Dynamic causal modeling with genetic algorithms.
Pyka, M; Heider, D; Hauke, S; Kircher, T; Jansen, A
2011-01-15
In the last years, dynamic causal modeling has gained increased popularity in the neuroimaging community as an approach for the estimation of effective connectivity from functional magnetic resonance imaging (fMRI) data. The algorithm calls for an a priori defined model, whose parameter estimates are subsequently computed upon the given data. As the number of possible models increases exponentially with additional areas, it rapidly becomes inefficient to compute parameter estimates for all models in order to reveal the family of models with the highest posterior probability. In the present study, we developed a genetic algorithm for dynamic causal models and investigated whether this evolutionary approach can accelerate the model search. In this context, the configuration of the intrinsic, extrinsic and bilinear connection matrices represents the genetic code and Bayesian model selection serves as a fitness function. Using crossover and mutation, populations of models are created and compared with each other. The most probable ones survive the current generation and serve as a source for the next generation of models. Tests with artificially created data sets show that the genetic algorithm approximates the most plausible models faster than a random-driven brute-force search. The fitness landscape revealed by the genetic algorithm indicates that dynamic causal modeling has excellent properties for evolution-driven optimization techniques.
Dynamical Causal Modeling from a Quantum Dynamical Perspective
Demiralp, Emre; Demiralp, Metin
2010-09-30
Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.
Dynamical Causal Modeling from a Quantum Dynamical Perspective
NASA Astrophysics Data System (ADS)
Demiralp, Emre; Demiralp, Metin
2010-09-01
Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called "Quantum Harmonical Form (QHF)". QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.
Physiologically informed dynamic causal modeling of fMRI data.
Havlicek, Martin; Roebroeck, Alard; Friston, Karl; Gardumi, Anna; Ivanov, Dimo; Uludag, Kamil
2015-11-15
The functional MRI (fMRI) signal is an indirect measure of neuronal activity. In order to deconvolve the neuronal activity from the experimental fMRI data, biophysical generative models have been proposed describing the link between neuronal activity and the cerebral blood flow (the neurovascular coupling), and further the hemodynamic response and the BOLD signal equation. These generative models have been employed both for single brain area deconvolution and to infer effective connectivity in networks of multiple brain areas. In the current paper, we introduce a new fMRI model inspired by experimental observations about the physiological underpinnings of the BOLD signal and compare it with the generative models currently used in dynamic causal modeling (DCM), a widely used framework to study effective connectivity in the brain. We consider three fundamental aspects of such generative models for fMRI: (i) an adaptive two-state neuronal model that accounts for a wide repertoire of neuronal responses during and after stimulation; (ii) feedforward neurovascular coupling that links neuronal activity to blood flow; and (iii) a balloon model that can account for vascular uncoupling between the blood flow and the blood volume. Finally, we adjust the parameterization of the BOLD signal equation for different magnetic field strengths. This paper focuses on the form, motivation and phenomenology of DCMs for fMRI and the characteristics of the various models are demonstrated using simulations. These simulations emphasize a more accurate modeling of the transient BOLD responses - such as adaptive decreases to sustained inputs during stimulation and the post-stimulus undershoot. In addition, we demonstrate using experimental data that it is necessary to take into account both neuronal and vascular transients to accurately model the signal dynamics of fMRI data. By refining the models of the transient responses, we provide a more informed perspective on the underlying neuronal
Gradient-based MCMC samplers for dynamic causal modelling
Sengupta, Biswa; Friston, Karl J.; Penny, Will D.
2016-01-01
In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton’s equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)—a class of biophysically motivated DCMs—we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability. PMID:26213349
Dynamic causal modelling for functional near-infrared spectroscopy
Tak, S.; Kempny, A.M.; Friston, K.J.; Leff, A.P.; Penny, W.D.
2015-01-01
Functional near-infrared spectroscopy (fNIRS) is an emerging technique for measuring changes in cerebral hemoglobin concentration via optical absorption changes. Although there is great interest in using fNIRS to study brain connectivity, current methods are unable to infer the directionality of neuronal connections. In this paper, we apply Dynamic Causal Modelling (DCM) to fNIRS data. Specifically, we present a generative model of how observed fNIRS data are caused by interactions among hidden neuronal states. Inversion of this generative model, using an established Bayesian framework (variational Laplace), then enables inference about changes in directed connectivity at the neuronal level. Using experimental data acquired during motor imagery and motor execution tasks, we show that directed (i.e., effective) connectivity from the supplementary motor area to the primary motor cortex is negatively modulated by motor imagery, and this suppressive influence causes reduced activity in the primary motor cortex during motor imagery. These results are consistent with findings of previous functional magnetic resonance imaging (fMRI) studies, suggesting that the proposed method enables one to infer directed interactions in the brain mediated by neuronal dynamics from measurements of optical density changes. PMID:25724757
Gradient-based MCMC samplers for dynamic causal modelling.
Sengupta, Biswa; Friston, Karl J; Penny, Will D
2016-01-15
In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton's equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)-a class of biophysically motivated DCMs-we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability.
Gradient-based MCMC samplers for dynamic causal modelling.
Sengupta, Biswa; Friston, Karl J; Penny, Will D
2016-01-15
In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton's equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)-a class of biophysically motivated DCMs-we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability. PMID:26213349
Dynamic causal modelling of brain-behaviour relationships.
Rigoux, L; Daunizeau, J
2015-08-15
In this work, we expose a mathematical treatment of brain-behaviour relationships, which we coin behavioural Dynamic Causal Modelling or bDCM. This approach aims at decomposing the brain's transformation of stimuli into behavioural outcomes, in terms of the relative contribution of brain regions and their connections. In brief, bDCM places the brain at the interplay between stimulus and behaviour: behavioural outcomes arise from coordinated activity in (hidden) neural networks, whose dynamics are driven by experimental inputs. Estimating neural parameters that control network connectivity and plasticity effectively performs a neurobiologically-constrained approximation to the brain's input-outcome transform. In other words, neuroimaging data essentially serves to enforce the realism of bDCM's decomposition of input-output relationships. In addition, post-hoc artificial lesions analyses allow us to predict induced behavioural deficits and quantify the importance of network features for funnelling input-output relationships. This is important, because this enables one to bridge the gap with neuropsychological studies of brain-damaged patients. We demonstrate the face validity of the approach using Monte-Carlo simulations, and its predictive validity using empirical fMRI/behavioural data from an inhibitory control task. Lastly, we discuss promising applications of this work, including the assessment of functional degeneracy (in the healthy brain) and the prediction of functional recovery after lesions (in neurological patients).
Nonlinear Dynamic Causal Models for fMRI
Stephan, Klaas Enno; Kasper, Lars; Harrison, Lee M.; Daunizeau, Jean; den Ouden, Hanneke E.M.; Breakspear, Michael; Friston, Karl J.
2009-01-01
Models of effective connectivity characterize the influence that neuronal populations exert over each other. Additionally, some approaches, for example Dynamic Causal Modelling (DCM) and variants of Structural Equation Modelling, describe how effective connectivity is modulated by experimental manipulations. Mathematically, both are based on bilinear equations, where the bilinear term models the effect of experimental manipulations on neuronal interactions. The bilinear framework, however, precludes an important aspect of neuronal interactions that has been established with invasive electrophysiological recording studies; i.e., how the connection between two neuronal units is enabled or gated by activity in other units. These gating processes are critical for controlling the gain of neuronal populations and are mediated through interactions between synaptic inputs (e.g. by means of voltage-sensitive ion channels). They represent a key mechanism for various neurobiological processes, including top-down (e.g. attentional) modulation, learning and neuromodulation. This paper presents a nonlinear extension of DCM that models such processes (to second order) at the neuronal population level. In this way, the modulation of network interactions can be assigned to an explicit neuronal population. We present simulations and empirical results that demonstrate the validity and usefulness of this model. Analyses of synthetic data showed that nonlinear and bilinear mechanisms can be distinguished by our extended DCM. When applying the model to empirical fMRI data from a blocked attention to motion paradigm, we found that attention-induced increases in V5 responses could be best explained as a gating of the V1→V5 connection by activity in posterior parietal cortex. Furthermore, we analysed fMRI data from an event-related binocular rivalry paradigm and found that interactions amongst percept-selective visual areas were modulated by activity in the middle frontal gyrus. In both
NASA Astrophysics Data System (ADS)
Costa, Fabio; Shrapnel, Sally
2016-06-01
Causal modelling provides a powerful set of tools for identifying causal structure from observed correlations. It is well known that such techniques fail for quantum systems, unless one introduces ‘spooky’ hidden mechanisms. Whether one can produce a genuinely quantum framework in order to discover causal structure remains an open question. Here we introduce a new framework for quantum causal modelling that allows for the discovery of causal structure. We define quantum analogues for core features of classical causal modelling techniques, including the causal Markov condition and faithfulness. Based on the process matrix formalism, this framework naturally extends to generalised structures with indefinite causal order.
ERIC Educational Resources Information Center
Liu, Jiangang; Li, Jun; Rieth, Cory A.; Huber, David E.; Tian, Jie; Lee, Kang
2011-01-01
The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response…
Causally nonseparable processes admitting a causal model
NASA Astrophysics Data System (ADS)
Feix, Adrien; Araújo, Mateus; Brukner, Časlav
2016-08-01
A recent framework of quantum theory with no global causal order predicts the existence of ‘causally nonseparable’ processes. Some of these processes produce correlations incompatible with any causal order (they violate so-called ‘causal inequalities’ analogous to Bell inequalities) while others do not (they admit a ‘causal model’ analogous to a local model). Here we show for the first time that bipartite causally nonseparable processes with a causal model exist, and give evidence that they have no clear physical interpretation. We also provide an algorithm to generate processes of this kind and show that they have nonzero measure in the set of all processes. We demonstrate the existence of processes which stop violating causal inequalities but are still causally nonseparable when mixed with a certain amount of ‘white noise’. This is reminiscent of the behavior of Werner states in the context of entanglement and nonlocality. Finally, we provide numerical evidence for the existence of causally nonseparable processes which have a causal model even when extended with an entangled state shared among the parties.
Causal Discovery of Dynamic Systems
ERIC Educational Resources Information Center
Voortman, Mark
2010-01-01
Recently, several philosophical and computational approaches to causality have used an interventionist framework to clarify the concept of causality [Spirtes et al., 2000, Pearl, 2000, Woodward, 2005]. The characteristic feature of the interventionist approach is that causal models are potentially useful in predicting the effects of manipulations.…
From animal model to human brain networking: dynamic causal modeling of motivational systems.
Gonen, Tal; Admon, Roee; Podlipsky, Ilana; Hendler, Talma
2012-05-23
An organism's behavior is sensitive to different reinforcements in the environment. Based on extensive animal literature, the reinforcement sensitivity theory (RST) proposes three separate neurobehavioral systems to account for such context-sensitive behavior, affecting the tendency to react to punishment, reward, or goal-conflict stimuli. The translation of animal findings to complex human behavior, however, is far from obvious. To examine whether the neural networks underlying humans' motivational processes are similar to those proposed by the RST model, we conducted a functional MRI study, in which 24 healthy subjects performed an interactive game that engaged the different motivational systems using distinct time periods (states) of punishment, reward, and conflict. Crucially, we found that the different motivational states elicited activations in brain regions that corresponded exactly to the brain systems underlying RST. Moreover, dynamic causal modeling of each motivational system confirmed that the coupling strengths between the key brain regions of each system were enabled selectively by the appropriate motivational state. These results may shed light on the impairments that underlie psychopathologies associated with dysfunctional motivational processes and provide a translational validity for the RST. PMID:22623666
From animal model to human brain networking: dynamic causal modeling of motivational systems.
Gonen, Tal; Admon, Roee; Podlipsky, Ilana; Hendler, Talma
2012-05-23
An organism's behavior is sensitive to different reinforcements in the environment. Based on extensive animal literature, the reinforcement sensitivity theory (RST) proposes three separate neurobehavioral systems to account for such context-sensitive behavior, affecting the tendency to react to punishment, reward, or goal-conflict stimuli. The translation of animal findings to complex human behavior, however, is far from obvious. To examine whether the neural networks underlying humans' motivational processes are similar to those proposed by the RST model, we conducted a functional MRI study, in which 24 healthy subjects performed an interactive game that engaged the different motivational systems using distinct time periods (states) of punishment, reward, and conflict. Crucially, we found that the different motivational states elicited activations in brain regions that corresponded exactly to the brain systems underlying RST. Moreover, dynamic causal modeling of each motivational system confirmed that the coupling strengths between the key brain regions of each system were enabled selectively by the appropriate motivational state. These results may shed light on the impairments that underlie psychopathologies associated with dysfunctional motivational processes and provide a translational validity for the RST.
Neural pathways in processing of sexual arousal: a dynamic causal modeling study.
Seok, J-W; Park, M-S; Sohn, J-H
2016-09-01
Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality. PMID:27278664
Tracking slow modulations in synaptic gain using dynamic causal modelling: Validation in epilepsy
Papadopoulou, Margarita; Leite, Marco; van Mierlo, Pieter; Vonck, Kristl; Lemieux, Louis; Friston, Karl; Marinazzo, Daniele
2015-01-01
In this work we propose a proof of principle that dynamic causal modelling can identify plausible mechanisms at the synaptic level underlying brain state changes over a timescale of seconds. As a benchmark example for validation we used intracranial electroencephalographic signals in a human subject. These data were used to infer the (effective connectivity) architecture of synaptic connections among neural populations assumed to generate seizure activity. Dynamic causal modelling allowed us to quantify empirical changes in spectral activity in terms of a trajectory in parameter space — identifying key synaptic parameters or connections that cause observed signals. Using recordings from three seizures in one patient, we considered a network of two sources (within and just outside the putative ictal zone). Bayesian model selection was used to identify the intrinsic (within-source) and extrinsic (between-source) connectivity. Having established the underlying architecture, we were able to track the evolution of key connectivity parameters (e.g., inhibitory connections to superficial pyramidal cells) and test specific hypotheses about the synaptic mechanisms involved in ictogenesis. Our key finding was that intrinsic synaptic changes were sufficient to explain seizure onset, where these changes showed dissociable time courses over several seconds. Crucially, these changes spoke to an increase in the sensitivity of principal cells to intrinsic inhibitory afferents and a transient loss of excitatory–inhibitory balance. PMID:25498428
Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang
2016-01-01
Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity. PMID:27389074
Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang
2016-07-08
Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity.
Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang
2016-01-01
Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity. PMID:27389074
ERIC Educational Resources Information Center
Dowd, Alicia C.
2008-01-01
Loans are a central component of college finance, yet research has generated a dearth of strong evidence of their effect on student choices. This article examines challenges to causal modeling regarding the effects of borrowing and the prospects of indebtedness on students' college-going behaviors. Statistical estimates of causal effects are…
Investigating the functional role of callosal connections with dynamic causal models.
Stephan, Klaas E; Penny, Will D; Marshall, John C; Fink, Gereon R; Friston, Karl J
2005-12-01
The anatomy of the corpus callosum has been described in considerable detail. Tracing studies in animals and human postmortem experiments are currently complemented by diffusion-weighted imaging, which enables noninvasive investigations of callosal connectivity to be conducted. In contrast to the wealth of anatomical data, little is known about the principles by which interhemispheric integration is mediated by callosal connections. Most importantly, we lack insights into the mechanisms that determine the functional role of callosal connections in a context-dependent fashion. These mechanisms can now be disclosed by models of effective connectivity that explain neuroimaging data from paradigms that manipulate interhemispheric interactions. In this article, we demonstrate that dynamic causal modeling (DCM), in conjunction with Bayesian model selection (BMS), is a powerful approach to disentangling the various factors that determine the functional role of callosal connections. We first review the theoretical foundations of DCM and BMS before demonstrating the application of these techniques to empirical data from a single subject.
Synchronizaton and causality across time-scales of observed and modelled ENSO dynamics
NASA Astrophysics Data System (ADS)
Jajcay, Nikola; Kravtsov, Sergey; Tsonis, Anastasios A.; Paluš, Milan
2016-04-01
Phase-phase and phase-amplitude interactions between dynamics on different temporal scales has been observed in ENSO dynamics, captured by the NINO3.4 index, using the approach for identification of cross-scale interactions introduced recently by Paluš [1]. The most pronounced interactions across scales are phase coherence and phase-phase causality in which the annual cycle influences the dynamics on the quasibiennial scale. The phase of slower phenomena on the scale 4-6 years influences not only the combination frequencies around the period one year, but also the phase of the annual cycle and also the amplitude of the oscillations in the quasibiennial range. In order to understand these nonlinear phenomena we investigate cross-scale interactions in synthetic, modelled NINO3.4 time series. The models taken into account were a selection of 96 historic runs from CMIP5 project, and two low-dimensional models - parametric recharge oscillator (PRO) [2], which is a two-dimensional dynamical model and a data-driven model based on the idea of linear inverse models [3]. The latter is a statistical model, in our setting 25-dimensional. While the two dimensions of the PRO model are not enough to capture all the cross-scale interactions, the results from the data-driven model are more promising and they resemble the interactions found in NINO3.4 measured data set. We believe that combination of models of different complexity will help to uncover mechanisms of the cross-scale interactions which might be the key for better understanding of the irregularities in the ENSO dynamics. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, Phys. Rev. Let. 112 078702 (2014) [2] K. Stein et al., J. Climate, 27, 14 (2014) [3] Kondrashov et al., J. Climate, 18, 21 (2005)
Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating.
Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela K; Friston, Karl
2016-01-15
Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5-10min compared to approximately 1-2h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated.
ERIC Educational Resources Information Center
Watt, James H., Jr.
Pointing out that linear causal models can organize the interrelationships of a large number of variables, this paper contends that such models are particularly useful to mass communication research, which must by necessity deal with complex systems of variables. The paper first outlines briefly the philosophical requirements for establishing a…
Active inference and oculomotor pursuit: The dynamic causal modelling of eye movements
Adams, Rick A.; Aponte, Eduardo; Marshall, Louise; Friston, Karl J.
2015-01-01
Background This paper introduces a new paradigm that allows one to quantify the Bayesian beliefs evidenced by subjects during oculomotor pursuit. Subjects’ eye tracking responses to a partially occluded sinusoidal target were recorded non-invasively and averaged. These response averages were then analysed using dynamic causal modelling (DCM). In DCM, observed responses are modelled using biologically plausible generative or forward models – usually biophysical models of neuronal activity. New method Our key innovation is to use a generative model based on a normative (Bayes-optimal) model of active inference to model oculomotor pursuit in terms of subjects’ beliefs about how visual targets move and how their oculomotor system responds. Our aim here is to establish the face validity of the approach, by manipulating the content and precision of sensory information – and examining the ensuing changes in the subjects’ implicit beliefs. These beliefs are inferred from their eye movements using the normative model. Results We show that on average, subjects respond to an increase in the ‘noise’ of target motion by increasing sensory precision in their models of the target trajectory. In other words, they attend more to the sensory attributes of a noisier stimulus. Conversely, subjects only change kinetic parameters in their model but not precision, in response to increased target speed. Conclusions Using this technique one can estimate the precisions of subjects’ hierarchical Bayesian beliefs about target motion. We hope to apply this paradigm to subjects with schizophrenia, whose pursuit abnormalities may result from the abnormal encoding of precision. PMID:25583383
Dynamic causal modeling of touch-evoked potentials in the rubber hand illusion.
Zeller, Daniel; Friston, Karl J; Classen, Joseph
2016-09-01
The neural substrate of bodily ownership can be disclosed by the rubber hand illusion (RHI); namely, the illusory self-attribution of an artificial hand that is induced by synchronous tactile stimulation of the subject's hand that is hidden from view. Previous studies have pointed to the premotor cortex (PMC) as a pivotal area in such illusions. To investigate the effective connectivity between - and within - sensory and premotor areas involved in bodily perceptions, we used dynamic causal modeling of touch-evoked responses in 13 healthy subjects. Each subject's right hand was stroked while viewing their own hand ("REAL"), or an artificial hand presented in an anatomically plausible ("CONGRUENT") or implausible ("INCONGRUENT") position. Bayesian model comparison revealed strong evidence for a differential involvement of the PMC in the generation of touch-evoked responses under the three conditions, confirming a crucial role of PMC in bodily self-attribution. In brief, the extrinsic (forward) connection from left occipital cortex to left PMC was stronger for CONGRUENT and INCONGRUENT as compared to REAL, reflecting the augmentation of bottom-up visual input when multisensory integration is challenged. Crucially, intrinsic connectivity in the primary somatosensory cortex (S1) was attenuated in the CONGRUENT condition, during the illusory percept. These findings support predictive coding models of the functional architecture of multisensory integration (and attenuation) in bodily perceptual experience. PMID:27241481
Connectivity-based neurofeedback: dynamic causal modeling for real-time fMRI.
Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank
2013-11-01
Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual-spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks.
Stochastic Dynamic Causal Modeling of Working Memory Connections in Cocaine Dependence
Ma, Liangsuo; Steinberg, Joel L.; Hasan, Khader M.; Narayana, Ponnada A.; Kramer, Larry A.; Moeller, F. Gerard
2015-01-01
Although reduced working memory brain activation has been reported in several brain regions of cocaine dependent subjects compared to controls, very little is known about whether there is altered connectivity of working memory pathways in cocaine dependence. This study addresses this issue by using functional magnetic resonance imaging (fMRI)-based stochastic dynamic causal model (DCM) analysis to study the effective connectivity of 19 cocaine-dependent subjects and 14 healthy controls while performing a working memory task. Stochastic DCM is an advanced method that has recently been implemented in SPM8 that can obtain improved estimates, relative to deterministic DCM, of hidden neuronal causes prior to convolution with the hemodynamic response. Thus, stochastic DCM may be less influenced by the confounding effects of variations in BOLD response caused by disease or drugs. Based on the significant regional activation common to both groups, and consistent with previous working memory activation studies, seven regions of interest were chosen as nodes for DCM analyses. Bayesian family level inference, Bayesian model selection analyses, and Bayesian model averaging (BMA) were conducted. BMA showed that the cocaine-dependent subjects had large differences compared to the control subjects in the strengths of prefrontal-striatal modulatory (B matrix) DCM parameters. These findings are consistent with altered cortical-striatal networks that may be related to reduced dopamine function in cocaine dependence. As far as we are aware, this is the first between-group DCM study using stochastic methodology. PMID:23151990
Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling
Cooray, Gerald K.; Sengupta, Biswa; Douglas, Pamela; Englund, Marita; Wickstrom, Ronny; Friston, Karl
2015-01-01
We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory–inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis. PMID:26032883
Moran, Rosalyn J.; Jung, Fabienne; Kumagai, Tetsuya; Endepols, Heike; Graf, Rudolf; Dolan, Raymond J.; Friston, Karl J.; Stephan, Klaas E.; Tittgemeyer, Marc
2011-01-01
Generative models of neuroimaging and electrophysiological data present new opportunities for accessing hidden or latent brain states. Dynamic causal modeling (DCM) uses Bayesian model inversion and selection to infer the synaptic mechanisms underlying empirically observed brain responses. DCM for electrophysiological data, in particular, aims to estimate the relative strength of synaptic transmission at different cell types and via specific neurotransmitters. Here, we report a DCM validation study concerning inference on excitatory and inhibitory synaptic transmission, using different doses of a volatile anaesthetic agent (isoflurane) to parametrically modify excitatory and inhibitory synaptic processing while recording local field potentials (LFPs) from primary auditory cortex (A1) and the posterior auditory field (PAF) in the auditory belt region in rodents. We test whether DCM can infer, from the LFP measurements, the expected drug-induced changes in synaptic transmission mediated via fast ionotropic receptors; i.e., excitatory (glutamatergic) AMPA and inhibitory GABAA receptors. Cross- and auto-spectra from the two regions were used to optimise three DCMs based on biologically plausible neural mass models and specific network architectures. Consistent with known extrinsic connectivity patterns in sensory hierarchies, we found that a model comprising forward connections from A1 to PAF and backward connections from PAF to A1 outperformed a model with forward connections from PAF to A1 and backward connections from A1 to PAF and a model with reciprocal lateral connections. The parameter estimates from the most plausible model indicated that the amplitude of fast glutamatergic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) behaved as predicted by previous neurophysiological studies. Specifically, with increasing levels of anaesthesia, glutamatergic EPSPs decreased linearly, whereas fast GABAergic IPSPs displayed a
Ryali, Srikanth; Ian Shih, Yen-Yu; Chen, Tianwen; Kochalka, John; Albaugh, Daniel; Fang, Zhongnan; Supekar, Kaustubh; Lee, Jin Hyung; Menon, Vinod
2016-01-01
State-space multivariate dynamical systems (MDS) (Ryali et al., 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods is poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some extent, but they often involve simplifying assumptions that reduce biological validity of the resulting data. Here, we use a novel approach taking advantage of recently developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct investigation of causal influences from the stimulated site to brain regions activated downstream and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to investigate whether MDS models for fMRI can accurately estimate causal functional interactions between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and the University of California Los Angeles (Cohort 1) and the other at the University of North Carolina Chapel Hill (Cohort 2). In each cohort optical stimulation was delivered to the right primary motor cortex (M1). General linear model analysis revealed prominent downstream thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. Additional control analyses demonstrated the specificity of causal interactions between stimulated and target sites. Our findings suggest that MDS state-space models can accurately and reliably estimate causal interactions in ofMRI data and further validate their use for estimating causal interactions in fMRI. More
Health and Wealth of Elderly Couples: Causality Tests Using Dynamic Panel Data Models*
Michaud, Pierre-Carl; van Soest, Arthur
2010-01-01
A positive relationship between socio-economic status (SES) and health, the “health-wealth gradient”, is repeatedly found in many industrialized countries. This study analyzes competing explanations for this gradient: causal effects from health to wealth (health causation) and causal effects from wealth to health (wealth or social causation). Using six biennial waves of couples aged 51–61 in 1992 from the U.S. Health and Retirement Study, we test for causality in panel data models incorporating unobserved heterogeneity and a lag structure supported by specification tests. In contrast to tests relying on models with only first order lags or without unobserved heterogeneity, these tests provide no evidence of causal wealth health effects. On the other hand, we find strong evidence of causal effects from both spouses’ health on household wealth. We also find an effect of the husband’s health on the wife’s mental health, but no other effects from one spouse’s health to health of the other spouse. PMID:18513809
Noreika, Valdas; Gueorguiev, David; Shtyrov, Yury; Bekinschtein, Tristan A.; Henson, Richard
2016-01-01
There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called “mismatch response”). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an “omission” response). This situation arguably provides a more direct measure of “top-down” predictions in the absence of confounding “bottom-up” input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of “bottom-up” stimuli with the presence versus absence of “top-down” attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward “prediction” connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction. SIGNIFICANCE STATEMENT Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known “mismatch response.” But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain
Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne
2015-01-01
Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in "Different" trials and to its equivalent (original) tone in "Same" trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in "Same" trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain. PMID:25698955
Ma, Liangsuo; Steinberg, Joel L.; Cunningham, Kathryn A.; Lane, Scott D.; Bjork, James M.; Neelakantan, Harshini; Price, Amanda E.; Narayana, Ponnada A.; Kosten, Thomas R.; Bechara, Antoine; Moeller, F. Gerard
2015-01-01
Cocaine dependence is associated with increased impulsivity in humans. Both cocaine dependence and impulsive behavior are under the regulatory control of cortico-striatal networks. One behavioral laboratory measure of impulsivity is response inhibition (ability to withhold a prepotent response) in which altered patterns of regional brain activation during executive tasks in service of normal performance are frequently found in cocaine dependent (CD) subjects studied with functional magnetic resonance imaging (fMRI). However, little is known about aberrations in specific directional neuronal connectivity in CD subjects. The present study employed fMRI-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity associated with response inhibition in CD subjects, elicited under performance of a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard). The performance on the Go/NoGo task was not significantly different between CD subjects and controls. The DCM analysis revealed that prefrontal–striatal connectivity was modulated (influenced) during the NoGo conditions for both groups. The effective connectivity from left (L) anterior cingulate cortex (ACC) to L caudate was similarly modulated during the Easy NoGo condition for both groups. During the Hard NoGo condition in controls, the effective connectivity from right (R) dorsolateral prefrontal cortex (DLPFC) to L caudate became more positive, and the effective connectivity from R ventrolateral prefrontal cortex (VLPFC) to L caudate became more negative. In CD subjects, the effective connectivity from L ACC to L caudate became more negative during the Hard NoGo conditions. These results indicate that during Hard NoGo trials in CD subjects, the ACC rather than DLPFC or VLPFC influenced caudate during response inhibition. PMID:26082893
Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne
2015-01-01
Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in “Different” trials and to its equivalent (original) tone in “Same” trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in “Same” trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain. PMID:25698955
Aging into Perceptual Control: A Dynamic Causal Modeling for fMRI Study of Bistable Perception
Dowlati, Ehsan; Adams, Sarah E.; Stiles, Alexandra B.; Moran, Rosalyn J.
2016-01-01
Aging is accompanied by stereotyped changes in functional brain activations, for example a cortical shift in activity patterns from posterior to anterior regions is one hallmark revealed by functional magnetic resonance imaging (fMRI) of aging cognition. Whether these neuronal effects of aging could potentially contribute to an amelioration of or resistance to the cognitive symptoms associated with psychopathology remains to be explored. We used a visual illusion paradigm to address whether aging affects the cortical control of perceptual beliefs and biases. Our aim was to understand the effective connectivity associated with volitional control of ambiguous visual stimuli and to test whether greater top-down control of early visual networks emerged with advancing age. Using a bias training paradigm for ambiguous images we found that older participants (n = 16) resisted experimenter-induced visual bias compared to a younger cohort (n = 14) and that this resistance was associated with greater activity in prefrontal and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered a selective recruitment of top-down connections from the middle temporal to Lingual gyrus (LIN) by the older cohort during the perceptual switch decision following bias training. In contrast, our younger cohort did not exhibit any consistent connectivity effects but instead showed a loss of driving inputs to orbitofrontal sources following training. These findings suggest that perceptual beliefs are more readily controlled by top-down strategies in older adults and introduce age-dependent neural mechanisms that may be important for understanding aberrant belief states associated with psychopathology. PMID:27064235
Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726
Spin foam models as energetic causal sets
NASA Astrophysics Data System (ADS)
Cortês, Marina; Smolin, Lee
2016-04-01
Energetic causal sets are causal sets endowed by a flow of energy-momentum between causally related events. These incorporate a novel mechanism for the emergence of space-time from causal relations [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014); Phys. Rev. D 90, 044035 (2014)]. Here we construct a spin foam model which is also an energetic causal set model. This model is closely related to the model introduced in parallel by Wolfgang Wieland in [Classical Quantum Gravity 32, 015016 (2015)]. What makes a spin foam model also an energetic causal set is Wieland's identification of new degrees of freedom analogous to momenta, conserved at events (or four-simplices), whose norms are not mass, but the volume of tetrahedra. This realizes the torsion constraints, which are missing in previous spin foam models, and are needed to relate the connection dynamics to those of the metric, as in general relativity. This identification makes it possible to apply the new mechanism for the emergence of space-time to a spin foam model. Our formulation also makes use of Markopoulou's causal formulation of spin foams [arXiv:gr-qc/9704013]. These are generated by evolving spin networks with dual Pachner moves. This endows the spin foam history with causal structure given by a partial ordering of the events which are dual to four-simplices.
Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Tu, Tao; Kochlka, John; Cai, Weidong; Menon, Vinod
2016-01-01
Background Causal estimation methods are increasingly being used to investigate functional brain networks in fMRI, but there are continuing concerns about the validity of these methods. New Method Multivariate Dynamical Systems (MDS) is a state-space method for estimating dynamic causal interactions in fMRI data. Here we validate MDS using benchmark simulations as well as simulations from a more realistic stochastic neurophysiological model. Finally, we applied MDS to investigate dynamic casual interactions in a fronto-cingulate-parietal control network using Human Connectome Project (HCP) data acquired during performance of a working memory task. Crucially, since the ground truth in experimental data is unknown, we conducted novel stability analysis to determine robust causal interactions within this network. Results MDS accurately recovered dynamic causal interactions with an area under receiver operating characteristic (AUC) above 0.7 for benchmark datasets and AUC above 0.9 for datasets generated using the neurophysiological model. In experimental fMRI data, bootstrap procedures revealed a stable pattern of causal influences from the anterior insula to other nodes of the fronto-cingulate-parietal network. Comparison with Existing Methods MDS is effective in estimating dynamic causal interactions in both the benchmark and neurophysiological model based datasets in terms of AUC, sensitivity and false positive rates. Conclusions Our findings demonstrate that MDS can accurately estimate causal interactions in fMRI data. Neurophysiological models and stability analysis provide a general framework for validating computational methods designed to estimate causal interactions in fMRI. The right anterior insula functions as a causal hub during working memory. PMID:27015792
Di, Xin; Biswal, Bharat B
2014-02-01
The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data.
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
Daunizeau, J.; Friston, K.J.; Kiebel, S.J.
2009-01-01
In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power. PMID:19862351
Sharaev, Maksim G; Zavyalova, Viktoria V; Ushakov, Vadim L; Kartashov, Sergey I; Velichkovsky, Boris M
2016-01-01
The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078-0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p < 0.05). Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain's functioning at resting state.
Sharaev, Maksim G; Zavyalova, Viktoria V; Ushakov, Vadim L; Kartashov, Sergey I; Velichkovsky, Boris M
2016-01-01
The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078-0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p < 0.05). Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain's functioning at resting state. PMID:26869900
Sharaev, Maksim G.; Zavyalova, Viktoria V.; Ushakov, Vadim L.; Kartashov, Sergey I.; Velichkovsky, Boris M.
2016-01-01
The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078–0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p < 0.05). Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain’s functioning at resting state. PMID:26869900
Bönstrup, Marlene; Schulz, Robert; Feldheim, Jan; Hummel, Friedhelm C; Gerloff, Christian
2016-01-01
Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM-IR) and on fMRI would reveal congruent task-dependent network dynamics. Brain electrical (63-channel surface EEG) and Blood Oxygenation Level Dependent (BOLD) signals were recorded in separate sessions from 14 healthy participants performing simple isometric right and left hand grips. DCM-IR and DCM-fMRI were used to estimate coupling parameters modulated by right and left hand grips within a core motor network of six regions comprising bilateral primary motor cortex (M1), ventral premotor cortex (PMv) and supplementary motor area (SMA). We found that DCM-fMRI and DCM-IR similarly revealed significant grip-related increases in facilitatory coupling between SMA and M1 contralateral to the active hand. A grip-dependent interhemispheric reciprocal inhibition between M1 bilaterally was only revealed by DCM-fMRI but not by DCM-IR. Frequency-resolved coupling analysis showed that the information flow from contralateral SMA to M1 was predominantly a linear alpha-to-alpha (9-13Hz) interaction. We also detected some cross-frequency coupling from SMA to contralateral M1, i.e., between lower beta (14-21Hz) at the SMA and higher beta (22-30Hz) at M1 during right hand grip and between alpha (9-13Hz) at SMA and lower beta (14-21Hz) at M1
Bönstrup, Marlene; Schulz, Robert; Feldheim, Jan; Hummel, Friedhelm C; Gerloff, Christian
2016-01-01
Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM-IR) and on fMRI would reveal congruent task-dependent network dynamics. Brain electrical (63-channel surface EEG) and Blood Oxygenation Level Dependent (BOLD) signals were recorded in separate sessions from 14 healthy participants performing simple isometric right and left hand grips. DCM-IR and DCM-fMRI were used to estimate coupling parameters modulated by right and left hand grips within a core motor network of six regions comprising bilateral primary motor cortex (M1), ventral premotor cortex (PMv) and supplementary motor area (SMA). We found that DCM-fMRI and DCM-IR similarly revealed significant grip-related increases in facilitatory coupling between SMA and M1 contralateral to the active hand. A grip-dependent interhemispheric reciprocal inhibition between M1 bilaterally was only revealed by DCM-fMRI but not by DCM-IR. Frequency-resolved coupling analysis showed that the information flow from contralateral SMA to M1 was predominantly a linear alpha-to-alpha (9-13Hz) interaction. We also detected some cross-frequency coupling from SMA to contralateral M1, i.e., between lower beta (14-21Hz) at the SMA and higher beta (22-30Hz) at M1 during right hand grip and between alpha (9-13Hz) at SMA and lower beta (14-21Hz) at M1
Causal reasoning with mental models
Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398
Gilbert, Jessica R.; Symmonds, Mkael; Hanna, Michael G.; Dolan, Raymond J.; Friston, Karl J.; Moran, Rosalyn J.
