equipped with a novel suspension system linking front, rear, right and left cylinders via a semi-active hydraulic circuit, developed by the Tenneco Automotive company. In addition to improving the vehicle's vertical performances (in terms of comfort), both the stiff roll motion of the carbody and the soft wrap motion of the rear/front wheel-axle units can be obtained and tuned via eight electrovalves. The proposed system avoids the use of classical anti-roll bars, which would be incompatible with the wrap performance. A major problem of the project is to produce a realistic and efficient 3D multibody dynamic model of an Audi A6 coupled, at the equational level, with an hydraulic model of the suspension including cylinders, accumulators, valve characteristics, oil compressibility and pipe dynamics. As regards the hydraulic submodel, a particular attention is paid to assemble resistive components properly without resorting to the use of artificial volumes, as proposed by some software dealing with the dynamics of hydraulic systems. According to Tenneco Automotive requirements, this model must be produced in a Matlab/Simulink form, in particular for control purposes. Thanks to the symbolic approach underlying our multibody program; a unified hybrid model can be obtained as a unique plant dynamic block to be real-time integrated in the Simulink environment on a standard computer. Simulation results highlight the advantages of this new suspension system, in particular regarding the behaviour of the car which can remain stiff in roll for curve negotiation, while maintaining a soft wrap behaviour on uneven surfaces.
Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions
NASA Astrophysics Data System (ADS)
Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.
2016-09-01
Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving chemical systems.
NASA Astrophysics Data System (ADS)
Lowe, Robert; Ziemke, Tom
2010-09-01
The somatic marker hypothesis (SMH) posits that the role of emotions and mental states in decision-making manifests through bodily responses to stimuli of import to the organism's welfare. The Iowa Gambling Task (IGT), proposed by Bechara and Damasio in the mid-1990s, has provided the major source of empirical validation to the role of somatic markers in the service of flexible and cost-effective decision-making in humans. In recent years the IGT has been the subject of much criticism concerning: (1) whether measures of somatic markers reveal that they are important for decision-making as opposed to behaviour preparation; (2) the underlying neural substrate posited as critical to decision-making of the type relevant to the task; and (3) aspects of the methodological approach used, particularly on the canonical version of the task. In this paper, a cognitive robotics methodology is proposed to explore a dynamical systems approach as it applies to the neural computation of reward-based learning and issues concerning embodiment. This approach is particularly relevant in light of a strongly emerging alternative hypothesis to the SMH, the reversal learning hypothesis, which links, behaviourally and neurocomputationally, a number of more or less complex reward-based decision-making tasks, including the 'A-not-B' task - already subject to dynamical systems investigations with a focus on neural activation dynamics. It is also suggested that the cognitive robotics methodology may be used to extend systematically the IGT benchmark to more naturalised, but nevertheless controlled, settings that might better explore the extent to which the SMH, and somatic states per se, impact on complex decision-making.
Staberg, M; Norén, J G; Gahnberg, L; Ghaderi, A; Kadesjö, C; Robertson, A
2018-05-15
This was to study children with early detected externalising behaviour problems compared to matched controls regarding oral health, oral health risk behaviour and the parental evaluation of the child's oral health and dental care. Children aged 10-13 years and with externalising behaviour problems, were compared to matched controls. Behavioural characteristics were based on the Strength and Difficulties Questionnaire. The children and their parents completed questionnaires regarding dental fear, tooth brushing, dietary habits and evaluation of oral health and dental care. Data on dental caries risk assessments, caries, behaviour management problems and dental trauma were obtained from dental files. There were no differences in caries prevalence in children with early detected externalising behaviour problems, compared to controls. However, the former group consumed more sweet drinks when thirsty and brushed their teeth fewer than twice daily; they also had more dental trauma in both dentitions and a higher risk range for dental fear, compared to controls. This study points out potential oral health risk factors in children with early-detected externalising behaviour problems. Although no difference in caries prevalence was observed, externalising behaviour may affect oral health. Therefore, dental professionals should support the families and the children to preserve dental health by offering increased prophylactic measures. There were no differences between children with externalising behaviour problems, compared with controls, regarding the parent evaluation of their child's dental health. However, more parents in the study group evaluated the dental care as poor or not functioning.
2014-01-01
Background Longitudinal studies have shown that objectively measured walking behaviour is subject to seasonal variation, with people walking more in summer compared to winter. Seasonality therefore may have the potential to bias the results of randomised controlled trials if there are not adequate statistical or design controls. Despite this there are no studies that assess the impact of seasonality on walking behaviour in a randomised controlled trial, to quantify the extent of such bias. Further there have been no studies assessing how season impacts on the psychological predictors of walking behaviour to date. The aim of the present study was to assess seasonal differences in a) objective walking behaviour and b) Theory of Planned Behaviour (TPB) variables during a randomised controlled trial of an intervention to promote walking. Methods 315 patients were recruited to a two-arm cluster randomised controlled trial of an intervention to promote walking in primary care. A series of repeated measures ANCOVAs were conducted to examine the effect of season on pedometer measures of walking behaviour and TPB measures, assessed immediately post-intervention and six months later. Hierarchical regression analyses were conducted to assess whether season moderated the prediction of intention and behaviour by TPB measures. Results There were no significant differences in time spent walking in spring/summer compared to autumn/winter. There was no significant seasonal variation in most TPB variables, although the belief that there will be good weather was significantly higher in spring/summer (F = 19.46, p < .001). Season did not significantly predict intention or objective walking behaviour, or moderate the effects of TPB variables on intention or behaviour. Conclusion Seasonality does not influence objectively measured walking behaviour or psychological variables during a randomised controlled trial. Consequently physical activity behaviour outcomes in trials will not be biased by the season in which they are measured. Previous studies may have overestimated the extent of seasonality effects by selecting the most extreme summer and winter months to assess PA. In addition, participants recruited to behaviour change interventions might have higher levels of motivation to change and are less affected by seasonal barriers. Trial registration Current Controlled Trials ISRCTN95932902 PMID:24499405
Hygienic food handling behaviours. An application of the Theory of Planned Behaviour.
Mullan, Barbara A; Wong, Cara L
2009-06-01
It is estimated that 5.4 million Australians get sick annually from eating contaminated food and that up to 20% of this illness results from food handling behaviour. A study was undertaken to investigate the efficacy of the Theory of Planned Behaviour (TPB) including past behaviour in predicting safe food handling intention and behaviour. One hundred and nine participants completed questionnaires regarding their attitudes, perceived behavioural control (PBC), subjective norm, intentions and past behaviour. Behaviour was measured 4 weeks later. The TPB predicted a high proportion of variance in both intentions and behaviour, and past behaviour/habit was found to be the strongest predictor of behaviour. The results of the present study suggest interventions aimed at increasing safe food handling intentions should focus on the impact of normative influences and perceptions of control over their food handling environment; whereas interventions to change actual behaviour should attempt to increase hygienic food handling as a habitual behaviour.
State reference design and saturated control of doubly-fed induction generators under voltage dips
NASA Astrophysics Data System (ADS)
Tilli, Andrea; Conficoni, Christian; Hashemi, Ahmad
2017-04-01
In this paper, the stator/rotor currents control problem of doubly-fed induction generator under faulty line voltage is carried out. Common grid faults cause a steep decline in the line voltage profile, commonly denoted as voltage dip. This point is critical for such kind of machines, having their stator windings directly connected to the grid. In this respect, solid methodological nonlinear control theory arguments are exploited and applied to design a novel controller, whose main goal is to improve the system behaviour during voltage dips, endowing it with low voltage ride through capability, a fundamental feature required by modern Grid Codes. The proposed solution exploits both feedforward and feedback actions. The feedforward part relies on suitable reference trajectories for the system internal dynamics, which are designed to prevent large oscillations in the rotor currents and command voltages, excited by line perturbations. The feedback part uses state measurements and is designed according to Linear Matrix Inequalities (LMI) based saturated control techniques to further reduce oscillations, while explicitly accounting for the system constraints. Numerical simulations verify the benefits of the internal dynamics trajectory planning, and the saturated state feedback action, in crucially improving the Doubly-Fed Induction Machine response under severe grid faults.
Looking for sexual selection in the female brain.
Cummings, Molly E
2012-08-19
Female mate choice behaviour has significant evolutionary consequences, yet its mechanistic origins are not fully understood. Recent studies of female sensory systems have made great strides in identifying internal mechanisms governing female preferences. Only recently, however, have we begun to identify the dynamic genomic response associated with mate choice behaviour. Poeciliids provide a powerful comparative system to examine genomic responses governing mate choice and female preference behaviour, given the great range of mating systems: from female mate choice taxa with ornamental courting males to species lacking male ornamentation and exhibiting only male coercion. Furthermore, they exhibit laboratory-tractable preference responses without sexual contact that are decoupled from reproductive state, allowing investigators to isolate mechanisms in the brain without physiological confounds. Early investigations with poeciliid species (Xiphophorus nigrensis and Gambusia affinis) have identified putative candidate genes associated with female preference response and highlight a possible genomic pathway underlying female social interactions with males linked functionally with synaptic plasticity and learning processes. This network is positively correlated with female preference behaviour in the female mate choice species, but appears inhibited in the male coercive species. This behavioural genomics approach provides opportunity to elucidate the fundamental building blocks, and evolutionary dynamics, of sexual selection.
