Dynamic causal modelling revisited.
Friston, K J; Preller, Katrin H; Mathys, Chris; Cagnan, Hayriye; Heinzle, Jakob; Razi, Adeel; Zeidman, Peter
2017-02-17
This paper revisits the dynamic causal modelling of fMRI timeseries by replacing the usual (Taylor) approximation to neuronal dynamics with a neural mass model of the canonical microcircuit. This provides a generative or dynamic causal model of laminar specific responses that can generate haemodynamic and electrophysiological measurements. In principle, this allows the fusion of haemodynamic and (event related or induced) electrophysiological responses. Furthermore, it enables Bayesian model comparison of competing hypotheses about physiologically plausible synaptic effects; for example, does attentional modulation act on superficial or deep pyramidal cells - or both? In this technical note, we describe the resulting dynamic causal model and provide an illustrative application to the attention to visual motion dataset used in previous papers. Our focus here is on how to answer long-standing questions in fMRI; for example, do haemodynamic responses reflect extrinsic (afferent) input from distant cortical regions, or do they reflect intrinsic (recurrent) neuronal activity? To what extent do inhibitory interneurons contribute to neurovascular coupling? What is the relationship between haemodynamic responses and the frequency of induced neuronal activity? This paper does not pretend to answer these questions; rather it shows how they can be addressed using neural mass models of fMRI timeseries.
Analysing connectivity with Granger causality and dynamic causal modelling.
Friston, Karl; Moran, Rosalyn; Seth, Anil K
2013-04-01
This review considers state-of-the-art analyses of functional integration in neuronal macrocircuits. We focus on detecting and estimating directed connectivity in neuronal networks using Granger causality (GC) and dynamic causal modelling (DCM). These approaches are considered in the context of functional segregation and integration and--within functional integration--the distinction between functional and effective connectivity. We review recent developments that have enjoyed a rapid uptake in the discovery and quantification of functional brain architectures. GC and DCM have distinct and complementary ambitions that are usefully considered in relation to the detection of functional connectivity and the identification of models of effective connectivity. We highlight the basic ideas upon which they are grounded, provide a comparative evaluation and point to some outstanding issues.
Dynamical Causal Modeling from a Quantum Dynamical Perspective
Demiralp, Emre; Demiralp, Metin
2010-09-30
Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.
Performance bounds for dynamic causal modeling of brain connectivity.
Wu, Shun Chi; Swindlehurst, A Lee
2012-01-01
The use of complex dynamical models have been proposed for describing the connections and causal interactions between different regions of the brain. The goal of these models is to accurately mimic the event-related potentials observed by EEG/MEG measurement systems, and are useful in understanding overall brain functionality. In this paper, we focus on a class of nonlinear dynamic causal models (DCM) that are described by a set of connectivity parameters. In practice, the DCM parameters are inferred using data obtained by an EEG or MEG sensor array in response to a certain event or stimulus, and the resulting estimates are used to analyze the strength and direction of the causal interactions between different brain regions. The usefulness of the parameter estimates will depend on how accurately they can be estimated, which in turn will depend on noise, the sampling rate, number of data samples collected, the accuracy of the source localization and reconstruction steps, etc. The goal of this paper is to derive Cramér-Rao performance bounds for DCM estimates, and examine the behavior of the bounds under different operating conditions.
Neural masses and fields in dynamic causal modeling
Moran, Rosalyn; Pinotsis, Dimitris A.; Friston, Karl
2013-01-01
Dynamic causal modeling (DCM) provides a framework for the analysis of effective connectivity among neuronal subpopulations that subtend invasive (electrocorticograms and local field potentials) and non-invasive (electroencephalography and magnetoencephalography) electrophysiological responses. This paper reviews the suite of neuronal population models including neural masses, fields and conductance-based models that are used in DCM. These models are expressed in terms of sets of differential equations that allow one to model the synaptic underpinnings of connectivity. We describe early developments using neural mass models, where convolution-based dynamics are used to generate responses in laminar-specific populations of excitatory and inhibitory cells. We show that these models, though resting on only two simple transforms, can recapitulate the characteristics of both evoked and spectral responses observed empirically. Using an identical neuronal architecture, we show that a set of conductance based models—that consider the dynamics of specific ion-channels—present a richer space of responses; owing to non-linear interactions between conductances and membrane potentials. We propose that conductance-based models may be more appropriate when spectra present with multiple resonances. Finally, we outline a third class of models, where each neuronal subpopulation is treated as a field; in other words, as a manifold on the cortical surface. By explicitly accounting for the spatial propagation of cortical activity through partial differential equations (PDEs), we show that the topology of connectivity—through local lateral interactions among cortical layers—may be inferred, even in the absence of spatially resolved data. We also show that these models allow for a detailed analysis of structure–function relationships in the cortex. Our review highlights the relationship among these models and how the hypothesis asked of empirical data suggests an appropriate
Physiologically informed dynamic causal modeling of fMRI data.
Havlicek, Martin; Roebroeck, Alard; Friston, Karl; Gardumi, Anna; Ivanov, Dimo; Uludag, Kamil
2015-11-15
The functional MRI (fMRI) signal is an indirect measure of neuronal activity. In order to deconvolve the neuronal activity from the experimental fMRI data, biophysical generative models have been proposed describing the link between neuronal activity and the cerebral blood flow (the neurovascular coupling), and further the hemodynamic response and the BOLD signal equation. These generative models have been employed both for single brain area deconvolution and to infer effective connectivity in networks of multiple brain areas. In the current paper, we introduce a new fMRI model inspired by experimental observations about the physiological underpinnings of the BOLD signal and compare it with the generative models currently used in dynamic causal modeling (DCM), a widely used framework to study effective connectivity in the brain. We consider three fundamental aspects of such generative models for fMRI: (i) an adaptive two-state neuronal model that accounts for a wide repertoire of neuronal responses during and after stimulation; (ii) feedforward neurovascular coupling that links neuronal activity to blood flow; and (iii) a balloon model that can account for vascular uncoupling between the blood flow and the blood volume. Finally, we adjust the parameterization of the BOLD signal equation for different magnetic field strengths. This paper focuses on the form, motivation and phenomenology of DCMs for fMRI and the characteristics of the various models are demonstrated using simulations. These simulations emphasize a more accurate modeling of the transient BOLD responses - such as adaptive decreases to sustained inputs during stimulation and the post-stimulus undershoot. In addition, we demonstrate using experimental data that it is necessary to take into account both neuronal and vascular transients to accurately model the signal dynamics of fMRI data. By refining the models of the transient responses, we provide a more informed perspective on the underlying neuronal
Dynamic causal modelling for functional near-infrared spectroscopy
Tak, S.; Kempny, A.M.; Friston, K.J.; Leff, A.P.; Penny, W.D.
2015-01-01
Functional near-infrared spectroscopy (fNIRS) is an emerging technique for measuring changes in cerebral hemoglobin concentration via optical absorption changes. Although there is great interest in using fNIRS to study brain connectivity, current methods are unable to infer the directionality of neuronal connections. In this paper, we apply Dynamic Causal Modelling (DCM) to fNIRS data. Specifically, we present a generative model of how observed fNIRS data are caused by interactions among hidden neuronal states. Inversion of this generative model, using an established Bayesian framework (variational Laplace), then enables inference about changes in directed connectivity at the neuronal level. Using experimental data acquired during motor imagery and motor execution tasks, we show that directed (i.e., effective) connectivity from the supplementary motor area to the primary motor cortex is negatively modulated by motor imagery, and this suppressive influence causes reduced activity in the primary motor cortex during motor imagery. These results are consistent with findings of previous functional magnetic resonance imaging (fMRI) studies, suggesting that the proposed method enables one to infer directed interactions in the brain mediated by neuronal dynamics from measurements of optical density changes. PMID:25724757
Gradient-based MCMC samplers for dynamic causal modelling
Sengupta, Biswa; Friston, Karl J.; Penny, Will D.
2016-01-01
In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton’s equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)—a class of biophysically motivated DCMs—we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability. PMID:26213349
Missing data estimation in fMRI dynamic causal modeling.
Zaghlool, Shaza B; Wyatt, Christopher L
2014-01-01
Dynamic Causal Modeling (DCM) can be used to quantify cognitive function in individuals as effective connectivity. However, ambiguity among subjects in the number and location of discernible active regions prevents all candidate models from being compared in all subjects, precluding the use of DCM as an individual cognitive phenotyping tool. This paper proposes a solution to this problem by treating missing regions in the first-level analysis as missing data, and performing estimation of the time course associated with any missing region using one of four candidate methods: zero-filling, average-filling, noise-filling using a fixed stochastic process, or one estimated using expectation-maximization. The effect of this estimation scheme was analyzed by treating it as a preprocessing step to DCM and observing the resulting effects on model evidence. Simulation studies show that estimation using expectation-maximization yields the highest classification accuracy using a simple loss function and highest model evidence, relative to other methods. This result held for various dataset sizes and varying numbers of model choice. In real data, application to Go/No-Go and Simon tasks allowed computation of signals from the missing nodes and the consequent computation of model evidence in all subjects compared to 62 and 48 percent respectively if no preprocessing was performed. These results demonstrate the face validity of the preprocessing scheme and open the possibility of using single-subject DCM as an individual cognitive phenotyping tool.
Dynamic causal models of steady-state responses
Moran, R.J.; Stephan, K.E.; Seidenbecher, T.; Pape, H.-C.; Dolan, R.J.; Friston, K.J.
2009-01-01
In this paper, we describe a dynamic causal model (DCM) of steady-state responses in electrophysiological data that are summarised in terms of their cross-spectral density. These spectral data-features are generated by a biologically plausible, neural-mass model of coupled electromagnetic sources; where each source comprises three sub-populations. Under linearity and stationarity assumptions, the model's biophysical parameters (e.g., post-synaptic receptor density and time constants) prescribe the cross-spectral density of responses measured directly (e.g., local field potentials) or indirectly through some lead-field (e.g., electroencephalographic and magnetoencephalographic data). Inversion of the ensuing DCM provides conditional probabilities on the synaptic parameters of intrinsic and extrinsic connections in the underlying neuronal network. This means we can make inferences about synaptic physiology, as well as changes induced by pharmacological or behavioural manipulations, using the cross-spectral density of invasive or non-invasive electrophysiological recordings. In this paper, we focus on the form of the model, its inversion and validation using synthetic and real data. We conclude with an illustrative application to multi-channel local field potential data acquired during a learning experiment in mice. PMID:19000769
Bajaj, Sahil; Adhikari, Bhim M; Friston, Karl J; Dhamala, Mukesh
2016-09-16
Granger causality (GC) and dynamic causal modeling (DCM) are the two key approaches used to determine the directed interactions among brain areas. Recent discussions have provided a constructive account of the merits and demerits. GC, on one side, considers dependencies among measured responses, whereas DCM, on the other, models how neuronal activity in one brain area causes dynamics in another. In this study, our objective was to establish construct validity between GC and DCM in the context of resting state functional magnetic resonance imaging (fMRI). We first established the face validity of both approaches using simulated fMRI time series, with endogenous fluctuations in two nodes. Crucially, we tested both unidirectional and bidirectional connections between the two nodes to ensure that both approaches give veridical and consistent results, in terms of model comparison. We then applied both techniques to empirical data and examined their consistency in terms of the (quantitative) in-degree of key nodes of the default mode. Our simulation results suggested a (qualitative) consistency between GC and DCM. Furthermore, by applying nonparametric GC and stochastic DCM to resting-state fMRI data, we confirmed that both GC and DCM infer similar (quantitative) directionality between the posterior cingulate cortex (PCC), the medial prefrontal cortex, the left middle temporal cortex, and the left angular gyrus. These findings suggest that GC and DCM can be used to estimate directed functional and effective connectivity from fMRI measurements in a consistent manner.
Dynamic Granger-Geweke causality modeling with application to interictal spike propagation.
Lin, Fa-Hsuan; Hara, Keiko; Solo, Victor; Vangel, Mark; Belliveau, John W; Stufflebeam, Steven M; Hämäläinen, Matti S
2009-06-01
A persistent problem in developing plausible neurophysiological models of perception, cognition, and action is the difficulty of characterizing the interactions between different neural systems. Previous studies have approached this problem by estimating causal influences across brain areas activated during cognitive processing using structural equation modeling (SEM) and, more recently, with Granger-Geweke causality. While SEM is complicated by the need for a priori directional connectivity information, the temporal resolution of dynamic Granger-Geweke estimates is limited because the underlying autoregressive (AR) models assume stationarity over the period of analysis. We have developed a novel optimal method for obtaining data-driven directional causality estimates with high temporal resolution in both time and frequency domains. This is achieved by simultaneously optimizing the length of the analysis window and the chosen AR model order using the SURE criterion. Dynamic Granger-Geweke causality in time and frequency domains is subsequently calculated within a moving analysis window. We tested our algorithm by calculating the Granger-Geweke causality of epileptic spike propagation from the right frontal lobe to the left frontal lobe. The results quantitatively suggested that the epileptic activity at the left frontal lobe was propagated from the right frontal lobe, in agreement with the clinical diagnosis. Our novel computational tool can be used to help elucidate complex directional interactions in the human brain.
Dynamic Granger-Geweke causality modeling with application to interictal spike propagation
Lin, Fa-Hsuan; Hara, Keiko; Solo, Victor; Vangel, Mark; Belliveau, John W.; Stufflebeam, Steven M.; Hamalainen, Matti S.
2010-01-01
A persistent problem in developing plausible neurophysiological models of perception, cognition, and action is the difficulty of characterizing the interactions between different neural systems. Previous studies have approached this problem by estimating causal influences across brain areas activated during cognitive processing using Structural Equation Modeling and, more recently, with Granger-Geweke causality. While SEM is complicated by the need for a priori directional connectivity information, the temporal resolution of dynamic Granger-Geweke estimates is limited because the underlying autoregressive (AR) models assume stationarity over the period of analysis. We have developed a novel optimal method for obtaining data-driven directional causality estimates with high temporal resolution in both time and frequency domains. This is achieved by simultaneously optimizing the length of the analysis window and the chosen AR model order using the SURE criterion. Dynamic Granger-Geweke causality in time and frequency domains is subsequently calculated within a moving analysis window. We tested our algorithm by calculating the Granger-Geweke causality of epileptic spike propagation from the right frontal lobe to the left frontal lobe. The results quantitatively suggested the epileptic activity at the left frontal lobe was propagated from the right frontal lobe, in agreement with the clinical diagnosis. Our novel computational tool can be used to help elucidate complex directional interactions in the human brain. PMID:19378280
ERIC Educational Resources Information Center
Liu, Jiangang; Li, Jun; Rieth, Cory A.; Huber, David E.; Tian, Jie; Lee, Kang
2011-01-01
The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response…
Gradient-free MCMC methods for dynamic causal modelling
Sengupta, Biswa; Friston, Karl J.; Penny, Will D.
2015-01-01
In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density — albeit at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive MCMC sampler). PMID:25776212
Causal Discovery of Dynamic Systems
ERIC Educational Resources Information Center
Voortman, Mark
2010-01-01
Recently, several philosophical and computational approaches to causality have used an interventionist framework to clarify the concept of causality [Spirtes et al., 2000, Pearl, 2000, Woodward, 2005]. The characteristic feature of the interventionist approach is that causal models are potentially useful in predicting the effects of manipulations.…
From animal model to human brain networking: dynamic causal modeling of motivational systems.
Gonen, Tal; Admon, Roee; Podlipsky, Ilana; Hendler, Talma
2012-05-23
An organism's behavior is sensitive to different reinforcements in the environment. Based on extensive animal literature, the reinforcement sensitivity theory (RST) proposes three separate neurobehavioral systems to account for such context-sensitive behavior, affecting the tendency to react to punishment, reward, or goal-conflict stimuli. The translation of animal findings to complex human behavior, however, is far from obvious. To examine whether the neural networks underlying humans' motivational processes are similar to those proposed by the RST model, we conducted a functional MRI study, in which 24 healthy subjects performed an interactive game that engaged the different motivational systems using distinct time periods (states) of punishment, reward, and conflict. Crucially, we found that the different motivational states elicited activations in brain regions that corresponded exactly to the brain systems underlying RST. Moreover, dynamic causal modeling of each motivational system confirmed that the coupling strengths between the key brain regions of each system were enabled selectively by the appropriate motivational state. These results may shed light on the impairments that underlie psychopathologies associated with dysfunctional motivational processes and provide a translational validity for the RST.
Tracking slow modulations in synaptic gain using dynamic causal modelling: validation in epilepsy.
Papadopoulou, Margarita; Leite, Marco; van Mierlo, Pieter; Vonck, Kristl; Lemieux, Louis; Friston, Karl; Marinazzo, Daniele
2015-02-15
In this work we propose a proof of principle that dynamic causal modelling can identify plausible mechanisms at the synaptic level underlying brain state changes over a timescale of seconds. As a benchmark example for validation we used intracranial electroencephalographic signals in a human subject. These data were used to infer the (effective connectivity) architecture of synaptic connections among neural populations assumed to generate seizure activity. Dynamic causal modelling allowed us to quantify empirical changes in spectral activity in terms of a trajectory in parameter space - identifying key synaptic parameters or connections that cause observed signals. Using recordings from three seizures in one patient, we considered a network of two sources (within and just outside the putative ictal zone). Bayesian model selection was used to identify the intrinsic (within-source) and extrinsic (between-source) connectivity. Having established the underlying architecture, we were able to track the evolution of key connectivity parameters (e.g., inhibitory connections to superficial pyramidal cells) and test specific hypotheses about the synaptic mechanisms involved in ictogenesis. Our key finding was that intrinsic synaptic changes were sufficient to explain seizure onset, where these changes showed dissociable time courses over several seconds. Crucially, these changes spoke to an increase in the sensitivity of principal cells to intrinsic inhibitory afferents and a transient loss of excitatory-inhibitory balance.
Classical sequential growth dynamics for causal sets
NASA Astrophysics Data System (ADS)
Rideout, D. P.; Sorkin, R. D.
2000-01-01
Starting from certain causality conditions and a discrete form of general covariance, we derive a very general family of classically stochastic, sequential growth dynamics for causal sets. The resulting theories provide a relatively accessible ``halfway house'' to full quantum gravity that possibly contains the latter's classical limit (general relativity). Because they can be expressed in terms of state models for an assembly of Ising spins residing on the relations of the causal set, these theories also illustrate how nongravitational matter can arise dynamically from the causal set without having to be built in at the fundamental level. Additionally, our results bring into focus some interpretive issues of importance for a causal set dynamics and for quantum gravity more generally.
ERIC Educational Resources Information Center
Dowd, Alicia C.
2008-01-01
Loans are a central component of college finance, yet research has generated a dearth of strong evidence of their effect on student choices. This article examines challenges to causal modeling regarding the effects of borrowing and the prospects of indebtedness on students' college-going behaviors. Statistical estimates of causal effects are…
Synchronizaton and causality across time-scales of observed and modelled ENSO dynamics
NASA Astrophysics Data System (ADS)
Jajcay, Nikola; Kravtsov, Sergey; Tsonis, Anastasios A.; Paluš, Milan
2016-04-01
Phase-phase and phase-amplitude interactions between dynamics on different temporal scales has been observed in ENSO dynamics, captured by the NINO3.4 index, using the approach for identification of cross-scale interactions introduced recently by Paluš [1]. The most pronounced interactions across scales are phase coherence and phase-phase causality in which the annual cycle influences the dynamics on the quasibiennial scale. The phase of slower phenomena on the scale 4-6 years influences not only the combination frequencies around the period one year, but also the phase of the annual cycle and also the amplitude of the oscillations in the quasibiennial range. In order to understand these nonlinear phenomena we investigate cross-scale interactions in synthetic, modelled NINO3.4 time series. The models taken into account were a selection of 96 historic runs from CMIP5 project, and two low-dimensional models - parametric recharge oscillator (PRO) [2], which is a two-dimensional dynamical model and a data-driven model based on the idea of linear inverse models [3]. The latter is a statistical model, in our setting 25-dimensional. While the two dimensions of the PRO model are not enough to capture all the cross-scale interactions, the results from the data-driven model are more promising and they resemble the interactions found in NINO3.4 measured data set. We believe that combination of models of different complexity will help to uncover mechanisms of the cross-scale interactions which might be the key for better understanding of the irregularities in the ENSO dynamics. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, Phys. Rev. Let. 112 078702 (2014) [2] K. Stein et al., J. Climate, 27, 14 (2014) [3] Kondrashov et al., J. Climate, 18, 21 (2005)
Dynamic Causal Modeling applied to fMRI data shows high reliability
Schuyler, Brianna; Ollinger, John M.; Oakes, Terrence R.; Johnstone, Tom; Davidson, Richard J.
2010-01-01
Sensitivity, specificity, and reproducibility are vital to interpret neuroscientific results from functional magnetic resonance imaging (fMRI) experiments. Here we examine the scan-rescan reliability of the percent signal change (PSC) and parameters estimated using Dynamic Causal Modeling (DCM) in scans taken in the same scan session, less than five minutes apart. We find fair to good reliability of PSC in regions that are involved with the task, and fair to excellent reliability with DCM. Also, the DCM analysis uncovers group differences that were not present in the analysis of PSC, which implies that DCM may be more sensitive to the nuances of signal changes in fMRI data. PMID:19619665
Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating
Cooray, Gerald K.; Sengupta, Biswa; Douglas, Pamela K.; Friston, Karl
2016-01-01
Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5–10 min compared to approximately 1–2 h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated. PMID:26220742
Dynamic Causal Modelling of epileptic seizure propagation pathways: a combined EEG-fMRI study.
Murta, Teresa; Leal, Alberto; Garrido, Marta I; Figueiredo, Patrícia
2012-09-01
Simultaneous EEG-fMRI offers the possibility of non-invasively studying the spatiotemporal dynamics of epileptic activity propagation from the focus towards an extended brain network, through the identification of the haemodynamic correlates of ictal electrical discharges. In epilepsy associated with hypothalamic hamartomas (HH), seizures are known to originate in the HH but different propagation pathways have been proposed. Here, Dynamic Causal Modelling (DCM) was employed to estimate the seizure propagation pathway from fMRI data recorded in a HH patient, by testing a set of clinically plausible network connectivity models of discharge propagation. The model consistent with early propagation from the HH to the temporal-occipital lobe followed by the frontal lobe was selected as the most likely model to explain the data. Our results demonstrate the applicability of DCM to investigate patient-specific effective connectivity in epileptic networks identified with EEG-fMRI. In this way, it is possible to study the propagation pathway of seizure activity, which has potentially great impact in the decision of the surgical approach for epilepsy treatment.
Causality, mediation and time: a dynamic viewpoint
Aalen, Odd O; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno
2012-01-01
Summary. Time dynamics are often ignored in causal modelling. Clearly, causality must operate in time and we show how this corresponds to a mechanistic, or system, understanding of causality. The established counterfactual definitions of direct and indirect effects depend on an ability to manipulate the mediator which may not hold in practice, and we argue that a mechanistic view may be better. Graphical representations based on local independence graphs and dynamic path analysis are used to facilitate communication as well as providing an overview of the dynamic relations ‘at a glance’. The relationship between causality as understood in a mechanistic and in an interventionist sense is discussed. An example using data from the Swiss HIV Cohort Study is presented. PMID:23193356
Moran, Rosalyn
2015-01-01
Advances in deep brain stimulation (DBS) therapeutics for neurological and psychiatric disorders represent a new clinical avenue that may potentially augment or adjunct traditional pharmacological approaches to disease treatment. Using modern molecular biology and genomics, pharmacological development proceeds through an albeit lengthy and expensive pipeline from candidate compound to preclinical and clinical trials. Such a pathway, however, is lacking in the field of neurostimulation, with developments arising from a selection of early sources and motivated by diverse fields including surgery and neuroscience. In this chapter, I propose that biophysical models of connected brain networks optimized using empirical neuroimaging data from patients and healthy controls can provide a principled computational pipeline for testing and developing neurostimulation interventions. Dynamic causal modeling (DCM) provides such a computational framework, serving as a method to test effective connectivity between and within regions of an active brain network. Importantly, the methodology links brain dynamics with behavior by directly assessing experimental task effects under different behavioral or cognitive sets. Therefore, healthy brain dynamics in circuits of interest can be defined mathematically with stimulation interventions in pathological counterparts simulated with the goal of restoring normal functionality. In this chapter, I outline the dynamic characterization of brain circuits using DCM and propose a blueprint for testing in silico, the effects of stimulation in neurodegenerative disorders affecting cognition. In particular, the models can be simulated to test whether neuroimaging correlates of nondiseased brain dynamics can be reinstantiated in a pathological setting using DBS. Thus, the key advantage of this framework is that distributed effects of DBS on neural circuitry and network connectivity can be predicted in silico. The chapter also includes a review of how
ERIC Educational Resources Information Center
Watt, James H., Jr.
Pointing out that linear causal models can organize the interrelationships of a large number of variables, this paper contends that such models are particularly useful to mass communication research, which must by necessity deal with complex systems of variables. The paper first outlines briefly the philosophical requirements for establishing a…
Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling.
Minkova, Lora; Scheller, Elisa; Peter, Jessica; Abdulkadir, Ahmed; Kaller, Christoph P; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan
2015-01-01
Deficits in motor functioning are one of the hallmarks of Huntington's disease (HD), a genetically caused neurodegenerative disorder. We applied functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess changes that occur with disease progression in the neural circuitry of key areas associated with executive and cognitive aspects of motor control. Seventy-seven healthy controls, 62 pre-symptomatic HD gene carriers (preHD), and 16 patients with manifest HD symptoms (earlyHD) performed a motor finger-tapping fMRI task with systematically varying speed and complexity. DCM was used to assess the causal interactions among seven pre-defined regions of interest, comprising primary motor cortex, supplementary motor area (SMA), dorsal premotor cortex, and superior parietal cortex. To capture heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical cluster analysis using Ward's method and squared Euclidian distance as a measure of similarity. After applying Bonferroni correction for the number of tests, DCM analysis revealed a group difference that was not present in the conventional fMRI analysis. We found an inhibitory effect of complexity on the connection from parietal to premotor areas in preHD, which became excitatory in earlyHD and correlated with putamen atrophy. While speed of finger movements did not modulate the connection from caudal to pre-SMA in controls and preHD, this connection became strongly negative in earlyHD. This second effect did not survive correction for multiple comparisons. Hierarchical clustering separated the gene mutation carriers into three clusters that also differed significantly between these two connections and thereby confirmed their relevance. DCM proved useful in identifying group differences that would have remained undetected by standard analyses and may aid in the investigation of between-subject heterogeneity.
Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling.
Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela; Englund, Marita; Wickstrom, Ronny; Friston, Karl
2015-09-01
We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory-inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis.
Xiang, Wentao; Karfoul, Ahmad; Shu, Huazhong; Le Bouquin Jeannès, Régine
2017-03-07
This paper addresses the question of effective connectivity in the human cerebral cortex in the context of epilepsy. Among model based approaches to infer brain connectivity, spectral Dynamic Causal Modelling is a conventional technique for which we propose an alternative to estimate cross spectral density. The proposed strategy we investigated tackles the sub-estimation of the free energy using the well-known variational Expectation-Maximization algorithm highly sensitive to the initialization of the parameters vector by a permanent local adjustment of the initialization process. The performance of the proposed strategy in terms of effective connectivity identification is assessed using simulated data generated by a neuronal mass model (simulating unidirectional and bidirectional flows) and real epileptic intracerebral Electroencephalographic signals. Results show the efficiency of proposed approach compared to the conventional Dynamic Causal Modelling and the one wherein a deterministic annealing scheme is employed.
Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.
Saleh, Soha; Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei; Tunik, Eugene
2017-01-01
Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non
Noreika, Valdas; Gueorguiev, David; Shtyrov, Yury; Bekinschtein, Tristan A.; Henson, Richard
2016-01-01
There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called “mismatch response”). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an “omission” response). This situation arguably provides a more direct measure of “top-down” predictions in the absence of confounding “bottom-up” input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of “bottom-up” stimuli with the presence versus absence of “top-down” attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward “prediction” connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction. SIGNIFICANCE STATEMENT Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known “mismatch response.” But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain
Aging into Perceptual Control: A Dynamic Causal Modeling for fMRI Study of Bistable Perception
Dowlati, Ehsan; Adams, Sarah E.; Stiles, Alexandra B.; Moran, Rosalyn J.
2016-01-01
Aging is accompanied by stereotyped changes in functional brain activations, for example a cortical shift in activity patterns from posterior to anterior regions is one hallmark revealed by functional magnetic resonance imaging (fMRI) of aging cognition. Whether these neuronal effects of aging could potentially contribute to an amelioration of or resistance to the cognitive symptoms associated with psychopathology remains to be explored. We used a visual illusion paradigm to address whether aging affects the cortical control of perceptual beliefs and biases. Our aim was to understand the effective connectivity associated with volitional control of ambiguous visual stimuli and to test whether greater top-down control of early visual networks emerged with advancing age. Using a bias training paradigm for ambiguous images we found that older participants (n = 16) resisted experimenter-induced visual bias compared to a younger cohort (n = 14) and that this resistance was associated with greater activity in prefrontal and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered a selective recruitment of top-down connections from the middle temporal to Lingual gyrus (LIN) by the older cohort during the perceptual switch decision following bias training. In contrast, our younger cohort did not exhibit any consistent connectivity effects but instead showed a loss of driving inputs to orbitofrontal sources following training. These findings suggest that perceptual beliefs are more readily controlled by top-down strategies in older adults and introduce age-dependent neural mechanisms that may be important for understanding aberrant belief states associated with psychopathology. PMID:27064235
Assessing parameter identifiability for dynamic causal modeling of fMRI data
Arand, Carolin; Scheller, Elisa; Seeber, Benjamin; Timmer, Jens; Klöppel, Stefan; Schelter, Björn
2015-01-01
Deterministic dynamic causal modeling (DCM) for fMRI data is a sophisticated approach to analyse effective connectivity in terms of directed interactions between brain regions of interest. To date it is difficult to know if acquired fMRI data will yield precise estimation of DCM parameters. Focusing on parameter identifiability, an important prerequisite for research questions on directed connectivity, we present an approach inferring if parameters of an envisaged DCM are identifiable based on information from fMRI data. With the freely available “attention to motion” dataset, we investigate identifiability of two DCMs and show how different imaging specifications impact on identifiability. We used the profile likelihood, which has successfully been applied in systems biology, to assess the identifiability of parameters in a DCM with specified scanning parameters. Parameters are identifiable when minima of the profile likelihood as well as finite confidence intervals for the parameters exist. Intermediate epoch duration, shorter TR and longer session duration generally increased the information content in the data and thus improved identifiability. Irrespective of biological factors such as size and location of a region, attention should be paid to densely interconnected regions in a DCM, as those seem to be prone to non-identifiability. Our approach, available in the DCMident toolbox, enables to judge if the parameters of an envisaged DCM are sufficiently determined by underlying data without priors as opposed to primarily reflecting the Bayesian priors in a SPM–DCM. Assessments with the DCMident toolbox prior to a study will lead to improved identifiability of the parameters and thus might prevent suboptimal data acquisition. Thus, the toolbox can be used as a preprocessing step to provide immediate statements on parameter identifiability. PMID:25750612
Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726
Effective connectivity: Influence, causality and biophysical modeling
Valdes-Sosa, Pedro A.; Roebroeck, Alard; Daunizeau, Jean; Friston, Karl
2011-01-01
This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments. PMID:21477655
Di, Xin; Biswal, Bharat B.
2013-01-01
The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on resting-state fMRI dataset to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01–0.08 Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model that the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight on the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data. PMID:23927904
Di, Xin; Biswal, Bharat B
2014-02-01
The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data.
Modeling the dynamics of disaster evolution along causality networks with cycle chains
NASA Astrophysics Data System (ADS)
Li, Jian; Chen, Changkun
2014-05-01
A model for describing the evolution process of disasters, especially for disaster causality networks with cycle chains, has been developed. In the model, the impacts from the causative nodes, self-recovery behaviors, repair by government, internal noise and impacts outside the system have been taken into consideration. In particular, the cumulative effect of the inducing relationship between the causative node and its son node, due to cycle chain, has been quantified by the new model. Based on the proposed model, a parametric study, covering a range of conditional probability of directed inducing links, delay coefficient for disaster evolution and self-recovery coefficient during the recovery process, has been conducted by means of simulations. The results of these simulations point towards a phase transition of the disaster system with cycle chains when increasing conditional probability of directed inducing links or self-recovery coefficient. Particularly, we observe a critical conditional probability of directed inducing links and a critical self-recovery coefficient, beyond which, the whole system may be out of control after certain evolution time, regardless of the fact that the initial disturbance has disappeared. In addition, it is interesting to find that increasing delay coefficient cannot suppress the disaster evolution completely, for a disaster system that is potentially out of control due to the self-reinforce of cycle chains. Of course, the disaster evolution velocity drops when increasing delay coefficient, and this has a positive significance on disaster rescue. Further, it also illustrates that it is a bad strategy to arrange the total rescue resources uniformly during the disaster rescue process, while the strategy that disseminating more resources on the nodes in cycle chains and arranging the rescue resources in line with the potential maximum deviation of nodes, will have higher efficiency. With our model, it is possible for people to get an
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.
Daunizeau, J; Friston, K J; Kiebel, S J
2009-11-01
In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
NASA Astrophysics Data System (ADS)
Daunizeau, J.; Friston, K. J.; Kiebel, S. J.
2009-11-01
In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
Daunizeau, J.; Friston, K.J.; Kiebel, S.J.
2009-01-01
In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power. PMID:19862351
Sharaev, Maksim G.; Zavyalova, Viktoria V.; Ushakov, Vadim L.; Kartashov, Sergey I.; Velichkovsky, Boris M.
2016-01-01
The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078–0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p < 0.05). Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain’s functioning at resting state. PMID:26869900
Ushakov, Vadim; Sharaev, Maksim G; Kartashov, Sergey I; Zavyalova, Viktoria V; Verkhlyutov, Vitaliy M; Velichkovsky, Boris M
2016-01-01
The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively) within the default mode network (DMN) as represented by its key structures: the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and the inferior parietal cortex of left (LIPC) and right (RIPC) hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI) data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM). Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC, and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects' effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of effective
Ushakov, Vadim; Sharaev, Maksim G.; Kartashov, Sergey I.; Zavyalova, Viktoria V.; Verkhlyutov, Vitaliy M.; Velichkovsky, Boris M.
2016-01-01
The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively) within the default mode network (DMN) as represented by its key structures: the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and the inferior parietal cortex of left (LIPC) and right (RIPC) hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI) data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM). Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC, and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects’ effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of effective
Bönstrup, Marlene; Schulz, Robert; Feldheim, Jan; Hummel, Friedhelm C; Gerloff, Christian
2016-01-01
Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM-IR) and on fMRI would reveal congruent task-dependent network dynamics. Brain electrical (63-channel surface EEG) and Blood Oxygenation Level Dependent (BOLD) signals were recorded in separate sessions from 14 healthy participants performing simple isometric right and left hand grips. DCM-IR and DCM-fMRI were used to estimate coupling parameters modulated by right and left hand grips within a core motor network of six regions comprising bilateral primary motor cortex (M1), ventral premotor cortex (PMv) and supplementary motor area (SMA). We found that DCM-fMRI and DCM-IR similarly revealed significant grip-related increases in facilitatory coupling between SMA and M1 contralateral to the active hand. A grip-dependent interhemispheric reciprocal inhibition between M1 bilaterally was only revealed by DCM-fMRI but not by DCM-IR. Frequency-resolved coupling analysis showed that the information flow from contralateral SMA to M1 was predominantly a linear alpha-to-alpha (9-13Hz) interaction. We also detected some cross-frequency coupling from SMA to contralateral M1, i.e., between lower beta (14-21Hz) at the SMA and higher beta (22-30Hz) at M1 during right hand grip and between alpha (9-13Hz) at SMA and lower beta (14-21Hz) at M1
Causal reasoning with mental models
Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398
Causal reasoning with mental models.
Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.
Causal Dynamical Triangulations in Four Dimensions
NASA Astrophysics Data System (ADS)
Görlich, Andrzej
2011-11-01
Recent results obtained within a non-perturbative approach to quantum gravity based on the method of four-dimensional Causal Dynamical Triangulations are described. The phase diagram of the model consists of three phases. In the physically most interesting phase, the time-translational symmetry is spontaneously broken. Calculations of expectation values required introducing procedures taking into account the inhomogeneity of configurations. It was shown that the dynamically emerged four-dimensional background geometry corresponds to a Euclidean de Sitter space and reveals no fractality at large distances. Measurements of the covariance matrix of scale factor fluctuations allowed to reconstruct the effective action, which remained in agreement with the discrete minisuperspace action. Values of the Hausdorff dimension and spectral dimension of three-dimensional spatial slices suggest their fractal nature, which was confirmed by a direct analysis of triangulation structure. The Monte Carlo algorithm used to obtain presented results is described.
Gilbert, Jessica R.; Symmonds, Mkael; Hanna, Michael G.; Dolan, Raymond J.; Friston, Karl J.; Moran, Rosalyn J.
2016-01-01
Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. PMID:26342528
Modeling of causality with metamaterials
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.
2013-02-01
Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space-time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space-time. While this model may be used to build interesting space-time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space-time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler-Feynman absorber theory of causality.
Adams, Rick A; Bauer, Markus; Pinotsis, Dimitris; Friston, Karl J
2016-05-15
This paper shows that it is possible to estimate the subjective precision (inverse variance) of Bayesian beliefs during oculomotor pursuit. Subjects viewed a sinusoidal target, with or without random fluctuations in its motion. Eye trajectories and magnetoencephalographic (MEG) data were recorded concurrently. The target was periodically occluded, such that its reappearance caused a visual evoked response field (ERF). Dynamic causal modelling (DCM) was used to fit models of eye trajectories and the ERFs. The DCM for pursuit was based on predictive coding and active inference, and predicts subjects' eye movements based on their (subjective) Bayesian beliefs about target (and eye) motion. The precisions of these hierarchical beliefs can be inferred from behavioural (pursuit) data. The DCM for MEG data used an established biophysical model of neuronal activity that includes parameters for the gain of superficial pyramidal cells, which is thought to encode precision at the neuronal level. Previous studies (using DCM of pursuit data) suggest that noisy target motion increases subjective precision at the sensory level: i.e., subjects attend more to the target's sensory attributes. We compared (noisy motion-induced) changes in the synaptic gain based on the modelling of MEG data to changes in subjective precision estimated using the pursuit data. We demonstrate that imprecise target motion increases the gain of superficial pyramidal cells in V1 (across subjects). Furthermore, increases in sensory precision - inferred by our behavioural DCM - correlate with the increase in gain in V1, across subjects. This is a step towards a fully integrated model of brain computations, cortical responses and behaviour that may provide a useful clinical tool in conditions like schizophrenia.
Adams, Rick A.; Bauer, Markus; Pinotsis, Dimitris; Friston, Karl J.
2016-01-01
This paper shows that it is possible to estimate the subjective precision (inverse variance) of Bayesian beliefs during oculomotor pursuit. Subjects viewed a sinusoidal target, with or without random fluctuations in its motion. Eye trajectories and magnetoencephalographic (MEG) data were recorded concurrently. The target was periodically occluded, such that its reappearance caused a visual evoked response field (ERF). Dynamic causal modelling (DCM) was used to fit models of eye trajectories and the ERFs. The DCM for pursuit was based on predictive coding and active inference, and predicts subjects' eye movements based on their (subjective) Bayesian beliefs about target (and eye) motion. The precisions of these hierarchical beliefs can be inferred from behavioural (pursuit) data. The DCM for MEG data used an established biophysical model of neuronal activity that includes parameters for the gain of superficial pyramidal cells, which is thought to encode precision at the neuronal level. Previous studies (using DCM of pursuit data) suggest that noisy target motion increases subjective precision at the sensory level: i.e., subjects attend more to the target's sensory attributes. We compared (noisy motion-induced) changes in the synaptic gain based on the modelling of MEG data to changes in subjective precision estimated using the pursuit data. We demonstrate that imprecise target motion increases the gain of superficial pyramidal cells in V1 (across subjects). Furthermore, increases in sensory precision – inferred by our behavioural DCM – correlate with the increase in gain in V1, across subjects. This is a step towards a fully integrated model of brain computations, cortical responses and behaviour that may provide a useful clinical tool in conditions like schizophrenia. PMID:26921713
Xi, Yi-Bin; Li, Chen; Cui, Long-Biao; Liu, Jian; Guo, Fan; Li, Liang; Liu, Ting-Ting; Liu, Kang; Chen, Gang; Xi, Min; Wang, Hua-Ning; Yin, Hong
2016-01-01
Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs) in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients—according to the DSM-IV—were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic causal modeling (sDCM) to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA) to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ. PMID:27512370
Pinotsis, D A; Geerts, J P; Pinto, L; FitzGerald, T H B; Litvak, V; Auksztulewicz, R; Friston, K J
2017-02-01
Neural models describe brain activity at different scales, ranging from single cells to whole brain networks. Here, we attempt to reconcile models operating at the microscopic (compartmental) and mesoscopic (neural mass) scales to analyse data from microelectrode recordings of intralaminar neural activity. Although these two classes of models operate at different scales, it is relatively straightforward to create neural mass models of ensemble activity that are equipped with priors obtained after fitting data generated by detailed microscopic models. This provides generative (forward) models of measured neuronal responses that retain construct validity in relation to compartmental models. We illustrate our approach using cross spectral responses obtained from V1 during a visual perception paradigm that involved optogenetic manipulation of the basal forebrain. We find that the resulting neural mass model can distinguish between activity in distinct cortical layers - both with and without optogenetic activation - and that cholinergic input appears to enhance (disinhibit) superficial layer activity relative to deep layers. This is particularly interesting from the perspective of predictive coding, where neuromodulators are thought to boost prediction errors that ascend the cortical hierarchy.
Simulation of fMRI signals to validate dynamic causal modeling estimation
NASA Astrophysics Data System (ADS)
Anandwala, Mobin; Siadat, Mohamad-Reza; Hadi, Shamil M.
2012-03-01
Through cognitive tasks certain brain areas are activated and also receive increased blood to them. This is modeled through a state system consisting of two separate parts one that deals with the neural node stimulation and the other blood response during that stimulation. The rationale behind using this state system is to validate existing analysis methods such as DCM to see what levels of noise they can handle. Using the forward Euler's method this system was approximated in a series of difference equations. What was obtained was the hemodynamic response for each brain area and this was used to test an analysis tool to estimate functional connectivity between each brain area with a given amount of noise. The importance of modeling this system is to not only have a model for neural response but also to compare to actual data obtained through functional imaging scans.
Quantification of causal couplings via dynamical effects: a unifying perspective.
Smirnov, Dmitry A
2014-12-01
Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of different origin. Various statistical tools for that exist and new ones are still being developed with a tendency to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual framework for causal coupling quantification, which is based on state space models and extends the concepts of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling characteristics. The framework provides a unifying view of apparently different well-established measures and allows us to introduce new characteristics, always with a definite "intervention-effect" interpretation. It is shown that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of "how the coupling manifests itself in the dynamics," reformulating the very question about the "causal coupling strength."
Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry
2013-01-01
The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258
Inferring connectivity in networked dynamical systems: Challenges using Granger causality
NASA Astrophysics Data System (ADS)
Lusch, Bethany; Maia, Pedro D.; Kutz, J. Nathan
2016-09-01
Determining the interactions and causal relationships between nodes in an unknown networked dynamical system from measurement data alone is a challenging, contemporary task across the physical, biological, and engineering sciences. Statistical methods, such as the increasingly popular Granger causality, are being broadly applied for data-driven discovery of connectivity in fields from economics to neuroscience. A common version of the algorithm is called pairwise-conditional Granger causality, which we systematically test on data generated from a nonlinear model with known causal network structure. Specifically, we simulate networked systems of Kuramoto oscillators and use the Multivariate Granger Causality Toolbox to discover the underlying coupling structure of the system. We compare the inferred results to the original connectivity for a wide range of parameters such as initial conditions, connection strengths, community structures, and natural frequencies. Our results show a significant systematic disparity between the original and inferred network, unless the true structure is extremely sparse or dense. Specifically, the inferred networks have significant discrepancies in the number of edges and the eigenvalues of the connectivity matrix, demonstrating that they typically generate dynamics which are inconsistent with the ground truth. We provide a detailed account of the dynamics for the Erdős-Rényi network model due to its importance in random graph theory and network science. We conclude that Granger causal methods for inferring network structure are highly suspect and should always be checked against a ground truth model. The results also advocate the need to perform such comparisons with any network inference method since the inferred connectivity results appear to have very little to do with the ground truth system.
Inferring connectivity in networked dynamical systems: Challenges using Granger causality.