2016-01-01
Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. PMID:26342528
Modeling of causality with metamaterials
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.
2013-02-01
Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space-time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space-time. While this model may be used to build interesting space-time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space-time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler-Feynman absorber theory of causality.
Kauffmann, Louise; Chauvin, Alan; Pichat, Cédric; Peyrin, Carole
2015-10-01
According to current models of visual perception scenes are processed in terms of spatial frequencies following a predominantly coarse-to-fine processing sequence. Low spatial frequencies (LSF) reach high-order areas rapidly in order to activate plausible interpretations of the visual input. This triggers top-down facilitation that guides subsequent processing of high spatial frequencies (HSF) in lower-level areas such as the inferotemporal and occipital cortices. However, dynamic interactions underlying top-down influences on the occipital cortex have never been systematically investigated. The present fMRI study aimed to further explore the neural bases and effective connectivity underlying coarse-to-fine processing of scenes, particularly the role of the occipital cortex. We used sequences of six filtered scenes as stimuli depicting coarse-to-fine or fine-to-coarse processing of scenes. Participants performed a categorization task on these stimuli (indoor vs. outdoor). Firstly, we showed that coarse-to-fine (compared to fine-to-coarse) sequences elicited stronger activation in the inferior frontal gyrus (in the orbitofrontal cortex), the inferotemporal cortex (in the fusiform and parahippocampal gyri), and the occipital cortex (in the cuneus). Dynamic causal modeling (DCM) was then used to infer effective connectivity between these regions. DCM results revealed that coarse-to-fine processing resulted in increased connectivity from the occipital cortex to the inferior frontal gyrus and from the inferior frontal gyrus to the inferotemporal cortex. Critically, we also observed an increase in connectivity strength from the inferior frontal gyrus to the occipital cortex, suggesting that top-down influences from frontal areas may guide processing of incoming signals. The present results support current models of visual perception and refine them by emphasizing the role of the occipital cortex as a cortical site for feedback projections in the neural network underlying
Adams, Rick A.; Bauer, Markus; Pinotsis, Dimitris; Friston, Karl J.
2016-01-01
This paper shows that it is possible to estimate the subjective precision (inverse variance) of Bayesian beliefs during oculomotor pursuit. Subjects viewed a sinusoidal target, with or without random fluctuations in its motion. Eye trajectories and magnetoencephalographic (MEG) data were recorded concurrently. The target was periodically occluded, such that its reappearance caused a visual evoked response field (ERF). Dynamic causal modelling (DCM) was used to fit models of eye trajectories and the ERFs. The DCM for pursuit was based on predictive coding and active inference, and predicts subjects' eye movements based on their (subjective) Bayesian beliefs about target (and eye) motion. The precisions of these hierarchical beliefs can be inferred from behavioural (pursuit) data. The DCM for MEG data used an established biophysical model of neuronal activity that includes parameters for the gain of superficial pyramidal cells, which is thought to encode precision at the neuronal level. Previous studies (using DCM of pursuit data) suggest that noisy target motion increases subjective precision at the sensory level: i.e., subjects attend more to the target's sensory attributes. We compared (noisy motion-induced) changes in the synaptic gain based on the modelling of MEG data to changes in subjective precision estimated using the pursuit data. We demonstrate that imprecise target motion increases the gain of superficial pyramidal cells in V1 (across subjects). Furthermore, increases in sensory precision – inferred by our behavioural DCM – correlate with the increase in gain in V1, across subjects. This is a step towards a fully integrated model of brain computations, cortical responses and behaviour that may provide a useful clinical tool in conditions like schizophrenia. PMID:26921713
Xi, Yi-Bin; Li, Chen; Cui, Long-Biao; Liu, Jian; Guo, Fan; Li, Liang; Liu, Ting-Ting; Liu, Kang; Chen, Gang; Xi, Min; Wang, Hua-Ning; Yin, Hong
2016-01-01
Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs) in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients-according to the DSM-IV-were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic causal modeling (sDCM) to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA) to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ. PMID:27512370
Xi, Yi-Bin; Li, Chen; Cui, Long-Biao; Liu, Jian; Guo, Fan; Li, Liang; Liu, Ting-Ting; Liu, Kang; Chen, Gang; Xi, Min; Wang, Hua-Ning; Yin, Hong
2016-01-01
Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs) in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients—according to the DSM-IV—were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic causal modeling (sDCM) to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA) to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ. PMID:27512370
NASA Astrophysics Data System (ADS)
Mangiarotti, S.; Sekhar, M.; Berthon, L.; Javeed, Y.; Mazzega, P.
2012-08-01
Causal relationships existing between observed levels of groundwater in a semi-arid sub-basin of the Kabini River basin (Karnataka state, India) are investigated in this study. A Vector Auto Regressive model is used for this purpose. Its structure is built on an upstream/downstream interaction network based on observed hydro-physical properties. Exogenous climatic forcing is used as an input based on cumulated rainfall departure. Optimal models are obtained thanks to a trial approach and are used as a proxy of the dynamics to derive causal networks. It appears to be an interesting tool for analysing the causal relationships existing inside the basin. The causal network reveals 3 main regions: the Northeastern part of the Gundal basin is closely coupled to the outlet dynamics. The Northwestern part is mainly controlled by the climatic forcing and only marginally linked to the outlet dynamic. Finally, the upper part of the basin plays as a forcing rather than a coupling with the lower part of the basin allowing for a separate analysis of this local behaviour. The analysis also reveals differential time scales at work inside the basin when comparing upstream oriented with downstream oriented causalities. In the upper part of the basin, time delays are close to 2 months in the upward direction and lower than 1 month in the downward direction. These time scales are likely to be good indicators of the hydraulic response time of the basin which is a parameter usually difficult to estimate practically. This suggests that, at the sub-basin scale, intra-annual time scales would be more relevant scales for analysing or modelling tropical basin dynamics in hard rock (granitic and gneissic) aquifers ubiquitous in south India.
Hillebrandt, Hauke; Friston, Karl J.; Blakemore, Sarah-Jayne
2014-01-01
Biological agents are the most complex systems humans have to model and predict. In predictive coding, high-level cortical areas inform sensory cortex about incoming sensory signals, a comparison between the predicted and actual sensory feedback is made, and information about unpredicted sensory information is passed forward to higher-level areas. Predictions about animate motion – relative to inanimate motion – should result in prediction error and increase signal passing from lower level sensory area MT+/V5, which is responsive to all motion, to higher-order posterior superior temporal sulcus (pSTS), which is selectively activated by animate motion. We tested this hypothesis by investigating effective connectivity in a large-scale fMRI dataset from the Human Connectome Project. 132 participants viewed animations of triangles that were designed to move in a way that appeared animate (moving intentionally), or inanimate (moving in a mechanical way). We found that forward connectivity from V5 to the pSTS increased, and inhibitory self-connection in the pSTS decreased, when viewing intentional motion versus inanimate motion. These prediction errors associated with animate motion may be the cause for increased attention to animate stimuli found in previous studies. PMID:25174814
Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry
2013-01-01
The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258
ERIC Educational Resources Information Center
Tuma, Nancy Brandon; Hannan, Michael T.
The document, part of a series of chapters described in SO 011 759, examines sociological research methods for the study of change. The advantages and procedures for dynamic analysis of event-history data (data giving the number, timing, and sequence of changes in a categorical dependent variable) are considered. The authors argue for grounding…
Inferring connectivity in networked dynamical systems: Challenges using Granger causality
NASA Astrophysics Data System (ADS)
Lusch, Bethany; Maia, Pedro D.; Kutz, J. Nathan
2016-09-01
Determining the interactions and causal relationships between nodes in an unknown networked dynamical system from measurement data alone is a challenging, contemporary task across the physical, biological, and engineering sciences. Statistical methods, such as the increasingly popular Granger causality, are being broadly applied for data-driven discovery of connectivity in fields from economics to neuroscience. A common version of the algorithm is called pairwise-conditional Granger causality, which we systematically test on data generated from a nonlinear model with known causal network structure. Specifically, we simulate networked systems of Kuramoto oscillators and use the Multivariate Granger Causality Toolbox to discover the underlying coupling structure of the system. We compare the inferred results to the original connectivity for a wide range of parameters such as initial conditions, connection strengths, community structures, and natural frequencies. Our results show a significant systematic disparity between the original and inferred network, unless the true structure is extremely sparse or dense. Specifically, the inferred networks have significant discrepancies in the number of edges and the eigenvalues of the connectivity matrix, demonstrating that they typically generate dynamics which are inconsistent with the ground truth. We provide a detailed account of the dynamics for the Erdős-Rényi network model due to its importance in random graph theory and network science. We conclude that Granger causal methods for inferring network structure are highly suspect and should always be checked against a ground truth model. The results also advocate the need to perform such comparisons with any network inference method since the inferred connectivity results appear to have very little to do with the ground truth system.
NASA Astrophysics Data System (ADS)
Pearl, Judea
2000-03-01
Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.
A Causal Model of Faculty Research Productivity.
ERIC Educational Resources Information Center
Bean, John P.
A causal model of faculty research productivity was developed through a survey of the literature. Models of organizational behavior, organizational effectiveness, and motivation were synthesized into a causal model of productivity. Two general types of variables were assumed to affect individual research productivity: institutional variables and…
Assessing causality in multivariate accident models.
Elvik, Rune
2011-01-01
This paper discusses the application of operational criteria of causality to multivariate statistical models developed to identify sources of systematic variation in accident counts, in particular the effects of variables representing safety treatments. Nine criteria of causality serving as the basis for the discussion have been developed. The criteria resemble criteria that have been widely used in epidemiology. To assess whether the coefficients estimated in a multivariate accident prediction model represent causal relationships or are non-causal statistical associations, all criteria of causality are relevant, but the most important criterion is how well a model controls for potentially confounding factors. Examples are given to show how the criteria of causality can be applied to multivariate accident prediction models in order to assess the relationships included in these models. It will often be the case that some of the relationships included in a model can reasonably be treated as causal, whereas for others such an interpretation is less supported. The criteria of causality are indicative only and cannot provide a basis for stringent logical proof of causality.
Causal Indicator Models: Identification, Estimation, and Testing
ERIC Educational Resources Information Center
Bollen, Kenneth A.; Davis, Walter R.
2009-01-01
We discuss the identification, estimation, and testing of structural equation models that have causal indicators. We first provide 2 rules of identification that are particularly helpful in models with causal indicators--the 2C emitted paths rule and the exogenous X rule. We demonstrate how these rules can help us distinguish identified from…
Granger causality for state-space models
NASA Astrophysics Data System (ADS)
Barnett, Lionel; Seth, Anil K.
2015-04-01
Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.
Xu, Haojie; Lu, Yunfeng; Zhu, Shanan
2014-01-01
It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The non-zero covariance of the model’s residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the “causal ordering” is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In the present study, we firstly investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in
Compact Representations of Extended Causal Models
ERIC Educational Resources Information Center
Halpern, Joseph Y.; Hitchcock, Christopher
2013-01-01
Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of "normality." In Halpern and Hitchcock (2011), we offer a definition of actual causation…
Heim, Stefan; Eickhoff, Simon B; Amunts, Katrin
2009-11-15
The interactions of left cytoarchitectonic BA 44 and BA 45 during semantic and phonological verbal fluency tasks were investigated using dynamic causal modelling (DCM). Three different models were tested, all of which featured BA 44 and BA 45 as top-down driven interconnected nodes projecting to the motor cortex as the final output region. Model #1 represents the hypothesis that BA 45 is involved in lexical retrieval including both semantic and phonological processes, while BA 44 supports other phonological processes. Model #2 reflects the notion of a clear-cut segregation of computational processes sustained by BA 44 (phonological processing) and BA 45 (semantic processing). Model #3 was based on the hypothesis that both BA 44 and BA 45 support semantic and phonological processing. When these models were compared against each other by Bayesian model selection, evidence emerged in favour of the first model, implying that BA 45 supports word retrieval processes whereas BA 44 is involved in processing phonological information during word generation. In a subsequent analysis of the derived model parameters for model #1, all connection strengths were significantly positive except for the inhibitory coupling between BA 44 and BA 45. This inhibition may reflect how the phonological analysis in BA 44 during word generation constrains lexical word retrieval in BA 45. To conclude, DCM provided additional insights into the roles of BA 44 and BA 45 during verbal fluency revealing the involvement of BA 45 in lexical retrieval and the relevance of BA 44 for phonological processing during word generation. PMID:19560543
When two become one: the limits of causality analysis of brain dynamics.
Chicharro, Daniel; Ledberg, Anders
2012-01-01
Biological systems often consist of multiple interacting subsystems, the brain being a prominent example. To understand the functions of such systems it is important to analyze if and how the subsystems interact and to describe the effect of these interactions. In this work we investigate the extent to which the cause-and-effect framework is applicable to such interacting subsystems. We base our work on a standard notion of causal effects and define a new concept called natural causal effect. This new concept takes into account that when studying interactions in biological systems, one is often not interested in the effect of perturbations that alter the dynamics. The interest is instead in how the causal connections participate in the generation of the observed natural dynamics. We identify the constraints on the structure of the causal connections that determine the existence of natural causal effects. In particular, we show that the influence of the causal connections on the natural dynamics of the system often cannot be analyzed in terms of the causal effect of one subsystem on another. Only when the causing subsystem is autonomous with respect to the rest can this interpretation be made. We note that subsystems in the brain are often bidirectionally connected, which means that interactions rarely should be quantified in terms of cause-and-effect. We furthermore introduce a framework for how natural causal effects can be characterized when they exist. Our work also has important consequences for the interpretation of other approaches commonly applied to study causality in the brain. Specifically, we discuss how the notion of natural causal effects can be combined with Granger causality and Dynamic Causal Modeling (DCM). Our results are generic and the concept of natural causal effects is relevant in all areas where the effects of interactions between subsystems are of interest.
When Two Become One: The Limits of Causality Analysis of Brain Dynamics
Chicharro, Daniel; Ledberg, Anders
2012-01-01
Biological systems often consist of multiple interacting subsystems, the brain being a prominent example. To understand the functions of such systems it is important to analyze if and how the subsystems interact and to describe the effect of these interactions. In this work we investigate the extent to which the cause-and-effect framework is applicable to such interacting subsystems. We base our work on a standard notion of causal effects and define a new concept called natural causal effect. This new concept takes into account that when studying interactions in biological systems, one is often not interested in the effect of perturbations that alter the dynamics. The interest is instead in how the causal connections participate in the generation of the observed natural dynamics. We identify the constraints on the structure of the causal connections that determine the existence of natural causal effects. In particular, we show that the influence of the causal connections on the natural dynamics of the system often cannot be analyzed in terms of the causal effect of one subsystem on another. Only when the causing subsystem is autonomous with respect to the rest can this interpretation be made. We note that subsystems in the brain are often bidirectionally connected, which means that interactions rarely should be quantified in terms of cause-and-effect. We furthermore introduce a framework for how natural causal effects can be characterized when they exist. Our work also has important consequences for the interpretation of other approaches commonly applied to study causality in the brain. Specifically, we discuss how the notion of natural causal effects can be combined with Granger causality and Dynamic Causal Modeling (DCM). Our results are generic and the concept of natural causal effects is relevant in all areas where the effects of interactions between subsystems are of interest. PMID:22438878
Causality analysis in business performance measurement system using system dynamics methodology
NASA Astrophysics Data System (ADS)
Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah
2014-07-01
One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.
Causal structure and hierarchies of models.
Hoover, Kevin D
2012-12-01
Economics prefers complete explanations: general over partial equilibrium, microfoundational over aggregate. Similarly, probabilistic accounts of causation frequently prefer greater detail to less as in typical resolutions of Simpson's paradox. Strategies of causal refinement equally aim to distinguish direct from indirect causes. Yet, there are countervailing practices in economics. Representative-agent models aim to capture economic motivation but not to reduce the level of aggregation. Small structural vector-autoregression and dynamic stochastic general-equilibrium models are practically preferred to larger ones. The distinction between exogenous and endogenous variables suggests partitioning the world into distinct subsystems. The tension in these practices is addressed within a structural account of causation inspired by the work of Herbert Simon's, which defines cause with reference to complete systems adapted to deal with incomplete systems and piecemeal evidence. The focus is on understanding the constraints that a structural account of causation places on the freedom to model complex or lower-order systems as simpler or higher-order systems and on to what degree piecemeal evidence can be incorporated into a structural account.
Xu, Fang-Fang; Han, Lu; He, Hong-Jian; Zhu, Yi-Hong; Zhong, Jian-Hui
2016-06-25
The effective connectivity of default mode network (DMN) and its change after taking methylphenidate (MPH) were investigated in this study based on resting-state functional magnetic resonance imaging. Dynamic causal modeling (DCM) was applied to compare the effective connectivity between the conditions of taking MPH and placebo for 18 healthy male volunteers. Started with the network structural basis provided by a recent literature, endogenous low frequency fluctuation signals (0.01-0.08 Hz) of each node of DMN were taken as the driving input, and thirty-two possible models were designed according to the modulation effect of MPH on different connections between nodes. Model fitting and Bayesian model selection were performed to find the winning model and corresponding parameters. Our results indicated that the effective connectivity from medial prefrontal cortex (MPFC) to posterior cingulated cortex (PCC), from left/right inferior parietal lobule (L/RIPL) to MPFC, and from RIPL to PCC were excitatory, whereas the connectivity from LIPL to PCC was inhibitory. Further t-test statistics on connectivity parameters found that MPH significantly reduced the link from RIPL to MPFC in DMN (t = 2.724, P = 0.016) and changed the weak excitatory state to inhibitory state. However, it had no significant effect on other connections. In all, our results demonstrated that MPH modulates the effective connectivity within DMN in resting state. PMID:27350198
NASA Astrophysics Data System (ADS)
Ebert-Uphoff, I.; Hammerling, D.; Samarasinghe, S.; Baker, A. H.
2015-12-01
The framework of causal discovery provides algorithms that seek to identify potential cause-effect relationships from observational data. The output of such algorithms is a graph structure that indicates the potential causal connections between the observed variables. Originally developed for applications in the social sciences and economics, causal discovery has been used with great success in bioinformatics and, most recently, in climate science, primarily to identify interaction patterns between compound climate variables and to track pathways of interactions between different locations around the globe. Here we apply causal discovery to the output data of climate models to learn so-called causal signatures from the data that indicate interactions between the different atmospheric variables. These causal signatures can act like fingerprints for the underlying dynamics and thus serve a variety of diagnostic purposes. We study the use of the causal signatures for three applications: 1) For climate model software verification we suggest to use causal signatures as a means of detecting statistical differences between model runs, thus identifying potential errors and supplementing the Community Earth System Model Ensemble Consistency Testing (CESM-ECT) tool recently developed at NCAR for CESM verification. 2) In the context of data compression of model runs, we will test how much the causal signatures of the model outputs changes after different compression algorithms have been applied. This may result in additional means to determine which type and amount of compression is acceptable. 3) This is the first study applying causal discovery simultaneously to a large number of different atmospheric variables, and in the process of studying the resulting interaction patterns for the two aforementioned applications, we expect to gain some new insights into their relationships from this approach. We will present first results obtained for Applications 1 and 2 above.
A Quantum Probability Model of Causal Reasoning
Trueblood, Jennifer S.; Busemeyer, Jerome R.
2012-01-01
People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment. PMID:22593747
Causal Measurement Models: Can Criticism Stimulate Clarification?
ERIC Educational Resources Information Center
Markus, Keith A.
2016-01-01
In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…
Tzvi, Elinor; Stoldt, Anne; Witt, Karsten; Krämer, Ulrike M
2015-11-15
The fast and slow learning stages of motor sequence learning are suggested to be realized through plasticity in a distributed cortico-striato-cerebellar network. To better understand the causal interactions within this network in the different phases of motor sequence learning, we investigated the effective connectivity within this network during encoding (Day 1) and after consolidation (Day 2) of a serial reaction time task. Using Dynamic Causal Modelling of fMRI data, we found general changes in network connections reflected in altered input nodes and endogenous connections when comparing the early and fast learning session to the late and slow learning session. Whereas encoding of a motor memory early on modulated several connections in a distributed network, slow learning resulted in a pruned network. More specifically, we found a negative modulation of connections from left M1 to right cerebellum, right premotor cortex to left cerebellum, as well as backward connections from putamen to cerebellum bilaterally in the encoding session. While connections during pre-sleep were significantly modulated by learning per se (i.e., specifically modulated by performance on sequence conditions), the connections observed after sleep were rather modulated by general performance (i.e., modulated by performance on both sequence and random conditions). A forward connection from left cerebellum to right putamen was found to be consistent across participants for the sequence condition only during slow learning. Together these findings suggest that whereas encoding in the fast learning phase requires plasticity in several connections implementing both motor and perceptual learning components, slow learning is mediated through connectivity from left cerebellum to right putamen.
Causal Model of a Health Services System
Anderson, James G.
1972-01-01
Path analysis is used to construct a causal model of the health services system serving the state of New Mexico. The model includes a network specifying the causal relationships among a set of social, demographic, and economic variables hypothesized to be related to the health status of the population; a set of mathematical equations that permit prediction of the effects of changes in the values of any one variable on all other variables in the model; and estimates of path coefficients based on U.S. Census data and vital statistics. The model is used to predict both direct and indirect effects on health status of changes in population structure resulting from natural causes or from the intervention of health programs. PMID:5025955
Causality in Psychiatry: A Hybrid Symptom Network Construct Model
Young, Gerald
2015-01-01
Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved) that inform approaches to nosology, or classification, such as in the DSM-5 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; (1)]. However, network approaches to symptom interaction [i.e., symptoms are formative of the construct; e.g., (2), for posttraumatic stress disorder (PTSD)] are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth non-linear dynamical systems theory (NLDST). The article applies the concept of emergent circular causality (3) to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning) and universal (e.g., causal) processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments. PMID:26635639
The Specification of Causal Models with Tetrad IV: A Review
ERIC Educational Resources Information Center
Landsheer, J. A.
2010-01-01
Tetrad IV is a program designed for the specification of causal models. It is specifically designed to search for causal relations, but also offers the possibility to estimate the parameters of a structural equation model. It offers a remarkable graphical user interface, which facilitates building, evaluating, and searching for causal models. The…
ERIC Educational Resources Information Center
Perkins, David N.; Grotzer, Tina A.
2005-01-01
This article argues that an important source of the difficulties posed by particular concepts and theories is the narrow range of "types of causal models" with which most learners are familiar. Most learners are familiar with relatively simple styles of causal models, but many concepts and theories in science depend on styles substantially more…
A Quantitative Causal Model Theory of Conditional Reasoning
ERIC Educational Resources Information Center
Fernbach, Philip M.; Erb, Christopher D.
2013-01-01
The authors propose and test a causal model theory of reasoning about conditional arguments with causal content. According to the theory, the acceptability of modus ponens (MP) and affirming the consequent (AC) reflect the conditional likelihood of causes and effects based on a probabilistic causal model of the scenario being judged. Acceptability…
Bastos-Leite, António J.; Ridgway, Gerard R.; Silveira, Celeste; Norton, Andreia; Reis, Salomé; Friston, Karl J.
2015-01-01
We report the first stochastic dynamic causal modeling (sDCM) study of effective connectivity within the default mode network (DMN) in schizophrenia. Thirty-three patients (9 women, mean age = 25.0 years, SD = 5) with a first episode of psychosis and diagnosis of schizophrenia—according to the Diagnostic and Statistic Manual of Mental Disorders, 4th edition, revised criteria—were studied. Fifteen healthy control subjects (4 women, mean age = 24.6 years, SD = 4) were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI) interspersed with 2 periods of continuous picture viewing. The anterior frontal (AF), posterior cingulate (PC), and the left and right parietal nodes of the DMN were localized in an unbiased fashion using data from 16 independent healthy volunteers (using an identical fMRI protocol). We used sDCM to estimate directed connections between and within nodes of the DMN, which were subsequently compared with t tests at the between subject level. The excitatory effect of the PC node on the AF node and the inhibitory self-connection of the AF node were significantly weaker in patients (mean values = 0.013 and −0.048 Hz, SD = 0.09 and 0.05, respectively) relative to healthy subjects (mean values = 0.084 and −0.088 Hz, SD = 0.15 and 0.77, respectively; P < .05). In summary, sDCM revealed reduced effective connectivity to the AF node of the DMN—reflecting a reduced postsynaptic efficacy of prefrontal afferents—in patients with first-episode schizophrenia. PMID:24939881
General solution for classical sequential growth dynamics of causal sets
Varadarajan, Madhavan; Rideout, David
2006-05-15
A classical precursor to a full quantum dynamics for causal sets has been formulated in terms of a stochastic sequential growth process in which the elements of the causal set arise in a sort of accretion process. The transition probabilities of the Markov growth process satisfy certain physical requirements of causality and general covariance, and the generic solution with all transition probabilities nonzero has been found. Here we remove the assumption of nonzero probabilities, define a reasonable extension of the physical requirements to cover the case of vanishing probabilities, and find the completely general solution to these physical conditions. The resulting family of growth processes has an interesting structure reminiscent of an 'infinite tower of turtles' cosmology.
Detecting causality from nonlinear dynamics with short-term time series.
Ma, Huanfei; Aihara, Kazuyuki; Chen, Luonan
2014-12-12
Quantifying causality between variables from observed time series data is of great importance in various disciplines but also a challenging task, especially when the observed data are short. Unlike the conventional methods, we find it possible to detect causality only with very short time series data, based on embedding theory of an attractor for nonlinear dynamics. Specifically, we first show that measuring the smoothness of a cross map between two observed variables can be used to detect a causal relation. Then, we provide a very effective algorithm to computationally evaluate the smoothness of the cross map, or "Cross Map Smoothness" (CMS), and thus to infer the causality, which can achieve high accuracy even with very short time series data. Analysis of both mathematical models from various benchmarks and real data from biological systems validates our method.
Structural equation modeling: building and evaluating causal models: Chapter 8
Grace, James B.; Scheiner, Samuel M.; Schoolmaster, Donald R.
2015-01-01
Scientists frequently wish to study hypotheses about causal relationships, rather than just statistical associations. This chapter addresses the question of how scientists might approach this ambitious task. Here we describe structural equation modeling (SEM), a general modeling framework for the study of causal hypotheses. Our goals are to (a) concisely describe the methodology, (b) illustrate its utility for investigating ecological systems, and (c) provide guidance for its application. Throughout our presentation, we rely on a study of the effects of human activities on wetland ecosystems to make our description of methodology more tangible. We begin by presenting the fundamental principles of SEM, including both its distinguishing characteristics and the requirements for modeling hypotheses about causal networks. We then illustrate SEM procedures and offer guidelines for conducting SEM analyses. Our focus in this presentation is on basic modeling objectives and core techniques. Pointers to additional modeling options are also given.
ERIC Educational Resources Information Center
Hannan, Michael T.
This document is part of a series of chapters described in SO 011 759. Addressing the question of effective models to measure change and the change process, the author suggests that linear structural equation systems may be viewed as steady state outcomes of continuous-change models and have rich sociological grounding. Two interpretations of the…
Causal models of trip replanning in TravTek
Schryver, J.C.
1998-07-01
The TravTek operational field test was conducted to evaluate the effectiveness of route planning, route guidance and various navigational aiding modalities for Advanced Traveler Information Systems in ground vehicles. A causal network was constructed in order to achieve a better understanding of the dependencies among variables implicated in the replanning process. Causal inferences were modeled using path analysis techniques. The original Yoked Driver study reported that addition of real-time navigation planning did not increase trip efficiency during initial trip planning. Data mining of the relatively complete database revealed that the incidence of dynamic trip replanning was only 0.51% or 1 out of every 198 trips. Nevertheless, the replanning acceptance rate was 92.8%, suggesting that less conservative criteria might have been acceptable to drivers. Several points can be made based upon the path analysis techniques. Drivers who rejected better route offers were more likely to be male renters; rejected routes were apparently offered at earlier times with a lower predicted time savings and fewer maneuvers. Failure to accept a better route also apparently resulted in fewer wrong-turn deviations. Contrary to expectations, wrong-turn count and time loss appeared as semi-independent hubs in the resultant causal network. Implications of the path analysis are discussed. Proposals for in-vehicle information systems are formulated to increase driver participation as co-planner, and increase the likelihood that trip replanning will positively impact trip efficiency.
ERIC Educational Resources Information Center
Hannan, Michael T.
This document is part of a series of chapters described in SO 011 759. Stochastic models for the sociological analysis of change and the change process in quantitative variables are presented. The author lays groundwork for the statistical treatment of simple stochastic differential equations (SDEs) and discusses some of the continuities of…
Spatiotemporal causal modeling for the management of Dengue Fever
NASA Astrophysics Data System (ADS)
Yu, Hwa-Lung; Huang, Tailin; Lee, Chieh-Han
2015-04-01
Increasing climatic extremes have caused growing concerns about the health effects and disease outbreaks. The association between climate variation and the occurrence of epidemic diseases play an important role on a country's public health systems. Part of the impacts are direct casualties associated with the increasing frequency and intensity of typhoons, the proliferation of disease vectors and the short-term increase of clinic visits on gastro-intestinal discomforts, diarrhea, dermatosis, or psychological trauma. Other impacts come indirectly from the influence of disasters on the ecological and socio-economic systems, including the changes of air/water quality, living environment and employment condition. Previous risk assessment studies on dengue fever focus mostly on climatic and non-climatic factors and their association with vectors' reproducing pattern. The public-health implication may appear simple. Considering the seasonal changes and regional differences, however, the causality of the impacts is full of uncertainties. Without further investigation, the underlying dengue fever risk dynamics may not be assessed accurately. The objective of this study is to develop an epistemic framework for assessing dynamic dengue fever risk across space and time. The proposed framework integrates cross-departmental data, including public-health databases, precipitation data over time and various socio-economic data. We explore public-health issues induced by typhoon through literature review and spatiotemporal analytic techniques on public health databases. From those data, we identify relevant variables and possible causal relationships, and their spatiotemporal patterns derived from our proposed spatiotemporal techniques. Eventually, we create a spatiotemporal causal network and a framework for modeling dynamic dengue fever risk.
Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy
ERIC Educational Resources Information Center
von Eye, Alexander; Wiedermann, Wolfgang
2015-01-01
Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…
Zhou, Douglas; Zhang, Yaoyu; Xiao, Yanyang; Cai, David
2014-01-01
Granger causality (GC) is a powerful method for causal inference for time series. In general, the GC value is computed using discrete time series sampled from continuous-time processes with a certain sampling interval length τ, i.e., the GC value is a function of τ. Using the GC analysis for the topology extraction of the simplest integrate-and-fire neuronal network of two neurons, we discuss behaviors of the GC value as a function of τ, which exhibits (i) oscillations, often vanishing at certain finite sampling interval lengths, (ii) the GC vanishes linearly as one uses finer and finer sampling. We show that these sampling effects can occur in both linear and non-linear dynamics: the GC value may vanish in the presence of true causal influence or become non-zero in the absence of causal influence. Without properly taking this issue into account, GC analysis may produce unreliable conclusions about causal influence when applied to empirical data. These sampling artifacts on the GC value greatly complicate the reliability of causal inference using the GC analysis, in general, and the validity of topology reconstruction for networks, in particular. We use idealized linear models to illustrate possible mechanisms underlying these phenomena and to gain insight into the general spectral structures that give rise to these sampling effects. Finally, we present an approach to circumvent these sampling artifacts to obtain reliable GC values. PMID:25126067
Causal information quantification of prominent dynamical features of biological neurons.
Montani, Fernando; Baravalle, Roman; Montangie, Lisandro; Rosso, Osvaldo A
2015-12-13
Neurons tend to fire a spike when they are near a bifurcation from the resting state to spiking activity. It is a delicate balance between noise, dynamic currents and initial condition that determines the phase diagram of neural activity. Many possible ionic mechanisms can be accounted for as the source of spike generation. Moreover, the biophysics and the dynamics behind it can usually be described through a phase diagram that involves membrane voltage versus the activation variable of the ionic channel. In this paper, we present a novel methodology to characterize the dynamics of this system, which takes into account the fine temporal 'structures' of the complex neuronal signals. This allows us to accurately distinguish the most fundamental properties of neurophysiological neurons that were previously described by Izhikevich considering the phase-space trajectory, using a time causal space: statistical complexity versus Fisher information versus Shannon entropy.
A Causal Model of Factors Influencing Faculty Use of Technology
ERIC Educational Resources Information Center
Meyer, Katrina A.; Xu, Yonghong Jade
2009-01-01
Based on earlier studies using the 1999 and 2004 National Study of Postsecondary Faculty (NSOPF) data [1, 2], a causal model explaining faculty technology use was constructed. Path analysis was used to test the causal effects of age, gender, highest degree, discipline (health science or not), recent research productivity, and teaching load on…
Causal dynamical triangulation with extended interactions in 1+1 dimensions
NASA Astrophysics Data System (ADS)
Fuji, Hiroyuki; Sato, Yuki; Watabiki, Yoshiyuki
2011-10-01
We study the Causal Dynamical Triangulation (CDT) with extended interactions in 1 + 1 dimensions applying the method in the non-critical String Field Theory (SFT) constructed by Ishibashi and Kawai. For this model, we solve Schwinger-Dyson's Equation (SDE) for disk amplitude perturbatively, and find a matrix model in the continuum limit reproducing the SDE in the non-critical SFT approach as the loop equation.
ERIC Educational Resources Information Center
Naidoo, Anthony V.; Bowman, Sharon L.; Gerstein, Lawrence H.
1998-01-01
A model proposing that causality and work salience moderate the influence of gender, educational level, and socioeconomic status on career maturity was tested with 288 African-American students. Work salience had the strongest direct effect on career maturity. For these students home/family had higher salience than did work. (SK)
Causal interpretation rules for encoding and decoding models in neuroimaging.
Weichwald, Sebastian; Meyer, Timm; Özdenizci, Ozan; Schölkopf, Bernhard; Ball, Tonio; Grosse-Wentrup, Moritz
2015-04-15
Causal terminology is often introduced in the interpretation of encoding and decoding models trained on neuroimaging data. In this article, we investigate which causal statements are warranted and which ones are not supported by empirical evidence. We argue that the distinction between encoding and decoding models is not sufficient for this purpose: relevant features in encoding and decoding models carry a different meaning in stimulus- and in response-based experimental paradigms.We show that only encoding models in the stimulus-based setting support unambiguous causal interpretations. By combining encoding and decoding models trained on the same data, however, we obtain insights into causal relations beyond those that are implied by each individual model type. We illustrate the empirical relevance of our theoretical findings on EEG data recorded during a visuo-motor learning task. PMID:25623501
Nonlinear parametric model for Granger causality of time series
NASA Astrophysics Data System (ADS)
Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano
2006-06-01
The notion of Granger causality between two time series examines if the prediction of one series could be improved by incorporating information of the other. In particular, if the prediction error of the first time series is reduced by including measurements from the second time series, then the second time series is said to have a causal influence on the first one. We propose a radial basis function approach to nonlinear Granger causality. The proposed model is not constrained to be additive in variables from the two time series and can approximate any function of these variables, still being suitable to evaluate causality. Usefulness of this measure of causality is shown in two applications. In the first application, a physiological one, we consider time series of heart rate and blood pressure in congestive heart failure patients and patients affected by sepsis: we find that sepsis patients, unlike congestive heart failure patients, show symmetric causal relationships between the two time series. In the second application, we consider the feedback loop in a model of excitatory and inhibitory neurons: we find that in this system causality measures the combined influence of couplings and membrane time constants.
Extrinsic curvature in two-dimensional causal dynamical triangulation
NASA Astrophysics Data System (ADS)
Glaser, Lisa; Sotiriou, Thomas P.; Weinfurtner, Silke
2016-09-01
Causal dynamical triangulation (CDT) is a nonperturbative quantization of general relativity. Hořava-Lifshitz gravity, on the other hand, modifies general relativity to allow for perturbative quantization. Past work has given rise to the speculation that Hořava-Lifshitz gravity might correspond to the continuum limit of CDT. In this paper we add another piece to this puzzle by applying the CDT quantization prescription directly to Hořava-Lifshitz gravity in two dimensions. We derive the continuum Hamiltonian, and we show that it matches exactly the Hamiltonian derived from canonically quantizing the Hořava-Lifshitz action. Unlike the standard CDT case, here the introduction of a foliated lattice does not impose further restriction on the configuration space and, as a result, lattice quantization does not leave any imprint on continuum physics as expected.