Benbouriche, M; Renaud, P; Pelletier, J-F; De Loor, P
2016-12-01
Forensic psychiatry is the field whose expertise is the assessment and treatment of offending behaviours, in particular when offenses are related to mental illness. An underlying question for all etiological models concerns the manner in which an individual's behaviours are organized. Specifically, it becomes crucial to understand how certain individuals come to display maladaptive behaviours in a given environment, especially when considering issues such as offenders' responsibility and their ability to change their behaviours. Thanks to its ability to generate specific environments, associated with a high experimental control on generated simulations, virtual reality is gaining recognition in forensic psychiatry. Virtual reality has generated promising research data and may turn out to be a remarkable clinical tool in the near future. While research has increased, a conceptual work about its theoretical underpinnings is still lacking. However, no important benefit should be expected from the introduction of a new tool (as innovative as virtual reality) without an explicit and heuristic theoretical framework capable of clarifying its benefits in forensic psychiatry. Our paper introduces self-regulation perspective as the most suitable theoretical framework for virtual reality in forensic psychiatry. It will be argued that virtual reality does not solely help to increase ecological validity. However, it does allow one to grant access to an improved understanding of violent offending behaviours by probing into the underlying mechanisms involved in the self-regulation of behaviours in a dynamical environment. Illustrations are given as well as a discussion regarding perspectives in the use of virtual reality in forensic psychiatry. Copyright © 2015 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Disentangling the Impact of Social Groups on Response Times and Movement Dynamics in Evacuations
Bode, Nikolai W. F.; Holl, Stefan; Mehner, Wolfgang; Seyfried, Armin
2015-01-01
Crowd evacuations are paradigmatic examples for collective behaviour, as interactions between individuals lead to the overall movement dynamics. Approaches assuming that all individuals interact in the same way have significantly improved our understanding of pedestrian crowd evacuations. However, this scenario is unlikely, as many pedestrians move in social groups that are based on friendship or kinship. We test how the presence of social groups affects the egress time of individuals and crowds in a representative crowd evacuation experiment. Our results suggest that the presence of social groups increases egress times and that this is largely due to differences at two stages of evacuations. First, individuals in social groups take longer to show a movement response at the start of evacuations, and, second, they take longer to move into the vicinity of the exits once they have started to move towards them. Surprisingly, there are no discernible time differences between the movement of independent individuals and individuals in groups directly in front of the exits. We explain these results and discuss their implications. Our findings elucidate behavioural differences between independent individuals and social groups in evacuations. Such insights are crucial for the control of crowd evacuations and for planning mass events. PMID:25785603
NASA Astrophysics Data System (ADS)
de Arcangelis, L.; Lombardi, F.; Herrmann, H. J.
2014-03-01
Spontaneous brain activity has been recently characterized by avalanche dynamics with critical features for systems in vitro and in vivo. In this contribution we present a review of experimental results on neuronal avalanches in cortex slices, together with numerical results from a neuronal model implementing several physiological properties of living neurons. Numerical data reproduce experimental results for avalanche statistics. The temporal organization of avalanches can be characterized by the distribution of waiting times between successive avalanches. Experimental measurements exhibit a non-monotonic behaviour, not usually found in other natural processes. Numerical simulations provide evidence that this behaviour is a consequence of the alternation between states of high and low activity, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homoeostatic mechanisms. Interestingly, the same homoeostatic balance is detected for neuronal activity at the scale of the whole brain. We finally review the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules and the learning dynamics exhibits universal features as a function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.
Zhang, Xiaofan; Li, Qi; Zhang, Min; Lam, Sylvia; Sham, Pak Chung; Bu, Bitao; Chua, Siew Eng; Wang, Wei; McAlonan, Grainne Mary
2015-01-01
Oxytocin has been suggested as a promising new treatment for neurodevelopmental disorders. However, important gaps remain in our understanding of its mode of action, in particular, to what extent oxytocin modulates social and non-social behaviours and whether its effects are generalizable across both sexes. Here we investigated the effects of a range of oxytocin doses on social and non-social behaviours in C57BL/6N mice of both sexes. As the striatum modulates social and non-social behaviours, and is implicated in neurodevelopmental disorders, we also conducted a pilot exploration of changes in striatal protein expression elicited by oxytocin. Oxytocin increased prepulse inhibition of startle but attenuated the recognition memory in male C57BL/6N mice. It increased social interaction time and suppressed the amphetamine locomotor response in both sexes. The striatum proteome following oxytocin exposure could be clearly discriminated from saline controls. With the caveat that these results are preliminary, oxytocin appeared to alter individual protein expression in directions similar to conventional anti-psychotics. The proteins affected by oxytocin could be broadly categorized as those that modulate glutamatergic, GABAergic or dopaminergic signalling and those that mediate cytoskeleton dynamics. Our results here encourage further research into the clinical application of this peptide hormone, which may potentially extend treatment options across a spectrum of neurodevelopmental conditions. PMID:26716999
Gemmell, Brad J; Oh, Genesok; Buskey, Edward J; Villareal, Tracy A
2016-10-12
Phytoplankton sinking is an important property that can determine community composition in the photic zone and material loss to the deep ocean. To date, studies of diatom suspension have relied on bulk measurements with assumptions that bulk rates adequately capture the essential characteristics of diatom sinking. However, recent work has illustrated that individual diatom sinking rates vary considerably from the mean bulk rate. In this study, we apply high-resolution optical techniques, individual-based observations of diatom sinking and a recently developed method of flow visualization around freely sinking cells. The results show that in both field samples and laboratory cultures, some large species of centric diatoms are capable of a novel behaviour, whereby cells undergo bursts of rapid sinking that alternate with near-zero sinking rates on the timescales of seconds. We also demonstrate that this behaviour is under direct metabolic control of the cell. We discuss these results in the context of implications for nutrient flux to the cell surface. While nutrient flux in large diatoms increases during fast sinking, current mass transport models cannot incorporate the unsteady sinking behaviour observed in this study. However, large diatoms appear capable of benefiting from the enhanced nutrient flux to their surface during rapid sinking even during brief intervening periods of near-zero sinking rates. © 2016 The Author(s).
Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics
NASA Astrophysics Data System (ADS)
Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten
2017-04-01
Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.
On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies
NASA Astrophysics Data System (ADS)
Ilssar, Dotan; Bucher, Izhak
2015-10-01
This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.
Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick; Klein, Vladislav
2011-01-01
Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.
Modelling Influence and Opinion Evolution in Online Collective Behaviour
Gend, Pascal; Rentfrow, Peter J.; Hendrickx, Julien M.; Blondel, Vincent D.
2016-01-01
Opinion evolution and judgment revision are mediated through social influence. Based on a large crowdsourced in vitro experiment (n = 861), it is shown how a consensus model can be used to predict opinion evolution in online collective behaviour. It is the first time the predictive power of a quantitative model of opinion dynamics is tested against a real dataset. Unlike previous research on the topic, the model was validated on data which did not serve to calibrate it. This avoids to favor more complex models over more simple ones and prevents overfitting. The model is parametrized by the influenceability of each individual, a factor representing to what extent individuals incorporate external judgments. The prediction accuracy depends on prior knowledge on the participants’ past behaviour. Several situations reflecting data availability are compared. When the data is scarce, the data from previous participants is used to predict how a new participant will behave. Judgment revision includes unpredictable variations which limit the potential for prediction. A first measure of unpredictability is proposed. The measure is based on a specific control experiment. More than two thirds of the prediction errors are found to occur due to unpredictability of the human judgment revision process rather than to model imperfection. PMID:27336834
Understanding Behavioural Rigidity in Autism Spectrum Conditions: The Role of Intentional Control
ERIC Educational Resources Information Center
Poljac, Edita; Hoofs, Vincent; Princen, Myrthe M.; Poljac, Ervin
2017-01-01
Although behavioural rigidity belongs to the core symptoms of autism spectrum conditions, little is known about its underlying cognitive mechanisms. The current study investigated the role of intentional control mechanisms in behavioural rigidity in autism. Autistic individuals and their matched controls were instructed to repeatedly choose…
NASA Astrophysics Data System (ADS)
Dvorak, R.; Henrard, J.
1996-03-01
The following topics were dealt with: celestial mechanics, dynamical astronomy, planetary systems, resonance scattering, Hamiltonian mechanics non-integrability, irregular periodic orbits, escape, dynamical system mapping, fast Fourier method, precession-nutation, Nekhoroshev theorem, asteroid dynamics, the Trojan problem, planet-crossing orbits, Kirkwood gaps, future research, human comprehension limitations.
Shi, Qifang; Ostwald, Sharon K; Wang, Shaopeng
2010-02-01
To examine the effect of a hospital-based clinic intervention on glycaemic control self-efficacy and glycaemic control behaviour of Chinese patients with type 2 diabetes mellitus (DM). Self-efficacy expectations are related to self-management of diabetes and, in conjunction with environmental support, are better predictors of behaviour than are knowledge and skills. Enhancing self-efficacy in patients with DM has been shown to have a positive effect on behavioural change and positively influence long-term glycaemic control. A randomised controlled trial study consisting of two-group pretest-post-test. One hundred and fifty-seven patients with type 2 DM were randomly divided into two groups: (1) the experimental group (77 patients) receiving one-month hospital-based clinic intervention and (2) the control group (80 patients) receiving usual care. Data collection instruments used in this study were Diabetes Management Self-Efficacy Scale and Summary of Diabetes Self-Care Activities Measure. Outcomes were determined by changes in glycaemic control self-efficacy and glycaemic control behaviour of patients with type 2 DM. The findings revealed that the experimental group showed statistically significant improvement in glycaemic control self-efficacy and glycaemic control behaviour immediately and four months after the intervention (F = 26.888, df = 1, 155, p < 0.05 and F = 18.619, df = 1, 155, p < 0.05, respectively). One-month hospital-based clinic intervention could be useful in improving glycaemic control self-efficacy and glycaemic control behaviour. Nurses can learn and use the sources of self-efficacy to enhance patients' self-efficacy on their glycaemic control in clinical care. The health education is most important in nursing care and should be considered while organising the hospital-based clinic intervention.
Tonge, Bruce; Brereton, Avril; Kiomall, Melissa; Mackinnon, Andrew; Rinehart, Nicole J
2014-02-01
To determine the effect of parent education on adaptive behaviour, autism symptoms and cognitive/language skills of young children with autistic disorder. A randomised group comparison design involving a parent education and counselling intervention and a parent education and behaviour management intervention to control for parent skills training and a control sample. Two rural and two metropolitan regions were randomly allocated to intervention groups (n = 70) or control (n = 35). Parents from autism assessment services in the intervention regions were randomly allocated to parent education and behaviour management (n = 35) or parent education and counselling (n = 35). Parent education and behaviour management resulted in significant improvement in adaptive behaviour and autism symptoms at 6 months follow-up for children with greater delays in adaptive behaviour. Parent education and behaviour management was superior to parent education and counselling. We conclude that a 20-week parent education programme including skills training for parents of young children with autistic disorder provides significant improvements in child adaptive behaviour and symptoms of autism for low-functioning children.