Lusch, Bethany; Maia, Pedro D; Kutz, J Nathan
2016-09-01
Determining the interactions and causal relationships between nodes in an unknown networked dynamical system from measurement data alone is a challenging, contemporary task across the physical, biological, and engineering sciences. Statistical methods, such as the increasingly popular Granger causality, are being broadly applied for data-driven discovery of connectivity in fields from economics to neuroscience. A common version of the algorithm is called pairwise-conditional Granger causality, which we systematically test on data generated from a nonlinear model with known causal network structure. Specifically, we simulate networked systems of Kuramoto oscillators and use the Multivariate Granger Causality Toolbox to discover the underlying coupling structure of the system. We compare the inferred results to the original connectivity for a wide range of parameters such as initial conditions, connection strengths, community structures, and natural frequencies. Our results show a significant systematic disparity between the original and inferred network, unless the true structure is extremely sparse or dense. Specifically, the inferred networks have significant discrepancies in the number of edges and the eigenvalues of the connectivity matrix, demonstrating that they typically generate dynamics which are inconsistent with the ground truth. We provide a detailed account of the dynamics for the Erdős-Rényi network model due to its importance in random graph theory and network science. We conclude that Granger causal methods for inferring network structure are highly suspect and should always be checked against a ground truth model. The results also advocate the need to perform such comparisons with any network inference method since the inferred connectivity results appear to have very little to do with the ground truth system.
NASA Astrophysics Data System (ADS)
Pearl, Judea
2000-03-01
Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.
Xu, Haojie; Lu, Yunfeng; Zhu, Shanan; He, Bin
2014-07-01
It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The nonzero covariance of the model's residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the "causal ordering" is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In this study, we first investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in time
Xu, Haojie; Lu, Yunfeng; Zhu, Shanan
2014-01-01
It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The non-zero covariance of the model’s residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the “causal ordering” is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In the present study, we firstly investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in
Granger causality for state-space models
NASA Astrophysics Data System (ADS)
Barnett, Lionel; Seth, Anil K.
2015-04-01
Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.
Granger causality for state-space models.
Barnett, Lionel; Seth, Anil K
2015-04-01
Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations-commonplace in application domains as diverse as climate science, econometrics, and the neurosciences-induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.
Causal models and learning from data: integrating causal modeling and statistical estimation.
Petersen, Maya L; van der Laan, Mark J
2014-05-01
The practice of epidemiology requires asking causal questions. Formal frameworks for causal inference developed over the past decades have the potential to improve the rigor of this process. However, the appropriate role for formal causal thinking in applied epidemiology remains a matter of debate. We argue that a formal causal framework can help in designing a statistical analysis that comes as close as possible to answering the motivating causal question, while making clear what assumptions are required to endow the resulting estimates with a causal interpretation. A systematic approach for the integration of causal modeling with statistical estimation is presented. We highlight some common points of confusion that occur when causal modeling techniques are applied in practice and provide a broad overview on the types of questions that a causal framework can help to address. Our aims are to argue for the utility of formal causal thinking, to clarify what causal models can and cannot do, and to provide an accessible introduction to the flexible and powerful tools provided by causal models.
Hypothesizing and Refining Causal Models,
1984-12-01
the purposes of this research, it was critica ! to be able to represent a sequence of events, in which the learning program would look for causal... tlc sense because tliv imply random behavior. This is an oversimplified, but usc^ul telcological assumption about the nature of dependences in designed
When two become one: the limits of causality analysis of brain dynamics.
Chicharro, Daniel; Ledberg, Anders
2012-01-01
Biological systems often consist of multiple interacting subsystems, the brain being a prominent example. To understand the functions of such systems it is important to analyze if and how the subsystems interact and to describe the effect of these interactions. In this work we investigate the extent to which the cause-and-effect framework is applicable to such interacting subsystems. We base our work on a standard notion of causal effects and define a new concept called natural causal effect. This new concept takes into account that when studying interactions in biological systems, one is often not interested in the effect of perturbations that alter the dynamics. The interest is instead in how the causal connections participate in the generation of the observed natural dynamics. We identify the constraints on the structure of the causal connections that determine the existence of natural causal effects. In particular, we show that the influence of the causal connections on the natural dynamics of the system often cannot be analyzed in terms of the causal effect of one subsystem on another. Only when the causing subsystem is autonomous with respect to the rest can this interpretation be made. We note that subsystems in the brain are often bidirectionally connected, which means that interactions rarely should be quantified in terms of cause-and-effect. We furthermore introduce a framework for how natural causal effects can be characterized when they exist. Our work also has important consequences for the interpretation of other approaches commonly applied to study causality in the brain. Specifically, we discuss how the notion of natural causal effects can be combined with Granger causality and Dynamic Causal Modeling (DCM). Our results are generic and the concept of natural causal effects is relevant in all areas where the effects of interactions between subsystems are of interest.
Causality analysis in business performance measurement system using system dynamics methodology
NASA Astrophysics Data System (ADS)
Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah
2014-07-01
One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.
NASA Astrophysics Data System (ADS)
Ebert-Uphoff, I.; Hammerling, D.; Samarasinghe, S.; Baker, A. H.
2015-12-01
The framework of causal discovery provides algorithms that seek to identify potential cause-effect relationships from observational data. The output of such algorithms is a graph structure that indicates the potential causal connections between the observed variables. Originally developed for applications in the social sciences and economics, causal discovery has been used with great success in bioinformatics and, most recently, in climate science, primarily to identify interaction patterns between compound climate variables and to track pathways of interactions between different locations around the globe. Here we apply causal discovery to the output data of climate models to learn so-called causal signatures from the data that indicate interactions between the different atmospheric variables. These causal signatures can act like fingerprints for the underlying dynamics and thus serve a variety of diagnostic purposes. We study the use of the causal signatures for three applications: 1) For climate model software verification we suggest to use causal signatures as a means of detecting statistical differences between model runs, thus identifying potential errors and supplementing the Community Earth System Model Ensemble Consistency Testing (CESM-ECT) tool recently developed at NCAR for CESM verification. 2) In the context of data compression of model runs, we will test how much the causal signatures of the model outputs changes after different compression algorithms have been applied. This may result in additional means to determine which type and amount of compression is acceptable. 3) This is the first study applying causal discovery simultaneously to a large number of different atmospheric variables, and in the process of studying the resulting interaction patterns for the two aforementioned applications, we expect to gain some new insights into their relationships from this approach. We will present first results obtained for Applications 1 and 2 above.
A Quantum Probability Model of Causal Reasoning
Trueblood, Jennifer S.; Busemeyer, Jerome R.
2012-01-01
People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment. PMID:22593747
A quantum probability model of causal reasoning.
Trueblood, Jennifer S; Busemeyer, Jerome R
2012-01-01
People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment.
Tzvi, Elinor; Stoldt, Anne; Witt, Karsten; Krämer, Ulrike M
2015-11-15
The fast and slow learning stages of motor sequence learning are suggested to be realized through plasticity in a distributed cortico-striato-cerebellar network. To better understand the causal interactions within this network in the different phases of motor sequence learning, we investigated the effective connectivity within this network during encoding (Day 1) and after consolidation (Day 2) of a serial reaction time task. Using Dynamic Causal Modelling of fMRI data, we found general changes in network connections reflected in altered input nodes and endogenous connections when comparing the early and fast learning session to the late and slow learning session. Whereas encoding of a motor memory early on modulated several connections in a distributed network, slow learning resulted in a pruned network. More specifically, we found a negative modulation of connections from left M1 to right cerebellum, right premotor cortex to left cerebellum, as well as backward connections from putamen to cerebellum bilaterally in the encoding session. While connections during pre-sleep were significantly modulated by learning per se (i.e., specifically modulated by performance on sequence conditions), the connections observed after sleep were rather modulated by general performance (i.e., modulated by performance on both sequence and random conditions). A forward connection from left cerebellum to right putamen was found to be consistent across participants for the sequence condition only during slow learning. Together these findings suggest that whereas encoding in the fast learning phase requires plasticity in several connections implementing both motor and perceptual learning components, slow learning is mediated through connectivity from left cerebellum to right putamen.
Distinguishing Valid from Invalid Causal Indicator Models
ERIC Educational Resources Information Center
Cadogan, John W.; Lee, Nick
2016-01-01
In this commentary from Issue 14, n3, authors John Cadogan and Nick Lee applaud the paper by Aguirre-Urreta, Rönkkö, and Marakas "Measurement: Interdisciplinary Research and Perspectives", 14(3), 75-97 (2016), since their explanations and simulations work toward demystifying causal indicator models, which are often used by scholars…
Causal Measurement Models: Can Criticism Stimulate Clarification?
ERIC Educational Resources Information Center
Markus, Keith A.
2016-01-01
In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…
Sladky, Ronald; Spies, Marie; Hoffmann, Andre; Kranz, Georg; Hummer, Allan; Gryglewski, Gregor; Lanzenberger, Rupert; Windischberger, Christian; Kasper, Siegfried
2015-03-01
Citalopram and Escitalopram are gold standard pharmaceutical treatment options for affective, anxiety, and other psychiatric disorders. However, their neurophysiologic function on cortico-limbic circuits is incompletely characterized. Here we studied the neuropharmacological influence of Citalopram and Escitalopram on cortico-limbic regulatory processes by assessing the effective connectivity between orbitofrontal cortex (OFC) and amygdala using dynamic causal modeling (DCM) applied to functional MRI data. We investigated a cohort of 15 healthy subjects in a randomized, crossover, double-blind design after 10days of Escitalopram (10mg/d (S)-citalopram), Citalopram (10mg/d (S)-citalopram and 10mg/d (R)-citalopram), or placebo. Subjects performed an emotional face discrimination task, while undergoing functional magnetic resonance imaging (fMRI) scanning at 3 Tesla. As hypothesized, the OFC, in the context of the emotional face discrimination task, exhibited a down-regulatory effect on amygdala activation. This modulatory effect was significantly increased by (S)-citalopram, but not (R)-citalopram. For the first time, this study shows that (1) the differential effects of the two enantiomers (S)- and (R)-citalopram on cortico-limbic connections can be demonstrated by modeling effective connectivity methods, and (2) one of their mechanisms can be linked to an increased inhibition of amygdala activation by the orbitofrontal cortex.
Plewan, Thorsten; Weidner, Ralph; Eickhoff, Simon B; Fink, Gereon R
2012-10-01
The human visual system converts identically sized retinal stimuli into different-sized perceptions. For instance, the Müller-Lyer illusion alters the perceived length of a line via arrows attached to its end. The strength of this illusion can be expressed as the difference between physical and perceived line length. Accordingly, illusion strength reflects how strong a representation is transformed along its way from a retinal image up to a conscious percept. In this study, we investigated changes of effective connectivity between brain areas supporting these transformation processes to further elucidate the neural underpinnings of optical illusions. The strength of the Müller-Lyer illusion was parametrically modulated while participants performed either a spatial or a luminance task. Lateral occipital cortex and right superior parietal cortex were found to be associated with illusion strength. Dynamic causal modeling was employed to investigate putative interactions between ventral and dorsal visual streams. Bayesian model selection indicated that a model that involved bidirectional connections between dorsal and ventral stream areas most accurately accounted for the underlying network dynamics. Connections within this network were partially modulated by illusion strength. The data further suggest that the two areas subserve differential roles: Whereas lateral occipital cortex seems to be directly related to size transformation processes, activation in right superior parietal cortex may reflect subsequent levels of processing, including task-related supervisory functions. Furthermore, the data demonstrate that the observer's top-down settings modulate the interactions between lateral occipital and superior parietal regions and thereby influence the effect of illusion strength.
Causality in Psychiatry: A Hybrid Symptom Network Construct Model.
Young, Gerald
2015-01-01
Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved) that inform approaches to nosology, or classification, such as in the DSM-5 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; (1)]. However, network approaches to symptom interaction [i.e., symptoms are formative of the construct; e.g., (2), for posttraumatic stress disorder (PTSD)] are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth non-linear dynamical systems theory (NLDST). The article applies the concept of emergent circular causality (3) to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning) and universal (e.g., causal) processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments.
Critical region for an Ising model coupled to causal triangulations
NASA Astrophysics Data System (ADS)
Cerda-Hernández, J.
2017-02-01
This paper extends the results obtained by Hernández et al for the annealed Ising model coupled to two-dimensional causal dynamical triangulations. We employ the Fortuin‑Kasteleyn (FK) representation in order to determine a region in the quadrant of the parameters β,μ >0 where the critical curve for the annealed model is possibly located. This can be done by outlining a region where the model has a unique infinite-volume Gibbs measure, and a region where the finite-volume Gibbs measure does not have weak limit (in fact, does not exist if the volume is large enough). We also improve the region where the model has a one dimensional geometry with respect to the unique weak limit measure, which implies that the Ising model on causal triangulation does not have phase transition in this region. Furthermore, we provide a better approximation of the free energy for the coupled model.
The Causal Foundations of Structural Equation Modeling
2012-02-16
interpretation of SEM as “self-contradictory,” and none of the 11 discussants of his paper were able to detect his error and to articulate the correct...adequacy to serve as a language for causation. Sobel (1996), for example, states that the interpretation of the parameters of SEM model as effects “do...outcome framework, Sobel (2008) asserts that “In general (even in randomized studies), the structural and causal parameters are not equal, implying that
The Specification of Causal Models with Tetrad IV: A Review
ERIC Educational Resources Information Center
Landsheer, J. A.
2010-01-01
Tetrad IV is a program designed for the specification of causal models. It is specifically designed to search for causal relations, but also offers the possibility to estimate the parameters of a structural equation model. It offers a remarkable graphical user interface, which facilitates building, evaluating, and searching for causal models. The…
Time-varying linear and nonlinear parametric model for Granger causality analysis.
Li, Yang; Wei, Hua-Liang; Billings, Steve A; Liao, Xiao-Feng
2012-04-01
Statistical measures such as coherence, mutual information, or correlation are usually applied to evaluate the interactions between two or more signals. However, these methods cannot distinguish directions of flow between two signals. The capability to detect causalities is highly desirable for understanding the cooperative nature of complex systems. The main objective of this work is to present a linear and nonlinear time-varying parametric modeling and identification approach that can be used to detect Granger causality, which may change with time and may not be detected by traditional methods. A numerical example, in which the exact causal influences relationships, is presented to illustrate the performance of the method for time-varying Granger causality detection. The approach is applied to EEG signals to track and detect hidden potential causalities. One advantage of the proposed model, compared with traditional Granger causality, is that the results are easier to interpret and yield additional insights into the transient directed dynamical Granger causality interactions.
A Quantitative Causal Model Theory of Conditional Reasoning
ERIC Educational Resources Information Center
Fernbach, Philip M.; Erb, Christopher D.
2013-01-01
The authors propose and test a causal model theory of reasoning about conditional arguments with causal content. According to the theory, the acceptability of modus ponens (MP) and affirming the consequent (AC) reflect the conditional likelihood of causes and effects based on a probabilistic causal model of the scenario being judged. Acceptability…
Cui, Long-Biao; Liu, Jian; Wang, Liu-Xian; Li, Chen; Xi, Yi-Bin; Guo, Fan; Wang, Hua-Ning; Zhang, Lin-Chuan; Liu, Wen-Ming; He, Hong; Tian, Ping; Yin, Hong; Lu, Hongbing
2015-01-01
Understanding the neural basis of schizophrenia (SZ) is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), hippocampus, and medial prefrontal cortex (MPFC) have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI). Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs) were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM) to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA) in addition to classical inference (t-test). In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, spectral DCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions. PMID:26578933
Bastos-Leite, António J; Ridgway, Gerard R; Silveira, Celeste; Norton, Andreia; Reis, Salomé; Friston, Karl J
2015-01-01
We report the first stochastic dynamic causal modeling (sDCM) study of effective connectivity within the default mode network (DMN) in schizophrenia. Thirty-three patients (9 women, mean age = 25.0 years, SD = 5) with a first episode of psychosis and diagnosis of schizophrenia--according to the Diagnostic and Statistic Manual of Mental Disorders, 4th edition, revised criteria--were studied. Fifteen healthy control subjects (4 women, mean age = 24.6 years, SD = 4) were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI) interspersed with 2 periods of continuous picture viewing. The anterior frontal (AF), posterior cingulate (PC), and the left and right parietal nodes of the DMN were localized in an unbiased fashion using data from 16 independent healthy volunteers (using an identical fMRI protocol). We used sDCM to estimate directed connections between and within nodes of the DMN, which were subsequently compared with t tests at the between subject level. The excitatory effect of the PC node on the AF node and the inhibitory self-connection of the AF node were significantly weaker in patients (mean values = 0.013 and -0.048 Hz, SD = 0.09 and 0.05, respectively) relative to healthy subjects (mean values = 0.084 and -0.088 Hz, SD = 0.15 and 0.77, respectively; P < .05). In summary, sDCM revealed reduced effective connectivity to the AF node of the DMN--reflecting a reduced postsynaptic efficacy of prefrontal afferents--in patients with first-episode schizophrenia.
General solution for classical sequential growth dynamics of causal sets
Varadarajan, Madhavan; Rideout, David
2006-05-15
A classical precursor to a full quantum dynamics for causal sets has been formulated in terms of a stochastic sequential growth process in which the elements of the causal set arise in a sort of accretion process. The transition probabilities of the Markov growth process satisfy certain physical requirements of causality and general covariance, and the generic solution with all transition probabilities nonzero has been found. Here we remove the assumption of nonzero probabilities, define a reasonable extension of the physical requirements to cover the case of vanishing probabilities, and find the completely general solution to these physical conditions. The resulting family of growth processes has an interesting structure reminiscent of an 'infinite tower of turtles' cosmology.
ERIC Educational Resources Information Center
Markus, Keith A.
2008-01-01
One can distinguish statistical models used in causal modeling from the causal interpretations that align them with substantive hypotheses. Causal modeling typically assumes an efficient causal interpretation of the statistical model. Causal modeling can also make use of mereological causal interpretations in which the state of the parts…
Detecting Causality from Nonlinear Dynamics with Short-term Time Series
NASA Astrophysics Data System (ADS)
Ma, Huanfei; Aihara, Kazuyuki; Chen, Luonan
2014-12-01
Quantifying causality between variables from observed time series data is of great importance in various disciplines but also a challenging task, especially when the observed data are short. Unlike the conventional methods, we find it possible to detect causality only with very short time series data, based on embedding theory of an attractor for nonlinear dynamics. Specifically, we first show that measuring the smoothness of a cross map between two observed variables can be used to detect a causal relation. Then, we provide a very effective algorithm to computationally evaluate the smoothness of the cross map, or ``Cross Map Smoothness'' (CMS), and thus to infer the causality, which can achieve high accuracy even with very short time series data. Analysis of both mathematical models from various benchmarks and real data from biological systems validates our method.
Detecting Causality from Nonlinear Dynamics with Short-term Time Series
Ma, Huanfei; Aihara, Kazuyuki; Chen, Luonan
2014-01-01
Quantifying causality between variables from observed time series data is of great importance in various disciplines but also a challenging task, especially when the observed data are short. Unlike the conventional methods, we find it possible to detect causality only with very short time series data, based on embedding theory of an attractor for nonlinear dynamics. Specifically, we first show that measuring the smoothness of a cross map between two observed variables can be used to detect a causal relation. Then, we provide a very effective algorithm to computationally evaluate the smoothness of the cross map, or “Cross Map Smoothness” (CMS), and thus to infer the causality, which can achieve high accuracy even with very short time series data. Analysis of both mathematical models from various benchmarks and real data from biological systems validates our method. PMID:25501646
Detecting causality from nonlinear dynamics with short-term time series.
Ma, Huanfei; Aihara, Kazuyuki; Chen, Luonan
2014-12-12
Quantifying causality between variables from observed time series data is of great importance in various disciplines but also a challenging task, especially when the observed data are short. Unlike the conventional methods, we find it possible to detect causality only with very short time series data, based on embedding theory of an attractor for nonlinear dynamics. Specifically, we first show that measuring the smoothness of a cross map between two observed variables can be used to detect a causal relation. Then, we provide a very effective algorithm to computationally evaluate the smoothness of the cross map, or "Cross Map Smoothness" (CMS), and thus to infer the causality, which can achieve high accuracy even with very short time series data. Analysis of both mathematical models from various benchmarks and real data from biological systems validates our method.
Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Multi-conditions
NASA Astrophysics Data System (ADS)
Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Wang, Xiaochen; Zhu, Ma
2017-03-01
Intelligent diagnosis system is applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing conditional functional events into ordinary DUCG to deal with spacecraft multi-conditions. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.
Structural equation modeling: building and evaluating causal models: Chapter 8
Grace, James B.; Scheiner, Samuel M.; Schoolmaster, Donald R.
2015-01-01
Scientists frequently wish to study hypotheses about causal relationships, rather than just statistical associations. This chapter addresses the question of how scientists might approach this ambitious task. Here we describe structural equation modeling (SEM), a general modeling framework for the study of causal hypotheses. Our goals are to (a) concisely describe the methodology, (b) illustrate its utility for investigating ecological systems, and (c) provide guidance for its application. Throughout our presentation, we rely on a study of the effects of human activities on wetland ecosystems to make our description of methodology more tangible. We begin by presenting the fundamental principles of SEM, including both its distinguishing characteristics and the requirements for modeling hypotheses about causal networks. We then illustrate SEM procedures and offer guidelines for conducting SEM analyses. Our focus in this presentation is on basic modeling objectives and core techniques. Pointers to additional modeling options are also given.
The role of causal models in analogical inference.
Lee, Hee Seung; Holyoak, Keith J
2008-09-01
Computational models of analogy have assumed that the strength of an inductive inference about the target is based directly on similarity of the analogs and in particular on shared higher order relations. In contrast, work in philosophy of science suggests that analogical inference is also guided by causal models of the source and target. In 3 experiments, the authors explored the possibility that people may use causal models to assess the strength of analogical inferences. Experiments 1-2 showed that reducing analogical overlap by eliminating a shared causal relation (a preventive cause present in the source) from the target increased inductive strength even though it decreased similarity of the analogs. These findings were extended in Experiment 3 to cross-domain analogical inferences based on correspondences between higher order causal relations. Analogical inference appears to be mediated by building and then running a causal model. The implications of the present findings for theories of both analogy and causal inference are discussed.
Causal models of trip replanning in TravTek
Schryver, J.C.
1998-07-01
The TravTek operational field test was conducted to evaluate the effectiveness of route planning, route guidance and various navigational aiding modalities for Advanced Traveler Information Systems in ground vehicles. A causal network was constructed in order to achieve a better understanding of the dependencies among variables implicated in the replanning process. Causal inferences were modeled using path analysis techniques. The original Yoked Driver study reported that addition of real-time navigation planning did not increase trip efficiency during initial trip planning. Data mining of the relatively complete database revealed that the incidence of dynamic trip replanning was only 0.51% or 1 out of every 198 trips. Nevertheless, the replanning acceptance rate was 92.8%, suggesting that less conservative criteria might have been acceptable to drivers. Several points can be made based upon the path analysis techniques. Drivers who rejected better route offers were more likely to be male renters; rejected routes were apparently offered at earlier times with a lower predicted time savings and fewer maneuvers. Failure to accept a better route also apparently resulted in fewer wrong-turn deviations. Contrary to expectations, wrong-turn count and time loss appeared as semi-independent hubs in the resultant causal network. Implications of the path analysis are discussed. Proposals for in-vehicle information systems are formulated to increase driver participation as co-planner, and increase the likelihood that trip replanning will positively impact trip efficiency.
ERIC Educational Resources Information Center
Hannan, Michael T.
This document is part of a series of chapters described in SO 011 759. Stochastic models for the sociological analysis of change and the change process in quantitative variables are presented. The author lays groundwork for the statistical treatment of simple stochastic differential equations (SDEs) and discusses some of the continuities of…
Zhou, Douglas; Zhang, Yaoyu; Xiao, Yanyang; Cai, David
2014-01-01
Granger causality (GC) is a powerful method for causal inference for time series. In general, the GC value is computed using discrete time series sampled from continuous-time processes with a certain sampling interval length τ, i.e., the GC value is a function of τ. Using the GC analysis for the topology extraction of the simplest integrate-and-fire neuronal network of two neurons, we discuss behaviors of the GC value as a function of τ, which exhibits (i) oscillations, often vanishing at certain finite sampling interval lengths, (ii) the GC vanishes linearly as one uses finer and finer sampling. We show that these sampling effects can occur in both linear and non-linear dynamics: the GC value may vanish in the presence of true causal influence or become non-zero in the absence of causal influence. Without properly taking this issue into account, GC analysis may produce unreliable conclusions about causal influence when applied to empirical data. These sampling artifacts on the GC value greatly complicate the reliability of causal inference using the GC analysis, in general, and the validity of topology reconstruction for networks, in particular. We use idealized linear models to illustrate possible mechanisms underlying these phenomena and to gain insight into the general spectral structures that give rise to these sampling effects. Finally, we present an approach to circumvent these sampling artifacts to obtain reliable GC values.
Spatiotemporal causal modeling for the management of Dengue Fever
NASA Astrophysics Data System (ADS)
Yu, Hwa-Lung; Huang, Tailin; Lee, Chieh-Han
2015-04-01
Increasing climatic extremes have caused growing concerns about the health effects and disease outbreaks. The association between climate variation and the occurrence of epidemic diseases play an important role on a country's public health systems. Part of the impacts are direct casualties associated with the increasing frequency and intensity of typhoons, the proliferation of disease vectors and the short-term increase of clinic visits on gastro-intestinal discomforts, diarrhea, dermatosis, or psychological trauma. Other impacts come indirectly from the influence of disasters on the ecological and socio-economic systems, including the changes of air/water quality, living environment and employment condition. Previous risk assessment studies on dengue fever focus mostly on climatic and non-climatic factors and their association with vectors' reproducing pattern. The public-health implication may appear simple. Considering the seasonal changes and regional differences, however, the causality of the impacts is full of uncertainties. Without further investigation, the underlying dengue fever risk dynamics may not be assessed accurately. The objective of this study is to develop an epistemic framework for assessing dynamic dengue fever risk across space and time. The proposed framework integrates cross-departmental data, including public-health databases, precipitation data over time and various socio-economic data. We explore public-health issues induced by typhoon through literature review and spatiotemporal analytic techniques on public health databases. From those data, we identify relevant variables and possible causal relationships, and their spatiotemporal patterns derived from our proposed spatiotemporal techniques. Eventually, we create a spatiotemporal causal network and a framework for modeling dynamic dengue fever risk.
Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy
ERIC Educational Resources Information Center
von Eye, Alexander; Wiedermann, Wolfgang
2015-01-01
Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…
Causal information quantification of prominent dynamical features of biological neurons.
Montani, Fernando; Baravalle, Roman; Montangie, Lisandro; Rosso, Osvaldo A
2015-12-13
Neurons tend to fire a spike when they are near a bifurcation from the resting state to spiking activity. It is a delicate balance between noise, dynamic currents and initial condition that determines the phase diagram of neural activity. Many possible ionic mechanisms can be accounted for as the source of spike generation. Moreover, the biophysics and the dynamics behind it can usually be described through a phase diagram that involves membrane voltage versus the activation variable of the ionic channel. In this paper, we present a novel methodology to characterize the dynamics of this system, which takes into account the fine temporal 'structures' of the complex neuronal signals. This allows us to accurately distinguish the most fundamental properties of neurophysiological neurons that were previously described by Izhikevich considering the phase-space trajectory, using a time causal space: statistical complexity versus Fisher information versus Shannon entropy.
A Causal Model of Factors Influencing Faculty Use of Technology
ERIC Educational Resources Information Center
Meyer, Katrina A.; Xu, Yonghong Jade
2009-01-01
Based on earlier studies using the 1999 and 2004 National Study of Postsecondary Faculty (NSOPF) data [1, 2], a causal model explaining faculty technology use was constructed. Path analysis was used to test the causal effects of age, gender, highest degree, discipline (health science or not), recent research productivity, and teaching load on…
Causal Inferences with Group Based Trajectory Models
ERIC Educational Resources Information Center
Haviland, Amelia M.; Nagin, Daniel S.
2005-01-01
A central theme of research on human development and psychopathology is whether a therapeutic intervention or a turning-point event, such as a family break-up, alters the trajectory of the behavior under study. This paper lays out and applies a method for using observational longitudinal data to make more confident causal inferences about the…
Discounting and Augmentation in Causal Conditional Reasoning: Causal Models or Shallow Encoding?
Hall, Simon; Ali, Nilufa; Chater, Nick
2016-01-01
Recent research comparing mental models theory and causal Bayes nets for their ability to account for discounting and augmentation inferences in causal conditional reasoning had some limitations. One of the experiments used an ordinal scale and multiple items and analysed the data by subjects and items. This procedure can create a variety of problems that can be resolved by using an appropriate cumulative link function mixed models approach in which items are treated as random effects. Experiment 1 replicated this earlier experiment and analysed the results using appropriate data analytic techniques. Although successfully replicating earlier research, the pattern of results could be explained by a much simpler “shallow encoding” hypothesis. Experiment 2 introduced a manipulation to critically test this hypothesis. The results favoured the causal Bayes nets predictions and not shallow encoding and were not consistent with mental models theory. Experiment 1 provided qualified support for the causal Bayes net approach using appropriate statistics because it also replicated the failure to observe one of the predicted main effects. Experiment 2 discounted one plausible explanation for this failure. While within the limited goals that were set for these experiments they were successful, more research is required to account for the pattern of findings using this paradigm. PMID:28030583
Nonlinear parametric model for Granger causality of time series
NASA Astrophysics Data System (ADS)
Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano
2006-06-01
The notion of Granger causality between two time series examines if the prediction of one series could be improved by incorporating information of the other. In particular, if the prediction error of the first time series is reduced by including measurements from the second time series, then the second time series is said to have a causal influence on the first one. We propose a radial basis function approach to nonlinear Granger causality. The proposed model is not constrained to be additive in variables from the two time series and can approximate any function of these variables, still being suitable to evaluate causality. Usefulness of this measure of causality is shown in two applications. In the first application, a physiological one, we consider time series of heart rate and blood pressure in congestive heart failure patients and patients affected by sepsis: we find that sepsis patients, unlike congestive heart failure patients, show symmetric causal relationships between the two time series. In the second application, we consider the feedback loop in a model of excitatory and inhibitory neurons: we find that in this system causality measures the combined influence of couplings and membrane time constants.
A Hybrid Causal Search Algorithm for Latent Variable Models
Ogarrio, Juan Miguel; Spirtes, Peter; Ramsey, Joe
2017-01-01
Existing score-based causal model search algorithms such as GES (and a speeded up version, FGS) are asymptotically correct, fast, and reliable, but make the unrealistic assumption that the true causal graph does not contain any unmeasured confounders. There are several constraint-based causal search algorithms (e.g RFCI, FCI, or FCI+) that are asymptotically correct without assuming that there are no unmeasured confounders, but often perform poorly on small samples. We describe a combined score and constraint-based algorithm, GFCI, that we prove is asymptotically correct. On synthetic data, GFCI is only slightly slower than RFCI but more accurate than FCI, RFCI and FCI+. PMID:28239434
Model Averaging for Improving Inference from Causal Diagrams.
Hamra, Ghassan B; Kaufman, Jay S; Vahratian, Anjel
2015-08-11
Model selection is an integral, yet contentious, component of epidemiologic research. Unfortunately, there remains no consensus on how to identify a single, best model among multiple candidate models. Researchers may be prone to selecting the model that best supports their a priori, preferred result; a phenomenon referred to as "wish bias". Directed acyclic graphs (DAGs), based on background causal and substantive knowledge, are a useful tool for specifying a subset of adjustment variables to obtain a causal effect estimate. In many cases, however, a DAG will support multiple, sufficient or minimally-sufficient adjustment sets. Even though all of these may theoretically produce unbiased effect estimates they may, in practice, yield somewhat distinct values, and the need to select between these models once again makes the research enterprise vulnerable to wish bias. In this work, we suggest combining adjustment sets with model averaging techniques to obtain causal estimates based on multiple, theoretically-unbiased models. We use three techniques for averaging the results among multiple candidate models: information criteria weighting, inverse variance weighting, and bootstrapping. We illustrate these approaches with an example from the Pregnancy, Infection, and Nutrition (PIN) study. We show that each averaging technique returns similar, model averaged causal estimates. An a priori strategy of model averaging provides a means of integrating uncertainty in selection among candidate, causal models, while also avoiding the temptation to report the most attractive estimate from a suite of equally valid alternatives.
The Mental Representation of Causal Conditional Reasoning: Mental Models or Causal Models
ERIC Educational Resources Information Center
Ali, Nilufa; Chater, Nick; Oaksford, Mike
2011-01-01
In this paper, two experiments are reported investigating the nature of the cognitive representations underlying causal conditional reasoning performance. The predictions of causal and logical interpretations of the conditional diverge sharply when inferences involving "pairs" of conditionals--such as "if P[subscript 1] then Q" and "if P[subscript…
Friston, Karl J; Bastos, André M; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir
2014-11-01
This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality - providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes - as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling.
NASA Astrophysics Data System (ADS)
Sizochenko, Natalia; Gajewicz, Agnieszka; Leszczynski, Jerzy; Puzyn, Tomasz
2016-03-01
In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase ``correlation does not imply causation'' reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal analysis of multivariate data. Methods of causal discovery have been applied for broader physical insight into mechanisms of action and interpretation of the developed nano-QSAR models. Previously developed nano-QSAR models for toxicity of 17 nano-sized metal oxides towards E. coli bacteria have been validated by means of the causality criteria. Using the descriptors confirmed by the causal technique, we have developed new models consistent with the straightforward causal-reasoning account. It was proven that causal inference methods are able to provide a more robust mechanistic interpretation of the developed nano-QSAR models.In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase ``correlation does not imply causation'' reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal
ERIC Educational Resources Information Center
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio
2016-01-01
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Zhang, Qin; Dong, Chunling; Cui, Yan; Yang, Zhihui
2014-04-01
Graphical models for probabilistic reasoning are now in widespread use. Many approaches have been developed such as Bayesian network. A newly developed approach named as dynamic uncertain causality graph (DUCG) is initially presented in a previous paper, in which only the inference algorithm in terms of individual events and probabilities is addressed. In this paper, we first explain the statistic basis of DUCG. Then, we extend the algorithm to the form of matrices of events and probabilities. It is revealed that the representation of DUCG can be incomplete and the exact probabilistic inference may still be made. A real application of DUCG for fault diagnoses of a generator system of a nuclear power plant is demonstrated, which involves > 600 variables. Most inferences take < 1 s with a laptop computer. The causal logic between inference result and observations is graphically displayed to users so that they know not only the result, but also why the result obtained.
Enhancing scientific reasoning by refining students' models of multivariable causality
NASA Astrophysics Data System (ADS)
Keselman, Alla
Inquiry learning as an educational method is gaining increasing support among elementary and middle school educators. In inquiry activities at the middle school level, students are typically asked to conduct investigations and infer causal relationships about multivariable causal systems. In these activities, students usually demonstrate significant strategic weaknesses and insufficient metastrategic understanding of task demands. Present work suggests that these weaknesses arise from students' deficient mental models of multivariable causality, in which effects of individual features are neither additive, nor constant. This study is an attempt to develop an intervention aimed at enhancing scientific reasoning by refining students' models of multivariable causality. Three groups of students engaged in a scientific investigation activity over seven weekly sessions. By creating unique combinations of five features potentially involved in earthquake mechanism and observing associated risk meter readings, students had to find out which of the features were causal, and to learn to predict earthquake risk. Additionally, students in the instructional and practice groups engaged in self-directed practice in making scientific predictions. The instructional group also participated in weekly instructional sessions on making predictions based on multivariable causality. Students in the practice and instructional conditions showed small to moderate improvement in their attention to the evidence and in their metastrategic ability to recognize effective investigative strategies in the work of other students. They also demonstrated a trend towards making a greater number of valid inferences than the control group students. Additionally, students in the instructional condition showed significant improvement in their ability to draw inferences based on multiple records. They also developed more accurate knowledge about non-causal features of the system. These gains were maintained
Causal Indicator Models: Unresolved Issues of Construction and Evaluation
ERIC Educational Resources Information Center
West, Stephen G.; Grimm, Kevin J.
2014-01-01
These authors agree with Bainter and Bollen that causal effects represents a useful measurement structure in some applications. The structure of the science of the measurement problem should determine the model; the measurement model should not determine the science. They also applaud Bainter and Bollen's important reminder that the full…
The Role of Causal Models in Analogical Inference
ERIC Educational Resources Information Center
Lee, Hee Seung; Holyoak, Keith J.
2008-01-01
Computational models of analogy have assumed that the strength of an inductive inference about the target is based directly on similarity of the analogs and in particular on shared higher order relations. In contrast, work in philosophy of science suggests that analogical inference is also guided by causal models of the source and target. In 3…
What Is the Latent Variable in Causal Indicator Models?
ERIC Educational Resources Information Center
Howell, Roy D.
2014-01-01
Building on the work of Bollen (2007) and Bollen & Bauldry (2011), Bainter and Bollen (this issue) clarifies several points of confusion in the literature regarding causal indicator models. This author would certainly agree that the effect indicator (reflective) measurement model is inappropriate for some indicators (such as the social…
A Causal Model of Teacher Acceptance of Technology
ERIC Educational Resources Information Center
Chang, Jui-Ling; Lieu, Pang-Tien; Liang, Jung-Hui; Liu, Hsiang-Te; Wong, Seng-lee
2012-01-01
This study proposes a causal model for investigating teacher acceptance of technology. We received 258 effective replies from teachers at public and private universities in Taiwan. A questionnaire survey was utilized to test the proposed model. The Lisrel was applied to test the proposed hypotheses. The result shows that computer self-efficacy has…
Causal Model of Stress and Coping: Women in Management.
ERIC Educational Resources Information Center
Long, Bonita C.; And Others
1992-01-01
Tested model of managerial women's (n=249) stress. Model was developed from Lazarus's theoretical framework of stress/coping and incorporated causal antecedent constructs (demographics, sex role attitudes, agentic traits), mediating constructs (environment, appraisals, engagement coping, disengagement coping), and outcomes (work performance,…
Whither Causal Models in the Neuroscience of ADHD?
ERIC Educational Resources Information Center
Coghill, Dave; Nigg, Joel; Rothenberger, Aribert; Sonuga-Barke, Edmund; Tannock, Rosemary
2005-01-01
In this paper we examine the current status of the science of ADHD from a theoretical point of view. While the field has reached the point at which a number of causal models have been proposed, it remains some distance away from demonstrating the viability of such models empirically. We identify a number of existing barriers and make proposals as…
Molenaar, Peter C M
2017-02-16
Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.
Sizochenko, Natalia; Gajewicz, Agnieszka; Leszczynski, Jerzy; Puzyn, Tomasz
2016-04-07
In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase "correlation does not imply causation" reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal analysis of multivariate data. Methods of causal discovery have been applied for broader physical insight into mechanisms of action and interpretation of the developed nano-QSAR models. Previously developed nano-QSAR models for toxicity of 17 nano-sized metal oxides towards E. coli bacteria have been validated by means of the causality criteria. Using the descriptors confirmed by the causal technique, we have developed new models consistent with the straightforward causal-reasoning account. It was proven that causal inference methods are able to provide a more robust mechanistic interpretation of the developed nano-QSAR models.
Formalizing the role of agent-based modeling in causal inference and epidemiology.
Marshall, Brandon D L; Galea, Sandro
2015-01-15
Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry.
Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome
Oliveira, Ana Paula; Dimopoulos, Sotiris; Busetto, Alberto Giovanni; Christen, Stefan; Dechant, Reinhard; Falter, Laura; Haghir Chehreghani, Morteza; Jozefczuk, Szymon; Ludwig, Christina; Rudroff, Florian; Schulz, Juliane Caroline; González, Asier; Soulard, Alexandre; Stracka, Daniele; Aebersold, Ruedi; Buhmann, Joachim M; Hall, Michael N; Peter, Matthias; Sauer, Uwe; Stelling, Jörg
2015-01-01
Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes. PMID:25888284
Political Socialization and Mass Media Use: A Reverse Causality Model.
ERIC Educational Resources Information Center
Tan, Alexis S.
A reverse causality model treating mass media use for public affairs information as a result rather than as a cause of political behavior was tested utilizing surveys of 190 Mexican-American, 176 black, and 225 white adults. The criterion variable used in each sample was frequency of television and newspaper use for public affairs information. The…
Sex Differences in a Causal Model of Career Maturity.
ERIC Educational Resources Information Center
King, Suzanne
1989-01-01
Studied sex differences among high school students (N=318) in career development process to determine whether sex differences exist in way six independent variables interact in career maturity causal model of career maturity and to compare each variable's effect on career maturity. Results suggest significant sex differences consistent with…
Institutional Quality and Generalized Trust: A Nonrecursive Causal Model
ERIC Educational Resources Information Center
Robbins, Blaine G.
2012-01-01
This paper investigates the association between institutional quality and generalized trust. Despite the importance of the topic, little quantitative empirical evidence exists to support either unidirectional or bidirectional causality for the reason that cross-sectional studies rarely model the reciprocal relationship between institutional…
Greenland, Sander; Mansournia, Mohammad Ali
2015-10-01
We describe how ordinary interpretations of causal models and causal graphs fail to capture important distinctions among ignorable allocation mechanisms for subject selection or allocation. We illustrate these limitations in the case of random confounding and designs that prevent such confounding. In many experimental designs individual treatment allocations are dependent, and explicit population models are needed to show this dependency. In particular, certain designs impose unfaithful covariate-treatment distributions to prevent random confounding, yet ordinary causal graphs cannot discriminate between these unconfounded designs and confounded studies. Causal models for populations are better suited for displaying these phenomena than are individual-level models, because they allow representation of allocation dependencies as well as outcome dependencies across individuals. Nonetheless, even with this extension, ordinary graphical models still fail to capture distinctions between hypothetical superpopulations (sampling distributions) and observed populations (actual distributions), although potential-outcome models can be adapted to show these distinctions and their consequences.
Quantum Supersymmetric Models in the Causal Approach
NASA Astrophysics Data System (ADS)
Grigore, Dan-Radu
2007-04-01
We consider the massless supersymmetric vector multiplet in a purely quantum framework. First order gauge invariance determines uniquely the interaction Lagrangian as in the case of Yang-Mills models. Going to the second order of perturbation theory produces an anomaly which cannot be eliminated. We make the analysis of the model working only with the component fields.
Estimating Causal Effects with Ancestral Graph Markov Models
Malinsky, Daniel; Spirtes, Peter
2017-01-01
We present an algorithm for estimating bounds on causal effects from observational data which combines graphical model search with simple linear regression. We assume that the underlying system can be represented by a linear structural equation model with no feedback, and we allow for the possibility of latent variables. Under assumptions standard in the causal search literature, we use conditional independence constraints to search for an equivalence class of ancestral graphs. Then, for each model in the equivalence class, we perform the appropriate regression (using causal structure information to determine which covariates to include in the regression) to estimate a set of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009), which assumes that all relevant variables have been measured (i.e., no unmeasured confounders). We generalize their work by relaxing this assumption, which is often violated in applied contexts. We validate the performance of our algorithm on simulated data and demonstrate improved precision over IDA when latent variables are present. PMID:28217244
ERIC Educational Resources Information Center
Perkins, David N.; Grotzer, Tina A.
This paper presents the results of a research project based on the Understandings of Consequence Project. This study motivated students to engage in inquiry in science classrooms. The complexity of the models is divided into four categories--underlying causality, relational causality, probabilistic causality, and emergent causality--and provides…
Causal Model Progressions as a Foundation for Intelligent Learning Environments.
1987-11-01
Learning Environments 12. PERSONAL AUTHOR(S? Barbara Y. White and John R. Frederiksen 13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year...architecture of a new type of learning environment that incorporates features of microworlds and of intelligent tutorng systems. The environment is based on...The design principles underlying the creation of one type of causal model are then given (for zero-order models of electrical circuit behavior); and
Measured, modeled, and causal conceptions of fitness.
Abrams, Marshall
2012-01-01
THIS PAPER PROPOSES PARTIAL ANSWERS TO THE FOLLOWING QUESTIONS: in what senses can fitness differences plausibly be considered causes of evolution?What relationships are there between fitness concepts used in empirical research, modeling, and abstract theoretical proposals? How does the relevance of different fitness concepts depend on research questions and methodological constraints? The paper develops a novel taxonomy of fitness concepts, beginning with type fitness (a property of a genotype or phenotype), token fitness (a property of a particular individual), and purely mathematical fitness. Type fitness includes statistical type fitness, which can be measured from population data, and parametric type fitness, which is an underlying property estimated by statistical type fitnesses. Token fitness includes measurable token fitness, which can be measured on an individual, and tendential token fitness, which is assumed to be an underlying property of the individual in its environmental circumstances. Some of the paper's conclusions can be outlined as follows: claims that fitness differences do not cause evolution are reasonable when fitness is treated as statistical type fitness, measurable token fitness, or purely mathematical fitness. Some of the ways in which statistical methods are used in population genetics suggest that what natural selection involves are differences in parametric type fitnesses. Further, it's reasonable to think that differences in parametric type fitness can cause evolution. Tendential token fitnesses, however, are not themselves sufficient for natural selection. Though parametric type fitnesses are typically not directly measurable, they can be modeled with purely mathematical fitnesses and estimated by statistical type fitnesses, which in turn are defined in terms of measurable token fitnesses. The paper clarifies the ways in which fitnesses depend on pragmatic choices made by researchers.