ERIC Educational Resources Information Center
Carroll, Glenn R.; And Others
This document is part of a series of chapters described in SO 011 759. The chapter examines the merits of four estimators in the causal analysis of event-histories (data giving the number, timing, and sequence of changes in a categorical dependent variable). The four procedures are ordinary least squares, Kaplan-Meier least squares, maximum…
Effects of question formats on causal judgments and model evaluation
Smithson, Michael
2015-01-01
Evaluation of causal reasoning models depends on how well the subjects’ causal beliefs are assessed. Elicitation of causal beliefs is determined by the experimental questions put to subjects. We examined the impact of question formats commonly used in causal reasoning research on participant’s responses. The results of our experiment (Study 1) demonstrate that both the mean and homogeneity of the responses can be substantially influenced by the type of question (structure induction versus strength estimation versus prediction). Study 2A demonstrates that subjects’ responses to a question requiring them to predict the effect of a candidate cause can be significantly lower and more heterogeneous than their responses to a question asking them to diagnose a cause when given an effect. Study 2B suggests that diagnostic reasoning can strongly benefit from cues relating to temporal precedence of the cause in the question. Finally, we evaluated 16 variations of recent computational models and found the model fitting was substantially influenced by the type of questions. Our results show that future research in causal reasoning should place a high priority on disentangling the effects of question formats from the effects of experimental manipulations, because that will enable comparisons between models of causal reasoning uncontaminated by method artifact. PMID:25954225
Effects of question formats on causal judgments and model evaluation.
Shou, Yiyun; Smithson, Michael
2015-01-01
Evaluation of causal reasoning models depends on how well the subjects' causal beliefs are assessed. Elicitation of causal beliefs is determined by the experimental questions put to subjects. We examined the impact of question formats commonly used in causal reasoning research on participant's responses. The results of our experiment (Study 1) demonstrate that both the mean and homogeneity of the responses can be substantially influenced by the type of question (structure induction versus strength estimation versus prediction). Study 2A demonstrates that subjects' responses to a question requiring them to predict the effect of a candidate cause can be significantly lower and more heterogeneous than their responses to a question asking them to diagnose a cause when given an effect. Study 2B suggests that diagnostic reasoning can strongly benefit from cues relating to temporal precedence of the cause in the question. Finally, we evaluated 16 variations of recent computational models and found the model fitting was substantially influenced by the type of questions. Our results show that future research in causal reasoning should place a high priority on disentangling the effects of question formats from the effects of experimental manipulations, because that will enable comparisons between models of causal reasoning uncontaminated by method artifact.
A Typology of Causal Models for Plate Tectonics: Inferential Power and Barriers to Understanding.
ERIC Educational Resources Information Center
Gobert, Janice D.
2000-01-01
Analyzes fifth grade students' diagrams and explanations for the spatial, causal, and dynamic processes inside the earth. Identifies and characterizes the different types of student models for the inside of the earth, and characterizes the reasoning associated with these models. (Contains 74 references.) (Author/YDS)
The Mental Representation of Causal Conditional Reasoning: Mental Models or Causal Models
ERIC Educational Resources Information Center
Ali, Nilufa; Chater, Nick; Oaksford, Mike
2011-01-01
In this paper, two experiments are reported investigating the nature of the cognitive representations underlying causal conditional reasoning performance. The predictions of causal and logical interpretations of the conditional diverge sharply when inferences involving "pairs" of conditionals--such as "if P[subscript 1] then Q" and "if P[subscript…
Impact of topology in causal dynamical triangulations quantum gravity
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Drogosz, Z.; Gizbert-Studnicki, J.; Görlich, A.; Jurkiewicz, J.; Nemeth, D.
2016-08-01
We investigate the impact of spatial topology in 3 +1 -dimensional causal dynamical triangulations (CDT) by performing numerical simulations with toroidal spatial topology instead of the previously used spherical topology. In the case of spherical spatial topology, we observed in the so-called phase C an average spatial volume distribution n (t ) which after a suitable time redefinition could be identified as the spatial volume distribution of the four-sphere. Imposing toroidal spatial topology, we find that the average spatial volume distribution n (t ) is constant. By measuring the covariance matrix of spatial volume fluctuations, we determine the form of the effective action. The difference compared to the spherical case is that the effective potential has changed such that it allows a constant average n (t ) . This is what we observe and this is what one would expect from a minisuperspace GR action, where only the scale factor is kept as dynamical variable. Although no background geometry is put in by hand, the full quantum theory of CDT is also with toroidal spatial toplogy able to identify a classical background geometry around which there are well-defined quantum fluctuations.
Ge, Tian; Kendrick, Keith M.; Feng, Jianfeng
2009-01-01
Two main approaches in exploring causal relationships in biological systems using time-series data are the application of Dynamic Causal model (DCM) and Granger Causal model (GCM). These have been extensively applied to brain imaging data and are also readily applicable to a wide range of temporal changes involving genes, proteins or metabolic pathways. However, these two approaches have always been considered to be radically different from each other and therefore used independently. Here we present a novel approach which is an extension of Granger Causal model and also shares the features of the bilinear approximation of Dynamic Causal model. We have first tested the efficacy of the extended GCM by applying it extensively in toy models in both time and frequency domains and then applied it to local field potential recording data collected from in vivo multi-electrode array experiments. We demonstrate face discrimination learning-induced changes in inter- and intra-hemispheric connectivity and in the hemispheric predominance of theta and gamma frequency oscillations in sheep inferotemporal cortex. The results provide the first evidence for connectivity changes between and within left and right inferotemporal cortexes as a result of face recognition learning. PMID:19936225
Ge, Tian; Kendrick, Keith M; Feng, Jianfeng
2009-11-01
Two main approaches in exploring causal relationships in biological systems using time-series data are the application of Dynamic Causal model (DCM) and Granger Causal model (GCM). These have been extensively applied to brain imaging data and are also readily applicable to a wide range of temporal changes involving genes, proteins or metabolic pathways. However, these two approaches have always been considered to be radically different from each other and therefore used independently. Here we present a novel approach which is an extension of Granger Causal model and also shares the features of the bilinear approximation of Dynamic Causal model. We have first tested the efficacy of the extended GCM by applying it extensively in toy models in both time and frequency domains and then applied it to local field potential recording data collected from in vivo multi-electrode array experiments. We demonstrate face discrimination learning-induced changes in inter- and intra-hemispheric connectivity and in the hemispheric predominance of theta and gamma frequency oscillations in sheep inferotemporal cortex. The results provide the first evidence for connectivity changes between and within left and right inferotemporal cortexes as a result of face recognition learning. PMID:19936225
NASA Astrophysics Data System (ADS)
Sizochenko, Natalia; Gajewicz, Agnieszka; Leszczynski, Jerzy; Puzyn, Tomasz
2016-03-01
In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase ``correlation does not imply causation'' reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal analysis of multivariate data. Methods of causal discovery have been applied for broader physical insight into mechanisms of action and interpretation of the developed nano-QSAR models. Previously developed nano-QSAR models for toxicity of 17 nano-sized metal oxides towards E. coli bacteria have been validated by means of the causality criteria. Using the descriptors confirmed by the causal technique, we have developed new models consistent with the straightforward causal-reasoning account. It was proven that causal inference methods are able to provide a more robust mechanistic interpretation of the developed nano-QSAR models.In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase ``correlation does not imply causation'' reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal
Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir
2014-01-01
This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817
Friston, Karl J; Bastos, André M; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir
2014-11-01
This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality - providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes - as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling.
ERIC Educational Resources Information Center
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio
2016-01-01
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
The methodology of Dynamic Uncertain Causality Graph for intelligent diagnosis of vertigo.
Dong, Chunling; Wang, Yanjun; Zhang, Qin; Wang, Ningyu
2014-01-01
Vertigo is a common complaint with many potential causes involving otology, neurology and general medicine, and it is fairly difficult to distinguish the vertiginous disorders from each other accurately even for experienced physicians. Based on comprehensive investigations to relevant characteristics of vertigo, we propose a diagnostic modeling and reasoning methodology using Dynamic Uncertain Causality Graph. The symptoms, signs, findings of examinations, medical histories, etiology and pathogenesis, and so on, are incorporated in the diagnostic model. A modularized modeling scheme is presented to reduce the difficulty in model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. We resort to the "chaining" inference algorithm and weighted logic operation mechanism, which guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal insights into underlying interactions among diseases and symptoms intuitively demonstrate the reasoning process in a graphical manner. These solutions make the conclusions and advices more explicable and convincing, further increasing the objectivity of clinical decision-making. Verification experiments and empirical evaluations are performed with clinical vertigo cases. The results reveal that, even with incomplete observations, this methodology achieves encouraging diagnostic accuracy and effectiveness. This study provides a promising assistance tool for physicians in diagnosis of vertigo.
Enhancing scientific reasoning by refining students' models of multivariable causality
NASA Astrophysics Data System (ADS)
Keselman, Alla
Inquiry learning as an educational method is gaining increasing support among elementary and middle school educators. In inquiry activities at the middle school level, students are typically asked to conduct investigations and infer causal relationships about multivariable causal systems. In these activities, students usually demonstrate significant strategic weaknesses and insufficient metastrategic understanding of task demands. Present work suggests that these weaknesses arise from students' deficient mental models of multivariable causality, in which effects of individual features are neither additive, nor constant. This study is an attempt to develop an intervention aimed at enhancing scientific reasoning by refining students' models of multivariable causality. Three groups of students engaged in a scientific investigation activity over seven weekly sessions. By creating unique combinations of five features potentially involved in earthquake mechanism and observing associated risk meter readings, students had to find out which of the features were causal, and to learn to predict earthquake risk. Additionally, students in the instructional and practice groups engaged in self-directed practice in making scientific predictions. The instructional group also participated in weekly instructional sessions on making predictions based on multivariable causality. Students in the practice and instructional conditions showed small to moderate improvement in their attention to the evidence and in their metastrategic ability to recognize effective investigative strategies in the work of other students. They also demonstrated a trend towards making a greater number of valid inferences than the control group students. Additionally, students in the instructional condition showed significant improvement in their ability to draw inferences based on multiple records. They also developed more accurate knowledge about non-causal features of the system. These gains were maintained
Causal Indicator Models: Unresolved Issues of Construction and Evaluation
ERIC Educational Resources Information Center
West, Stephen G.; Grimm, Kevin J.
2014-01-01
These authors agree with Bainter and Bollen that causal effects represents a useful measurement structure in some applications. The structure of the science of the measurement problem should determine the model; the measurement model should not determine the science. They also applaud Bainter and Bollen's important reminder that the full…
What Is the Latent Variable in Causal Indicator Models?
ERIC Educational Resources Information Center
Howell, Roy D.
2014-01-01
Building on the work of Bollen (2007) and Bollen & Bauldry (2011), Bainter and Bollen (this issue) clarifies several points of confusion in the literature regarding causal indicator models. This author would certainly agree that the effect indicator (reflective) measurement model is inappropriate for some indicators (such as the social…
A Causal Model of Teacher Acceptance of Technology
ERIC Educational Resources Information Center
Chang, Jui-Ling; Lieu, Pang-Tien; Liang, Jung-Hui; Liu, Hsiang-Te; Wong, Seng-lee
2012-01-01
This study proposes a causal model for investigating teacher acceptance of technology. We received 258 effective replies from teachers at public and private universities in Taiwan. A questionnaire survey was utilized to test the proposed model. The Lisrel was applied to test the proposed hypotheses. The result shows that computer self-efficacy has…
Institutional Quality and Generalized Trust: A Nonrecursive Causal Model
ERIC Educational Resources Information Center
Robbins, Blaine G.
2012-01-01
This paper investigates the association between institutional quality and generalized trust. Despite the importance of the topic, little quantitative empirical evidence exists to support either unidirectional or bidirectional causality for the reason that cross-sectional studies rarely model the reciprocal relationship between institutional…
Political Socialization and Mass Media Use: A Reverse Causality Model.
ERIC Educational Resources Information Center
Tan, Alexis S.
A reverse causality model treating mass media use for public affairs information as a result rather than as a cause of political behavior was tested utilizing surveys of 190 Mexican-American, 176 black, and 225 white adults. The criterion variable used in each sample was frequency of television and newspaper use for public affairs information. The…
Sex Differences in a Causal Model of Career Maturity.
ERIC Educational Resources Information Center
King, Suzanne
1989-01-01
Studied sex differences among high school students (N=318) in career development process to determine whether sex differences exist in way six independent variables interact in career maturity causal model of career maturity and to compare each variable's effect on career maturity. Results suggest significant sex differences consistent with…
Greenland, Sander; Mansournia, Mohammad Ali
2015-10-01
We describe how ordinary interpretations of causal models and causal graphs fail to capture important distinctions among ignorable allocation mechanisms for subject selection or allocation. We illustrate these limitations in the case of random confounding and designs that prevent such confounding. In many experimental designs individual treatment allocations are dependent, and explicit population models are needed to show this dependency. In particular, certain designs impose unfaithful covariate-treatment distributions to prevent random confounding, yet ordinary causal graphs cannot discriminate between these unconfounded designs and confounded studies. Causal models for populations are better suited for displaying these phenomena than are individual-level models, because they allow representation of allocation dependencies as well as outcome dependencies across individuals. Nonetheless, even with this extension, ordinary graphical models still fail to capture distinctions between hypothetical superpopulations (sampling distributions) and observed populations (actual distributions), although potential-outcome models can be adapted to show these distinctions and their consequences.
Quantum Supersymmetric Models in the Causal Approach
NASA Astrophysics Data System (ADS)
Grigore, Dan-Radu
2007-04-01
We consider the massless supersymmetric vector multiplet in a purely quantum framework. First order gauge invariance determines uniquely the interaction Lagrangian as in the case of Yang-Mills models. Going to the second order of perturbation theory produces an anomaly which cannot be eliminated. We make the analysis of the model working only with the component fields.
Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology
Marshall, Brandon D. L.; Galea, Sandro
2015-01-01
Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821
Faes, Luca; Porta, Alberto; Nollo, Giandomenico
2015-08-01
This study faces the problem of causal inference in multivariate dynamic processes, with specific regard to the detection of instantaneous and time-lagged directed interactions. We point out the limitations of the traditional Granger causality analysis, showing that it leads to false detection of causality when instantaneous and time-lagged effects coexist in the process structure. Then, we propose an improved algorithm for causal inference that combines the Granger framework with the approach proposed by Pearl for the study of causality among multiple random variables. This new approach is compared with the traditional one in theoretical and simulated examples of interacting processes, showing its ability to retrieve the correct structure of instantaneous and time-lagged interactions. These approaches for causal inference are then tested on the physiological variability series of heart period, arterial pressure and cerebral blood flow variability obtained in subjects with postural-related syncope during a tilt-test protocol.
ERIC Educational Resources Information Center
Perkins, David N.; Grotzer, Tina A.
This paper presents the results of a research project based on the Understandings of Consequence Project. This study motivated students to engage in inquiry in science classrooms. The complexity of the models is divided into four categories--underlying causality, relational causality, probabilistic causality, and emergent causality--and provides…
Measured, modeled, and causal conceptions of fitness
Abrams, Marshall
2012-01-01
This paper proposes partial answers to the following questions: in what senses can fitness differences plausibly be considered causes of evolution?What relationships are there between fitness concepts used in empirical research, modeling, and abstract theoretical proposals? How does the relevance of different fitness concepts depend on research questions and methodological constraints? The paper develops a novel taxonomy of fitness concepts, beginning with type fitness (a property of a genotype or phenotype), token fitness (a property of a particular individual), and purely mathematical fitness. Type fitness includes statistical type fitness, which can be measured from population data, and parametric type fitness, which is an underlying property estimated by statistical type fitnesses. Token fitness includes measurable token fitness, which can be measured on an individual, and tendential token fitness, which is assumed to be an underlying property of the individual in its environmental circumstances. Some of the paper's conclusions can be outlined as follows: claims that fitness differences do not cause evolution are reasonable when fitness is treated as statistical type fitness, measurable token fitness, or purely mathematical fitness. Some of the ways in which statistical methods are used in population genetics suggest that what natural selection involves are differences in parametric type fitnesses. Further, it's reasonable to think that differences in parametric type fitness can cause evolution. Tendential token fitnesses, however, are not themselves sufficient for natural selection. Though parametric type fitnesses are typically not directly measurable, they can be modeled with purely mathematical fitnesses and estimated by statistical type fitnesses, which in turn are defined in terms of measurable token fitnesses. The paper clarifies the ways in which fitnesses depend on pragmatic choices made by researchers. PMID:23112804
Material Phase Causality or a Dynamics-Statistical Interpretation of Quantum Mechanics
Koprinkov, I. G.
2010-11-25
The internal phase dynamics of a quantum system interacting with an electromagnetic field is revealed in details. Theoretical and experimental evidences of a causal relation of the phase of the wave function to the dynamics of the quantum system are presented sistematically for the first time. A dynamics-statistical interpretation of the quantum mechanics is introduced.
Acquisition of causal models for local distributions in Bayesian networks.
Xiang, Yang; Truong, Minh
2014-09-01
To specify a Bayesian network, a local distribution in the form of a conditional probability table, often of an effect conditioned on its n causes, needs to be acquired, one for each non-root node. Since the number of parameters to be assessed is generally exponential in n , improving the efficiency is an important concern in knowledge engineering. Non-impeding noisy-AND (NIN-AND) tree causal models reduce the number of parameters to being linear in n , while explicitly expressing both reinforcing and undermining interactions among causes. The key challenge in NIN-AND tree modeling is the acquisition of the NIN-AND tree structure. In this paper, we formulate a concise structure representation and an expressive causal interaction function of NIN-AND trees. Building on these representations, we propose two structural acquisition methods, which are applicable to both elicitation-based and machine learning-based acquisitions. Their accuracy is demonstrated through experimental evaluations.
Cho, Soohyun; Metcalfe, Arron W S; Young, Christina B; Ryali, Srikanth; Geary, David C; Menon, Vinod
2012-09-01
Children's gains in problem-solving skills during the elementary school years are characterized by shifts in the mix of problem-solving approaches, with inefficient procedural strategies being gradually replaced with direct retrieval of domain-relevant facts. We used a well-established procedure for strategy assessment during arithmetic problem solving to investigate the neural basis of this critical transition. We indexed behavioral strategy use by focusing on the retrieval frequency and examined changes in brain activity and connectivity associated with retrieval fluency during arithmetic problem solving in second- and third-grade (7- to 9-year-old) children. Children with higher retrieval fluency showed elevated signal in the right hippocampus, parahippocampal gyrus (PHG), lingual gyrus (LG), fusiform gyrus (FG), left ventrolateral PFC (VLPFC), bilateral dorsolateral PFC (DLPFC), and posterior angular gyrus. Critically, these effects were not confounded by individual differences in problem-solving speed or accuracy. Psychophysiological interaction analysis revealed significant effective connectivity of the right hippocampus with bilateral VLPFC and DLPFC during arithmetic problem solving. Dynamic causal modeling analysis revealed strong bidirectional interactions between the hippocampus and the left VLPFC and DLPFC. Furthermore, causal influences from the left VLPFC to the hippocampus served as the main top-down component, whereas causal influences from the hippocampus to the left DLPFC served as the main bottom-up component of this retrieval network. Our study highlights the contribution of hippocampal-prefrontal circuits to the early development of retrieval fluency in arithmetic problem solving and provides a novel framework for studying dynamic developmental processes that accompany children's development of problem-solving skills. PMID:22621262
Doubly robust estimation in missing data and causal inference models.
Bang, Heejung; Robins, James M
2005-12-01
The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood-based or (nonaugmented) inverse probability-weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.
Causal Estimation using Semiparametric Transformation Models under Prevalent Sampling
Cheng, Yu-Jen; Wang, Mei-Cheng
2015-01-01
Summary This paper develops methods and inference for causal estimation in semiparametric transformation models for prevalent survival data. Through estimation of the transformation models and covariate distribution, we propose analytical procedures to estimate the causal survival function. As the data are observational, the unobserved potential outcome (survival time) may be associated with the treatment assignment, and therefore there may exist a systematic imbalance between the data observed from each treatment arm. Further, due to prevalent sampling, subjects are observed only if they have not experienced the failure event when data collection began, causing the prevalent sampling bias. We propose a unified approach which simultaneously corrects the bias from the prevalent sampling and balances the systematic differences from the observational data. We illustrate in the simulation study that standard analysis without proper adjustment would result in biased causal inference. Large sample properties of the proposed estimation procedures are established by techniques of empirical processes and examined by simulation studies. The proposed methods are applied to the Surveillance, Epidemiology, and End Results (SEER) and Medicare linked data for women diagnosed with breast cancer. PMID:25715045
Transfer effects between moral dilemmas: a causal model theory.
Wiegmann, Alex; Waldmann, Michael R
2014-04-01
Evaluations of analogous situations are an important source for our moral intuitions. A puzzling recent set of findings in experiments exploring transfer effects between intuitions about moral dilemmas has demonstrated a striking asymmetry. Transfer often occurred with a specific ordering of moral dilemmas, but not when the sequence was reversed. In this article we present a new theory of transfer between moral intuitions that focuses on two components of moral dilemmas, namely their causal structure and their default evaluations. According to this theory, transfer effects are expected when the causal models underlying the considered dilemmas allow for a mapping of the highlighted aspect of the first scenario onto the causal structure of the second dilemma, and when the default evaluations of the two dilemmas substantially differ. The theory's key predictions for the occurrence and the direction of transfer effects between two moral dilemmas are tested in five experiments with various variants of moral dilemmas from different domains. A sixth experiment tests the predictions of the theory for how the target action in the moral dilemmas is represented.
Who Is the Dynamic Duo? How Infants Learn about the Identity of Objects in a Causal Chain
ERIC Educational Resources Information Center
Rakison, David H.; Smith, Gabriel Tobin; Ali, Areej
2016-01-01
Four experiments investigated infants' and adults' knowledge of the identity of objects in a causal sequence of events. In Experiments 1 and 2, 18- and 22-month-olds in the visual habituation procedure were shown a 3-step causal chain event in which the relation between an object's part (dynamic or static) and its causal role was either consistent…
Risk-Based Causal Modeling of Airborne Loss of Separation
NASA Technical Reports Server (NTRS)
Geuther, Steven C.; Shih, Ann T.
2015-01-01
Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.
ERIC Educational Resources Information Center
Luque, David; Cobos, Pedro L.; Lopez, Francisco J.
2008-01-01
In an interference-between-cues design (IbC), the expression of a learned Cue A-Outcome 1 association has been shown to be impaired if another cue, B, is separately paired with the same outcome in a second learning phase. The present study examined whether IbC could be caused by associative mechanisms independent of causal reasoning processes.…
Causal Inference and Model Selection in Complex Settings
NASA Astrophysics Data System (ADS)
Zhao, Shandong
Propensity score methods have become a part of the standard toolkit for applied researchers who wish to ascertain causal effects from observational data. While they were originally developed for binary treatments, several researchers have proposed generalizations of the propensity score methodology for non-binary treatment regimes. In this article, we firstly review three main methods that generalize propensity scores in this direction, namely, inverse propensity weighting (IPW), the propensity function (P-FUNCTION), and the generalized propensity score (GPS), along with recent extensions of the GPS that aim to improve its robustness. We compare the assumptions, theoretical properties, and empirical performance of these methods. We propose three new methods that provide robust causal estimation based on the P-FUNCTION and GPS. While our proposed P-FUNCTION-based estimator preforms well, we generally advise caution in that all available methods can be biased by model misspecification and extrapolation. In a related line of research, we consider adjustment for posttreatment covariates in causal inference. Even in a randomized experiment, observations might have different compliance performance under treatment and control assignment. This posttreatment covariate cannot be adjusted using standard statistical methods. We review the principal stratification framework which allows for modeling this effect as part of its Bayesian hierarchical models. We generalize the current model to add the possibility of adjusting for pretreatment covariates. We also propose a new estimator of the average treatment effect over the entire population. In a third line of research, we discuss the spectral line detection problem in high energy astrophysics. We carefully review how this problem can be statistically formulated as a precise hypothesis test with point null hypothesis, why a usual likelihood ratio test does not apply for problem of this nature, and a doable fix to correctly
Searching for a continuum limit in causal dynamical triangulation quantum gravity
NASA Astrophysics Data System (ADS)
Ambjorn, J.; Coumbe, D. N.; Gizbert-Studnicki, J.; Jurkiewicz, J.
2016-05-01
We search for a continuum limit in the causal dynamical triangulation approach to quantum gravity by determining the change in lattice spacing using two independent methods. The two methods yield similar results that may indicate how to tune the relevant couplings in the theory in order to take a continuum limit.
ERIC Educational Resources Information Center
Fennell, Mary L.; And Others
This document is part of a series of chapters described in SO 011 759. This chapter reports the results of Monte Carlo simulations designed to analyze problems of using maximum likelihood estimation (MLE: see SO 011 767) in research models which combine longitudinal and dynamic behavior data in studies of change. Four complications--censoring of…
A developmental approach to learning causal models for cyber security
NASA Astrophysics Data System (ADS)
Mugan, Jonathan
2013-05-01
To keep pace with our adversaries, we must expand the scope of machine learning and reasoning to address the breadth of possible attacks. One approach is to employ an algorithm to learn a set of causal models that describes the entire cyber network and each host end node. Such a learning algorithm would run continuously on the system and monitor activity in real time. With a set of causal models, the algorithm could anticipate novel attacks, take actions to thwart them, and predict the second-order effects flood of information, and the algorithm would have to determine which streams of that flood were relevant in which situations. This paper will present the results of efforts toward the application of a developmental learning algorithm to the problem of cyber security. The algorithm is modeled on the principles of human developmental learning and is designed to allow an agent to learn about the computer system in which it resides through active exploration. Children are flexible learners who acquire knowledge by actively exploring their environment and making predictions about what they will find,1, 2 and our algorithm is inspired by the work of the developmental psychologist Jean Piaget.3 Piaget described how children construct knowledge in stages and learn new concepts on top of those they already know. Developmental learning allows our algorithm to focus on subsets of the environment that are most helpful for learning given its current knowledge. In experiments, the algorithm was able to learn the conditions for file exfiltration and use that knowledge to protect sensitive files.
Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics
NASA Astrophysics Data System (ADS)
Huang, Xu-Guang; Kodama, Takeshi; Koide, Tomoi; Rischke, Dirk H.
2011-02-01
The microscopic formulas of the bulk viscosity ζ and the corresponding relaxation time τΠ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and τΠ and ζ are related as τΠ=ζ/[β{(1/3-cs2)(ɛ+P)-2(ɛ-3P)/9}], where ɛ, P, and cs are the energy density, pressure, and velocity of sound, respectively. The predicted ζ and τΠ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.
Counterfactuals and Causal Models: Introduction to the Special Issue
ERIC Educational Resources Information Center
Sloman, Steven A.
2013-01-01
Judea Pearl won the 2010 Rumelhart Prize in computational cognitive science due to his seminal contributions to the development of Bayes nets and causal Bayes nets, frameworks that are central to multiple domains of the computational study of mind. At the heart of the causal Bayes nets formalism is the notion of a counterfactual, a representation…
Cause and Event: Supporting Causal Claims through Logistic Models
ERIC Educational Resources Information Center
O'Connell, Ann A.; Gray, DeLeon L.
2011-01-01
Efforts to identify and support credible causal claims have received intense interest in the research community, particularly over the past few decades. In this paper, we focus on the use of statistical procedures designed to support causal claims for a treatment or intervention when the response variable of interest is dichotomous. We identify…
Scheduling with partial orders and a causal model
NASA Technical Reports Server (NTRS)
Boddy, Mark; Carciofini, Jim; Hadden, George D.
1993-01-01
In an ongoing project at Honeywell SRC, we are constructing a prototype scheduling system for a NASA domain using the 'Time Map Manager' (TMM). The TMM representations are flexible enough to permit the representation of precedence constraints, metric constraints between activities, and constraints relative to a variety of references (e.g., Mission Elapsed Time vs. Mission Day). The TMM also supports a simple form of causal reasoning (projection), dynamic database updates, and monitoring specified database properties as changes occur over time. The greatest apparent advantage to using the TMM is the flexibility added to the scheduling process: schedules are constructed by a process of 'iterative refinement,' in which scheduling decisions correspond to constraining an activity either with respect to another activity or with respect to one time line. The schedule becomes more detailed as activities and constraints are added. Undoing a scheduling decision means removing a constraint, not removing an activity from a specified place on the time line. For example, we can move an activity around on the time line by deleting constraints and adding new ones.
Buchsbaum, Daphna; Seiver, Elizabeth; Bridgers, Sophie; Gopnik, Alison
2012-01-01
A major challenge children face is uncovering the causal structure of the world around them. Previous research on children's causal inference has demonstrated their ability to learn about causal relationships in the physical environment using probabilistic evidence. However, children must also learn about causal relationships in the social environment, including discovering the causes of other people's behavior, and understanding the causal relationships between others' goal-directed actions and the outcomes of those actions. In this chapter, we argue that social reasoning and causal reasoning are deeply linked, both in the real world and in children's minds. Children use both types of information together and in fact reason about both physical and social causation in fundamentally similar ways. We suggest that children jointly construct and update causal theories about their social and physical environment and that this process is best captured by probabilistic models of cognition. We first present studies showing that adults are able to jointly infer causal structure and human action structure from videos of unsegmented human motion. Next, we describe how children use social information to make inferences about physical causes. We show that the pedagogical nature of a demonstrator influences children's choices of which actions to imitate from within a causal sequence and that this social information interacts with statistical causal evidence. We then discuss how children combine evidence from an informant's testimony and expressed confidence with evidence from their own causal observations to infer the efficacy of different potential causes. We also discuss how children use these same causal observations to make inferences about the knowledge state of the social informant. Finally, we suggest that psychological causation and attribution are part of the same causal system as physical causation. We present evidence that just as children use covariation between
Dong, Chunling; Zhao, Yue; Zhang, Qin
2016-08-01
Identifying the pivotal causes and highly influential spreaders in fault propagation processes is crucial for improving the maintenance decision making for complex systems under abnormal and emergency situations. A dynamic uncertain causality graph-based method is introduced in this paper to explicitly model the uncertain causalities among system components, identify fault conditions, locate the fault origins, and predict the spreading tendency by means of probabilistic reasoning. A new algorithm is proposed to assess the impacts of an individual event by investigating the corresponding node's time-variant betweenness centrality and the strength of global causal influence in the fault propagation network. The algorithm does not depend on the whole original and static network but on the real-time spreading behaviors and dynamics, which makes the algorithm to be specifically targeted and more efficient. Experiments on both simulated networks and real-world systems demonstrate the accuracy, effectiveness, and comprehensibility of the proposed method for the fault management of power grids and other complex networked systems.
NASA Astrophysics Data System (ADS)
Charpentier, Arthur; Durand, Marilou
2015-07-01
In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.
NASA Astrophysics Data System (ADS)
Wolfinger, Donna M.
The purpose of this research was to determine whether the young child's understanding of physical causality is affected by school science instruction. Sixty-four subjects, four and one-half through seven years of age, received 300 min of instruction designed to affect the subject's conception of causality as reflected in animism and dynamism. Instruction took place for 30 min per day on ten successive school days. Pretesting was done to allow a stratified random sample to be based on vocabulary level and developmental stage as well as on age and gender. Post-testing consisted of testing of developmental level and level within the causal relations of animism and dynamism. Significant differences (1.05 level) were found between the experimental and control groups for animism. Within the experimental group, males differed significantly (1.001 level) from females. The elimination of animism appeared to have occurred. For dynamism, significant differences (0.05 level) were found only between concrete operational subjects in the experimental and control groups, indicating a concrete level of operations was necessary if dynamism was to be affected. However, a review of interview protocols indicated that subjects classified as nonanimistic had learned to apply a definition rather than to think in a nonanimistic manner.
Reconstructing Constructivism: Causal Models, Bayesian Learning Mechanisms, and the Theory Theory
ERIC Educational Resources Information Center
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…
Sensory Impairments and Autism: A Re-Examination of Causal Modelling
ERIC Educational Resources Information Center
Gerrard, Sue; Rugg, Gordon
2009-01-01
Sensory impairments are widely reported in autism, but remain largely unexplained by existing models. This article examines Kanner's causal reasoning and identifies unsupported assumptions implicit in later empirical work. Our analysis supports a heterogeneous causal model for autistic characteristics. We propose that the development of a…
Causal Modeling--Path Analysis a New Trend in Research in Applied Linguistics
ERIC Educational Resources Information Center
Rastegar, Mina
2006-01-01
This article aims at discussing a new statistical trend in research in applied linguistics. This rather new statistical procedure is causal modeling--path analysis. The article demonstrates that causal modeling--path analysis is the best statistical option to use when the effects of a multitude of L2 learners' variables on language achievement are…
Michailidis, George; d'Alché-Buc, Florence
2013-12-01
Reconstructing gene regulatory networks from high-throughput measurements represents a key problem in functional genomics. It also represents a canonical learning problem and thus has attracted a lot of attention in both the informatics and the statistical learning literature. Numerous approaches have been proposed, ranging from simple clustering to rather involved dynamic Bayesian network modeling, as well as hybrid ones that combine a number of modeling steps, such as employing ordinary differential equations coupled with genome annotation. These approaches are tailored to the type of data being employed. Available data sources include static steady state data and time course data obtained either for wild type phenotypes or from perturbation experiments. This review focuses on the class of autoregressive models using time course data for inferring gene regulatory networks. The central themes of sparsity, stability and causality are discussed as well as the ability to integrate prior knowledge for successful use of these models for the learning task at hand. PMID:24176667
Causal and causally separable processes
NASA Astrophysics Data System (ADS)
Oreshkov, Ognyan; Giarmatzi, Christina
2016-09-01
The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and
Estimators for Clustered Education RCTs Using the Neyman Model for Causal Inference
ERIC Educational Resources Information Center
Schochet, Peter Z.
2013-01-01
This article examines the estimation of two-stage clustered designs for education randomized control trials (RCTs) using the nonparametric Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for…
Causal Agency Theory: Reconceptualizing a Functional Model of Self-Determination
ERIC Educational Resources Information Center
Shogren, Karrie A.; Wehmeyer, Michael L.; Palmer, Susan B.; Forber-Pratt, Anjali J.; Little, Todd J.; Lopez, Shane
2015-01-01
This paper introduces Causal Agency Theory, an extension of the functional model of self-determination. Causal Agency Theory addresses the need for interventions and assessments pertaining to selfdetermination for all students and incorporates the significant advances in understanding of disability and in the field of positive psychology since the…
ERIC Educational Resources Information Center
Frank, Kenneth A.; Maroulis, Spiro J.; Duong, Minh Q.; Kelcey, Benjamin M.
2013-01-01
We contribute to debate about causal inferences in educational research in two ways. First, we quantify how much bias there must be in an estimate to invalidate an inference. Second, we utilize Rubin's causal model to interpret the bias necessary to invalidate an inference in terms of sample replacement. We apply our analysis to an inference…
A novel approach for identifying causal models of complex diseases from family data.
Park, Leeyoung; Kim, Ju H
2015-04-01
Causal models including genetic factors are important for understanding the presentation mechanisms of complex diseases. Familial aggregation and segregation analyses based on polygenic threshold models have been the primary approach to fitting genetic models to the family data of complex diseases. In the current study, an advanced approach to obtaining appropriate causal models for complex diseases based on the sufficient component cause (SCC) model involving combinations of traditional genetics principles was proposed. The probabilities for the entire population, i.e., normal-normal, normal-disease, and disease-disease, were considered for each model for the appropriate handling of common complex diseases. The causal model in the current study included the genetic effects from single genes involving epistasis, complementary gene interactions, gene-environment interactions, and environmental effects. Bayesian inference using a Markov chain Monte Carlo algorithm (MCMC) was used to assess of the proportions of each component for a given population lifetime incidence. This approach is flexible, allowing both common and rare variants within a gene and across multiple genes. An application to schizophrenia data confirmed the complexity of the causal factors. An analysis of diabetes data demonstrated that environmental factors and gene-environment interactions are the main causal factors for type II diabetes. The proposed method is effective and useful for identifying causal models, which can accelerate the development of efficient strategies for identifying causal factors of complex diseases. PMID:25701286
Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim
2013-04-01
In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest.
ERIC Educational Resources Information Center
Hayduk, Leslie
2014-01-01
Researchers using factor analysis tend to dismiss the significant ill fit of factor models by presuming that if their factor model is close-to-fitting, it is probably close to being properly causally specified. Close fit may indeed result from a model being close to properly causally specified, but close-fitting factor models can also be seriously…
A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2013-01-01
The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…
Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K.; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C.; Hoeng, Julia
2015-01-01
With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com PMID:25887162
Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C; Hoeng, Julia
2015-01-01
With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com
Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas
2013-01-01
The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.