Latent interaction effects in the theory of planned behaviour applied to quitting smoking.
Hukkelberg, Silje Sommer; Hagtvet, Knut A; Kovac, Velibor Bobo
2014-02-01
This study applies three latent interaction models in the theory of planned behaviour (TPB; Ajzen, 1988, Attitudes, personality, and behavior. Homewood, IL: Dorsey Press; Ajzen, 1991, Organ. Behav. Hum. Decis. Process., 50, 179) to quitting smoking: (1) attitude × perceived behavioural control on intention; (2) subjective norms (SN) × attitude on intention; and (3) perceived behavioural control × intention on quitting behaviour. The data derive from a longitudinal Internet survey of 939 smokers aged 15-74 over a period of 4 months. Latent interaction effects were estimated using the double-mean-centred unconstrained approach (Lin et al., 2010, Struct. Equ. Modeling, 17, 374) in LISREL. Attitude × SN and attitude × perceived behavioural control both showed a significant interaction effect on intention. No significant interaction effect was found for perceived behavioural control × intention on quitting. The latent interaction approach is a useful method for investigating specific conditions between TPB components in the context of quitting behaviour. Theoretical and practical implications of the results are discussed. © 2013 The British Psychological Society.
Hawkes, Anna L; Hamilton, Kyra; White, Katherine M; McD Young, Ross
2012-01-03
Most skin cancers are preventable by encouraging consistent use of sun protective behaviour. In Australia, adolescents have high levels of knowledge and awareness of the risks of skin cancer but exhibit significantly lower sun protection behaviours than adults. There is limited research aimed at understanding why people do or do not engage in sun protective behaviour, and an associated absence of theory-based interventions to improve sun safe behaviour. This paper presents the study protocol for a school-based intervention which aims to improve the sun safe behaviour of adolescents. Approximately 400 adolescents (aged 12-17 years) will be recruited through Queensland, Australia public and private schools and randomized to the intervention (n = 200) or 'wait-list' control group (n = 200). The intervention focuses on encouraging supportive sun protective attitudes and beliefs, fostering perceptions of normative support for sun protection behaviour, and increasing perceptions of control/self-efficacy over using sun protection. It will be delivered during three × one hour sessions over a three week period from a trained facilitator during class time. Data will be collected one week pre-intervention (Time 1), and at one week (Time 2) and four weeks (Time 3) post-intervention. Primary outcomes are intentions to sun protect and sun protection behaviour. Secondary outcomes include attitudes toward performing sun protective behaviours (i.e., attitudes), perceptions of normative support to sun protect (i.e., subjective norms, group norms, and image norms), and perceived control over performing sun protective behaviours (i.e., perceived behavioural control). The study will provide valuable information about the effectiveness of the intervention in improving the sun protective behaviour of adolescents. © 2011 Hawkes et al; licensee BioMed Central Ltd.
Inhibitory control and adaptive behaviour in children with mild intellectual disability.
Gligorović, M; Buha Ðurović, N
2014-03-01
Inhibitory control, as one of the basic mechanisms of executive functions, is extremely important for adaptive behaviour. The relation between inhibitory control and adaptive behaviour is the most obvious in cases of behavioural disorders and psychopathology. Considering the lack of studies on this relation in children with disabilities, the aim of our research is to determine the relation between inhibitory control and adaptive behaviour in children with mild intellectual disability. The sample consists of 53 children with mild intellectual disability. Selection criteria were: IQ between 50 and 70, age between 10 and 14, absence of bilingualism, and with no medical history of neurological impairment, genetic and/or emotional problems. Modified Day-Night version of the Stroop task, and Go-no-Go Tapping task were used for the assessment of inhibitory control. Data on adaptive behaviour were obtained by applying the first part of AAMR (American Association on Mental Retardation) Adaptive Behaviour Scale-School, Second Edition (ABS-S:2). Significant relationships were determined between some aspects of inhibitory control and the most of assessed domains of adaptive behaviour. Inhibitory control measures, as a unitary inhibition model, significantly predict results on Independent Functioning, Economic Activity, Speech and Language Development, and Number and Times domains of the ABS-S:2. Inhibitory control, assessed by second part of the Stroop task, proved to be a significant factor in practical (Independent Functioning) and conceptual (Economic Activity, Speech and Language Development, and Numbers and Time) adaptive skills. The first part of the Stroop task, as a measure of selective attention, proved to be a significant factor in language and numerical demands, along with second one. Inhibitory control through motor responses proved to be a significant factor in independent functioning, economic activities, language and self-direction skills. We can conclude that inhibitory control represents a significant developmental factor of different adaptive behaviour domains in children with mild intellectual disability. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSIDD.
Molecular dynamics simulation of a needle-sphere binary mixture
NASA Astrophysics Data System (ADS)
Raghavan, Karthik
This paper investigates the dynamic behaviour of a hard needle-sphere binary system using a novel numerical technique called the Newton homotopy continuation (NHC) method. This mixture is representative of a polymer melt where both long chain molecules and monomers coexist. Since the intermolecular forces are generated from hard body interactions, the consequence of missed collisions or incorrect collision sequences have a significant bearing on the dynamic properties of the fluid. To overcome this problem, in earlier work NHC was chosen over traditional Newton-Raphson methods to solve the hard body dynamics of a needle fluid in random media composed of overlapping spheres. Furthermore, the simplicity of interactions and dynamics allows us to focus our research directly on the effects of particle shape and density on the transport behaviour of the mixture. These studies are also compared with earlier works that examined molecular chains in porous media primarily to understand the differences in molecular transport in the bulk versus porous systems.
NASA Astrophysics Data System (ADS)
Froese, Tom; Di Paolo, Ezequiel A.
2010-03-01
This paper continues efforts to establish a mutually informative dialogue between psychology and evolutionary robotics in order to investigate the dynamics of social interaction. We replicate a recent simulation model of a minimalist experiment in perceptual crossing and confirm the results with significantly simpler artificial agents. A series of psycho-physical tests of their behaviour informs a hypothetical circuit model of their internal operation. However, a detailed study of the actual internal dynamics reveals this circuit model to be unfounded, thereby offering a tale of caution for those hypothesising about sub-personal processes in terms of behavioural observations. In particular, it is shown that the behaviour of the agents largely emerges out of the interaction process itself rather than being an individual achievement alone. We also extend the original simulation model in two novel directions in order to test further the extent to which perceptual crossing between agents can self-organise in a robust manner. These modelling results suggest new hypotheses that can become the basis for further psychological experiments.
Dynamic constitutional frameworks for DNA biomimetic recognition.
Catana, Romina; Barboiu, Mihail; Moleavin, Ioana; Clima, Lilia; Rotaru, Alexandru; Ursu, Elena-Laura; Pinteala, Mariana
2015-02-07
Linear and cross-linked dynamic constitutional frameworks generated from reversibly interacting linear PEG/core constituents and cationic sites shed light on the dominant coiling versus linear DNA binding behaviours, closer to the histone DNA binding wrapping mechanism.
Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.
Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano
2016-11-15
Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.
Ruggiero, Michael T; Krynski, Marcin; Kissi, Eric Ofosu; Sibik, Juraj; Markl, Daniel; Tan, Nicholas Y; Arslanov, Denis; van der Zande, Wim; Redlich, Britta; Korter, Timothy M; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Elliott, Stephen R; Zeitler, J Axel
2017-11-15
The fundamental origins surrounding the dynamics of disordered solids near their characteristic glass transitions continue to be fiercely debated, even though a vast number of materials can form amorphous solids, including small-molecule organic, inorganic, covalent, metallic, and even large biological systems. The glass-transition temperature, T g , can be readily detected by a diverse set of techniques, but given that these measurement modalities probe vastly different processes, there has been significant debate regarding the question of why T g can be detected across all of them. Here we show clear experimental and computational evidence in support of a theory that proposes that the shape and structure of the potential-energy surface (PES) is the fundamental factor underlying the glass-transition processes, regardless of the frequency that experimental methods probe. Whilst this has been proposed previously, we demonstrate, using ab initio molecular-dynamics (AIMD) simulations, that it is of critical importance to carefully consider the complete PES - both the intra-molecular and inter-molecular features - in order to fully understand the entire range of atomic-dynamical processes in disordered solids. Finally, we show that it is possible to utilise this dependence to directly manipulate and harness amorphous dynamics in order to control the behaviour of such solids by using high-powered terahertz pulses to induce crystallisation and preferential crystal-polymorph growth in glasses. Combined, these findings provide compelling evidence that the PES landscape, and the corresponding energy barriers, are the ultimate controlling feature behind the atomic and molecular dynamics of disordered solids, regardless of the frequency at which they occur.
How to turn a genetic circuit into a synthetic tunable oscillator, or a bistable switch.
Marucci, Lucia; Barton, David A W; Cantone, Irene; Ricci, Maria Aurelia; Cosma, Maria Pia; Santini, Stefania; di Bernardo, Diego; di Bernardo, Mario
2009-12-07
Systems and Synthetic Biology use computational models of biological pathways in order to study in silico the behaviour of biological pathways. Mathematical models allow to verify biological hypotheses and to predict new possible dynamical behaviours. Here we use the tools of non-linear analysis to understand how to change the dynamics of the genes composing a novel synthetic network recently constructed in the yeast Saccharomyces cerevisiae for In-vivo Reverse-engineering and Modelling Assessment (IRMA). Guided by previous theoretical results that make the dynamics of a biological network depend on its topological properties, through the use of simulation and continuation techniques, we found that the network can be easily turned into a robust and tunable synthetic oscillator or a bistable switch. Our results provide guidelines to properly re-engineering in vivo the network in order to tune its dynamics.