ERIC Educational Resources Information Center
Hannan, Michael T.; Freeman, John
The document, part of a series of chapters described in SO 011 759, describes a model that incorporates organizational politics and environmental dependence into a study of the effects of growth and decline on the number of school personnel. The first section describes the original model which assumes that as the number of students in a district…
On inference of causality for discrete state models in a multiscale context
Gerber, Susanne; Horenko, Illia
2014-01-01
Discrete state models are a common tool of modeling in many areas. E.g., Markov state models as a particular representative of this model family became one of the major instruments for analysis and understanding of processes in molecular dynamics (MD). Here we extend the scope of discrete state models to the case of systematically missing scales, resulting in a nonstationary and nonhomogeneous formulation of the inference problem. We demonstrate how the recently developed tools of nonstationary data analysis and information theory can be used to identify the simultaneously most optimal (in terms of describing the given data) and most simple (in terms of complexity and causality) discrete state models. We apply the resulting formalism to a problem from molecular dynamics and show how the results can be used to understand the spatial and temporal causality information beyond the usual assumptions. We demonstrate that the most optimal explanation for the appropriately discretized/coarse-grained MD torsion angles data in a polypeptide is given by the causality that is localized both in time and in space, opening new possibilities for deploying percolation theory and stochastic subgridscale modeling approaches in the area of MD. PMID:25267630
A Preliminary Evaluation of Causal Models of Male and Female Acquisition of Pilot Skills
1997-01-01
Male and Female Causal Models...Clearance number 97-531 A Preliminary Evaluation of Causal Models of Male and Female Acquisition of Pilot Skills12 Thomas R. Carretta and Malcolm James...knowledge and flying skills was tested on separate samples of male and female students. Causal model parameters were estimated separately for each
Faes, Luca; Nollo, Giandomenico; Erla, Silvia; Papadelis, Christos; Braun, Christoph; Porta, Alberto
2010-01-01
This study introduces a new approach for the detection of nonlinear Granger causality between dynamical systems. The approach is based on embedding the multivariate (MV) time series measured from the systems X and Y by means of a sequential, non-uniform procedure, and on using the corrected conditional entropy (CCE) as unpredictability measure. The causal coupling from X to Y is quantified as the relative decrease of CCE measured after allowing the series of X to enter the embedding procedure for the description of Y. The ability of the approach to quantify nonlinear causality is assessed on MV time series measured from simulated dynamical systems with unidirectional coupling (the Rössler-Lorenz deterministic system) and bidirectional coupling (two coupled stochastic systems). The method is then applied to real magnetoencephalographic data measured during a visuo-tactile cognitive experiment, showing values of causal coupling consistent with the hypothesis of a cross-processing of different sensory modalities.
Who Is the Dynamic Duo? How Infants Learn about the Identity of Objects in a Causal Chain
ERIC Educational Resources Information Center
Rakison, David H.; Smith, Gabriel Tobin; Ali, Areej
2016-01-01
Four experiments investigated infants' and adults' knowledge of the identity of objects in a causal sequence of events. In Experiments 1 and 2, 18- and 22-month-olds in the visual habituation procedure were shown a 3-step causal chain event in which the relation between an object's part (dynamic or static) and its causal role was either consistent…
Applying optimal model selection in principal stratification for causal inference.
Odondi, Lang'o; McNamee, Roseanne
2013-05-20
Noncompliance to treatment allocation is a key source of complication for causal inference. Efficacy estimation is likely to be compounded by the presence of noncompliance in both treatment arms of clinical trials where the intention-to-treat estimate provides a biased estimator for the true causal estimate even under homogeneous treatment effects assumption. Principal stratification method has been developed to address such posttreatment complications. The present work extends a principal stratification method that adjusts for noncompliance in two-treatment arms trials by developing model selection for covariates predicting compliance to treatment in each arm. We apply the method to analyse data from the Esprit study, which was conducted to ascertain whether unopposed oestrogen (hormone replacement therapy) reduced the risk of further cardiac events in postmenopausal women who survive a first myocardial infarction. We adjust for noncompliance in both treatment arms under a Bayesian framework to produce causal risk ratio estimates for each principal stratum. For mild values of a sensitivity parameter and using separate predictors of compliance in each arm, principal stratification results suggested that compliance with hormone replacement therapy only would reduce the risk for death and myocardial reinfarction by about 47% and 25%, respectively, whereas compliance with either treatment would reduce the risk for death by 13% and reinfarction by 60% among the most compliant. However, the results were sensitive to the user-defined sensitivity parameter.
Neural Representation and Causal Models in Motor Cortex.
Chaisanguanthum, Kris S; Shen, Helen H; Sabes, Philip N
2017-03-22
Dorsal premotor (PMd) and primary motor (M1) cortices play a central role in mapping sensation to movement. Many studies of these areas have focused on correlation-based tuning curves relating neural activity to task or movement parameters, but the link between tuning and movement generation is unclear. We recorded motor preparatory activity from populations of neurons in PMd/M1 as macaque monkeys performed a visually guided reaching task and show that tuning curves for sensory inputs (reach target direction) and motor outputs (initial movement direction) are not typically aligned. We then used a simple, causal model to determine the expected relationship between sensory and motor tuning. The model shows that movement variability is minimized when output neurons (those that directly drive movement) have target and movement tuning that are linearly related across targets and cells. In contrast, for neurons that only affect movement via projections to output neurons, the relationship between target and movement tuning is determined by the pattern of projections to output neurons and may even be uncorrelated, as was observed for the PMd/M1 population as a whole. We therefore determined the relationship between target and movement tuning for subpopulations of cells defined by the temporal duration of their spike waveforms, which may distinguish cell types. We found a strong correlation between target and movement tuning for only a subpopulation of neurons with intermediate spike durations (trough-to-peak ∼350 μs after high-pass filtering), suggesting that these cells have the most direct role in driving motor output.SIGNIFICANCE STATEMENT This study focuses on how macaque premotor and primary motor cortices transform sensory inputs into motor outputs. We develop empirical and theoretical links between causal models of this transformation and more traditional, correlation-based "tuning curve" analyses. Contrary to common assumptions, we show that sensory and motor
Risk-Based Causal Modeling of Airborne Loss of Separation
NASA Technical Reports Server (NTRS)
Geuther, Steven C.; Shih, Ann T.
2015-01-01
Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.
Identifying Granger causal relationships between neural power dynamics and variables of interest.
Winkler, Irene; Haufe, Stefan; Porbadnigk, Anne K; Müller, Klaus-Robert; Dähne, Sven
2015-05-01
Power modulations of oscillations in electro- and magnetoencephalographic (EEG/MEG) signals have been linked to a wide range of brain functions. To date, most of the evidence is obtained by correlating bandpower fluctuations to specific target variables such as reaction times or task ratings, while the causal links between oscillatory activity and behavior remain less clear. Here, we propose to identify causal relationships by the statistical concept of Granger causality, and we investigate which methods are bests suited to reveal Granger causal links between the power of brain oscillations and experimental variables. As an alternative to testing such causal links on the sensor level, we propose to linearly combine the information contained in each sensor in order to create virtual channels, corresponding to estimates of underlying brain oscillations, the Granger-causal relations of which may be assessed. Such linear combinations of sensor can be given by source separation methods such as, for example, Independent Component Analysis (ICA) or by the recently developed Source Power Correlation (SPoC) method. Here we compare Granger causal analysis on power dynamics obtained from i) sensor directly, ii) spatial filtering methods that do not optimize for Granger causality (ICA and SPoC), and iii) a method that directly optimizes spatial filters to extract sources the power dynamics of which maximally Granger causes a given target variable. We refer to this method as Granger Causal Power Analysis (GrangerCPA). Using both simulated and real EEG recordings, we find that computing Granger causality on channel-wise spectral power suffers from a poor signal-to-noise ratio due to volume conduction, while all three multivariate approaches alleviate this issue. In real EEG recordings from subjects performing self-paced foot movements, all three multivariate methods identify neural oscillations with motor-related patterns at a similar performance level. In an auditory perception
[The Granger causality models and their applications in brain effective connectivity networks].
Zhao, Tiezhu; Zheng, Gang; Pan, Zhiying; Li, Qiang; Wang, Li; Lu, Guangming
2013-12-01
Granger causality model is an analysis method that requires no priori knowledge and emphasizes time sequence. Such model applied to brain effective connectivity network can reflect the directional connectivity among brain regions or neurons. This paper reviews the principle of Granger causality model, basic test steps and improved models, analyzes and discusses applications and existing problems of Granger causality model in brain effective connectivity network.
Anderssen, Robert S; Helliwell, Christopher A
2013-07-01
The recovery of information from indirect measurements takes different forms depending on the sophistication with which the process being researched can be modelled mathematically. The forms range from (1) the historical and classical inverse problems regularization situation where explicit models which guaranteed existence and uniqueness have been formulated, through (2) situations where model formulation is performed implicitly as a calibration-and-prediction ansatz, to (3) the exploratory (biology) situation where the underlying mechanism is unknown and constraining information about its dynamics is being sought through appropriate experimentation. Each represents a different aspect of the solution of inverse problems. It is the nature of the exploratory form that is discussed in this paper. The focus is the causal modelling of regulated promoter switching experiments performed to understand the dynamics of the genetic control of various biological developmental processes such as vernalization in plants; in particular, regulated promoter switching experiments used to examine the relationship between FLC transcription activity and the associated histone H3 lysine 27 trimethylation at a vernalization-responsive gene in plants. Using a causal representation with Kohlrausch function fading memory, it is shown how such modelling can be used to quantitatively assess the closeness of the linking of one biological process with another, and, in particular, to conclude that the dynamics of FLC transcription and associated H3K27me3 activity are closely linked biologically.
Causal Inference and Model Selection in Complex Settings
NASA Astrophysics Data System (ADS)
Zhao, Shandong
Propensity score methods have become a part of the standard toolkit for applied researchers who wish to ascertain causal effects from observational data. While they were originally developed for binary treatments, several researchers have proposed generalizations of the propensity score methodology for non-binary treatment regimes. In this article, we firstly review three main methods that generalize propensity scores in this direction, namely, inverse propensity weighting (IPW), the propensity function (P-FUNCTION), and the generalized propensity score (GPS), along with recent extensions of the GPS that aim to improve its robustness. We compare the assumptions, theoretical properties, and empirical performance of these methods. We propose three new methods that provide robust causal estimation based on the P-FUNCTION and GPS. While our proposed P-FUNCTION-based estimator preforms well, we generally advise caution in that all available methods can be biased by model misspecification and extrapolation. In a related line of research, we consider adjustment for posttreatment covariates in causal inference. Even in a randomized experiment, observations might have different compliance performance under treatment and control assignment. This posttreatment covariate cannot be adjusted using standard statistical methods. We review the principal stratification framework which allows for modeling this effect as part of its Bayesian hierarchical models. We generalize the current model to add the possibility of adjusting for pretreatment covariates. We also propose a new estimator of the average treatment effect over the entire population. In a third line of research, we discuss the spectral line detection problem in high energy astrophysics. We carefully review how this problem can be statistically formulated as a precise hypothesis test with point null hypothesis, why a usual likelihood ratio test does not apply for problem of this nature, and a doable fix to correctly
NASA Astrophysics Data System (ADS)
Janzing, Dominik; Chaves, Rafael; Schölkopf, Bernhard
2016-09-01
We postulate a principle stating that the initial condition of a physical system is typically algorithmically independent of the dynamical law. We discuss the implications of this principle and argue that they link thermodynamics and causal inference. On the one hand, they entail behavior that is similar to the usual arrow of time. On the other hand, they motivate a statistical asymmetry between cause and effect that has recently been postulated in the field of causal inference, namely, that the probability distribution {P}{{cause}} contains no information about the conditional distribution {P}{{effect}| {{cause}}} and vice versa, while {P}{{effect}} may contain information about {P}{{cause}| {{effect}}}.
Iturria-Medina, Yasser; Carbonell, Félix M; Sotero, Roberto C; Chouinard-Decorte, Francois; Evans, Alan C
2017-02-28
Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally based on limited data. Despite the biological importance of the multiple interacting processes, their effects remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identification of optimum therapeutic interventions. In this article, we focus on describing the model and applying it at the population-based level for studying late onset Alzheimer's disease (LOAD). By interrelating six different neuroimaging modalities and cognitive measurements, this model accurately predicts spatiotemporal alterations in brain amyloid-β (Aβ) burden, glucose metabolism, vascular flow, resting state functional activity, structural properties, and cognitive integrity. The results suggest that a vascular dysregulation may be the most-likely initial pathologic event leading to LOAD. Nevertheless, they also suggest that LOAD it is not caused by a unique dominant biological factor (e.g. vascular or Aβ) but by the complex interplay among multiple relevant direct interactions. Furthermore, using theoretical control analysis of the identified population-based multifactorial causal network, we show the crucial advantage of using combinatorial over single-target treatments, explain why one-target Aβ based therapies might fail to improve clinical outcomes, and propose an efficiency ranking of possible LOAD interventions. Although still requiring further validation at the individual level, this work presents the first analytic framework for dynamic multifactorial brain (dis)organization that may explain both the pathologic evolution of progressive neurological disorders and operationalize the influence of multiple interventional
A developmental approach to learning causal models for cyber security
NASA Astrophysics Data System (ADS)
Mugan, Jonathan
2013-05-01
To keep pace with our adversaries, we must expand the scope of machine learning and reasoning to address the breadth of possible attacks. One approach is to employ an algorithm to learn a set of causal models that describes the entire cyber network and each host end node. Such a learning algorithm would run continuously on the system and monitor activity in real time. With a set of causal models, the algorithm could anticipate novel attacks, take actions to thwart them, and predict the second-order effects flood of information, and the algorithm would have to determine which streams of that flood were relevant in which situations. This paper will present the results of efforts toward the application of a developmental learning algorithm to the problem of cyber security. The algorithm is modeled on the principles of human developmental learning and is designed to allow an agent to learn about the computer system in which it resides through active exploration. Children are flexible learners who acquire knowledge by actively exploring their environment and making predictions about what they will find,1, 2 and our algorithm is inspired by the work of the developmental psychologist Jean Piaget.3 Piaget described how children construct knowledge in stages and learn new concepts on top of those they already know. Developmental learning allows our algorithm to focus on subsets of the environment that are most helpful for learning given its current knowledge. In experiments, the algorithm was able to learn the conditions for file exfiltration and use that knowledge to protect sensitive files.
A new causal model of dental diseases associated with endocarditis.
Drangsholt, M T
1998-07-01
Infective endocarditis (IE) is a serious disease that is associated with dental diseases and treatment. The objective of this study was to summarize the epidemiological information about IE and reevaluate previous causal models in light of this evidence. The world biomedical literature was searched from 1930 to 1996 for descriptive and analytic epidemiological studies of IE. Multiple searching strategies were performed on 9 databases, including MEDLINE, CATLINE, and WORLDCAT. Results show that: 1) the incidence of IE varies between 0.70 to 6.8 per 100,000 person-years: 2) the incidence of IE increases 20 fold with advancing age: 3) over 50% of all IE cases are not associated with either an obvious procedural or infectious event 3 months prior to developing symptoms; 4) about 8% of all IE cases are associated with periodontal or dental disease without a dental procedure: 5) the time from the diagnosis of heart valve deformities to the development of IE approaches 20 years: 6) the median time from identifiable procedures to the onset of IE symptoms is about 2 to 4 weeks: 7) the risk of IE after a dental procedure is probably in the range of 1 per 3,000 to 5,000 procedures: and 8) over 80% of all IE cases are acquired in the community, and the bacteria are part of the host's endogenous flora. The synthesis of these data demonstrates that IE is a disorder with the epidemiological picture of a chronic disease such as cancer, instead of an acute infectious disease, with a long latent period and possibly several definable intermediates or stages. A new causal model is proposed that includes early bacteremias that may "prime" the endothelial surface of the heart valves over many years, and a late bacteremia over days to weeks that allows adherence and colonization of the valve, resulting in the characteristic fulminant infection.
Cause and Event: Supporting Causal Claims through Logistic Models
ERIC Educational Resources Information Center
O'Connell, Ann A.; Gray, DeLeon L.
2011-01-01
Efforts to identify and support credible causal claims have received intense interest in the research community, particularly over the past few decades. In this paper, we focus on the use of statistical procedures designed to support causal claims for a treatment or intervention when the response variable of interest is dichotomous. We identify…
Evaluating Social Causality and Responsibility Models: An Initial Report
2005-01-01
events and executed actions as inputs. Causal information and social information are also important inputs. Causal information includes an action ... theory and a plan library (discussed below). Social information specifies social roles and the power relationship of the roles. The in- ference
Counterfactuals and Causal Models: Introduction to the Special Issue
ERIC Educational Resources Information Center
Sloman, Steven A.
2013-01-01
Judea Pearl won the 2010 Rumelhart Prize in computational cognitive science due to his seminal contributions to the development of Bayes nets and causal Bayes nets, frameworks that are central to multiple domains of the computational study of mind. At the heart of the causal Bayes nets formalism is the notion of a counterfactual, a representation…
Dong, Chunling; Zhao, Yue; Zhang, Qin
2016-08-01
Identifying the pivotal causes and highly influential spreaders in fault propagation processes is crucial for improving the maintenance decision making for complex systems under abnormal and emergency situations. A dynamic uncertain causality graph-based method is introduced in this paper to explicitly model the uncertain causalities among system components, identify fault conditions, locate the fault origins, and predict the spreading tendency by means of probabilistic reasoning. A new algorithm is proposed to assess the impacts of an individual event by investigating the corresponding node's time-variant betweenness centrality and the strength of global causal influence in the fault propagation network. The algorithm does not depend on the whole original and static network but on the real-time spreading behaviors and dynamics, which makes the algorithm to be specifically targeted and more efficient. Experiments on both simulated networks and real-world systems demonstrate the accuracy, effectiveness, and comprehensibility of the proposed method for the fault management of power grids and other complex networked systems.
Scheduling with partial orders and a causal model
NASA Technical Reports Server (NTRS)
Boddy, Mark; Carciofini, Jim; Hadden, George D.
1993-01-01
In an ongoing project at Honeywell SRC, we are constructing a prototype scheduling system for a NASA domain using the 'Time Map Manager' (TMM). The TMM representations are flexible enough to permit the representation of precedence constraints, metric constraints between activities, and constraints relative to a variety of references (e.g., Mission Elapsed Time vs. Mission Day). The TMM also supports a simple form of causal reasoning (projection), dynamic database updates, and monitoring specified database properties as changes occur over time. The greatest apparent advantage to using the TMM is the flexibility added to the scheduling process: schedules are constructed by a process of 'iterative refinement,' in which scheduling decisions correspond to constraining an activity either with respect to another activity or with respect to one time line. The schedule becomes more detailed as activities and constraints are added. Undoing a scheduling decision means removing a constraint, not removing an activity from a specified place on the time line. For example, we can move an activity around on the time line by deleting constraints and adding new ones.
NASA Astrophysics Data System (ADS)
Wolfinger, Donna M.
The purpose of this research was to determine whether the young child's understanding of physical causality is affected by school science instruction. Sixty-four subjects, four and one-half through seven years of age, received 300 min of instruction designed to affect the subject's conception of causality as reflected in animism and dynamism. Instruction took place for 30 min per day on ten successive school days. Pretesting was done to allow a stratified random sample to be based on vocabulary level and developmental stage as well as on age and gender. Post-testing consisted of testing of developmental level and level within the causal relations of animism and dynamism. Significant differences (1.05 level) were found between the experimental and control groups for animism. Within the experimental group, males differed significantly (1.001 level) from females. The elimination of animism appeared to have occurred. For dynamism, significant differences (0.05 level) were found only between concrete operational subjects in the experimental and control groups, indicating a concrete level of operations was necessary if dynamism was to be affected. However, a review of interview protocols indicated that subjects classified as nonanimistic had learned to apply a definition rather than to think in a nonanimistic manner.
Modeling the Causal Regulation of Transversely Accelerated Ion (TAI) Outflows
NASA Astrophysics Data System (ADS)
Varney, R. H.; Wiltberger, M. J.; Zhang, B.; Schmitt, P.; Lotko, W.
2013-12-01
TAIs are generated by wave particle interactions driven by waves at temporal and spatial scales which are inaccessible in global coupled geospace models. So far attempts to include TAI outflows in global models have focused on the use of empirical correlations between observed outflow fluxes and various inputs such as DC Poynting flux, Alfvénic Poynting flux, and electron precipitation fluxes. These treatments ignore feedbacks between the outflow and the state of the ionosphere and assume the spatial and temporal distributions of the outflows are identical to those of their drivers. This work presents an alternative approach which can overcome these deficiencies while still being sufficiently computationally efficient to couple into a global modeling framework. TAIs are incorporated into a 3-D fluid model of the ionosphere and polar wind by modeling them as a separate fluid which obeys transport equations appropriate for monoenergetic conic distributions. The characteristics of the TAI outflow produced depend on the assumed transverse heating rates and the 'promotion rate' which connects the TAI fluid to the thermal O+ fluid. Using drivers extracted from runs of the Coupled Magnetosphere Ionosphere Thermosphere (CMIT) model, different strategies for causally regulating these free parameters are explored. The model can reproduce many of the observed features of TAI outflows but also exhibits physical attributes that empirical relationships alone miss. These characteristics include flux limiting of the outflow from below when intense outflow creates high-altitude cavities, time delays between the onset of transverse heating and the appearance of outflow, and spatial distributions of outflow which are different from the spatial distributions of the applied transverse heating and which depend on the ionospheric convection pattern.
Sensory Impairments and Autism: A Re-Examination of Causal Modelling
ERIC Educational Resources Information Center
Gerrard, Sue; Rugg, Gordon
2009-01-01
Sensory impairments are widely reported in autism, but remain largely unexplained by existing models. This article examines Kanner's causal reasoning and identifies unsupported assumptions implicit in later empirical work. Our analysis supports a heterogeneous causal model for autistic characteristics. We propose that the development of a…
The causal pie model: an epidemiological method applied to evolutionary biology and ecology.
Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette
2014-05-01
A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a "causal pie" of "component causes". Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made.
Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models
2016-01-01
Studies of audiovisual perception of distance are rare. Here, visual and auditory cue interactions in distance are tested against several multisensory models, including a modified causal inference model. In this causal inference model predictions of estimate distributions are included. In our study, the audiovisual perception of distance was overall better explained by Bayesian causal inference than by other traditional models, such as sensory dominance and mandatory integration, and no interaction. Causal inference resolved with probability matching yielded the best fit to the data. Finally, we propose that sensory weights can also be estimated from causal inference. The analysis of the sensory weights allows us to obtain windows within which there is an interaction between the audiovisual stimuli. We find that the visual stimulus always contributes by more than 80% to the perception of visual distance. The visual stimulus also contributes by more than 50% to the perception of auditory distance, but only within a mobile window of interaction, which ranges from 1 to 4 m. PMID:27959919
Causal and causally separable processes
NASA Astrophysics Data System (ADS)
Oreshkov, Ognyan; Giarmatzi, Christina
2016-09-01
The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and
NASA Astrophysics Data System (ADS)
Jensen, Eva
2014-07-01
If students really understand the systems they study, they would be able to tell how changes in the system would affect a result. This demands that the students understand the mechanisms that drive its behaviour. The study investigates potential merits of learning how to explicitly model the causal structure of systems. The approach and performance of 15 system dynamics students who are taught to explicitly model the causal structure of the systems they study were compared with the approach and performance of 22 engineering students, who generally did not receive such training. The task was to bring a computer-simulated predator-and-prey ecology to equilibrium. The system dynamics students were significantly more likely than the engineering students to correctly frame the problem. They were not much better at solving the task, however. It seemed that they had only learnt how to make models and not how to use them for reasoning.
Paynter, Stuart
2016-03-15
Conventional measures of causality (which compare risks between exposed and unexposed individuals) do not factor in the population-scale dynamics of infectious disease transmission. We used mathematical models of 2 childhood infections (respiratory syncytial virus and rotavirus) to illustrate this problem. These models incorporated 3 causal pathways whereby malnutrition could act to increase the incidence of severe infection: increasing the proportion of infected children who develop severe infection, increasing the children's susceptibility to infection, and increasing infectiousness. For risk factors that increased the proportion of infected children who developed severe infection, the population attributable fraction (PAF) calculated conventionally was the same as the PAF calculated directly from the models. However, for risk factors that increased transmission (by either increasing susceptibility to infection or increasing infectiousness), the PAF calculated directly from the models was much larger than that predicted by the conventional PAF calculation. The models also showed that even when conventional studies find no association between a risk factor and an outcome, risk factors that increase transmission can still have a large impact on disease burden. For a complete picture of infectious disease causality, transmission effects must be incorporated into causal models.
Estimators for Clustered Education RCTs Using the Neyman Model for Causal Inference
ERIC Educational Resources Information Center
Schochet, Peter Z.
2013-01-01
This article examines the estimation of two-stage clustered designs for education randomized control trials (RCTs) using the nonparametric Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for…
Causal Agency Theory: Reconceptualizing a Functional Model of Self-Determination
ERIC Educational Resources Information Center
Shogren, Karrie A.; Wehmeyer, Michael L.; Palmer, Susan B.; Forber-Pratt, Anjali J.; Little, Todd J.; Lopez, Shane
2015-01-01
This paper introduces Causal Agency Theory, an extension of the functional model of self-determination. Causal Agency Theory addresses the need for interventions and assessments pertaining to selfdetermination for all students and incorporates the significant advances in understanding of disability and in the field of positive psychology since the…
A novel approach for identifying causal models of complex diseases from family data.
Park, Leeyoung; Kim, Ju H
2015-04-01
Causal models including genetic factors are important for understanding the presentation mechanisms of complex diseases. Familial aggregation and segregation analyses based on polygenic threshold models have been the primary approach to fitting genetic models to the family data of complex diseases. In the current study, an advanced approach to obtaining appropriate causal models for complex diseases based on the sufficient component cause (SCC) model involving combinations of traditional genetics principles was proposed. The probabilities for the entire population, i.e., normal-normal, normal-disease, and disease-disease, were considered for each model for the appropriate handling of common complex diseases. The causal model in the current study included the genetic effects from single genes involving epistasis, complementary gene interactions, gene-environment interactions, and environmental effects. Bayesian inference using a Markov chain Monte Carlo algorithm (MCMC) was used to assess of the proportions of each component for a given population lifetime incidence. This approach is flexible, allowing both common and rare variants within a gene and across multiple genes. An application to schizophrenia data confirmed the complexity of the causal factors. An analysis of diabetes data demonstrated that environmental factors and gene-environment interactions are the main causal factors for type II diabetes. The proposed method is effective and useful for identifying causal models, which can accelerate the development of efficient strategies for identifying causal factors of complex diseases.
ERIC Educational Resources Information Center
Hayduk, Leslie
2014-01-01
Researchers using factor analysis tend to dismiss the significant ill fit of factor models by presuming that if their factor model is close-to-fitting, it is probably close to being properly causally specified. Close fit may indeed result from a model being close to properly causally specified, but close-fitting factor models can also be seriously…
Visual causal models enhance clinical explanations of treatments for generalized anxiety disorder.
Kim, Nancy S; Khalife, Danielle; Judge, Kelly A; Paulus, Daniel J; Jordan, Jake T; Yopchick, Jennelle E
2013-01-01
A daily challenge in clinical practice is to adequately explain disorders and treatments to patients of varying levels of literacy in a time-limited situation. Drawing jointly upon research on causal reasoning and multimodal theory, the authors asked whether adding visual causal models to clinical explanations promotes patient learning. Participants were 86 people currently or formerly diagnosed with a mood disorder and 104 lay people in Boston, Massachusetts, USA, who were randomly assigned to receive either a visual causal model (dual-mode) presentation or auditory-only presentation of an explanation about generalized anxiety disorder and its treatment. Participants' knowledge was tested before, immediately after, and 4 weeks after the presentation. Patients and lay people learned significantly more from visual causal model presentations than from auditory-only presentations, and visual causal models were perceived to be helpful. Participants retained some information 4 weeks after the presentation, although the advantage of visual causal models did not persist in the long term. In conclusion, dual-mode presentations featuring visual causal models yield significant relative gains in patient comprehension immediately after the clinical session, at a time when the authors suggest that patients may be most willing to begin the recommended treatment plan.
Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas
2013-01-01
The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.
NASA Astrophysics Data System (ADS)
Yao, Can-Zhong; Lin, Ji-Nan; Lin, Qing-Wen; Zheng, Xu-Zhou; Liu, Xiao-Feng
2016-11-01
Based on industrial electricity consumption, we model industrial networks by Granger causality method and MST (minimum spanning tree), and then further stick onto an industrial coupling mechanism from energy-consumption perspective. First, we construct Granger causality networks of five provinces in South China of GD, GX, GZ, HN and YN based on their industrial electricity consumption data, and we demonstrate from a network-topology perspective: the distribution of weight of links of all industrial electricity-consumption Granger causality networks approximately follows power-law distribution, revealing a phenomenon that few industries may bring a tremendous influence on the rest. Moreover, correlation analysis between weight and degree of a node shows that in most Granger causality networks, both span and strength of influence of a given industry will significantly increase. Further, we analyze the relationship between the thresholds of Granger causality significance and density of corresponding networks. Results show GD and HN could be classified into a group with relatively greater global differentiation in industries and unbalanced industrial development, however, GX, GZ and YN are grouped as second cluster with relatively balanced industrial development. Furthermore, using Chu-Liu-EdmondsMST algorithm, we extract graphs of MSTs or maximal cliques from industrial electricity-consumption Granger causality networks, and research on energy transmission structure, feedback loop, and bootstrap reliability. By analyzing MSTs, we find that only GD, GX and YN can be extracted with MST graphs, and capture the probable transmission routes of key nodes. Besides we illustrate all three MST graphs are involved with feedback loops structures with various characteristics: GX has complete feed-forward section, feed-back section and feedback loop section; YN has only feed-forward section and feedback loop section; GD has multiple feedback loops section. Finally, we conduct
Causal Indicator Models Have Nothing to Do with Measurement
ERIC Educational Resources Information Center
Howell, Roy D.; Breivik, Einar
2016-01-01
In this article, Roy Howell, and Einar Breivik, congratulate Aguirre-Urreta, M. I., Rönkkö, M., & Marakas, G. M., for their work (2016) "Omission of Causal Indicators: Consequences and Implications for Measurement," Measurement: Interdisciplinary Research and Perspectives, 14(3), 75-97. doi:10.1080/15366367.2016.1205935. They call it…
A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2013-01-01
The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…
Howard, Philip D; Dixon, Louise
2013-06-01
Recent studies of multiwave risk assessment have investigated the association between changes in risk factors and violent recidivism. This study analyzed a large multiwave data set of English and Welsh offenders (N = 196,493), assessed in realistic correctional conditions using the static/dynamic Offender Assessment System (OASys). It aimed to compare the predictive validity of the OASys Violence Predictor (OVP) under mandated repeated assessment and one-time initial assessment conditions. Scores on 5 of OVP's 7 purportedly dynamic risk factors changed in 6 to 15% of pairs of successive assessments, whereas the other 2 seldom changed. Violent reoffenders had higher initial total and dynamic OVP scores than nonreoffenders, yet nonreoffenders' dynamic scores fell by significantly more between initial and final assessment. OVP scores from the current assessment achieved greater predictive validity than those from the initial assessment. Cox regression models showed that, for total OVP scores and most risk factors, both the initial score and the change in score from initial to current assessment significantly predicted reoffending. These results consistently showed that OVP includes several causal dynamic risk factors for violent recidivism, which can be measured reliably in operational settings. This adds to the evidence base that links changes in risk factors to changes in future reoffending risk and links the use of repeated assessments to incremental improvements in predictive validity. Further research could quantify the costs and benefits of reassessment in correctional practice, study associations between treatment and dynamic risk factors, and separate the effects of improvements and deteriorations in dynamic risk.
Lu, Qing; Bi, Kun; Liu, Chu; Luo, Guoping; Tang, Hao; Yao, Zhijian
2013-10-16
Abnormal inter-regional causalities can be mapped for the objective diagnosis of various diseases. These inter-regional connectivities are usually calculated over an entire scan and used to characterize the stationary strength of the connections. However, the connectivity within networks may undergo substantial changes during a scan. In this study, we developed an objective depression recognition approach using the dynamic regional interactions that occur in response to sad facial stimuli. The whole time-period magnetoencephalography (MEG) signals from the visual cortex, amygdala, anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG) were separated into sequential time intervals. The Granger causality mapping method was used to identify the pairwise interaction pattern within each time interval. Feature selection was then undertaken within a minimum redundancy-maximum relevance (mRMR) framework. Typical classifiers were utilized to predict those patients who had depression. The overall performances of these classifiers were similar, and the highest classification accuracy rate was 87.5%. The best discriminative performance was obtained when the number of features was within a robust range. The discriminative network pattern obtained through support vector machine (SVM) analyses displayed abnormal causal connectivities that involved the amygdala during the early and late stages. These early and late connections in the amygdala appear to reveal a negative bias to coarse expression information processing and abnormal negative modulation in patients with depression, which may critically affect depression discrimination.
Answering the "Why" Question in Evaluation: The Causal-Model Approach.
ERIC Educational Resources Information Center
Petrosino, Anthony
2000-01-01
Defines causal-model evaluation and uses an example from the crime prevention literature to contrast this approach with traditional evaluations. Discusses benefits and limitations of the approach, as well as other issues. (SLD)
Wolff, Phillip; Barbey, Aron K.
2015-01-01
Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611
Causal modelling applied to the risk assessment of a wastewater discharge.
Paul, Warren L; Rokahr, Pat A; Webb, Jeff M; Rees, Gavin N; Clune, Tim S
2016-03-01
Bayesian networks (BNs), or causal Bayesian networks, have become quite popular in ecological risk assessment and natural resource management because of their utility as a communication and decision-support tool. Since their development in the field of artificial intelligence in the 1980s, however, Bayesian networks have evolved and merged with structural equation modelling (SEM). Unlike BNs, which are constrained to encode causal knowledge in conditional probability tables, SEMs encode this knowledge in structural equations, which is thought to be a more natural language for expressing causal information. This merger has clarified the causal content of SEMs and generalised the method such that it can now be performed using standard statistical techniques. As it was with BNs, the utility of this new generation of SEM in ecological risk assessment will need to be demonstrated with examples to foster an understanding and acceptance of the method. Here, we applied SEM to the risk assessment of a wastewater discharge to a stream, with a particular focus on the process of translating a causal diagram (conceptual model) into a statistical model which might then be used in the decision-making and evaluation stages of the risk assessment. The process of building and testing a spatial causal model is demonstrated using data from a spatial sampling design, and the implications of the resulting model are discussed in terms of the risk assessment. It is argued that a spatiotemporal causal model would have greater external validity than the spatial model, enabling broader generalisations to be made regarding the impact of a discharge, and greater value as a tool for evaluating the effects of potential treatment plant upgrades. Suggestions are made on how the causal model could be augmented to include temporal as well as spatial information, including suggestions for appropriate statistical models and analyses.
Zheng, Wei; Wu, Chunxian
2015-01-01
Structural health monitoring (SHM) is challenged by massive data storage pressure and structural fault location. In response to these issues, a bio-inspired memory model that is embedded with a causality reasoning function is proposed for fault location. First, the SHM data for processing are divided into three temporal memory areas to control data volume reasonably. Second, the inherent potential of the causal relationships in structural state monitoring is mined. Causality and dependence indices are also proposed to establish the mechanism of quantitative description of the reason and result events. Third, a mechanism of causality reasoning is developed for the reason and result events to locate faults in a SHM system. Finally, a deformation experiment conducted on a steel spring plate demonstrates that the proposed model can be applied to real-time acquisition, compact data storage, and system fault location in a SHM system. Moreover, the model is compared with some typical methods based on an experimental benchmark dataset. PMID:25798991
Zhang, Qin
2015-07-01
Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology.
Reasoning, Learning, and Classifying with Uncertain Causal Models
2012-11-19
preschoolers . Cognitive Science , 28, 303 -‐333. Waldmann, M...probability of an effect e to its parents , (1) where l.c and l.e are...the causal links between e and its parents . We stipulate that the joint probability distribution
Challenges to inferring causality from viral information dispersion in dynamic social networks
NASA Astrophysics Data System (ADS)
Ternovski, John
2014-06-01
Understanding the mechanism behind large-scale information dispersion through complex networks has important implications for a variety of industries ranging from cyber-security to public health. With the unprecedented availability of public data from online social networks (OSNs) and the low cost nature of most OSN outreach, randomized controlled experiments, the "gold standard" of causal inference methodologies, have been used with increasing regularity to study viral information dispersion. And while these studies have dramatically furthered our understanding of how information disseminates through social networks by isolating causal mechanisms, there are still major methodological concerns that need to be addressed in future research. This paper delineates why modern OSNs are markedly different from traditional sociological social networks and why these differences present unique challenges to experimentalists and data scientists. The dynamic nature of OSNs is particularly troublesome for researchers implementing experimental designs, so this paper identifies major sources of bias arising from network mutability and suggests strategies to circumvent and adjust for these biases. This paper also discusses the practical considerations of data quality and collection, which may adversely impact the efficiency of the estimator. The major experimental methodologies used in the current literature on virality are assessed at length, and their strengths and limits identified. Other, as-yetunsolved threats to the efficiency and unbiasedness of causal estimators--such as missing data--are also discussed. This paper integrates methodologies and learnings from a variety of fields under an experimental and data science framework in order to systematically consolidate and identify current methodological limitations of randomized controlled experiments conducted in OSNs.
Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim
2013-01-01
Abstract In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc. PMID:22328419
How to Be Causal: Time, Spacetime and Spectra
ERIC Educational Resources Information Center
Kinsler, Paul
2011-01-01
I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers-Kronig relations. The specification of causality in terms of temporal differential equations then shows us the way to write down dynamical models so that their causal nature "in the sense used here" should be obvious to all. To extend existing…
Systemic risk and causality dynamics of the world international shipping market
NASA Astrophysics Data System (ADS)
Zhang, Xin; Podobnik, Boris; Kenett, Dror Y.; Eugene Stanley, H.
2014-12-01
Various studies have reported that many economic systems have been exhibiting an increase in the correlation between different market sectors, a factor that exacerbates the level of systemic risk. We measure this systemic risk of three major world shipping markets, (i) the new ship market, (ii) the second-hand ship market, and (iii) the freight market, as well as the shipping stock market. Based on correlation networks during three time periods, that prior to the financial crisis, during the crisis, and after the crisis, minimal spanning trees (MSTs) and hierarchical trees (HTs) both exhibit complex dynamics, i.e., different market sectors tend to be more closely linked during financial crisis. Brownian distance correlation and Granger causality test both can be used to explore the directional interconnectedness of market sectors, while Brownian distance correlation captures more dependent relationships, which are not observed in the Granger causality test. These two measures can also identify and quantify market regression periods, implying that they contain predictive power for the current crisis.
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation
Freistühler, Heinrich; Temple, Blake
2014-01-01
Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526
Distinguishing causal interactions in neural populations.
Seth, Anil K; Edelman, Gerald M
2007-04-01
We describe a theoretical network analysis that can distinguish statistically causal interactions in population neural activity leading to a specific output. We introduce the concept of a causal core to refer to the set of neuronal interactions that are causally significant for the output, as assessed by Granger causality. Because our approach requires extensive knowledge of neuronal connectivity and dynamics, an illustrative example is provided by analysis of Darwin X, a brain-based device that allows precise recording of the activity of neuronal units during behavior. In Darwin X, a simulated neuronal model of the hippocampus and surrounding cortical areas supports learning of a spatial navigation task in a real environment. Analysis of Darwin X reveals that large repertoires of neuronal interactions contain comparatively small causal cores and that these causal cores become smaller during learning, a finding that may reflect the selection of specific causal pathways from diverse neuronal repertoires.
A causal model of chronic obstructive pulmonary disease (COPD) risk.
Cox, Louis Anthony Tony
2011-01-01
Research on the etiology of chronic pulmonary disease (COPD), an irreversible degenerative lung disease affecting 15% to 20% of smokers, has blossomed over the past half-century. Profound new insights have emerged from a combination of in vitro and -omics studies on affected lung cell populations (including cytotoxic CD8(+) T lymphocytes, regulatory CD4(+) helper T cells, dendritic cells, alveolar macrophages and neutrophils, alveolar and bronchiolar epithelial cells, goblet cells, and fibroblasts) and extracellular matrix components (especially, elastin and collagen fibers); in vivo studies on wild-type and genetically engineered mice and other rodents; clinical investigation of cell- and molecular-level changes in asymptomatic smokers and COPD patients; genetic studies of susceptible and rapidly-progressing phenotypes (both human and animal); biomarker studies of enzyme and protein degradation products in induced sputum, bronchiolar lavage, urine, and blood; and epidemiological and clinical investigations of the time course of disease progression. To this rich mix of data, we add a relatively simple in silico computational model that incorporates recent insights into COPD disease causation and progression. Our model explains irreversible degeneration of lung tissue as resulting from a cascade of positive feedback loops: a macrophage inflammation loop, a neutrophil inflammation loop, and an alveolar epithelial cell apoptosis loop. Unrepaired damage results in clinical symptoms. The resulting model illustrates how to simplify and make more understandable the main aspects of the very complex dynamics of COPD initiation and progression, as well as how to predict the effects on risk of interventions that affect specific biological responses.
Wang, Yunzhi; Katwal, Santosh; Rogers, Baxter; Gore, John; Deshpande, Gopikrishna
2016-07-20
Decoding the sequential flow of events in the human brain non-invasively is critical for gaining a mechanistic understanding of brain function. In this study, we propose a method based on dynamic Granger causality analysis to measure timing differences in brain responses from fMRI. We experimentally validate this method by detecting sub-100ms timing differences in fMRI responses obtained from bilateral visual cortex using fast sampling, ultra-high field and an eventrelated visual hemifield paradigm with known timing difference between the hemifields. Classical Granger causality was previously shown to be able to detect sub-100 ms timing differences in the visual cortex. Since classical Granger causality does not differentiate between spontaneous and stimulus-evoked responses, dynamic Granger causality has been proposed as an alternative, thereby necessitating its experimental validation. In addition to detecting timing differences as low as 28 ms during dynamic Granger causality, the significance of the inference from our method increased with increasing delay both in simulations and experimental data. Therefore, it provides a methodology for understanding mental chronometry from fMRI in a data-driven way.
Test of a Drug Use Causal Model Using Asymptotically Distribution Free Methods.
ERIC Educational Resources Information Center
Huba, George J.; Bentler, Peter M.
1983-01-01
Reexamined previous statistical comparisons of two models for adolescent drug abuse using new statistical estimation methods in causal modeling not requiring assumptions about normally distributed variables. An asymptotically distribution free method shows that the models fit even better than assumed in the initial work. (Author/JAC)
Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates
Bollen, Kenneth A.; Bauldry, Shawn
2013-01-01
In the last two decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that we can classify indicators into two categories, effect (reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous view is too simple. Instead, there are effect indicators and three types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the “three Cs”). Causal indicators have conceptual unity and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variable(s). Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects and composites are a matter of convenience. The failure to distinguish the “three Cs” has led to confusion and questions such as: are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points. PMID:21767021
A Tool To Support Failure Mode And Effects Analysis Based On Causal Modelling And Reasoning
NASA Astrophysics Data System (ADS)
Underwood, W. E.; Laib, S. L.
1987-05-01
A prototype knowledge-based system has been developed that supports Failure Mode & Effects Analysis (FMEA). The knowledge base consists of causal models of components and a representation for coupling these components into assemblies and systems. The causal models are qualitative models. They allow reasoning as to whether variables are increasing, decreasing or steady. The analysis strategies used by the prototype allow it to determine the effects of failure modes on the function of the part, the failure effect on the assembly the part is contained in, and the effect on the subsystem containing the assembly.
Granger causality in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Tissot, Gilles; Lozano-Durán, Adrian; Cordier, Laurent; Jiménez, Javier; Noack, Bernd R.
2014-04-01
Granger causality is based on the idea that if a variable helps to predict another one, then they are probably involved in a causality relationship. This technique is based on the identification of a predictive model for causality detection. The aim of this paper is to use Granger causality to study the dynamics and the energy redistribution between scales and components in wall-bounded turbulent flows. In order to apply it on flows, Granger causality is generalized for snapshot-based observations of large size using linear-model identification methods coming from model reduction. Optimized DMD, a variant of the Dynamic Mode Decomposition, is considered for building a linear model based on snapshots. This method is used to link physical events and extract physical mechanisms associated to the bursting process in the logarithmic layer of a turbulent channel flow.
Interventionist causal models in psychiatry: repositioning the mind-body problem.