NASA Astrophysics Data System (ADS)
Yao, Can-Zhong; Lin, Ji-Nan; Lin, Qing-Wen; Zheng, Xu-Zhou; Liu, Xiao-Feng
2016-11-01
Based on industrial electricity consumption, we model industrial networks by Granger causality method and MST (minimum spanning tree), and then further stick onto an industrial coupling mechanism from energy-consumption perspective. First, we construct Granger causality networks of five provinces in South China of GD, GX, GZ, HN and YN based on their industrial electricity consumption data, and we demonstrate from a network-topology perspective: the distribution of weight of links of all industrial electricity-consumption Granger causality networks approximately follows power-law distribution, revealing a phenomenon that few industries may bring a tremendous influence on the rest. Moreover, correlation analysis between weight and degree of a node shows that in most Granger causality networks, both span and strength of influence of a given industry will significantly increase. Further, we analyze the relationship between the thresholds of Granger causality significance and density of corresponding networks. Results show GD and HN could be classified into a group with relatively greater global differentiation in industries and unbalanced industrial development, however, GX, GZ and YN are grouped as second cluster with relatively balanced industrial development. Furthermore, using Chu-Liu-EdmondsMST algorithm, we extract graphs of MSTs or maximal cliques from industrial electricity-consumption Granger causality networks, and research on energy transmission structure, feedback loop, and bootstrap reliability. By analyzing MSTs, we find that only GD, GX and YN can be extracted with MST graphs, and capture the probable transmission routes of key nodes. Besides we illustrate all three MST graphs are involved with feedback loops structures with various characteristics: GX has complete feed-forward section, feed-back section and feedback loop section; YN has only feed-forward section and feedback loop section; GD has multiple feedback loops section. Finally, we conduct
Three Cs in measurement models: causal indicators, composite indicators, and covariates.
Bollen, Kenneth A; Bauldry, Shawn
2011-09-01
In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the "Three Cs"). Causal indicators have conceptual unity, and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variables. Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects, and composites are a matter of convenience. The failure to distinguish the Three Cs has led to confusion and questions, such as, Are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points.
Causal modelling applied to the risk assessment of a wastewater discharge.
Paul, Warren L; Rokahr, Pat A; Webb, Jeff M; Rees, Gavin N; Clune, Tim S
2016-03-01
Bayesian networks (BNs), or causal Bayesian networks, have become quite popular in ecological risk assessment and natural resource management because of their utility as a communication and decision-support tool. Since their development in the field of artificial intelligence in the 1980s, however, Bayesian networks have evolved and merged with structural equation modelling (SEM). Unlike BNs, which are constrained to encode causal knowledge in conditional probability tables, SEMs encode this knowledge in structural equations, which is thought to be a more natural language for expressing causal information. This merger has clarified the causal content of SEMs and generalised the method such that it can now be performed using standard statistical techniques. As it was with BNs, the utility of this new generation of SEM in ecological risk assessment will need to be demonstrated with examples to foster an understanding and acceptance of the method. Here, we applied SEM to the risk assessment of a wastewater discharge to a stream, with a particular focus on the process of translating a causal diagram (conceptual model) into a statistical model which might then be used in the decision-making and evaluation stages of the risk assessment. The process of building and testing a spatial causal model is demonstrated using data from a spatial sampling design, and the implications of the resulting model are discussed in terms of the risk assessment. It is argued that a spatiotemporal causal model would have greater external validity than the spatial model, enabling broader generalisations to be made regarding the impact of a discharge, and greater value as a tool for evaluating the effects of potential treatment plant upgrades. Suggestions are made on how the causal model could be augmented to include temporal as well as spatial information, including suggestions for appropriate statistical models and analyses. PMID:26832914
Wolff, Phillip; Barbey, Aron K.
2015-01-01
Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611
Zheng, Wei; Wu, Chunxian
2015-01-01
Structural health monitoring (SHM) is challenged by massive data storage pressure and structural fault location. In response to these issues, a bio-inspired memory model that is embedded with a causality reasoning function is proposed for fault location. First, the SHM data for processing are divided into three temporal memory areas to control data volume reasonably. Second, the inherent potential of the causal relationships in structural state monitoring is mined. Causality and dependence indices are also proposed to establish the mechanism of quantitative description of the reason and result events. Third, a mechanism of causality reasoning is developed for the reason and result events to locate faults in a SHM system. Finally, a deformation experiment conducted on a steel spring plate demonstrates that the proposed model can be applied to real-time acquisition, compact data storage, and system fault location in a SHM system. Moreover, the model is compared with some typical methods based on an experimental benchmark dataset. PMID:25798991
Zhang, Qin
2015-07-01
Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology.
Zhang, Qin
2015-07-01
Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology. PMID:25781960
Expectations and interpretations during causal learning.
Luhmann, Christian C; Ahn, Woo-Kyoung
2011-05-01
In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to expectations developed during causal learning, learners give varied interpretations to covariation information as it is encountered and that these interpretations influence the resulting causal beliefs. In Experiments 1A-1C, participants' interpretations of observations during a causal learning task were dynamic, expectation based, and, furthermore, strongly tied to subsequent causal judgments. Experiment 2 demonstrated that adding trials of joint absence or joint presence of events, whose roles have been traditionally interpreted as increasing causal strengths, could result in decreased overall causal judgments and that adding trials where one event occurs in the absence of another, whose roles have been traditionally interpreted as decreasing causal strengths, could result in increased overall causal judgments. We discuss implications for traditional models of causal learning and how a more top-down approach (e.g., Bayesian) would be more compatible with the current findings.
Expectations and Interpretations During Causal Learning
Luhmann, Christian C.; Ahn, Woo-kyoung
2012-01-01
In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to expectations developed during causal learning, learners give varied interpretations to covariation information as it is encountered and that these interpretations influence the resulting causal beliefs. In Experiments 1A–1C, participants’ interpretations of observations during a causal learning task were dynamic, expectation based, and, furthermore, strongly tied to subsequent causal judgments. Experiment 2 demonstrated that adding trials of joint absence or joint presence of events, whose roles have been traditionally interpreted as increasing causal strengths, could result in decreased overall causal judgments and that adding trials where one event occurs in the absence of another, whose roles have been traditionally interpreted as decreasing causal strengths, could result in increased overall causal judgments. We discuss implications for traditional models of causal learning and how a more top-down approach (e.g., Bayesian) would be more compatible with the current findings. PMID:21534705
Challenges to inferring causality from viral information dispersion in dynamic social networks
NASA Astrophysics Data System (ADS)
Ternovski, John
2014-06-01
Understanding the mechanism behind large-scale information dispersion through complex networks has important implications for a variety of industries ranging from cyber-security to public health. With the unprecedented availability of public data from online social networks (OSNs) and the low cost nature of most OSN outreach, randomized controlled experiments, the "gold standard" of causal inference methodologies, have been used with increasing regularity to study viral information dispersion. And while these studies have dramatically furthered our understanding of how information disseminates through social networks by isolating causal mechanisms, there are still major methodological concerns that need to be addressed in future research. This paper delineates why modern OSNs are markedly different from traditional sociological social networks and why these differences present unique challenges to experimentalists and data scientists. The dynamic nature of OSNs is particularly troublesome for researchers implementing experimental designs, so this paper identifies major sources of bias arising from network mutability and suggests strategies to circumvent and adjust for these biases. This paper also discusses the practical considerations of data quality and collection, which may adversely impact the efficiency of the estimator. The major experimental methodologies used in the current literature on virality are assessed at length, and their strengths and limits identified. Other, as-yetunsolved threats to the efficiency and unbiasedness of causal estimators--such as missing data--are also discussed. This paper integrates methodologies and learnings from a variety of fields under an experimental and data science framework in order to systematically consolidate and identify current methodological limitations of randomized controlled experiments conducted in OSNs.
ERIC Educational Resources Information Center
Carroll, Glenn R.; And Others
This document is part of a series of chapters described in SO 011 759. The chapter advocates the analysis of event-histories (data giving the number, timing, and sequence of changes in a categorical dependent variable) with maximum likelihood estimators (MLE) applied to log-linear rate models. Results from a Monte Carlo investigation of the impact…
Systemic risk and causality dynamics of the world international shipping market
NASA Astrophysics Data System (ADS)
Zhang, Xin; Podobnik, Boris; Kenett, Dror Y.; Eugene Stanley, H.
2014-12-01
Various studies have reported that many economic systems have been exhibiting an increase in the correlation between different market sectors, a factor that exacerbates the level of systemic risk. We measure this systemic risk of three major world shipping markets, (i) the new ship market, (ii) the second-hand ship market, and (iii) the freight market, as well as the shipping stock market. Based on correlation networks during three time periods, that prior to the financial crisis, during the crisis, and after the crisis, minimal spanning trees (MSTs) and hierarchical trees (HTs) both exhibit complex dynamics, i.e., different market sectors tend to be more closely linked during financial crisis. Brownian distance correlation and Granger causality test both can be used to explore the directional interconnectedness of market sectors, while Brownian distance correlation captures more dependent relationships, which are not observed in the Granger causality test. These two measures can also identify and quantify market regression periods, implying that they contain predictive power for the current crisis.
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation
Freistühler, Heinrich; Temple, Blake
2014-01-01
Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526
How to Be Causal: Time, Spacetime and Spectra
ERIC Educational Resources Information Center
Kinsler, Paul
2011-01-01
I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers-Kronig relations. The specification of causality in terms of temporal differential equations then shows us the way to write down dynamical models so that their causal nature "in the sense used here" should be obvious to all. To extend existing…
Detecting causality in complex ecosystems.
Sugihara, George; May, Robert; Ye, Hao; Hsieh, Chih-hao; Deyle, Ethan; Fogarty, Michael; Munch, Stephan
2012-10-26
Identifying causal networks is important for effective policy and management recommendations on climate, epidemiology, financial regulation, and much else. We introduce a method, based on nonlinear state space reconstruction, that can distinguish causality from correlation. It extends to nonseparable weakly connected dynamic systems (cases not covered by the current Granger causality paradigm). The approach is illustrated both by simple models (where, in contrast to the real world, we know the underlying equations/relations and so can check the validity of our method) and by application to real ecological systems, including the controversial sardine-anchovy-temperature problem.
Using dynamic noise propagation to infer causal regulatory relationships in biochemical networks.
Lipinski-Kruszka, Joanna; Stewart-Ornstein, Jacob; Chevalier, Michael W; El-Samad, Hana
2015-03-20
Cellular decision making is accomplished by complex networks, the structure of which has traditionally been inferred from mean gene expression data. In addition to mean data, quantitative measures of distributions across a population can be obtained using techniques such as flow cytometry that measure expression in single cells. The resulting distributions, which reflect a population's variability or noise, constitute a potentially rich source of information for network reconstruction. A significant portion of molecular noise in a biological process is propagated from the upstream regulators. This propagated component provides additional information about causal network connections. Here, we devise a procedure in which we exploit equations for dynamic noise propagation in a network under nonsteady state conditions to distinguish between alternate gene regulatory relationships. We test our approach in silico using data obtained from stochastic simulations as well as in vivo using experimental data collected from synthetic circuits constructed in yeast.
Toward an integrated, causal, and psychological model of climato-economics.
Loughnan, Steve; Bratanova, Boyka; Kuppens, Peter
2013-10-01
Van de Vliert puts forward a model of how climate and economics interact to shape human needs, stresses, and freedoms. Although we applaud the construction of this model, we suggest that more needs to be done. Specifically, by adopting a multi-level and experimental approach, we can develop an integrated, causal, and psychological model of climato-economics.
Critical Thinking and Political Participation: The Development and Assessment of a Causal Model.
ERIC Educational Resources Information Center
Guyton, Edith M.
An assessment of a four-stage conceptual model reveals that critical thinking has indirect positive effects on political participation through its direct effects on personal control, political efficacy, and democratic attitudes. The model establishes causal relationships among selected personality variables (self-esteem, personal control, and…
Sex and Self-Control Theory: The Measures and Causal Model May Be Different
ERIC Educational Resources Information Center
Higgins, George E.; Tewksbury, Richard
2006-01-01
This study examines the distribution differences across sexes in key measures of self-control theory and differences in a causal model. Using cross-sectional data from juveniles ("n" = 1,500), the study shows mean-level differences in many of the self-control, risky behavior, and delinquency measures. Structural equation modeling findings support…
Spatial-temporal causal modeling: a data centric approach to climate change attribution (Invited)
NASA Astrophysics Data System (ADS)
Lozano, A. C.
2010-12-01
Attribution of climate change has been predominantly based on simulations using physical climate models. These approaches rely heavily on the employed models and are thus subject to their shortcomings. Given the physical models’ limitations in describing the complex system of climate, we propose an alternative approach to climate change attribution that is data centric in the sense that it relies on actual measurements of climate variables and human and natural forcing factors. We present a novel class of methods to infer causality from spatial-temporal data, as well as a procedure to incorporate extreme value modeling into our methodology in order to address the attribution of extreme climate events. We develop a collection of causal modeling methods using spatio-temporal data that combine graphical modeling techniques with the notion of Granger causality. “Granger causality” is an operational definition of causality from econometrics, which is based on the premise that if a variable causally affects another, then the past values of the former should be helpful in predicting the future values of the latter. In its basic version, our methodology makes use of the spatial relationship between the various data points, but treats each location as being identically distributed and builds a unique causal graph that is common to all locations. A more flexible framework is then proposed that is less restrictive than having a single causal graph common to all locations, while avoiding the brittleness due to data scarcity that might arise if one were to independently learn a different graph for each location. The solution we propose can be viewed as finding a middle ground by partitioning the locations into subsets that share the same causal structures and pooling the observations from all the time series belonging to the same subset in order to learn more robust causal graphs. More precisely, we make use of relationships between locations (e.g. neighboring
A conditional Granger causality model approach for group analysis in functional MRI
Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J.; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M.; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun
2011-01-01
Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed for identifying effective connectivity in the human brain with functional MR imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pairwise GCM has commonly been applied based on single voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of an fMRI data with GCM. To compare the effectiveness of our approach with traditional pairwise GCM models, we applied a well-established conditional GCM to pre-selected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis (ICA) of an fMRI dataset in the temporal domain. Datasets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM detected brain activation regions in the emotion related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state dataset, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network (DMN) that can be characterized as both afferent and efferent influences on the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive (MVAR) model can achieve
The causal effects of Vietnam-era military service on post-war family dynamics.
Heerwig, Jennifer A; Conley, Dalton
2013-03-01
Past work has suggested a lasting impact of military service on the lives of veterans. By intervening at a critical stage in the lives of young men, service may open up opportunities for disadvantaged youth. In contrast, the negative consequences of exposure to combat may offset these presumed advantages. Induction into the military is also a nonrandom process that makes identifying the effects of service exceedingly difficult. In this study we use an instrumental variable (IV) approach to model the causal impact of Vietnam-era military service on two outcomes, marital stability and co-residence with adult offspring. We find limited evidence to suggest that military service may have a lasting effect on family life. In particular, we find that service reduces the probability of marital dissolution for white men. Service also significantly increases the probability of filial co-residence for men of other races. PMID:23347477
Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.
2015-01-01
The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318
Valente, Bruno D; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J M
2015-06-01
The term "effect" in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability.
The Impact of School Leadership on School Level Factors: Validation of a Causal Model
ERIC Educational Resources Information Center
Kruger, Meta L.; Witziers, Bob; Sleegers, Peter
2007-01-01
This study aims to contribute to a better understanding of the antecedents and effects of educational leadership, and of the influence of the principal's leadership on intervening and outcome variables. A path analysis was conducted to test and validate a causal model. The results show no direct or indirect effects of educational leadership on…
Examining a Causal Model of Early Drug Involvement Among Inner City Junior High School Youths.
ERIC Educational Resources Information Center
Dembo, Richard; And Others
Reflecting the need to construct more inclusive, socially and culturally relevant conceptions of drug use than currently exist, the determinants of drug involvement among inner-city youths within the context of a causal model were investigated. The drug involvement of the Black and Puerto Rican junior high school girls and boys was hypothesized to…
Causal Analysis to Enhance Creative Problem-Solving: Performance and Effects on Mental Models
ERIC Educational Resources Information Center
Hester, Kimberly S.; Robledo, Issac C.; Barrett, Jamie D.; Peterson, David R.; Hougen, Dean P.; Day, Eric A.; Mumford, Michael D.
2012-01-01
In recent years, it has become apparent that knowledge is a critical component of creative thought. One form of knowledge that might be particularly important to creative thought relies on the mental models people employ to understand novel, ill-defined problems. In this study, undergraduates were given training in the use of causal relationships…
Pretense, Counterfactuals, and Bayesian Causal Models: Why What Is Not Real Really Matters
ERIC Educational Resources Information Center
Weisberg, Deena S.; Gopnik, Alison
2013-01-01
Young children spend a large portion of their time pretending about non-real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative…
Theory of Mind and Social Behavior: Causal Models Tested in a Longitudinal Study.
ERIC Educational Resources Information Center
Jenkins, Jennifer M.; Astington, Janet Wilde
2000-01-01
Tested competing causal models concerning the relationship between children's social behaviors and theory of mind in 3- and 4-year-olds tested 3 times over 7 months. Found that false belief performance predicted joint planning and role assignment during pretend play, after taking into account initial performance on joint planning and role…
A Causal Model for the Development of Scientific Reasoning in Adolescents.
ERIC Educational Resources Information Center
Stuessy, Carol L.
A model for the development of scientific reasoning in adolescents was formulated largely upon the basis of Piagetian theory. Included as potential determinants of scientific reasoning were: experience; age; locus of control; field dependence-independence (FID); rigidity/flexibility; intelligence quotient (IQ); and sex. Causal relationships…
Inferring Tree Causal Models of Cancer Progression with Probability Raising
Mauri, Giancarlo; Antoniotti, Marco; Mishra, Bud
2014-01-01
Existing techniques to reconstruct tree models of progression for accumulative processes, such as cancer, seek to estimate causation by combining correlation and a frequentist notion of temporal priority. In this paper, we define a novel theoretical framework called CAPRESE (CAncer PRogression Extraction with Single Edges) to reconstruct such models based on the notion of probabilistic causation defined by Suppes. We consider a general reconstruction setting complicated by the presence of noise in the data due to biological variation, as well as experimental or measurement errors. To improve tolerance to noise we define and use a shrinkage-like estimator. We prove the correctness of our algorithm by showing asymptotic convergence to the correct tree under mild constraints on the level of noise. Moreover, on synthetic data, we show that our approach outperforms the state-of-the-art, that it is efficient even with a relatively small number of samples and that its performance quickly converges to its asymptote as the number of samples increases. For real cancer datasets obtained with different technologies, we highlight biologically significant differences in the progressions inferred with respect to other competing techniques and we also show how to validate conjectured biological relations with progression models. PMID:25299648
Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. PMID:22582739
Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.
Gopnik, Alison; Wellman, Henry M
2012-11-01
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.
Thomas, R
2006-07-01
The problem of disentangling complex dynamic systems is addressed, especially with a view to identifying those variables that take part in the essential qualitative behaviour of systems. The author presents a series of reflections about the methods of formalisation together with the principles that govern the global operation of systems. In particular, a section on circuits, nuclei, and circular causality and a rather detailed description of the analytic use of the generalised asynchronous logical description, together with a brief description of its synthetic use (OreverseO logic). Some basic rules are recalled, such as the fact that a positive circuit is a necessary condition of multistationarity. Also, the interest of considering as a model, rather than a well-defined set of differential equations, a variety of systems that differ from each other only by the values of constant terms is emphasised. All these systems have a common Jacobian matrix and for all of them phase space has exactly the same structure. It means that all can be partitioned in the same way as regards the signs of the eigenvalues and thus as regards the precise nature of any steady states that might be present. Which steady states are actually present, depends on the values of terms of order zero in the ordinary differential equations (ODEs), and it is easy to find for which values of these terms a given point in phase space is steady. Models can be synthesised first at the level of the circuits involved in the Jacobian matrix (that determines which types and numbers of steady states are consistent with the model), then only at the level of terms of order zero in the ODE's (that determines which of the steady states actually exist), hence the title 'Circular casuality'.
Joint Modeling Compliance and Outcome for Causal Analysis in Longitudinal Studies
Gao, Xin; Brown, Gregory K.; Elliott, Michael R.
2013-01-01
This article discusses joint modeling of compliance and outcome for longitudinal studies when noncompliance is present. We focus on two-arm randomized longitudinal studies in which subjects are randomized at baseline, treatment is applied repeatedly over time, and compliance behaviors and clinical outcomes are measured and recorded repeatedly over time. In the proposed Markov compliance and outcome model, we use the potential outcome framework to define pre-randomization principal strata from the joint distribution of compliance under treatment and control arms, and estimate the effect of treatment within each principal strata. Besides the causal effect of the treatment, our proposed model can estimate the impact of the causal effect of the treatment at a given time on the future compliance. Bayesian methods are used to estimate the parameters. The results are illustrated using a study assessing the effect of cognitive behavior therapy on depression. A simulation study is used to assess the repeated sampling properties of the proposed model. PMID:23576159
NASA Astrophysics Data System (ADS)
Siggiridou, Elsa; Kugiumtzis, Dimitris
2016-04-01
Granger causality has been used for the investigation of the inter-dependence structure of the underlying systems of multi-variate time series. In particular, the direct causal effects are commonly estimated by the conditional Granger causality index (CGCI). In the presence of many observed variables and relatively short time series, CGCI may fail because it is based on vector autoregressive models (VAR) involving a large number of coefficients to be estimated. In this work, the VAR is restricted by a scheme that modifies the recently developed method of backward-in-time selection (BTS) of the lagged variables and the CGCI is combined with BTS. Further, the proposed approach is compared favorably to other restricted VAR representations, such as the top-down strategy, the bottom-up strategy, and the least absolute shrinkage and selection operator (LASSO), in terms of sensitivity and specificity of CGCI. This is shown by using simulations of linear and nonlinear, low and high-dimensional systems and different time series lengths. For nonlinear systems, CGCI from the restricted VAR representations are compared with analogous nonlinear causality indices. Further, CGCI in conjunction with BTS and other restricted VAR representations is applied to multi-channel scalp electroencephalogram (EEG) recordings of epileptic patients containing epileptiform discharges. CGCI on the restricted VAR, and BTS in particular, could track the changes in brain connectivity before, during and after epileptiform discharges, which was not possible using the full VAR representation.
Modeling and Encoding Clinical Causal Relationships in a Medical Knowledge Base
Blum, Robert L.
1983-01-01
This paper presents a method for the computer modeling and encoding of clinical causal relationships (CR's). This method draws on the theory of multivariate linear models and path analysis. The representation was used to encode medical CR's derived empirically from a clinical database by the RX computer project described in SCAMC82. The emphasis in the representation is on capturing the intensities of effects and the variation in the effects across a patient population. This information is used by RX in determining the validity of other CR's. The representation uses a directed graph formalism in which the nodes are frames and the arcs contain seven descriptive features of individual CR's: intensity, distribution, direction, mathematical form, setting, validity, and evidence. Because natural systems (such as the human body) are inherently probabilistic, linear models are useful in representing causal flow in them.
NASA Astrophysics Data System (ADS)
Besson, Ugo
2010-03-01
This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought and daily life, it has long been the subject of debate and criticism among philosophers and scientists. In this paper, I begin by providing a description of some general tendencies of common reasoning that have been identified by didactic research. Thereafter, I briefly discuss the role of causality in science, as well as some different types of explanation employed in the field of physics. I then present some results of a study examining the causal reasoning used by students in solid and fluid mechanics. The differences found between the types of reasoning typical of common thought and those usually proposed during instruction can create learning difficulties and impede student motivation. Many students do not seem satisfied by the mere application of formal laws and functional relations. Instead, they express the need for a causal explanation, a mechanism that allows them to understand how a state of affairs has come about. I discuss few didactic strategies aimed at overcoming these problems, and describe, in general terms, two examples of mechanics teaching sequences which were developed and tested in different contexts. The paper ends with a reflection on the possible role to be played in physics learning by intuitive and imaginative thought, and the use of simple explanatory models based on physical analogies and causal mechanisms.
De Stavola, Bianca L.; Daniel, Rhian M.; Ploubidis, George B.; Micali, Nadia
2015-01-01
The study of mediation has a long tradition in the social sciences and a relatively more recent one in epidemiology. The first school is linked to path analysis and structural equation models (SEMs), while the second is related mostly to methods developed within the potential outcomes approach to causal inference. By giving model-free definitions of direct and indirect effects and clear assumptions for their identification, the latter school has formalized notions intuitively developed in the former and has greatly increased the flexibility of the models involved. However, through its predominant focus on nonparametric identification, the causal inference approach to effect decomposition via natural effects is limited to settings that exclude intermediate confounders. Such confounders are naturally dealt with (albeit with the caveats of informality and modeling inflexibility) in the SEM framework. Therefore, it seems pertinent to revisit SEMs with intermediate confounders, armed with the formal definitions and (parametric) identification assumptions from causal inference. Here we investigate: 1) how identification assumptions affect the specification of SEMs, 2) whether the more restrictive SEM assumptions can be relaxed, and 3) whether existing sensitivity analyses can be extended to this setting. Data from the Avon Longitudinal Study of Parents and Children (1990–2005) are used for illustration. PMID:25504026
Bayesian modeling for linking causally related observations in chest X-ray reports.
Chapman, W. W.; Haug, P. J.
1998-01-01
Our natural language understanding system outputs a list of diseases, findings, and appliances found in a chest x-ray report. The system described in this paper links those diseases and findings that are causally related. Using Bayesian networks to model the conceptual and diagnostic information found in a chest x-ray we are able to infer more specific information about the findings that are linked to diseases. PMID:9929287
Causal effect models for realistic individualized treatment and intention to treat rules.
van der Laan, Mark J; Petersen, Maya L
2007-01-01
Marginal structural models (MSM) are an important class of models in causal inference. Given a longitudinal data structure observed on a sample of n independent and identically distributed experimental units, MSM model the counterfactual outcome distribution corresponding with a static treatment intervention, conditional on user-supplied baseline covariates. Identification of a static treatment regimen-specific outcome distribution based on observational data requires, beyond the standard sequential randomization assumption, the assumption that each experimental unit has positive probability of following the static treatment regimen. The latter assumption is called the experimental treatment assignment (ETA) assumption, and is parameter-specific. In many studies the ETA is violated because some of the static treatment interventions to be compared cannot be followed by all experimental units, due either to baseline characteristics or to the occurrence of certain events over time. For example, the development of adverse effects or contraindications can force a subject to stop an assigned treatment regimen.In this article we propose causal effect models for a user-supplied set of realistic individualized treatment rules. Realistic individualized treatment rules are defined as treatment rules which always map into the set of possible treatment options. Thus, causal effect models for realistic treatment rules do not rely on the ETA assumption and are fully identifiable from the data. Further, these models can be chosen to generalize marginal structural models for static treatment interventions. The estimating function methodology of Robins and Rotnitzky (1992) (analogue to its application in Murphy, et. al. (2001) for a single treatment rule) provides us with the corresponding locally efficient double robust inverse probability of treatment weighted estimator.In addition, we define causal effect models for "intention-to-treat" regimens. The proposed intention
Causal connectivity of evolved neural networks during behavior.
Seth, Anil K
2005-03-01
To show how causal interactions in neural dynamics are modulated by behavior, it is valuable to analyze these interactions without perturbing or lesioning the neural mechanism. This paper proposes a method, based on a graph-theoretic extension of vector autoregressive modeling and 'Granger causality,' for characterizing causal interactions generated within intact neural mechanisms. This method, called 'causal connectivity analysis' is illustrated via model neural networks optimized for controlling target fixation in a simulated head-eye system, in which the structure of the environment can be experimentally varied. Causal connectivity analysis of this model yields novel insights into neural mechanisms underlying sensorimotor coordination. In contrast to networks supporting comparatively simple behavior, networks supporting rich adaptive behavior show a higher density of causal interactions, as well as a stronger causal flow from sensory inputs to motor outputs. They also show different arrangements of 'causal sources' and 'causal sinks': nodes that differentially affect, or are affected by, the remainder of the network. Finally, analysis of causal connectivity can predict the functional consequences of network lesions. These results suggest that causal connectivity analysis may have useful applications in the analysis of neural dynamics. PMID:16350433
From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology
Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.
2015-01-01
In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.
Duckworth, Angela Lee; Tsukayama, Eli; May, Henry
2010-01-01
The predictive validity of personality for important life outcomes is well established, but conventional longitudinal analyses cannot rule out the possibility that unmeasured third-variable confounds fully account for the observed relationships. Longitudinal hierarchical linear models (HLM) with time-varying covariates allow each subject to serve as his or her own control, thus eliminating between-individual confounds. HLM also allows the directionality of the causal relationship to be tested by reversing time-lagged predictor and outcome variables. We illustrate these techniques through a series of models that demonstrate that within-individual changes in self-control over time predict subsequent changes in GPA but not vice-versa. The evidence supporting a causal role for self-control was not moderated by IQ, gender, ethnicity, or income. Further analyses rule out one time-varying confound: self-esteem. The analytic approach taken in this study provides the strongest evidence to date for the causal role of self-control in determining achievement. PMID:20976121
Hardeman, Wendy; Sutton, Stephen; Griffin, Simon; Johnston, Marie; White, Anthony; Wareham, Nicholas J; Kinmonth, Ann Louise
2005-12-01
Theory-based intervention programmes to support health-related behaviour change aim to increase health impact and improve understanding of mechanisms of behaviour change. However, the science of intervention development remains at an early stage. We present a causal modelling approach to developing complex interventions for evaluation in randomized trials. In this approach a generic model links behavioural determinants, causally through behaviour, to physiological and biochemical variables, and health outcomes. It is tailored to context, target population, behaviours and health outcomes. The development of a specific causal model based on theory and evidence is illustrated by the ProActive programme, supporting increased physical activity among individuals at risk of Type 2 diabetes. The model provides a rational guide to appropriate measures, intervention points and intervention techniques, and can be tested quantitatively. Causal modelling is critically compared to other approaches to intervention development and evaluation, and research directions are indicated.
Bassani, Tito; Bari, Vlasta; Marchi, Andrea; Tassin, Stefano; Dalla Vecchia, Laura; Canesi, Margherita; Barbic, Franca; Furlan, Raffaello; Porta, Alberto
2014-07-01
We tested the hypothesis that causality analysis, applied to the spontaneous beat-to-beat variability of heart period (HP) and systolic arterial pressure (SAP), can identify the improvement of autonomic control linked to plantar mechanical stimulation in patients with Parkinson's disease (PD). A causality index, measuring the strength of the association from SAP to HP variability, and derived according to the Granger paradigm (i.e. SAP causes HP if the inclusion of SAP into the set of signals utilized to describe cardiovascular interactions improves the prediction of HP series), was calculated using both linear model-based (MB) and nonlinear model-free (MF) approaches. Univariate HP and SAP variability indices in time and frequency domains, and bivariate descriptors of the HP-SAP variability interactions were computed as well. We studied ten PD patients (age range: 57-78 years; Hoehn-Yahr scale: 2-3; six males, four females) without orthostatic hypotension or symptoms of orthostatic intolerance and 'on-time' according to their habitual pharmacological treatment. PD patients underwent recordings at rest in a supine position and during a head-up tilt before, and 24 h after, mechanical stimulation was applied to the plantar surface of both feet. The MF causality analysis indicated a greater involvement of baroreflex in regulating HP-SAP variability interactions after mechanical stimulation. Remarkably, MB causality and more traditional univariate or bivariate techniques could not detect changes in cardiovascular regulation after mechanical stimulation, thus stressing the importance of accounting for nonlinear dynamics in PD patients. Due to the higher statistical power of MF causality we suggest its exploitation to monitor the baroreflex control improvement in PD patients, and we encourage the clinical application of the Granger causality approach to evaluate the modification of the autonomic control in relation to the application of a pharmacological treatment, a
Combining FDI and AI approaches within causal-model-based diagnosis.
Gentil, Sylviane; Montmain, Jacky; Combastel, Christophe
2004-10-01
This paper presents a model-based diagnostic method designed in the context of process supervision. It has been inspired by both artificial intelligence and control theory. AI contributes tools for qualitative modeling, including causal modeling, whose aim is to split a complex process into elementary submodels. Control theory, within the framework of fault detection and isolation (FDI), provides numerical models for generating and testing residuals, and for taking into account inaccuracies in the model, unknown disturbances and noise. Consistency-based reasoning provides a logical foundation for diagnostic reasoning and clarifies fundamental assumptions, such as single fault and exoneration. The diagnostic method presented in the paper benefits from the advantages of all these approaches. Causal modeling enables the method to focus on sufficient relations for fault isolation, which avoids combinatorial explosion. Moreover, it allows the model to be modified easily without changing any aspect of the diagnostic algorithm. The numerical submodels that are used to detect inconsistency benefit from the precise quantitative analysis of the FDI approach. The FDI models are studied in order to link this method with DX component-oriented reasoning. The recursive on-line use of this algorithm is explained and the concept of local exoneration is introduced.
Wickramasekara, S.
2009-07-15
We construct two rigged Hilbert spaces that furnish differentiable representations of the causal Poincare semigroup. These rigged Hilbert spaces provide the mathematical foundation for a theory of relativistic quasistable states that synthesizes the S-matrix description of resonance scattering with the Bakamjian-Thomas construction for interacting relativistic quantum systems.
NASA Astrophysics Data System (ADS)
Klarenberg, G.
2015-12-01
Infrastructure projects such as road paving have proven to bring a variety of (mainly) socio-economic advantages to countries and populations. However, many studies have also highlighted the negative socio-economic and biophysical effects that these developments have at local, regional and even larger scales. The "MAP" area (Madre de Dios in Peru, Acre in Brazil, and Pando in Bolivia) is a biodiversity hotspot in the southwestern Amazon where sections of South America's Inter-Oceanic Highway were paved between 2006 and 2010. We are interested in vegetation dynamics in the area since it plays an important role in ecosystem functions and ecosystem services in socio-ecological systems: it provides information on productivity and structure of the forest. In preparation of more complex and mechanistic simulation of vegetation, non-linear time series analysis and Dynamic Factor Analysis (DFA) was conducted on Enhanced Vegetation Index (EVI) time series - which is a remote sensing product and provides information on vegetation dynamics as it detects chlorophyll (productivity) and structural change. Time series of 30 years for EVI2 (from MODIS and AVHRR) were obtained for 100 communities in the area. Through specific time series cluster analysis of the vegetation data, communities were clustered to facilitate data analysis and pattern recognition. The clustering is spatially consistent, and appears to be driven by median road paving progress - which is different for each cluster. Non-linear time series analysis (multivariate singular spectrum analysis, MSSA) separates common signals (or low-dimensional attractors) across clusters. Despite the presence of this deterministic structure though, time series behavior is mostly stochastic. Granger causality analysis between EVI2 and possible response variables indicates which variables (and with what lags) are to be included in DFA, resulting in unique Dynamic Factor Models for each cluster.
Hindsight bias doesn't always come easy: causal models, cognitive effort, and creeping determinism.
Nestler, Steffen; Blank, Hartmut; von Collani, Gernot
2008-09-01
Creeping determinism, a form of hindsight bias, refers to people's hindsight perceptions of events as being determined or inevitable. This article proposes, on the basis of a causal-model theory of creeping determinism, that the underlying processes are effortful, and hence creeping determinism should disappear when individuals lack the cognitive resources to make sense of an outcome. In Experiments 1 and 2, participants were asked to read a scenario while they were under either low or high processing load. Participants who had the cognitive resources to make sense of the outcome perceived it as more probable and necessary than did participants under high processing load or participants who did not receive outcome information. Experiment 3 was designed to separate 2 postulated subprocesses and showed that the attenuating effect of processing load on hindsight bias is not due to a disruption of the retrieval of potential causal antecedents but to a disruption of their evaluation. Together the 3 experiments show that the processes underlying creeping determinism are effortful, and they highlight the crucial role of causal reasoning in the perception of past events.