Wiesman, Alex I; O'Neill, Jennifer; Mills, Mackenzie S; Robertson, Kevin R; Fox, Howard S; Swindells, Susan; Wilson, Tony W
2018-06-01
Combination antiretroviral therapies have revolutionized the treatment of HIV infection, and many patients now enjoy a lifespan equal to that of the general population. However, HIV-associated neurocognitive disorders (HAND) remain a major health concern, with between 30% and 70% of all HIV-infected patients developing cognitive impairments during their life time. One important feature of HAND is visuo-perceptual deficits, but the systems-level neural dynamics underlying these impairments are poorly understood. In the current study, we use magnetoencephalography and advanced time series analyses to examine these neural dynamics during a visuospatial processing task in a group of HIV-infected patients without HAND (n = 25), patients with HAND (n = 18), and a group of demographically-matched uninfected controls (n = 24). All participants completed a thorough neuropsychological assessment, and underwent magnetoencephalography and structural MRI protocols. In agreement with previous studies, patients with HAND performed significantly worse than HIV-infected patients without HAND and controls on the cognitive task, in terms of increased reaction time and decreased accuracy. Our magnetoencephalography results demonstrated that both spontaneous and neural oscillatory activity within the occipital cortices were affected by HIV infection, and that these patterns predicted behavioural performance (i.e. accuracy) on the task. Specifically, spontaneous neural activity in the alpha (8-16 Hz) and gamma (52-70 Hz) bands during the prestimulus baseline period, as well as oscillatory theta responses (4-8 Hz) during task performance were aberrant in HIV-infected patients, with both spontaneous alpha and oscillatory theta activity significantly predicting accuracy on the task and neuropsychological performance outside of the magnetoencephalography scanner. Importantly, these rhythmic patterns of population-level neural activity also distinguished patients by HAND status, such that spontaneous alpha activity in patients with HAND was elevated relative to HIV-infected patients without HAND and controls. In contrast, HIV-infected patients with and without HAND had increased spontaneous gamma compared to controls. Finally, there was a stepwise decrease in oscillatory theta activity as a function of disease severity, such that the response diminished from controls to patients without HAND to patients with HAND. Interestingly, the strength of the relationship between this theta response and accuracy also dissociated patient groups in a similar manner (controls > HIV with no HAND > HIV with HAND), indicating a reduced coupling between neurophysiology and behaviour in HIV-infected patients. This study provides the first neuroimaging evidence of a dissociation between HIV-infected patients with and without HAND, and these findings shed new light on the neural bases of cognitive impairment in HIV infection.
NASA Astrophysics Data System (ADS)
Banasiak, J.
2016-09-01
There has been a hierarchy of models of crowd behaviour. One can consider the crowd at the so called microscopic level, as a collection of individuals, and derive its description in the form of a (large) system of ordinary differential equations describing the position and velocity of each individual, in parallel to the Newton's description of matter, see e.g. [10]. Another possibility is to describe crowd, in analogy to fluid dynamics, by providing its density and velocity at a given point, see e.g. [11,12]. At the same time, it is recognized that crowd is 'living, social' system that is prone to exhibit rare, not easily predictable, behaviour in response to stress induced by the perception of danger, or of the action of specific agents, see e.g. [1,2]. This high probability of the occurrence of events that are far from average, makes the crowd behaviour similar to the processes with fat-tailed distribution of events. Such unlikely events have been metaphorically termed black swans in [14], or Lévy flights in [13]. While microscopic and macroscopic models can capture many features of crowd dynamics, including obstacles, see [3,8], such models are described by differential equations that inherently are local in space. At the same time, black swan events are often caused by non-local interactions such as self-organization, learning or adherence to some averaged group behaviour. It is known that such interactions are well described by mean field models best represented by integro-differential equations, such as the Boltzmann equation of the rarefied gas theory. This has made plausible to introduce crowd models at the intermediate, (meso) scale by describing the crowd by the one particle distribution function that gives the density of individuals at any particular state; that is, at a given point in the domain and moving with a specific velocity.
NASA Astrophysics Data System (ADS)
Xun, Zhi-Peng; Tang, Gang; Han, Kui; Hao, Da-Peng; Xia, Hui; Zhou, Wei; Yang, Xi-Quan; Wen, Rong-Ji; Chen, Yu-Ling
2010-07-01
In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method. In the simulation, noise reduction technique is used in order to eliminate the crossover effect. Our results show that due to the existence of the finite-size effect, the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L > 256. This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys. Rev. E 70 031607]. In addition, our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.
Dynamic Grain Growth in Forsterite Aggregates Experimentally Deformed to High Strain
NASA Astrophysics Data System (ADS)
Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.; Drury, M.
2004-12-01
The dynamics of the outer Earth are largely controlled by olivine rheology. From previous work it has become clear that if olivine rocks are deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that were reduced in grain size during straining by grain size insensitive (dislocation) creep mechanisms. The aim of the present study was to investigate microstructure evolution of fine-grained olivine rocks that coarsen in grain size while deforming by grain size sensitive (GSS) creep. We used fine-grained (~1 μ m) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3). Two types of experiments were carried out: 1) Hot isostatic pressing (HIP) followed by axial compression to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C, 2) HIP treatment without axial deformation. Microstructures were characterized by analyzing full grain size distributions and texture using SEM/EBSD. Our stress-strain curves showed continuous hardening. When samples were temporally unloaded for short time intervals, no difference in flow stress was observed before and after the interruption in straining. Strain rate sensitivity analysis showed a low value of ~1.5 for the stress exponent n. Measured grain sizes show an increase with strain up to a value twice that of the starting value. HIP-only samples showed only minor increase in grain size. A random LPO combined with the low n ~1.5 suggests dominant GSS creep controlled by grain boundary sliding. These results indicate that dynamic grain growth occurs in forsterite aggregates deforming by GSS creep, and we relate the continuous strain hardening to this process. A dynamic grain growth model involving an increase in cellular defect fraction seems best applicable to the grain growth observed in this study. We suggest that the employment of this model to fine-grained olivine rocks can further improve our understanding of the microstructural evolution of this material and related rheological behaviour.
Does inhibitory control training improve health behaviour? A meta-analysis.
Allom, Vanessa; Mullan, Barbara; Hagger, Martin
2016-06-01
Inhibitory control training has been hypothesised as a technique that will improve an individual's ability to overrule impulsive reactions in order to regulate behaviour consistent with long-term goals. A meta-analysis of 19 studies of inhibitory control training and health behaviours was conducted to determine the effect of inhibitory control training on reducing harmful behaviours. Theoretically driven moderation analyses were also conducted to determine whether extraneous variables account for heterogeneity in the effect; in order to facilitate the development of effective intervention strategies. Moderators included type of training task, behaviour targeted, measurement of behaviour and training duration. A small but homogeneous effect of training on behaviour was found, d(+) = 0.378, CI95 = [0.258, 0.498]. Moderation analyses revealed that the training paradigm adopted, and measurement type influenced the size of the effect such that larger effects were found for studies that employed go/no-go (GNG) training paradigms rather than stop-signal task paradigms, and objective outcome measures that were administered immediately yielded the largest and most consistent effects on behaviour. Results suggest that GNG inhibitory control training paradigms can influence health behaviour, but perhaps only in the short-term. Future research is required to systematically examine the influence of training duration, and the longevity of the training effect. Determining these factors could provide the basis for cost-effective and efficacious health-promoting interventions.
Duchi, Diego; Mazumder, Abhishek; Malinen, Anssi M; Ebright, Richard H; Kapanidis, Achillefs N
2018-06-06
RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.
Hysteresis, nucleation and growth phenomena in spin-crossover solids
NASA Astrophysics Data System (ADS)
Ridier, Karl; Molnár, Gábor; Salmon, Lionel; Nicolazzi, William; Bousseksou, Azzedine
2017-12-01
The observation and the study of first-order phase transitions in cooperative spin-crossover (SCO) solids exhibiting hysteresis behaviours are of particular interest and currently constitute a burgeoning area in the field of bistable molecular materials. The understanding and the control of the transition mechanisms (nucleation and growth processes) and their dynamics within the hysteresis region appear to be a general and appealing problem from a fundamental point of view and for technological applications as well. This review reports on the recent progresses and most important findings made on the spatiotemporal dynamics of the spin transition in SCO solids, particularly through the universal nucleation and growth process. Both thermally induced and light-induced spin transitions are discussed. We open up this review to the central question of the evolution of the transition mechanisms and dynamics in SCO nano-objects, which constitute promising systems to reach ultra-fast switching, and the experimental issues inherent to such studies at the micro- and nanometric scale.
Theory of chaotic orbital variations confirmed by Cretaceous geological evidence
NASA Astrophysics Data System (ADS)
Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.
2017-02-01
Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.
Femtosecond electron imaging of defect-modulated phonon dynamics
Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.
2016-01-01
Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps−1) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics. PMID:27079790
Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.
Ma, Chao; Meyers, Stephen R; Sageman, Bradley B
2017-02-22
Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.
Arnold, Aiden E G F; Iaria, Giuseppe; Goghari, Vina M
2016-02-28
Schizophrenia is associated with deficits in face perception and emotion recognition. Despite consistent behavioural results, the neural mechanisms underlying these cognitive abilities have been difficult to isolate, in part due to differences in neuroimaging methods used between studies for identifying regions in the face processing system. Given this problem, we aimed to validate a recently developed fMRI-based dynamic functional localizer task for use in studies of psychiatric populations and specifically schizophrenia. Previously, this functional localizer successfully identified each of the core face processing regions (i.e. fusiform face area, occipital face area, superior temporal sulcus), and regions within an extended system (e.g. amygdala) in healthy individuals. In this study, we tested the functional localizer success rate in 27 schizophrenia patients and in 24 community controls. Overall, the core face processing regions were localized equally between both the schizophrenia and control group. Additionally, the amygdala, a candidate brain region from the extended system, was identified in nearly half the participants from both groups. These results indicate the effectiveness of a dynamic functional localizer at identifying regions of interest associated with face perception and emotion recognition in schizophrenia. The use of dynamic functional localizers may help standardize the investigation of the facial and emotion processing system in this and other clinical populations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cheng, Bo; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Wang, Yi; Wethington, Susan M; Chiu, George T-C; Deng, Xinyan
2016-11-15
The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres. © 2016. Published by The Company of Biologists Ltd.