Kendler, K S; Campbell, J
2009-06-01
The diversity of research methods applied to psychiatric disorders results in a confusing plethora of causal claims. To help make sense of these claims, the interventionist model (IM) of causality has several attractive features. First, it connects causation with the practical interests of psychiatry, defining causation in terms of 'what would happen under interventions', a question of key interest to those of us whose interest is ultimately in intervening to prevent and treat illness. Second, it distinguishes between predictive-correlative and true causal relationships, an essential issue cutting across many areas in psychiatric research. Third, the IM is non-reductive and agnostic to issues of mind-body problem. Fourth, the IM model cleanly separates issues of causation from questions about the underlying mechanism. Clarifying causal influences can usefully structure the search for underlying mechanisms. Fifth, it provides a sorely needed conceptual rigor to multi-level modeling, thereby avoiding a return to uncritical holistic approaches that 'everything is relevant' to psychiatric illness. Sixth, the IM provides a clear way to judge both the generality and depth of explanations. In conclusion, the IM can provide a single, clear empirical framework for the evaluation of all causal claims of relevance to psychiatry and presents psychiatry with a method of avoiding the sterile metaphysical arguments about mind and brain which have preoccupied our field but yielded little of practical benefit.
When One Model Casts Doubt on Another: A Levels-of-Analysis Approach to Causal Discounting
ERIC Educational Resources Information Center
Khemlani, Sangeet S.; Oppenheimer, Daniel M.
2011-01-01
Discounting is a phenomenon in causal reasoning in which the presence of one cause casts doubt on another. We provide a survey of the descriptive and formal models that attempt to explain the discounting process and summarize what current models do not account for and where room for improvement exists. We propose a levels-of-analysis framework…
Critical Thinking and Political Participation: The Development and Assessment of a Causal Model.
ERIC Educational Resources Information Center
Guyton, Edith M.
An assessment of a four-stage conceptual model reveals that critical thinking has indirect positive effects on political participation through its direct effects on personal control, political efficacy, and democratic attitudes. The model establishes causal relationships among selected personality variables (self-esteem, personal control, and…
Spatial-temporal causal modeling: a data centric approach to climate change attribution (Invited)
NASA Astrophysics Data System (ADS)
Lozano, A. C.
2010-12-01
Attribution of climate change has been predominantly based on simulations using physical climate models. These approaches rely heavily on the employed models and are thus subject to their shortcomings. Given the physical models’ limitations in describing the complex system of climate, we propose an alternative approach to climate change attribution that is data centric in the sense that it relies on actual measurements of climate variables and human and natural forcing factors. We present a novel class of methods to infer causality from spatial-temporal data, as well as a procedure to incorporate extreme value modeling into our methodology in order to address the attribution of extreme climate events. We develop a collection of causal modeling methods using spatio-temporal data that combine graphical modeling techniques with the notion of Granger causality. “Granger causality” is an operational definition of causality from econometrics, which is based on the premise that if a variable causally affects another, then the past values of the former should be helpful in predicting the future values of the latter. In its basic version, our methodology makes use of the spatial relationship between the various data points, but treats each location as being identically distributed and builds a unique causal graph that is common to all locations. A more flexible framework is then proposed that is less restrictive than having a single causal graph common to all locations, while avoiding the brittleness due to data scarcity that might arise if one were to independently learn a different graph for each location. The solution we propose can be viewed as finding a middle ground by partitioning the locations into subsets that share the same causal structures and pooling the observations from all the time series belonging to the same subset in order to learn more robust causal graphs. More precisely, we make use of relationships between locations (e.g. neighboring
A conditional Granger causality model approach for group analysis in functional MRI
Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J.; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M.; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun
2011-01-01
Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed for identifying effective connectivity in the human brain with functional MR imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pairwise GCM has commonly been applied based on single voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of an fMRI data with GCM. To compare the effectiveness of our approach with traditional pairwise GCM models, we applied a well-established conditional GCM to pre-selected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis (ICA) of an fMRI dataset in the temporal domain. Datasets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM detected brain activation regions in the emotion related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state dataset, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network (DMN) that can be characterized as both afferent and efferent influences on the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive (MVAR) model can achieve
Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun
2011-04-01
Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed to identify effective connectivity in the human brain with functional magnetic resonance imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pair-wise GCM has commonly been applied based on single-voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of fMRI data with GCM. To compare the effectiveness of our approach with traditional pair-wise GCM models, we applied a well-established conditional GCM to preselected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis of an fMRI data set in the temporal domain. Data sets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM-detected brain activation regions in the emotion-related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state data set, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network that can be characterized as both afferent and efferent influences on the medial prefrontal cortex and posterior cingulate cortex. These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive model can achieve greater accuracy
[Causal analysis approaches in epidemiology].
Dumas, O; Siroux, V; Le Moual, N; Varraso, R
2014-02-01
Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the
Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.
2015-01-01
The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318
Confirmatory Analytic Tests of Three Causal Models Relating Job Perceptions to Job Satisfaction.
1984-12-01
Perceptions ~Job SatisfactionD I~i- Confirmatory Analysi s Precognitive Postcognitive L ft A e S T R A f T I ( C O n" " n ," , V fV f f vv r e # d o i t c e...in the causal order, and job perceptions and job satisfaction are reciprocally related; (b) a precognitive -recursive model in which job perceptions...occur after job satisfaction in the causal order and are effects but not causes of job satisfaction; and (c) a precognitive DD FOR 1473 EDITION 01O NOV
Teaching-Learning by Means of a Fuzzy-Causal User Model
NASA Astrophysics Data System (ADS)
Peña Ayala, Alejandro
In this research the teaching-learning phenomenon that occurs during an E-learning experience is tackled from a fuzzy-causal perspective. The approach is suitable for dealing with intangible objects of a domain, such as personality, that are stated as linguistic variables. In addition, the bias that teaching content exerts on the user’s mind is sketched through causal relationships. Moreover, by means of fuzzy-causal inference, the user’s apprenticeship is estimated prior to delivering a lecture. This supposition is taken into account to adapt the behavior of a Web-based education system (WBES). As a result of an experimental trial, volunteers that took options of lectures chosen by this user model (UM) achieved higher learning than participants who received lectures’ options that were randomly selected. Such empirical evidence contributes to encourage researchers of the added value that a UM offers to adapt a WBES.
Implications of Three Causal Models for the Measurement of Halo Error.
ERIC Educational Resources Information Center
Fisicaro, Sebastiano A.; Lance, Charles E.
1990-01-01
Three conceptual definitions of halo error are reviewed in the context of causal models of halo error. A corrected correlational measurement of halo error is derived, and the traditional and corrected measures are compared empirically for a 1986 study of 52 undergraduate students' ratings of a lecturer's performance. (SLD)
Examining a Causal Model of Early Drug Involvement Among Inner City Junior High School Youths.
ERIC Educational Resources Information Center
Dembo, Richard; And Others
Reflecting the need to construct more inclusive, socially and culturally relevant conceptions of drug use than currently exist, the determinants of drug involvement among inner-city youths within the context of a causal model were investigated. The drug involvement of the Black and Puerto Rican junior high school girls and boys was hypothesized to…
The Impact of School Leadership on School Level Factors: Validation of a Causal Model
ERIC Educational Resources Information Center
Kruger, Meta L.; Witziers, Bob; Sleegers, Peter
2007-01-01
This study aims to contribute to a better understanding of the antecedents and effects of educational leadership, and of the influence of the principal's leadership on intervening and outcome variables. A path analysis was conducted to test and validate a causal model. The results show no direct or indirect effects of educational leadership on…
ERIC Educational Resources Information Center
Calsyn, Robert J.; Winter, Joel P.; Burger, Gary K.
2005-01-01
This study compared the strength of competing causal models in explaining the relationship between perceived support, enacted support, and social anxiety in adolescents. The social causation hypothesis postulates that social support causes social anxiety, whereas the social selection hypothesis postulates that social anxiety causes social support.…
Sex and Self-Control Theory: The Measures and Causal Model May Be Different
ERIC Educational Resources Information Center
Higgins, George E.; Tewksbury, Richard
2006-01-01
This study examines the distribution differences across sexes in key measures of self-control theory and differences in a causal model. Using cross-sectional data from juveniles ("n" = 1,500), the study shows mean-level differences in many of the self-control, risky behavior, and delinquency measures. Structural equation modeling…
Pretense, Counterfactuals, and Bayesian Causal Models: Why What Is Not Real Really Matters
ERIC Educational Resources Information Center
Weisberg, Deena S.; Gopnik, Alison
2013-01-01
Young children spend a large portion of their time pretending about non-real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative…
Hindsight Bias Doesn't Always Come Easy: Causal Models, Cognitive Effort, and Creeping Determinism
ERIC Educational Resources Information Center
Nestler, Steffen; Blank, Hartmut; von Collani, Gernot
2008-01-01
Creeping determinism, a form of hindsight bias, refers to people's hindsight perceptions of events as being determined or inevitable. This article proposes, on the basis of a causal-model theory of creeping determinism, that the underlying processes are effortful, and hence creeping determinism should disappear when individuals lack the cognitive…
2015-11-01
analysis because results depend on human imagination and judgment; (5) Design for routine exploratory analysis under deep uncertainty; and (6...Working Paper Causal Models and Exploratory Analysis in Heterogeneous Information Fusion for Detecting Potential Terrorists Paul K. Davis...Security Research Division (NSRD). NSRD conducts research and analysis on defense and national security topics for the U.S. and allied defense
Causal Analysis to Enhance Creative Problem-Solving: Performance and Effects on Mental Models
ERIC Educational Resources Information Center
Hester, Kimberly S.; Robledo, Issac C.; Barrett, Jamie D.; Peterson, David R.; Hougen, Dean P.; Day, Eric A.; Mumford, Michael D.
2012-01-01
In recent years, it has become apparent that knowledge is a critical component of creative thought. One form of knowledge that might be particularly important to creative thought relies on the mental models people employ to understand novel, ill-defined problems. In this study, undergraduates were given training in the use of causal relationships…
Predicting Adaptive Performance in Multicultural Teams: A Causal Model
2008-02-01
Applied Psychology, 91, 1189-1207. [6] Byrne, B. M. (2001). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Mahwah...means of Factor Analysis (FA), Multidimensional Scaling (MDS), and Structural Equation Modeling (LISREL). Unpublished manuscript; in process of being... equation modeling . New York, NY: Guilford Press. [14] Kozlowski, S. W. J., Gully, S. M., Brown, K. G., Salas, E., Smith, E. M., & Nason, E. R. (2001
Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.
Gopnik, Alison; Wellman, Henry M
2012-11-01
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.
Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. PMID:22582739
Causal Models with Unmeasured Variables: An Introduction to LISREL.
ERIC Educational Resources Information Center
Wolfle, Lee M.
Whenever one uses ordinary least squares regression, one is making an implicit assumption that all of the independent variables have been measured without error. Such an assumption is obviously unrealistic for most social data. One approach for estimating such regression models is to measure implied coefficients between latent variables for which…
Joint Modeling Compliance and Outcome for Causal Analysis in Longitudinal Studies
Gao, Xin; Brown, Gregory K.; Elliott, Michael R.
2013-01-01
This article discusses joint modeling of compliance and outcome for longitudinal studies when noncompliance is present. We focus on two-arm randomized longitudinal studies in which subjects are randomized at baseline, treatment is applied repeatedly over time, and compliance behaviors and clinical outcomes are measured and recorded repeatedly over time. In the proposed Markov compliance and outcome model, we use the potential outcome framework to define pre-randomization principal strata from the joint distribution of compliance under treatment and control arms, and estimate the effect of treatment within each principal strata. Besides the causal effect of the treatment, our proposed model can estimate the impact of the causal effect of the treatment at a given time on the future compliance. Bayesian methods are used to estimate the parameters. The results are illustrated using a study assessing the effect of cognitive behavior therapy on depression. A simulation study is used to assess the repeated sampling properties of the proposed model. PMID:23576159
Joint modeling compliance and outcome for causal analysis in longitudinal studies.
Gao, Xin; Brown, Gregory K; Elliott, Michael R
2014-09-10
This article discusses joint modeling of compliance and outcome for longitudinal studies when noncompliance is present. We focus on two-arm randomized longitudinal studies in which subjects are randomized at baseline, treatment is applied repeatedly over time, and compliance behaviors and clinical outcomes are measured and recorded repeatedly over time. In the proposed Markov compliance and outcome model, we use the potential outcome framework to define pre-randomization principal strata from the joint distribution of compliance under treatment and control arms, and estimate the effect of treatment within each principal strata. Besides the causal effect of the treatment, our proposed model can estimate the impact of the causal effect of the treatment at a given time on future compliance. Bayesian methods are used to estimate the parameters. The results are illustrated using a study assessing the effect of cognitive behavior therapy on depression. A simulation study is used to assess the repeated sampling properties of the proposed model.
Inferring Tree Causal Models of Cancer Progression with Probability Raising
Mauri, Giancarlo; Antoniotti, Marco; Mishra, Bud
2014-01-01
Existing techniques to reconstruct tree models of progression for accumulative processes, such as cancer, seek to estimate causation by combining correlation and a frequentist notion of temporal priority. In this paper, we define a novel theoretical framework called CAPRESE (CAncer PRogression Extraction with Single Edges) to reconstruct such models based on the notion of probabilistic causation defined by Suppes. We consider a general reconstruction setting complicated by the presence of noise in the data due to biological variation, as well as experimental or measurement errors. To improve tolerance to noise we define and use a shrinkage-like estimator. We prove the correctness of our algorithm by showing asymptotic convergence to the correct tree under mild constraints on the level of noise. Moreover, on synthetic data, we show that our approach outperforms the state-of-the-art, that it is efficient even with a relatively small number of samples and that its performance quickly converges to its asymptote as the number of samples increases. For real cancer datasets obtained with different technologies, we highlight biologically significant differences in the progressions inferred with respect to other competing techniques and we also show how to validate conjectured biological relations with progression models. PMID:25299648
Zigler, Corwin Matthew; Dominici, Francesca
2014-01-01
Causal inference with observational data frequently relies on the notion of the propensity score (PS) to adjust treatment comparisons for observed confounding factors. As decisions in the era of “big data” are increasingly reliant on large and complex collections of digital data, researchers are frequently confronted with decisions regarding which of a high-dimensional covariate set to include in the PS model in order to satisfy the assumptions necessary for estimating average causal effects. Typically, simple or ad-hoc methods are employed to arrive at a single PS model, without acknowledging the uncertainty associated with the model selection. We propose three Bayesian methods for PS variable selection and model averaging that 1) select relevant variables from a set of candidate variables to include in the PS model and 2) estimate causal treatment effects as weighted averages of estimates under different PS models. The associated weight for each PS model reflects the data-driven support for that model’s ability to adjust for the necessary variables. We illustrate features of our proposed approaches with a simulation study, and ultimately use our methods to compare the effectiveness of surgical vs. nonsurgical treatment for brain tumors among 2,606 Medicare beneficiaries. Supplementary materials are available online. PMID:24696528
Learning World Models in Environments with Manifest Causal Structure,
1995-05-01
an agent with no prior knowledge than for people because people are told much of what they need to know and do not learn tabula rasa . Many people nd...drafts of this thesis, and for being a great role model. Thanks to Eric Grimson for being much more than an academic advisor. I thank Jonathan Amsterdam...early training of the secretary robot, the trainer plays the role of a babysitter more than that of a teacher. The trainer is available in case of an
Zhang, Yaoyu; Xiao, Yanyang; Zhou, Douglas; Cai, David
2016-04-01
The Granger causality (GC) analysis is an effective approach to infer causal relations for time series. However, for data obtained by uniform sampling (i.e., with an equal sampling time interval), it is known that GC can yield unreliable causal inference due to aliasing if the sampling rate is not sufficiently high. To solve this unreliability issue, we consider the nonuniform sampling scheme as it can mitigate against aliasing. By developing an unbiased estimation of power spectral density of nonuniformly sampled time series, we establish a framework of spectrum-based nonparametric GC analysis. Applying this framework to a general class of pulse-coupled nonlinear networks and utilizing some particular spectral structure possessed by these nonlinear network data, we demonstrate that, for such nonlinear networks with nonuniformly sampled data, reliable GC inference can be achieved at a low nonuniform mean sampling rate at which the traditional uniform sampling GC may lead to spurious causal inference.
NASA Astrophysics Data System (ADS)
Zhang, Yaoyu; Xiao, Yanyang; Zhou, Douglas; Cai, David
2016-04-01
The Granger causality (GC) analysis is an effective approach to infer causal relations for time series. However, for data obtained by uniform sampling (i.e., with an equal sampling time interval), it is known that GC can yield unreliable causal inference due to aliasing if the sampling rate is not sufficiently high. To solve this unreliability issue, we consider the nonuniform sampling scheme as it can mitigate against aliasing. By developing an unbiased estimation of power spectral density of nonuniformly sampled time series, we establish a framework of spectrum-based nonparametric GC analysis. Applying this framework to a general class of pulse-coupled nonlinear networks and utilizing some particular spectral structure possessed by these nonlinear network data, we demonstrate that, for such nonlinear networks with nonuniformly sampled data, reliable GC inference can be achieved at a low nonuniform mean sampling rate at which the traditional uniform sampling GC may lead to spurious causal inference.
NASA Astrophysics Data System (ADS)
Siggiridou, Elsa; Kugiumtzis, Dimitris
2016-04-01
Granger causality has been used for the investigation of the inter-dependence structure of the underlying systems of multi-variate time series. In particular, the direct causal effects are commonly estimated by the conditional Granger causality index (CGCI). In the presence of many observed variables and relatively short time series, CGCI may fail because it is based on vector autoregressive models (VAR) involving a large number of coefficients to be estimated. In this work, the VAR is restricted by a scheme that modifies the recently developed method of backward-in-time selection (BTS) of the lagged variables and the CGCI is combined with BTS. Further, the proposed approach is compared favorably to other restricted VAR representations, such as the top-down strategy, the bottom-up strategy, and the least absolute shrinkage and selection operator (LASSO), in terms of sensitivity and specificity of CGCI. This is shown by using simulations of linear and nonlinear, low and high-dimensional systems and different time series lengths. For nonlinear systems, CGCI from the restricted VAR representations are compared with analogous nonlinear causality indices. Further, CGCI in conjunction with BTS and other restricted VAR representations is applied to multi-channel scalp electroencephalogram (EEG) recordings of epileptic patients containing epileptiform discharges. CGCI on the restricted VAR, and BTS in particular, could track the changes in brain connectivity before, during and after epileptiform discharges, which was not possible using the full VAR representation.
Analogical and category-based inference: a theoretical integration with Bayesian causal models.
Holyoak, Keith J; Lee, Hee Seung; Lu, Hongjing
2010-11-01
A fundamental issue for theories of human induction is to specify constraints on potential inferences. For inferences based on shared category membership, an analogy, and/or a relational schema, it appears that the basic goal of induction is to make accurate and goal-relevant inferences that are sensitive to uncertainty. People can use source information at various levels of abstraction (including both specific instances and more general categories), coupled with prior causal knowledge, to build a causal model for a target situation, which in turn constrains inferences about the target. We propose a computational theory in the framework of Bayesian inference and test its predictions (parameter-free for the cases we consider) in a series of experiments in which people were asked to assess the probabilities of various causal predictions and attributions about a target on the basis of source knowledge about generative and preventive causes. The theory proved successful in accounting for systematic patterns of judgments about interrelated types of causal inferences, including evidence that analogical inferences are partially dissociable from overall mapping quality.
Edge replacement and minimality as models of causal inference in children.
Buchanan, David W; Sobel, David M
2014-01-01
Recently, much research has focused on causal graphical models (CGMs) as a computational-level description of how children represent cause and effect. While this research program has shown promise, there are aspects of causal reasoning that CGMs have difficulty accommodating. We propose a new formalism that amends CGMs. This edge replacement grammar formalizes one existing and one novel theoretical commitment. The existing idea is that children are determinists, in the sense that they believe that apparent randomness comes from hidden complexity, rather than inherent nondeterminism in the world. The new idea is that children think of causation as a branching process: causal relations grow not directly from the cause, but from existing relations between the cause and other effects. We have shown elsewhere that these two commitments together, when formalized, can explain and quantitatively fit the otherwise puzzling effect of nonindependence observed in the adult causal reasoning literature. We then test the qualitative predictions of this new formalism on children in a series of three experiments.
Modeling and Encoding Clinical Causal Relationships in a Medical Knowledge Base
Blum, Robert L.
1983-01-01
This paper presents a method for the computer modeling and encoding of clinical causal relationships (CR's). This method draws on the theory of multivariate linear models and path analysis. The representation was used to encode medical CR's derived empirically from a clinical database by the RX computer project described in SCAMC82. The emphasis in the representation is on capturing the intensities of effects and the variation in the effects across a patient population. This information is used by RX in determining the validity of other CR's. The representation uses a directed graph formalism in which the nodes are frames and the arcs contain seven descriptive features of individual CR's: intensity, distribution, direction, mathematical form, setting, validity, and evidence. Because natural systems (such as the human body) are inherently probabilistic, linear models are useful in representing causal flow in them.
De Stavola, Bianca L.; Daniel, Rhian M.; Ploubidis, George B.; Micali, Nadia
2015-01-01
The study of mediation has a long tradition in the social sciences and a relatively more recent one in epidemiology. The first school is linked to path analysis and structural equation models (SEMs), while the second is related mostly to methods developed within the potential outcomes approach to causal inference. By giving model-free definitions of direct and indirect effects and clear assumptions for their identification, the latter school has formalized notions intuitively developed in the former and has greatly increased the flexibility of the models involved. However, through its predominant focus on nonparametric identification, the causal inference approach to effect decomposition via natural effects is limited to settings that exclude intermediate confounders. Such confounders are naturally dealt with (albeit with the caveats of informality and modeling inflexibility) in the SEM framework. Therefore, it seems pertinent to revisit SEMs with intermediate confounders, armed with the formal definitions and (parametric) identification assumptions from causal inference. Here we investigate: 1) how identification assumptions affect the specification of SEMs, 2) whether the more restrictive SEM assumptions can be relaxed, and 3) whether existing sensitivity analyses can be extended to this setting. Data from the Avon Longitudinal Study of Parents and Children (1990–2005) are used for illustration. PMID:25504026
De Stavola, Bianca L; Daniel, Rhian M; Ploubidis, George B; Micali, Nadia
2015-01-01
The study of mediation has a long tradition in the social sciences and a relatively more recent one in epidemiology. The first school is linked to path analysis and structural equation models (SEMs), while the second is related mostly to methods developed within the potential outcomes approach to causal inference. By giving model-free definitions of direct and indirect effects and clear assumptions for their identification, the latter school has formalized notions intuitively developed in the former and has greatly increased the flexibility of the models involved. However, through its predominant focus on nonparametric identification, the causal inference approach to effect decomposition via natural effects is limited to settings that exclude intermediate confounders. Such confounders are naturally dealt with (albeit with the caveats of informality and modeling inflexibility) in the SEM framework. Therefore, it seems pertinent to revisit SEMs with intermediate confounders, armed with the formal definitions and (parametric) identification assumptions from causal inference. Here we investigate: 1) how identification assumptions affect the specification of SEMs, 2) whether the more restrictive SEM assumptions can be relaxed, and 3) whether existing sensitivity analyses can be extended to this setting. Data from the Avon Longitudinal Study of Parents and Children (1990-2005) are used for illustration.
Comparing causality measures of fMRI data using PCA, CCA and vector autoregressive modelling.
Shah, Adnan; Khalid, Muhammad Usman; Seghouane, Abd-Krim
2012-01-01
Extracting the directional interaction between activated brain areas from functional magnetic resonance imaging (fMRI) time series measurements of their activity is a significant step in understanding the process of brain functions. In this paper, the directional interaction between fMRI time series characterizing the activity of two neuronal sites is quantified using two measures; one derived based on univariate autoregressive and autoregressive exogenous (AR/ARX) and other derived based on multivariate vector autoregressive and vector autoregressive exogenous (VAR/VARX) models. The significance and effectiveness of these measures is illustrated on both simulated and real fMRI data sets. It has been revealed that VAR modelling of the regions of interest is robust in inferring true causality compared to principal component analysis (PCA) and canonical correlation analysis (CCA) based causality methods.
Recursive causality in evolution: a model for epigenetic mechanisms in cancer development.
Haslberger, A; Varga, F; Karlic, H
2006-01-01
Interactions between adaptative and selective processes are illustrated in the model of recursive causality as defined in Rupert Riedl's systems theory of evolution. One of the main features of this theory also termed as theory of evolving complexity is the centrality of the notion of 'recursive' or 'feedback' causality - 'the idea that every biological effect in living systems, in some way, feeds back to its own cause'. Our hypothesis is that "recursive" or "feedback" causality provides a model for explaining the consequences of interacting genetic and epigenetic mechanisms which are known to play a key role in development of cancer. Epigenetics includes any process that alters gene activity without changes of the DNA sequence. The most important epigenetic mechanisms are DNA-methylation and chromatin remodeling. Hypomethylation of so-called oncogenes and hypermethylation of tumor suppressor genes appear to be critical determinants of cancer. Folic acid, vitamin B12 and other nutrients influence the function of enzymes that participate in various methylation processes by affecting the supply of methyl groups into a variety of molecules which may be directly or indirectly associated with cancerogenesis. We present an example from our own studies by showing that vitamin D3 has the potential to de-methylate the osteocalcin-promoter in MG63 osteosarcoma cells. Consequently, a stimulation of osteocalcin synthesis can be observed. The above mentioned enzymes also play a role in development and differentiation of cells and organisms and thus illustrate the close association between evolutionary and developmental mechanisms. This enabled new ways to understand the interaction between the genome and environment and may improve biomedical concepts including environmental health aspects where epigenetic and genetic modifications are closely associated. Recent observations showed that methylated nucleotides in the gene promoter may serve as a target for solar UV
From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology
Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.
2015-01-01
In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.
NASA Astrophysics Data System (ADS)
Klarenberg, G.
2015-12-01
Infrastructure projects such as road paving have proven to bring a variety of (mainly) socio-economic advantages to countries and populations. However, many studies have also highlighted the negative socio-economic and biophysical effects that these developments have at local, regional and even larger scales. The "MAP" area (Madre de Dios in Peru, Acre in Brazil, and Pando in Bolivia) is a biodiversity hotspot in the southwestern Amazon where sections of South America's Inter-Oceanic Highway were paved between 2006 and 2010. We are interested in vegetation dynamics in the area since it plays an important role in ecosystem functions and ecosystem services in socio-ecological systems: it provides information on productivity and structure of the forest. In preparation of more complex and mechanistic simulation of vegetation, non-linear time series analysis and Dynamic Factor Analysis (DFA) was conducted on Enhanced Vegetation Index (EVI) time series - which is a remote sensing product and provides information on vegetation dynamics as it detects chlorophyll (productivity) and structural change. Time series of 30 years for EVI2 (from MODIS and AVHRR) were obtained for 100 communities in the area. Through specific time series cluster analysis of the vegetation data, communities were clustered to facilitate data analysis and pattern recognition. The clustering is spatially consistent, and appears to be driven by median road paving progress - which is different for each cluster. Non-linear time series analysis (multivariate singular spectrum analysis, MSSA) separates common signals (or low-dimensional attractors) across clusters. Despite the presence of this deterministic structure though, time series behavior is mostly stochastic. Granger causality analysis between EVI2 and possible response variables indicates which variables (and with what lags) are to be included in DFA, resulting in unique Dynamic Factor Models for each cluster.
Information thermodynamics on causal networks.
Ito, Sosuke; Sagawa, Takahiro
2013-11-01
We study nonequilibrium thermodynamics of complex information flows induced by interactions between multiple fluctuating systems. Characterizing nonequilibrium dynamics by causal networks (i.e., Bayesian networks), we obtain novel generalizations of the second law of thermodynamics and the fluctuation theorem, which include an informational quantity characterized by the topology of the causal network. Our result implies that the entropy production in a single system in the presence of multiple other systems is bounded by the information flow between these systems. We demonstrate our general result by a simple model of biochemical adaptation.
Combining FDI and AI approaches within causal-model-based diagnosis.
Gentil, Sylviane; Montmain, Jacky; Combastel, Christophe
2004-10-01
This paper presents a model-based diagnostic method designed in the context of process supervision. It has been inspired by both artificial intelligence and control theory. AI contributes tools for qualitative modeling, including causal modeling, whose aim is to split a complex process into elementary submodels. Control theory, within the framework of fault detection and isolation (FDI), provides numerical models for generating and testing residuals, and for taking into account inaccuracies in the model, unknown disturbances and noise. Consistency-based reasoning provides a logical foundation for diagnostic reasoning and clarifies fundamental assumptions, such as single fault and exoneration. The diagnostic method presented in the paper benefits from the advantages of all these approaches. Causal modeling enables the method to focus on sufficient relations for fault isolation, which avoids combinatorial explosion. Moreover, it allows the model to be modified easily without changing any aspect of the diagnostic algorithm. The numerical submodels that are used to detect inconsistency benefit from the precise quantitative analysis of the FDI approach. The FDI models are studied in order to link this method with DX component-oriented reasoning. The recursive on-line use of this algorithm is explained and the concept of local exoneration is introduced.
Using Stochastic Causal Trees to Augment Bayesian Networks for Modeling eQTL Datasets
2011-01-01
Background The combination of genotypic and genome-wide expression data arising from segregating populations offers an unprecedented opportunity to model and dissect complex phenotypes. The immense potential offered by these data derives from the fact that genotypic variation is the sole source of perturbation and can therefore be used to reconcile changes in gene expression programs with the parental genotypes. To date, several methodologies have been developed for modeling eQTL data. These methods generally leverage genotypic data to resolve causal relationships among gene pairs implicated as associates in the expression data. In particular, leading studies have augmented Bayesian networks with genotypic data, providing a powerful framework for learning and modeling causal relationships. While these initial efforts have provided promising results, one major drawback associated with these methods is that they are generally limited to resolving causal orderings for transcripts most proximal to the genomic loci. In this manuscript, we present a probabilistic method capable of learning the causal relationships between transcripts at all levels in the network. We use the information provided by our method as a prior for Bayesian network structure learning, resulting in enhanced performance for gene network reconstruction. Results Using established protocols to synthesize eQTL networks and corresponding data, we show that our method achieves improved performance over existing leading methods. For the goal of gene network reconstruction, our method achieves improvements in recall ranging from 20% to 90% across a broad range of precision levels and for datasets of varying sample sizes. Additionally, we show that the learned networks can be utilized for expression quantitative trait loci mapping, resulting in upwards of 10-fold increases in recall over traditional univariate mapping. Conclusions Using the information from our method as a prior for Bayesian network
Causal Network Models for Predicting Compound Targets and Driving Pathways in Cancer.
Jaeger, Savina; Min, Junxia; Nigsch, Florian; Camargo, Miguel; Hutz, Janna; Cornett, Allen; Cleaver, Stephen; Buckler, Alan; Jenkins, Jeremy L
2014-06-01
Gene-expression data are often used to infer pathways regulating transcriptional responses. For example, differentially expressed genes (DEGs) induced by compound treatment can help characterize hits from phenotypic screens, either by correlation with known drug signatures or by pathway enrichment. Pathway enrichment is, however, typically computed with DEGs rather than "upstream" nodes that are potentially causal of "downstream" changes. Here, we present graph-based models to predict causal targets from compound-microarray data. We test several approaches to traversing network topology, and show that a consensus minimum-rank score (SigNet) beat individual methods and could highly rank compound targets among all network nodes. In addition, larger, less canonical networks outperformed linear canonical interactions. Importantly, pathway enrichment using causal nodes rather than DEGs recovers relevant pathways more often. To further validate our approach, we used integrated data sets from the Cancer Genome Atlas to identify driving pathways in triple-negative breast cancer. Critical pathways were uncovered, including the epidermal growth factor receptor 2-phosphatidylinositide 3-kinase-AKT-MAPK growth pathway andATR-p53-BRCA DNA damage pathway, in addition to unexpected pathways, such as TGF-WNT cytoskeleton remodeling, IL12-induced interferon gamma production, and TNFR-IAP (inhibitor of apoptosis) apoptosis; the latter was validated by pooled small hairpin RNA profiling in cancer cells. Overall, our approach can bridge transcriptional profiles to compound targets and driving pathways in cancer.
A Causal, Data-driven Approach to Modeling the Kepler Data
NASA Astrophysics Data System (ADS)
Wang, Dun; Hogg, David W.; Foreman-Mackey, Daniel; Schölkopf, Bernhard
2016-09-01
Astronomical observations are affected by several kinds of noise, each with its own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. The precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here, we present the causal pixel model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level so that it can capture very fine-grained information about the variation of the spacecraft. The CPM models the systematic effects in the time series of a pixel using the pixels of many other stars and the assumption that any shared signal in these causally disconnected light curves is caused by instrumental effects. In addition, we use the target star’s future and past (autoregression). By appropriately separating, for each data point, the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the model. The method has four tuning parameters—the number of predictor stars or pixels, the autoregressive window size, and two L2-regularization amplitudes for model components, which we set by cross-validation. We determine values for tuning parameters that works well for most of the stars and apply the method to a corresponding set of target stars. We find that CPM can consistently produce low-noise light curves. In this paper, we demonstrate that pixel-level de-trending is possible while retaining transit signals, and we think that methods like CPM are generally applicable and might be useful for K2, TESS, etc., where the data are not clean postage stamps like Kepler.
Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model.
Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van den Berg, Helma; Conner, Mark; van der Maas, Han L J
2016-01-01
This article introduces the Causal Attitude Network (CAN) model, which conceptualizes attitudes as networks consisting of evaluative reactions and interactions between these reactions. Relevant evaluative reactions include beliefs, feelings, and behaviors toward the attitude object. Interactions between these reactions arise through direct causal influences (e.g., the belief that snakes are dangerous causes fear of snakes) and mechanisms that support evaluative consistency between related contents of evaluative reactions (e.g., people tend to align their belief that snakes are useful with their belief that snakes help maintain ecological balance). In the CAN model, the structure of attitude networks conforms to a small-world structure: evaluative reactions that are similar to each other form tight clusters, which are connected by a sparser set of "shortcuts" between them. We argue that the CAN model provides a realistic formalized measurement model of attitudes and therefore fills a crucial gap in the attitude literature. Furthermore, the CAN model provides testable predictions for the structure of attitudes and how they develop, remain stable, and change over time. Attitude strength is conceptualized in terms of the connectivity of attitude networks and we show that this provides a parsimonious account of the differences between strong and weak attitudes. We discuss the CAN model in relation to possible extensions, implication for the assessment of attitudes, and possibilities for further study.
Alanko, Katarina; Santtila, Pekka; Salo, Benny; Jern, Patrik; Johansson, Ada; Sandnabba, N Kenneth
2011-06-01
An association between childhood gender atypical behaviour (GAB) and a negative parent-child relationship has been demonstrated in several studies, yet the causal relationship of this association is not fully understood. In the present study, different models of causation between childhood GAB and parent-child relationships were tested. Direction of causation modelling was applied to twin data from a population-based sample (n= 2,565) of Finnish 33- to 43-year-old twins. Participants completed retrospective self-report questionnaires. Five different models of causation were then fitted to the data: GAB → parent-child relationship, parent-child relationship → GAB, reciprocal causation, a bivariate genetic model, and a model assuming no correlation. It was found that a model in which GAB and quality of mother-child, and father-child relationship reciprocally affect each other best fitted the data. The findings are discussed in light of how we should understand, including causality, the association between GAB and parent-child relationship.
2008-01-01
U) be an input-output system. F is a causal mapping and (Y; F; U) is a causal system if and only if for all t and for all u; v 2 U such that ku vkt ...in u, then the Frechet derivative of the map S : Ut ! de�ned by S(t) = t at ut exists. Proof: Calculate u+vt (w0;1) ut (w0;1) = [LtF ((u+ v...for all u 2 U , the state trajectory t! ut is di¤erentiable. Proof: First calculate : ut+h(v0;1) ut (v0;1) = [Lt+hF (ut+h+! Rt+hv0;1) LtF (ut
Collinearity and causal diagrams – a lesson on the importance of model specification
Schisterman, Enrique F.; Perkins, Neil J.; Mumford, Sunni L.; Ahrens, Katherine A.; Mitchell, Emily M.
2016-01-01
Background Correlated data are ubiquitous in epidemiologic research, particularly in nutritional and environmental epidemiology where mixtures of factors are studied. Our objective is to demonstrate how highly correlated data arise in epidemiologic research and provide guidance on how to proceed analytically when faced with highly correlated data utilizing a directed acyclic graph approach. Methods We identified three fundamental structural scenarios in which high correlation between a given variable and the exposure can arise: intermediates, confounders, and colliders. For each of these scenarios we evaluated the consequences of increasing correlation between the given variable and the exposure on the bias and variance for the total effect of the exposure on the outcome using unadjusted and adjusted models. We derived closed form solutions for continuous outcomes using linear regression and empirically present our findings for binary outcomes using logistic regression. Results For models properly specified, total effect estimates remained unbiased even when there was almost perfect correlation between the exposure and a given intermediate, confounder, or collider. In general, as the correlation increased the variance of the parameter estimate for the exposure in the adjusted models increased, while in the unadjusted models it increased to a lesser extent or decreased. Conclusion Our findings highlight the importance of considering the causal framework under study when specifying regression models. Strategies that do not take into consideration the causal structure may lead to biased effect estimation for the original question of interest, even under high correlation. PMID:27676260
Tsonis, Anastasios A.; Deyle, Ethan R.; May, Robert M.; ...
2015-03-02
As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR). Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research and elsewhere, demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we findmore » no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. Furthermore, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.« less
Tsonis, Anastasios A.; Deyle, Ethan R.; May, Robert M.; Sugihara, George; Swanson, Kyle; Verbeten, Joshua D.; Wang, Geli
2015-03-02
As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR). Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research and elsewhere, demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we find no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. Furthermore, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.
A causal model for longitudinal randomised trials with time-dependent non-compliance.
Becque, Taeko; White, Ian R; Haggard, Mark
2015-05-30
In the presence of non-compliance, conventional analysis by intention-to-treat provides an unbiased comparison of treatment policies but typically under-estimates treatment efficacy. With all-or-nothing compliance, efficacy may be specified as the complier-average causal effect (CACE), where compliers are those who receive intervention if and only if randomised to it. We extend the CACE approach to model longitudinal data with time-dependent non-compliance, focusing on the situation in which those randomised to control may receive treatment and allowing treatment effects to vary arbitrarily over time. Defining compliance type to be the time of surgical intervention if randomised to control, so that compliers are patients who would not have received treatment at all if they had been randomised to control, we construct a causal model for the multivariate outcome conditional on compliance type and randomised arm. This model is applied to the trial of alternative regimens for glue ear treatment evaluating surgical interventions in childhood ear disease, where outcomes are measured over five time points, and receipt of surgical intervention in the control arm may occur at any time. We fit the models using Markov chain Monte Carlo methods to obtain estimates of the CACE at successive times after receiving the intervention. In this trial, over a half of those randomised to control eventually receive intervention. We find that surgery is more beneficial than control at 6months, with a small but non-significant beneficial effect at 12months.
A dynamic conceptual model of care planning.
Elf, Marie; Poutilova, Maria; Ohrn, Kerstin
2007-12-01
This article presents a conceptual model of the care planning process developed to identify the hypothetical links between structural, process and outcome factors important to the quality of the process. Based on existing literature, it was hypothesized that a thorough assessment of patients' health needs is an important prerequisite when making a rigorous diagnosis and preparing plans for various care interventions. Other important variables that are assumed to influence the quality of the process are the care culture and professional knowledge. The conceptual model was developed as a system dynamics causal loop diagram as a first essential step towards a computed model. System dynamics offers the potential to describe processes in a nonlinear, dynamic way and is suitable for exploring, comprehending, learning and communicating complex ideas about care processes.
The Reactive-Causal Architecture: Introducing an Emotion Model along with Theories of Needs
NASA Astrophysics Data System (ADS)
Aydin, Ali Orhan; Orgun, Mehmet Ali
In the entertainment application area, one of the major aims is to develop believable agents. To achieve this aim, agents should be highly autonomous, situated, flexible, and display affect. The Reactive-Causal Architecture (ReCau) is proposed to simulate these core attributes. In its current form, ReCau cannot explain the effects of emotions on intelligent behaviour. This study aims is to further improve the emotion model of ReCau to explain the effects of emotions on intelligent behaviour. This improvement allows ReCau to be emotional to support the development of believable agents.
Exploratory Causal Analysis in Bivariate Time Series Data
NASA Astrophysics Data System (ADS)
McCracken, James M.
Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data
Louie, Jacob; Shalaby, Amer; Habib, Khandker Nurul
2017-01-01
Most investigations of incident-related delay duration in the transportation context are restricted to highway traffic, with little attention given to delays due to transit service disruptions. Studies of transit-based delay duration are also considerably less comprehensive than their highway counterparts with respect to examining the effects of non-causal variables on the delay duration. However, delays due to incidents in public transit service can have serious consequences on the overall urban transportation system due to the pivotal and vital role of public transit. The ability to predict the durations of various types of transit system incidents is indispensable for better management and mitigation of service disruptions. This paper presents a detailed investigation on incident delay durations in Toronto's subway system over the year 2013, focusing on the effects of the incidents' location and time, the train-type involved, and the non-adherence to proper recovery procedures. Accelerated Failure Time (AFT) hazard models are estimated to investigate the relationship between these factors and the resulting delay duration. The empirical investigation reveals that incident types that impact both safety and operations simultaneously generally have longer expected delays than incident types that impact either safety or operations alone. Incidents at interchange stations are cleared faster than incidents at non-interchange stations. Incidents during peak periods have nearly the same delay durations as off-peak incidents. The estimated models are believed to be useful tools in predicting the relative magnitude of incident delay duration for better management of subway operations.
Streja, Elani; Park, Jongha; Chan, Ting-Yan; Lee, Janet; Soohoo, Melissa; Rhee, Connie M.; Arah, Onyebuchi A.; Kalantar-Zadeh, Kamyar
2016-01-01
It has been previously reported that a higher erythropoiesis stimulating agent (ESA) dose in hemodialysis patients is associated with adverse outcomes including mortality; however the causal relationship between ESA and mortality is still hotly debated. We hypothesize ESA dose indeed exhibits a direct linear relationship with mortality in models of association implementing the use of a marginal structural model (MSM), which controls for time-varying confounding and examines causality in the ESA dose-mortality relationship. We conducted a retrospective cohort study of 128 598 adult hemodialysis patients over a 5-year follow-up period to evaluate the association between weekly ESA (epoetin-α) dose and mortality risk. A MSM was used to account for baseline and time-varying covariates especially laboratory measures including hemoglobin level and markers of malnutrition-inflammation status. There was a dose-dependent positive association between weekly epoetin-α doses ≥18 000 U/week and mortality risk. Compared to ESA dose of <6 000 U/week, adjusted odds ratios (95% confidence interval) were 1.02 (0.94–1.10), 1.08 (1.00–1.18), 1.17 (1.06–1.28), 1.27 (1.15–1.41), and 1.52 (1.37–1.69) for ESA dose of 6 000 to <12 000, 12 000 to <18 000, 18 000 to <24 000, 24 000 to <30 000, and ≥30 000 U/week, respectively. High ESA dose may be causally associated with excessive mortality, which is supportive of guidelines which advocate for conservative management of ESA dosing regimen in hemodialysis patients. PMID:27298736
Darwin's diagram of divergence of taxa as a causal model for the origin of species.
Bouzat, Juan L
2014-03-01
On the basis that Darwin's theory of evolution encompasses two logically independent processes (common descent and natural selection), the only figure in On the Origin of Species (the Diagram of Divergence of Taxa) is often interpreted as illustrative of only one of these processes: the branching patterns representing common ancestry. Here, I argue that Darwin's Diagram of Divergence of Taxa represents a broad conceptual model of Darwin's theory, illustrating the causal efficacy of natural selection in producing well-defined varieties and ultimately species. The Tree Diagram encompasses the idea that natural selection explains common descent and the origin of organic diversity, thus representing a comprehensive model of Darwin's theory on the origin of species. I describe Darwin's Tree Diagram in relation to his argumentative strategy under the vera causa principle, and suggest that the testing of his theory based on the evidence from the geological record, the geographical distribution of organisms, and the mutual affinities of organic beings can be framed under the hypothetico-deductive method. Darwin's Diagram of Divergence of Taxa therefore represents a broad conceptual model that helps understanding the causal construction of Darwin's theory of evolution, the structure of his argumentative strategy, and the nature of his scientific methodology.
The relationship of family characteristics and bipolar disorder using causal-pie models.
Chen, Y-C; Kao, C-F; Lu, M-K; Yang, Y-K; Liao, S-C; Jang, F-L; Chen, W J; Lu, R-B; Kuo, P-H
2014-01-01
Many family characteristics were reported to increase the risk of bipolar disorder (BPD). The development of BPD may be mediated through different pathways, involving diverse risk factor profiles. We evaluated the associations of family characteristics to build influential causal-pie models to estimate their contributions on the risk of developing BPD at the population level. We recruited 329 clinically diagnosed BPD patients and 202 healthy controls to collect information in parental psychopathology, parent-child relationship, and conflict within family. Other than logistic regression models, we applied causal-pie models to identify pathways involved with different family factors for BPD. The risk of BPD was significantly increased with parental depression, neurosis, anxiety, paternal substance use problems, and poor relationship with parents. Having a depressed mother further predicted early onset of BPD. Additionally, a greater risk for BPD was observed with higher numbers of paternal/maternal psychopathologies. Three significant risk profiles were identified for BPD, including paternal substance use problems (73.0%), maternal depression (17.6%), and through poor relationship with parents and conflict within the family (6.3%). Our findings demonstrate that different aspects of family characteristics elicit negative impacts on bipolar illness, which can be utilized to target specific factors to design and employ efficient intervention programs.