A Causal, Data-driven Approach to Modeling the Kepler Data
NASA Astrophysics Data System (ADS)
Wang, Dun; Hogg, David W.; Foreman-Mackey, Daniel; Schölkopf, Bernhard
2016-09-01
Astronomical observations are affected by several kinds of noise, each with its own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. The precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here, we present the causal pixel model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level so that it can capture very fine-grained information about the variation of the spacecraft. The CPM models the systematic effects in the time series of a pixel using the pixels of many other stars and the assumption that any shared signal in these causally disconnected light curves is caused by instrumental effects. In addition, we use the target star’s future and past (autoregression). By appropriately separating, for each data point, the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the model. The method has four tuning parameters—the number of predictor stars or pixels, the autoregressive window size, and two L2-regularization amplitudes for model components, which we set by cross-validation. We determine values for tuning parameters that works well for most of the stars and apply the method to a corresponding set of target stars. We find that CPM can consistently produce low-noise light curves. In this paper, we demonstrate that pixel-level de-trending is possible while retaining transit signals, and we think that methods like CPM are generally applicable and might be useful for K2, TESS, etc., where the data are not clean postage stamps like Kepler.
Alanko, Katarina; Santtila, Pekka; Salo, Benny; Jern, Patrik; Johansson, Ada; Sandnabba, N Kenneth
2011-06-01
An association between childhood gender atypical behaviour (GAB) and a negative parent-child relationship has been demonstrated in several studies, yet the causal relationship of this association is not fully understood. In the present study, different models of causation between childhood GAB and parent-child relationships were tested. Direction of causation modelling was applied to twin data from a population-based sample (n= 2,565) of Finnish 33- to 43-year-old twins. Participants completed retrospective self-report questionnaires. Five different models of causation were then fitted to the data: GAB → parent-child relationship, parent-child relationship → GAB, reciprocal causation, a bivariate genetic model, and a model assuming no correlation. It was found that a model in which GAB and quality of mother-child, and father-child relationship reciprocally affect each other best fitted the data. The findings are discussed in light of how we should understand, including causality, the association between GAB and parent-child relationship.
NASA Astrophysics Data System (ADS)
Ledesma, Ragnar; Bayo, Eduardo
1993-08-01
A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive Lagrangian approach is used in formulating the equations of motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.
The Reactive-Causal Architecture: Introducing an Emotion Model along with Theories of Needs
NASA Astrophysics Data System (ADS)
Aydin, Ali Orhan; Orgun, Mehmet Ali
In the entertainment application area, one of the major aims is to develop believable agents. To achieve this aim, agents should be highly autonomous, situated, flexible, and display affect. The Reactive-Causal Architecture (ReCau) is proposed to simulate these core attributes. In its current form, ReCau cannot explain the effects of emotions on intelligent behaviour. This study aims is to further improve the emotion model of ReCau to explain the effects of emotions on intelligent behaviour. This improvement allows ReCau to be emotional to support the development of believable agents.
Caprariello, Peter A.; Cuddy, Amy J. C.; Fiske, Susan T.
2013-01-01
The stereotype content model (SCM) posits that social structure predicts specific cultural stereotypes and associated emotional prejudices. No prior evidence at a societal level has manipulated both structural predictors and measured both stereotypes and prejudices. In the present study, participants (n = 120) responded to an immigration scenario depicting a high- or low-status group, competitive or not competitive, and rated their likely stereotype (on warmth and competence) and elicited emotional prejudices (admiration, contempt, envy, and pity). Seven of eight specific predictions are fully confirmed, supporting the SCM's predicted causality for social structural effects on cultural stereotypes and emotional prejudices. PMID:24285928
Modulating reconsolidation: a link to causal systems-level dynamics of human memories.
Sandrini, Marco; Cohen, Leonardo G; Censor, Nitzan
2015-08-01
A vital property of the brain is its plasticity, which manifests as changes in behavioral performance. Invasive studies at the cellular level in animal models reveal time-restricted windows during which existing memories that are reactivated become susceptible to modification through reconsolidation, and evidence suggests similar effects in humans. In this review we summarize recent work utilizing noninvasive brain stimulation in humans to uncover the systems-level mechanisms underlying memory reconsolidation. This novel understanding of memory dynamics may have far-reaching clinical implications, including the potential to modulate reconsolidation in patients with memory disorders.
Streja, Elani; Park, Jongha; Chan, Ting-Yan; Lee, Janet; Soohoo, Melissa; Rhee, Connie M.; Arah, Onyebuchi A.; Kalantar-Zadeh, Kamyar
2016-01-01
It has been previously reported that a higher erythropoiesis stimulating agent (ESA) dose in hemodialysis patients is associated with adverse outcomes including mortality; however the causal relationship between ESA and mortality is still hotly debated. We hypothesize ESA dose indeed exhibits a direct linear relationship with mortality in models of association implementing the use of a marginal structural model (MSM), which controls for time-varying confounding and examines causality in the ESA dose-mortality relationship. We conducted a retrospective cohort study of 128 598 adult hemodialysis patients over a 5-year follow-up period to evaluate the association between weekly ESA (epoetin-α) dose and mortality risk. A MSM was used to account for baseline and time-varying covariates especially laboratory measures including hemoglobin level and markers of malnutrition-inflammation status. There was a dose-dependent positive association between weekly epoetin-α doses ≥18 000 U/week and mortality risk. Compared to ESA dose of <6 000 U/week, adjusted odds ratios (95% confidence interval) were 1.02 (0.94–1.10), 1.08 (1.00–1.18), 1.17 (1.06–1.28), 1.27 (1.15–1.41), and 1.52 (1.37–1.69) for ESA dose of 6 000 to <12 000, 12 000 to <18 000, 18 000 to <24 000, 24 000 to <30 000, and ≥30 000 U/week, respectively. High ESA dose may be causally associated with excessive mortality, which is supportive of guidelines which advocate for conservative management of ESA dosing regimen in hemodialysis patients. PMID:27298736
Darwin's diagram of divergence of taxa as a causal model for the origin of species.
Bouzat, Juan L
2014-03-01
On the basis that Darwin's theory of evolution encompasses two logically independent processes (common descent and natural selection), the only figure in On the Origin of Species (the Diagram of Divergence of Taxa) is often interpreted as illustrative of only one of these processes: the branching patterns representing common ancestry. Here, I argue that Darwin's Diagram of Divergence of Taxa represents a broad conceptual model of Darwin's theory, illustrating the causal efficacy of natural selection in producing well-defined varieties and ultimately species. The Tree Diagram encompasses the idea that natural selection explains common descent and the origin of organic diversity, thus representing a comprehensive model of Darwin's theory on the origin of species. I describe Darwin's Tree Diagram in relation to his argumentative strategy under the vera causa principle, and suggest that the testing of his theory based on the evidence from the geological record, the geographical distribution of organisms, and the mutual affinities of organic beings can be framed under the hypothetico-deductive method. Darwin's Diagram of Divergence of Taxa therefore represents a broad conceptual model that helps understanding the causal construction of Darwin's theory of evolution, the structure of his argumentative strategy, and the nature of his scientific methodology.
Exploratory Causal Analysis in Bivariate Time Series Data
NASA Astrophysics Data System (ADS)
McCracken, James M.
Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data
Tsonis, Anastasios A; Deyle, Ethan R; May, Robert M; Sugihara, George; Swanson, Kyle; Verbeten, Joshua D; Wang, Geli
2015-03-17
As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR) [Ney ER (1959) Nature 183:451-452]. Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research [Duplissy J, et al. (2010) Atmos Chem Phys 10:1635-1647; Kirkby J, et al. (2011) Nature 476(7361):429-433] and elsewhere [Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI (2007) Proc R Soc A 463:385-396; Enghoff MB, Pedersen JOP, Uggerhoj UI, Paling SM, Svensmark H (2011) Geophys Res Lett 38:L09805], demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we find no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. However, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.
Tsonis, Anastasios A; Deyle, Ethan R; May, Robert M; Sugihara, George; Swanson, Kyle; Verbeten, Joshua D; Wang, Geli
2015-03-17
As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR) [Ney ER (1959) Nature 183:451-452]. Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research [Duplissy J, et al. (2010) Atmos Chem Phys 10:1635-1647; Kirkby J, et al. (2011) Nature 476(7361):429-433] and elsewhere [Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI (2007) Proc R Soc A 463:385-396; Enghoff MB, Pedersen JOP, Uggerhoj UI, Paling SM, Svensmark H (2011) Geophys Res Lett 38:L09805], demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we find no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. However, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales. PMID:25733877
Comparing two causal models of career maturity for hearing-impaired adolescents.
King, S
1990-01-01
Conte (1983) suggested that existing theories of career development are inadequate for disabled populations because they fail to take into consideration the special life events and characteristics of people with a disability. The purpose of this study was to determine if Conte's reservations about contemporary theories could be supported by data. To this end, two causal models of career development were developed: one with five variables unique to the experience of the hearing impaired and the other without. Using data collected from 71 hearing-impaired adolescents, path analyses were conducted and the two models were compared for their ability to explain variance in career maturity. The results suggest that, although the second model may be more descriptive of the career development process for the deaf, it is no more powerful than the first in explaining variance in career maturity. PMID:2346105
Effective coping with stroke disability in a community setting: the development of a causal model.
Boynton De Sepulveda, L I; Chang, B
1994-08-01
A proposed causal model based upon Lazarus' theory of psychological stress and coping was tested in a sample of 75 persons disabled by stroke. Coping constraints such as demographic and stroke factors were hypothesized to affect resources (perceived availability of social support, perceived effectiveness of social support, social contact), stress appraisal, coping behavior and coping effectiveness. Although the model did not fit the data, several path coefficients within the model were statistically significant. Functional status was positively related to resources and negatively related to the stressor. Resources were negatively related to the stressor and positively related to coping effectiveness. It was noted that the buffering effect of social support was related to the level of disability of the stroke person. Persons with functional disability following stroke also had decreased social contact, perceived less availability of social resources and increased threat to physical well-being, and had reduced coping effectiveness.
Reid, David D.
2009-07-06
A key postulate of the causal set program is that this discrete partial order offers a sufficiently rich structure to make it a viable model of spacetime for quantum gravity. If the deep structure of spacetime is that of a causal set, then the correspondence principle (with the spacetimes of general relativity) must be obeyed. Therefore, one of the requirements of this program is to establish that the causal set structure is in fact, not just in principle, fully consistent with our macroscopic notion of spacetime as a Lorentzian manifold. An important component of any such 'manifold test' is the ability to find embeddings of causal sets into Lorentzian manifolds.
Promoting the organ donor card: a causal model of persuasion effects.
Skumanich, S A; Kintsfather, D P
1996-08-01
Due to the present critical shortage of donor organs available for transplantation, effective communication strategies are necessary to heighten public commitment to donation. The promotion of organ donor card-signing may be a successful vehicle in the achievement of this goal. Based on the Elaboration Likelihood Model of persuasion effects, evidence of the motivation for organ donor card-signing, and examination of previous donation message tests, this study proposes and tests a causal model of response to organ donor card appeals. The inter-relationship of values, empathy arousal, and issue involvement was found to be a significant driving force in the persuasive process for the behavioral intention to sign an organ donor card. Implications of these findings for future research are addressed.
Chacko, S B; Huba, M E
1991-06-01
This article tested relationships among variables depicted in a causal learning model of academic achievement developed by the authors. The Learning and Study Skills (LASSI), Life Experience Survey (LES), and ASSET test were administered to 134 first-semester nursing students at a 2-year community college. The path analysis supported 11 of the 14 pathways tested. Language ability, reading ability, and self-efficacy were found to be direct effects on academic achievement. When self-efficacy was the criterion, students' language ability, math ability, motivation, and concentration and preparation for class were direct effects. Life stress, motivation, and self-monitoring/use of study strategies were found to be direct effects on students' concentration and preparation for class. In turn, when the ability to self-monitor and use study strategies was the criterion, motivation was the only direct effect. Overall, the model explained 46% of the variance in academic achievement.
Guarnera, Enrico; Berezovsky, Igor N
2016-03-01
Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design. PMID:26939022
Guarnera, Enrico; Berezovsky, Igor N
2016-03-01
Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design.
Guarnera, Enrico; Berezovsky, Igor N.
2016-01-01
Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design. PMID:26939022
Causal modeling of secondary science students' intentions to enroll in physics
NASA Astrophysics Data System (ADS)
Crawley, Frank E.; Black, Carolyn B.
The purpose of this study was to explore the utility of the theory of planned behavior model developed by social psychologists for understanding and predicting the behavioral intentions of secondary science students regarding enrolling in physics. In particular, the study used a three-stage causal model to investigate the links from external variables to behavioral, normative, and control beliefs; from beliefs to attitudes, subjective norm, and perceived behavioral control; and from attitudes, subjective norm, and perceived behavioral control to behavioral intentions. The causal modeling method was employed to verify the underlying causes of secondary science students' interest in enrolling physics as predicted in the theory of planned behavior. Data were collected from secondary science students (N = 264) residing in a central Texas city who were enrolled in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade) courses. Cause-and-effect relationships were analyzed using path analysis to test the direct effects of model variables specified in the theory of planned behavior. Results of this study indicated that students' intention to enroll in a high school physics course was determined by their attitude toward enrollment and their degree of perceived behavioral control. Attitude, subjective norm, and perceived behavioral control were, in turn, formed as a result of specific beliefs that students held about enrolling in physics. Grade level and career goals were found to be instrumental in shaping students' attitude. Immediate family members were identified as major referents in the social support system for enrolling in physics. Course and extracurricular conflicts and the fear of failure were shown to be the primary beliefs obstructing students' perception of control over physics enrollment. Specific recommendations are offered to researchers and practitioners for strengthening secondary school students
Tonglet, R.; Mudosa, M.; Badashonderana, M.; Beghin, I.; Hennart, P.
1992-01-01
Reported are the results of a case study from Kirotshe rural health district, Northern Kivu, Zaire, where a workshop on the causal model approach to nutrition was organized in 1987. The model has since been used in the field for research design, training of health professionals, nutrition intervention, and community development. The rationale behind this approach is reviewed, the experience accumulated from Kirotshe district is described, and the ways in which the causal model contributes to comprehensive health and nutrition care are discussed. The broad range of possible policy implications of this approach underlines its usefulness for future action. PMID:1486667
Korzeniewska, Anna; Franaszczuk, Piotr J; Crainiceanu, Ciprian M; Kuś, Rafał; Crone, Nathan E
2011-06-15
Intracranial EEG studies in humans have shown that functional brain activation in a variety of functional-anatomic domains of human cortex is associated with an increase in power at a broad range of high gamma (>60Hz) frequencies. Although these electrophysiological responses are highly specific for the location and timing of cortical processing and in animal recordings are highly correlated with increased population firing rates, there has been little direct empirical evidence for causal interactions between different recording sites at high gamma frequencies. Such causal interactions are hypothesized to occur during cognitive tasks that activate multiple brain regions. To determine whether such causal interactions occur at high gamma frequencies and to investigate their functional significance, we used event-related causality (ERC) analysis to estimate the dynamics, directionality, and magnitude of event-related causal interactions using subdural electrocorticography (ECoG) recorded during two word production tasks: picture naming and auditory word repetition. A clinical subject who had normal hearing but was skilled in American Signed Language (ASL) provided a unique opportunity to test our hypothesis with reference to a predictable pattern of causal interactions, i.e. that language cortex interacts with different areas of sensorimotor cortex during spoken vs. signed responses. Our ERC analyses confirmed this prediction. During word production with spoken responses, perisylvian language sites had prominent causal interactions with mouth/tongue areas of motor cortex, and when responses were gestured in sign language, the most prominent interactions involved hand and arm areas of motor cortex. Furthermore, we found that the sites from which the most numerous and prominent causal interactions originated, i.e. sites with a pattern of ERC "divergence", were also sites where high gamma power increases were most prominent and where electrocortical stimulation mapping
NASA Technical Reports Server (NTRS)
Bellan, J.
1979-01-01
A practical situation of an enclosure fire is presented and why the need for a fire dynamic model is addressed. The difficulties in establishing a model are discussed, along with a brief review of enclosure fire models available. The approximation of the practical situation and the model developed are presented.
Admon, Roee; Milad, Mohammed R; Hendler, Talma
2013-07-01
Discriminating neural abnormalities into the causes versus consequences of psychopathology would enhance the translation of neuroimaging findings into clinical practice. By regarding the traumatic encounter as a reference point for disease onset, neuroimaging studies of post-traumatic stress disorder (PTSD) can potentially allocate PTSD neural abnormalities to either predisposing (pre-exposure) or acquired (post-exposure) factors. Based on novel research strategies in PTSD neuroimaging, including genetic, environmental, twin, and prospective studies, we provide a causal model that accounts for neural abnormalities in PTSD, and outline its clinical implications. Current data suggest that abnormalities within the amygdala and dorsal anterior cingulate cortex represent predisposing risk factors for developing PTSD, whereas dysfunctional hippocampal-ventromedial prefrontal cortex (vmPFC) interactions may become evident only after having developed the disorder.
Naimi, Ashley I.; Richardson, David B.; Cole, Stephen R.
2013-01-01
In a recent issue of the Journal, Kirkeleit et al. (Am J Epidemiol. 2013;177(11):1218–1224) provided empirical evidence for the potential of the healthy worker effect in a large cohort of Norwegian workers across a range of occupations. In this commentary, we provide some historical context, define the healthy worker effect by using causal diagrams, and use simulated data to illustrate how structural nested models can be used to estimate exposure effects while accounting for the healthy worker survivor effect in 4 simple steps. We provide technical details and annotated SAS software (SAS Institute, Inc., Cary, North Carolina) code corresponding to the example analysis in the Web Appendices, available at http://aje.oxfordjournals.org/. PMID:24077092
ERIC Educational Resources Information Center
Tighe, Elizabeth L.; Wagner, Richard K.; Schatschneider, Christopher
2015-01-01
This study demonstrates the utility of applying a causal indicator modeling framework to investigate important predictors of reading comprehension in third, seventh, and tenth grade students. The results indicated that a 4-factor multiple indicator multiple indicator cause (MIMIC) model of reading comprehension provided adequate fit at each grade…
Nonlinear connectivity by Granger causality.
Marinazzo, Daniele; Liao, Wei; Chen, Huafu; Stramaglia, Sebastiano
2011-09-15
The communication among neuronal populations, reflected by transient synchronous activity, is the mechanism underlying the information processing in the brain. Although it is widely assumed that the interactions among those populations (i.e. functional connectivity) are highly nonlinear, the amount of nonlinear information transmission and its functional roles are not clear. The state of the art to understand the communication between brain systems are dynamic causal modeling (DCM) and Granger causality. While DCM models nonlinear couplings, Granger causality, which constitutes a major tool to reveal effective connectivity, and is widely used to analyze EEG/MEG data as well as fMRI signals, is usually applied in its linear version. In order to capture nonlinear interactions between even short and noisy time series, a few approaches have been proposed. We review them and focus on a recently proposed flexible approach has been recently proposed, consisting in the kernel version of Granger causality. We show the application of the proposed approach on EEG signals and fMRI data.
Wang, Chi; Dominici, Francesca; Parmigiani, Giovanni; Zigler, Corwin Matthew
2015-09-01
Confounder selection and adjustment are essential elements of assessing the causal effect of an exposure or treatment in observational studies. Building upon work by Wang et al. (2012, Biometrics 68, 661-671) and Lefebvre et al. (2014, Statistics in Medicine 33, 2797-2813), we propose and evaluate a Bayesian method to estimate average causal effects in studies with a large number of potential confounders, relatively few observations, likely interactions between confounders and the exposure of interest, and uncertainty on which confounders and interaction terms should be included. Our method is applicable across all exposures and outcomes that can be handled through generalized linear models. In this general setting, estimation of the average causal effect is different from estimation of the exposure coefficient in the outcome model due to noncollapsibility. We implement a Bayesian bootstrap procedure to integrate over the distribution of potential confounders and to estimate the causal effect. Our method permits estimation of both the overall population causal effect and effects in specified subpopulations, providing clear characterization of heterogeneous exposure effects that may vary considerably across different covariate profiles. Simulation studies demonstrate that the proposed method performs well in small sample size situations with 100-150 observations and 50 covariates. The method is applied to data on 15,060 US Medicare beneficiaries diagnosed with a malignant brain tumor between 2000 and 2009 to evaluate whether surgery reduces hospital readmissions within 30 days of diagnosis.
Wang, Chi; Dominici, Francesca; Parmigiani, Giovanni; Zigler, Corwin Matthew
2015-01-01
Summary Confounder selection and adjustment are essential elements of assessing the causal effect of an exposure or treatment in observational studies. Building upon work by Wang et al. (2012) and Lefebvre et al. (2014), we propose and evaluate a Bayesian method to estimate average causal effects in studies with a large number of potential confounders, relatively few observations, likely interactions between confounders and the exposure of interest, and uncertainty on which confounders and interaction terms should be included. Our method is applicable across all exposures and outcomes that can be handled through generalized linear models. In this general setting, estimation of the average causal effect is different from estimation of the exposure coefficient in the outcome model due to non-collapsibility. We implement a Bayesian bootstrap procedure to integrate over the distribution of potential confounders and to estimate the causal effect. Our method permits estimation of both the overall population causal effect and effects in specified subpopulations, providing clear characterization of heterogeneous exposure effects that may vary considerably across different covariate profiles. Simulation studies demonstrate that the proposed method performs well in small sample size situations with 100 to 150 observations and 50 covariates. The method is applied to data on 15060 US Medicare beneficiaries diagnosed with a malignant brain tumor between 2000 and 2009 to evaluate whether surgery reduces hospital readmissions within thirty days of diagnosis. PMID:25899155
ERIC Educational Resources Information Center
Walsh, Jim; McGehee, Richard
2013-01-01
A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…
Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System.
BozorgMagham, Amir E; Motesharrei, Safa; Penny, Stephen G; Kalnay, Eugenia
2015-01-01
Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic-constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined.
Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System.
BozorgMagham, Amir E; Motesharrei, Safa; Penny, Stephen G; Kalnay, Eugenia
2015-01-01
Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic-constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157
Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System
BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia
2015-01-01
Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157
Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.
2015-01-01
Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of
Programs as Causal Models: Speculations on Mental Programs and Mental Representation
ERIC Educational Resources Information Center
Chater, Nick; Oaksford, Mike
2013-01-01
Judea Pearl has argued that counterfactuals and causality are central to intelligence, whether natural or artificial, and has helped create a rich mathematical and computational framework for formally analyzing causality. Here, we draw out connections between these notions and various current issues in cognitive science, including the nature of…
Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates
ERIC Educational Resources Information Center
Bollen, Kenneth A.; Bauldry, Shawn
2011-01-01
In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of…
ERIC Educational Resources Information Center
Gobert, Janice D.; Clement, John J.
1999-01-01
Grade five students' (n=58) conceptual understanding of plate tectonics was measured by analysis of student-generated summaries and diagrams, and by posttest assessment of both the spatial/static and causal/dynamic aspects of the domain. The diagram group outperformed the summary and text-only groups on the posttest measures. Discusses the effects…
Calibrating the pixel-level Kepler imaging data with a causal data-driven model
NASA Astrophysics Data System (ADS)
Wang, Dun; Foreman-Mackey, Daniel; Hogg, David W.; Schölkopf, Bernhard
2015-01-01
In general, astronomical observations are affected by several kinds of noise, each with it's own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. In particular, the precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here we present the Causal Pixel Model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level (not the photometric measurement level); it can capture more fine-grained information about the variation of the spacecraft than is available in the pixel-summed aperture photometry. The basic idea is that CPM predicts each target pixel value from a large number of pixels of other stars sharing the instrument variabilities while not containing any information on possible transits at the target star. In addition, we use the target star's future and past (auto-regression). By appropriately separating the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the fitting of the model. The method has four hyper-parameters (the number of predictor stars, the auto-regressive window size, and two L2-regularization amplitudes for model components), which we set by cross-validation. We determine a generic set of hyper-parameters that works well on most of the stars with 11≤V≤12 mag and apply the method to a corresponding set of target stars with known planet transits. We find that we can consistently outperform (for the purposes of exoplanet detection) the Kepler Pre-search Data Conditioning (PDC) method for exoplanet discovery, often improving the SNR by a factor of two. While we have not yet exhaustively tested the method at other
ERIC Educational Resources Information Center
Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.
2016-01-01
The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…
ERIC Educational Resources Information Center
Jensen, Eva
2014-01-01
If students really understand the systems they study, they would be able to tell how changes in the system would affect a result. This demands that the students understand the mechanisms that drive its behaviour. The study investigates potential merits of learning how to explicitly model the causal structure of systems. The approach and…
ERIC Educational Resources Information Center
Hardeman, Wendy; Sutton, Stephen; Griffin, Simon; Johnston, Marie; White, Anthony; Wareham, Nicholas J.; Kinmonth, Ann Louise
2005-01-01
Theory-based intervention programmes to support health-related behaviour change aim to increase health impact and improve understanding of mechanisms of behaviour change. However, the science of intervention development remains at an early stage. We present a causal modelling approach to developing complex interventions for evaluation in…
Chen, Mei-Chih; Chang, Kaowen
2014-11-01
Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD) model in the System Dynamics (SD) approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan's cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan's cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan's cities' sustainability and development (S&D). When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl. PMID:25383609
Chen, Mei-Chih; Chang, Kaowen
2014-01-01
Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD) model in the System Dynamics (SD) approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan’s cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan’s cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan’s cities’ sustainability and development (S&D). When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl. PMID:25383609
Chen, Mei-Chih; Chang, Kaowen
2014-11-06
Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD) model in the System Dynamics (SD) approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan's cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan's cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan's cities' sustainability and development (S&D). When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl.
Human causal discovery from observational data.
Hashem, A. I.; Cooper, G. F.
1996-01-01
Utilizing Bayesian belief networks as a model of causality, we examined medical students' ability to discover causal relationships from observational data. Nine sets of patient cases were generated from relatively simple causal belief networks by stochastic simulation. Twenty participants examined the data sets and attempted to discover the underlying causal relationships. Performance was poor in general, except at discovering the absence of a causal relationship. This work supports the potential for combining human and computer methods for causal discovery. PMID:8947621
Yu, Wen; Chen, Kani; Sobel, Michael E.; Ying, Zhiliang
2014-01-01
We consider causal inference in randomized survival studies with right censored outcomes and all-or-nothing compliance, using semiparametric transformation models to estimate the distribution of survival times in treatment and control groups, conditional on covariates and latent compliance type. Estimands depending on these distributions, for example, the complier average causal effect (CACE), the complier effect on survival beyond time t, and the complier quantile effect are then considered. Maximum likelihood is used to estimate the parameters of the transformation models, using a specially designed expectation-maximization (EM) algorithm to overcome the computational difficulties created by the mixture structure of the problem and the infinite dimensional parameter in the transformation models. The estimators are shown to be consistent, asymptotically normal, and semiparametrically efficient. Inferential procedures for the causal parameters are developed. A simulation study is conducted to evaluate the finite sample performance of the estimated causal parameters. We also apply our methodology to a randomized study conducted by the Health Insurance Plan of Greater New York to assess the reduction in breast cancer mortality due to screening. PMID:25870521
Infertile Individuals’ Marital Relationship Status, Happiness, and Mental Health: A Causal Model
Ahmadi Forooshany, Seyed Habiballah; Yazdkhasti, Fariba; Safari Hajataghaie, Saiede; Nasr Esfahani, Mohammad Hossein
2014-01-01
Background This study examined the causal model of relation between marital relation- ship status, happiness, and mental health in infertile individuals. Materials and Methods In this descriptive study, 155 subjects (men: 52 and women: 78), who had been visited in one of the infertility Centers, voluntarily participated in a self-evaluation. Golombok Rust Inventory of Marital Status, Oxford Happiness Ques- tionnaire, and General Health Questionnaire were used as instruments of the study. Data was analyzed by SPSS17 and Amos 5 software using descriptive statistics, independent sample t test, and path analysis. Results Disregarding the gender factor, marital relationship status was directly related to happiness (p<0.05) and happiness was directly related to mental health, (p<0.05). Also, indirect relation between marital relationship status and mental health was significant (p<0.05). These results were confirmed in women participants but in men participants only the direct relation between happiness and mental health was significant (p<0.05). Conclusion Based on goodness of model fit in fitness indexes, happiness had a mediator role in relation between marital relationship status and mental health in infertile individu- als disregarding the gender factor. Also, considering the gender factor, only in infertile women, marital relationship status can directly and indirectly affect happiness and mental health. PMID:25379161
NASA Astrophysics Data System (ADS)
Everett, Allen E.
1996-06-01
Alcubierre recently exhibited a spacetime which, within the framework of general relativity, allows travel at superluminal speeds if matter with a negative energy density can exist, and conjectured that it should be possible to use similar techniques to construct a theory containing closed causal loops and, thus, travel backwards in time. We verify this conjecture by exhibiting a simple modification of Alcubierre's model, requiring no additional assumptions, in which causal loops are possible. We also note that this mechanism for generating causal loops differs in essential ways from that discovered by Gott involving cosmic strings.
Causality violation, gravitational shockwaves and UV completion
NASA Astrophysics Data System (ADS)
Hollowood, Timothy J.; Shore, Graham M.
2016-03-01
The effective actions describing the low-energy dynamics of QFTs involving gravity generically exhibit causality violations. These may take the form of superluminal propagation or Shapiro time advances and allow the construction of "time machines", i.e. spacetimes admitting closed non-spacelike curves. Here, we discuss critically whether such causality violations may be used as a criterion to identify unphysical effective actions or whether, and how, causality problems may be resolved by embedding the action in a fundamental, UV complete QFT. We study in detail the case of photon scattering in an Aichelburg-Sexl gravitational shockwave background and calculate the phase shifts in QED for all energies, demonstrating their smooth interpolation from the causality-violating effective action values at low-energy to their manifestly causal high-energy limits. At low energies, these phase shifts may be interpreted as backwards-in-time coordinate jumps as the photon encounters the shock wavefront, and we illustrate how the resulting causality problems emerge and are resolved in a two-shockwave time machine scenario. The implications of our results for ultra-high (Planck) energy scattering, in which graviton exchange is modelled by the shockwave background, are highlighted.
Morabia, Alfredo
2005-01-01
Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.
Lusk, S L; Ronis, D L; Hogan, M M
1997-06-01
The health promotion model (HPM) was tested as a causal model of construction workers' use of hearing protection (N = 359). Theoretical and exploratory models fit well, with the theoretical model accounting for 36.3% of variance and the exploratory model accounting for 50.6% of variance in hearing protection use. Value of use (benefits of using hearing protection), barriers to use, and self-efficacy were significant predictors in both the theoretical and exploratory models, but perceived health status was a predictor only in the theoretical model. In the exploratory model, where modifying factors were allowed direct relationships with use of hearing protection, two modifying factors--noise exposure and interpersonal influences-modeling--were significant predictors. Results of this test of the HPM are consistent with the revised HPM (Pender, 1996). There were significant direct paths from modifying factors to behaviour. Use of hearing protection was best predicted by behavior-specific predictors, such as perceived barriers to use of hearing protection. Results support the use of the HPM to predict use of hearing protection.
NASA Astrophysics Data System (ADS)
Rokni Lamooki, Gholam Reza; Shirazi, Amir H.; Mani, Ali R.
2015-05-01
Thyroid's main chemical reactions are employed to develop a mathematical model. The presented model is based on differential equations where their dynamics reflects many aspects of thyroid's behavior. Our main focus here is the well known, but not well understood, phenomenon so called as Wolff-Chaikoff effect. It is shown that the inhibitory effect of intake iodide on the rate of one single enzyme causes a similar effect as Wolff-Chaikoff. Besides this issue, the presented model is capable of revealing other complex phenomena of thyroid hormones homeostasis.
Modeling cortical source dynamics and interactions during seizure.
Mullen, Tim; Acar, Zeynep Akalin; Worrell, Gregory; Makeig, Scott
2011-01-01
Mapping the dynamics and spatial topography of brain source processes critically involved in initiating and propagating seizure activity is critical for effective epilepsy diagnosis, intervention, and treatment. In this report we analyze neuronal dynamics before and during epileptic seizures using adaptive multivariate autoregressive (VAR) models applied to maximally-independent (ICA) sources of intracranial EEG (iEEG, ECoG) data recorded from subdural electrodes implanted in a human patient for evaluation of surgery for epilepsy. We visualize the spatial distribution of causal sources and sinks of ictal activity on the cortical surface (gyral and sulcal) using a novel combination of multivariate Granger-causal and graph-theoretic metrics combined with distributed source localization by Sparse Bayesian Learning applied to a multi-scale patch basis. This analysis reveals and visualizes distinct, seizure stage-dependent shifts in inter-component spatiotemporal dynamics and connectivity including the clinically-identified epileptic foci. PMID:22254582
Mesoscale ocean dynamics modeling
mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P.; Levermore, D.
1996-05-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.
Sippel, Sebastian; Mahecha, Miguel D.; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A.
2016-01-01
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time
Model for macroevolutionary dynamics.
Maruvka, Yosef E; Shnerb, Nadav M; Kessler, David A; Ricklefs, Robert E
2013-07-01
The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21-87], which neglects extinction, or a simple birth-death (speciation-extinction) process. Here, we extend the more recent development of a generic, neutral speciation-extinction (of species)-origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom-sized taxonomic groups. The model's predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution. PMID:23781101
Model for macroevolutionary dynamics.
Maruvka, Yosef E; Shnerb, Nadav M; Kessler, David A; Ricklefs, Robert E
2013-07-01
The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21-87], which neglects extinction, or a simple birth-death (speciation-extinction) process. Here, we extend the more recent development of a generic, neutral speciation-extinction (of species)-origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom-sized taxonomic groups. The model's predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution.
Towards a causal model of childbearing and abortion attitudes in contemporary Japan.
Ogawa, N; Hodge, R W
1983-01-01
Described in this paper is the rationale and thinking behind the development of a causal model of childbearing and abortion attitudes in contemporary Japan. This effort represents one of the 1st attempts to build a multiple equation, micro-level model of fertility and fertility related behavior and attitudes in Japan. The results are almost wholely consistent with received demographic theory. Japan has now reached the last stage of her demographic transition and the results are consistent with the view that social and economic differentials in fertility are gradually eroded over the course of the transition. There are still statistically significant residues of these differentials in contemporary Japan, but they are at best modest in scope. Fertility in modern Japan is largely a matter of age and personal desires. Even abortion, which was so instrumental in moving Japan through the middle stages of her demographic transition in the immediate postwar period, exhibits only weak relationships with the social and economic position of women; attitudes about abortion are even more weakly linked to the social order. In sum, as of 1981, the process of family formation appears to have evolved to the point where it is largely homogeneous with respect to social and economic status. The differentials which remain are the expected ones, but their magnitude is not overwhelming and the force of social location is at most only a modest constraint on fertility behavior and fertility related beliefs and attitudes. This is the exact scenario one expects to find in a nation which is at the final stage of its demographic transition. The present analysis is current and cross-sectional. It is largely exploratory and as such, represents one of the very 1st efforts to develop a structural equation model of individual fertility behavior in Japan. The findings are based on the analysis of the data gathered in Japan in connection with ESCAP Study on the Relationship Between Fertility Behavior
ERIC Educational Resources Information Center
Besson, Ugo
2010-01-01
This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought…
A Program for Standard Errors of Indirect Effects in Recursive Causal Models.
ERIC Educational Resources Information Center
Wolfle, Lee M.; Ethington, Corinna A.
In his early exposition of path analysis, Duncan (1966) noted that the method "provides a calculus for indirect effects." Despite the interest in indirect causal effects, most users treat them as if they are population parameters and do not test whether they are statistically significant. Sobel (1982) has recently derived the asymptotic…
NASA Technical Reports Server (NTRS)
Glaese, John R.; Tobbe, Patrick A.
1986-01-01
The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.
Experimental test of nonlocal causality
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro
2016-01-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
Experimental test of nonlocal causality.
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro
2016-08-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
Experimental test of nonlocal causality.
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro
2016-08-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.
Causality discovery technology
NASA Astrophysics Data System (ADS)
Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.
2012-11-01
Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.
A Separable, Dynamically Local Ontological Model of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Pienaar, Jacques
2016-01-01
A model of reality is called separable if the state of a composite system is equal to the union of the states of its parts, located in different regions of space. Spekkens has argued that it is trivial to reproduce the predictions of quantum mechanics using a separable ontological model, provided one allows for arbitrary violations of `dynamical locality'. However, since dynamical locality is strictly weaker than local causality, this leaves open the question of whether an ontological model for quantum mechanics can be both separable and dynamically local. We answer this question in the affirmative, using an ontological model based on previous work by Deutsch and Hayden. Although the original formulation of the model avoids Bell's theorem by denying that measurements result in single, definite outcomes, we show that the model can alternatively be cast in the framework of ontological models, where Bell's theorem does apply. We find that the resulting model violates local causality, but satisfies both separability and dynamical locality, making it a candidate for the `most local' ontological model of quantum mechanics.