Transient synchrony among populations of five foliage-feeding Lepidoptera
Maartje J. Klapwijk; Jonathan A. Walter; Anikó Hirka; György Csóka; Christer Björkman; Andrew M. Liebhold
2018-01-01
Studies of transient population dynamics have largely focused on temporal changes in dynamical behaviour, such as the transition between periods of stability and instability. This study explores a related dynamic pattern, namely transient synchrony during a 49-year period among populations of five sympatric species of forest insects that share host tree resources. The...
Ramsey, Mary E.; Vu, Wendy; Cummings, Molly E.
2014-01-01
Social behaviours such as mate choice require context-specific responses, often with evolutionary consequences. Increasing evidence indicates that the behavioural plasticity associated with mate choice involves learning. For example, poeciliids show age-dependent changes in female preference functions and express synaptic-plasticity-associated molecular markers during mate choice. Here, we test whether social cognition is necessary for female preference behaviour by blocking the central player in synaptic plasticity, NMDAR (N-methyl d-aspartate receptor), in a poeciliid fish, Xiphophorus nigrensis. After subchronic exposure to NMDAR antagonist MK-801, female preference behaviours towards males were dramatically reduced. Overall activity levels were unaffected, but there was a directional shift from ‘social’ behaviours towards neutral activity. Multivariate gene expression patterns significantly discriminated between females with normal versus disrupted plasticity processes and correlated with preference behaviours—not general activity. Furthermore, molecular patterns support a distinction between ‘preference’ (e.g. neuroserpin, neuroligin-3, NMDAR) and ‘sociality’ (isotocin and vasotocin) gene clusters, highlighting a possible conservation between NMDAR disruption and nonapeptides in modulating behaviour. Our results suggest that mate preference may involve greater social memory processing than overall sociality, and that poeciliid preference functions integrate synaptic-plasticity-oriented ‘preference’ pathways with overall sociality to invoke dynamic, context-specific responses towards favoured males and away from unfavoured males. PMID:24807251
Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro
2012-11-28
The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.
Autonomy support and control in weight management: what important others do and say matters.
Ng, Johan Y Y; Ntoumanis, Nikos; Thøgersen-Ntoumani, Cecilie
2014-09-01
Drawing from self-determination theory (Ryan & Deci, 2002, Overview of self-determination theory: An organismic-dialectical perspective. In E. L. Deci & R. M. Ryan (Eds.), Handbook of self-determination research (pp. 3-33). Rochester, NY: The University of Rochester Press.), we examined how individuals' psychological needs, motivation, and behaviours (i.e., physical activity and eating) associated with weight management could be predicted by perceptions of their important others' supportive and controlling behaviours. Using a cross-sectional survey design, 235 participants (mean age = 27.39 years, SD = 8.96 years) completed an online questionnaire. Statistical analyses showed that when important others were perceived to be more supportive, participants reported higher levels of more optimal forms of motivation for weight management, which in turn predicted more physical activity and healthy eating behaviours. In contrast, when important others were perceived to be controlling, participants reported higher levels of less optimal forms of motivation, which in turn predicted less physical activity and healthy eating behaviours, as well as more unhealthy eating behaviours. Significant indirect effects were also found from perceived support and control from important others to physical activity and eating behaviours, all in the expected directions. The findings support the importance of important others providing support and refraining from controlling behaviours in order to facilitate motivation and behaviours conducive to successful weight management. What is already known on this subject? Autonomy support is related to basic need satisfaction and autonomous motivation in the context of weight management. In turn, these variables are related to adaptive outcomes for weight management. What does this study add? Measurement of perceived controlling behaviours by important others. Measurement of perceived need thwarting. Structural model on how important others affect weight management behaviours of the individual. © 2013 The British Psychological Society.
Williams, Margiad Elen; Hutchings, Judy
2015-05-20
The Enhancing Parenting Skills (EPaS) 2014 programme is a home-based, health visitor-delivered parenting support programme for parents of children with identified behaviour problems. This trial aims to evaluate the effectiveness of the EPaS 2014 programme compared to a waiting-list treatment as usual control group. This is a pragmatic, multicentre randomised controlled trial. Sixty health visitors will each be asked to identify two families that have a child scoring above the clinical cut-off for behaviour problems using the Eyberg Child Behaviour Inventory (ECBI). Families recruited to the trial will be randomised in a 1:1 ratio into an intervention or waiting-list control group. Randomisation will occur within health visitor to ensure that each health visitor has one intervention family and one control family. The primary outcome is change in child behaviour problems as measured by the parent-reported ECBI. Secondary outcomes include other measures of child behaviour, parent behaviour, and parental depression as measured by parent-reports and an independent observation of parent and child behaviour. Follow-up measures will be collected 6-months after the collection of baseline measures. This is the first rigorous evaluation of the EPaS 2014 programme. The trial will provide important information on the effectiveness of a one-to-one home-based intervention, delivered by health visitors, for pre-school children with behaviour problems. It will also examine potential mediating (improved parent behaviour and/or improved parental depression) and moderating (single parent, teenage parent, poverty, low education level) factors. Current Controlled Trials ISRCTN06867279 (18 June 2014).
Synchrony and entrainment properties of robust circadian oscillators
Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.
2008-01-01
Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774
A look at Behaviourism and Perceptual Control Theory in Interface Design
1998-02-01
behaviours such as response variability, instinctive drift, autoshaping , etc. Perceptual Control Theory (PCT) postulates that behaviours result from the...internal variables. Behaviourism, on the other hand, can not account for variability in responses, instinctive drift, autoshaping , etc. Researchers... Autoshaping . Animals appear to learn without reinforcement. However, conditioning theory speculates that learning results only when reinforcement
Dynamic response of the train-track-bridge system subjected to derailment impacts
NASA Astrophysics Data System (ADS)
Ling, Liang; Dhanasekar, Manicka; Thambiratnam, David P.
2018-04-01
Derailments on bridges, although not frequent, when occurs due to a complex dynamic interaction of the train-track-bridge structural system, are very severe. Furthermore, the forced vibration induced by the post-derailment impacts can toss out the derailed wagons from the bridge deck with severe consequences to the traffic underneath and the safety of the occupants of the wagons. This paper presents a study of the train-track-bridge interaction during a heavy freight train crossing a concrete box girder bridge from a normal operation to a derailed state. A numerical model that considers the bridge vibration, train-track interaction and the train post-derailment behaviour is formulated based on a coupled finite-element - multi-body dynamics (FE-MBD) theory. The model is applied to predict the post-derailment behaviour of a freight train composed of one locomotive and several wagons, as well as the dynamic response of a straight single-span simply supported bridge containing ballast track subjected to derailment impacts. For this purpose, a typical derailment scenario of a heavy freight train passing over a severe track geometry defect is introduced. The dynamic derailment behaviour of the heavy freight train and the dynamic responses of the rail bridge are illustrated through numerical examples. The results exhibit the potential for tossing out of the derailed trains from the unstable increase in the yaw angle signature and a lower rate of increase of the bridge deck bending moment compared to the increase in the static axle load of the derailed wheelset.
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies
NASA Astrophysics Data System (ADS)
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-06-01
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics.
Machine learning from computer simulations with applications in rail vehicle dynamics
NASA Astrophysics Data System (ADS)
Taheri, Mehdi; Ahmadian, Mehdi
2016-05-01
The application of stochastic modelling for learning the behaviour of a multibody dynamics (MBD) models is investigated. Post-processing data from a simulation run are used to train the stochastic model that estimates the relationship between model inputs (suspension relative displacement and velocity) and the output (sum of suspension forces). The stochastic model can be used to reduce the computational burden of the MBD model by replacing a computationally expensive subsystem in the model (suspension subsystem). With minor changes, the stochastic modelling technique is able to learn the behaviour of a physical system and integrate its behaviour within MBD models. The technique is highly advantageous for MBD models where real-time simulations are necessary, or with models that have a large number of repeated substructures, e.g. modelling a train with a large number of railcars. The fact that the training data are acquired prior to the development of the stochastic model discards the conventional sampling plan strategies like Latin Hypercube sampling plans where simulations are performed using the inputs dictated by the sampling plan. Since the sampling plan greatly influences the overall accuracy and efficiency of the stochastic predictions, a sampling plan suitable for the process is developed where the most space-filling subset of the acquired data with ? number of sample points that best describes the dynamic behaviour of the system under study is selected as the training data.
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies.
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-06-10
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people's adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics.
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-01-01
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089
Model-based risk assessment and public health analysis to prevent Lyme disease
Sabounchi, Nasim S.; Roome, Amanda; Spathis, Rita; Garruto, Ralph M.
2017-01-01
The number of Lyme disease (LD) cases in the northeastern United States has been dramatically increasing with over 300 000 new cases each year. This is due to numerous factors interacting over time including low public awareness of LD, risk behaviours and clothing choices, ecological and climatic factors, an increase in rodents within ecologically fragmented peri-urban built environments and an increase in tick density and infectivity in such environments. We have used a system dynamics (SD) approach to develop a simulation tool to evaluate the significance of risk factors in replicating historical trends of LD cases, and to investigate the influence of different interventions, such as increasing awareness, controlling clothing risk and reducing mouse populations, in reducing LD risk. The model accurately replicates historical trends of LD cases. Among several interventions tested using the simulation model, increasing public awareness most significantly reduces the number of LD cases. This model provides recommendations for LD prevention, including further educational programmes to raise awareness and control behavioural risk. This model has the potential to be used by the public health community to assess the risk of exposure to LD. PMID:29291075
McCafferty, D J; Pandraud, G; Gilles, J; Fabra-Puchol, M; Henry, P-Y
2017-12-28
Birds and mammals have evolved many thermal adaptations that are relevant to the bioinspired design of temperature control systems and energy management in buildings. Similar to many buildings, endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature within set limits, modify microclimate and adjust thermal exchange with their environment. We review the major components of animal thermoregulation in endothermic birds and mammals that are pertinent to building engineering, in a world where climate is changing and reduction in energy use is needed. In animals, adjustment of insulation together with physiological and behavioural responses to changing environmental conditions fine-tune spatial and temporal regulation of body temperature, while also minimizing energy expenditure. These biological adaptations are characteristically flexible, allowing animals to alter their body temperatures to hourly, daily, or annual demands for energy. They exemplify how buildings could become more thermally reactive to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these flexible biomimetic features and assess their success in reducing energy costs while maintaining thermal comfort for given building types.