Tsonis, Anastasios A; Deyle, Ethan R; May, Robert M; Sugihara, George; Swanson, Kyle; Verbeten, Joshua D; Wang, Geli
2015-03-17
As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR) [Ney ER (1959) Nature 183:451-452]. Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research [Duplissy J, et al. (2010) Atmos Chem Phys 10:1635-1647; Kirkby J, et al. (2011) Nature 476(7361):429-433] and elsewhere [Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI (2007) Proc R Soc A 463:385-396; Enghoff MB, Pedersen JOP, Uggerhoj UI, Paling SM, Svensmark H (2011) Geophys Res Lett 38:L09805], demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we find no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. However, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.
Causality, mathematical models and statistical association: dismantling evidence-based medicine.
Thompson, R Paul
2010-04-01
From humble beginnings, largely at the medical school at McMaster University, Canada, the evidence-based medicine (EBM) movement has enjoyed a spectacular rise in international acceptance over the last 25 years. Randomized controlled trials (RCTs) and systematic reviews based on them have pride of place (the gold standard) in EBM's hierarchy of evidence; models and theories are relegated to the bottom of the hierarchy. In the last decade, RCTs have been extensively criticized. I briefly rehearse those criticisms because they are an important backdrop to the criticism of EBM developed in this paper. In essence, the argument developed here is that RCTs use mathematics solely as a tool of analysis rather than as the language of the science and that this fundamentally affects the validity of causal claims. As EBM gives pride of place to RCTs and devalues theoretical models - a devaluation that would be incomprehensible to a physicist or biologist - the validity of EBM's causal claims and knowledge claims are weak and far from a 'gold standard'.
A causal model for the effectiveness of internal quality assurance for the health science area.
Seeorn, Kittiya
2005-10-01
The purposes of this research were 1) to study the effectiveness of Internal Quality Assurance (IQA) of the Health science area, and 2) to study the factors affecting the effectiveness of the IQA of the Health science area. A causal model has been developed by the researcher comprised of the 6 exogenous latent variables: Attitude towards quality assurance, Teamwork, Staff training, Resource sufficiency, Organizational culture, and Leadership, and the 4 endogenous latent variables, which are the effectiveness of the IQA, Student-centered approach, Decentralized administration, PDCA cycle of work (Plan-Do-Check-Act), and Staff job satisfaction. The research sample consisted of 108 health science faculties derived by stratified random sampling technique. Data were collected by 10 questionnaires having reliability ranging from 0.79 to 0.96. Data analyses were descriptive statistics, and Linear Structure Relationship (LISREL) analysis. The major findings were as follows: 1. The 4 dimensions of effectiveness for the IQA of the Health science areas were significantly higher at the .05 level, after the Health science faculty applied the IQA programme according to the National Education Act of 1999. 2. The causal model of the effectiveness of the IQA was valid and fitted the empirical data. The 6 predictors accounted for 83% of the variance in the effectiveness of IQA. Culture and Leadership were the predictors that significantly accounted for the effectiveness of the IQA.
Thermal dynamic modeling study
NASA Technical Reports Server (NTRS)
Ojalvo, I. U.
1972-01-01
Some thermal dynamic requirements associated with the space shuttle vehicle are reviewed. Pertinent scaling laws are discussed and recommendations are offered regarding the need for conducting reduced-scale dynamic tests of major components at elevated temperatures. Items considered are the development and interpretation of thermal dynamic structural scaling laws, the identification of major related problem areas and a presentation of viable model fabrication, instrumentation, and test procedures.
Comparing two causal models of career maturity for hearing-impaired adolescents.
King, S
1990-01-01
Conte (1983) suggested that existing theories of career development are inadequate for disabled populations because they fail to take into consideration the special life events and characteristics of people with a disability. The purpose of this study was to determine if Conte's reservations about contemporary theories could be supported by data. To this end, two causal models of career development were developed: one with five variables unique to the experience of the hearing impaired and the other without. Using data collected from 71 hearing-impaired adolescents, path analyses were conducted and the two models were compared for their ability to explain variance in career maturity. The results suggest that, although the second model may be more descriptive of the career development process for the deaf, it is no more powerful than the first in explaining variance in career maturity.
Causality and Composite Structure
Joglekar, Satish D.
2007-10-03
In this talk, we discuss the question of whether a composite structure of elementary particles, with a length scale 1/{lambda}, can leave observable effects of non-locality and causality violation at higher energies (but {<=}{lambda}); employing a model-independent approach based on Bogoliubov-Shirkov formulation of causality. We formulate a condition which must be fulfilled for the derived theory to be causal, if the fundamental theory is so; and analyze it to exhibit possibilities which fulfil and which violate the condition. We comment on how causality violating amplitudes can arise.
Directed network discovery with dynamic network modelling.
Anzellotti, Stefano; Kliemann, Dorit; Jacoby, Nir; Saxe, Rebecca
2017-02-16
Cognitive tasks recruit multiple brain regions. Understanding how these regions influence each other (the network structure) is an important step to characterize the neural basis of cognitive processes. Often, limited evidence is available to restrict the range of hypotheses a priori, and techniques that sift efficiently through a large number of possible network structures are needed (network discovery). This article introduces a novel modelling technique for network discovery (Dynamic Network Modelling or DNM) that builds on ideas from Granger Causality and Dynamic Causal Modelling introducing three key changes: (1) efficient network discovery is implemented with statistical tests on the consistency of model parameters across participants, (2) the tests take into account the magnitude and sign of each influence, and (3) variance explained in independent data is used as an absolute (rather than relative) measure of the quality of the network model. In this article, we outline the functioning of DNM, we validate DNM in simulated data for which the ground truth is known, and we report an example of its application to the investigation of influences between regions during emotion recognition, revealing top-down influences from brain regions encoding abstract representations of emotions (medial prefrontal cortex and superior temporal sulcus) onto regions engaged in the perceptual analysis of facial expressions (occipital face area and fusiform face area) when participants are asked to switch between reporting the emotional valence and the age of a face.
ERIC Educational Resources Information Center
Walsh, Jim; McGehee, Richard
2013-01-01
A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…
Korzeniewska, Anna; Franaszczuk, Piotr J; Crainiceanu, Ciprian M; Kuś, Rafał; Crone, Nathan E
2011-06-15
Intracranial EEG studies in humans have shown that functional brain activation in a variety of functional-anatomic domains of human cortex is associated with an increase in power at a broad range of high gamma (>60Hz) frequencies. Although these electrophysiological responses are highly specific for the location and timing of cortical processing and in animal recordings are highly correlated with increased population firing rates, there has been little direct empirical evidence for causal interactions between different recording sites at high gamma frequencies. Such causal interactions are hypothesized to occur during cognitive tasks that activate multiple brain regions. To determine whether such causal interactions occur at high gamma frequencies and to investigate their functional significance, we used event-related causality (ERC) analysis to estimate the dynamics, directionality, and magnitude of event-related causal interactions using subdural electrocorticography (ECoG) recorded during two word production tasks: picture naming and auditory word repetition. A clinical subject who had normal hearing but was skilled in American Signed Language (ASL) provided a unique opportunity to test our hypothesis with reference to a predictable pattern of causal interactions, i.e. that language cortex interacts with different areas of sensorimotor cortex during spoken vs. signed responses. Our ERC analyses confirmed this prediction. During word production with spoken responses, perisylvian language sites had prominent causal interactions with mouth/tongue areas of motor cortex, and when responses were gestured in sign language, the most prominent interactions involved hand and arm areas of motor cortex. Furthermore, we found that the sites from which the most numerous and prominent causal interactions originated, i.e. sites with a pattern of ERC "divergence", were also sites where high gamma power increases were most prominent and where electrocortical stimulation mapping
Tonglet, R; Mudosa, M; Badashonderana, M; Beghin, I; Hennart, P
1992-01-01
Reported are the results of a case study from Kirotshe rural health district, Northern Kivu, Zaire, where a workshop on the causal model approach to nutrition was organized in 1987. The model has since been used in the field for research design, training of health professionals, nutrition intervention, and community development. The rationale behind this approach is reviewed, the experience accumulated from Kirotshe district is described, and the ways in which the causal model contributes to comprehensive health and nutrition care are discussed. The broad range of possible policy implications of this approach underlines its usefulness for future action.
Tonglet, R.; Mudosa, M.; Badashonderana, M.; Beghin, I.; Hennart, P.
1992-01-01
Reported are the results of a case study from Kirotshe rural health district, Northern Kivu, Zaire, where a workshop on the causal model approach to nutrition was organized in 1987. The model has since been used in the field for research design, training of health professionals, nutrition intervention, and community development. The rationale behind this approach is reviewed, the experience accumulated from Kirotshe district is described, and the ways in which the causal model contributes to comprehensive health and nutrition care are discussed. The broad range of possible policy implications of this approach underlines its usefulness for future action. PMID:1486667
Synergy and redundancy in the Granger causal analysis of dynamical networks
NASA Astrophysics Data System (ADS)
Stramaglia, Sebastiano; Cortes, Jesus M.; Marinazzo, Daniele
2014-10-01
We analyze, by means of Granger causality (GC), the effect of synergy and redundancy in the inference (from time series data) of the information flow between subsystems of a complex network. While we show that fully conditioned GC (CGC) is not affected by synergy, the pairwise analysis fails to prove synergetic effects. In cases when the number of samples is low, thus making the fully conditioned approach unfeasible, we show that partially conditioned GC (PCGC) is an effective approach if the set of conditioning variables is properly chosen. Here we consider two different strategies (based either on informational content for the candidate driver or on selecting the variables with highest pairwise influences) for PCGC and show that, depending on the data structure, either one or the other might be equally valid. On the other hand, we observe that fully conditioned approaches do not work well in the presence of redundancy, thus suggesting the strategy of separating the pairwise links in two subsets: those corresponding to indirect connections of the CGC (which should thus be excluded) and links that can be ascribed to redundancy effects and, together with the results from the fully connected approach, provide a better description of the causality pattern in the presence of redundancy. Finally we apply these methods to two different real datasets. First, analyzing electrophysiological data from an epileptic brain, we show that synergetic effects are dominant just before seizure occurrences. Second, our analysis applied to gene expression time series from HeLa culture shows that the underlying regulatory networks are characterized by both redundancy and synergy.
Guarnera, Enrico; Berezovsky, Igor N.
2016-01-01
Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design. PMID:26939022
Causal modeling of secondary science students' intentions to enroll in physics
NASA Astrophysics Data System (ADS)
Crawley, Frank E.; Black, Carolyn B.
The purpose of this study was to explore the utility of the theory of planned behavior model developed by social psychologists for understanding and predicting the behavioral intentions of secondary science students regarding enrolling in physics. In particular, the study used a three-stage causal model to investigate the links from external variables to behavioral, normative, and control beliefs; from beliefs to attitudes, subjective norm, and perceived behavioral control; and from attitudes, subjective norm, and perceived behavioral control to behavioral intentions. The causal modeling method was employed to verify the underlying causes of secondary science students' interest in enrolling physics as predicted in the theory of planned behavior. Data were collected from secondary science students (N = 264) residing in a central Texas city who were enrolled in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade) courses. Cause-and-effect relationships were analyzed using path analysis to test the direct effects of model variables specified in the theory of planned behavior. Results of this study indicated that students' intention to enroll in a high school physics course was determined by their attitude toward enrollment and their degree of perceived behavioral control. Attitude, subjective norm, and perceived behavioral control were, in turn, formed as a result of specific beliefs that students held about enrolling in physics. Grade level and career goals were found to be instrumental in shaping students' attitude. Immediate family members were identified as major referents in the social support system for enrolling in physics. Course and extracurricular conflicts and the fear of failure were shown to be the primary beliefs obstructing students' perception of control over physics enrollment. Specific recommendations are offered to researchers and practitioners for strengthening secondary school students
Causal Analysis After Haavelmo
Heckman, James; Pinto, Rodrigo
2014-01-01
Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123
Paixão, Crysttian Arantes; da Costa, Antonio Tavares
2013-06-01
This paper reports the development of a simple dynamic microscopic model to describe the main features of the phenomenon known as dynamic speckle, or biospeckle. Biospeckle is an interference pattern formed when a biological surface is illuminated with coherent light. The dynamic characteristics of biospeckle have been investigated as possible tools for assessing the quality of biological products. Our model, despite its simplicity, was able to reproduce qualitatively the main features of biospeckle. We were able to correlate variations in a microscopic parameter associated with movement of the particles comprising the organic surface with changes in a macroscopic parameter that measures the change rate of a dynamic interference pattern. We showed that this correlation occurs only within a limited range of parameter microscope values. We also showed how our model was able to describe nonuniform surfaces composed of more than one type of particles.
Yeang, Calvin; Cotter, Bruno; Tsimikas, Sotirios
2016-02-01
Lipoprotein(a) [Lp(a)], comprised of apolipoprotein(a) [apo(a)] and a low-density lipoprotein-like particle, is a genetically determined, causal risk factor for cardiovascular disease and calcific aortic valve stenosis. Lp(a) is the major plasma lipoprotein carrier of oxidized phospholipids, is pro-inflammatory, inhibits plasminogen activation, and promotes smooth muscle cell proliferation, as defined mostly through in vitro studies. Although Lp(a) is not expressed in commonly studied laboratory animals, mouse and rabbit models transgenic for Lp(a) and apo(a) have been developed to address their pathogenicity in vivo. These models have provided significant insights into the pathophysiology of Lp(a), particularly in understanding the mechanisms of Lp(a) in mediating atherosclerosis. Studies in Lp(a)-transgenic mouse models have demonstrated that apo(a) is retained in atheromas and suggest that it promotes fatty streak formation. Furthermore, rabbit models have shown that Lp(a) promotes atherosclerosis and vascular calcification. However, many of these models have limitations. Mouse models need to be transgenic for both apo(a) and human apolipoprotein B-100 since apo(a) does not covalently associated with mouse apoB to form Lp(a). In established mouse and rabbit models of atherosclerosis, Lp(a) levels are low, generally < 20 mg/dL, which is considered to be within the normal range in humans. Furthermore, only one apo(a) isoform can be expressed in a given model whereas over 40 isoforms exist in humans. Mouse models should also ideally be studied in an LDL receptor negative background for atherosclerosis studies, as mice don't develop sufficiently elevated plasma cholesterol to study atherosclerosis in detail. With recent data that cardiovascular disease and calcific aortic valve stenosis is causally mediated by the LPA gene, development of optimized Lp(a)-transgenic animal models will provide an opportunity to further understand the mechanistic role of Lp(a) in
Coping with dating errors in causality estimation
NASA Astrophysics Data System (ADS)
Smirnov, D. A.; Marwan, N.; Breitenbach, S. F. M.; Lechleitner, F.; Kurths, J.
2017-01-01
We consider the problem of estimating causal influences between observed processes from time series possibly corrupted by errors in the time variable (dating errors) which are typical in palaeoclimatology, planetary science and astrophysics. “Causality ratio” based on the Wiener-Granger causality is proposed and studied for a paradigmatic class of model systems to reveal conditions under which it correctly indicates directionality of unidirectional coupling. It is argued that in the case of a priori known directionality, the causality ratio allows a characterization of dating errors and observational noise. Finally, we apply the developed approach to palaeoclimatic data and quantify the influence of solar activity on tropical Atlantic climate dynamics over the last two millennia. A stronger solar influence in the first millennium A.D. is inferred. The results also suggest a dating error of about 20 years in the solar proxy time series over the same period.
ERIC Educational Resources Information Center
Tighe, Elizabeth L.; Wagner, Richard K.; Schatschneider, Christopher
2015-01-01
This study demonstrates the utility of applying a causal indicator modeling framework to investigate important predictors of reading comprehension in third, seventh, and tenth grade students. The results indicated that a 4-factor multiple indicator multiple indicator cause (MIMIC) model of reading comprehension provided adequate fit at each grade…
Naimi, Ashley I.; Richardson, David B.; Cole, Stephen R.
2013-01-01
In a recent issue of the Journal, Kirkeleit et al. (Am J Epidemiol. 2013;177(11):1218–1224) provided empirical evidence for the potential of the healthy worker effect in a large cohort of Norwegian workers across a range of occupations. In this commentary, we provide some historical context, define the healthy worker effect by using causal diagrams, and use simulated data to illustrate how structural nested models can be used to estimate exposure effects while accounting for the healthy worker survivor effect in 4 simple steps. We provide technical details and annotated SAS software (SAS Institute, Inc., Cary, North Carolina) code corresponding to the example analysis in the Web Appendices, available at http://aje.oxfordjournals.org/. PMID:24077092
Naimi, Ashley I; Richardson, David B; Cole, Stephen R
2013-12-15
In a recent issue of the Journal, Kirkeleit et al. (Am J Epidemiol. 2013;177(11):1218-1224) provided empirical evidence for the potential of the healthy worker effect in a large cohort of Norwegian workers across a range of occupations. In this commentary, we provide some historical context, define the healthy worker effect by using causal diagrams, and use simulated data to illustrate how structural nested models can be used to estimate exposure effects while accounting for the healthy worker survivor effect in 4 simple steps. We provide technical details and annotated SAS software (SAS Institute, Inc., Cary, North Carolina) code corresponding to the example analysis in the Web Appendices, available at http://aje.oxfordjournals.org/.
Nonlinear connectivity by Granger causality.
Marinazzo, Daniele; Liao, Wei; Chen, Huafu; Stramaglia, Sebastiano
2011-09-15
The communication among neuronal populations, reflected by transient synchronous activity, is the mechanism underlying the information processing in the brain. Although it is widely assumed that the interactions among those populations (i.e. functional connectivity) are highly nonlinear, the amount of nonlinear information transmission and its functional roles are not clear. The state of the art to understand the communication between brain systems are dynamic causal modeling (DCM) and Granger causality. While DCM models nonlinear couplings, Granger causality, which constitutes a major tool to reveal effective connectivity, and is widely used to analyze EEG/MEG data as well as fMRI signals, is usually applied in its linear version. In order to capture nonlinear interactions between even short and noisy time series, a few approaches have been proposed. We review them and focus on a recently proposed flexible approach has been recently proposed, consisting in the kernel version of Granger causality. We show the application of the proposed approach on EEG signals and fMRI data.
The development of causal reasoning.
Kuhn, Deanna
2012-05-01
How do inference rules for causal learning themselves change developmentally? A model of the development of causal reasoning must address this question, as well as specify the inference rules. Here, the evidence for developmental changes in processes of causal reasoning is reviewed, with the distinction made between diagnostic causal inference and causal prediction. Also addressed is the paradox of a causal reasoning literature that highlights the competencies of young children and the proneness to error among adults. WIREs Cogn Sci 2012, 3:327-335. doi: 10.1002/wcs.1160 For further resources related to this article, please visit the WIREs website.
Wang, Chi; Dominici, Francesca; Parmigiani, Giovanni; Zigler, Corwin Matthew
2015-09-01
Confounder selection and adjustment are essential elements of assessing the causal effect of an exposure or treatment in observational studies. Building upon work by Wang et al. (2012, Biometrics 68, 661-671) and Lefebvre et al. (2014, Statistics in Medicine 33, 2797-2813), we propose and evaluate a Bayesian method to estimate average causal effects in studies with a large number of potential confounders, relatively few observations, likely interactions between confounders and the exposure of interest, and uncertainty on which confounders and interaction terms should be included. Our method is applicable across all exposures and outcomes that can be handled through generalized linear models. In this general setting, estimation of the average causal effect is different from estimation of the exposure coefficient in the outcome model due to noncollapsibility. We implement a Bayesian bootstrap procedure to integrate over the distribution of potential confounders and to estimate the causal effect. Our method permits estimation of both the overall population causal effect and effects in specified subpopulations, providing clear characterization of heterogeneous exposure effects that may vary considerably across different covariate profiles. Simulation studies demonstrate that the proposed method performs well in small sample size situations with 100-150 observations and 50 covariates. The method is applied to data on 15,060 US Medicare beneficiaries diagnosed with a malignant brain tumor between 2000 and 2009 to evaluate whether surgery reduces hospital readmissions within 30 days of diagnosis.
Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.
2015-01-01
Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of
Programs as Causal Models: Speculations on Mental Programs and Mental Representation
ERIC Educational Resources Information Center
Chater, Nick; Oaksford, Mike
2013-01-01
Judea Pearl has argued that counterfactuals and causality are central to intelligence, whether natural or artificial, and has helped create a rich mathematical and computational framework for formally analyzing causality. Here, we draw out connections between these notions and various current issues in cognitive science, including the nature of…
Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates
ERIC Educational Resources Information Center
Bollen, Kenneth A.; Bauldry, Shawn
2011-01-01
In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of…
Bhattacharya, Basabdatta Sen; Bond, Thomas P.; O'Hare, Louise; Turner, Daniel; Durrant, Simon J.
2016-01-01
Experimental studies on the Lateral Geniculate Nucleus (LGN) of mammals and rodents show that the inhibitory interneurons (IN) receive around 47.1% of their afferents from the retinal spiking neurons, and constitute around 20–25% of the LGN cell population. However, there is a definite gap in knowledge about the role and impact of IN on thalamocortical dynamics in both experimental and model-based research. We use a neural mass computational model of the LGN with three neural populations viz. IN, thalamocortical relay (TCR), thalamic reticular nucleus (TRN), to study the causality of IN on LGN oscillations and state-transitions. The synaptic information transmission in the model is implemented with kinetic modeling, facilitating the linking of low-level cellular attributes with high-level population dynamics. The model is parameterized and tuned to simulate alpha (8–13 Hz) rhythm that is dominant in both Local Field Potential (LFP) of LGN and electroencephalogram (EEG) of visual cortex in an awake resting state with eyes closed. The results show that: First, the response of the TRN is suppressed in the presence of IN in the circuit; disconnecting the IN from the circuit effects a dramatic change in the model output, displaying high amplitude synchronous oscillations within the alpha band in both TCR and TRN. These observations conform to experimental reports implicating the IN as the primary inhibitory modulator of LGN dynamics in a cognitive state, and that reduced cognition is achieved by suppressing the TRN response. Second, the model validates steady state visually evoked potential response in humans corresponding to periodic input stimuli; however, when the IN is disconnected from the circuit, the output power spectra do not reflect the input frequency. This agrees with experimental reports underpinning the role of IN in efficient retino-geniculate information transmission. Third, a smooth transition from alpha to theta band is observed by progressive
Va Derveer, W.; Canton, S.
1995-12-31
Selenium (Se) in the aquatic environment exhibits a strong association with particulate organic matter and as a result, measurements of waterborne concentration can be an unreliable predictor of bioaccumulation and adverse effects. Particulate-bound Se, typically measured as sedimentary Se, has been repeatedly implicated as a causal factor for Se bioaccumulation and subsequent potential for reproductive failures in fish and/or birds at sites receiving coal-fired power plant and refinery effluents as well as irrigation drainage. In fact, the premise that adverse biological effects are largely induced by sedimentary Se satisfies all of Hill`s criteria for a causal association. Despite these findings, most efforts to control Se continue to focus on waterborne concentrations because sedimentary toxicity thresholds are largely unknown. Sedimentary Se and associated biological effects data from studies of Se-bearing industrial effluent and irrigation drainage were compiled to initiate development of biological effects thresholds, The probability of adverse effects on fish or birds appears to be low up to a sedimentary Se concentration of about 2.8 {micro}g/g dry weight and high at 6.4 {micro}g/g dry weight (10th and 50th percentile of effects data, respectively). In addition, a preliminary regression model was derived for predicting dissolved to sedimentary Se transfer in streams as an interactive function of site-specific sedimentary organic carbon content (R{sup 2} = 0,870, p < 0.001) based on irrigation drainage studies in Colorado. This dissolved Se interaction with sedimentary organic carbon provides a possible explanation for the variable biological response to waterborne Se-organic-rich sites are predisposed to greater Se bioaccumulation and subsequent biological effects than organic-poor sites.
Modeling the Mechanism of Action of a DGAT1 Inhibitor Using a Causal Reasoning Platform
Enayetallah, Ahmed E.; Ziemek, Daniel; Leininger, Michael T.; Randhawa, Ranjit; Yang, Jianxin; Manion, Tara B.; Mather, Dawn E.; Zavadoski, William J.; Kuhn, Max; Treadway, Judith L.; des Etages, Shelly Ann G.; Gibbs, E. Michael; Greene, Nigel; Steppan, Claire M.
2011-01-01
Triglyceride accumulation is associated with obesity and type 2 diabetes. Genetic disruption of diacylglycerol acyltransferase 1 (DGAT1), which catalyzes the final reaction of triglyceride synthesis, confers dramatic resistance to high-fat diet induced obesity. Hence, DGAT1 is considered a potential therapeutic target for treating obesity and related metabolic disorders. However, the molecular events shaping the mechanism of action of DGAT1 pharmacological inhibition have not been fully explored yet. Here, we investigate the metabolic molecular mechanisms induced in response to pharmacological inhibition of DGAT1 using a recently developed computational systems biology approach, the Causal Reasoning Engine (CRE). The CRE algorithm utilizes microarray transcriptomic data and causal statements derived from the biomedical literature to infer upstream molecular events driving these transcriptional changes. The inferred upstream events (also called hypotheses) are aggregated into biological models using a set of analytical tools that allow for evaluation and integration of the hypotheses in context of their supporting evidence. In comparison to gene ontology enrichment analysis which pointed to high-level changes in metabolic processes, the CRE results provide detailed molecular hypotheses to explain the measured transcriptional changes. CRE analysis of gene expression changes in high fat habituated rats treated with a potent and selective DGAT1 inhibitor demonstrate that the majority of transcriptomic changes support a metabolic network indicative of reversal of high fat diet effects that includes a number of molecular hypotheses such as PPARG, HNF4A and SREBPs. Finally, the CRE-generated molecular hypotheses from DGAT1 inhibitor treated rats were found to capture the major molecular characteristics of DGAT1 deficient mice, supporting a phenotype of decreased lipid and increased insulin sensitivity. PMID:22073239
ERIC Educational Resources Information Center
Gobert, Janice D.; Clement, John J.
1999-01-01
Grade five students' (n=58) conceptual understanding of plate tectonics was measured by analysis of student-generated summaries and diagrams, and by posttest assessment of both the spatial/static and causal/dynamic aspects of the domain. The diagram group outperformed the summary and text-only groups on the posttest measures. Discusses the effects…
Calibrating the pixel-level Kepler imaging data with a causal data-driven model
NASA Astrophysics Data System (ADS)
Wang, Dun; Foreman-Mackey, Daniel; Hogg, David W.; Schölkopf, Bernhard
2015-01-01
In general, astronomical observations are affected by several kinds of noise, each with it's own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. In particular, the precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here we present the Causal Pixel Model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level (not the photometric measurement level); it can capture more fine-grained information about the variation of the spacecraft than is available in the pixel-summed aperture photometry. The basic idea is that CPM predicts each target pixel value from a large number of pixels of other stars sharing the instrument variabilities while not containing any information on possible transits at the target star. In addition, we use the target star's future and past (auto-regression). By appropriately separating the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the fitting of the model. The method has four hyper-parameters (the number of predictor stars, the auto-regressive window size, and two L2-regularization amplitudes for model components), which we set by cross-validation. We determine a generic set of hyper-parameters that works well on most of the stars with 11≤V≤12 mag and apply the method to a corresponding set of target stars with known planet transits. We find that we can consistently outperform (for the purposes of exoplanet detection) the Kepler Pre-search Data Conditioning (PDC) method for exoplanet discovery, often improving the SNR by a factor of two. While we have not yet exhaustively tested the method at other
ERIC Educational Resources Information Center
Jensen, Eva
2014-01-01
If students really understand the systems they study, they would be able to tell how changes in the system would affect a result. This demands that the students understand the mechanisms that drive its behaviour. The study investigates potential merits of learning how to explicitly model the causal structure of systems. The approach and…
ERIC Educational Resources Information Center
Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.
2016-01-01
The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…
Tanaka, A; Yamauchi, H
2000-10-01
This study investigated the effect of achievement motive on goal orientation, and that of goal orientation on intrinsic interest in learning and academic achievement, based on the model proposed by Elliot and Church (1997). A sample of 222 fifth and sixth grade students of an elementary school, and another of 307 seventh, eighth and ninth grade students of a junior high school participated in the study. The approach-avoidance framework of Elliot and Harackiewicz (1996) was used to classify goal orientations. With multiple-sample structural equation modeling, the paths in two causal models, one for each of the elementary and junior high school samples, were compared. A path was found from hope for success to mastery orientation, from both hope for success and fear of failure to performance-approach orientation, and from fear of failure to performance-avoidance orientation. Mastery and performance-approach orientations each had a positive effect on intrinsic interest in learning. For elementary school children, performance-approach orientation enhanced academic achievement, and for junior high school students, mastery orientation mainly facilitated it. Performance-avoidance orientation had a negative effect on both intrinsic interest and academic achievement.
Héroux, Julie; Moodie, Erica E. M.; Strumpf, Erin; Coyle, Natalie; Tousignant, Pierre; Diop, Mamadou
2017-01-01
Evaluating the impacts of clinical or policy interventions on health care utilization requires addressing methodological challenges for causal inference while also analyzing highly skewed data. We examine the impact of registering with a Family Medicine Group (FMG), an integrated primary care model in Quebec, on hospitalization and emergency department visits using propensity scores to adjust for baseline characteristics and marginal structural models to account for time-varying exposure. We also evaluate the performance of different marginal structural GLMs in the presence of highly skewed data and conduct a simulation study to determine the robustness of different GLMs to distributional model mis-specification. Although the simulations found that the zero-inflated Poisson likelihood performed the best overall, the negative binomial likelihood gave the best fit for both outcomes in the real dataset. Our results suggest that registration to a FMG for all three years caused a small reduction in the number of emergency room visits, and no significant change in the number of hospitalizations in the final year. PMID:24167024
Chen, Mei-Chih; Chang, Kaowen
2014-11-06
Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD) model in the System Dynamics (SD) approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan's cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan's cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan's cities' sustainability and development (S&D). When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl.
Yu, Wen; Chen, Kani; Sobel, Michael E; Ying, Zhiliang
2015-03-01
We consider causal inference in randomized survival studies with right censored outcomes and all-or-nothing compliance, using semiparametric transformation models to estimate the distribution of survival times in treatment and control groups, conditional on covariates and latent compliance type. Estimands depending on these distributions, for example, the complier average causal effect (CACE), the complier effect on survival beyond time t, and the complier quantile effect are then considered. Maximum likelihood is used to estimate the parameters of the transformation models, using a specially designed expectation-maximization (EM) algorithm to overcome the computational difficulties created by the mixture structure of the problem and the infinite dimensional parameter in the transformation models. The estimators are shown to be consistent, asymptotically normal, and semiparametrically efficient. Inferential procedures for the causal parameters are developed. A simulation study is conducted to evaluate the finite sample performance of the estimated causal parameters. We also apply our methodology to a randomized study conducted by the Health Insurance Plan of Greater New York to assess the reduction in breast cancer mortality due to screening.
Yu, Wen; Chen, Kani; Sobel, Michael E.; Ying, Zhiliang
2014-01-01
We consider causal inference in randomized survival studies with right censored outcomes and all-or-nothing compliance, using semiparametric transformation models to estimate the distribution of survival times in treatment and control groups, conditional on covariates and latent compliance type. Estimands depending on these distributions, for example, the complier average causal effect (CACE), the complier effect on survival beyond time t, and the complier quantile effect are then considered. Maximum likelihood is used to estimate the parameters of the transformation models, using a specially designed expectation-maximization (EM) algorithm to overcome the computational difficulties created by the mixture structure of the problem and the infinite dimensional parameter in the transformation models. The estimators are shown to be consistent, asymptotically normal, and semiparametrically efficient. Inferential procedures for the causal parameters are developed. A simulation study is conducted to evaluate the finite sample performance of the estimated causal parameters. We also apply our methodology to a randomized study conducted by the Health Insurance Plan of Greater New York to assess the reduction in breast cancer mortality due to screening. PMID:25870521
NASA Astrophysics Data System (ADS)
Setyaningsih, S.
2017-01-01
The main element to build a leading university requires lecturer commitment in a professional manner. Commitment is measured through willpower, loyalty, pride, loyalty, and integrity as a professional lecturer. A total of 135 from 337 university lecturers were sampled to collect data. Data were analyzed using validity and reliability test and multiple linear regression. Many studies have found a link on the commitment of lecturers, but the basic cause of the causal relationship is generally neglected. These results indicate that the professional commitment of lecturers affected by variables empowerment, academic culture, and trust. The relationship model between variables is composed of three substructures. The first substructure consists of endogenous variables professional commitment and exogenous three variables, namely the academic culture, empowerment and trust, as well as residue variable ɛ y . The second substructure consists of one endogenous variable that is trust and two exogenous variables, namely empowerment and academic culture and the residue variable ɛ 3. The third substructure consists of one endogenous variable, namely the academic culture and exogenous variables, namely empowerment as well as residue variable ɛ 2. Multiple linear regression was used in the path model for each substructure. The results showed that the hypothesis has been proved and these findings provide empirical evidence that increasing the variables will have an impact on increasing the professional commitment of the lecturers.
Causality and headache triggers
Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.
2013-01-01
Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872
NASA Astrophysics Data System (ADS)
Rokni Lamooki, Gholam Reza; Shirazi, Amir H.; Mani, Ali R.
2015-05-01
Thyroid's main chemical reactions are employed to develop a mathematical model. The presented model is based on differential equations where their dynamics reflects many aspects of thyroid's behavior. Our main focus here is the well known, but not well understood, phenomenon so called as Wolff-Chaikoff effect. It is shown that the inhibitory effect of intake iodide on the rate of one single enzyme causes a similar effect as Wolff-Chaikoff. Besides this issue, the presented model is capable of revealing other complex phenomena of thyroid hormones homeostasis.
The Mediation Formula: A Guide to the Assessment of Causal Pathways in Nonlinear Models
2011-10-27
Science Department Los Angeles, CA, 90095-1596, USA judea@cs.ucla.edu October 27, 2011 Abstract Mediation analysis aims to uncover causal pathways along...ADDRESS(ES) University of California, Los Angeles,Department of Computer Science ,Los Angeles,CA,90095 8. PERFORMING ORGANIZATION REPORT NUMBER 9...Indirect Effects 1.1 Direct versus Total Effects The target of many empirical studies in the social, behavioral, and health sciences is the causal effect
Causality violation, gravitational shockwaves and UV completion
NASA Astrophysics Data System (ADS)
Hollowood, Timothy J.; Shore, Graham M.
2016-03-01
The effective actions describing the low-energy dynamics of QFTs involving gravity generically exhibit causality violations. These may take the form of superluminal propagation or Shapiro time advances and allow the construction of "time machines", i.e. spacetimes admitting closed non-spacelike curves. Here, we discuss critically whether such causality violations may be used as a criterion to identify unphysical effective actions or whether, and how, causality problems may be resolved by embedding the action in a fundamental, UV complete QFT. We study in detail the case of photon scattering in an Aichelburg-Sexl gravitational shockwave background and calculate the phase shifts in QED for all energies, demonstrating their smooth interpolation from the causality-violating effective action values at low-energy to their manifestly causal high-energy limits. At low energies, these phase shifts may be interpreted as backwards-in-time coordinate jumps as the photon encounters the shock wavefront, and we illustrate how the resulting causality problems emerge and are resolved in a two-shockwave time machine scenario. The implications of our results for ultra-high (Planck) energy scattering, in which graviton exchange is modelled by the shockwave background, are highlighted.
NASA Astrophysics Data System (ADS)
West, Bruce J.
The proper methodology for describing the dynamics of certain complex phenomena and fractal time series is the fractional calculus through the fractional Langevin equation discussed herein and applied in a biomedical context. We show that a fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process, for example, human gait and cerebral blood flow. The goal of this talk is to make clear how certain complex phenomena, such as those that are abundantly present in human physiology, can be faithfully described using dynamical models involving fractional differential stochastic equations. These models are tested against existing data sets and shown to describe time series from complex physiologic phenomena quite well.
Mesoscale ocean dynamics modeling
mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P.; Levermore, D.
1996-05-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.
NASA Astrophysics Data System (ADS)
Kammerdiner, Alla; Xanthopoulos, Petros; Pardalos, Panos M.
2007-11-01
In this chapter a potential problem with application of the Granger-causality based on the simple vector autoregressive (VAR) modeling to EEG data is investigated. Although some initial studies tested whether the data support the stationarity assumption of VAR, the stability of the estimated model is rarely (if ever) been verified. In fact, in cases when the stability condition is violated the process may exhibit a random walk like behavior or even be explosive. The problem is illustrated by an example.
NASA Technical Reports Server (NTRS)
Glaese, John R.; Tobbe, Patrick A.
1986-01-01
The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.
From Granger causality to long-term causality: Application to climatic data
NASA Astrophysics Data System (ADS)
Smirnov, Dmitry A.; Mokhov, Igor I.
2009-07-01
Quantitative characterization of interaction between processes from time series is often required in different fields of natural science including geophysics and biophysics. Typically, one estimates “short-term” influences, e.g., the widely used Granger causality is defined via one-step-ahead predictions. Such an approach does not reveal how strongly the “long-term” behavior of one process under study is affected by the others. To overcome this problem, we introduce the concept of long-term causality, which extends the concept of Granger causality. The long-term causality is estimated from data via empirical modeling and analysis of model dynamics under different conditions. Apart from mathematical examples, we apply both approaches to find out how strongly the global surface temperature (GST) is affected by variations in carbon dioxide atmospheric content, solar activity, and volcanic activity during the last 150 years. Influences of all the three factors on GST are detected with the Granger causality. However, the long-term causality shows that the rise in GST during the last decades can be explained only if the anthropogenic factor (CO2) is taken into account in a model.
NASA Astrophysics Data System (ADS)
Valente, Giovanni; Owen Weatherall, James
2014-11-01
Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.
Morabia, Alfredo
2005-01-01
Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.
NASA Astrophysics Data System (ADS)
Rabbitt, Matthew P.
2016-11-01
Social scientists are often interested in examining causal relationships where the outcome of interest is represented by an intangible concept, such as an individual's well-being or ability. Estimating causal relationships in this scenario is particularly challenging because the social scientist must rely on measurement models to measure individual's properties or attributes and then address issues related to survey data, such as omitted variables. In this paper, the usefulness of the recently proposed behavioural Rasch selection model is explored using a series of Monte Carlo experiments. The behavioural Rasch selection model is particularly useful for these types of applications because it is capable of estimating the causal effect of a binary treatment effect on an outcome that is represented by an intangible concept using cross-sectional data. Other methodology typically relies of summary measures from measurement models that require additional assumptions, some of which make these approaches less efficient. Recommendations for application of the behavioural Rasch selection model are made based on results from the Monte Carlo experiments.
A Separable, Dynamically Local Ontological Model of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Pienaar, Jacques
2016-01-01
A model of reality is called separable if the state of a composite system is equal to the union of the states of its parts, located in different regions of space. Spekkens has argued that it is trivial to reproduce the predictions of quantum mechanics using a separable ontological model, provided one allows for arbitrary violations of `dynamical locality'. However, since dynamical locality is strictly weaker than local causality, this leaves open the question of whether an ontological model for quantum mechanics can be both separable and dynamically local. We answer this question in the affirmative, using an ontological model based on previous work by Deutsch and Hayden. Although the original formulation of the model avoids Bell's theorem by denying that measurements result in single, definite outcomes, we show that the model can alternatively be cast in the framework of ontological models, where Bell's theorem does apply. We find that the resulting model violates local causality, but satisfies both separability and dynamical locality, making it a candidate for the `most local' ontological model of quantum mechanics.
Magnotti, John F.
2017-01-01
Audiovisual speech integration combines information from auditory speech (talker’s voice) and visual speech (talker’s mouth movements) to improve perceptual accuracy. However, if the auditory and visual speech emanate from different talkers, integration decreases accuracy. Therefore, a key step in audiovisual speech perception is deciding whether auditory and visual speech have the same source, a process known as causal inference. A well-known illusion, the McGurk Effect, consists of incongruent audiovisual syllables, such as auditory “ba” + visual “ga” (AbaVga), that are integrated to produce a fused percept (“da”). This illusion raises two fundamental questions: first, given the incongruence between the auditory and visual syllables in the McGurk stimulus, why are they integrated; and second, why does the McGurk effect not occur for other, very similar syllables (e.g., AgaVba). We describe a simplified model of causal inference in multisensory speech perception (CIMS) that predicts the perception of arbitrary combinations of auditory and visual speech. We applied this model to behavioral data collected from 60 subjects perceiving both McGurk and non-McGurk incongruent speech stimuli. The CIMS model successfully predicted both the audiovisual integration observed for McGurk stimuli and the lack of integration observed for non-McGurk stimuli. An identical model without causal inference failed to accurately predict perception for either form of incongruent speech. The CIMS model uses causal inference to provide a computational framework for studying how the brain performs one of its most important tasks, integrating auditory and visual speech cues to allow us to communicate with others. PMID:28207734
Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A
2016-01-01
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time
Sippel, Sebastian; Mahecha, Miguel D.; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A.
2016-01-01
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time
Browne, Jennifer A.
2016-01-01
Even with decades of use, there is minimal understanding about the impact that the use of Health Information Technology has on nursing work and workarounds. Reliance on quantitative methods has to some degree constrained our understanding by viewing phenomena from only one perspective. This multimethods research used qualitative data to develop causal loop diagrams and inform a Health Information Technology Workaround model. This approach can play an important role in generating an improved understanding of nursing clinical workflow and workarounds. This research strategy has not been identified in nursing literature to date, but perhaps will encourage future exploration and paradigm crossing. Investigating the use of causal loop diagrams and systems modelling in nursing can create an opportunity to enrich our insights and encourage scientific dialogue about the complexity of clinical workflow and the integration of Health Information Technology. PMID:28269931
Nollo, G; Porta, A; Faes, L; Del Greco, M; Disertori, M; Ravelli, F
2001-04-01
Spectral and cross-spectral analysis of R-R interval and systolic arterial pressure (SAP) spontaneous fluctuations have been proposed for noninvasive evaluation of baroreflex sensitivity (BRS). However, results are not in good agreement with clinical measurements. In this study, a bivariate parametric autoregressive model with exogenous input (ARXAR model), able to divide the R-R variability into SAP-related and -unrelated parts, was used to quantify the gain (alpha(ARXAR)) of the baroreflex regulatory mechanism. For performance assessing, two traditional noninvasive methods based on frequency domain analysis [spectral, baroreflex gain by autogressive model (alpha(AR)); cross-spectral, baroreflex gain by bivariate autoregressive model (alpha(2AR))] and one based on the time domain [baroreflex gain by sequence analysis (alpha(SEQ))] were considered and compared with the baroreflex gain by phenylephrine test (alpha(PHE)). The BRS evaluation was performed on 30 patients (61 +/- 10 yr) with recent (10 +/- 3 days) myocardial infarction. The ARXAR model allowed dividing the R-R variability (950 +/- 1,099 ms(2)) into SAP-related (256 +/- 418 ms(2)) and SAP-unrelated (694 +/- 728 ms(2)) parts. alpha(AR) (12.2 +/- 6.1 ms/mmHg) and alpha(2AR) (8.9 +/- 5.6 ms/mmHg) as well as alpha(SEQ) (12.6 +/- 7.1 ms/mmHg) overestimated BRS assessed by alpha(PHE) (6.4 +/- 4.7 ms/mmHg), whereas the ARXAR index gave a comparable value (alpha(ARXAR) = 5.4 +/- 3.3 ms/mmHg). All noninvasive methods were significantly correlated to alpha(PHE) (alpha(ARXAR) and alpha(SEQ) were more correlated than the other indexes). Thus the baroreflex gain obtained describing the causal dependence of R-R interval on SAP showed a good agreement with alpha(PHE) and may provide additional information regarding the gain estimation in the frequency domain.
Arctic Influences: Causal Mechanisms and Climate Dynamics of the Warm Early Paleogene
NASA Astrophysics Data System (ADS)
Sewall, J. O.; Sloan, L. C.
2001-12-01
Paleoclimate researchers recognize the Early Paleogene as a particularly warm interval in Earth's history. Paleogene proxy climate indicators suggest warm polar and mid-latitude continental interior temperatures, and a reduced latitudinal temperature gradient. Most researchers believe that Early Paleogene climate was driven by forcing fields that act globally (e.g. greenhouse gases). However, modeling work based on the influence of global forcing fields has failed to reproduce the warm Paleogene climate indicated by proxy data. Quite possibly, an ameliorating influence acting directly at the poles, rather than over the entire globe, would more effectively warm high latitudes, provide an additional heat source to mid-latitude continental interiors, and reduce the latitudinal temperature gradient. We present a hypothesis based on the positive phase of the modern Arctic Oscillation as one possible high-latitude influence. In short, that prolonged low pressure over the Arctic Ocean would have warmed mid-latitude continental interiors and drastically reduced the Arctic Ocean's ice cover, thus producing conditions consistent with proxy climate indicators for the Paleogene greenhouse interval.