Ogihara, Naomichi; Aoi, Shinya; Sugimoto, Yasuhiro; Tsuchiya, Kazuo; Nakatsukasa, Masato
2011-08-01
Japanese macaques that have been trained for monkey performances exhibit a remarkable ability to walk bipedally. In this study, we dynamically reconstructed bipedal walking of the Japanese macaque to investigate causal relationships among limb kinematics, speed, and energetics, with a view to understanding the mechanisms underlying the evolution of human bipedalism. We constructed a two-dimensional macaque musculoskeletal model consisting of nine rigid links and eight principal muscles. To generate locomotion, we used a trajectory-tracking control law, the reference trajectories of which were obtained experimentally. Using this framework, we evaluated the effects of changes in cycle duration and gait kinematics on locomotor efficiency. The energetic cost of locomotion was estimated based on the calculation of mechanical energy generated by muscles. Our results demonstrated that the mass-specific metabolic cost of transport decreased as speed increased in bipedal walking of the Japanese macaque. Furthermore, the cost of transport in bipedal walking was reduced when vertical displacement of the hip joint was virtually modified in the simulation to be more humanlike. Human vertical fluctuations in the body's center of mass actually contributed to energy savings via an inverted pendulum mechanism.
Ray, Suchismita; Haney, Margaret; Hanson, Catherine; Biswal, Bharat; Hanson, Stephen José
2015-12-01
The cues associated with drugs of abuse have an essential role in perpetuating problematic use, yet effective connectivity or the causal interaction between brain regions mediating the processing of drug cues has not been defined. The aim of this fMRI study was to model the causal interaction between brain regions within the drug-cue processing network in chronic cocaine smokers and matched control participants during a cocaine-cue exposure task. Specifically, cocaine-smoking (15M; 5F) and healthy control (13M; 4F) participants viewed cocaine and neutral cues while in the scanner (a Siemens 3 T magnet). We examined whole brain activation, including activation related to drug-cue processing. Time series data extracted from ROIs determined through our General Linear Model (GLM) analysis and prior publications were used as input to IMaGES, a computationally powerful Bayesian search algorithm. During cocaine-cue exposure, cocaine users showed a particular feed-forward effective connectivity pattern between the ROIs of the drug-cue processing network (amygdala → hippocampus → dorsal striatum → insula → medial frontal cortex, dorsolateral prefrontal cortex, anterior cingulate cortex) that was not present when the controls viewed the cocaine cues. Cocaine craving ratings positively correlated with the strength of the causal influence of the insula on the dorsolateral prefrontal cortex in cocaine users. This study is the first demonstration of a causal interaction between ROIs within the drug-cue processing network in cocaine users. This study provides insight into the mechanism underlying continued substance use and has implications for monitoring treatment response.
Ray, Suchismita; Haney, Margaret; Hanson, Catherine; Biswal, Bharat; Hanson, Stephen José
2015-12-01
The cues associated with drugs of abuse have an essential role in perpetuating problematic use, yet effective connectivity or the causal interaction between brain regions mediating the processing of drug cues has not been defined. The aim of this fMRI study was to model the causal interaction between brain regions within the drug-cue processing network in chronic cocaine smokers and matched control participants during a cocaine-cue exposure task. Specifically, cocaine-smoking (15M; 5F) and healthy control (13M; 4F) participants viewed cocaine and neutral cues while in the scanner (a Siemens 3 T magnet). We examined whole brain activation, including activation related to drug-cue processing. Time series data extracted from ROIs determined through our General Linear Model (GLM) analysis and prior publications were used as input to IMaGES, a computationally powerful Bayesian search algorithm. During cocaine-cue exposure, cocaine users showed a particular feed-forward effective connectivity pattern between the ROIs of the drug-cue processing network (amygdala → hippocampus → dorsal striatum → insula → medial frontal cortex, dorsolateral prefrontal cortex, anterior cingulate cortex) that was not present when the controls viewed the cocaine cues. Cocaine craving ratings positively correlated with the strength of the causal influence of the insula on the dorsolateral prefrontal cortex in cocaine users. This study is the first demonstration of a causal interaction between ROIs within the drug-cue processing network in cocaine users. This study provides insight into the mechanism underlying continued substance use and has implications for monitoring treatment response. PMID:26038158
A dynamical network model for frailty-induced mortality
NASA Astrophysics Data System (ADS)
Taneja, Swadhin; Rutenberg, Andrew; Mitnitski, Arnold; Rockwood, Kenneth
2014-03-01
Age-related clinical and biological deficits can be used to build a frailty index that is a simple fraction of observed to possible deficits. As a proxy measure of aging, such a frailty index is empirically a better predictor of human mortality than chronological age. We present a network dynamical model of deficits that allows us to naturally consider causal interactions between deficits, deficit formation and repair, and mortality. We investigate the information provided by various model frailty indices, how they reflect the underlying dynamics of the network, and how well they predict mortality.
Causal inference based on counterfactuals
Höfler, M
2005-01-01
Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept. PMID:16159397
Fertility and Female Employment: Problems of Causal Direction.
ERIC Educational Resources Information Center
Cramer, James C.
1980-01-01
Considers multicollinearity in nonrecursive models, misspecification of models, discrepancies between attitudes and behavior, and differences between static and dynamic models as explanations for contradictory information on the causal relationship between fertility and female employment. Finds that initially fertility affects employment but that,…
Scalar Fields via Causal Tapestries
NASA Astrophysics Data System (ADS)
Sulis, William
2012-02-01
Causal tapestries provide a framework for implementing an explicit Process Theory approach to quantum foundations which models information flow within a physical system. We consider event-transition tapestry pairs. An event tapestry O is a 4-tuple (L, K, M, Ip ) where K is an index set of cardinality κ, M = M x F(M) x D x P(M') a mathematical structure with M a causal space, F(M) a function space, D a descriptor space, P(M') either a Lie algebra or tangent space on a manifold M', Ip an event tapestry. L consists of elements of the form [n]<α>G, n in K, α in M and G an acyclic directed graph whose vertex set is a subset of Lp Likewise, a transition tapestry π is a 4-tuple (L', K', M', I'p ) where M' = M' x F(M') x D' x P'(M). The dynamic generates a consistent succession of O-π pairs by means of a game based on the technique of forcing used in logic to generate models. This dynamic has previously been shown to be compatible with Lorentz invariance. An application of this approach to model scalar fields is presented in which each informon is associated with a function of the form f(πk1 /σ1 ,,πkN /σN )sin ( σ1 t1 --πk1 )/ ( σ1 t1 --πk1 ) .sin ( σN tN --πkN )/ ( σN tN --πkN ) and the WSK interpolation theorem is used to generate the resulting scalar field on the causal manifold.
Little, E.E.; Bridges, C.M.; Linder, G.; Boone, M.; ,
2003-01-01
Research to date has indicated that a range of environmental variables such as disease, parasitism, predation, competition, environmental contamination, solar ultraviolet radiation, climate change, or habitat alteration may be responsible for declining amphibian populations and the appearance of deformed organisms, yet in many cases no definitive environmental variable stands out as a causal factor. Multiple Stressors are often present in the habitat, and interactions among these can magnify injury to biota. This raises the possibility that the additive or synergistic impact of these Stressors may be the underlying cause of amphibian declines. Effective management for the restoration of amphibian populations requires the identification of causal factors contributing to their declines. A systematic approach to determine causality is especially important because initial impressions may be misleading or ambiguous. In addition, the evaluation of amphibian populations requires consideration of a broader spatial scale than commonly used in regulatory monitoring. We describe a systematic three-tiered approach to determine causality in amphibian declines and deformities. Tier 1 includes an evaluation of historic databases and extant data and would involve a desktop synopsis of the status of various stressors as well as site visits. Tier 2 studies are iterative, hypothesis driven studies beginning with general tests and continuing with analyses of increasing complexity as certain stressors are identified for further investigation. Tier 3 applies information developed in Tier 2 as predictive indicators of habitats and species at risk over broad landscape scales and provides decision support for the adaptive management of amphibian recovery. This comprehensive, tiered program could provide a mechanistic approach to identifying and addressing specific stressors responsible for amphibian declines across various landscapes.
NASA Astrophysics Data System (ADS)
Komperda, Regis
The purpose of this dissertation is to test a model of relationships among factors characterizing aspects of a student-centered constructivist learning environment and student outcomes of satisfaction and academic achievement in introductory undergraduate chemistry courses. Constructivism was chosen as the theoretical foundation for this research because of its widespread use in chemical education research and practice. In a constructivist learning environment the role of the teacher shifts from delivering content towards facilitating active student engagement in activities that encourage individual knowledge construction through discussion and application of content. Constructivist approaches to teaching introductory chemistry courses have been adopted by some instructors as a way to improve student outcomes, but little research has been done on the causal relationships among particular aspects of the learning environment and student outcomes. This makes it difficult for classroom teachers to know which aspects of a constructivist teaching approach are critical to adopt and which may be modified to better suit a particular learning environment while still improving student outcomes. To investigate a model of these relationships, a survey designed to measure student perceptions of three factors characterizing a constructivist learning environment in online courses was adapted for use in face-to-face chemistry courses. These three factors, teaching presence, social presence, and cognitive presence, were measured using a slightly modified version of the Community of Inquiry (CoI) instrument. The student outcomes investigated in this research were satisfaction and academic achievement, as measured by standardized American Chemical Society (ACS) exam scores and course grades. Structural equation modeling (SEM) was used to statistically model relationships among the three presence factors and student outcome variables for 391 students enrolled in six sections of a
Learning a theory of causality.
Goodman, Noah D; Ullman, Tomer D; Tenenbaum, Joshua B
2011-01-01
The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be learned from co-occurrence of events. We begin by phrasing the causal Bayes nets theory of causality and a range of alternatives in a logical language for relational theories. This allows us to explore simultaneous inductive learning of an abstract theory of causality and a causal model for each of several causal systems. We find that the correct theory of causality can be learned relatively quickly, often becoming available before specific causal theories have been learned--an effect we term the blessing of abstraction. We then explore the effect of providing a variety of auxiliary evidence and find that a collection of simple perceptual input analyzers can help to bootstrap abstract knowledge. Together, these results suggest that the most efficient route to causal knowledge may be to build in not an abstract notion of causality but a powerful inductive learning mechanism and a variety of perceptual supports. While these results are purely computational, they have implications for cognitive development, which we explore in the conclusion.
Causal tapestries for psychology and physics.
Sulis, William H
2012-04-01
Archetypal dynamics is a formal approach to the modeling of information flow in complex systems used to study emergence. It is grounded in the Fundamental Triad of realisation (system), interpretation (archetype) and representation (formal model). Tapestries play a fundamental role in the framework of archetypal dynamics as a formal representational system. They represent information flow by means of multi layered, recursive, interlinked graphical structures that express both geometry (form or sign) and logic (semantics). This paper presents a detailed mathematical description of a specific tapestry model, the causal tapestry, selected for use in describing behaving systems such as appear in psychology and physics from the standpoint of Process Theory. Causal tapestries express an explicit Lorentz invariant transient now generated by means of a reality game. Observables are represented by tapestry informons while subjective or hidden components (for example intellectual and emotional processes) are incorporated into the reality game that determines the tapestry dynamics. As a specific example, we formulate a random graphical dynamical system using causal tapestries.
Causal tapestries for psychology and physics.
Sulis, William H
2012-04-01
Archetypal dynamics is a formal approach to the modeling of information flow in complex systems used to study emergence. It is grounded in the Fundamental Triad of realisation (system), interpretation (archetype) and representation (formal model). Tapestries play a fundamental role in the framework of archetypal dynamics as a formal representational system. They represent information flow by means of multi layered, recursive, interlinked graphical structures that express both geometry (form or sign) and logic (semantics). This paper presents a detailed mathematical description of a specific tapestry model, the causal tapestry, selected for use in describing behaving systems such as appear in psychology and physics from the standpoint of Process Theory. Causal tapestries express an explicit Lorentz invariant transient now generated by means of a reality game. Observables are represented by tapestry informons while subjective or hidden components (for example intellectual and emotional processes) are incorporated into the reality game that determines the tapestry dynamics. As a specific example, we formulate a random graphical dynamical system using causal tapestries. PMID:22452929
Modeling Soil Freezing Dynamics
NASA Astrophysics Data System (ADS)
Flerchinger, G. N.; Seyfried, M. S.; Hardegree, S. P.
2002-12-01
Seasonally frozen soil strongly influences runoff and erosion on large areas of land around the world. In many areas, rain or snowmelt on seasonally frozen soil is the single leading cause of severe runoff and erosion events. As soils freeze, ice blocks the soil pores, greatly diminishing the permeability of the soil. This is aggravated by the tendency of water to migrate to the freezing front, causing elevated ice content and frost heave. Freezing and thawing of the soil are controlled by the complex interactions of heat and water transfer at the soil surface governed by meteorological and environmental conditions at the soil-atmosphere interface. Soil freezing dynamics including liquid water content, infiltration, and runoff simulated by the Simultaneous Heat and Water (SHAW) Model were tested at three field locations in southwest Idaho. Sites included: three soil types at the Orchard Field Test Site; bare and sagebrush-covered runoff plots at the Lower Sheep Creek site on the Reynolds Creek Experimental Watershed; and runoff plots on steep mountainous slopes on the Boise Front. Detailed simulations of soil freezing and thawing were conducted specifically to examine the dynamics of liquid water content during freezing and thawing. Freezing/thawing processes, including liquid water content and runoff, were simulated well.
Structural Equations and Causal Explanations: Some Challenges for Causal SEM
ERIC Educational Resources Information Center
Markus, Keith A.
2010-01-01
One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…
On causality of extreme events
2016-01-01
Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available. PMID:27330866
On causality of extreme events.
Zanin, Massimiliano
2016-01-01
Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available.
Kaufmann, Stefan
2013-08-01
The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal semantic analysis of conditionals, Kratzer-style premise semantics, allows for a straightforward implementation of the crucial ideas and insights of Pearl-style causal networks. I spell out the details of such an implementation, focusing especially on the notions of intervention on a network and backtracking interpretations of counterfactuals.
What Is Going on Inside the Arrows? Discovering the Hidden Springs in Causal Models
Murray-Watters, Alexander; Glymour, Clark
2016-01-01
Using Gebharter's (2014) representation, we consider aspects of the problem of discovering the structure of unmeasured sub-mechanisms when the variables in those sub-mechanisms have not been measured. Exploiting an early insight of Sober's (1998), we provide a correct algorithm for identifying latent, endogenous structure—sub-mechanisms—for a restricted class of structures. The algorithm can be merged with other methods for discovering causal relations among unmeasured variables, and feedback relations between measured variables and unobserved causes can sometimes be learned. PMID:27313331
Algorithms of causal inference for the analysis of effective connectivity among brain regions
Chicharro, Daniel; Panzeri, Stefano
2014-01-01
In recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl’s causality, algorithms of inductive causation (IC and IC*) provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze causal influences (effective connectivity) among brain regions. However, their application to dynamic processes has not been yet examined. Here we study how to apply these algorithms to time-varying signals such as electrophysiological or neuroimaging signals. We propose a new algorithm which combines the basic principles of the previous algorithms with Granger causality to obtain a representation of the causal relations suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic statistical dependencies between the signals from the causal structure. We show how some problems for causal inference from neural signals (e.g., measurement noise, hemodynamic responses, and time aggregation) can be understood in a general graphical approach. Focusing on the effect of spatial aggregation, we show that when causal inference is performed at a coarser scale than the one at which the neural sources interact, results strongly depend on the degree of integration of the neural sources aggregated in the signals, and thus characterize more the intra-areal properties than the interactions among regions. We finally discuss how the explicit consideration of latent processes contributes to understand Granger causality and DCM as well as to distinguish functional and effective connectivity. PMID:25071541
Algorithms of causal inference for the analysis of effective connectivity among brain regions.
Chicharro, Daniel; Panzeri, Stefano
2014-01-01
In recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl's causality, algorithms of inductive causation (IC and IC(*)) provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze causal influences (effective connectivity) among brain regions. However, their application to dynamic processes has not been yet examined. Here we study how to apply these algorithms to time-varying signals such as electrophysiological or neuroimaging signals. We propose a new algorithm which combines the basic principles of the previous algorithms with Granger causality to obtain a representation of the causal relations suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic statistical dependencies between the signals from the causal structure. We show how some problems for causal inference from neural signals (e.g., measurement noise, hemodynamic responses, and time aggregation) can be understood in a general graphical approach. Focusing on the effect of spatial aggregation, we show that when causal inference is performed at a coarser scale than the one at which the neural sources interact, results strongly depend on the degree of integration of the neural sources aggregated in the signals, and thus characterize more the intra-areal properties than the interactions among regions. We finally discuss how the explicit consideration of latent processes contributes to understand Granger causality and DCM as well as to distinguish functional and effective connectivity.
Toward a Comprehensive Model of Antisocial Development: A Dynamic Systems Approach
ERIC Educational Resources Information Center
Granic, Isabela; Patterson, Gerald R.
2006-01-01
The purpose of this article is to develop a preliminary comprehensive model of antisocial development based on dynamic systems principles. The model is built on the foundations of behavioral research on coercion theory. First, the authors focus on the principles of multistability, feedback, and nonlinear causality to reconceptualize real-time…
ERIC Educational Resources Information Center
Kaufmann, Stefan
2013-01-01
The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal…
Zigzagging causality EPR model: answer to Vigier and coworkers and to Sutherland
de Beauregard, O.C.
1987-08-01
The concept of propagation in time of Vigier and co-workers (V et al.) implies the ideal of a supertime; it is thus alien to most Minkowskian pictures and certainly to the authors. From this stems much of V et al.'s misunderstandings of his position. In steady motion of a classical fluid nobody thinks that momentum conservation is violated, or that momentum is shot upstream without cause because of the suction from the sinks. Similarly with momentum-energy in spacetime and the acceptance of an advanced causality. As for the CT invariance of the Feynman propagator, the causality asymmetry it entails is factlike, not lawlike. The geometrical counterpart of the symmetry between prediction and retrodiction and between retarded and advanced waves, as expressed in the alternative expressions
Causal Inference in Retrospective Studies.
ERIC Educational Resources Information Center
Holland, Paul W.; Rubin, Donald B.
1988-01-01
The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…
Zelko, Hilary; Zammar, Guilherme Roberto; Bonilauri Ferreira, Ana Paula; Phadtare, Amruta; Shah, Jatin; Pietrobon, Ricardo
2010-01-01
Background Although scientific innovation has been a long-standing topic of interest for historians, philosophers and cognitive scientists, few studies in biomedical research have examined from researchers' perspectives how high impact publications are developed and why they are consistently produced by a small group of researchers. Our objective was therefore to interview a group of researchers with a track record of high impact publications to explore what mechanism they believe contribute to the generation of high impact publications. Methodology/Principal Findings Researchers were located in universities all over the globe and interviews were conducted by phone. All interviews were transcribed using standard qualitative methods. A Grounded Theory approach was used to code each transcript, later aggregating concept and categories into overarching explanation model. The model was then translated into a System Dynamics mathematical model to represent its structure and behavior. Five emerging themes were found in our study. First, researchers used heuristics or rules of thumb that came naturally to them. Second, these heuristics were reinforced by positive feedback from their peers and mentors. Third, good communication skills allowed researchers to provide feedback to their peers, thus closing a positive feedback loop. Fourth, researchers exhibited a number of psychological attributes such as curiosity or open-mindedness that constantly motivated them, even when faced with discouraging situations. Fifth, the system is dominated by randomness and serendipity and is far from a linear and predictable environment. Some researchers, however, took advantage of this randomness by incorporating mechanisms that would allow them to benefit from random findings. The aggregation of these themes into a policy model represented the overall expected behavior of publications and their impact achieved by high impact researchers. Conclusions The proposed selection mechanism
ERIC Educational Resources Information Center
Karabatsos, G.; Walker, S.G.
2010-01-01
Causal inference is central to educational research, where in data analysis the aim is to learn the causal effects of educational treatments on academic achievement, to evaluate educational policies and practice. Compared to a correlational analysis, a causal analysis enables policymakers to make more meaningful statements about the efficacy of…
Kamangar, Farin
2012-10-01
This article provides an introduction to the meaning of causality in epidemiology and methods that epidemiologists use to distinguish causal associations from non-causal ones. Alternatives to causal association are discussed in detail. Hill's guidelines, set forth approximately 50 years ago, and more recent developments are reviewed. The role of religious and philosophic views in our understanding of causality is briefly discussed.
Semework, Mulugeta; DiStasio, Marcello
2014-01-01
Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain
Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan
2015-01-01
This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129
Causal Responsibility and Counterfactuals
Lagnado, David A; Gerstenberg, Tobias; Zultan, Ro'i
2013-01-01
How do people attribute responsibility in situations where the contributions of multiple agents combine to produce a joint outcome? The prevalence of over-determination in such cases makes this a difficult problem for counterfactual theories of causal responsibility. In this article, we explore a general framework for assigning responsibility in multiple agent contexts. We draw on the structural model account of actual causation (e.g., Halpern & Pearl, 2005) and its extension to responsibility judgments (Chockler & Halpern, 2004). We review the main theoretical and empirical issues that arise from this literature and propose a novel model of intuitive judgments of responsibility. This model is a function of both pivotality (whether an agent made a difference to the outcome) and criticality (how important the agent is perceived to be for the outcome, before any actions are taken). The model explains empirical results from previous studies and is supported by a new experiment that manipulates both pivotality and criticality. We also discuss possible extensions of this model to deal with a broader range of causal situations. Overall, our approach emphasizes the close interrelations between causality, counterfactuals, and responsibility attributions. PMID:23855451
Expectations and Interpretations during Causal Learning
ERIC Educational Resources Information Center
Luhmann, Christian C.; Ahn, Woo-kyoung
2011-01-01
In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to…
Representing Personal Determinants in Causal Structures.
ERIC Educational Resources Information Center
Bandura, Albert
1984-01-01
Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…
Detto, Matteo; Molini, Annalisa; Katul, Gabriel; Stoy, Paul; Palmroth, Sari; Baldocchi, Dennis
2012-04-01
Abstract Directionality in coupling, defined as the linkage relating causes to their effects at a later time, can be used to explain the core dynamics of ecological systems by untangling direct and feedback relationships between the different components of the systems. Inferring causality from measured ecological variables sampled through time remains a formidable challenge further made difficult by the action of periodic drivers overlapping the natural dynamics of the system. Periodicity in the drivers can often mask the self-sustained oscillations originating from the autonomous dynamics. While linear and direct causal relationships are commonly addressed in the time domain, using the well-established machinery of Granger causality (G-causality), the presence of periodic forcing requires frequency-based statistics (e.g., the Fourier transform), able to distinguish coupling induced by oscillations in external drivers from genuine endogenous interactions. Recent nonparametric spectral extensions of G-causality to the frequency domain pave the way for the scale-by-scale decomposition of causality, which can improve our ability to link oscillatory behaviors of ecological networks to causal mechanisms. The performance of both spectral G-causality and its conditional extension for multivariate systems is explored in quantifying causal interactions within ecological networks. Through two case studies involving synthetic and actual time series, it is demonstrated that conditional G-causality outperforms standard G-causality in identifying causal links and their concomitant timescales.
Dynamics of safety performance and culture: a group model building approach.
Goh, Yang Miang; Love, Peter E D; Stagbouer, Greg; Annesley, Chris
2012-09-01
The management of occupational health and safety (OHS) including safety culture interventions is comprised of complex problems that are often hard to scope and define. Due to the dynamic nature and complexity of OHS management, the concept of system dynamics (SD) is used to analyze accident prevention. In this paper, a system dynamics group model building (GMB) approach is used to create a causal loop diagram of the underlying factors influencing the OHS performance of a major drilling and mining contractor in Australia. While the organization has invested considerable resources into OHS their disabling injury frequency rate (DIFR) has not been decreasing. With this in mind, rich individualistic knowledge about the dynamics influencing the DIFR was acquired from experienced employees with operations, health and safety and training background using a GMB workshop. Findings derived from the workshop were used to develop a series of causal loop diagrams that includes a wide range of dynamics that can assist in better understanding the causal influences OHS performance. The causal loop diagram provides a tool for organizations to hypothesize the dynamics influencing effectiveness of OHS management, particularly the impact on DIFR. In addition the paper demonstrates that the SD GMB approach has significant potential in understanding and improving OHS management.
Dynamics of safety performance and culture: a group model building approach.
Goh, Yang Miang; Love, Peter E D; Stagbouer, Greg; Annesley, Chris
2012-09-01
The management of occupational health and safety (OHS) including safety culture interventions is comprised of complex problems that are often hard to scope and define. Due to the dynamic nature and complexity of OHS management, the concept of system dynamics (SD) is used to analyze accident prevention. In this paper, a system dynamics group model building (GMB) approach is used to create a causal loop diagram of the underlying factors influencing the OHS performance of a major drilling and mining contractor in Australia. While the organization has invested considerable resources into OHS their disabling injury frequency rate (DIFR) has not been decreasing. With this in mind, rich individualistic knowledge about the dynamics influencing the DIFR was acquired from experienced employees with operations, health and safety and training background using a GMB workshop. Findings derived from the workshop were used to develop a series of causal loop diagrams that includes a wide range of dynamics that can assist in better understanding the causal influences OHS performance. The causal loop diagram provides a tool for organizations to hypothesize the dynamics influencing effectiveness of OHS management, particularly the impact on DIFR. In addition the paper demonstrates that the SD GMB approach has significant potential in understanding and improving OHS management. PMID:22664675
Luo, Fei; Timler, Geralyn R
2008-01-01
Studies suggest that the oral narratives of children with attention deficit hyperactivity disorder (ADHD) are less organized than those of typically developing peers. Many studies, however, do not account for children's language abilities. Because language impairment (LI) is a frequent comorbid condition in children with ADHD, this exploratory study investigated language abilities and narrative organization skills in children with and without ADHD. Narratives were elicited using the picture-sequence task and the single-picture task from the Test of Narrative Language (Gillam & Pearson, 2004). The causal network model (Trabasso, Van den Broek, & Suh, 1989) was applied to analyse the narratives. Specifically, narratives were examined to identify complete and incomplete superordinate and subordinate Goal-Attempt-Outcome (GAO) units. The results revealed no differences among the groups in the picture-sequence task. Children with ADHD+LI produced significantly fewer complete superordinate GAO units than typical children in the single-picture task. Theoretical and clinical implications are discussed.
Effect of measurement noise on Granger causality.
Nalatore, Hariharan; Sasikumar, N; Rangarajan, Govindan
2014-12-01
Most of the signals recorded in experiments are inevitably contaminated by measurement noise. Hence, it is important to understand the effect of such noise on estimating causal relations between such signals. A primary tool for estimating causality is Granger causality. Granger causality can be computed by modeling the signal using a bivariate autoregressive (AR) process. In this paper, we greatly extend the previous analysis of the effect of noise by considering a bivariate AR process of general order p. From this analysis, we analytically obtain the dependence of Granger causality on various noise-dependent system parameters. In particular, we show that measurement noise can lead to spurious Granger causality and can suppress true Granger causality. These results are verified numerically. Finally, we show how true causality can be recovered numerically using the Kalman expectation maximization algorithm.
Launch Vehicle Dynamics Demonstrator Model
NASA Technical Reports Server (NTRS)
1963-01-01
Launch Vehicle Dynamics Demonstrator Model. The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control. [Entire movie available on DVD from CASI as Doc ID 20070030984. Contact help@sti.nasa.gov
The Visual Causality Analyst: An Interactive Interface for Causal Reasoning.
Wang, Jun; Mueller, Klaus
2016-01-01
Uncovering the causal relations that exist among variables in multivariate datasets is one of the ultimate goals in data analytics. Causation is related to correlation but correlation does not imply causation. While a number of casual discovery algorithms have been devised that eliminate spurious correlations from a network, there are no guarantees that all of the inferred causations are indeed true. Hence, bringing a domain expert into the casual reasoning loop can be of great benefit in identifying erroneous casual relationships suggested by the discovery algorithm. To address this need we present the Visual Causal Analyst-a novel visual causal reasoning framework that allows users to apply their expertise, verify and edit causal links, and collaborate with the causal discovery algorithm to identify a valid causal network. Its interface consists of both an interactive 2D graph view and a numerical presentation of salient statistical parameters, such as regression coefficients, p-values, and others. Both help users in gaining a good understanding of the landscape of causal structures particularly when the number of variables is large. Our framework is also novel in that it can handle both numerical and categorical variables within one unified model and return plausible results. We demonstrate its use via a set of case studies using multiple practical datasets.
SSME structural dynamic model development
NASA Technical Reports Server (NTRS)
Foley, M. J.; Tilley, D. M.; Welch, C. T.
1983-01-01
A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed.
NASA Technical Reports Server (NTRS)
Adams, Neil S.; Bollenbacher, Gary
1992-01-01
This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.
Dynamic Modeling of ALS Systems
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.
Quinn, Christopher J; Coleman, Todd P; Kiyavash, Negar; Hatsopoulos, Nicholas G
2011-02-01
Advances in recording technologies have given neuroscience researchers access to large amounts of data, in particular, simultaneous, individual recordings of large groups of neurons in different parts of the brain. A variety of quantitative techniques have been utilized to analyze the spiking activities of the neurons to elucidate the functional connectivity of the recorded neurons. In the past, researchers have used correlative measures. More recently, to better capture the dynamic, complex relationships present in the data, neuroscientists have employed causal measures-most of which are variants of Granger causality-with limited success. This paper motivates the directed information, an information and control theoretic concept, as a modality-independent embodiment of Granger's original notion of causality. Key properties include: (a) it is nonzero if and only if one process causally influences another, and (b) its specific value can be interpreted as the strength of a causal relationship. We next describe how the causally conditioned directed information between two processes given knowledge of others provides a network version of causality: it is nonzero if and only if, in the presence of the present and past of other processes, one process causally influences another. This notion is shown to be able to differentiate between true direct causal influences, common inputs, and cascade effects in more two processes. We next describe a procedure to estimate the directed information on neural spike trains using point process generalized linear models, maximum likelihood estimation and information-theoretic model order selection. We demonstrate that on a simulated network of neurons, it (a) correctly identifies all pairwise causal relationships and (b) correctly identifies network causal relationships. This procedure is then used to analyze ensemble spike train recordings in primary motor cortex of an awake monkey while performing target reaching tasks, uncovering
Aircraft Dynamic Modeling in Turbulence
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Cunninham, Kevin
2012-01-01
A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.
Model describes subsea control dynamics
Not Available
1988-02-01
A mathematical model of the hydraulic control systems for subsea completions and their umbilicals has been developed and applied successfully to Jabiru and Challis field production projects in the Timor Sea. The model overcomes the limitations of conventional linear steady state models and yields for the hydraulic system an accurate description of its dynamic response, including the valve shut-in times and the pressure transients. Results of numerical simulations based on the model are in good agreement with measurements of the dynamic response of the tree valves and umbilicals made during land testing.
Causal learning with local computations.
Fernbach, Philip M; Sloman, Steven A
2009-05-01
The authors proposed and tested a psychological theory of causal structure learning based on local computations. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure.
ERIC Educational Resources Information Center
Journal of Science and Mathematics Education in Southeast Asia, 1981
1981-01-01
Instructions (with diagrams and parts list) are provided for constructing an eye model with a pliable lens made from a plastic bottle which can vary its convexity to accommodate changing positions of an object being viewed. Also discusses concepts which the model can assist in developing. (Author/SK)
ERIC Educational Resources Information Center
Bacharach, Samuel; Bamberger, Peter
1992-01-01
Survey data from 215 nurses (10 male) and 430 civil engineers (10 female) supported the plausibility of occupation-specific models (positing direct paths between role stressors, antecedents, and consequences) compared to generic models. A weakness of generic models is the tendency to ignore differences in occupational structure and culture. (SK)
A Socio-Psychophysiological Model for Explaining the Causal Effects of Social Reinforcement Systems.
ERIC Educational Resources Information Center
Brown, Edward K.
The expanded socio-psychophysiological model (SPPM) appears to provide a meaningful paradigm for explaining the psycho-psysiological effects of Social Reinforcement Systems (SRS). This model may be used to assist individuals, and the society, to become more aware of the effects that social practices have on the immediate and long-term actions of…
ERIC Educational Resources Information Center
Hattori, Masasi; Oaksford, Mike
2007-01-01
In this article, 41 models of covariation detection from 2 x 2 contingency tables were evaluated against past data in the literature and against data from new experiments. A new model was also included based on a limiting case of the normative phi-coefficient under an extreme rarity assumption, which has been shown to be an important factor in…
Sustainable deforestation evaluation model and system dynamics analysis.
Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi
2014-01-01
The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225
Sustainable deforestation evaluation model and system dynamics analysis.
Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi
2014-01-01
The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.
Sustainable Deforestation Evaluation Model and System Dynamics Analysis
Feng, Huirong; Lim, C. W.; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi
2014-01-01
The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225
West, Stephen G.
2016-01-01
Psychologists have long had interest in the processes through which antecedent variables produce their effects on the outcomes of ultimate interest (e.g., Wood-worth's Stimulus-Organism-Response model). Models involving such meditational processes have characterized many of the important psychological theories of the 20th century and continue to the present day. However, it was not until Judd and Kenny (1981) and Baron and Kenny (1986) combined ideas from experimental design and structural equation modeling that statistical methods for directly testing such models, now known as mediation analysis, began to be developed. Methodologists have improved these statistical methods, developing new, more efficient estimators for mediated effects. They have also extended mediation analysis to multilevel data structures, models involving multiple mediators, models in which interactions occur, and an array of noncontinuous outcome measures (see MacKinnon, 2008). This work nicely maps on to key questions of applied researchers and has led to an outpouring of research testing meditational models (As of August, 2011, Baron and Kenny's article has had over 24,000 citations according to Google Scholar). PMID:26736046
Latner, Janet D; Puhl, Rebecca M; Murakami, Jessica M; O'Brien, Kerry S
2014-06-01
The present study examined the impact of the food-addiction model of obesity on weight stigma directed at obese people. Participants (n = 625) were randomly assigned to four experimental conditions. They were asked to read either a food-addiction explanatory model of obesity or a nonaddiction model, and subsequently read a vignette describing a target person who met the characteristics of one of these models and was either obese or of normal weight. Questionnaires assessed participants' stigmatization and blame of targets and their attribution of psychopathology toward targets. Additional questionnaires assessed stigma and blame directed toward obese people generally, and personal fear of fat. A manipulation check revealed that the food-addiction experimental condition did significantly increase belief in the food-addiction model. Significant main effects for addiction showed that the food-addiction model produced less stigma, less blame, and lower perceived psychopathology attributed to the target described in vignettes, regardless of the target's weight. The food-addiction model also produced less blame toward obese people in general and less fear of fat. The present findings suggest that presenting obesity as an addiction does not increase weight bias and could even be helpful in reducing the widespread prejudice against obese people. PMID:24630939
Model of THz Magnetization Dynamics
Bocklage, Lars
2016-01-01
Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated. PMID:26956997
Structural dynamics system model reduction
NASA Technical Reports Server (NTRS)
Chen, J. C.; Rose, T. L.; Wada, B. K.
1987-01-01
Loads analysis for structural dynamic systems is usually performed by finite element models. Because of the complexity of the structural system, the model contains large number of degree-of-freedom. The large model is necessary since details of the stress, loads and responses due to mission environments are computed. However, a simplified model is needed for other tasks such as pre-test analysis for modal testing, and control-structural interaction studies. A systematic method of model reduction for modal test analysis is presented. Perhaps it will be of some help in developing a simplified model for the control studies.