Spontaneous neuronal activity as a self-organized critical phenomenon
NASA Astrophysics Data System (ADS)
de Arcangelis, L.; Herrmann, H. J.
2013-01-01
Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally found in vitro and in vivo, and exhibit a robust critical behaviour. Avalanche activity can be modelled within the self-organized criticality framework, including threshold firing, refractory period and activity-dependent synaptic plasticity. The size and duration distributions confirm that the system acts in a critical state, whose scaling behaviour is very robust. Next, we discuss the temporal organization of neuronal avalanches. This is given by the alternation between states of high and low activity, named up and down states, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homeostatic mechanisms. Finally, we verify if a system with no characteristic response can ever learn in a controlled and reproducible way. Learning in the model occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. Learning is a truly collective process and the learning dynamics exhibits universal features. Even complex rules can be learned provided that the plastic adaptation is sufficiently slow.
NASA Astrophysics Data System (ADS)
Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Riganti, Gianmario; Kaufmann, Hanspeter
2015-09-01
The dynamic behaviour of armour steel in tension was investigated over a wide range of strain-rates on round specimens. The experiments were carried out by means of a Split Hopkinson Tensile Bar device and by a Hydro Pneumatic Machine. The target strain rate were set at the following six levels: 10-3, 5, 25, 100, 500 and 1000 s-1. Two material models were calibrated and used to replicate the experiments and to simulate blasting event on steel plate. Finally, the two responses are compared.
NASA Astrophysics Data System (ADS)
Couque, Hervé
2012-08-01
The DYMAT International Conference is a "compelling scientific event" for engineers and scientists working in the dynamic behaviour of materials field. Since 1983, DYMAT has been organizing a five days single sessions of oral presentations and poster exhibitions with proceedings available at the beginning of the conferences. Well-known for its scientific interest, the triennially DYMAT International Conferences are the platform to present the most recent scientific achievements on dynamic behaviour of materials relevant to crashworthiness in all types of transports; terminal ballistics related to defence and shielding of satellites, of turbine; blast effects due to industrial explosions, terrorist attacks; material processing such as high speed machining.
NASA Astrophysics Data System (ADS)
Gerace, Giuliana
What mechanisms induce and support cooperation in social interaction? Traditional rational-choice perspective has resulted ineffective to keep track of complex real-world dynamics of cooperation. On the other hand, perspectives based on the justification of fairness preferences as internalized behavioural forces driving realistic cooperative interactions are notoriously incomplete and rather fuzzy with respect to their theoretical foundations. After considering recognized evolutionary accounts of the emergence and resilience of social standards, we endorse the view according to which the key to understanding evolutionary dynamics of social engagement is to be found in individual motivational attitudes to interaction. But, beyond any psychological implications, we suggest not exiting from the "logic of reciprocity" in considering the rationality of preferences for social interaction. Preliminary supporting experimental evidence is provided.
Inelastic electron injection in a water chain
Rizzi, Valerio; Todorov, Tchavdar N.; Kohanoff, Jorge J.
2017-01-01
Irradiation of biological matter triggers a cascade of secondary particles that interact with their surroundings, resulting in damage. Low-energy electrons are one of the main secondary species and electron-phonon interaction plays a fundamental role in their dynamics. We have developed a method to capture the electron-phonon inelastic energy exchange in real time and have used it to inject electrons into a simple system that models a biological environment, a water chain. We simulated both an incoming electron pulse and a steady stream of electrons and found that electrons with energies just outside bands of excited molecular states can enter the chain through phonon emission or absorption. Furthermore, this phonon-assisted dynamical behaviour shows great sensitivity to the vibrational temperature, highlighting a crucial controlling factor for the injection and propagation of electrons in water. PMID:28350013
Antagonistic control of a dual-input mammalian gene switch by food additives.
Xie, Mingqi; Ye, Haifeng; Hamri, Ghislaine Charpin-El; Fussenegger, Martin
2014-08-01
Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
2012-01-01
Background Unanticipated control group improvements have been observed in intervention trials targeting various health behaviours. This phenomenon has not been studied in the context of behavioural weight loss intervention trials. The purpose of this study is to conduct a systematic review and meta-regression of behavioural weight loss interventions to quantify control group weight change, and relate the size of this effect to specific trial and sample characteristics. Methods Database searches identified reports of intervention trials meeting the inclusion criteria. Data on control group weight change and possible explanatory factors were abstracted and analysed descriptively and quantitatively. Results 85 trials were reviewed and 72 were included in the meta-regression. While there was no change in control group weight, control groups receiving usual care lost 1 kg more than control groups that received no intervention, beyond measurement. Conclusions There are several possible explanations why control group changes occur in intervention trials targeting other behaviours, but not for weight loss. Control group participation may prevent weight gain, although more research is needed to confirm this hypothesis. PMID:22873682
Waters, Lauren; George, Alexis S; Chey, Tien; Bauman, Adrian
2012-08-08
Unanticipated control group improvements have been observed in intervention trials targeting various health behaviours. This phenomenon has not been studied in the context of behavioural weight loss intervention trials. The purpose of this study is to conduct a systematic review and meta-regression of behavioural weight loss interventions to quantify control group weight change, and relate the size of this effect to specific trial and sample characteristics. Database searches identified reports of intervention trials meeting the inclusion criteria. Data on control group weight change and possible explanatory factors were abstracted and analysed descriptively and quantitatively. 85 trials were reviewed and 72 were included in the meta-regression. While there was no change in control group weight, control groups receiving usual care lost 1 kg more than control groups that received no intervention, beyond measurement. There are several possible explanations why control group changes occur in intervention trials targeting other behaviours, but not for weight loss. Control group participation may prevent weight gain, although more research is needed to confirm this hypothesis.
Slip behaviour of experimental faults subjected to fluid pressure stimulation: carbonates vs. shales
NASA Astrophysics Data System (ADS)
Collettini, C.; Scuderi, M. M.; Marone, C.
2017-12-01
Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism has been invoked to explain the dramatic increase in seismicity associated with waste water disposal in intra-plate setting, and it is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. Although, this basic physical mechanism is well understood, several fundamental questions remain including the apparent delay between fluid injection and seismicity, the role of fault zone rheology, and the relationship between injection volume and earthquake size. Moreover, models of earthquake nucleation predict that a reduction in normal stress, as expected for fluid overpressure, should stabilize fault slip. Here, we address these questions using laboratory experiments, conducted in the double direct shear configuration in a true-triaxial machine on carbonates and shale fault gouges. In particular, we: 1) evaluate frictional strength and permeability, 2) characterize the rate- and state- friction parameters and 3) study fault slip evolution during fluid pressure stimulations. With increasing fluid pressure, when shear and effective normal stresses reach the failure condition, in calcite gouges, characterized by slightly velocity strengthening behaviour, we observe an acceleration of slip that spontaneously evolves into dynamic failure. For shale gouges, with a strong rate-strengthening behaviour, we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Our data indicate that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.
Pathways for diffusion in the potential energy landscape of the network glass former SiO2
NASA Astrophysics Data System (ADS)
Niblett, S. P.; Biedermann, M.; Wales, D. J.; de Souza, V. K.
2017-10-01
We study the dynamical behaviour of a computer model for viscous silica, the archetypal strong glass former, and compare its diffusion mechanism with earlier studies of a fragile binary Lennard-Jones liquid. Three different methods of analysis are employed. First, the temperature and time scale dependence of the diffusion constant is analysed. Negative correlation of particle displacements influences transport properties in silica as well as in fragile liquids. We suggest that the difference between Arrhenius and super-Arrhenius diffusive behaviour results from competition between the correlation time scale and the caging time scale. Second, we analyse the dynamics using a geometrical definition of cage-breaking transitions that was proposed previously for fragile glass formers. We find that this definition accurately captures the bond rearrangement mechanisms that control transport in open network liquids, and reproduces the diffusion constants accurately at low temperatures. As the same method is applicable to both strong and fragile glass formers, we can compare correlation time scales in these two types of systems. We compare the time spent in chains of correlated cage breaks with the characteristic caging time and find that correlations in the fragile binary Lennard-Jones system persist for an order of magnitude longer than those in the strong silica system. We investigate the origin of the correlation behaviour by sampling the potential energy landscape for silica and comparing it with the binary Lennard-Jones model. We find no qualitative difference between the landscapes, but several metrics suggest that the landscape of the fragile liquid is rougher and more frustrated. Metabasins in silica are smaller than those in binary Lennard-Jones and contain fewer high-barrier processes. This difference probably leads to the observed separation of correlation and caging time scales.
Hayot, Céline M.; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A.
2012-01-01
Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall. PMID:22291130
Ground-motion signature of dynamic ruptures on rough faults
NASA Astrophysics Data System (ADS)
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.
2016-04-01
Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.