NASA Astrophysics Data System (ADS)
Wu, Xingchun; Tang, Ni; Yin, Kai; Wu, Xia; Wen, Xiaotong; Yao, Li; Zhao, Xiaojie
2007-03-01
Effective connectivity of brain regions based on brain data (e.g. EEG, fMRI, etc.) is a focused research at present. Many researchers tried to investigate it using different methods. Granger causality model (GCM) is presently used to investigate effective connectivity of brain regions more and more. It can explore causal relationship between time series, meaning that if a time-series y causes x, then knowledge of y should help predict future values of x. In present work, time invariant GCM was applied to fMRI data considering slow changing of blood oxygenation level dependent (BOLD). The time invariant GCM often requires determining model order, estimating model parameters and significance test. In particular, we extended significance test method to make results more reasonable. The fMRI data were acquired from finger movement experiment of two right-handed subjects. We obtained the activation maps of two subjects using SPM'2 software firstly. Then we chose left SMA and left SMC as regions of interest (ROIs) with different radiuses, and calculated causality from left SMA to left SMC using the mean time courses of the two ROIs. The results from both subjects showed that left SMA influenced on left SMC. Hence GCM was suggested to be an effective approach in investigation of effective connectivity based on fMRI data.
ERIC Educational Resources Information Center
Besson, Ugo
2010-01-01
This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought…
A Program for Standard Errors of Indirect Effects in Recursive Causal Models.
ERIC Educational Resources Information Center
Wolfle, Lee M.; Ethington, Corinna A.
In his early exposition of path analysis, Duncan (1966) noted that the method "provides a calculus for indirect effects." Despite the interest in indirect causal effects, most users treat them as if they are population parameters and do not test whether they are statistically significant. Sobel (1982) has recently derived the asymptotic…
Experimental test of nonlocal causality
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro
2016-01-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
A Granger causality measure for point process models of ensemble neural spiking activity.
Kim, Sanggyun; Putrino, David; Ghosh, Soumya; Brown, Emery N
2011-03-01
The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.
Causality discovery technology
NASA Astrophysics Data System (ADS)
Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.
2012-11-01
Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.
Ray, Suchismita; Haney, Margaret; Hanson, Catherine; Biswal, Bharat; Hanson, Stephen José
2015-12-01
The cues associated with drugs of abuse have an essential role in perpetuating problematic use, yet effective connectivity or the causal interaction between brain regions mediating the processing of drug cues has not been defined. The aim of this fMRI study was to model the causal interaction between brain regions within the drug-cue processing network in chronic cocaine smokers and matched control participants during a cocaine-cue exposure task. Specifically, cocaine-smoking (15M; 5F) and healthy control (13M; 4F) participants viewed cocaine and neutral cues while in the scanner (a Siemens 3 T magnet). We examined whole brain activation, including activation related to drug-cue processing. Time series data extracted from ROIs determined through our General Linear Model (GLM) analysis and prior publications were used as input to IMaGES, a computationally powerful Bayesian search algorithm. During cocaine-cue exposure, cocaine users showed a particular feed-forward effective connectivity pattern between the ROIs of the drug-cue processing network (amygdala → hippocampus → dorsal striatum → insula → medial frontal cortex, dorsolateral prefrontal cortex, anterior cingulate cortex) that was not present when the controls viewed the cocaine cues. Cocaine craving ratings positively correlated with the strength of the causal influence of the insula on the dorsolateral prefrontal cortex in cocaine users. This study is the first demonstration of a causal interaction between ROIs within the drug-cue processing network in cocaine users. This study provides insight into the mechanism underlying continued substance use and has implications for monitoring treatment response.
NASA Astrophysics Data System (ADS)
Vatansever, Sezen; Gümüş, Zeynep H.; Erman, Burak
2016-11-01
K-Ras is the most frequently mutated oncogene in human cancers, but there are still no drugs that directly target it in the clinic. Recent studies utilizing dynamics information show promising results for selectively targeting mutant K-Ras. However, despite extensive characterization, the mechanisms by which K-Ras residue fluctuations transfer allosteric regulatory information remain unknown. Understanding the direction of information flow can provide new mechanistic insights for K-Ras targeting. Here, we present a novel approach –conditional time-delayed correlations (CTC) – using the motions of all residue pairs of a protein to predict directionality in the allosteric regulation of the protein fluctuations. Analyzing nucleotide-dependent intrinsic K-Ras motions with the new approach yields predictions that agree with the literature, showing that GTP-binding stabilizes K-Ras motions and leads to residue correlations with relatively long characteristic decay times. Furthermore, our study is the first to identify driver-follower relationships in correlated motions of K-Ras residue pairs, revealing the direction of information flow during allosteric modulation of its nucleotide-dependent intrinsic activity: active K-Ras Switch-II region motions drive Switch-I region motions, while α-helix-3L7 motions control both. Our results provide novel insights for strategies that directly target mutant K-Ras.
Vatansever, Sezen; Gümüş, Zeynep H.; Erman, Burak
2016-01-01
K-Ras is the most frequently mutated oncogene in human cancers, but there are still no drugs that directly target it in the clinic. Recent studies utilizing dynamics information show promising results for selectively targeting mutant K-Ras. However, despite extensive characterization, the mechanisms by which K-Ras residue fluctuations transfer allosteric regulatory information remain unknown. Understanding the direction of information flow can provide new mechanistic insights for K-Ras targeting. Here, we present a novel approach –conditional time-delayed correlations (CTC) – using the motions of all residue pairs of a protein to predict directionality in the allosteric regulation of the protein fluctuations. Analyzing nucleotide-dependent intrinsic K-Ras motions with the new approach yields predictions that agree with the literature, showing that GTP-binding stabilizes K-Ras motions and leads to residue correlations with relatively long characteristic decay times. Furthermore, our study is the first to identify driver-follower relationships in correlated motions of K-Ras residue pairs, revealing the direction of information flow during allosteric modulation of its nucleotide-dependent intrinsic activity: active K-Ras Switch-II region motions drive Switch-I region motions, while α-helix-3L7 motions control both. Our results provide novel insights for strategies that directly target mutant K-Ras. PMID:27845397
Causal inference based on counterfactuals
Höfler, M
2005-01-01
Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept. PMID:16159397
Causal tapestries for psychology and physics.
Sulis, William H
2012-04-01
Archetypal dynamics is a formal approach to the modeling of information flow in complex systems used to study emergence. It is grounded in the Fundamental Triad of realisation (system), interpretation (archetype) and representation (formal model). Tapestries play a fundamental role in the framework of archetypal dynamics as a formal representational system. They represent information flow by means of multi layered, recursive, interlinked graphical structures that express both geometry (form or sign) and logic (semantics). This paper presents a detailed mathematical description of a specific tapestry model, the causal tapestry, selected for use in describing behaving systems such as appear in psychology and physics from the standpoint of Process Theory. Causal tapestries express an explicit Lorentz invariant transient now generated by means of a reality game. Observables are represented by tapestry informons while subjective or hidden components (for example intellectual and emotional processes) are incorporated into the reality game that determines the tapestry dynamics. As a specific example, we formulate a random graphical dynamical system using causal tapestries.
Modeling positive Granger causality and negative phase lag between cortical areas.
Matias, Fernanda S; Gollo, Leonardo L; Carelli, Pedro V; Bressler, Steven L; Copelli, Mauro; Mirasso, Claudio R
2014-10-01
Different measures of directional influence have been employed to infer effective connectivity in the brain. When the connectivity between two regions is such that one of them (the sender) strongly influences the other (the receiver), a positive phase lag is often expected. The assumption is that the time difference implicit in the relative phase reflects the transmission time of neuronal activity. However, Brovelli et al. (2004) observed that, in monkeys engaged in processing a cognitive task, a dominant directional influence from one area of sensorimotor cortex to another may be accompanied by either a negative or a positive time delay. Here we present a model of two brain regions, coupled with a well-defined directional influence, that displays similar features to those observed in the experimental data. This model is inspired by the theoretical framework of Anticipated Synchronization developed in the field of dynamical systems. Anticipated Synchronization is a form of synchronization that occurs when a unidirectional influence is transmitted from a sender to a receiver, but the receiver leads the sender in time. This counterintuitive synchronization regime can be a stable solution of two dynamical systems coupled in a master-slave (sender-receiver) configuration when the slave receives a negative delayed self-feedback. Despite efforts to understand the dynamics of Anticipated Synchronization, experimental evidence for it in the brain has been lacking. By reproducing experimental delay times and coherence spectra, our results provide a theoretical basis for the underlying mechanisms of the observed dynamics, and suggest that the primate cortex could operate in a regime of Anticipated Synchronization as part of normal neurocognitive function.
Simulations of a modified SOP model applied to retrospective revaluation of human causal learning.
Aitken, Michael R F; Dickinson, Anthony
2005-05-01
Dickinson and Burke (1996) proposed a modified version of Wagner's (1981) SOP associative theory to explain retrospective revaluation of human causal judgments. In this modified SOP (MSOP), excitatory learning occurs when cue and outcome representations are either both directly activated or both associatively activated. By contrast, inhibitory learning occurs when one representation is directly activated while the other is associatively activated. Finite node simulations of MSOP yielded simple acquisition, overshadowing, blocking, and inhibitory learning under forward contingencies. Importantly, retrospective revaluation was predicted in the form of unovershadowing and backward inhibitory learning. However, MSOP did not yield backward blocking. These predictions are evaluated against the relevant empirical evidence and contrasted with the predictions of other associative theories that have been applied to retrospective revaluation of human causal and predictive learning.
Little, E.E.; Bridges, C.M.; Linder, G.; Boone, M.; ,
2003-01-01
Research to date has indicated that a range of environmental variables such as disease, parasitism, predation, competition, environmental contamination, solar ultraviolet radiation, climate change, or habitat alteration may be responsible for declining amphibian populations and the appearance of deformed organisms, yet in many cases no definitive environmental variable stands out as a causal factor. Multiple Stressors are often present in the habitat, and interactions among these can magnify injury to biota. This raises the possibility that the additive or synergistic impact of these Stressors may be the underlying cause of amphibian declines. Effective management for the restoration of amphibian populations requires the identification of causal factors contributing to their declines. A systematic approach to determine causality is especially important because initial impressions may be misleading or ambiguous. In addition, the evaluation of amphibian populations requires consideration of a broader spatial scale than commonly used in regulatory monitoring. We describe a systematic three-tiered approach to determine causality in amphibian declines and deformities. Tier 1 includes an evaluation of historic databases and extant data and would involve a desktop synopsis of the status of various stressors as well as site visits. Tier 2 studies are iterative, hypothesis driven studies beginning with general tests and continuing with analyses of increasing complexity as certain stressors are identified for further investigation. Tier 3 applies information developed in Tier 2 as predictive indicators of habitats and species at risk over broad landscape scales and provides decision support for the adaptive management of amphibian recovery. This comprehensive, tiered program could provide a mechanistic approach to identifying and addressing specific stressors responsible for amphibian declines across various landscapes.
NASA Astrophysics Data System (ADS)
Komperda, Regis
The purpose of this dissertation is to test a model of relationships among factors characterizing aspects of a student-centered constructivist learning environment and student outcomes of satisfaction and academic achievement in introductory undergraduate chemistry courses. Constructivism was chosen as the theoretical foundation for this research because of its widespread use in chemical education research and practice. In a constructivist learning environment the role of the teacher shifts from delivering content towards facilitating active student engagement in activities that encourage individual knowledge construction through discussion and application of content. Constructivist approaches to teaching introductory chemistry courses have been adopted by some instructors as a way to improve student outcomes, but little research has been done on the causal relationships among particular aspects of the learning environment and student outcomes. This makes it difficult for classroom teachers to know which aspects of a constructivist teaching approach are critical to adopt and which may be modified to better suit a particular learning environment while still improving student outcomes. To investigate a model of these relationships, a survey designed to measure student perceptions of three factors characterizing a constructivist learning environment in online courses was adapted for use in face-to-face chemistry courses. These three factors, teaching presence, social presence, and cognitive presence, were measured using a slightly modified version of the Community of Inquiry (CoI) instrument. The student outcomes investigated in this research were satisfaction and academic achievement, as measured by standardized American Chemical Society (ACS) exam scores and course grades. Structural equation modeling (SEM) was used to statistically model relationships among the three presence factors and student outcome variables for 391 students enrolled in six sections of a
Algorithms of causal inference for the analysis of effective connectivity among brain regions
Chicharro, Daniel; Panzeri, Stefano
2014-01-01
In recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl’s causality, algorithms of inductive causation (IC and IC*) provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze causal influences (effective connectivity) among brain regions. However, their application to dynamic processes has not been yet examined. Here we study how to apply these algorithms to time-varying signals such as electrophysiological or neuroimaging signals. We propose a new algorithm which combines the basic principles of the previous algorithms with Granger causality to obtain a representation of the causal relations suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic statistical dependencies between the signals from the causal structure. We show how some problems for causal inference from neural signals (e.g., measurement noise, hemodynamic responses, and time aggregation) can be understood in a general graphical approach. Focusing on the effect of spatial aggregation, we show that when causal inference is performed at a coarser scale than the one at which the neural sources interact, results strongly depend on the degree of integration of the neural sources aggregated in the signals, and thus characterize more the intra-areal properties than the interactions among regions. We finally discuss how the explicit consideration of latent processes contributes to understand Granger causality and DCM as well as to distinguish functional and effective connectivity. PMID:25071541
Structural Equations and Causal Explanations: Some Challenges for Causal SEM
ERIC Educational Resources Information Center
Markus, Keith A.
2010-01-01
One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…
On causality of extreme events
2016-01-01
Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available. PMID:27330866
Sinha, Shriprakash
2016-12-01
Simulation study in systems biology involving computational experiments dealing with Wnt signaling pathways abound in literature but often lack a pedagogical perspective that might ease the understanding of beginner students and researchers in transition, who intend to work on the modeling of the pathway. This paucity might happen due to restrictive business policies which enforce an unwanted embargo on the sharing of important scientific knowledge. A tutorial introduction to computational modeling of Wnt signaling pathway in a human colorectal cancer dataset using static Bayesian network models is provided. The walkthrough might aid biologists/informaticians in understanding the design of computational experiments that is interleaved with exposition of the Matlab code and causal models from Bayesian network toolbox. The manuscript elucidates the coding contents of the advance article by Sinha (Integr. Biol. 6:1034-1048, 2014) and takes the reader in a step-by-step process of how (a) the collection and the transformation of the available biological information from literature is done, (b) the integration of the heterogeneous data and prior biological knowledge in the network is achieved, (c) the simulation study is designed, (d) the hypothesis regarding a biological phenomena is transformed into computational framework, and (e) results and inferences drawn using d-connectivity/separability are reported. The manuscript finally ends with a programming assignment to help the readers get hands-on experience of a perturbation project. Description of Matlab files is made available under GNU GPL v3 license at the Google code project on https://code.google.com/p/static-bn-for-wnt-signaling-pathway and https: //sites.google.com/site/shriprakashsinha/shriprakashsinha/projects/static-bn-for-wnt-signaling-pathway. Latest updates can be found in the latter website.
Causal Inference in Retrospective Studies.
ERIC Educational Resources Information Center
Holland, Paul W.; Rubin, Donald B.
1988-01-01
The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…
Zigzagging causality EPR model: answer to Vigier and coworkers and to Sutherland
de Beauregard, O.C.
1987-08-01
The concept of propagation in time of Vigier and co-workers (V et al.) implies the ideal of a supertime; it is thus alien to most Minkowskian pictures and certainly to the authors. From this stems much of V et al.'s misunderstandings of his position. In steady motion of a classical fluid nobody thinks that momentum conservation is violated, or that momentum is shot upstream without cause because of the suction from the sinks. Similarly with momentum-energy in spacetime and the acceptance of an advanced causality. As for the CT invariance of the Feynman propagator, the causality asymmetry it entails is factlike, not lawlike. The geometrical counterpart of the symmetry between prediction and retrodiction and between retarded and advanced waves, as expressed in the alternative expressions
ERIC Educational Resources Information Center
Karabatsos, G.; Walker, S.G.
2010-01-01
Causal inference is central to educational research, where in data analysis the aim is to learn the causal effects of educational treatments on academic achievement, to evaluate educational policies and practice. Compared to a correlational analysis, a causal analysis enables policymakers to make more meaningful statements about the efficacy of…
Paradoxical Behavior of Granger Causality
NASA Astrophysics Data System (ADS)
Witt, Annette; Battaglia, Demian; Gail, Alexander
2013-03-01
Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen
Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze
2017-01-01
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.
Dynamics of safety performance and culture: a group model building approach.
Goh, Yang Miang; Love, Peter E D; Stagbouer, Greg; Annesley, Chris
2012-09-01
The management of occupational health and safety (OHS) including safety culture interventions is comprised of complex problems that are often hard to scope and define. Due to the dynamic nature and complexity of OHS management, the concept of system dynamics (SD) is used to analyze accident prevention. In this paper, a system dynamics group model building (GMB) approach is used to create a causal loop diagram of the underlying factors influencing the OHS performance of a major drilling and mining contractor in Australia. While the organization has invested considerable resources into OHS their disabling injury frequency rate (DIFR) has not been decreasing. With this in mind, rich individualistic knowledge about the dynamics influencing the DIFR was acquired from experienced employees with operations, health and safety and training background using a GMB workshop. Findings derived from the workshop were used to develop a series of causal loop diagrams that includes a wide range of dynamics that can assist in better understanding the causal influences OHS performance. The causal loop diagram provides a tool for organizations to hypothesize the dynamics influencing effectiveness of OHS management, particularly the impact on DIFR. In addition the paper demonstrates that the SD GMB approach has significant potential in understanding and improving OHS management.
Launch Vehicle Dynamics Demonstrator Model
NASA Technical Reports Server (NTRS)
1963-01-01
Launch Vehicle Dynamics Demonstrator Model. The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control. [Entire movie available on DVD from CASI as Doc ID 20070030984. Contact help@sti.nasa.gov
Generative models of conformational dynamics.
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term 'generative' refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc.) from long timescale simulation data.
Semework, Mulugeta; DiStasio, Marcello
2014-01-01
Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain
Semework, Mulugeta; DiStasio, Marcello
2014-01-01
Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain
SSME structural dynamic model development
NASA Technical Reports Server (NTRS)
Foley, M. J.; Tilley, D. M.; Welch, C. T.
1983-01-01
A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed.
Youssofzadeh, Vahab; Prasad, Girijesh; Naeem, Muhammad; Wong-Lin, KongFatt
2016-01-01
Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250–300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modeling.
Towards an Algebra for Analyzing Causal Relations.
ERIC Educational Resources Information Center
Ellett, Frederick S., Jr.; Ericson, David P.
Correlation-based approaches to causal analysis contain too much irrelevant information that masks and modulates the true nature of causal processes in the world. Both causal modeling and path analysis/structural equations give the wrong answers for certain conceptions of causation, given certain assumptions about the "error" variables.…
Representing Personal Determinants in Causal Structures.
ERIC Educational Resources Information Center
Bandura, Albert
1984-01-01
Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…
Schnitzer, Mireille E; Lok, Judith J; Gruber, Susan
2016-05-01
This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010 [27]) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low- and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios.
Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan
2015-01-01
This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129
Detto, Matteo; Molini, Annalisa; Katul, Gabriel; Stoy, Paul; Palmroth, Sari; Baldocchi, Dennis
2012-04-01
Abstract Directionality in coupling, defined as the linkage relating causes to their effects at a later time, can be used to explain the core dynamics of ecological systems by untangling direct and feedback relationships between the different components of the systems. Inferring causality from measured ecological variables sampled through time remains a formidable challenge further made difficult by the action of periodic drivers overlapping the natural dynamics of the system. Periodicity in the drivers can often mask the self-sustained oscillations originating from the autonomous dynamics. While linear and direct causal relationships are commonly addressed in the time domain, using the well-established machinery of Granger causality (G-causality), the presence of periodic forcing requires frequency-based statistics (e.g., the Fourier transform), able to distinguish coupling induced by oscillations in external drivers from genuine endogenous interactions. Recent nonparametric spectral extensions of G-causality to the frequency domain pave the way for the scale-by-scale decomposition of causality, which can improve our ability to link oscillatory behaviors of ecological networks to causal mechanisms. The performance of both spectral G-causality and its conditional extension for multivariate systems is explored in quantifying causal interactions within ecological networks. Through two case studies involving synthetic and actual time series, it is demonstrated that conditional G-causality outperforms standard G-causality in identifying causal links and their concomitant timescales.
Causal evolution of wave packets
NASA Astrophysics Data System (ADS)
Eckstein, Michał; Miller, Tomasz
2017-03-01
Drawing from the optimal transport theory adapted to the relativistic setting we formulate the principle of a causal flow of probability and apply it in the wave-packet formalism. We demonstrate that whereas the Dirac Hamiltonian impels a causal evolution of probabilities, even in the presence of interactions, the relativistic-Schrödinger model is acausal. We quantify the causality breakdown in the latter model and argue that, in contrast to the popular viewpoint, it is not related to the localization properties of the states.
Predictive models of forest dynamics.
Purves, Drew; Pacala, Stephen
2008-06-13
Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.
NASA Technical Reports Server (NTRS)
Adams, Neil S.; Bollenbacher, Gary
1992-01-01
This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.
Dynamic Modeling of ALS Systems
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.
Aircraft Dynamic Modeling in Turbulence
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Cunninham, Kevin
2012-01-01
A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.
Model describes subsea control dynamics
Not Available
1988-02-01
A mathematical model of the hydraulic control systems for subsea completions and their umbilicals has been developed and applied successfully to Jabiru and Challis field production projects in the Timor Sea. The model overcomes the limitations of conventional linear steady state models and yields for the hydraulic system an accurate description of its dynamic response, including the valve shut-in times and the pressure transients. Results of numerical simulations based on the model are in good agreement with measurements of the dynamic response of the tree valves and umbilicals made during land testing.
ERIC Educational Resources Information Center
Journal of Science and Mathematics Education in Southeast Asia, 1981
1981-01-01
Instructions (with diagrams and parts list) are provided for constructing an eye model with a pliable lens made from a plastic bottle which can vary its convexity to accommodate changing positions of an object being viewed. Also discusses concepts which the model can assist in developing. (Author/SK)
Effect of measurement noise on Granger causality
NASA Astrophysics Data System (ADS)
Nalatore, Hariharan; N, Sasikumar; Rangarajan, Govindan
2014-12-01
Most of the signals recorded in experiments are inevitably contaminated by measurement noise. Hence, it is important to understand the effect of such noise on estimating causal relations between such signals. A primary tool for estimating causality is Granger causality. Granger causality can be computed by modeling the signal using a bivariate autoregressive (AR) process. In this paper, we greatly extend the previous analysis of the effect of noise by considering a bivariate AR process of general order p . From this analysis, we analytically obtain the dependence of Granger causality on various noise-dependent system parameters. In particular, we show that measurement noise can lead to spurious Granger causality and can suppress true Granger causality. These results are verified numerically. Finally, we show how true causality can be recovered numerically using the Kalman expectation maximization algorithm.
Effect of measurement noise on Granger causality.
Nalatore, Hariharan; Sasikumar, N; Rangarajan, Govindan
2014-12-01
Most of the signals recorded in experiments are inevitably contaminated by measurement noise. Hence, it is important to understand the effect of such noise on estimating causal relations between such signals. A primary tool for estimating causality is Granger causality. Granger causality can be computed by modeling the signal using a bivariate autoregressive (AR) process. In this paper, we greatly extend the previous analysis of the effect of noise by considering a bivariate AR process of general order p. From this analysis, we analytically obtain the dependence of Granger causality on various noise-dependent system parameters. In particular, we show that measurement noise can lead to spurious Granger causality and can suppress true Granger causality. These results are verified numerically. Finally, we show how true causality can be recovered numerically using the Kalman expectation maximization algorithm.
Haviland, Amelia; Nagin, Daniel S; Rosenbaum, Paul R; Tremblay, Richard E
2008-03-01
A central theme of research on human development and psychopathology is whether a therapeutic intervention or a turning-point event, such as a family break-up, alters the trajectory of the behavior under study. This article describes and applies a method for using observational longitudinal data to make more transparent causal inferences about the impact of such events on developmental trajectories. The method combines 2 distinct lines of research: work on the use of finite mixture modeling to analyze developmental trajectories and work on propensity score matching. The propensity scores are used to balance observed covariates and the trajectory groups are used to control pretreatment measures of response. The trajectory groups also aid in characterizing classes of subjects for which no good matches are available. The approach is demonstrated with an analysis of the impact of gang membership on violent delinquency based on data from a large longitudinal study conducted in Montréal, Canada.
Falasca, N W; D'Ascenzo, S; Di Domenico, A; Onofrj, M; Tommasi, L; Laeng, B; Franciotti, R
2015-04-01
Magnetoencephalography was recorded during a matching-to-sample plus cueing paradigm, in which participants judged the occurrence of changes in either categorical (CAT) or coordinate (COO) spatial relations. Previously, parietal and frontal lobes were identified as key areas in processing spatial relations and it was shown that each hemisphere was differently involved and modulated by the scope of the attention window (e.g. a large and small cue). In this study, Granger analysis highlighted the patterns of causality among involved brain areas--the direction of information transfer ran from the frontal to the visual cortex in the right hemisphere, whereas it ran in the opposite direction in the left side. Thus, the right frontal area seems to exert top-down influence, supporting the idea that, in this task, top-down signals are selectively related to the right side. Additionally, for CAT change preceded by a small cue, the right frontal gyrus was not involved in the information transfer, indicating a selective specialization of the left hemisphere for this condition. The present findings strengthen the conclusion of the presence of a remarkable hemispheric specialization for spatial relation processing and illustrate the complex interactions between the lateralized parts of the neural network. Moreover, they illustrate how focusing attention over large or small regions of the visual field engages these lateralized networks differently, particularly in the frontal regions of each hemisphere, consistent with the theory that spatial relation judgements require a fronto-parietal network in the left hemisphere for categorical relations and on the right hemisphere for coordinate spatial processing.
2010-09-01
unlimited, 88ABW-2011-0712, 23 Feb 2011 1.0 INTRODUCTION The key issue we investigated in this research effort was the psychological nature of...progress, or explain why they are running into trouble. Physicians depend on causal reasoning when they diagnose their patients . The purpose of this...Aristotle but, for our purposes, the account offered by Hume (1739-1740) is much more in line with our modern notion of physical cause- and-effect
Model of THz Magnetization Dynamics
Bocklage, Lars
2016-01-01
Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated. PMID:26956997
Sustainable deforestation evaluation model and system dynamics analysis.
Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi
2014-01-01
The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.
Sustainable Deforestation Evaluation Model and System Dynamics Analysis
Feng, Huirong; Lim, C. W.; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi
2014-01-01
The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225
Tighe, Elizabeth L; Wagner, Richard K; Schatschneider, Christopher
2015-04-01
This study demonstrates the utility of applying a causal indicator modeling framework to investigate important predictors of reading comprehension in third, seventh, and tenth grade students. The results indicated that a 4-factor multiple indicator multiple indicator cause (MIMIC) model of reading comprehension provided adequate fit at each grade level. This model included latent predictor constructs of decoding, verbal reasoning, nonverbal reasoning, and working memory and accounted for a large portion of the reading comprehension variance (73% to 87%) across grade levels. Verbal reasoning contributed the most unique variance to reading comprehension at all grade levels. In addition, we fit a multiple group 4-factor MIMIC model to investigate the relative stability (or variability) of the predictor contributions to reading comprehension across development (i.e., grade levels). The results revealed that the contributions of verbal reasoning, nonverbal reasoning, and working memory to reading comprehension were stable across the three grade levels. Decoding was the only predictor that could not be constrained to be equal across grade levels. The contribution of decoding skills to reading comprehension was higher in third grade and then remained relatively stable between seventh and tenth grade. These findings illustrate the feasibility of using MIMIC models to explain individual differences in reading comprehension across the development of reading skills.
Causality Analysis of fMRI Data Based on the Directed Information Theory Framework.
Wang, Zhe; Alahmadi, Ahmed; Zhu, David C; Li, Tongtong
2016-05-01
This paper aims to conduct fMRI-based causality analysis in brain connectivity by exploiting the directed information (DI) theory framework. Unlike the well-known Granger causality (GC) analysis, which relies on the linear prediction technique, the DI theory framework does not have any modeling constraints on the sequences to be evaluated and ensures estimation convergence. Moreover, it can be used to generate the GC graphs. In this paper, first, we introduce the core concepts in the DI framework. Second, we present how to conduct causality analysis using DI measures between two time series. We provide the detailed procedure on how to calculate the DI for two finite-time series. The two major steps involved here are optimal bin size selection for data digitization and probability estimation. Finally, we demonstrate the applicability of DI-based causality analysis using both the simulated data and experimental fMRI data, and compare the results with that of the GC analysis. Our analysis indicates that GC analysis is effective in detecting linear or nearly linear causal relationship, but may have difficulty in capturing nonlinear causal relationships. On the other hand, DI-based causality analysis is more effective in capturing both linear and nonlinear causal relationships. Moreover, it is observed that brain connectivity among different regions generally involves dynamic two-way information transmissions between them. Our results show that when bidirectional information flow is present, DI is more effective than GC to quantify the overall causal relationship.
Kimura, Daisuke; Nakatani, Ken; Takeda, Tokunori; Fujita, Takashi; Sunahara, Nobuyuki; Inoue, Katsumi; Notoya, Masako
2015-01-01
The purpose of this study is to identify a potentiality factor that is a preventive factor for decline in cognitive function. Additionally, this study pursues to clarify the causal relationship between the each potential factor and its influence on cognitive function. Subjects were 366 elderly community residents (mean age 73.7 ± 6.4, male 51, female 315) who participated in the Taketoyo Project from 2007 to 2011. Factor analysis was conducted to identify groupings within mental, social, life, physical and cognitive functions. In order to detect clusters of 14 variables, the item scores were subjected to confirmatory factor analysis. We performed Structural Equation Modeling analysis to calculate the standardization coefficient and correlation coefficient for every factor. The cause and effect hypothesis model was used to gather two intervention theory hypotheses for dementia prevention (direct effect, indirect effect) in one system. Finally, we performed another Structural Equation Modeling analysis to calculate the standardization of the cause and effect hypothesis model. Social participation was found to be activated by the improvement of four factors, and in turn, activated "Social participation" acted on cognitive function.
Esker, P D; Nutter, F W
2003-02-01
ABSTRACT In order to better understand the epidemiology of the Stewart's disease of corn pathosystem, quantitative information concerning the temporal dynamics of the amount of pathogen inoculum present in the form of Pantoea stewartii-infested corn flea beetles (Chaetocnema pulicaria) is needed. Temporal changes in the proportion of P. stewartii-infested corn flea beetle populations were monitored by testing individual corn flea beetles for the presence of P. stewartii using a peroxidase-labeled, enzyme-linked immunosorbent assay. Approximately 90 corn flea beetles were collected each week from seven locations in Iowa from September 1998 through October 2000 using sweep nets. The proportion of P. stewartii-infested beetles at the end of the 1998 growing season ranged from 0.04 to 0.19. In spring 1999, the proportion of overwintering adult corn flea beetles infested with P. stewartii ranged from 0.10 to 0.11 and did not differ significantly from the previous fall based on chi(2). During the 1999 corn-growing season, the proportion of infested corn flea beetles ranged from 0.04 to 0.86, with the highest proportions occurring in August. In fall 1999, the proportion of beetles infested with P. stewartii ranged from 0.20 to 0.77. In spring 2000, the proportion of overwintering adult corn flea beetles infested with P. stewartii ranged from 0.08 to 0.30; these proportions were significantly lower than the proportions observed in fall 1999 at Ames, Chariton, and Nashua. During the 2000 corn-growing season, the proportion of P. stewartii-infested corn flea beetles ranged from 0.08 to 0.53, and the highest observed proportions again occurred in August. Corn flea beetle populations sampled in late fall 2000 had proportions of infested beetles ranging from 0.08 to 0.20. This is the first study to quantify the temporal population dynamics of P. stewartii-infested C. pulicaria populations in hybrid corn and provides new quantitative information that should be useful in
Pfeffer, A; Das, S; Lawless, D; Ng, B
2006-10-10
Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.
Generative Models of Conformational Dynamics
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GrAphical Models of Energy LANdscapes), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc) from long timescale simulation data. PMID:24446358
NASA Astrophysics Data System (ADS)
Salas-Paracuellos, L.; Alba, Luis; Villacorta-Atienza, Jose A.; Makarov, Valeri A.
2011-05-01
Animals for surviving have developed cognitive abilities allowing them an abstract representation of the environment. This internal representation (IR) may contain a huge amount of information concerning the evolution and interactions of the animal and its surroundings. The temporal information is needed for IRs of dynamic environments and is one of the most subtle points in its implementation as the information needed to generate the IR may eventually increase dramatically. Some recent studies have proposed the compaction of the spatiotemporal information into only space, leading to a stable structure suitable to be the base for complex cognitive processes in what has been called Compact Internal Representation (CIR). The Compact Internal Representation is especially suited to be implemented in autonomous robots as it provides global strategies for the interaction with real environments. This paper describes an FPGA implementation of a Causal Neural Network based on a modified FitzHugh-Nagumo neuron to generate a Compact Internal Representation of dynamic environments for roving robots, developed under the framework of SPARK and SPARK II European project, to avoid dynamic and static obstacles.
The dynamics of coastal models
Hearn, Clifford J.
2008-01-01
Coastal basins are defined as estuaries, lagoons, and embayments. This book deals with the science of coastal basins using simple models, many of which are presented in either analytical form or Microsoft Excel or MATLAB. The book introduces simple hydrodynamics and its applications, from the use of simple box and one-dimensional models to flow over coral reefs. The book also emphasizes models as a scientific tool in our understanding of coasts, and introduces the value of the most modern flexible mesh combined wave-current models. Examples from shallow basins around the world illustrate the wonders of the scientific method and the power of simple dynamics. This book is ideal for use as an advanced textbook for graduate students and as an introduction to the topic for researchers, especially those from other fields of science needing a basic understanding of the basic ideas of the dynamics of coastal basins.
Predictive models of battle dynamics
NASA Astrophysics Data System (ADS)
Jelinek, Jan
2001-09-01
The application of control and game theories to improve battle planning and execution requires models, which allow military strategists and commanders to reliably predict the expected outcomes of various alternatives over a long horizon into the future. We have developed probabilistic battle dynamics models, whose building blocks in the form of Markov chains are derived from the first principles, and applied them successfully in the design of the Model Predictive Task Commander package. This paper introduces basic concepts of our modeling approach and explains the probability distributions needed to compute the transition probabilities of the Markov chains.
Observability in dynamic evolutionary models.
López, I; Gámez, M; Carreño, R
2004-02-01
In the paper observability problems are considered in basic dynamic evolutionary models for sexual and asexual populations. Observability means that from the (partial) knowledge of certain phenotypic characteristics the whole evolutionary process can be uniquely recovered. Sufficient conditions are given to guarantee observability for both sexual and asexual populations near an evolutionarily stable state.
ERIC Educational Resources Information Center
Hattori, Masasi; Oaksford, Mike
2007-01-01
In this article, 41 models of covariation detection from 2 x 2 contingency tables were evaluated against past data in the literature and against data from new experiments. A new model was also included based on a limiting case of the normative phi-coefficient under an extreme rarity assumption, which has been shown to be an important factor in…
Latner, Janet D; Puhl, Rebecca M; Murakami, Jessica M; O'Brien, Kerry S
2014-06-01
The present study examined the impact of the food-addiction model of obesity on weight stigma directed at obese people. Participants (n = 625) were randomly assigned to four experimental conditions. They were asked to read either a food-addiction explanatory model of obesity or a nonaddiction model, and subsequently read a vignette describing a target person who met the characteristics of one of these models and was either obese or of normal weight. Questionnaires assessed participants' stigmatization and blame of targets and their attribution of psychopathology toward targets. Additional questionnaires assessed stigma and blame directed toward obese people generally, and personal fear of fat. A manipulation check revealed that the food-addiction experimental condition did significantly increase belief in the food-addiction model. Significant main effects for addiction showed that the food-addiction model produced less stigma, less blame, and lower perceived psychopathology attributed to the target described in vignettes, regardless of the target's weight. The food-addiction model also produced less blame toward obese people in general and less fear of fat. The present findings suggest that presenting obesity as an addiction does not increase weight bias and could even be helpful in reducing the widespread prejudice against obese people.
ERIC Educational Resources Information Center
Marsh, Herbert W.; Trautwein, Ulrich; Ldtke, Oliver; Kller, Olaf; Baumert, Jrgen
2005-01-01
Reciprocal effects models of longitudinal data show that academic self-concept is both a cause and an effect of achievement. In this study this model was extended to juxtapose self-concept with academic interest. Based on longitudinal data from 2 nationally representative samples of German 7th-grade students (Study 1: N=5,649, M age13.4; Study 2:…
Modeling Spatiotemporal Contextual Dynamics with Sparse-Coded Transfer Learning
2012-08-08
this work is the idea that causality of action units can be encoded as a Probabilistic Suffix Tree (PST) with variable temporal scale, while the...it can encode richer and more flexible causal relationships. Here, we model complex human activity as a Probabilistic Suffix Tree (PST) which
Dynamical Modelling of Meteoroid Streams
NASA Astrophysics Data System (ADS)
Clark, David; Wiegert, P. A.
2012-10-01
Accurate simulations of meteoroid streams permit the prediction of stream interaction with Earth, and provide a measure of risk to Earth satellites and interplanetary spacecraft. Current cometary ejecta and meteoroid stream models have been somewhat successful in predicting some stream observations, but have required questionable assumptions and significant simplifications. Extending on the approach of Vaubaillon et al. (2005)1, we model dust ejection from the cometary nucleus, and generate sample particles representing bins of distinct dynamical evolution-regulating characteristics (size, density, direction, albedo). Ephemerides of the sample particles are integrated and recorded for later assignment of frequency based on model parameter changes. To assist in model analysis we are developing interactive software to permit the “turning of knobs” of model parameters, allowing for near-real-time 3D visualization of resulting stream structure. With this tool, we will revisit prior assumptions made, and will observe the impact of introducing non-uniform cometary surface attributes and temporal activity. The software uses a single model definition and implementation throughout model verification, sample particle bin generation and integration, and analysis. It supports the adjustment with feedback of both independent and independent model values, with the intent of providing an interface supporting multivariate analysis. Propagations of measurement uncertainties and model parameter precisions are tracked rigorously throughout. We maintain a separation of the model itself from the abstract concepts of model definition, parameter manipulation, and real-time analysis and visualization. Therefore we are able to quickly adapt to fundamental model changes. It is hoped the tool will also be of use in other solar system dynamics problems. 1 Vaubaillon, J.; Colas, F.; Jorda, L. (2005) A new method to predict meteor showers. I. Description of the model. Astronomy and
Dynamic Model of Mesoscale Eddies
NASA Astrophysics Data System (ADS)
Dubovikov, Mikhail S.
2003-04-01
Oceanic mesoscale eddies which are analogs of well known synoptic eddies (cyclones and anticyclones), are studied on the basis of the turbulence model originated by Dubovikov (Dubovikov, M.S., "Dynamical model of turbulent eddies", Int. J. Mod. Phys.B7, 4631-4645 (1993).) and further developed by Canuto and Dubovikov (Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: I. General formalism", Phys. Fluids8, 571-586 (1996a) (CD96a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: II. Sheardriven flows", Phys. Fluids8, 587-598 (1996b) (CD96b); Canuto, V.M., Dubovikov, M.S., Cheng, Y. and Dienstfrey, A., "A dynamical model for turbulence: III. Numerical results", Phys. Fluids8, 599-613 (1996c)(CD96c); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "A dynamical model for turbulence: IV. Buoyancy-driven flows", Phys. Fluids9, 2118-2131 (1997a) (CD97a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: V. The effect of rotation", Phys. Fluids9, 2132-2140 (1997b) (CD97b); Canuto, V.M., Dubovikov, M.S. and Wielaard, D.J., "A dynamical model for turbulence: VI. Two dimensional turbulence", Phys. Fluids9, 2141-2147 (1997c) (CD97c); Canuto, V.M. and Dubovikov, M.S., "Physical regimes and dimensional structure of rotating turbulence", Phys. Rev. Lett. 78, 666-669 (1997d) (CD97d); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "Turbulent convection in a spectral model", Phys. Rev. Lett. 78, 662-665 (1997e) (CD97e); Canuto, V.M. and Dubovikov, M.S., "A new approach to turbulence", Int. J. Mod. Phys.12, 3121-3152 (1997f) (CD97f); Canuto, V.M. and Dubovikov, M.S., "Two scaling regimes for rotating Raleigh-Benard convection", Phys. Rev. Letters78, 281-284, (1998) (CD98); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: VII. The five invariants for shear driven flows", Phys. Fluids11, 659-664 (1999a) (CD99a); Canuto, V.M., Dubovikov, M.S. and Yu, G., "A dynamical model for turbulence: VIII. IR and UV
ERIC Educational Resources Information Center
Rindermann, H.; Neubauer, A. C.
2004-01-01
According to mental speed theory of intelligence, the speed of information processing constitutes an important basis for cognitive abilities. However, the question, how mental speed relates to real world criteria, like school, academic, or job performance, is still unanswered. The aim of the study is to test an indirect speed-factor model in…
A Causal Model of Organizational Commitment in a Military Training Environment.
ERIC Educational Resources Information Center
Mathieu, John E.
1988-01-01
Tested model of organizational commitment using survey responses from 202 Army and Navy Reserve Officer Training Corps Cadets. Found personal characteristics, role states, job characteristics, and work experiences exhibited significant direct relationships with commitment and identified their interrelationships. Discusses results in terms of an…
Using the PRECEDE Model for Causal Analysis of Bulimic Tendencies among Elite Women Swimmers.
ERIC Educational Resources Information Center
Benson, RoseAnn; Taub, Diane E.
1993-01-01
Describes a study of weight control techniques and bulimic tendencies among elite female participants in an Olympic Swimming Selection Meet. Results showed concern with thinness, body dissatisfaction, and unhealthy eating, dieting, and weight loss patterns among participants. Discusses the explanatory power of the PRECEDE model. (SM)
Marsh, Herbert W; Trautwein, Ulrich; Lüdtke, Oliver; Köller, Olaf; Baumert, Jürgen
2005-01-01
Reciprocal effects models of longitudinal data show that academic self-concept is both a cause and an effect of achievement. In this study this model was extended to juxtapose self-concept with academic interest. Based on longitudinal data from 2 nationally representative samples of German 7th-grade students (Study 1: N = 5,649, M age = 13.4; Study 2: N = 2,264, M age = 13.7 years), prior self-concept significantly affected subsequent math interest, school grades, and standardized test scores, whereas prior math interest had only a small effect on subsequent math self-concept. Despite stereotypic gender differences in means, linkages relating these constructs were invariant over gender. These results demonstrate the positive effects of academic self-concept on a variety of academic outcomes and integrate self-concept with the developmental motivation literature.
Linking service climate and customer perceptions of service quality: test of a causal model.
Schneider, B; White, S S; Paul, M C
1998-04-01
A set of foundation issues that support employee work and service quality is conceptualized as a necessary but not sufficient cause of a climate for service, which in turn is proposed to be reflected in customer experiences. Climate for service rests on the foundation issues, but in addition it requires policies and practices that focus attention directly on service quality. Data were collected at multiple points in time from employees and customers of 134 branches of a bank and analyzed via structural equation modeling. Results indicated that the model in which the foundation issues yielded a climate for service, and climate for service in turn led to customer perceptions of service quality, fit the data well. However, subsequent cross-lagged analyses revealed the presence of a reciprocal effect for climate and customer perceptions. Implications of these results for theory and research are offered.
Graphical Models for Recovering Probabilistic and Causal Queries from Missing Data
2014-11-01
employ a formal representation called ‘Missingness Graphs ’ (m- graphs , for short) to explicitly portray the missingness process as well as the...exists any theoretical impediment to estimability of queries of interest, m- graphs can also provide a means for communication and refinement of...assumptions about the missingness process. Furthermore, m- graphs permit us to detect violations in modeling assumptions even when the dataset is
From meta-omics to causality: experimental models for human microbiome research.