Hishinuma, Earl S.; Chang, Janice Y.; McArdle, John J.; Hamagami, Fumiaki
2012-01-01
There is a relatively consistent negative relationship between adolescent depressive symptoms and educational achievement (e.g., grade-point average [GPA]). However, we are less certain of the causal direction for this association due to the lack of longitudinal data with both indicators measured across at least two time periods, and due to the lack of application of more sophisticated contemporary statistical techniques. We present multivariate results from a large longitudinal cohort-sequential study of high school students (N = 7,317) with measures of self-reported depressive symptoms and self-reported GPAs across multiple time points (following McArdle, 2009; McArdle et al., 2001) using an ethnically diverse sample from Hawai‘i. Contemporary statistical techniques included: bivariate dynamic structural equation modeling (DSEM); multi-group gender-and-ethnic DSEMs; ordinal scale measurement of key outcomes; and imputation for incomplete longitudinal data. The findings suggest that depressive symptoms affect subsequent academic achievement, and not the other way around, especially for Native Hawaiians as compared to non-Hawaiian females. We further discuss the scientific, applied, and methodological-statistical implications of the results, including the need for further theorizing and research on mediating variables. We also discuss the need for increased prevention, early intervention, screening, identification, and treatment of depressive symptoms and disorders. Finally, we argue for utilization of more contemporary methodological-statistical techniques, especially when violating parametric-test assumptions. PMID:22268606
Bemana, Foruzan; Bemana, Simin; Farhadi, Payam; Shokrpour, Nasrin
2014-01-01
Nowadays burnout is a common issue in all health systems and therapeutic professions. Burnout is caused by job stressors and results in reduction in output, increase in absenteeism and health expenses, behavioral changes, and sometimes drugs abuse. Nonetheless, people who have hardy personalities experience less exhaustion. The present research aimed to present a causal model of antecedents with burnout to emphasize the intermediate role of hardy personality in the nurses working in the public hospitals of Shiraz, Iran. The study data were collected using the Nursing Burnout Scale questionnaire (Int J Nurs Stud. 2008;45(3):418-427). In addition, the structural equation method was used as a model in order to determine the relationship between the variables. The suggested pattern in this research was checked by Leasrel software, version 8.5. The study results showed that antecedents, such as incorrect supervision, responsibility, and workload, have a significant effect on burnout. However, mediated hardy personality had no effect on burnout. The results also showed that the people who had hardy personality could manage the stressful situations well and, consequently, rarely experience burnout. Overall, if the job stressors are existent in the job environment and the individuals cannot eradicate them, they will cause burnout outbreak.
Inferring causal molecular networks: empirical assessment through a community-based effort.
Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach
2016-04-01
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.
Inferring causal molecular networks: empirical assessment through a community-based effort.
Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach
2016-04-01
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense. PMID:26901648
African Americans' Educational Expectations: Longitudinal Causal Models for Women and Men.
ERIC Educational Resources Information Center
Trusty, Jerry
2002-01-01
Investigates the long-term educational development of African American adolescents. The dependent variable was the highest level of education that participants ever expected to receive. Path models revealed differing processes for women and men. Overall, effects of early academic performance variables were strongest, followed by effects of family…
A causal model of depression among older adults in Chon Buri Province, Thailand.
Piboon, Kanchana; Subgranon, Rarcharneeporn; Hengudomsub, Pornpat; Wongnam, Pairatana; Louise Callen, Bonnie
2012-02-01
The purposes of this study are to develop and empirically test a theoretical model that examines the relationships between a set of predictors and depression among older adults. A biopsychosocial model was tested with 317 community dwelling older adults residing in Chon Buri Province, Thailand. A face-to-face interview was used in a cross-sectional community-based survey. A hypothesized model of depression was tested by using path analysis. It was found that the modified model fitted the data and the predictors accounted for 60% of the variance in depression. Female gender, activities of daily living, loneliness, stressful life events, and emotional-focused coping had a positive direct effect on depression. Social support and problem-focused coping had a negative direct effect on depression. Additionally, perceived stress, stressful life events, loneliness, and income had a negative indirect effect on depression through social support. Female gender, activities of daily living, and perceived stress also had a positive indirect effect on depression through emotional-focused coping. Stressful life events, perceived stress, and income had a negative indirect effect on depression through problem-focused coping. These findings contribute to a better understanding of the variables that predict depression in older adults. Thus, health care providers should consider the effects of these contributing factors on depression in the older adult person and can devise a program to prevent and promote health in older adults alleviating depression.
Using the PRECEDE Model for Causal Analysis of Bulimic Tendencies among Elite Women Swimmers.
ERIC Educational Resources Information Center
Benson, RoseAnn; Taub, Diane E.
1993-01-01
Describes a study of weight control techniques and bulimic tendencies among elite female participants in an Olympic Swimming Selection Meet. Results showed concern with thinness, body dissatisfaction, and unhealthy eating, dieting, and weight loss patterns among participants. Discusses the explanatory power of the PRECEDE model. (SM)
ERIC Educational Resources Information Center
Possel, Patrick; Seemann, Simone; Ahrens, Stefanie; Hautzinger, Martin
2006-01-01
In Dodge's model of "social information processing" depression is the result of a linear sequence of five stages of information processing ("Annu Rev Psychol" 44: 559-584, 1993). These stages follow a person's reaction to situational stimuli, such that each stage of information processing mediates the relationship between earlier and later stages.…
IAQ evaluation by dynamic modeling
Meckler, M.
1995-12-01
The current ASHRAE Standard 62-1989, in addition to the ventilation rate (VR) procedure, now contains an alternative procedure in Appendix E to achieve acceptable indoor air quality (IAQ). In this article, the author develops a dynamic model for each of the seven most commonly used HVAC systems listed in Appendix E of ASHRAE Standard 62-1989 and demonstrates how these dynamic models work by providing an illustrative example. In this example, the author estimates the concentration of formaldehyde as a function of time in an office occupancy for three types of filters and outlines how to choose filters to decrease outside air flow requirements.
Linking service climate and customer perceptions of service quality: test of a causal model.
Schneider, B; White, S S; Paul, M C
1998-04-01
A set of foundation issues that support employee work and service quality is conceptualized as a necessary but not sufficient cause of a climate for service, which in turn is proposed to be reflected in customer experiences. Climate for service rests on the foundation issues, but in addition it requires policies and practices that focus attention directly on service quality. Data were collected at multiple points in time from employees and customers of 134 branches of a bank and analyzed via structural equation modeling. Results indicated that the model in which the foundation issues yielded a climate for service, and climate for service in turn led to customer perceptions of service quality, fit the data well. However, subsequent cross-lagged analyses revealed the presence of a reciprocal effect for climate and customer perceptions. Implications of these results for theory and research are offered.
Linking service climate and customer perceptions of service quality: test of a causal model.
Schneider, B; White, S S; Paul, M C
1998-04-01
A set of foundation issues that support employee work and service quality is conceptualized as a necessary but not sufficient cause of a climate for service, which in turn is proposed to be reflected in customer experiences. Climate for service rests on the foundation issues, but in addition it requires policies and practices that focus attention directly on service quality. Data were collected at multiple points in time from employees and customers of 134 branches of a bank and analyzed via structural equation modeling. Results indicated that the model in which the foundation issues yielded a climate for service, and climate for service in turn led to customer perceptions of service quality, fit the data well. However, subsequent cross-lagged analyses revealed the presence of a reciprocal effect for climate and customer perceptions. Implications of these results for theory and research are offered. PMID:9577232
Inversion-based control of a vehicle with a clutch using a switched causal modelling
NASA Astrophysics Data System (ADS)
Lhomme, W.; Trigui, R.; Bouscayrol, A.; Delarue, P.; Jeanneret, B.; Badin, F.
2011-02-01
The modelling of a clutch in a power train transmission is a delicate process because of its non-linear behaviour. Two different states have to be taken into account: when the clutch is locked and when the clutch is slipping. Moreover the clutch has often to be controlled automatically in parallel hybrid electric vehicles (HEVs). An energetic macroscopic representation (EMR) of a clutch system has been developed. Both clutch states are genuinely taken into account in a physical way. In this article, EMR leads to organise the control scheme of the clutch system using an inversion methodology. An experimental validation is provided on a conventional vehicle before being implemented on parallel HEVs. Experimental results are provided to validate the clutch model and the inversion-based control.
Pfeffer, A; Das, S; Lawless, D; Ng, B
2006-10-10
Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.
Multiscale modeling of nucleosome dynamics.
Sharma, Shantanu; Ding, Feng; Dokholyan, Nikolay V
2007-03-01
Nucleosomes form the fundamental building blocks of chromatin. Subtle modifications of the constituent histone tails mediate chromatin stability and regulate gene expression. For this reason, it is important to understand structural dynamics of nucleosomes at atomic levels. We report a novel multiscale model of the fundamental chromatin unit, a nucleosome, using a simplified model for rapid discrete molecular dynamics simulations and an all-atom model for detailed structural investigation. Using a simplified structural model, we perform equilibrium simulations of a single nucleosome at various temperatures. We further reconstruct all-atom nucleosome structures from simulation trajectories. We find that histone tails bind to nucleosomal DNA via strong salt-bridge interactions over a wide range of temperatures, suggesting a mechanism of chromatin structural organization whereby histone tails regulate inter- and intranucleosomal assemblies via binding with nucleosomal DNA. We identify specific regions of the histone core H2A/H2B-H4/H3-H3/H4-H2B/H2A, termed "cold sites", which retain a significant fraction of contacts with adjoining residues throughout the simulation, indicating their functional role in nucleosome organization. Cold sites are clustered around H3-H3, H2A-H4 and H4-H2A interhistone interfaces, indicating the necessity of these contacts for nucleosome stability. Essential dynamics analysis of simulation trajectories shows that bending across the H3-H3 is a prominent mode of intranucleosomal dynamics. We postulate that effects of salts on mononucleosomes can be modeled in discrete molecular dynamics by modulating histone-DNA interaction potentials. Local fluctuations in nucleosomal DNA vary significantly along the DNA sequence, suggesting that only a fraction of histone-DNA contacts make strong interactions dominating mononucleosomal dynamics. Our findings suggest that histone tails have a direct functional role in stabilizing higher-order chromatin
Kokal, Idil; Keysers, Christian
2010-01-01
Studies investigating joint actions have suggested a central role for the putative mirror neuron system (pMNS) because of the close link between perception and action provided by these brain regions [1], [2], [3]. In contrast, our previous functional magnetic resonance imaging (fMRI) experiment demonstrated that the BOLD response of the pMNS does not suggest that it directly integrates observed and executed actions during joint actions [4]. To test whether the pMNS might contribute indirectly to the integration process by sending information to brain areas responsible for this integration (integration network), here we used Granger causality mapping (GCM) [5]. We explored the directional information flow between the anterior sites of the pMNS and previously identified integrative brain regions. We found that the left BA44 sent more information than it received to both the integration network (left thalamus, right middle occipital gyrus and cerebellum) and more posterior nodes of the pMNS (BA2). Thus, during joint actions, two anatomically separate networks therefore seem effectively connected and the information flow is predominantly from anterior to posterior areas of the brain. These findings suggest that the pMNS is involved indirectly in joint actions by transforming observed and executed actions into a common code and is part of a generative model that could predict the future somatosensory and visual consequences of observed and executed actions in order to overcome otherwise inevitable neural delays. PMID:20975836
NASA Astrophysics Data System (ADS)
Wissner-Gross, A. D.; Freer, C. E.
2013-04-01
Recent advances in fields ranging from cosmology to computer science have hinted at a possible deep connection between intelligence and entropy maximization, but no formal physical relationship between them has yet been established. Here, we explicitly propose a first step toward such a relationship in the form of a causal generalization of entropic forces that we find can cause two defining behaviors of the human “cognitive niche”—tool use and social cooperation—to spontaneously emerge in simple physical systems. Our results suggest a potentially general thermodynamic model of adaptive behavior as a nonequilibrium process in open systems.
Predictive models of battle dynamics
NASA Astrophysics Data System (ADS)
Jelinek, Jan
2001-09-01
The application of control and game theories to improve battle planning and execution requires models, which allow military strategists and commanders to reliably predict the expected outcomes of various alternatives over a long horizon into the future. We have developed probabilistic battle dynamics models, whose building blocks in the form of Markov chains are derived from the first principles, and applied them successfully in the design of the Model Predictive Task Commander package. This paper introduces basic concepts of our modeling approach and explains the probability distributions needed to compute the transition probabilities of the Markov chains.
Observability in dynamic evolutionary models.
López, I; Gámez, M; Carreño, R
2004-02-01
In the paper observability problems are considered in basic dynamic evolutionary models for sexual and asexual populations. Observability means that from the (partial) knowledge of certain phenotypic characteristics the whole evolutionary process can be uniquely recovered. Sufficient conditions are given to guarantee observability for both sexual and asexual populations near an evolutionarily stable state.
Nonlinear Dynamic Model Explains The Solar Dynamic
NASA Astrophysics Data System (ADS)
Kuman, Maria
Nonlinear mathematical model in torus representation describes the solar dynamic. Its graphic presentation shows that without perturbing force the orbits of the planets would be circles; only perturbing force could elongate the circular orbits into ellipses. Since the Hubble telescope found that the planetary orbits of other stars in the Milky Way are also ellipses, powerful perturbing force must be present in our galaxy. Such perturbing force is the Sagittarius Dwarf Galaxy with its heavy Black Hole and leftover stars, which we see orbiting around the center of our galaxy. Since observations of NASA's SDO found that magnetic fields rule the solar activity, we can expect when the planets align and their magnetic moments sum up, the already perturbed stars to reverse their magnetic parity (represented graphically as periodic looping through the hole of the torus). We predict that planets aligned on both sides of the Sun, when their magnetic moments sum-up, would induce more flares in the turbulent equatorial zone, which would bulge. When planets align only on one side of the Sun, the strong magnetic gradient of their asymmetric pull would flip the magnetic poles of the Sun. The Sun would elongate pole-to-pole, emit some energy through the poles, and the solar activity would cease. Similar reshaping and emission was observed in stars called magnetars and experimentally observed in super-liquid fast-spinning Helium nanodroplets. We are certain that NASA's SDO will confirm our predictions.
NASA Astrophysics Data System (ADS)
Haase, D.
2009-04-01
Participation processes play a crucial role in implementing adaptive management in river basins. A range of different participative methods is being applied, however, little is known on their effectiveness in addressing the specific question or policy process at stake and their performance in different socio-economic and cultural settings. To shed light on the role of cultural settings on the outcomes of a participative process we carried out a comparative study of participation processes using group model building (GMB) in a European, a Central Asian, and an African river basin. We use an analytical framework which covers the goals, the role of science and stakeholders, the initiation and methods of the processes framed by very different cultural, socio-economic and biophysical conditions. Across all three basins, the GMB processes produced a shared understanding among all participants of the major water management issues in the respective river basin and common approaches to address them. The "ownership of the ideas" by the stakeholders, i.e. the topic to be addressed in a GMB process, is important for their willingness to contribute to such a participatory process. Differences, however, exist in so far that cultural and contextual constraints of the basin drive the way the GMB processes have been designed and how their results contribute to policy development.
A causal model of coping and well-being in elderly people with arthritis.
Downe-Wamboldt, B L; Melanson, P M
1998-06-01
The purpose of this longitudinal study was to test a model of the relationships among social economic status, gender, severity of impairment, stress emotions, coping strategies and psychological well-being. A sample of 78 elderly women and men, 60 years old or over, and diagnosed as having rheumatoid arthritis since mid-life, volunteered to participate in the study. Twelve months later, 64 of these elderly people were re-interviewed. Path analysis was used to examine the empirical import of the Lazarus and Folkman theory of stress and coping. Analysis of variance for repeated measures was used to test for changes over time among the study variable. A consistent relationship between severity of impairment, emotions, coping strategies and psychological well-being emerged from the data at time one and time two. Choice of coping strategies and psychological well-being were primarily influenced by emotions. The best predictor of psychological well-being at both time periods was the stress emotion of challenge. At both time periods, optimistic and self-reliant coping strategies were used most often and evasive and emotive strategies the least.
How prescriptive norms influence causal inferences.
Samland, Jana; Waldmann, Michael R
2016-11-01
Recent experimental findings suggest that prescriptive norms influence causal inferences. The cognitive mechanism underlying this finding is still under debate. We compare three competing theories: The culpable control model of blame argues that reasoners tend to exaggerate the causal influence of norm-violating agents, which should lead to relatively higher causal strength estimates for these agents. By contrast, the counterfactual reasoning account of causal selection assumes that norms do not alter the representation of the causal model, but rather later causal selection stages. According to this view, reasoners tend to preferentially consider counterfactual states of abnormal rather than normal factors, which leads to the choice of the abnormal factor in a causal selection task. A third view, the accountability hypothesis, claims that the effects of prescriptive norms are generated by the ambiguity of the causal test question. Asking whether an agent is a cause can be understood as a request to assess her causal contribution but also her moral accountability. According to this theory norm effects on causal selection are mediated by accountability judgments that are not only sensitive to the abnormality of behavior but also to mitigating factors, such as intentionality and knowledge of norms. Five experiments are presented that favor the accountability account over the two alternative theories. PMID:27591550
NASA Astrophysics Data System (ADS)
Stratford, Steven J.; Krajcik, Joseph; Soloway, Elliot
1998-09-01
In this paper, we explore dynamic modeling as an opportunity for students to think about the science content they are learning. We examined the "Cognitive Strategies for Modeling" (CSMs) in which students engaged as they created dynamic models. We audio- and videotape-recorded eight pairs of ninth grade science students and analyzed their conversations and actions. In analyzing appropriate objects and factors for their model, some students merely enumerated potential factors whereas others engaged in rich, substantial, mindful analysis. In reasoning about their models, students discussed relationships in depth, concentrated only on the most important key relationships, or encountered difficulty distinguishing between causal and correlational relationships. In synthesizing working models, students mapped their model to aid visualization, focused on their goal, or talked about their model's appearance or form. Students attempted to articulate explanations for their relationships, but sometimes their explanations were shallow. In testing their models, some students tested thoroughly but only a few persisted in debugging their model's behavior so that it matched their expectations. In our conclusion we suggest that creating dynamic models has great potential for use in classrooms to engage students in thought about science content, particularly in those thinking strategies best fostered by dynamic modeling: analysis, relational reasoning, synthesis, testing and debugging, and making explanations.
Dynamical Modelling of Meteoroid Streams
NASA Astrophysics Data System (ADS)
Clark, David; Wiegert, P. A.
2012-10-01
Accurate simulations of meteoroid streams permit the prediction of stream interaction with Earth, and provide a measure of risk to Earth satellites and interplanetary spacecraft. Current cometary ejecta and meteoroid stream models have been somewhat successful in predicting some stream observations, but have required questionable assumptions and significant simplifications. Extending on the approach of Vaubaillon et al. (2005)1, we model dust ejection from the cometary nucleus, and generate sample particles representing bins of distinct dynamical evolution-regulating characteristics (size, density, direction, albedo). Ephemerides of the sample particles are integrated and recorded for later assignment of frequency based on model parameter changes. To assist in model analysis we are developing interactive software to permit the “turning of knobs” of model parameters, allowing for near-real-time 3D visualization of resulting stream structure. With this tool, we will revisit prior assumptions made, and will observe the impact of introducing non-uniform cometary surface attributes and temporal activity. The software uses a single model definition and implementation throughout model verification, sample particle bin generation and integration, and analysis. It supports the adjustment with feedback of both independent and independent model values, with the intent of providing an interface supporting multivariate analysis. Propagations of measurement uncertainties and model parameter precisions are tracked rigorously throughout. We maintain a separation of the model itself from the abstract concepts of model definition, parameter manipulation, and real-time analysis and visualization. Therefore we are able to quickly adapt to fundamental model changes. It is hoped the tool will also be of use in other solar system dynamics problems. 1 Vaubaillon, J.; Colas, F.; Jorda, L. (2005) A new method to predict meteor showers. I. Description of the model. Astronomy and
Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël
2016-11-01
Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach.
Dynamic Model of Mesoscale Eddies
NASA Astrophysics Data System (ADS)
Dubovikov, Mikhail S.
2003-04-01
Oceanic mesoscale eddies which are analogs of well known synoptic eddies (cyclones and anticyclones), are studied on the basis of the turbulence model originated by Dubovikov (Dubovikov, M.S., "Dynamical model of turbulent eddies", Int. J. Mod. Phys.B7, 4631-4645 (1993).) and further developed by Canuto and Dubovikov (Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: I. General formalism", Phys. Fluids8, 571-586 (1996a) (CD96a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: II. Sheardriven flows", Phys. Fluids8, 587-598 (1996b) (CD96b); Canuto, V.M., Dubovikov, M.S., Cheng, Y. and Dienstfrey, A., "A dynamical model for turbulence: III. Numerical results", Phys. Fluids8, 599-613 (1996c)(CD96c); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "A dynamical model for turbulence: IV. Buoyancy-driven flows", Phys. Fluids9, 2118-2131 (1997a) (CD97a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: V. The effect of rotation", Phys. Fluids9, 2132-2140 (1997b) (CD97b); Canuto, V.M., Dubovikov, M.S. and Wielaard, D.J., "A dynamical model for turbulence: VI. Two dimensional turbulence", Phys. Fluids9, 2141-2147 (1997c) (CD97c); Canuto, V.M. and Dubovikov, M.S., "Physical regimes and dimensional structure of rotating turbulence", Phys. Rev. Lett. 78, 666-669 (1997d) (CD97d); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "Turbulent convection in a spectral model", Phys. Rev. Lett. 78, 662-665 (1997e) (CD97e); Canuto, V.M. and Dubovikov, M.S., "A new approach to turbulence", Int. J. Mod. Phys.12, 3121-3152 (1997f) (CD97f); Canuto, V.M. and Dubovikov, M.S., "Two scaling regimes for rotating Raleigh-Benard convection", Phys. Rev. Letters78, 281-284, (1998) (CD98); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: VII. The five invariants for shear driven flows", Phys. Fluids11, 659-664 (1999a) (CD99a); Canuto, V.M., Dubovikov, M.S. and Yu, G., "A dynamical model for turbulence: VIII. IR and UV
Modelling MIZ dynamics in a global model
NASA Astrophysics Data System (ADS)
Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto
2016-04-01
Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.
Photodetection and causality I
NASA Astrophysics Data System (ADS)
de Haan, M.
1985-09-01
We investigate in this paper the link between the measurement process in quantum mechanics and casuality associated to a finite velocity of field propagation. We use models of interaction of a bound state with a scalar field. We first show that in the existing approaches, time delays resulting from the finite velocity of propagation have been obtained only as a consequence of ad hoc approximations. We show that exact causality can be restored in the case of a single photodetection by a slight change of the observable associated to the measurement process. Moreover, this modification may be justified by the introduction of a simple model for the photodetector. We present qualitative arguments to show that this procedure cannot be extended to the case of multiple photodetections. The process of repeated photodetection clashes therefore with causality. This paradox is closely related to the Zeno paradox described by Misra and Sudarshan 1). Both may be traced back to the positive definite character of the hamiltonian which is the generator of motion in quantum mechanics.
Nonparametric causal inference for bivariate time series.
McCracken, James M; Weigel, Robert S
2016-02-01
We introduce new quantities for exploratory causal inference between bivariate time series. The quantities, called penchants and leanings, are computationally straightforward to apply, follow directly from assumptions of probabilistic causality, do not depend on any assumed models for the time series generating process, and do not rely on any embedding procedures; these features may provide a clearer interpretation of the results than those from existing time series causality tools. The penchant and leaning are computed based on a structured method for computing probabilities.
Physical integration: a causal account for consciousness.
Manzotti, Riccardo; Chella, Antonio
2014-06-01
The issue of integration in neural networks is intimately connected with that of consciousness. In this paper, integration as an effective level of physical organization is contrasted with a methodological integrative approach. Understanding how consciousness arises out of neural processes requires a model of integration in just causal physical terms. Based on a set of feasible criteria (physical grounding, causal efficacy, no circularity and scaling), a causal account of physical integration for consciousness centered on joint causation is outlined.
Nonparametric causal inference for bivariate time series
NASA Astrophysics Data System (ADS)
McCracken, James M.; Weigel, Robert S.
2016-02-01
We introduce new quantities for exploratory causal inference between bivariate time series. The quantities, called penchants and leanings, are computationally straightforward to apply, follow directly from assumptions of probabilistic causality, do not depend on any assumed models for the time series generating process, and do not rely on any embedding procedures; these features may provide a clearer interpretation of the results than those from existing time series causality tools. The penchant and leaning are computed based on a structured method for computing probabilities.
On whole Abelian model dynamics
Chauca, J.; Doria, R.
2012-09-24
Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics oriented through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.
Causal Indicators Can Help to Interpret Factors
ERIC Educational Resources Information Center
Bentler, Peter M.
2016-01-01
The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…
Modeling wildfire incident complexity dynamics.
Thompson, Matthew P
2013-01-01
Wildfire management in the United States and elsewhere is challenged by substantial uncertainty regarding the location and timing of fire events, the socioeconomic and ecological consequences of these events, and the costs of suppression. Escalating U.S. Forest Service suppression expenditures is of particular concern at a time of fiscal austerity as swelling fire management budgets lead to decreases for non-fire programs, and as the likelihood of disruptive within-season borrowing potentially increases. Thus there is a strong interest in better understanding factors influencing suppression decisions and in turn their influence on suppression costs. As a step in that direction, this paper presents a probabilistic analysis of geographic and temporal variation in incident management team response to wildfires. The specific focus is incident complexity dynamics through time for fires managed by the U.S. Forest Service. The modeling framework is based on the recognition that large wildfire management entails recurrent decisions across time in response to changing conditions, which can be represented as a stochastic dynamic system. Daily incident complexity dynamics are modeled according to a first-order Markov chain, with containment represented as an absorbing state. A statistically significant difference in complexity dynamics between Forest Service Regions is demonstrated. Incident complexity probability transition matrices and expected times until containment are presented at national and regional levels. Results of this analysis can help improve understanding of geographic variation in incident management and associated cost structures, and can be incorporated into future analyses examining the economic efficiency of wildfire management.
Li, Fali; Tian, Yin; Zhang, Yangsong; Qiu, Kan; Tian, Chunyang; Jing, Wei; Liu, Tiejun; Xia, Yang; Guo, Daqing; Yao, Dezhong; Xu, Peng
2015-01-01
The neural mechanism of steady-state visual evoked potentials (SSVEP) is still not clearly understood. Especially, only certain frequency stimuli can evoke SSVEP. Our previous network study reveals that 8 Hz stimulus that can evoke strong SSVEP response shows the enhanced linkage strength between frontal and visual cortex. To further probe the directed information flow between the two cortex areas for various frequency stimuli, this paper develops a causality analysis based on the inversion of double columns model using particle swarm optimization (PSO) to characterize the directed information flow between visual and frontal cortices with the intracranial rat electroencephalograph (EEG). The estimated model parameters demonstrate that the 8 Hz stimulus shows the enhanced directional information flow from visual cortex to frontal lobe facilitates SSVEP response, which may account for the strong SSVEP response for 8 Hz stimulus. Furthermore, the similar finding is replicated by data-driven causality analysis. The inversion of neural mass model proposed in this study may be helpful to provide the new causality analysis to link the physiological model and the observed datasets in neuroscience and clinical researches. PMID:26434769
Li, Fali; Tian, Yin; Zhang, Yangsong; Qiu, Kan; Tian, Chunyang; Jing, Wei; Liu, Tiejun; Xia, Yang; Guo, Daqing; Yao, Dezhong; Xu, Peng
2015-10-05
The neural mechanism of steady-state visual evoked potentials (SSVEP) is still not clearly understood. Especially, only certain frequency stimuli can evoke SSVEP. Our previous network study reveals that 8 Hz stimulus that can evoke strong SSVEP response shows the enhanced linkage strength between frontal and visual cortex. To further probe the directed information flow between the two cortex areas for various frequency stimuli, this paper develops a causality analysis based on the inversion of double columns model using particle swarm optimization (PSO) to characterize the directed information flow between visual and frontal cortices with the intracranial rat electroencephalograph (EEG). The estimated model parameters demonstrate that the 8 Hz stimulus shows the enhanced directional information flow from visual cortex to frontal lobe facilitates SSVEP response, which may account for the strong SSVEP response for 8 Hz stimulus. Furthermore, the similar finding is replicated by data-driven causality analysis. The inversion of neural mass model proposed in this study may be helpful to provide the new causality analysis to link the physiological model and the observed datasets in neuroscience and clinical researches.
NASA Astrophysics Data System (ADS)
Li, Fali; Tian, Yin; Zhang, Yangsong; Qiu, Kan; Tian, Chunyang; Jing, Wei; Liu, Tiejun; Xia, Yang; Guo, Daqing; Yao, Dezhong; Xu, Peng
2015-10-01
The neural mechanism of steady-state visual evoked potentials (SSVEP) is still not clearly understood. Especially, only certain frequency stimuli can evoke SSVEP. Our previous network study reveals that 8 Hz stimulus that can evoke strong SSVEP response shows the enhanced linkage strength between frontal and visual cortex. To further probe the directed information flow between the two cortex areas for various frequency stimuli, this paper develops a causality analysis based on the inversion of double columns model using particle swarm optimization (PSO) to characterize the directed information flow between visual and frontal cortices with the intracranial rat electroencephalograph (EEG). The estimated model parameters demonstrate that the 8 Hz stimulus shows the enhanced directional information flow from visual cortex to frontal lobe facilitates SSVEP response, which may account for the strong SSVEP response for 8 Hz stimulus. Furthermore, the similar finding is replicated by data-driven causality analysis. The inversion of neural mass model proposed in this study may be helpful to provide the new causality analysis to link the physiological model and the observed datasets in neuroscience and clinical researches.
Quantifying information transfer and mediation along causal pathways in complex systems
NASA Astrophysics Data System (ADS)
Runge, Jakob
2015-12-01
Measures of information transfer have become a popular approach to analyze interactions in complex systems such as the Earth or the human brain from measured time series. Recent work has focused on causal definitions of information transfer aimed at decompositions of predictive information about a target variable, while excluding effects of common drivers and indirect influences. While common drivers clearly constitute a spurious causality, the aim of the present article is to develop measures quantifying different notions of the strength of information transfer along indirect causal paths, based on first reconstructing the multivariate causal network. Another class of novel measures quantifies to what extent different intermediate processes on causal paths contribute to an interaction mechanism to determine pathways of causal information transfer. The proposed framework complements predictive decomposition schemes by focusing more on the interaction mechanism between multiple processes. A rigorous mathematical framework allows for a clear information-theoretic interpretation that can also be related to the underlying dynamics as proven for certain classes of processes. Generally, however, estimates of information transfer remain hard to interpret for nonlinearly intertwined complex systems. But if experiments or mathematical models are not available, then measuring pathways of information transfer within the causal dependency structure allows at least for an abstraction of the dynamics. The measures are illustrated on a climatological example to disentangle pathways of atmospheric flow over Europe.
Fluctuations in relativistic causal hydrodynamics
NASA Astrophysics Data System (ADS)
Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.
2014-05-01
Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.
Evolution models with extremal dynamics.
Kärenlampi, Petri P
2016-08-01
The random-neighbor version of the Bak-Sneppen biological evolution model is reproduced, along with an analogous model of random replicators, the latter eventually experiencing topology changes. In the absence of topology changes, both types of models self-organize to a critical state. Species extinctions in the replicator system degenerates the self-organization to a random walk, as does vanishing of species interaction for the BS-model. A replicator model with speciation is introduced, experiencing dramatic topology changes. It produces a variety of features, but self-organizes to a possibly critical state only in a few special cases. Speciation-extinction dynamics interfering with self-organization, biological macroevolution probably is not a self-organized critical system. PMID:27626090
Dynamical modelling of meteoroid streams
NASA Astrophysics Data System (ADS)
Clark, D. L.; Wiegert, P. A.
2014-07-01
Accurate simulations of meteoroid streams permit the prediction of stream interaction with Earth, and provide a measure of risk to Earth satellites and interplanetary spacecraft. Current cometary ejecta and meteoroid stream models have been somewhat successful in predicting some stream observations, but have required significant assumptions and simplifications. Extending on the approach of Vaubaillon et al. 2005, we model dust ejection from the cometary nucleus, and generate sample particles representing bins of distinct dynamical evolution-regulating characteristics (size, density, direction, albedo). Ephemerides of the sample particles are integrated and recorded for later assignment of weights based on model parameter changes. To assist in model analysis we are developing interactive software to permit the "turning of knobs" of model parameters, allowing for near-real-time 3D visualization of resulting stream structure. Using the tool, we will revisit prior assumptions made, and will observe the impact of introducing non-uniform and time-variant cometary surface attributes and processes.
Self-esteem and causal attributions.
Chandler, T A; Lee, M S; Pengilly, J W
1997-11-01
The relationship between self-esteem and causal attributions of success and failure in achievement-related behavior was examined among undergraduate students. An integration of a self-consistency model of causal attribution and self-enhancement theory was attempted. Self-esteem and performance outcome conditions of success and failure served as independent variables. Success and failure conditions were created via feedback regarding the participants' performance on an anagram task. The participants' attributions of six causal elements (ability, effort, immediate effort, task difficulty, luck, and mood) were categorized and combined with three causal dimensions (internal-external locus, stability, and controllability), which served as dependent variables. Participants' expectations regarding performance also served as a dependent variable. The relationship between self-esteem, expectancies of success and failure, performance, and stable causality were reported. In terms of causal dimensions, internal, stable, and controllable dimensions were explained by self-enhancement.
Causality violation and paradoxes
NASA Astrophysics Data System (ADS)
Krasnikov, S. V.
1997-03-01
Paradoxes that can supposedly occur if causality is violated are discussed. It is shown that the existence of ``trajectories of multiplicity zero'' (i.e., trajectories that describe, say, a ball hitting its younger self so that the latter cannot fall into the time machine) is not paradoxical by itself. This apparent paradox can be resolved (at least sometimes) without any harm to local physics or to the time machine. Also a simple model is adduced for which the absence of true paradoxes caused by self-interaction in an acausal world is proved. The conclusion is made that the paradoxes appear if and (within this model) only if the fact is neglected that no conditions fixed to the past of a time machine guarantee that a system remains isolated after it intersects the Cauchy horizon.
From blickets to synapses: inferring temporal causal networks by observation.
Fernando, Chrisantha
2013-01-01
How do human infants learn the causal dependencies between events? Evidence suggests that this remarkable feat can be achieved by observation of only a handful of examples. Many computational models have been produced to explain how infants perform causal inference without explicit teaching about statistics or the scientific method. Here, we propose a spiking neuronal network implementation that can be entrained to form a dynamical model of the temporal and causal relationships between events that it observes. The network uses spike-time dependent plasticity, long-term depression, and heterosynaptic competition rules to implement Rescorla-Wagner-like learning. Transmission delays between neurons allow the network to learn a forward model of the temporal relationships between events. Within this framework, biologically realistic synaptic plasticity rules account for well-known behavioral data regarding cognitive causal assumptions such as backwards blocking and screening-off. These models can then be run as emulators for state inference. Furthermore, this mechanism is capable of copying synaptic connectivity patterns between neuronal networks by observing the spontaneous spike activity from the neuronal circuit that is to be copied, and it thereby provides a powerful method for transmission of circuit functionality between brain regions.
Causality networks from multivariate time series and application to epilepsy.
Siggiridou, Elsa; Koutlis, Christos; Tsimpiris, Alkiviadis; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris
2015-08-01
Granger causality and variants of this concept allow the study of complex dynamical systems as networks constructed from multivariate time series. In this work, a large number of Granger causality measures used to form causality networks from multivariate time series are assessed. For this, realizations on high dimensional coupled dynamical systems are considered and the performance of the Granger causality measures is evaluated, seeking for the measures that form networks closest to the true network of the dynamical system. In particular, the comparison focuses on Granger causality measures that reduce the state space dimension when many variables are observed. Further, the linear and nonlinear Granger causality measures of dimension reduction are compared to a standard Granger causality measure on electroencephalographic (EEG) recordings containing episodes of epileptiform discharges.
Modeling Wildfire Incident Complexity Dynamics
Thompson, Matthew P.
2013-01-01
Wildfire management in the United States and elsewhere is challenged by substantial uncertainty regarding the location and timing of fire events, the socioeconomic and ecological consequences of these events, and the costs of suppression. Escalating U.S. Forest Service suppression expenditures is of particular concern at a time of fiscal austerity as swelling fire management budgets lead to decreases for non-fire programs, and as the likelihood of disruptive within-season borrowing potentially increases. Thus there is a strong interest in better understanding factors influencing suppression decisions and in turn their influence on suppression costs. As a step in that direction, this paper presents a probabilistic analysis of geographic and temporal variation in incident management team response to wildfires. The specific focus is incident complexity dynamics through time for fires managed by the U.S. Forest Service. The modeling framework is based on the recognition that large wildfire management entails recurrent decisions across time in response to changing conditions, which can be represented as a stochastic dynamic system. Daily incident complexity dynamics are modeled according to a first-order Markov chain, with containment represented as an absorbing state. A statistically significant difference in complexity dynamics between Forest Service Regions is demonstrated. Incident complexity probability transition matrices and expected times until containment are presented at national and regional levels. Results of this analysis can help improve understanding of geographic variation in incident management and associated cost structures, and can be incorporated into future analyses examining the economic efficiency of wildfire management. PMID:23691014
Data modeling of network dynamics
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Faucheux, Jeffery P.; Harris, Brad
2004-01-01
This paper highlights Data Modeling theory and its use for text data mining as a graphical network search engine. Data Modeling is then used to create a real-time filter capable of monitoring network traffic down to the port level for unusual dynamics and changes in business as usual. This is accomplished in an unsupervised fashion without a priori knowledge of abnormal characteristics. Two novel methods for converting streaming binary data into a form amenable to graphics based search and change detection are introduced. These techniques are then successfully applied to 1999 KDD Cup network attack data log-on sessions to demonstrate that Data Modeling can detect attacks without prior training on any form of attack behavior. Finally, two new methods for data encryption using these ideas are proposed.