Manzou, Rumbidzai; Schumacher, Christina; Gregson, Simon
2014-01-01
Religion is an important underlying determinant of HIV spread in sub-Saharan Africa. However, little is known about how religion influences changes in HIV prevalence and associated sexual behaviours over time. To compare changes in HIV prevalence between major religious groups in eastern Zimbabwe during a period of substantial HIV risk reduction (1998-2005) and to investigate whether variations observed can be explained by differences in behaviour change. We analysed serial cross-sectional data from two rounds of a longitudinal population survey in eastern Zimbabwe. Univariate and multivariate logistic regression models were developed to compare differences in sexual behaviour and HIV prevalence between religious groups and to investigate changes over time controlling for potential confounders. Christian churches were the most popular religious grouping. Over time, Spiritualist churches increased in popularity and, for men, Traditional religion and no religion became less and more common, respectively. At baseline (1998-2000), HIV prevalence was higher in Traditionalists and in those with no religion than in people in Christian churches (men 26.7% and 23.8% vs. 17.5%, women: 35.4% and 37.5% vs. 24.1%). These effects were explained by differences in socio-demographic characteristics (for Traditional and men with no religion) or sexual behaviour (women with no religion). Spiritualist men (but not women) had lower HIV prevalence than Christians, after adjusting for socio-demographic characteristics (14.4% vs. 17.5%, aOR = 0.8), due to safer behaviour. HIV prevalence had fallen in all religious groups at follow-up (2003-2005). Odds of infection in Christians reduced relative to those in other religious groups for both sexes, effects that were mediated largely by greater reductions in sexual-risk behaviour and, possibly, for women, by patterns of conversion between churches. Variation in behavioural responses to HIV between the major church groupings has contributed to a change in the religious pattern of infection in eastern Zimbabwe.
Manzou, Rumbidzai; Schumacher, Christina; Gregson, Simon
2014-01-01
Background Religion is an important underlying determinant of HIV spread in sub-Saharan Africa. However, little is known about how religion influences changes in HIV prevalence and associated sexual behaviours over time. Objectives To compare changes in HIV prevalence between major religious groups in eastern Zimbabwe during a period of substantial HIV risk reduction (1998–2005) and to investigate whether variations observed can be explained by differences in behaviour change. Methods We analysed serial cross-sectional data from two rounds of a longitudinal population survey in eastern Zimbabwe. Univariate and multivariate logistic regression models were developed to compare differences in sexual behaviour and HIV prevalence between religious groups and to investigate changes over time controlling for potential confounders. Results Christian churches were the most popular religious grouping. Over time, Spiritualist churches increased in popularity and, for men, Traditional religion and no religion became less and more common, respectively. At baseline (1998–2000), HIV prevalence was higher in Traditionalists and in those with no religion than in people in Christian churches (men 26.7% and 23.8% vs. 17.5%, women: 35.4% and 37.5% vs. 24.1%). These effects were explained by differences in socio-demographic characteristics (for Traditional and men with no religion) or sexual behaviour (women with no religion). Spiritualist men (but not women) had lower HIV prevalence than Christians, after adjusting for socio-demographic characteristics (14.4% vs. 17.5%, aOR = 0.8), due to safer behaviour. HIV prevalence had fallen in all religious groups at follow-up (2003–2005). Odds of infection in Christians reduced relative to those in other religious groups for both sexes, effects that were mediated largely by greater reductions in sexual-risk behaviour and, possibly, for women, by patterns of conversion between churches. Conclusion Variation in behavioural responses to HIV between the major church groupings has contributed to a change in the religious pattern of infection in eastern Zimbabwe. PMID:24465868
Fu, Chieh-Yu; Moyle, Wendy; Cooke, Marie
2013-07-10
Aromatherapy and hand massage therapies have been reported to have some benefit for people with dementia who display behavioural symptoms; however there are a number of limitations of reported studies. The aim is to investigate the effect of aromatherapy (3% lavender oil spray) with and without hand massage on disruptive behaviour in people with dementia living in long-term care. In a single blinded randomised controlled trial 67 people with a diagnosis of dementia and a history of disruptive behaviour, from three long-term care facilities were recruited and randomised using a random number table into three groups: (1) Combination (aromatherapy and hand massage) (n = 22), (2) Aromatherapy (n = 23), (3) Placebo control (water spray) (n = 22). The intervention was given twice daily for six weeks. Data on residents' behaviour (CMAI) and cognition (MMSE) were collected before, during and after the intervention. Despite a downward trend in behaviours displayed not one of the interventions significantly reduced disruptive behaviour. Further large-scale placebo controlled studies are required where antipsychotic medication is controlled and a comparison of the methods of application of aromatherapy are investigated. ACTRN12612000917831.
Using health psychology to help patients: theories of behaviour change.
Barley, Elizabeth; Lawson, Victoria
2016-09-08
Behaviour change theories and related research evidence highlight the complexity of making and sticking to health-related behaviour changes. These theories make explicit factors that influence behaviour change, such as health beliefs, past behaviour, intention, social influences, perceived control and the context of the behaviour. Nurses can use this information to understand why a particular patient may find making recommended health behaviour changes difficult and to determine factors that may help them. This article outlines five well-established theories of behaviour change: the health belief model, the theory of planned behaviour, the stages of change model, self-determination theory, and temporal self-regulation theory. The evidence for interventions that are informed by these theories is then explored and appraised. The extent and quality of evidence varies depending on the type of behaviour and patients targeted, but evidence from randomised controlled trials indicates that interventions informed by theory can result in behaviour change.
Using theories of behaviour change to inform interventions for addictive behaviours.
Webb, Thomas L; Sniehotta, Falko F; Michie, Susan
2010-11-01
This paper reviews a set of theories of behaviour change that are used outside the field of addiction and considers their relevance for this field. Ten theories are reviewed in terms of (i) the main tenets of each theory, (ii) the implications of the theory for promoting change in addictive behaviours and (iii) studies in the field of addiction that have used the theory. An augmented feedback loop model based on Control Theory is used to organize the theories and to show how different interventions might achieve behaviour change. Briefly, each theory provided the following recommendations for intervention: Control Theory: prompt behavioural monitoring, Goal-Setting Theory: set specific and challenging goals, Model of Action Phases: form 'implementation intentions', Strength Model of Self-Control: bolster self-control resources, Social Cognition Models (Protection Motivation Theory, Theory of Planned Behaviour, Health Belief Model): modify relevant cognitions, Elaboration Likelihood Model: consider targets' motivation and ability to process information, Prototype Willingness Model: change perceptions of the prototypical person who engages in behaviour and Social Cognitive Theory: modify self-efficacy. There are a range of theories in the field of behaviour change that can be applied usefully to addiction, each one pointing to a different set of modifiable determinants and/or behaviour change techniques. Studies reporting interventions should describe theoretical basis, behaviour change techniques and mode of delivery accurately so that effective interventions can be understood and replicated. © 2010 The Authors. Journal compilation © 2010 Society for the Study of Addiction.
The Dynamics of Chinese Face Mechanisms and Classroom Behaviour: A Case Study
ERIC Educational Resources Information Center
Wu, Xiaoxin
2009-01-01
Research on cross-cultural psychology, anthropology and sociology reveals that the impact of face on social interactions is both pervasive and powerful in Asia. Face, however, has not gained general acceptance as an important theoretical concept in the literature on Asian (Chinese in particular) classroom behaviour and management. This article…
Building a Foundation to Study Distributed Information Behaviour
ERIC Educational Resources Information Center
von Thaden, Terry L.
2007-01-01
Introduction: The purpose of this research is to assess information behaviour as it pertains to operational teams in dynamic safety critical operations. Method: In this paper, I describe some of the problems faced by crews on modern flight decks and suggest a framework modelled on Information Science, Human Factors, and Activity Theory research to…
ERIC Educational Resources Information Center
Kokkinaki, Theano; Pratikaki, Anastasia
2014-01-01
Primary objective: Research has provided evidence of the intersubjective function of imitation in grandparent-infant interaction based on the basic aspects of imitation. This lacks the systematic investigation of behaviour dynamics framing spontaneous imitation. The aim of this study was to compare the dyadic expressive behaviours (vocal, kinetic…
Camouflage during movement in the European cuttlefish (Sepia officinalis).
Josef, Noam; Berenshtein, Igal; Fiorito, Graziano; Sykes, António V; Shashar, Nadav
2015-11-01
A moving object is considered conspicuous because of the movement itself. When moving from one background to another, even dynamic camouflage experts such as cephalopods should sacrifice their extraordinary camouflage. Therefore, minimizing detection at this stage is crucial and highly beneficial. In this study, we describe a background-matching mechanism during movement, which aids the cuttlefish to downplay its presence throughout movement. In situ behavioural experiments using video and image analysis, revealed a delayed, sigmoidal, colour-changing mechanism during movement of Sepia officinalis across uniform black and grey backgrounds. This is a first important step in understanding dynamic camouflage during movement, and this new behavioural mechanism may be incorporated and applied to any dynamic camouflaging animal or man-made system on the move. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Le Rouzic, J.; Delobelle, P.; Vairac, P.; Cretin, B.
2009-10-01
In this article the dynamic mechanical characterization of PDMS and SU8 resin using dynamic mechanical analysis, nanoindentation and the scanning microdeformation microscope have been presented. The methods are hereby explained, extended for viscoelastic behaviours, and their compatibility underlined. The storage and loss moduli of these polymers over a wide range of frequencies (from 0.01 Hz to somekHz) have been measured. These techniques are shown fairly matching and the two different viscoelastic behaviours of these two polymers have been exhibited. Indeed, PDMS shows moduli which still increase at 5kHz whereas SU8 ones decrease much sooner. From a material point of view, the Havriliak and Negami model to estimate instantaneous, relaxed moduli and time constant of these materials has been identified.
Molecular dynamics simulations of oxygen vacancy diffusion in SrTiO3.
Schie, Marcel; Marchewka, Astrid; Müller, Thomas; De Souza, Roger A; Waser, Rainer
2012-12-05
A classical force-field model with partial ionic charges was applied to study the behaviour of oxygen vacancies in the perovskite oxide strontium titanate (SrTiO(3)). The dynamical behaviour of these point defects was investigated as a function of temperature and defect concentration by means of molecular dynamics (MD) simulations. The interaction between oxygen vacancies and an extended defect, here a Σ3(111) grain boundary, was also examined by means of MD simulations. Analysis of the vacancy distribution revealed considerable accumulation of vacancies in the envelope of the grain boundary. The possible clustering of oxygen vacancies in bulk SrTiO(3) was studied by means of static lattice calculations within the Mott-Littleton approach. All binary vacancy-vacancy configurations were found to be energetically unfavourable.