Fritz, Joëlle V; Desai, Mahesh S; Shah, Pranjul; Schneider, Jochen G; Wilmes, Paul
2013-05-03
Large-scale 'meta-omic' projects are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome, cross-sectional, case-control and longitudinal studies may not have enough statistical power to allow causation to be deduced from patterns of association between variables in high-resolution omic datasets. Therefore, to move beyond reliance on the empirical method, experiments are critical. For these, robust experimental models are required that allow the systematic manipulation of variables to test the multitude of hypotheses, which arise from high-throughput molecular studies. Particularly promising in this respect are microfluidics-based in vitro co-culture systems, which allow high-throughput first-pass experiments aimed at proving cause-and-effect relationships prior to testing of hypotheses in animal models. This review focuses on widely used in vivo, in vitro, ex vivo and in silico approaches to study host-microbial community interactions. Such systems, either used in isolation or in a combinatory experimental approach, will allow systematic investigations of the impact of microbes on the health and disease of the human host. All the currently available models present pros and cons, which are described and discussed. Moreover, suggestions are made on how to develop future experimental models that not only allow the study of host-microbiota interactions but are also amenable to high-throughput experimentation.
An introduction to causal inference.
Pearl, Judea
2010-02-26
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underlie all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: those about (1) the effects of potential interventions, (2) probabilities of counterfactuals, and (3) direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation.
Dynamical modelling of meteoroid streams
NASA Astrophysics Data System (ADS)
Clark, D. L.; Wiegert, P. A.
2014-07-01
Accurate simulations of meteoroid streams permit the prediction of stream interaction with Earth, and provide a measure of risk to Earth satellites and interplanetary spacecraft. Current cometary ejecta and meteoroid stream models have been somewhat successful in predicting some stream observations, but have required significant assumptions and simplifications. Extending on the approach of Vaubaillon et al. 2005, we model dust ejection from the cometary nucleus, and generate sample particles representing bins of distinct dynamical evolution-regulating characteristics (size, density, direction, albedo). Ephemerides of the sample particles are integrated and recorded for later assignment of weights based on model parameter changes. To assist in model analysis we are developing interactive software to permit the "turning of knobs" of model parameters, allowing for near-real-time 3D visualization of resulting stream structure. Using the tool, we will revisit prior assumptions made, and will observe the impact of introducing non-uniform and time-variant cometary surface attributes and processes.
Rumination as a Mediator of Chronic Stress Effects on Hypertension: A Causal Model
Gerin, William; Zawadzki, Matthew J.; Brosschot, Jos F.; Thayer, Julian F.; Christenfeld, Nicholas J. S.; Campbell, Tavis S.; Smyth, Joshua M.
2012-01-01
Chronic stress has been linked to hypertension, but the underlying mechanisms remain poorly specified. We suggest that chronic stress poses a risk for hypertension through repeated occurrence of acute stressors (often stemming from the chronic stress context) that cause activation of stress-mediating physiological systems. Previous models have often focused on the magnitude of the acute physiological response as a risk factor; we attempt to extend this to address the issue of duration of exposure. Key to our model is the notion that these acute stressors can emerge not only in response to stressors present in the environment, but also to mental representations of those (or other) stressors. Consequently, although the experience of any given stressor may be brief, a stressor often results in a constellation of negative cognitions and emotions that form a mental representation of the stressor. Ruminating about this mental representation of the stressful event can cause autonomic activation similar to that observed in response to the original incident, and may occur and persist long after the event itself has ended. Thus, rumination helps explain how chronic stress causes repeated (acute) activation of one's stress-mediating physiological systems, the effects of which accumulate over time, resulting in hypertension risk. PMID:22518285
Independence and dependence in human causal reasoning.
Rehder, Bob
2014-07-01
Causal graphical models (CGMs) are a popular formalism used to model human causal reasoning and learning. The key property of CGMs is the causal Markov condition, which stipulates patterns of independence and dependence among causally related variables. Five experiments found that while adult's causal inferences exhibited aspects of veridical causal reasoning, they also exhibited a small but tenacious tendency to violate the Markov condition. They also failed to exhibit robust discounting in which the presence of one cause as an explanation of an effect makes the presence of another less likely. Instead, subjects often reasoned "associatively," that is, assumed that the presence of one variable implied the presence of other, causally related variables, even those that were (according to the Markov condition) conditionally independent. This tendency was unaffected by manipulations (e.g., response deadlines) known to influence fast and intuitive reasoning processes, suggesting that an associative response to a causal reasoning question is sometimes the product of careful and deliberate thinking. That about 60% of the erroneous associative inferences were made by about a quarter of the subjects suggests the presence of substantial individual differences in this tendency. There was also evidence that inferences were influenced by subjects' assumptions about factors that disable causal relations and their use of a conjunctive reasoning strategy. Theories that strive to provide high fidelity accounts of human causal reasoning will need to relax the independence constraints imposed by CGMs.
How prescriptive norms influence causal inferences.
Samland, Jana; Waldmann, Michael R
2016-11-01
Recent experimental findings suggest that prescriptive norms influence causal inferences. The cognitive mechanism underlying this finding is still under debate. We compare three competing theories: The culpable control model of blame argues that reasoners tend to exaggerate the causal influence of norm-violating agents, which should lead to relatively higher causal strength estimates for these agents. By contrast, the counterfactual reasoning account of causal selection assumes that norms do not alter the representation of the causal model, but rather later causal selection stages. According to this view, reasoners tend to preferentially consider counterfactual states of abnormal rather than normal factors, which leads to the choice of the abnormal factor in a causal selection task. A third view, the accountability hypothesis, claims that the effects of prescriptive norms are generated by the ambiguity of the causal test question. Asking whether an agent is a cause can be understood as a request to assess her causal contribution but also her moral accountability. According to this theory norm effects on causal selection are mediated by accountability judgments that are not only sensitive to the abnormality of behavior but also to mitigating factors, such as intentionality and knowledge of norms. Five experiments are presented that favor the accountability account over the two alternative theories.
NASA Astrophysics Data System (ADS)
Subbareddy, Pramod; Candler, Graham
2009-11-01
Hybrid RANS/LES methods are being increasingly used for turbulent flow simulations in complex geometries. Spalart's detached eddy simulation (DES) model is one of the more popular ones. We are interested in examining the behavior of the Spalart-Allmaras (S-A) Detached Eddy Simulation (DES) model in its ``LES mode.'' The role of the near-wall functions present in the equations is analyzed and an explicit analogy between the S-A and a one-equation LES model based on the sub-grid kinetic energy is presented. A dynamic version of the S-A DES model is proposed based on this connection. Validation studies and results from DES and LES applications will be presented and the effect of the proposed modification will be discussed.
Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël
2016-11-01
Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach.
Oldmeadow, Christopher; Hure, Alexis; Luu, Judy; Loxton, Deborah
2017-01-01
Background Type 2 diabetes is associated with significant morbidity and mortality. Modifiable risk factors have been found to contribute up to 60% of type 2 diabetes risk. However, type 2 diabetes continues to rise despite implementation of interventions based on traditional risk factors. There is a clear need to identify additional risk factors for chronic disease prevention. The aim of this study was to examine the relationship between perceived stress and type 2 diabetes onset, and partition the estimates into direct and indirect effects. Methods and findings Women born in 1946–1951 (n = 12,844) completed surveys for the Australian Longitudinal Study on Women’s Health in 1998, 2001, 2004, 2007 and 2010. The total causal effect was estimated using logistic regression and marginal structural modelling. Controlled direct effects were estimated through conditioning in the regression model. A graded association was found between perceived stress and all mediators in the multivariate time lag analyses. A significant association was found between hypertension, as well as physical activity and body mass index, and diabetes, but not smoking or diet quality. Moderate/high stress levels were associated with a 2.3-fold increase in the odds of diabetes three years later, for the total estimated effect. Results were only slightly attenuated when the direct and indirect effects of perceived stress on diabetes were partitioned, with the mediators only explaining 10–20% of the excess variation in diabetes. Conclusions Perceived stress is a strong risk factor for type 2 diabetes. The majority of the effect estimate of stress on diabetes risk is not mediated by the traditional risk factors of hypertension, physical activity, smoking, diet quality, and body mass index. This gives a new pathway for diabetes prevention trials and clinical practice. PMID:28222165
Analyzing brain networks with PCA and conditional Granger causality.
Zhou, Zhenyu; Chen, Yonghong; Ding, Mingzhou; Wright, Paul; Lu, Zuhong; Liu, Yijun
2009-07-01
Identifying directional influences in anatomical and functional circuits presents one of the greatest challenges for understanding neural computations in the brain. Granger causality mapping (GCM) derived from vector autoregressive models of data has been employed for this purpose, revealing complex temporal and spatial dynamics underlying cognitive processes. However, the traditional GCM methods are computationally expensive, as signals from thousands of voxels within selected regions of interest (ROIs) are individually processed, and being based on pairwise Granger causality, they lack the ability to distinguish direct from indirect connectivity among brain regions. In this work a new algorithm called PCA based conditional GCM is proposed to overcome these problems. The algorithm implements the following two procedures: (i) dimensionality reduction in ROIs of interest with principle component analysis (PCA), and (ii) estimation of the direct causal influences in local brain networks, using conditional Granger causality. Our results show that the proposed method achieves greater accuracy in detecting network connectivity than the commonly used pairwise Granger causality method. Furthermore, the use of PCA components in conjunction with conditional GCM greatly reduces the computational cost relative to the use of individual voxel time series.
Causal Indicators Can Help to Interpret Factors
ERIC Educational Resources Information Center
Bentler, Peter M.
2016-01-01
The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…
Li, Fali; Tian, Yin; Zhang, Yangsong; Qiu, Kan; Tian, Chunyang; Jing, Wei; Liu, Tiejun; Xia, Yang; Guo, Daqing; Yao, Dezhong; Xu, Peng
2015-10-05
The neural mechanism of steady-state visual evoked potentials (SSVEP) is still not clearly understood. Especially, only certain frequency stimuli can evoke SSVEP. Our previous network study reveals that 8 Hz stimulus that can evoke strong SSVEP response shows the enhanced linkage strength between frontal and visual cortex. To further probe the directed information flow between the two cortex areas for various frequency stimuli, this paper develops a causality analysis based on the inversion of double columns model using particle swarm optimization (PSO) to characterize the directed information flow between visual and frontal cortices with the intracranial rat electroencephalograph (EEG). The estimated model parameters demonstrate that the 8 Hz stimulus shows the enhanced directional information flow from visual cortex to frontal lobe facilitates SSVEP response, which may account for the strong SSVEP response for 8 Hz stimulus. Furthermore, the similar finding is replicated by data-driven causality analysis. The inversion of neural mass model proposed in this study may be helpful to provide the new causality analysis to link the physiological model and the observed datasets in neuroscience and clinical researches.
NASA Astrophysics Data System (ADS)
Li, Fali; Tian, Yin; Zhang, Yangsong; Qiu, Kan; Tian, Chunyang; Jing, Wei; Liu, Tiejun; Xia, Yang; Guo, Daqing; Yao, Dezhong; Xu, Peng
2015-10-01
The neural mechanism of steady-state visual evoked potentials (SSVEP) is still not clearly understood. Especially, only certain frequency stimuli can evoke SSVEP. Our previous network study reveals that 8 Hz stimulus that can evoke strong SSVEP response shows the enhanced linkage strength between frontal and visual cortex. To further probe the directed information flow between the two cortex areas for various frequency stimuli, this paper develops a causality analysis based on the inversion of double columns model using particle swarm optimization (PSO) to characterize the directed information flow between visual and frontal cortices with the intracranial rat electroencephalograph (EEG). The estimated model parameters demonstrate that the 8 Hz stimulus shows the enhanced directional information flow from visual cortex to frontal lobe facilitates SSVEP response, which may account for the strong SSVEP response for 8 Hz stimulus. Furthermore, the similar finding is replicated by data-driven causality analysis. The inversion of neural mass model proposed in this study may be helpful to provide the new causality analysis to link the physiological model and the observed datasets in neuroscience and clinical researches.
Modeling Catastrophic Barrier Island Dynamics
NASA Astrophysics Data System (ADS)
Whitley, J. W.; McNamara, D.
2012-12-01
Barrier islands, thin strips of sand lying parallel to the mainland coastline, along the U.S. Atlantic and Gulf Coasts appear to have maintained their form for thousands of years in the face of rising sea level. The mechanisms that allow barrier islands to remain robust are transport of sediment from the ocean side of barriers to the top and backside during storms, termed island overwash, and the growth and alongshore propagation of tidal deltas near barrier island inlets. Dynamically these processes provide the necessary feedbacks to maintain a barrier island in an attractor that withstands rising sea level within a phase space of barrier island geometrical characteristics. Current barrier island configurations along the Atlantic and Gulf coasts exist among a wide range of storm climate and underlying geologic conditions and therefore the environment that forces overwash and tidal delta dynamics varies considerably. It has been suggested that barrier islands in certain locations such as those between Avon and Buxton (losing 76% of island width since 1852) and Chandeleur islands (losing 85% of its surface area since 2005) along the Atlantic and Gulf coasts, respectively, may be subject to a catastrophic shift in barrier island attractor states - more numerous inlets cutting barriers in some locations and the complete disappearance of barrier islands in other locations. In contrast to common models for barrier islands that neglect storm dynamics and often only consider cross-shore response, we use an alongshore extended model for barrier island dynamics including beach erosion, island overwash and inlet cutting during storms, and beach accretion, tidal delta growth and dune and vegetation growth between storms to explore the response of barrier islands to a wide range of environmental forcing. Results will be presented that show how barrier island attractor states are altered with variations in the rate of sea level rise, storminess, and underlying geology. We will
Data modeling of network dynamics
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Faucheux, Jeffery P.; Harris, Brad
2004-01-01
This paper highlights Data Modeling theory and its use for text data mining as a graphical network search engine. Data Modeling is then used to create a real-time filter capable of monitoring network traffic down to the port level for unusual dynamics and changes in business as usual. This is accomplished in an unsupervised fashion without a priori knowledge of abnormal characteristics. Two novel methods for converting streaming binary data into a form amenable to graphics based search and change detection are introduced. These techniques are then successfully applied to 1999 KDD Cup network attack data log-on sessions to demonstrate that Data Modeling can detect attacks without prior training on any form of attack behavior. Finally, two new methods for data encryption using these ideas are proposed.
Mathematical Modeling of Wildfire Dynamics
NASA Astrophysics Data System (ADS)
Del Bene, Kevin; Drew, Donald
2012-11-01
Wildfires have been a long-standing problem in today's society. In this paper, we derive and solve a fluid dynamics model to study a specific type of wildfire, namely, a two dimensional flow around a rising plume above a concentrated heat source, modeling a fire line. This flow assumes a narrow plume of hot gas rising and entraining the surrounding air. The surrounding air is assumed to have constant density and is irrotational far from the fire line. The flow outside the plume is described by a Biot-Savart integral with jump conditions across the position of the plume. The plume model describes the unsteady evolution of the mass, momentum, energy, and vorticity inside the plume, with sources derived to model mixing in the style of Morton, et al. 1956]. The fire is then modeled using a conservation derivation, allowing the fire to propagate, coupling back to the plume model. The results show that this model is capable of capturing the complex interaction of the plume with the surrounding air and fuel layer. Funded by NSF GRFP.
Modeling the Dynamics of Snags.
Morrison, Michael L; Raphael, Martin G
1993-05-01
Many wildlife species required standing dead trees (i.e., snags) as part of their habitat. Therefore, the ability to predict future density, distribution, and condition of snags can assist resource managers in making land-use decisions. Here we present methods for modeling the dynamics of snags using data from a 10-yr study on the rates of decay, falling, and recruitment of snags on burned and unburned plots in the Sierra Nevada, California. Snags (all species) in advanced stages of decay usually fell within 5 yr, and snags created by fire decayed rapidly and fell quicker (within 10 yr) than those on unburned plots. Pine (Pinus spp.) snags decayed more rapidly than fir (Abies spp.). Although there was an overall net increase in snag density on unburned plots, most of this increase was in the smaller (>13-38 cm diameter at breast height [dbh]) size classes; there was a net decrease in the larger (>38 cm dbh) snags preferred by many birds for nesting and feeding. Overall, snags remained standing the longest that were larger in diameter, shorter in height, less decayed, fir rather than pine, and lacking tops. A Leslie matrix model of snag dynamics predicted changes in snag decay and density only when adjusted for the specific environmental factors(s) causing initial tree mortality. Many snags are created by episodic events, such as fire, disease, drought, and insects. Models of snag dynamics must include the species and condition of trees becoming snags, as well as the factor(s) causing the tree to die. Forest managers must consider this episodic creation of snags when developing snag-management guidelines, and when planning tree-salvage programs based on short-term inventories.
From blickets to synapses: inferring temporal causal networks by observation.
Fernando, Chrisantha
2013-01-01
How do human infants learn the causal dependencies between events? Evidence suggests that this remarkable feat can be achieved by observation of only a handful of examples. Many computational models have been produced to explain how infants perform causal inference without explicit teaching about statistics or the scientific method. Here, we propose a spiking neuronal network implementation that can be entrained to form a dynamical model of the temporal and causal relationships between events that it observes. The network uses spike-time dependent plasticity, long-term depression, and heterosynaptic competition rules to implement Rescorla-Wagner-like learning. Transmission delays between neurons allow the network to learn a forward model of the temporal relationships between events. Within this framework, biologically realistic synaptic plasticity rules account for well-known behavioral data regarding cognitive causal assumptions such as backwards blocking and screening-off. These models can then be run as emulators for state inference. Furthermore, this mechanism is capable of copying synaptic connectivity patterns between neuronal networks by observing the spontaneous spike activity from the neuronal circuit that is to be copied, and it thereby provides a powerful method for transmission of circuit functionality between brain regions.
Causal Imprinting in Causal Structure Learning
Taylor, Eric G.; Ahn, Woo-kyoung
2012-01-01
Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures “causal imprinting.” Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. PMID:22859019
Bayesian Estimation of Categorical Dynamic Factor Models
ERIC Educational Resources Information Center
Zhang, Zhiyong; Nesselroade, John R.
2007-01-01
Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…
ERIC Educational Resources Information Center
Haviland, Amelia; Nagin, Daniel S.; Rosenbaum, Paul R.; Tremblay, Richard E.
2008-01-01
A central theme of research on human development and psychopathology is whether a therapeutic intervention or a turning-point event, such as a family break-up, alters the trajectory of the behavior under study. This article describes and applies a method for using observational longitudinal data to make more transparent causal inferences about the…
Discrimination of coupling structures using causality networks from multivariate time series
NASA Astrophysics Data System (ADS)
Koutlis, Christos; Kugiumtzis, Dimitris
2016-09-01
Measures of Granger causality on multivariate time series have been used to form the so-called causality networks. A causality network represents the interdependence structure of the underlying dynamical system or coupled dynamical systems, and its properties are quantified by network indices. In this work, it is investigated whether network indices on networks generated by an appropriate Granger causality measure can discriminate different coupling structures. The information based Granger causality measure of partial mutual information from mixed embedding (PMIME) is used to form causality networks, and a large number of network indices are ranked according to their ability to discriminate the different coupling structures. The evaluation of the network indices is done with a simulation study based on two dynamical systems, the coupled Mackey-Glass delay differential equations and the neural mass model, both of 25 variables, and three prototypes of coupling structures, i.e., random, small-world, and scale-free. It is concluded that the setting of PMIME combined with a network index attains high level of discrimination of the coupling structures solely on the basis of the observed multivariate time series. This approach is demonstrated to identify epileptic seizures emerging during electroencephalogram recordings.
A nonlinear generalization of spectral Granger causality.
He, Fei; Wei, Hua-Liang; Billings, Stephen A; Sarrigiannis, Ptolemaios G
2014-06-01
Spectral measures of linear Granger causality have been widely applied to study the causal connectivity between time series data in neuroscience, biology, and economics. Traditional Granger causality measures are based on linear autoregressive with exogenous (ARX) inputs models of time series data, which cannot truly reveal nonlinear effects in the data especially in the frequency domain. In this study, it is shown that the classical Geweke's spectral causality measure can be explicitly linked with the output spectra of corresponding restricted and unrestricted time-domain models. The latter representation is then generalized to nonlinear bivariate signals and for the first time nonlinear causality analysis in the frequency domain. This is achieved by using the nonlinear ARX (NARX) modeling of signals, and decomposition of the recently defined output frequency response function which is related to the NARX model.
Characterizing and modeling citation dynamics.
Eom, Young-Ho; Fortunato, Santo
2011-01-01
Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well.
Characterizing and Modeling Citation Dynamics
Eom, Young-Ho; Fortunato, Santo
2011-01-01
Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well. PMID:21966387
Dynamical model for competing opinions
NASA Astrophysics Data System (ADS)
Souza, S. R.; Gonçalves, S.
2012-05-01
We propose an opinion model based on agents located at the vertices of a regular lattice. Each agent has an independent opinion (among an arbitrary, but fixed, number of choices) and its own degree of conviction. The latter changes every time two agents which have different opinions interact with each other. The dynamics leads to size distributions of clusters (made up of agents which have the same opinion and are located at contiguous spatial positions) which follow a power law, as long as the range of the interaction between the agents is not too short; i.e., the system self-organizes into a critical state. Short range interactions lead to an exponential cutoff in the size distribution and to spatial correlations which cause agents which have the same opinion to be closely grouped. When the diversity of opinions is restricted to two, a nonconsensus dynamic is observed, with unequal population fractions, whereas consensus is reached if the agents are also allowed to interact with those located far from them. The individual agents' convictions, the preestablished interaction range, and the locality of the interaction between a pair of agents (their neighborhood has no effect on the interaction) are the main characteristics which distinguish our model from previous ones.
Interpretational Confounding or Confounded Interpretations of Causal Indicators?
Bainter, Sierra A.; Bollen, Kenneth A.
2014-01-01
In measurement theory causal indicators are controversial and little-understood. Methodological disagreement concerning causal indicators has centered on the question of whether causal indicators are inherently sensitive to interpretational confounding, which occurs when the empirical meaning of a latent construct departs from the meaning intended by a researcher. This article questions the validity of evidence used to claim that causal indicators are inherently susceptible to interpretational confounding. Further, a simulation study demonstrates that causal indicator coefficients are stable across correctly-specified models. Determining the suitability of causal indicators has implications for the way we conceptualize measurement and build and evaluate measurement models. PMID:25530730
Porta, Alberto; Faes, Luca; Bari, Vlasta; Marchi, Andrea; Bassani, Tito; Nollo, Giandomenico; Perseguini, Natália Maria; Milan, Juliana; Minatel, Vinícius; Borghi-Silva, Audrey; Takahashi, Anielle C. M.; Catai, Aparecida M.
2014-01-01
The proposed approach evaluates complexity of the cardiovascular control and causality among cardiovascular regulatory mechanisms from spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiration (RESP). It relies on construction of a multivariate embedding space, optimization of the embedding dimension and a procedure allowing the selection of the components most suitable to form the multivariate embedding space. Moreover, it allows the comparison between linear model-based (MB) and nonlinear model-free (MF) techniques and between MF approaches exploiting local predictability (LP) and conditional entropy (CE). The framework was applied to study age-related modifications of complexity and causality in healthy humans in supine resting (REST) and during standing (STAND). We found that: 1) MF approaches are more efficient than the MB method when nonlinear components are present, while the reverse situation holds in presence of high dimensional embedding spaces; 2) the CE method is the least powerful in detecting age-related trends; 3) the association of HP complexity on age suggests an impairment of cardiac regulation and response to STAND; 4) the relation of SAP complexity on age indicates a gradual increase of sympathetic activity and a reduced responsiveness of vasomotor control to STAND; 5) the association from SAP to HP on age during STAND reveals a progressive inefficiency of baroreflex; 6) the reduced connection from HP to SAP with age might be linked to the progressive exploitation of Frank-Starling mechanism at REST and to the progressive increase of peripheral resistances during STAND; 7) at REST the diminished association from RESP to HP with age suggests a vagal withdrawal and a gradual uncoupling between respiratory activity and heart; 8) the weakened connection from RESP to SAP with age might be related to the progressive increase of left ventricular thickness and vascular stiffness and to the gradual decrease of
Campbell's and Rubin's Perspectives on Causal Inference
ERIC Educational Resources Information Center
West, Stephen G.; Thoemmes, Felix
2010-01-01
Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…
Dynamical model of surrogate reactions
Aritomo, Y.; Chiba, S.; Nishio, K.
2011-08-15
A new dynamical model is developed to describe the whole process of surrogate reactions: Transfer of several nucleons at an initial stage, thermal equilibration of residues leading to washing out of shell effects, and decay of populated compound nuclei are treated in a unified framework. Multidimensional Langevin equations are employed to describe time evolution of collective coordinates with a time-dependent potential energy surface corresponding to different stages of surrogate reactions. The new model is capable of calculating spin distributions of the compound nuclei, one of the most important quantities in the surrogate technique. Furthermore, various observables of surrogate reactions can be calculated, for example, energy and angular distribution of ejectile and mass distributions of fission fragments. These features are important to assess validity of the proposed model itself, to understand mechanisms of the surrogate reactions, and to determine unknown parameters of the model. It is found that spin distributions of compound nuclei produced in {sup 18}O+{sup 238}U{yields}{sup 16}O+{sup 240}*U and {sup 18}O+{sup 236}U{yields}{sup 16}O+{sup 238}*U reactions are equivalent and much less than 10({h_bar}/2{pi}) and therefore satisfy conditions proposed by Chiba and Iwamoto [Phys. Rev. C 81, 044604 (2010)] if they are used as a pair in the surrogate ratio method.
Dynamical Modeling of Mars' Paleoclimate
NASA Technical Reports Server (NTRS)
Richardson, Mark I.
2004-01-01
This report summarizes work undertaken under a one-year grant from the NASA Mars Fundamental Research Program. The goal of the project was to initiate studies of the response of the Martian climate to changes in planetary obliquity and orbital elements. This work was undertaken with a three-dimensional numerical climate model based on the Geophysical Fluid Dynamics Laboratory (GFDL) Skyhi General Circulation Model (GCM). The Mars GCM code was adapted to simulate various obliquity and orbital parameter states. Using a version of the model with a basic water cycle (ice caps, vapor, and clouds), we examined changes in atmospheric water abundances and in the distribution of water ice sheets on the surface. This work resulted in a paper published in the Journal of Geophysical Research - Planets. In addition, the project saw the initial incorporation of a regolith water transport and storage scheme into the model. This scheme allows for interaction between water in the pores of the near subsurface (<3m) and the atmosphere. This work was not complete by the end of the one-year grant, but is now continuing within the auspices of a three-year grant of the same title awarded by the Mars Fundamental Research Program in late 2003.
Modeling sandhill crane population dynamics
Johnson, D.H.
1979-01-01
The impact of sport hunting on the Central Flyway population of sandhill cranes (Grus canadensis) has been a subject of controversy for several years. A recent study (Buller 1979) presented new and important information on sandhill crane population dynamics. The present report is intended to incorporate that and other information into a mathematical model for the purpose of assessing the long-range impact of hunting on the population of sandhill cranes.The model is a simple deterministic system that embodies density-dependent rates of survival and recruitment. The model employs four kinds of data: (1) spring population size of sandhill cranes, estimated from aerial surveys to be between 250,000 and 400,000 birds; (2) age composition in fall, estimated for 1974-76 to be 11.3% young; (3) annual harvest of cranes, estimated from a variety of sources to be about 5 to 7% of the spring population; and (4) age composition of harvested cranes, which was difficult to estimate but suggests that immatures were 2 to 4 times as vulnerable to hunting as adults.Because the true nature of sandhill crane population dynamics remains so poorly understood, it was necessary to try numerous (768 in all) combinations of survival and recruitment functions, and focus on the relatively few (37) that yielded population sizes and age structures comparable to those extant in the real population. Hunting was then applied to those simulated populations. In all combinations, hunting resulted in a lower asymptotic crane population, the decline ranging from 5 to 54%. The median decline was 22%, which suggests that a hunted sandhill crane population might be about three-fourths as large as it would be if left unhunted. Results apply to the aggregate of the three subspecies in the Central Flyway; individual subspecies or populations could be affected to a greater or lesser degree.
Smith, William C; Anderson, Emily; Salinas, Daniel; Horvatek, Renata; Baker, David P
2015-02-01
As the Epidemiological Transition progresses worldwide, chronic diseases account for the majority of deaths in developed countries and a rising proportion in developing countries indicating a new global pattern of mortality and health challenges into the future. Attainment of formal education is widely reported to have a negative gradient with risk factors and onset of chronic disease, yet there has not been a formal assessment of this research. A random-effects meta-analysis finds that across 414 published effects more education significantly reduces the likelihood of chronic disease, except for neoplastic diseases with substantial genetic causes. Some studies, however, report null effects and other research on infectious disease report positive education gradients. Instead of assuming these contradictory results are spurious, it is suggested that they are part of a predictable systemic interaction between multiple mediating effects of education and the Epidemiological Transition stage of the population; and thus represent one case of the Population Education Transition Curve modeling changes in the association between education and health as dependent on population context.
Multisource causal data mining
NASA Astrophysics Data System (ADS)
Woodley, Robert; Gosnell, Michael; Shallenberger, Kevin
2012-06-01
Analysts are faced with mountains of data, and finding that relevant piece of information is the proverbial needle in a haystack, only with dozens of haystacks. Analysis tools that facilitate identifying causal relationships across multiple data sets are sorely needed. 21st Century Systems, Inc. (21CSi) has initiated research called Causal-View, a causal datamining visualization tool, to address this challenge. Causal-View is built on an agent-enabled framework. Much of the processing that Causal-View will do is in the background. When a user requests information, Data Extraction Agents launch to gather information. This initial search is a raw, Monte Carlo type search designed to gather everything available that may have relevance to an individual, location, associations, and more. This data is then processed by Data- Mining Agents. The Data-Mining Agents are driven by user supplied feature parameters. If the analyst is looking to see if the individual frequents a known haven for insurgents he may request information on his last known locations. Or, if the analyst is trying to see if there is a pattern in the individual's contacts, the mining agent can be instructed with the type and relevance of the information fields to look at. The same data is extracted from the database, but the Data Mining Agents customize the feature set to determine causal relationships the user is interested in. At this point, a Hypothesis Generation and Data Reasoning Agents take over to form conditional hypotheses about the data and pare the data, respectively. The newly formed information is then published to the agent communication backbone of Causal- View to be displayed. Causal-View provides causal analysis tools to fill the gaps in the causal chain. We present here the Causal-View concept, the initial research into data mining tools that assist in forming the causal relationships, and our initial findings.
Information Theoretic Causal Coordination
2013-09-12
his 1969 paper, Clive Granger , British economist and Nobel laureate, proposed a statistical def- inition of causality between stochastic processes. It...showed that the directed infor- mation, an information theoretic quantity, quantifies Granger causality . We also explored a more pessimistic setup...Final Technical Report Project Title: Information Theoretic Causal Coordination AFOSR Award Number: AF FA9550-10-1-0345 Reporting Period: July 15
A copula approach to assessing Granger causality.
Hu, Meng; Liang, Hualou
2014-10-15
In neuroscience, as in many other fields of science and engineering, it is crucial to assess the causal interactions among multivariate time series. Granger causality has been increasingly used to identify causal influence between time series based on multivariate autoregressive models. Such an approach is based on linear regression framework with implicit Gaussian assumption of model noise residuals having constant variance. As a consequence, this measure cannot detect the cause-effect relationship in high-order moments and nonlinear causality. Here, we propose an effective model-free, copula-based Granger causality measure that can be used to reveal nonlinear and high-order moment causality. We first formulate Granger causality as the log-likelihood ratio in terms of conditional distribution, and then derive an efficient estimation procedure using conditional copula. We use resampling techniques to build a baseline null-hypothesis distribution from which statistical significance can be derived. We perform a series of simulations to investigate the performance of our copula-based Granger causality, and compare its performance against other state-of-the-art techniques. Our method is finally applied to neural field potential time series recorded from visual cortex of a monkey while performing a visual illusion task.
SSME structural dynamic model development
NASA Technical Reports Server (NTRS)
Foley, Michael J.
1989-01-01
The high pressure fuel turbopump (HPFTP) is a major component of the Space Shuttle Main Engine (SSME) powerhead. The device is a three stage centrifugal pump that is directly driven by a two stage hot gas turbine. The purpose of the pump is to deliver fuel (liquid hydrogen) from the low pressure fuel turbopump (LPFTP) through the main fuel valve (MFV) to the thrust chamber coolant circuits. In doing so, the pump pressurizes the fuel from an inlet pressure of approximately 178 psi to a discharge pressure of over 6000 psi. At full power level (FPL), the pump rotates at a speed of over 37,000 rpm while generating approximately 77,000 horsepower. Obviously, a pump failure at these speeds and power levels could jeopardize the mission. Results are summarized for work in which the solutions obtained from analytical models of the fuel turbopump impellers are compared with the results obtained from dynamic tests.
Lan, Tian-Syung; Chen, Kai-Ling; Chen, Pin-Chang; Ku, Chao-Tai; Chiu, Pei-Hsuan; Wang, Meng-Hsiang
2014-01-01
This study used system dynamics method to investigate the factors affecting elementary school students' BMI values. The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling. According to the system dynamics modeling, this study consisted of research on the four dimensions: student's personal life style, diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students' peer interaction. The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students' amounts of physical activity, and nutrition education has a prominent influence on changing students' high-calorie diets.
NASA Astrophysics Data System (ADS)
Napolitano, George M.; Turova, Tatyana S.
2016-02-01
We investigate a Gibbs (annealed) probability measure defined on Ising spin configurations on causal triangulations of the plane. We study the region where such measure can be defined and provide bounds on the boundary of this region (critical line). We prove that for any finite random triangulation the magnetization of the central spin is sensitive to the boundary conditions. Furthermore, we show that in the infinite volume limit, the magnetization of the central spin vanishes for values of the temperature high enough.
NASA Technical Reports Server (NTRS)
Moray, Neville; King, Barbara; Turksen, Burhan; Waterton, Keith
1987-01-01
Fuzzy and crisp measurements of workload are compared for a tracking task that varied in bandwidth and order of control. Fuzzy measures are as powerful as crisp measures, and can under certain conditions give extra insights into workload causality. Both methods suggest that workload arises in a system in which effort, performance, difficulty, and task variables are linked in a closed loop. Marked individual differences were found. Future work on the fuzzy measurement of workload is justified.
Using Causal Models to Manage the Cyber Threat to C2 Agility: Working with the Benefit of Hindsight
2014-06-01
applied to historical data , using correlations or patterns in that data to predict future effect (i.e. extrapolation from data mining functions, or...advantage over adversarial action. Figure 16. The Use of Data Mining and Simulation to Complement the Use of Causal Rules Actual Observed or...what is likely to happen, given my current domain understanding” Mined Statistical analysis of actual data ,and extrapolation “what should have
Testing for causality in reconstructed state spaces by an optimized mixed prediction method
NASA Astrophysics Data System (ADS)
Krakovská, Anna; Hanzely, Filip
2016-11-01
In this study, a method of causality detection was designed to reveal coupling between dynamical systems represented by time series. The method is based on the predictions in reconstructed state spaces. The results of the proposed method were compared with outcomes of two other methods, the Granger VAR test of causality and the convergent cross-mapping. We used two types of test data. The first test example is a unidirectional connection of chaotic systems of Rössler and Lorenz type. The second one, the fishery model, is an example of two correlated observables without a causal relationship. The results showed that the proposed method of optimized mixed prediction was able to reveal the presence and the direction of coupling and distinguish causality from mere correlation as well.
Assessing Thalamocortical Functional Connectivity with Granger Causality
Israel, David; Thakor, Nitish V.; Jia, Xiaofeng
2014-01-01
Assessment of network connectivity across multiple brain regions is critical to understanding the mechanisms underlying various neurological disorders. Conventional methods for assessing dynamic interactions include cross-correlation and coherence analysis. However, these methods do not reveal the direction of information flow, which is important for studying the highly directional neurological system. Granger causality (GC) analysis can characterize the directional influences between two systems. We tested GC analysis for its capability to capture directional interactions within both simulated and in-vivo neural networks. The simulated networks consisted of Hindmarsh-Rose neurons; GC analysis was used to estimate the causal influences between two model networks. Our analysis successfully detected asymmetrical interactions between these networks (p<10−10, t-test). Next, we characterized the relationship between the “electrical synaptic strength” in the model networks and interactions estimated by GC analysis. We demonstrated the novel application of GC to monitor interactions between thalamic and cortical neurons following ischemia induced brain injury in a rat model of cardiac arrest (CA). We observed that during the post-CA acute period the GC interactions from the thalamus to the cortex were consistently higher than those from the cortex to the thalamus (1.983±0.278 times higher, p=0.021). In addition, the dynamics of GC interactions between the thalamus and the cortex were frequency dependent. Our study demonstrated the feasibility of GC to monitor the dynamics of thalamocortical interactions after a global nervous system injury such as CA-induced ischemia, and offers preferred alternative applications in characterizing other inter-regional interactions in an injured brain. PMID:23864221
Assessing thalamocortical functional connectivity with Granger causality.
Chen, Cheng; Maybhate, Anil; Israel, David; Thakor, Nitish V; Jia, Xiaofeng
2013-09-01
Assessment of network connectivity across multiple brain regions is critical to understanding the mechanisms underlying various neurological disorders. Conventional methods for assessing dynamic interactions include cross-correlation and coherence analysis. However, these methods do not reveal the direction of information flow, which is important for studying the highly directional neurological system. Granger causality (GC) analysis can characterize the directional influences between two systems. We tested GC analysis for its capability to capture directional interactions within both simulated and in vivo neural networks. The simulated networks consisted of Hindmarsh-Rose neurons; GC analysis was used to estimate the causal influences between two model networks. Our analysis successfully detected asymmetrical interactions between these networks ( , t -test). Next, we characterized the relationship between the "electrical synaptic strength" in the model networks and interactions estimated by GC analysis. We demonstrated the novel application of GC to monitor interactions between thalamic and cortical neurons following ischemia induced brain injury in a rat model of cardiac arrest (CA). We observed that during the post-CA acute period the GC interactions from the thalamus to the cortex were consistently higher than those from the cortex to the thalamus ( 1.983±0.278 times higher, p = 0.021). In addition, the dynamics of GC interactions between the thalamus and the cortex were frequency dependent. Our study demonstrated the feasibility of GC to monitor the dynamics of thalamocortical interactions after a global nervous system injury such as CA-induced ischemia, and offers preferred alternative applications in characterizing other inter-regional interactions in an injured brain.
Timing and causality in the generation of learned eyelid responses.
Sánchez-Campusano, Raudel; Gruart, Agnès; Delgado-García, José M
2011-01-01
The cerebellum-red nucleus-facial motoneuron (Mn) pathway has been reported as being involved in the proper timing of classically conditioned eyelid responses. This special type of associative learning serves as a model of event timing for studying the role of the cerebellum in dynamic motor control. Here, we have re-analyzed the firing activities of cerebellar posterior interpositus (IP) neurons and orbicularis oculi (OO) Mns in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. The aim was to revisit the hypothesis that the IP neurons (IPns) can be considered a neuronal phase-modulating device supporting OO Mns firing with an emergent timing mechanism and an explicit correlation code during learned eyelid movements. Optimized experimental and computational tools allowed us to determine the different causal relationships (temporal order and correlation code) during and between trials. These intra- and inter-trial timing strategies expanding from sub-second range (millisecond timing) to longer-lasting ranges (interval timing) expanded the functional domain of cerebellar timing beyond motor control. Interestingly, the results supported the above-mentioned hypothesis. The causal inferences were influenced by the precise motor and pre-motor spike timing in the cause-effect interval, and, in addition, the timing of the learned responses depended on cerebellar-Mn network causality. Furthermore, the timing of CRs depended upon the probability of simulated causal conditions in the cause-effect interval and not the mere duration of the inter-stimulus interval. In this work, the close relation between timing and causality was verified. It could thus be concluded that the firing activities of IPns may be related more to the proper performance of ongoing CRs (i.e., the proper timing as a consequence of the pertinent causality) than to their generation and/or initiation.
Causality in Classical Electrodynamics
ERIC Educational Resources Information Center
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
Causal Learning Across Domains
ERIC Educational Resources Information Center
Schulz, Laura E.; Gopnik, Alison
2004-01-01
Five studies investigated (a) children's ability to use the dependent and independent probabilities of events to make causal inferences and (b) the interaction between such inferences and domain-specific knowledge. In Experiment 1, preschoolers used patterns of dependence and independence to make accurate causal inferences in the domains of…
Widlok, Thomas
2014-01-01
Cognitive Scientists interested in causal cognition increasingly search for evidence from non-Western Educational Industrial Rich Democratic people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition. PMID:25414683
Widlok, Thomas
2014-01-01
Cognitive Scientists interested in causal cognition increasingly search for evidence from non-Western Educational Industrial Rich Democratic people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition.
Identity, causality, and pronoun ambiguity.
Sagi, Eyal; Rips, Lance J
2014-10-01
This article looks at the way people determine the antecedent of a pronoun in sentence pairs, such as: Albert invited Ron to dinner. He spent hours cleaning the house. The experiment reported here is motivated by the idea that such judgments depend on reasoning about identity (e.g., the identity of the he who cleaned the house). Because the identity of an individual over time depends on the causal-historical path connecting the stages of the individual, the correct antecedent will also depend on causal connections. The experiment varied how likely it is that the event of the first sentence (e.g., the invitation) would cause the event of the second (the house cleaning) for each of the two individuals (the likelihood that if Albert invited Ron to dinner, this would cause Albert to clean the house, versus cause Ron to clean the house). Decisions about the antecedent followed causal likelihood. A mathematical model of causal identity accounted for most of the key aspects of the data from the individual sentence pairs.
On the spectral formulation of Granger causality.
Chicharro, D
2011-12-01
Spectral measures of causality are used to explore the role of different rhythms in the causal connectivity between brain regions. We study several spectral measures related to Granger causality, comprising the bivariate and conditional Geweke measures, the directed transfer function, and the partial directed coherence. We derive the formulation of dependence and causality in the spectral domain from the more general formulation in the information-theory framework. We argue that the transfer entropy, the most general measure derived from the concept of Granger causality, lacks a spectral representation in terms of only the processes associated with the recorded signals. For all the spectral measures we show how they are related to mutual information rates when explicitly considering the parametric autoregressive representation of the processes. In this way we express the conditional Geweke spectral measure in terms of a multiple coherence involving innovation variables inherent to the autoregressive representation. We also link partial directed coherence with Sims' criterion of causality. Given our results, we discuss the causal interpretation of the spectral measures related to Granger causality and stress the necessity to explicitly consider their specific formulation based on modeling the signals as linear Gaussian stationary autoregressive processes.
Multivariate Granger causality analysis of fMRI data.
Deshpande, Gopikrishna; LaConte, Stephan; James, George Andrew; Peltier, Scott; Hu, Xiaoping
2009-04-01
This article describes the combination of multivariate Granger causality analysis, temporal down-sampling of fMRI time series, and graph theoretic concepts for investigating causal brain networks and their dynamics. As a demonstration, this approach was applied to analyze epoch-to-epoch changes in a hand-gripping, muscle fatigue experiment. Causal influences between the activated regions were analyzed by applying the directed transfer function (DTF) analysis of multivariate Granger causality with the integrated epoch response as the input, allowing us to account for the effects of several relevant regions simultaneously. Integrated responses were used in lieu of originally sampled time points to remove the effect of the spatially varying hemodynamic response as a confounding factor; using integrated responses did not affect our ability to capture its slowly varying affects of fatigue. We separately modeled the early, middle, and late periods in the fatigue. We adopted graph theoretic concepts of clustering and eccentricity to facilitate the interpretation of the resultant complex networks. Our results reveal the temporal evolution of the network and demonstrate that motor fatigue leads to a disconnection in the related neural network.
Statistical threshold for nonlinear Granger Causality in motor intention analysis.
Liu, MengTing; Kuo, Ching-Chang; Chiu, Alan W L
2011-01-01
Directed influence between multiple channel signal measurements is important for the understanding of large dynamic systems. This research investigates a method to analyze large, complex multi-variable systems using directional flow measure to extract relevant information related to the functional connectivity between different units in the system. The directional flow measure was completed through nonlinear Granger Causality (GC) which is based on the nonlinear predictive models using radial basis functions (RBF). In order to extract relevant information from the causality map, we propose a threshold method that can be set up through a spatial statistical process where only the top 20% of causality pathways is shown. We applied this approach to a brain computer interface (BCI) application to decode the different intended arm reaching movement (left, right and forward) using 128 surface electroencephalography (EEG) electrodes. We also evaluated the importance of selecting the appropriate radius in the region of interest and found that the directions of causal influence of active brain regions were unique with respect to the intended direction.
Omission of Causal Indicators: Consequences and Implications for Measurement
ERIC Educational Resources Information Center
Aguirre-Urreta, Miguel I.; Rönkkö, Mikko; Marakas, George M.
2016-01-01
One of the central assumptions of the causal-indicator literature is that all causal indicators must be included in the research model and that the exclusion of one or more relevant causal indicators would have severe negative consequences by altering the meaning of the latent variable. In this research we show that the omission of a relevant…
Towards a neural implementation of causal inference in cue combination.
Ma, Wei Ji; Rahmati, Masih
2013-01-01
Causal inference in sensory cue combination is the process of determining whether multiple sensory cues have the same cause or different causes. Psychophysical evidence indicates that humans closely follow the predictions of a Bayesian causal inference model. Here, we explore how Bayesian causal inference could be implemented using probabilistic population coding and plausible neural operations, but conclude that the resulting architecture is unrealistic.