NASA Astrophysics Data System (ADS)
Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.
2012-01-01
Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.
Novel Observer Scheme of Fuzzy-MRAS Sensorless Speed Control of Induction Motor Drive
NASA Astrophysics Data System (ADS)
Chekroun, S.; Zerikat, M.; Mechernene, A.; Benharir, N.
2017-01-01
This paper presents a novel approach Fuzzy-MRAS conception for robust accurate tracking of induction motor drive operating in a high-performance drives environment. Of the different methods for sensorless control of induction motor drive the model reference adaptive system (MRAS) finds lot of attention due to its good performance. The analysis of the sensorless vector control system using MRAS is presented and the resistance parameters variations and speed observer using new Fuzzy Self-Tuning adaptive IP Controller is proposed. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The present approach helps to achieve a good dynamic response, disturbance rejection and low to plant parameter variations of the induction motor. In order to verify the performances of the proposed observer and control algorithms and to test behaviour of the controlled system, numerical simulation is achieved. Simulation results are presented and discussed to shown the validity and the performance of the proposed observer.
CCSDS Spacecraft Monitor and Control Service Framework
NASA Technical Reports Server (NTRS)
Merri, Mario; Schmidt, Michael; Ercolani, Alessandro; Dankiewicz, Ivan; Cooper, Sam; Thompson, Roger; Symonds, Martin; Oyake, Amalaye; Vaughs, Ashton; Shames, Peter
2004-01-01
This CCSDS paper presents a reference architecture and service framework for spacecraft monitoring and control. It has been prepared by the Spacecraft Monitoring and Control working group of the CCSDS Mission Operations and Information Management Systems (MOIMS) area. In this context, Spacecraft Monitoring and Control (SM&C) refers to end-to-end services between on- board or remote applications and ground-based functions responsible for mission operations. The scope of SM&C includes: 1) Operational Concept: definition of an operational concept that covers a set of standard operations activities related to the monitoring and control of both ground and space segments. 2) Core Set of Services: definition of an extensible set of services to support the operational concept together with its information model and behaviours. This includes (non exhaustively) ground systems such as Automatic Command and Control, Data Archiving and Retrieval, Flight Dynamics, Mission Planning and Performance Evaluation. 3) Application-layer information: definition of the standard information set to be exchanged for SM&C purposes.
Control groups in paediatric epilepsy research: do first-degree cousins show familial effects?
Hanson, Melissa; Morrison, Blaise; Jones, Jana E; Jackson, Daren C; Almane, Dace; Seidenberg, Michael; Zhao, Qianqian; Rathouz, Paul J; Hermann, Bruce P
2017-03-01
To determine whether first-degree cousins of children with idiopathic focal and genetic generalized epilepsies show any association across measures of cognition, behaviour, and brain structure. The presence/absence of associations addresses the question of whether and to what extent first-degree cousins may serve as unbiased controls in research addressing the cognitive, psychiatric, and neuroimaging features of paediatric epilepsies. Participants were children (aged 8-18) with epilepsy who had at least one first-degree cousin control enrolled in the study (n=37) and all enrolled cousin controls (n=100). Participants underwent neuropsychological assessment and brain imaging (cortical, subcortical, and cerebellar volumes), and parents completed the Child Behaviour Checklist (CBCL). Data (based on 42 outcome measures) from cousin controls were regressed on the corresponding epilepsy cognitive, behavioural, and imaging measures in a linear mixed model and case/control correlations were examined. Of the 42 uncorrected correlations involving cognitive, behavioural, and neuroimaging measures, only two were significant (p<0.05). The median correlation was 0.06. A test for whether the distribution of p values deviated from the null distribution under no association was not significant (p>0.25). Similar results held for the cognition/behaviour and brain imaging measures separately. Given the lack of association between cases and first-degree cousin performances on measures of cognition, behaviour, and neuroimaging, the results suggest a non-significant genetic influence on control group performance. First-degree cousins appear to be unbiased controls for cognitive, behavioural, and neuroimaging research in paediatric epilepsy.
Hall, Zachary J; Meddle, Simone L; Healy, Susan D
Despite centuries of observing the nest building of most extant bird species, we know surprisingly little about how birds build nests and, specifically, how the avian brain controls nest building. Here, we argue that nest building in birds may be a useful model behaviour in which to study how the brain controls behaviour. Specifically, we argue that nest building as a behavioural model provides a unique opportunity to study not only the mechanisms through which the brain controls behaviour within individuals of a single species but also how evolution may have shaped the brain to produce interspecific variation in nest-building behaviour. In this review, we outline the questions in both behavioural and comparative neuroscience that nest building could be used to address, summarize recent findings regarding the neurobiology of nest building in lab-reared zebra finches and across species building different nest structures, and suggest some future directions for the neurobiology of nest building.
Swarm robotics and complex behaviour of continuum material
NASA Astrophysics Data System (ADS)
dell'Erba, Ramiro
2018-05-01
In swarm robotics, just as for an animal swarm in nature, one of the aims is to reach and maintain a desired configuration. One of the possibilities for the team, to reach this aim, is to see what its neighbours are doing. This approach generates a rules system governing the movement of the single robot just by reference to neighbour's motion. The same approach is used in position-based dynamics to simulate behaviour of complex continuum materials under deformation. Therefore, in some previous works, we have considered a two-dimensional lattice of particles and calculated its time evolution by using a rules system derived from our experience in swarm robotics. The new position of a particle, like the element of a swarm, is determined by the spatial position of the other particles. No dynamic is considered, but it can be thought as being hidden in the behaviour rules. This method has given good results in some simple situations reproducing the behaviour of deformable bodies under imposed strain. In this paper we try to stress our model to highlight its limits and how they can be improved. Some other, more complex, examples are computed and discussed. Shear test, different lattices, different fracture mechanisms and ASTM shape sample behaviour have been investigated by the software tool we have developed.
NASA Astrophysics Data System (ADS)
Burini, D.
2016-09-01
A recent literature on crowd dynamics [9,10] has enlightened that the management of crisis situations needs models able to depict social behaviors and, in particular, the spread of emotional feelings such as stress by panic situation.
Nonlinear Dynamics of River Runoff Elucidated by Horizontal Visibility Graphs
NASA Astrophysics Data System (ADS)
Lange, Holger; Rosso, Osvaldo A.
2017-04-01
We investigate a set of long-term river runoff time series at daily resolution from Brazil, monitored by the Agencia Nacional de Aguas. A total of 150 time series was obtained, with an average length of 65 years. Both long-term trends and human influence (water management, e.g. for power production) on the dynamical behaviour are analyzed. We use Horizontal Visibility Graphs (HVGs) to determine the individual temporal networks for the time series, and extract their degree and their distance (shortest path length) distributions. Statistical and information-theoretic properties of these distributions are calculated: robust estimators of skewness and kurtosis, the maximum degree occurring in the time series, the Shannon entropy, permutation complexity and Fisher Information. For the latter, we also compare the information measures obtained from the degree distributions to those using the original time series directly, to investigate the impact of graph construction on the dynamical properties as reflected in these measures. Focus is on one hand on universal properties of the HVG, common to all runoff series, and on site-specific aspects on the other. Results demonstrate that the assumption of power law behaviour for the degree distribtion does not generally hold, and that management has a significant impact on this distribution. We also show that a specific pretreatment of the time series conventional in hydrology, the elimination of seasonality by a separate z-transformation for each calendar day, is highly detrimental to the nonlinear behaviour. It changes long-term correlations and the overall dynamics towards more random behaviour. Analysis based on the transformed data easily leads to spurious results, and bear a high risk of misinterpretation.
Behavioural development in children of divorce and remarriage.
Pagani, L; Boulerice, B; Tremblay, R E; Vitaro, F
1997-10-01
We employed an autoregressive modelling technique with data from the Québec Longitudinal Study to prospectively examine the developmental impact of family transition on behaviour while controlling for predivorce and preremarriage effects. Teachers rated children's anxious, hyperactive, physically aggressive, oppositional, and prosocial behaviour every 2 years from kindergarten through to the end of elementary school. Once individual and parental characteristics and antecedent family events were controlled, children who experienced parental divorce before age 6 exhibited comparatively more behavioural disturbance than their peers whose parents divorced later. With the exception of a protective effect on hyperactive behaviour, remarriage did not have a significant impact on children's behaviour when the legacy of divorce was controlled. Although the results suggest that children of divorced parents show difficulty in many areas of functioning, the effects of family transition on behavioural development were dependent on the child's age and the specific behavioural dimension assessed. Compared to other points in development, early childhood divorce was associated with long-term increases in anxious, hyperactive, and oppositional behaviour during later childhood. The effects of divorce on children's fighting were short-lived. Unlike previous prospective studies that suggest predivorce effects, we did not observe behavioural disturbance prior to divorce or remarriage.
Behavioural aspects of the control of parasitic diseases*
Dunn, Frederick L.
1979-01-01
Human behaviour has been largely neglected in research on the parasitic diseases, in part because of the long-standing separation of the behavioural disciplines from the physical and biomedical sciences. Some of the reasons for the persistence of this ”intellectual discontinuity” are discussed. The paper is principally concerned with the prospects for greater use of the methods and orientations of the behavioural sciences in parasitic disease research and control programmes. Behavioural research tends to fall into two categories employing, on the one hand, survey research and epidemiological methods and, on the other, participant observation and interviewing in depth. These approaches are shown to be complementary—equally useful and necessary. Various categories of health-related behaviour and kinds of research objective are reviewed in the following sections. Special attention is given to psychosocial cost—benefit studies, to analyses of control sectors, and to the formulation of a control philosophy. Finally, some specific behavioural research needs are discussed for some of the parasitic diseases of priority in the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases—schistosomiasis, filariasis, American and African trypanosomiases, and malaria. PMID:316733