ERIC Educational Resources Information Center
Johnson, Samuel G. B.; Ahn, Woo-kyoung
2015-01-01
Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge--an interconnected causal "network," where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms--causal "islands"--such that events in different…
Canonical Granger causality between regions of interest.
Ashrafulla, Syed; Haldar, Justin P; Joshi, Anand A; Leahy, Richard M
2013-12-01
Estimating and modeling functional connectivity in the brain is a challenging problem with potential applications in the understanding of brain organization and various neurological and neuropsychological conditions. An important objective in connectivity analysis is to determine the connections between regions of interest in the brain. However, traditional functional connectivity analyses have frequently focused on modeling interactions between time series recordings at individual sensors, voxels, or vertices despite the fact that a single region of interest will often include multiple such recordings. In this paper, we present a novel measure of interaction between regions of interest rather than individual signals. The proposed measure, termed canonical Granger causality, combines ideas from canonical correlation and Granger causality analysis to yield a measure that reflects directed causality between two regions of interest. In particular, canonical Granger causality uses optimized linear combinations of signals from each region of interest to enable accurate causality measurements from substantially less data compared to alternative multivariate methods that have previously been proposed for this scenario. The optimized linear combinations are obtained using a variation of a technique developed for optimization on the Stiefel manifold. We demonstrate the advantages of canonical Granger causality in comparison to alternative causality measures for a range of different simulated datasets. We also apply the proposed measure to local field potential data recorded in a macaque brain during a visuomotor task. Results demonstrate that canonical Granger causality can be used to identify causal relationships between striate and prestriate cortexes in cases where standard Granger causality is unable to identify statistically significant interactions.
Preliminary shuttle structural dynamics modeling design study
NASA Technical Reports Server (NTRS)
1972-01-01
The design and development of a structural dynamics model of the space shuttle are discussed. The model provides for early study of structural dynamics problems, permits evaluation of the accuracy of the structural and hydroelastic analysis methods used on test vehicles, and provides for efficiently evaluating potential cost savings in structural dynamic testing techniques. The discussion is developed around the modes in which major input forces and responses occur and the significant structural details in these modes.
NASA Astrophysics Data System (ADS)
Eibedingil, Iyasu; Casagrande, Erik; Molini, Annalisa
2014-05-01
Precipitation and Temperature are two of the major drivers of ecosystem dynamics. Their control is the result of complex dynamical interactions, often non-linear, and is exerted over a wide range of space and temporal scales. Rainfall intermittency, as an example, is known to be among the main drivers of plants production, with a consequent influence on carbon and nitrogen cycles. However, a clear understanding of the complete pathway of such a forcing remains still unclear. Traditional time series analysis bases the study of these inter-connections on linear correlation statistics. However, the possible presence of causal dynamical connections, as well as non-linear couplings and non-stationarity can affect the performance of these tools. Additionally, dynamical drivers can act simultaneously over different space and time scales. Given this premise, this talk explores different approaches to the estimation of global causal relationships between two main climatic variables (temperature and precipitation) and vegetation over arid and transitional (semi-arid) regions. By using monthly globally gridded precipitation and temperature data (University of Delaware, NOAA/ESRL/PSD) and remotely sensed normalized difference vegetation index (NDVI, Global Inventory Modeling and Mapping Studies-GIMMS) as a proxy of vegetation dynamics we explore possible direct and conditional causal relationships between climate and vegetation. Pairwise Granger causality (GC) test is applied in order to assess bi-directional causal influences between each couple of variables due to their direct interaction and instantaneous causality deriving from exogenous variables. In addition to this, conditional Granger causality tests were performed on the three variables system. Conditional GC has the ability to resolve whether the interaction between two variables is direct or is mediated by a third variable, and whether the causal influence is simply due to differential time delays in their
Shortcomings/Limitations of Blockwise Granger Causality and Advances of Blockwise New Causality.
Hu, Sanqing; Jia, Xinxin; Zhang, Jianhai; Kong, Wanzeng; Cao, Yu
2016-12-01
Multivariate blockwise Granger causality (BGC) is used to reflect causal interactions among blocks of multivariate time series. In particular, spectral BGC and conditional spectral BGC are used to disclose blockwise causal flow among different brain areas in various frequencies. In this paper, we demonstrate that: 1) BGC in time domain may not necessarily disclose true causality and 2) due to the use of the transfer function or its inverse matrix and partial information of the multivariate linear regression model, both of spectral BGC and conditional spectral BGC have shortcomings and/or limitations, which may inevitably lead to misinterpretation. We then, in time and frequency domains, develop two new multivariate blockwise causality methods for the linear regression model called blockwise new causality (BNC) and spectral BNC, respectively. By several examples, we confirm that BNC measures are more reasonable and sensitive to reflect true causality or trend of true causality than BGC or conditional BGC. Finally, for electroencephalograph data from an epilepsy patient, we analyze event-related potential causality and demonstrate that both of the BGC and BNC methods show significant causality flow in frequency domain, but the spectral BNC method yields satisfactory and convincing results, which are consistent with an event-related time-frequency power spectrum activity. The spectral BGC method is shown to generate misleading results. Thus, we deeply believe that our new blockwise causality definitions as well as our previous NC definitions may have wide applications to reflect true causality among two blocks of time series or two univariate time series in economics, neuroscience, and engineering.
Comparative dynamics in a health investment model.
Eisenring, C
1999-10-01
The method of comparative dynamics fully exploits the inter-temporal structure of optimal control models. I derive comparative dynamic results in a simplified demand for health model. The effect of a change in the depreciation rate on the optimal paths for health capital and investment in health is studied by use of a phase diagram.
The Challenges to Coupling Dynamic Geospatial Models
Goldstein, N
2006-06-23
Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.
Runnqvist, Elin; Bonnard, Mireille; Gauvin, Hanna S; Attarian, Shahram; Trébuchon, Agnès; Hartsuiker, Robert J; Alario, F-Xavier
2016-08-01
Some language processing theories propose that, just as for other somatic actions, self-monitoring of language production is achieved through internal modeling. The cerebellum is the proposed center of such internal modeling in motor control, and the right cerebellum has been linked to an increasing number of language functions, including predictive processing during comprehension. Relating these findings, we tested whether the right posterior cerebellum has a causal role for self-monitoring of speech errors. Participants received 1 Hz repetitive transcranial magnetic stimulation during 15 min to lobules Crus I and II in the right hemisphere, and, in counterbalanced orders, to the contralateral area in the left cerebellar hemisphere (control) in order to induce a temporary inactivation of one of these zones. Immediately afterwards, they engaged in a speech production task priming the production of speech errors. Language production was impaired after right compared to left hemisphere stimulation, a finding that provides evidence for a causal role of the cerebellum during language production. We interpreted this role in terms of internal modeling of upcoming speech through a verbal working memory process used to prevent errors.
Improving causal inferences in risk analysis.
Cox, Louis Anthony Tony
2013-10-01
Recent headlines and scientific articles projecting significant human health benefits from changes in exposures too often depend on unvalidated subjective expert judgments and modeling assumptions, especially about the causal interpretation of statistical associations. Some of these assessments are demonstrably biased toward false positives and inflated effects estimates. More objective, data-driven methods of causal analysis are available to risk analysts. These can help to reduce bias and increase the credibility and realism of health effects risk assessments and causal claims. For example, quasi-experimental designs and analysis allow alternative (noncausal) explanations for associations to be tested, and refuted if appropriate. Panel data studies examine empirical relations between changes in hypothesized causes and effects. Intervention and change-point analyses identify effects (e.g., significant changes in health effects time series) and estimate their sizes. Granger causality tests, conditional independence tests, and counterfactual causality models test whether a hypothesized cause helps to predict its presumed effects, and quantify exposure-specific contributions to response rates in differently exposed groups, even in the presence of confounders. Causal graph models let causal mechanistic hypotheses be tested and refined using biomarker data. These methods can potentially revolutionize the study of exposure-induced health effects, helping to overcome pervasive false-positive biases and move the health risk assessment scientific community toward more accurate assessments of the impacts of exposures and interventions on public health.
NASA Astrophysics Data System (ADS)
Ito, Sosuke
2016-11-01
The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics.
Hydration dynamics near a model protein surface
Russo, Daniela; Hura, Greg; Head-Gordon, Teresa
2003-09-01
The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.
Connecting micro dynamics and population distributions in system dynamics models.
Fallah-Fini, Saeideh; Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa
2013-01-01
Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model.
Connecting micro dynamics and population distributions in system dynamics models
Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa
2014-01-01
Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model. PMID:25620842
An Introduction to Causal Inference
2009-11-02
or new measurements. These tasks are managed well by standard statistical analysis so long as experimental conditions remain the same. Causal analysis...combines features of the structural equation models (SEM) used in economics and social science (Goldberger, 1973; Duncan, 1975), the potential-outcome...analysis which, by definition, are un- correlated with the regressors. The formers are part of physical reality (e.g., genetic factors, socio- economic
Perdicoulis, Anastassios . E-mail: tasso@utad.pt; Glasson, John . E-mail: jglasson@brookes.ac.uk
2006-08-15
Causal networks have been used in Environmental Impact Assessment (EIA) since its early days, but they appear to have a minimal use in modern practice. This article reviews the typology of causal networks in EIA as well as in other academic and professional fields, verifies their contribution to EIA against the principles and requirements of the process, and discusses alternative scenarios for their future in EIA.
Kim, Yang-Kyun; Oh, Hyun-Jong
2012-10-01
Hospitals today are pressured to move away from the conventional health services management techniques and provide higher-quality health care to survive in intense competition. In our study, we aimed to develop health care evaluation criteria for the mental health care sector based on the existing Malcolm Baldrige National Quality Award model, and verify the causality of the evaluation model to lay groundwork for future research on the outcomes of national quality awards for mental health care. We focused on comparison groups comprising five state-operated mental hospitals in Korea using 92 survey questions derived from the MBNQA criteria for health care through structural equation modeling techniques. We verified that Leadership drives Foundation and Direction, which affect System that creates Results with 15 hypotheses supported out of 18 hypotheses established. We believe our findings will provide valuable implications to the top management of mental hospitals for self-examining quality management and promoting competitiveness.
Chaotic dynamics in a simple dynamical green ocean plankton model
NASA Astrophysics Data System (ADS)
Cropp, Roger; Moroz, Irene M.; Norbury, John
2014-11-01
The exchange of important greenhouse gases between the ocean and atmosphere is influenced by the dynamics of near-surface plankton ecosystems. Marine plankton ecosystems are modified by climate change creating a feedback mechanism that could have significant implications for predicting future climates. The collapse or extinction of a plankton population may push the climate system across a tipping point. Dynamic green ocean models (DGOMs) are currently being developed for inclusion into climate models to predict the future state of the climate. The appropriate complexity of the DGOMs used to represent plankton processes is an ongoing issue, with models tending to become more complex, with more complicated dynamics, and an increasing propensity for chaos. We consider a relatively simple (four-population) DGOM of phytoplankton, zooplankton, bacteria and zooflagellates where the interacting plankton populations are connected by a single limiting nutrient. Chaotic solutions are possible in this 4-dimensional model for plankton population dynamics, as well as in a reduced 3-dimensional model, as we vary two of the key mortality parameters. Our results show that chaos is robust to the variation of parameters as well as to the presence of environmental noise, where the attractor of the more complex system is more robust than the attractor of its simplified equivalent. We find robust chaotic dynamics in low trophic order ecological models, suggesting that chaotic dynamics might be ubiquitous in the more complex models, but this is rarely observed in DGOM simulations. The physical equations of DGOMs are well understood and are constrained by conservation principles, but the ecological equations are not well understood, and generally have no explicitly conserved quantities. This work, in the context of the paucity of the empirical and theoretical bases upon which DGOMs are constructed, raises the interesting question of whether DGOMs better represent reality if they include
Video Sensor-Based Complex Scene Analysis with Granger Causality
Fan, Yawen; Yang, Hua; Zheng, Shibao; Su, Hang; Wu, Shuang
2013-01-01
In this report, we propose a novel framework to explore the activity interactions and temporal dependencies between activities in complex video surveillance scenes. Under our framework, a low-level codebook is generated by an adaptive quantization with respect to the activeness criterion. The Hierarchical Dirichlet Processes (HDP) model is then applied to automatically cluster low-level features into atomic activities. Afterwards, the dynamic behaviors of the activities are represented as a multivariate point-process. The pair-wise relationships between activities are explicitly captured by the non-parametric Granger causality analysis, from which the activity interactions and temporal dependencies are discovered. Then, each video clip is labeled by one of the activity interactions. The results of the real-world traffic datasets show that the proposed method can achieve a high quality classification performance. Compared with traditional K-means clustering, a maximum improvement of 19.19% is achieved by using the proposed causal grouping method. PMID:24152928
Causal evidence for frontal cortex organization for perceptual decision making.
Rahnev, Dobromir; Nee, Derek Evan; Riddle, Justin; Larson, Alina Sue; D'Esposito, Mark
2016-05-24
Although recent research has shown that the frontal cortex has a critical role in perceptual decision making, an overarching theory of frontal functional organization for perception has yet to emerge. Perceptual decision making is temporally organized such that it requires the processes of selection, criterion setting, and evaluation. We hypothesized that exploring this temporal structure would reveal a large-scale frontal organization for perception. A causal intervention with transcranial magnetic stimulation revealed clear specialization along the rostrocaudal axis such that the control of successive stages of perceptual decision making was selectively affected by perturbation of successively rostral areas. Simulations with a dynamic model of decision making suggested distinct computational contributions of each region. Finally, the emergent frontal gradient was further corroborated by functional MRI. These causal results provide an organizational principle for the role of frontal cortex in the control of perceptual decision making and suggest specific mechanistic contributions for its different subregions.
Causal evidence for frontal cortex organization for perceptual decision making
Nee, Derek Evan; Riddle, Justin; Larson, Alina Sue; D’Esposito, Mark
2016-01-01
Although recent research has shown that the frontal cortex has a critical role in perceptual decision making, an overarching theory of frontal functional organization for perception has yet to emerge. Perceptual decision making is temporally organized such that it requires the processes of selection, criterion setting, and evaluation. We hypothesized that exploring this temporal structure would reveal a large-scale frontal organization for perception. A causal intervention with transcranial magnetic stimulation revealed clear specialization along the rostrocaudal axis such that the control of successive stages of perceptual decision making was selectively affected by perturbation of successively rostral areas. Simulations with a dynamic model of decision making suggested distinct computational contributions of each region. Finally, the emergent frontal gradient was further corroborated by functional MRI. These causal results provide an organizational principle for the role of frontal cortex in the control of perceptual decision making and suggest specific mechanistic contributions for its different subregions. PMID:27162349
Very Large System Dynamics Models - Lessons Learned
Jacob J. Jacobson; Leonard Malczynski
2008-10-01
This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.
Comparing models of Red Knot population dynamics
McGowan, Conor
2015-01-01
Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.
Limits to Causal Inference with State-Space Reconstruction for Infectious Disease.
Cobey, Sarah; Baskerville, Edward B
2016-01-01
Infectious diseases are notorious for their complex dynamics, which make it difficult to fit models to test hypotheses. Methods based on state-space reconstruction have been proposed to infer causal interactions in noisy, nonlinear dynamical systems. These "model-free" methods are collectively known as convergent cross-mapping (CCM). Although CCM has theoretical support, natural systems routinely violate its assumptions. To identify the practical limits of causal inference under CCM, we simulated the dynamics of two pathogen strains with varying interaction strengths. The original method of CCM is extremely sensitive to periodic fluctuations, inferring interactions between independent strains that oscillate with similar frequencies. This sensitivity vanishes with alternative criteria for inferring causality. However, CCM remains sensitive to high levels of process noise and changes to the deterministic attractor. This sensitivity is problematic because it remains challenging to gauge noise and dynamical changes in natural systems, including the quality of reconstructed attractors that underlie cross-mapping. We illustrate these challenges by analyzing time series of reportable childhood infections in New York City and Chicago during the pre-vaccine era. We comment on the statistical and conceptual challenges that currently limit the use of state-space reconstruction in causal inference.
Limits to Causal Inference with State-Space Reconstruction for Infectious Disease
2016-01-01
Infectious diseases are notorious for their complex dynamics, which make it difficult to fit models to test hypotheses. Methods based on state-space reconstruction have been proposed to infer causal interactions in noisy, nonlinear dynamical systems. These “model-free” methods are collectively known as convergent cross-mapping (CCM). Although CCM has theoretical support, natural systems routinely violate its assumptions. To identify the practical limits of causal inference under CCM, we simulated the dynamics of two pathogen strains with varying interaction strengths. The original method of CCM is extremely sensitive to periodic fluctuations, inferring interactions between independent strains that oscillate with similar frequencies. This sensitivity vanishes with alternative criteria for inferring causality. However, CCM remains sensitive to high levels of process noise and changes to the deterministic attractor. This sensitivity is problematic because it remains challenging to gauge noise and dynamical changes in natural systems, including the quality of reconstructed attractors that underlie cross-mapping. We illustrate these challenges by analyzing time series of reportable childhood infections in New York City and Chicago during the pre-vaccine era. We comment on the statistical and conceptual challenges that currently limit the use of state-space reconstruction in causal inference. PMID:28030639
On Granger causality and the effect of interventions in time series.
Eichler, Michael; Didelez, Vanessa
2010-01-01
We combine two approaches to causal reasoning. Granger causality, on the one hand, is popular in fields like econometrics, where randomised experiments are not very common. Instead information about the dynamic development of a system is explicitly modelled and used to define potentially causal relations. On the other hand, the notion of causality as effect of interventions is predominant in fields like medical statistics or computer science. In this paper, we consider the effect of external, possibly multiple and sequential, interventions in a system of multivariate time series, the Granger causal structure of which is taken to be known. We address the following questions: under what assumptions about the system and the interventions does Granger causality inform us about the effectiveness of interventions, and when does the possibly smaller system of observable times series allow us to estimate this effect? For the latter we derive criteria that can be checked graphically and are in the same spirit as Pearl's back-door and front-door criteria (Pearl 1995).
Wang, Ning; Wei, Ling; Li, Yingjie
2012-12-01
Studying the functional network during the interaction between emotion and cognition is an important way to reveal the underlying neural connections in the brain and nowadays, it has become a hot topic in cognitive neuroscience. Granger causality (GC), based on multivariate autoregressive (MVAR) model, and being able to be used to analyse causal characteristic of brain regions has been widely used in electroencephalography (EEG) in event-related paradigms research. In this study, we recorded the EEGs from 13 normal subjects (6 males and 7 females) during emotional face search task. We utilized Granger causality to establish a causal model of different brain areas under different rhythms at specific stages of cognition, and then convinced the brain dynamic network topological properties in the process of emotion and cognition. Therefore, we concluded that in the alpha band, (1) negative emotion face induced larger causal effects than positive ones; (2) 100-200ms emotional signal was the most prominent ones while 300-400ms and 700-800ms would take the second place; (3) The rear brain region modulated the front in the process of causal modulation; (4) The frontal and pillow area involved in the brain causal modulation as a key brain area; and (5) Negative partiality existed in the information processing, especially during 0-100ms after the negative expression stimulation.
Modeling microbial growth and dynamics.
Esser, Daniel S; Leveau, Johan H J; Meyer, Katrin M
2015-11-01
Modeling has become an important tool for widening our understanding of microbial growth in the context of applied microbiology and related to such processes as safe food production, wastewater treatment, bioremediation, or microbe-mediated mining. Various modeling techniques, such as primary, secondary and tertiary mathematical models, phenomenological models, mechanistic or kinetic models, reactive transport models, Bayesian network models, artificial neural networks, as well as agent-, individual-, and particle-based models have been applied to model microbial growth and activity in many applied fields. In this mini-review, we summarize the basic concepts of these models using examples and applications from food safety and wastewater treatment systems. We further review recent developments in other applied fields focusing on models that explicitly include spatial relationships. Using these examples, we point out the conceptual similarities across fields of application and encourage the combined use of different modeling techniques in hybrid models as well as their cross-disciplinary exchange. For instance, pattern-oriented modeling has its origin in ecology but may be employed to parameterize microbial growth models when experimental data are scarce. Models could also be used as virtual laboratories to optimize experimental design analogous to the virtual ecologist approach. Future microbial growth models will likely become more complex to benefit from the rich toolbox that is now available to microbial growth modelers.
Differential equation models for sharp threshold dynamics.
Schramm, Harrison C; Dimitrov, Nedialko B
2014-01-01
We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations.
Equivalent dynamic model of DEMES rotary joint
NASA Astrophysics Data System (ADS)
Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong
2016-07-01
The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.
Dynamics Modelling of Biolistic Gene Guns
Zhang, M.; Tao, W.; Pianetta, P.A.
2009-06-04
The gene transfer process using biolistic gene guns is a highly dynamic process. To achieve good performance, the process needs to be well understood and controlled. Unfortunately, no dynamic model is available in the open literature for analysing and controlling the process. This paper proposes such a model. Relationships of the penetration depth with the helium pressure, the penetration depth with the acceleration distance, and the penetration depth with the micro-carrier radius are presented. Simulations have also been conducted. The results agree well with experimental results in the open literature. The contribution of this paper includes a dynamic model for improving and manipulating performance of the biolistic gene gun.
A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.
Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L
2016-03-01
Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge.
Markov state models of biomolecular conformational dynamics
Chodera, John D.; Noé, Frank
2014-01-01
It has recently become practical to construct Markov state models (MSMs) that reproduce the long-time statistical conformational dynamics of biomolecules using data from molecular dynamics simulations. MSMs can predict both stationary and kinetic quantities on long timescales (e.g. milliseconds) using a set of atomistic molecular dynamics simulations that are individually much shorter, thus addressing the well-known sampling problem in molecular dynamics simulation. In addition to providing predictive quantitative models, MSMs greatly facilitate both the extraction of insight into biomolecular mechanism (such as folding and functional dynamics) and quantitative comparison with single-molecule and ensemble kinetics experiments. A variety of methodological advances and software packages now bring the construction of these models closer to routine practice. Here, we review recent progress in this field, considering theoretical and methodological advances, new software tools, and recent applications of these approaches in several domains of biochemistry and biophysics, commenting on remaining challenges. PMID:24836551
Padula, Amy M; Mortimer, Kathleen; Hubbard, Alan; Lurmann, Frederick; Jerrett, Michael; Tager, Ira B
2012-11-01
Traffic-related air pollution is recognized as an important contributor to health problems. Epidemiologic analyses suggest that prenatal exposure to traffic-related air pollutants may be associated with adverse birth outcomes; however, there is insufficient evidence to conclude that the relation is causal. The Study of Air Pollution, Genetics and Early Life Events comprises all births to women living in 4 counties in California's San Joaquin Valley during the years 2000-2006. The probability of low birth weight among full-term infants in the population was estimated using machine learning and targeted maximum likelihood estimation for each quartile of traffic exposure during pregnancy. If everyone lived near high-volume freeways (approximated as the fourth quartile of traffic density), the estimated probability of term low birth weight would be 2.27% (95% confidence interval: 2.16, 2.38) as compared with 2.02% (95% confidence interval: 1.90, 2.12) if everyone lived near smaller local roads (first quartile of traffic density). Assessment of potentially causal associations, in the absence of arbitrary model assumptions applied to the data, should result in relatively unbiased estimates. The current results support findings from previous studies that prenatal exposure to traffic-related air pollution may adversely affect birth weight among full-term infants.
Dynamic coupling of three hydrodynamic models
NASA Astrophysics Data System (ADS)
Hartnack, J. N.; Philip, G. T.; Rungoe, M.; Smith, G.; Johann, G.; Larsen, O.; Gregersen, J.; Butts, M. B.
2008-12-01
The need for integrated modelling is evidently present within the field of flood management and flood forecasting. Engineers, modellers and managers are faced with flood problems which transcend the classical hydrodynamic fields of urban, river and coastal flooding. Historically the modeller has been faced with having to select one hydrodynamic model to cover all the aspects of the potentially complex dynamics occurring in a flooding situation. Such a single hydrodynamic model does not cover all dynamics of flood modelling equally well. Thus the ideal choice may in fact be a combination of models. Models combining two numerical/hydrodynamic models are becoming more standard, typically these models combine a 1D river model with a 2D overland flow model or alternatively a 1D sewer/collection system model with a 2D overland solver. In complex coastal/urban areas the flood dynamics may include rivers/streams, collection/storm water systems along with the overland flow. The dynamics within all three areas is of the same time scale and there is feedback in the system across the couplings. These two aspects dictate a fully dynamic three way coupling as opposed to running the models sequentially. It will be shown that the main challenges of the three way coupling are time step issues related to the difference in numerical schemes used in the three model components and numerical instabilities caused by the linking of the model components. MIKE FLOOD combines the models MIKE 11, MIKE 21 and MOUSE into one modelling framework which makes it possible to couple any combination of river, urban and overland flow fully dynamically. The MIKE FLOOD framework will be presented with an overview of the coupling possibilities. The flood modelling concept will be illustrated through real life cases in Australia and in Germany. The real life cases reflect dynamics and interactions across all three model components which are not possible to reproduce using a two-way coupling alone. The
Granger-causality maps of diffusion processes
NASA Astrophysics Data System (ADS)
Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A.
2016-02-01
Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.
Granger-causality maps of diffusion processes.
Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A
2016-02-01
Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.
Ito, Sosuke
2016-01-01
The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics. PMID:27833120
THE CAUSAL ANALYSIS / DIAGNOSIS DECISION ...
CADDIS is an on-line decision support system that helps investigators in the regions, states and tribes find, access, organize, use and share information to produce causal evaluations in aquatic systems. It is based on the US EPA's Stressor Identification process which is a formal method for identifying causes of impairments in aquatic systems. CADDIS 2007 increases access to relevant information useful for causal analysis and provides methods and tools that practitioners can use to analyze their own data. The new Candidate Cause section provides overviews of commonly encountered causes of impairments to aquatic systems: metals, sediments, nutrients, flow alteration, temperature, ionic strength, and low dissolved oxygen. CADDIS includes new Conceptual Models that illustrate the relationships from sources to stressors to biological effects. An Interactive Conceptual Model for phosphorus links the diagram with supporting literature citations. The new Analyzing Data section helps practitioners analyze their data sets and interpret and use those results as evidence within the USEPA causal assessment process. Downloadable tools include a graphical user interface statistical package (CADStat), and programs for use with the freeware R statistical package, and a Microsoft Excel template. These tools can be used to quantify associations between causes and biological impairments using innovative methods such as species-sensitivity distributions, biological inferenc
Dynamic Modeling, Chaos, and Cognitive Development.
ERIC Educational Resources Information Center
Howe, Mark L.; Rabinowitz, F. Michael
1994-01-01
Introduces the essential constructs involved in dynamic modeling, in relation to issues in psychological development. Presents several instances of how the principles of dynamic systems can be translated into mathematical formalism. Concludes that transition is a key invariance in development and that single subject, longitudinal designs are…
Two-Stage Reduction Of Dynamical Models
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Tsuha, Walter S.
1993-01-01
No longer necessary to solve eigenvalue problems of high order. Component-mode projection-and-assembly model-reduction (COMPARE) method provides approximation of dynamics of vibrations of complicated, multiple flexible bodies by use of mathematical models of reduced order. Incorporates component-mode synthesis (CMS) method and enhanced projection-and-assembly (EP&A) method, described in "Enhanced Method of Reduction of Dynamical Models" (NPO-18402), providing for somewhat simplified two-stage process in which order of applicable mathematical models reduced. Reduced-order models used to design algorithms of control systems to suppress vibrations or otherwise control structure.
Relating Granger causality to long-term causal effects.
Smirnov, Dmitry A; Mokhov, Igor I
2015-10-01
In estimation of causal couplings between observed processes, it is important to characterize coupling roles at various time scales. The widely used Granger causality reflects short-term effects: it shows how strongly perturbations of a current state of one process affect near future states of another process, and it quantifies that via prediction improvement (PI) in autoregressive models. However, it is often more important to evaluate the effects of coupling on long-term statistics, e.g., to find out how strongly the presence of coupling changes the variance of a driven process as compared to an uncoupled case. No general relationships between Granger causality and such long-term effects are known. Here, we pose the problem of relating these two types of coupling characteristics, and we solve it for a class of stochastic systems. Namely, for overdamped linear oscillators, we rigorously derive that the above long-term effect is proportional to the short-term effects, with the proportionality coefficient depending on the prediction interval and relaxation times. We reveal that this coefficient is typically considerably greater than unity so that small normalized PI values may well correspond to quite large long-term effects of coupling. The applicability of the derived relationship to wider classes of systems, its limitations, and its value for further research are discussed. To give a real-world example, we analyze couplings between large-scale climatic processes related to sea surface temperature variations in equatorial Pacific and North Atlantic regions.
Relating Granger causality to long-term causal effects
NASA Astrophysics Data System (ADS)
Smirnov, Dmitry A.; Mokhov, Igor I.
2015-10-01
In estimation of causal couplings between observed processes, it is important to characterize coupling roles at various time scales. The widely used Granger causality reflects short-term effects: it shows how strongly perturbations of a current state of one process affect near future states of another process, and it quantifies that via prediction improvement (PI) in autoregressive models. However, it is often more important to evaluate the effects of coupling on long-term statistics, e.g., to find out how strongly the presence of coupling changes the variance of a driven process as compared to an uncoupled case. No general relationships between Granger causality and such long-term effects are known. Here, we pose the problem of relating these two types of coupling characteristics, and we solve it for a class of stochastic systems. Namely, for overdamped linear oscillators, we rigorously derive that the above long-term effect is proportional to the short-term effects, with the proportionality coefficient depending on the prediction interval and relaxation times. We reveal that this coefficient is typically considerably greater than unity so that small normalized PI values may well correspond to quite large long-term effects of coupling. The applicability of the derived relationship to wider classes of systems, its limitations, and its value for further research are discussed. To give a real-world example, we analyze couplings between large-scale climatic processes related to sea surface temperature variations in equatorial Pacific and North Atlantic regions.
Model Verification of Mixed Dynamic Systems
NASA Technical Reports Server (NTRS)
Evensen, D. A.; Chrostowski, J. D.; Hasselman, T. K.
1982-01-01
MOVER uses experimental data to verify mathematical models of "mixed" dynamic systems. The term "mixed" refers to interactive mechanical, hydraulic, electrical, and other components. Program compares analytical transfer functions with experiment.
Automated adaptive inference of phenomenological dynamical models
NASA Astrophysics Data System (ADS)
Daniels, Bryan C.; Nemenman, Ilya
2015-08-01
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.
Automated adaptive inference of phenomenological dynamical models
Daniels, Bryan C.; Nemenman, Ilya
2015-01-01
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508
MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS*
CHAHINE, Georges L.; HSIAO, Chao-Tsung
2012-01-01
Controlling microbubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge, which can be achieved only through a combination of experimental and numerical/analytical techniques. The present communication presents a multi-physics approach to study the dynamics combining viscous- in-viscid effects, liquid and structure dynamics, and multi bubble interaction. While complex numerical tools are developed and used, the study aims at identifying the key parameters influencing the dynamics, which need to be included in simpler models. PMID:22833696
Approximate dynamic model of a turbojet engine
NASA Technical Reports Server (NTRS)
Artemov, O. A.
1978-01-01
An approximate dynamic nonlinear model of a turbojet engine is elaborated on as a tool in studying the aircraft control loop, with the turbojet engine treated as an actuating component. Approximate relationships linking the basic engine parameters and shaft speed are derived to simplify the problem, and to aid in constructing an approximate nonlinear dynamic model of turbojet engine performance useful for predicting aircraft motion.
A dynamical model of color confinement
NASA Astrophysics Data System (ADS)
Loh, S.; Biró, T. S.; Mosel, U.; Thoma, M. H.
1996-02-01
A dynamical model of confinement based on a transport theoretical description of the Friedberg-Lee model is extended to explicit color degrees of freedom. The string tension is reproduced by an adiabatic string formation from the nucleon ground state. Color isovector oscillation modes of a qq¯-system are investigated for a wide range of relative qq¯-momenta and the dynamical impact of color confinement on the quark motion is shown.
Causal conditionals and counterfactuals
Frosch, Caren A.; Byrne, Ruth M.J.
2012-01-01
Causal counterfactuals e.g., ‘if the ignition key had been turned then the car would have started’ and causal conditionals e.g., ‘if the ignition key was turned then the car started’ are understood by thinking about multiple possibilities of different sorts, as shown in six experiments using converging evidence from three different types of measures. Experiments 1a and 1b showed that conditionals that comprise enabling causes, e.g., ‘if the ignition key was turned then the car started’ primed people to read quickly conjunctions referring to the possibility of the enabler occurring without the outcome, e.g., ‘the ignition key was turned and the car did not start’. Experiments 2a and 2b showed that people paraphrased causal conditionals by using causal or temporal connectives (because, when), whereas they paraphrased causal counterfactuals by using subjunctive constructions (had…would have). Experiments 3a and 3b showed that people made different inferences from counterfactuals presented with enabling conditions compared to none. The implications of the results for alternative theories of conditionals are discussed. PMID:22858874
Deshpande, Gopikrishna; Hu, Xiaoping
2012-01-01
Interactions between brain regions have been recognized as a critical ingredient required to understand brain function. Two modes of interactions have held prominence-synchronization and causal influence. Efforts to ascertain causal influence from functional magnetic resonance imaging (fMRI) data have relied primarily on confirmatory model-driven approaches, such as dynamic causal modeling and structural equation modeling, and exploratory data-driven approaches such as Granger causality analysis. A slew of recent articles have focused on the relative merits and caveats of these approaches. The relevant studies can be classified into simulations, theoretical developments, and experimental results. In the first part of this review, we will consider each of these themes and critically evaluate their arguments, with regard to Granger causality analysis. Specifically, we argue that simulations are bounded by the assumptions and simplifications made by the simulator, and hence must be regarded only as a guide to experimental design and should not be viewed as the final word. On the theoretical front, we reason that each of the improvements to existing, yet disparate, methods brings them closer to each other with the hope of eventually leading to a unified framework specifically designed for fMRI. We then review latest experimental results that demonstrate the utility and validity of Granger causality analysis under certain experimental conditions. In the second part, we will consider current issues in causal connectivity analysis-hemodynamic variability, sampling, instantaneous versus causal relationship, and task versus resting states. We highlight some of our own work regarding these issues showing the effect of hemodynamic variability and sampling on Granger causality. Further, we discuss recent techniques such as the cubature Kalman filtering, which can perform blind deconvolution of the hemodynamic response robustly well, and hence enabling wider application of
Single timepoint models of dynamic systems
Sachs, K.; Itani, S.; Fitzgerald, J.; Schoeberl, B.; Nolan, G. P.; Tomlin, C. J.
2013-01-01
Many interesting studies aimed at elucidating the connectivity structure of biomolecular pathways make use of abundance measurements, and employ statistical and information theoretic approaches to assess connectivities. These studies often do not address the effects of the dynamics of the underlying biological system, yet dynamics give rise to impactful issues such as timepoint selection and its effect on structure recovery. In this work, we study conditions for reliable retrieval of the connectivity structure of a dynamic system, and the impact of dynamics on structure-learning efforts. We encounter an unexpected problem not previously described in elucidating connectivity structure from dynamic systems, show how this confounds structure learning of the system and discuss possible approaches to overcome the confounding effect. Finally, we test our hypotheses on an accurate dynamic model of the IGF signalling pathway. We use two structure-learning methods at four time points to contrast the performance and robustness of those methods in terms of recovering correct connectivity. PMID:24511382
Swarm Intelligence for Urban Dynamics Modelling
NASA Astrophysics Data System (ADS)
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.
2009-04-01
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
Swarm Intelligence for Urban Dynamics Modelling
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.
2009-04-16
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
Discrete model for DNA-promoter dynamics
NASA Astrophysics Data System (ADS)
Salerno, Mario
1991-10-01
We introduce a discrete model for DNA that takes into account the information about specific base sequences along the double helix. We use this model to study nonlinear wave dynamics of the T7A1 DNA promoter. As results we show the existence in the promoter of a dynamically active region in which static solitons acquire finite velocities, which contrasts with regions where solitons simply remain static. Furthermore, when they pass through this region moving solitons are accelerated, decelerated, or reflected, depending on their initial velocities. The possibility that these dynamical effects play a role in the mechanism of genetic activation is suggested.
Rehan, R; Knight, M A; Unger, A J A; Haas, C T
2013-12-15
This paper develops causal loop diagrams and a system dynamics model for financially sustainable management of urban water distribution networks. The developed causal loop diagrams are a novel contribution in that it illustrates the unique characteristics and feedback loops for financially self-sustaining water distribution networks. The system dynamics model is a mathematical realization of the developed interactions among system variables over time and is comprised of three sectors namely watermains network, consumer, and finance. This is the first known development of a water distribution network system dynamics model. The watermains network sector accounts for the unique characteristics of watermain pipes such as service life, deterioration progression, pipe breaks, and water leakage. The finance sector allows for cash reserving by the utility in addition to the pay-as-you-go and borrowing strategies. The consumer sector includes controls to model water fee growth as a function of service performance and a household's financial burden due to water fees. A series of policy levers are provided that allow the impact of various financing strategies to be evaluated in terms of financial sustainability and household affordability. The model also allows for examination of the impact of different management strategies on the water fee in terms of consistency and stability over time. The paper concludes with a discussion on how the developed system dynamics water model can be used by water utilities to achieve a variety of utility short and long-term objectives and to establish realistic and defensible water utility policies. It also discusses how the model can be used by regulatory bodies, government agencies, the financial industry, and researchers.
Battery electrochemical nonlinear/dynamic SPICE model
Glass, M.C.
1996-12-31
An Integrated Battery Model has been produced which accurately represents DC nonlinear battery behavior together with transient dynamics. The NiH{sub 2} battery model begins with a given continuous-function electrochemical math model. The math model for the battery consists of the sum of two electrochemical process DC currents, which are a function of the battery terminal voltage. This paper describes procedures for realizing a voltage-source SPICE model which implements the electrochemical equations using behavioral sources. The model merges the essentially DC non-linear behavior of the electrochemical model, together with the empirical AC dynamic terminal impedance from measured data. Thus the model integrates the short-term linear impedance behavior, with the long-term nonlinear DC resistance behavior. The long-duration non-Faradaic capacitive behavior of the battery is represented by a time constant. Outputs of the model include battery voltage/current, state-of-charge, and charge-current efficiency.
Model systems for single molecule polymer dynamics.
Latinwo, Folarin; Schroeder, Charles M
2011-01-01
Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of "ideal" and "real" chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force-extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer-monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of "real" polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena.
Model systems for single molecule polymer dynamics
Latinwo, Folarin
2012-01-01
Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980
Johnson, Samuel G. B.; Ahn, Woo-kyoung
2014-01-01
Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge—an interconnected causal network, where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms—causal islands—such that events in different mechanisms are not thought to be related even when they belong to the same causal chain. To distinguish these possibilities, we used causal transitivity—the inference given A causes B and B causes C that A causes C. Specifically, causal chains schematized as one chunk or mechanism in semantic memory (e.g., exercising, becoming thirsty, drinking water) led to transitive causal judgments. On the other hand, chains schematized as multiple chunks (e.g., having sex, becoming pregnant, becoming nauseous) led to intransitive judgments despite strong intermediate links (Experiments 1–3). Normative accounts of causal intransitivity could not explain these intransitive judgments (Experiments 4–5). PMID:25556901
Forces and Motion: How Young Children Understand Causal Events
ERIC Educational Resources Information Center
Goksun, Tilbe; George, Nathan R.; Hirsh-Pasek, Kathy; Golinkoff, Roberta M.
2013-01-01
How do children evaluate complex causal events? This study investigates preschoolers' representation of "force dynamics" in causal scenes, asking whether (a) children understand how single and dual forces impact an object's movement and (b) this understanding varies across cause types (Cause, Enable, Prevent). Three-and-a half- to…
A stochastic model of human gait dynamics
NASA Astrophysics Data System (ADS)
Ashkenazy, Yosef; M. Hausdorff, Jeffrey; Ch. Ivanov, Plamen; Eugene Stanley, H.
2002-12-01
We present a stochastic model of gait rhythm dynamics, based on transitions between different “neural centers”, that reproduces distinctive statistical properties of normal human walking. By tuning one model parameter, the transition (hopping) range, the model can describe alterations in gait dynamics from childhood to adulthood-including a decrease in the correlation and volatility exponents with maturation. The model also generates time series with multifractal spectra whose broadness depends only on this parameter. Moreover, we find that the volatility exponent increases monotonically as a function of the width of the multifractal spectrum, suggesting the possibility of a change in multifractality with maturation.
Integration of Dynamic Models in Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.
Multi-scale modelling and dynamics
NASA Astrophysics Data System (ADS)
Müller-Plathe, Florian
Moving from a fine-grained particle model to one of lower resolution leads, with few exceptions, to an acceleration of molecular mobility, higher diffusion coefficient, lower viscosities and more. On top of that, the level of acceleration is often different for different dynamical processes as well as for different state points. While the reasons are often understood, the fact that coarse-graining almost necessarily introduces unpredictable acceleration of the molecular dynamics severely limits its usefulness as a predictive tool. There are several attempts under way to remedy these shortcoming of coarse-grained models. On the one hand, we follow bottom-up approaches. They attempt already when the coarse-graining scheme is conceived to estimate their impact on the dynamics. This is done by excess-entropy scaling. On the other hand, we also pursue a top-down development. Here we start with a very coarse-grained model (dissipative particle dynamics) which in its native form produces qualitatively wrong polymer dynamics, as its molecules cannot entangle. This model is modified by additional temporary bonds, so-called slip springs, to repair this defect. As a result, polymer melts and solutions described by the slip-spring DPD model show correct dynamical behaviour. Read more: ``Excess entropy scaling for the segmental and global dynamics of polyethylene melts'', E. Voyiatzis, F. Müller-Plathe, and M.C. Böhm, Phys. Chem. Chem. Phys. 16, 24301-24311 (2014). [DOI: 10.1039/C4CP03559C] ``Recovering the Reptation Dynamics of Polymer Melts in Dissipative Particle Dynamics Simulations via Slip-Springs'', M. Langeloth, Y. Masubuchi, M. C. Böhm, and F. Müller-Plathe, J. Chem. Phys. 138, 104907 (2013). [DOI: 10.1063/1.4794156].
Dhakal, K; Tiezzi, F; Clay, J S; Maltecca, C
2015-04-01
Health disorders in dairy cows have a substantial effect on the profitability of a dairy enterprise because of loss in milk sales, culling of unhealthy cows, and replacement costs. Complex relationships exist between health disorders and production traits. Understanding the causal structures among these traits may help us disentangle these complex relationships. The principal objective of this study was to use producer-recorded data to explore phenotypic and genetic relationships among reproductive and metabolic health disorders and production traits in first-lactation US Holsteins. A total of 77,004 first-lactation daughters' records of 2,183 sires were analyzed using recursive models. Health data contained information on reproductive health disorders [retained placenta (RP); metritis (METR)] and metabolic health disorders [ketosis (KETO); displaced abomasum (DA)]. Production traits included mean milk yield (MY) from early lactation (mean MY from 6 to 60 d in milk and from 61 to 120 d in milk), peak milk yield (PMY), day in milk of peak milk yield (PeakD), and lactation persistency (LP). Three different sets of traits were analyzed in which recursive effects from each health disorder on culling, recursive effects of one health disorder on another health disorder and on MY, and recursive effects of each health disorder on production traits, including PeakD, PMY, and LP, were assumed. Different recursive Gaussian-threshold and threshold models were implemented in a Bayesian framework. Estimates of the structural coefficients obtained between health disorders and culling were positive; on the liability scale, the structural coefficients ranged from 0.929 to 1.590, confirming that the presence of a health disorder increased culling. Positive recursive effects of RP to METR (0.117) and of KETO to DA (0.122) were estimated, whereas recursive effects from health disorders to production traits were negligible in all cases. Heritability estimates of health disorders ranged
Uncertainty and Sensitivity in Surface Dynamics Modeling
NASA Astrophysics Data System (ADS)
Kettner, Albert J.; Syvitski, James P. M.
2016-05-01
Papers for this special issue on 'Uncertainty and Sensitivity in Surface Dynamics Modeling' heralds from papers submitted after the 2014 annual meeting of the Community Surface Dynamics Modeling System or CSDMS. CSDMS facilitates a diverse community of experts (now in 68 countries) that collectively investigate the Earth's surface-the dynamic interface between lithosphere, hydrosphere, cryosphere, and atmosphere, by promoting, developing, supporting and disseminating integrated open source software modules. By organizing more than 1500 researchers, CSDMS has the privilege of identifying community strengths and weaknesses in the practice of software development. We recognize, for example, that progress has been slow on identifying and quantifying uncertainty and sensitivity in numerical modeling of earth's surface dynamics. This special issue is meant to raise awareness for these important subjects and highlight state-of-the-art progress.
Energy Balance Models and Planetary Dynamics
NASA Technical Reports Server (NTRS)
Domagal-Goldman, Shawn
2012-01-01
We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.