Smith, William C; Anderson, Emily; Salinas, Daniel; Horvatek, Renata; Baker, David P
2015-02-01
As the Epidemiological Transition progresses worldwide, chronic diseases account for the majority of deaths in developed countries and a rising proportion in developing countries indicating a new global pattern of mortality and health challenges into the future. Attainment of formal education is widely reported to have a negative gradient with risk factors and onset of chronic disease, yet there has not been a formal assessment of this research. A random-effects meta-analysis finds that across 414 published effects more education significantly reduces the likelihood of chronic disease, except for neoplastic diseases with substantial genetic causes. Some studies, however, report null effects and other research on infectious disease report positive education gradients. Instead of assuming these contradictory results are spurious, it is suggested that they are part of a predictable systemic interaction between multiple mediating effects of education and the Epidemiological Transition stage of the population; and thus represent one case of the Population Education Transition Curve modeling changes in the association between education and health as dependent on population context.
Campbell's and Rubin's Perspectives on Causal Inference
ERIC Educational Resources Information Center
West, Stephen G.; Thoemmes, Felix
2010-01-01
Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…
COLD-SAT Dynamic Model Computer Code
NASA Technical Reports Server (NTRS)
Bollenbacher, G.; Adams, N. S.
1995-01-01
COLD-SAT Dynamic Model (CSDM) computer code implements six-degree-of-freedom, rigid-body mathematical model for simulation of spacecraft in orbit around Earth. Investigates flow dynamics and thermodynamics of subcritical cryogenic fluids in microgravity. Consists of three parts: translation model, rotation model, and slosh model. Written in FORTRAN 77.
Dynamics of the standard model
Donoghue, J.F.; Golowich, E.; Holstein, B.R.
1992-01-01
Given the remarkable successes of the standard model, it is appropriate that books in the field no longer dwell on the development of our current understanding of high-energy physics but rather present the world as we now know it. Dynamics of the Standard Model by Donoghue, Golowich, and Holstein takes just this approach. Instead of showing the confusion of the 60s and 70s, the authors present the enlightenment of the 80s. They start by describing the basic features and structure of the standard model and then concentrate on the techniques whereby the model can be applied to the physical world, connecting the theory to the experimental results that are the source of its success. Because they do not dwell on ancient (pre-1980) history, the authors of this book are able to go into much more depth in describing how the model can be tied to experiment, and much of the information presented has been accessible previously only in journal articles in a highly technical form. Though all of the authors are card-carrying theorists they go out of their way to stress applications and phenomenology and to show the reader how real-life calculations of use to experimentalists are done and can be applied to physical situations: what assumptions are made in doing them and how well they work. This is of great value both to the experimentalist seeking a deeper understanding of how the standard model can be connected to data and to the theorist wanting to see how detailed the phenomenological predictions of the standard model are and how well the model works. Furthermore, the authors constantly go beyond the lowest-order predictions of the standard model to discuss the corrections to it, as well as higher-order processes, some of which are now experimentally accessible and others of which will take well into the decade to uncover.
A copula approach to assessing Granger causality.
Hu, Meng; Liang, Hualou
2014-10-15
In neuroscience, as in many other fields of science and engineering, it is crucial to assess the causal interactions among multivariate time series. Granger causality has been increasingly used to identify causal influence between time series based on multivariate autoregressive models. Such an approach is based on linear regression framework with implicit Gaussian assumption of model noise residuals having constant variance. As a consequence, this measure cannot detect the cause-effect relationship in high-order moments and nonlinear causality. Here, we propose an effective model-free, copula-based Granger causality measure that can be used to reveal nonlinear and high-order moment causality. We first formulate Granger causality as the log-likelihood ratio in terms of conditional distribution, and then derive an efficient estimation procedure using conditional copula. We use resampling techniques to build a baseline null-hypothesis distribution from which statistical significance can be derived. We perform a series of simulations to investigate the performance of our copula-based Granger causality, and compare its performance against other state-of-the-art techniques. Our method is finally applied to neural field potential time series recorded from visual cortex of a monkey while performing a visual illusion task.
Causality in physiological signals.
Müller, Andreas; Kraemer, Jan F; Penzel, Thomas; Bonnemeier, Hendrik; Kurths, Jürgen; Wessel, Niels
2016-05-01
Health is one of the most important non-material assets and thus also has an enormous influence on material values, since treating and preventing diseases is expensive. The number one cause of death worldwide today originates in cardiovascular diseases. For these reasons the aim of understanding the functions and the interactions of the cardiovascular system is and has been a major research topic throughout various disciplines for more than a hundred years. The purpose of most of today's research is to get as much information as possible with the lowest possible effort and the least discomfort for the subject or patient, e.g. via non-invasive measurements. A family of tools whose importance has been growing during the last years is known under the headline of coupling measures. The rationale for this kind of analysis is to identify the structure of interactions in a system of multiple components. Important information lies for example in the coupling direction, the coupling strength, and occurring time lags. In this work, we will, after a brief general introduction covering the development of cardiovascular time series analysis, introduce, explain and review some of the most important coupling measures and classify them according to their origin and capabilities in the light of physiological analyses. We will begin with classical correlation measures, go via Granger-causality-based tools, entropy-based techniques (e.g. momentary information transfer), nonlinear prediction measures (e.g. mutual prediction) to symbolic dynamics (e.g. symbolic coupling traces). All these methods have contributed important insights into physiological interactions like cardiorespiratory coupling, neuro-cardio-coupling and many more. Furthermore, we will cover tools to detect and analyze synchronization and coordination (e.g. synchrogram and coordigram). As a last point we will address time dependent couplings as identified using a recent approach employing ensembles of time series. The
Characterizing and Modeling Citation Dynamics
Eom, Young-Ho; Fortunato, Santo
2011-01-01
Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well. PMID:21966387
Dynamical modeling of tidal streams
Bovy, Jo
2014-11-01
I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.
Dynamical Modeling of Tidal Streams
NASA Astrophysics Data System (ADS)
Bovy, Jo
2014-11-01
I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its "track") in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of "orphan" streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.
Dynamically Evolving Models of Clusters
NASA Astrophysics Data System (ADS)
Bode, Paul W.; Berrington, Robert C.; Cohn, Haldan N.; Lugger, Phyllis M.
1993-12-01
An N-body method, with up to N=10(5) particles, is used to simulate the dynamical evolution of clusters of galaxies. Each galaxy is represented as an extended structure containing many particles, and the gravitational potential arises from the particles alone. The clusters initially contain 50 or 100 galaxies with masses distributed according to a Schechter function. Mass is apportioned between the galaxies and a smoothly distributed common group halo, or intra-cluster background. The fraction of the total cluster mass initially in this background is varied from 50% to 90%. The models begin in a virialized state. We will be presenting a videotape which contains animations of a number of these models. The animations show important physical processes, such as stripping, merging, and dynamical friction, as they take place, thus allowing one to observe the interplay of these processes in the global evolution of the system. When the galaxies have substantial dark halos (background mass fraction <=75%) a large, centrally located merger remnant is created. The galaxy number density profile around this dominant member becomes cusped, approaching an isothermal distribution. At the same time, the number of multiple nuclei increases. Comparing the 50-galaxy models to MKW/AWM clusters, the values of Delta M12 and the peculiar velocities of the first-ranked galaxies are best fit by a mix of model ages in the range 8--11 Gyr. The growth in luminosity of the first-ranked galaxy during this amount of time is consistent only with weak cannibalism.
Entanglement, holography and causal diamonds
NASA Astrophysics Data System (ADS)
de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.
2016-08-01
We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.
Assessing thalamocortical functional connectivity with Granger causality.
Chen, Cheng; Maybhate, Anil; Israel, David; Thakor, Nitish V; Jia, Xiaofeng
2013-09-01
Assessment of network connectivity across multiple brain regions is critical to understanding the mechanisms underlying various neurological disorders. Conventional methods for assessing dynamic interactions include cross-correlation and coherence analysis. However, these methods do not reveal the direction of information flow, which is important for studying the highly directional neurological system. Granger causality (GC) analysis can characterize the directional influences between two systems. We tested GC analysis for its capability to capture directional interactions within both simulated and in vivo neural networks. The simulated networks consisted of Hindmarsh-Rose neurons; GC analysis was used to estimate the causal influences between two model networks. Our analysis successfully detected asymmetrical interactions between these networks ( , t -test). Next, we characterized the relationship between the "electrical synaptic strength" in the model networks and interactions estimated by GC analysis. We demonstrated the novel application of GC to monitor interactions between thalamic and cortical neurons following ischemia induced brain injury in a rat model of cardiac arrest (CA). We observed that during the post-CA acute period the GC interactions from the thalamus to the cortex were consistently higher than those from the cortex to the thalamus ( 1.983±0.278 times higher, p = 0.021). In addition, the dynamics of GC interactions between the thalamus and the cortex were frequency dependent. Our study demonstrated the feasibility of GC to monitor the dynamics of thalamocortical interactions after a global nervous system injury such as CA-induced ischemia, and offers preferred alternative applications in characterizing other inter-regional interactions in an injured brain.
Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël
2016-11-01
Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach. PMID:27378153
Causal Learning Across Domains
ERIC Educational Resources Information Center
Schulz, Laura E.; Gopnik, Alison
2004-01-01
Five studies investigated (a) children's ability to use the dependent and independent probabilities of events to make causal inferences and (b) the interaction between such inferences and domain-specific knowledge. In Experiment 1, preschoolers used patterns of dependence and independence to make accurate causal inferences in the domains of…
Causality in Classical Electrodynamics
ERIC Educational Resources Information Center
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
Assessing Interactive Causal Influence
ERIC Educational Resources Information Center
Novick, Laura R.; Cheng, Patricia W.
2004-01-01
The discovery of conjunctive causes--factors that act in concert to produce or prevent an effect--has been explained by purely covariational theories. Such theories assume that concomitant variations in observable events directly license causal inferences, without postulating the existence of unobservable causal relations. This article discusses…
Repeated Causal Decision Making
ERIC Educational Resources Information Center
Hagmayer, York; Meder, Bjorn
2013-01-01
Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in…
Timing and Causality in the Generation of Learned Eyelid Responses
Sánchez-Campusano, Raudel; Gruart, Agnès; Delgado-García, José M.
2011-01-01
The cerebellum-red nucleus-facial motoneuron (Mn) pathway has been reported as being involved in the proper timing of classically conditioned eyelid responses. This special type of associative learning serves as a model of event timing for studying the role of the cerebellum in dynamic motor control. Here, we have re-analyzed the firing activities of cerebellar posterior interpositus (IP) neurons and orbicularis oculi (OO) Mns in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. The aim was to revisit the hypothesis that the IP neurons (IPns) can be considered a neuronal phase-modulating device supporting OO Mns firing with an emergent timing mechanism and an explicit correlation code during learned eyelid movements. Optimized experimental and computational tools allowed us to determine the different causal relationships (temporal order and correlation code) during and between trials. These intra- and inter-trial timing strategies expanding from sub-second range (millisecond timing) to longer-lasting ranges (interval timing) expanded the functional domain of cerebellar timing beyond motor control. Interestingly, the results supported the above-mentioned hypothesis. The causal inferences were influenced by the precise motor and pre-motor spike timing in the cause-effect interval, and, in addition, the timing of the learned responses depended on cerebellar–Mn network causality. Furthermore, the timing of CRs depended upon the probability of simulated causal conditions in the cause-effect interval and not the mere duration of the inter-stimulus interval. In this work, the close relation between timing and causality was verified. It could thus be concluded that the firing activities of IPns may be related more to the proper performance of ongoing CRs (i.e., the proper timing as a consequence of the pertinent causality) than to their generation and/or initiation. PMID:21941469
Widlok, Thomas
2014-01-01
Cognitive Scientists interested in causal cognition increasingly search for evidence from non-Western Educational Industrial Rich Democratic people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition. PMID:25414683
Dynamical Modeling of Mars' Paleoclimate
NASA Technical Reports Server (NTRS)
Richardson, Mark I.
2004-01-01
This report summarizes work undertaken under a one-year grant from the NASA Mars Fundamental Research Program. The goal of the project was to initiate studies of the response of the Martian climate to changes in planetary obliquity and orbital elements. This work was undertaken with a three-dimensional numerical climate model based on the Geophysical Fluid Dynamics Laboratory (GFDL) Skyhi General Circulation Model (GCM). The Mars GCM code was adapted to simulate various obliquity and orbital parameter states. Using a version of the model with a basic water cycle (ice caps, vapor, and clouds), we examined changes in atmospheric water abundances and in the distribution of water ice sheets on the surface. This work resulted in a paper published in the Journal of Geophysical Research - Planets. In addition, the project saw the initial incorporation of a regolith water transport and storage scheme into the model. This scheme allows for interaction between water in the pores of the near subsurface (<3m) and the atmosphere. This work was not complete by the end of the one-year grant, but is now continuing within the auspices of a three-year grant of the same title awarded by the Mars Fundamental Research Program in late 2003.
Modeling sandhill crane population dynamics
Johnson, D.H.
1979-01-01
The impact of sport hunting on the Central Flyway population of sandhill cranes (Grus canadensis) has been a subject of controversy for several years. A recent study (Buller 1979) presented new and important information on sandhill crane population dynamics. The present report is intended to incorporate that and other information into a mathematical model for the purpose of assessing the long-range impact of hunting on the population of sandhill cranes.The model is a simple deterministic system that embodies density-dependent rates of survival and recruitment. The model employs four kinds of data: (1) spring population size of sandhill cranes, estimated from aerial surveys to be between 250,000 and 400,000 birds; (2) age composition in fall, estimated for 1974-76 to be 11.3% young; (3) annual harvest of cranes, estimated from a variety of sources to be about 5 to 7% of the spring population; and (4) age composition of harvested cranes, which was difficult to estimate but suggests that immatures were 2 to 4 times as vulnerable to hunting as adults.Because the true nature of sandhill crane population dynamics remains so poorly understood, it was necessary to try numerous (768 in all) combinations of survival and recruitment functions, and focus on the relatively few (37) that yielded population sizes and age structures comparable to those extant in the real population. Hunting was then applied to those simulated populations. In all combinations, hunting resulted in a lower asymptotic crane population, the decline ranging from 5 to 54%. The median decline was 22%, which suggests that a hunted sandhill crane population might be about three-fourths as large as it would be if left unhunted. Results apply to the aggregate of the three subspecies in the Central Flyway; individual subspecies or populations could be affected to a greater or lesser degree.
Terminal Model Of Newtonian Dynamics
NASA Technical Reports Server (NTRS)
Zak, Michail
1994-01-01
Paper presents study of theory of Newtonian dynamics of terminal attractors and repellers, focusing on issues of reversibility vs. irreversibility and deterministic evolution vs. probabilistic or chaotic evolution of dynamic systems. Theory developed called "terminal dynamics" emphasizes difference between it and classical Newtonian dynamics. Also holds promise for explaining irreversibility, unpredictability, probabilistic behavior, and chaos in turbulent flows, in thermodynamic phenomena, and in other dynamic phenomena and systems.
Floods and Societies: Dynamic Modeling
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L., Jr.; Brandimarte, L.; Bloeschl, G.
2014-12-01
There is growing concern that future flood losses and fatalities might increase significantly in many regions of the world because of rapid urbanization in deltas and floodplains, in addition to sea level rise and climate change. To better anticipate long-term trajectories of future flood risk, there is a need to treat floodplains and deltas as fully coupled human-physical systems. Here we propose a novel approach to explore the long-term behavior emerging from the mutual interactions and feedbacks between physical and social systems. The implementation of our modeling framework shows that green societies, which cope with flooding by resettling out of floodplains, are more resilient to increasing flood frequency than technological societies, which deal with flooding by building levees. Also, we show that when coupled dynamics are accounted for, flood-poor periods could (paradoxically) be more dangerous than flood-rich periods.
SSME structural dynamic model development
NASA Technical Reports Server (NTRS)
Foley, Michael J.
1989-01-01
The high pressure fuel turbopump (HPFTP) is a major component of the Space Shuttle Main Engine (SSME) powerhead. The device is a three stage centrifugal pump that is directly driven by a two stage hot gas turbine. The purpose of the pump is to deliver fuel (liquid hydrogen) from the low pressure fuel turbopump (LPFTP) through the main fuel valve (MFV) to the thrust chamber coolant circuits. In doing so, the pump pressurizes the fuel from an inlet pressure of approximately 178 psi to a discharge pressure of over 6000 psi. At full power level (FPL), the pump rotates at a speed of over 37,000 rpm while generating approximately 77,000 horsepower. Obviously, a pump failure at these speeds and power levels could jeopardize the mission. Results are summarized for work in which the solutions obtained from analytical models of the fuel turbopump impellers are compared with the results obtained from dynamic tests.
Lan, Tian-Syung; Chen, Kai-Ling; Chen, Pin-Chang; Ku, Chao-Tai; Chiu, Pei-Hsuan; Wang, Meng-Hsiang
2014-01-01
This study used system dynamics method to investigate the factors affecting elementary school students' BMI values. The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling. According to the system dynamics modeling, this study consisted of research on the four dimensions: student's personal life style, diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students' peer interaction. The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students' amounts of physical activity, and nutrition education has a prominent influence on changing students' high-calorie diets.
Identity, causality, and pronoun ambiguity.
Sagi, Eyal; Rips, Lance J
2014-10-01
This article looks at the way people determine the antecedent of a pronoun in sentence pairs, such as: Albert invited Ron to dinner. He spent hours cleaning the house. The experiment reported here is motivated by the idea that such judgments depend on reasoning about identity (e.g., the identity of the he who cleaned the house). Because the identity of an individual over time depends on the causal-historical path connecting the stages of the individual, the correct antecedent will also depend on causal connections. The experiment varied how likely it is that the event of the first sentence (e.g., the invitation) would cause the event of the second (the house cleaning) for each of the two individuals (the likelihood that if Albert invited Ron to dinner, this would cause Albert to clean the house, versus cause Ron to clean the house). Decisions about the antecedent followed causal likelihood. A mathematical model of causal identity accounted for most of the key aspects of the data from the individual sentence pairs.
ERIC Educational Resources Information Center
Johnson, Samuel G. B.; Ahn, Woo-kyoung
2015-01-01
Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge--an interconnected causal "network," where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms--causal "islands"--such that events in different…
On the spectral formulation of Granger causality.
Chicharro, D
2011-12-01
Spectral measures of causality are used to explore the role of different rhythms in the causal connectivity between brain regions. We study several spectral measures related to Granger causality, comprising the bivariate and conditional Geweke measures, the directed transfer function, and the partial directed coherence. We derive the formulation of dependence and causality in the spectral domain from the more general formulation in the information-theory framework. We argue that the transfer entropy, the most general measure derived from the concept of Granger causality, lacks a spectral representation in terms of only the processes associated with the recorded signals. For all the spectral measures we show how they are related to mutual information rates when explicitly considering the parametric autoregressive representation of the processes. In this way we express the conditional Geweke spectral measure in terms of a multiple coherence involving innovation variables inherent to the autoregressive representation. We also link partial directed coherence with Sims' criterion of causality. Given our results, we discuss the causal interpretation of the spectral measures related to Granger causality and stress the necessity to explicitly consider their specific formulation based on modeling the signals as linear Gaussian stationary autoregressive processes.
Characterizing time series: when Granger causality triggers complex networks
NASA Astrophysics Data System (ADS)
Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong
2012-08-01
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.
Canonical Granger causality between regions of interest.
Ashrafulla, Syed; Haldar, Justin P; Joshi, Anand A; Leahy, Richard M
2013-12-01
Estimating and modeling functional connectivity in the brain is a challenging problem with potential applications in the understanding of brain organization and various neurological and neuropsychological conditions. An important objective in connectivity analysis is to determine the connections between regions of interest in the brain. However, traditional functional connectivity analyses have frequently focused on modeling interactions between time series recordings at individual sensors, voxels, or vertices despite the fact that a single region of interest will often include multiple such recordings. In this paper, we present a novel measure of interaction between regions of interest rather than individual signals. The proposed measure, termed canonical Granger causality, combines ideas from canonical correlation and Granger causality analysis to yield a measure that reflects directed causality between two regions of interest. In particular, canonical Granger causality uses optimized linear combinations of signals from each region of interest to enable accurate causality measurements from substantially less data compared to alternative multivariate methods that have previously been proposed for this scenario. The optimized linear combinations are obtained using a variation of a technique developed for optimization on the Stiefel manifold. We demonstrate the advantages of canonical Granger causality in comparison to alternative causality measures for a range of different simulated datasets. We also apply the proposed measure to local field potential data recorded in a macaque brain during a visuomotor task. Results demonstrate that canonical Granger causality can be used to identify causal relationships between striate and prestriate cortexes in cases where standard Granger causality is unable to identify statistically significant interactions.
Omission of Causal Indicators: Consequences and Implications for Measurement
ERIC Educational Resources Information Center
Aguirre-Urreta, Miguel I.; Rönkkö, Mikko; Marakas, George M.
2016-01-01
One of the central assumptions of the causal-indicator literature is that all causal indicators must be included in the research model and that the exclusion of one or more relevant causal indicators would have severe negative consequences by altering the meaning of the latent variable. In this research we show that the omission of a relevant…
Runnqvist, Elin; Bonnard, Mireille; Gauvin, Hanna S; Attarian, Shahram; Trébuchon, Agnès; Hartsuiker, Robert J; Alario, F-Xavier
2016-08-01
Some language processing theories propose that, just as for other somatic actions, self-monitoring of language production is achieved through internal modeling. The cerebellum is the proposed center of such internal modeling in motor control, and the right cerebellum has been linked to an increasing number of language functions, including predictive processing during comprehension. Relating these findings, we tested whether the right posterior cerebellum has a causal role for self-monitoring of speech errors. Participants received 1 Hz repetitive transcranial magnetic stimulation during 15 min to lobules Crus I and II in the right hemisphere, and, in counterbalanced orders, to the contralateral area in the left cerebellar hemisphere (control) in order to induce a temporary inactivation of one of these zones. Immediately afterwards, they engaged in a speech production task priming the production of speech errors. Language production was impaired after right compared to left hemisphere stimulation, a finding that provides evidence for a causal role of the cerebellum during language production. We interpreted this role in terms of internal modeling of upcoming speech through a verbal working memory process used to prevent errors.
Runnqvist, Elin; Bonnard, Mireille; Gauvin, Hanna S; Attarian, Shahram; Trébuchon, Agnès; Hartsuiker, Robert J; Alario, F-Xavier
2016-08-01
Some language processing theories propose that, just as for other somatic actions, self-monitoring of language production is achieved through internal modeling. The cerebellum is the proposed center of such internal modeling in motor control, and the right cerebellum has been linked to an increasing number of language functions, including predictive processing during comprehension. Relating these findings, we tested whether the right posterior cerebellum has a causal role for self-monitoring of speech errors. Participants received 1 Hz repetitive transcranial magnetic stimulation during 15 min to lobules Crus I and II in the right hemisphere, and, in counterbalanced orders, to the contralateral area in the left cerebellar hemisphere (control) in order to induce a temporary inactivation of one of these zones. Immediately afterwards, they engaged in a speech production task priming the production of speech errors. Language production was impaired after right compared to left hemisphere stimulation, a finding that provides evidence for a causal role of the cerebellum during language production. We interpreted this role in terms of internal modeling of upcoming speech through a verbal working memory process used to prevent errors. PMID:27249802
Cai, Weidong; Chen, Tianwen; Ryali, Srikanth; Kochalka, John; Li, Chiang-Shan R; Menon, Vinod
2016-05-01
Cognitive control plays an important role in goal-directed behavior, but dynamic brain mechanisms underlying it are poorly understood. Here, using multisite fMRI data from over 100 participants, we investigate causal interactions in three cognitive control tasks within a core Frontal-Cingulate-Parietal network. We found significant causal influences from anterior insula (AI) to dorsal anterior cingulate cortex (dACC) in all three tasks. The AI exhibited greater net causal outflow than any other node in the network. Importantly, a similar pattern of causal interactions was uncovered by two different computational methods for causal analysis. Furthermore, the strength of causal interaction from AI to dACC was greater on high, compared with low, cognitive control trials and was significantly correlated with individual differences in cognitive control abilities. These results emphasize the importance of the AI in cognitive control and highlight its role as a causal hub in the Frontal-Cingulate-Parietal network. Our results further suggest that causal signaling between the AI and dACC plays a fundamental role in implementing cognitive control and are consistent with a two-stage cognitive control model in which the AI first detects events requiring greater access to cognitive control resources and then signals the dACC to execute load-specific cognitive control processes. PMID:25778346
Rate-Agnostic (Causal) Structure Learning
Plis, Sergey; Danks, David; Freeman, Cynthia; Calhoun, Vince
2016-01-01
Causal structure learning from time series data is a major scientific challenge. Extant algorithms assume that measurements occur sufficiently quickly; more precisely, they assume approximately equal system and measurement timescales. In many domains, however, measurements occur at a significantly slower rate than the underlying system changes, but the size of the timescale mismatch is often unknown. This paper develops three causal structure learning algorithms, each of which discovers all dynamic causal graphs that explain the observed measurement data, perhaps given undersampling. That is, these algorithms all learn causal structure in a “rate-agnostic” manner: they do not assume any particular relation between the measurement and system timescales. We apply these algorithms to data from simulations to gain insight into the challenge of undersampling. PMID:27182188
Modeling population dynamics: A quantile approach.
Chavas, Jean-Paul
2015-04-01
The paper investigates the modeling of population dynamics, both conceptually and empirically. It presents a reduced form representation that provides a flexible characterization of population dynamics. It leads to the specification of a threshold quantile autoregression (TQAR) model, which captures nonlinear dynamics by allowing lag effects to vary across quantiles of the distribution as well as with previous population levels. The usefulness of the model is illustrated in an application to the dynamics of lynx population. We find statistical evidence that the quantile autoregression parameters vary across quantiles (thus rejecting the AR model as well as the TAR model) as well as with past populations (thus rejecting the quantile autoregression QAR model). The results document the nature of dynamics and cycle in the lynx population over time. They show how both the period of the cycle and the speed of population adjustment vary with population level and environmental conditions. PMID:25661501
Causal Inference for a Population of Causally Connected Units
van der Laan, Mark J.
2015-01-01
Suppose that we observe a population of causally connected units. On each unit at each time-point on a grid we observe a set of other units the unit is potentially connected with, and a unit-specific longitudinal data structure consisting of baseline and time-dependent covariates, a time-dependent treatment, and a final outcome of interest. The target quantity of interest is defined as the mean outcome for this group of units if the exposures of the units would be probabilistically assigned according to a known specified mechanism, where the latter is called a stochastic intervention. Causal effects of interest are defined as contrasts of the mean of the unit-specific outcomes under different stochastic interventions one wishes to evaluate. This covers a large range of estimation problems from independent units, independent clusters of units, and a single cluster of units in which each unit has a limited number of connections to other units. The allowed dependence includes treatment allocation in response to data on multiple units and so called causal interference as special cases. We present a few motivating classes of examples, propose a structural causal model, define the desired causal quantities, address the identification of these quantities from the observed data, and define maximum likelihood based estimators based on cross-validation. In particular, we present maximum likelihood based super-learning for this network data. Nonetheless, such smoothed/regularized maximum likelihood estimators are not targeted and will thereby be overly bias w.r.t. the target parameter, and, as a consequence, generally not result in asymptotically normally distributed estimators of the statistical target parameter. To formally develop estimation theory, we focus on the simpler case in which the longitudinal data structure is a point-treatment data structure. We formulate a novel targeted maximum likelihood estimator of this estimand and show that the double robustness of the
Multidimensional Langevin Modeling of Nonoverdamped Dynamics
NASA Astrophysics Data System (ADS)
Schaudinnus, Norbert; Bastian, Björn; Hegger, Rainer; Stock, Gerhard
2015-07-01
Based on a given time series, data-driven Langevin modeling aims to construct a low-dimensional dynamical model of the underlying system. When dealing with physical data as provided by, e.g., all-atom molecular dynamics simulations, effects due to small damping may be important to correctly describe the statistics (e.g., the energy landscape) and the dynamics (e.g., transition times). To include these effects in a dynamical model, an algorithm that propagates a second-order Langevin scheme is derived, which facilitates the treatment of multidimensional data. Adopting extensive molecular dynamics simulations of a peptide helix, a five-dimensional model is constructed that successfully forecasts the complex structural dynamics of the system. Neglect of small damping effects, on the other hand, is shown to lead to significant errors and inconsistencies.
Causality and methodology. Notes on thanatochronological estimations.
Boniolo, Giovanni; Libero, Mirella; Aprile, Anna
2005-01-01
The authors propose some methodological considerations on thanatochronological estimations. They first consider the problem of the definition of death, and then they deal with the issue of the estimations of death time, that is, with the Post-Mortem Interval (PMI). As regards the first question, they note that it does not concern only the definition of death, but also the choice of a particular kind of definition of 'definition'. With reference to the second question, the authors suggest a causal model showing that the presence of many causal chains must be taken into consideration. Finally they discuss what 'most convenient and reliable causal chain' means for a thanatochronologist.
System Dynamics Models and Institutional Pricing Decisions.
ERIC Educational Resources Information Center
Chen, Fiona
1986-01-01
A system dynamics model for the pricing of tuition is presented, illustrating how such models enable decision-makers to anticipate cause-and-effect relationships and test alternative courses of action. (Author)
Preliminary shuttle structural dynamics modeling design study
NASA Technical Reports Server (NTRS)
1972-01-01
The design and development of a structural dynamics model of the space shuttle are discussed. The model provides for early study of structural dynamics problems, permits evaluation of the accuracy of the structural and hydroelastic analysis methods used on test vehicles, and provides for efficiently evaluating potential cost savings in structural dynamic testing techniques. The discussion is developed around the modes in which major input forces and responses occur and the significant structural details in these modes.
The Challenges to Coupling Dynamic Geospatial Models
Goldstein, N
2006-06-23
Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.
Comparative dynamics in a health investment model.
Eisenring, C
1999-10-01
The method of comparative dynamics fully exploits the inter-temporal structure of optimal control models. I derive comparative dynamic results in a simplified demand for health model. The effect of a change in the depreciation rate on the optimal paths for health capital and investment in health is studied by use of a phase diagram.
Causal evidence for frontal cortex organization for perceptual decision making
Nee, Derek Evan; Riddle, Justin; Larson, Alina Sue; D’Esposito, Mark
2016-01-01
Although recent research has shown that the frontal cortex has a critical role in perceptual decision making, an overarching theory of frontal functional organization for perception has yet to emerge. Perceptual decision making is temporally organized such that it requires the processes of selection, criterion setting, and evaluation. We hypothesized that exploring this temporal structure would reveal a large-scale frontal organization for perception. A causal intervention with transcranial magnetic stimulation revealed clear specialization along the rostrocaudal axis such that the control of successive stages of perceptual decision making was selectively affected by perturbation of successively rostral areas. Simulations with a dynamic model of decision making suggested distinct computational contributions of each region. Finally, the emergent frontal gradient was further corroborated by functional MRI. These causal results provide an organizational principle for the role of frontal cortex in the control of perceptual decision making and suggest specific mechanistic contributions for its different subregions. PMID:27162349
Padula, Amy M.; Mortimer, Kathleen; Hubbard, Alan; Lurmann, Frederick; Jerrett, Michael; Tager, Ira B.
2012-01-01
Traffic-related air pollution is recognized as an important contributor to health problems. Epidemiologic analyses suggest that prenatal exposure to traffic-related air pollutants may be associated with adverse birth outcomes; however, there is insufficient evidence to conclude that the relation is causal. The Study of Air Pollution, Genetics and Early Life Events comprises all births to women living in 4 counties in California's San Joaquin Valley during the years 2000–2006. The probability of low birth weight among full-term infants in the population was estimated using machine learning and targeted maximum likelihood estimation for each quartile of traffic exposure during pregnancy. If everyone lived near high-volume freeways (approximated as the fourth quartile of traffic density), the estimated probability of term low birth weight would be 2.27% (95% confidence interval: 2.16, 2.38) as compared with 2.02% (95% confidence interval: 1.90, 2.12) if everyone lived near smaller local roads (first quartile of traffic density). Assessment of potentially causal associations, in the absence of arbitrary model assumptions applied to the data, should result in relatively unbiased estimates. The current results support findings from previous studies that prenatal exposure to traffic-related air pollution may adversely affect birth weight among full-term infants. PMID:23045474
Hydration dynamics near a model protein surface
Russo, Daniela; Hura, Greg; Head-Gordon, Teresa
2003-09-01
The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.
Benchmarking of Planning Models Using Recorded Dynamics
Huang, Zhenyu; Yang, Bo; Kosterev, Dmitry
2009-03-15
Power system planning extensively uses model simulation to understand the dynamic behaviors and determine the operating limits of a power system. Model quality is key to the safety and reliability of electricity delivery. Planning model benchmarking, or model validation, has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent dynamic behavior of power system components, it has been essential to validate models against actual measurements. The development of phasor technology provides such measurements and represents a new opportunity for model validation as phasor measurements can capture power system dynamics with high-speed, time-synchronized data. Previously, methods for rigorous comparison of model simulation and recorded dynamics have been developed and applied to quantify model quality of power plants in the Western Electricity Coordinating Council (WECC). These methods can locate model components which need improvement. Recent work continues this effort and focuses on how model parameters may be calibrated to match recorded dynamics after the problematic model components are identified. A calibration method using Extended Kalman Filter technique is being developed. This paper provides an overview of prior work on model validation and presents new development on the calibration method and initial results of model parameter calibration.
Granger-causality maps of diffusion processes.
Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A
2016-02-01
Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes. PMID:26986337
Granger-causality maps of diffusion processes.
Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A
2016-02-01
Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.
A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.
Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L
2016-03-01
Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge.
Inferring causal molecular networks: empirical assessment through a community-based effort
Hill, Steven M.; Heiser, Laura M.; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K.; Carlin, Daniel E.; Zhang, Yang; Sokolov, Artem; Paull, Evan O.; Wong, Chris K.; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V.; Favorov, Alexander V.; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W.; Long, Byron L.; Noren, David P.; Bisberg, Alexander J.; Mills, Gordon B.; Gray, Joe W.; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A.; Fertig, Elana J.; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M.; Spellman, Paul T.; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach
2016-01-01
Inferring molecular networks is a central challenge in computational biology. However, it has remained unclear whether causal, rather than merely correlational, relationships can be effectively inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge that focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results constitute the most comprehensive assessment of causal network inference in a mammalian setting carried out to date and suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess the causal validity of inferred molecular networks. PMID:26901648
Causal conditionals and counterfactuals
Frosch, Caren A.; Byrne, Ruth M.J.
2012-01-01
Causal counterfactuals e.g., ‘if the ignition key had been turned then the car would have started’ and causal conditionals e.g., ‘if the ignition key was turned then the car started’ are understood by thinking about multiple possibilities of different sorts, as shown in six experiments using converging evidence from three different types of measures. Experiments 1a and 1b showed that conditionals that comprise enabling causes, e.g., ‘if the ignition key was turned then the car started’ primed people to read quickly conjunctions referring to the possibility of the enabler occurring without the outcome, e.g., ‘the ignition key was turned and the car did not start’. Experiments 2a and 2b showed that people paraphrased causal conditionals by using causal or temporal connectives (because, when), whereas they paraphrased causal counterfactuals by using subjunctive constructions (had…would have). Experiments 3a and 3b showed that people made different inferences from counterfactuals presented with enabling conditions compared to none. The implications of the results for alternative theories of conditionals are discussed. PMID:22858874
A Separable Model for Dynamic Networks
Krivitsky, Pavel N.; Handcock, Mark S.
2013-01-01
Summary Models of dynamic networks — networks that evolve over time — have manifold applications. We develop a discrete-time generative model for social network evolution that inherits the richness and flexibility of the class of exponential-family random graph models. The model — a Separable Temporal ERGM (STERGM) — facilitates separable modeling of the tie duration distributions and the structural dynamics of tie formation. We develop likelihood-based inference for the model, and provide computational algorithms for maximum likelihood estimation. We illustrate the interpretability of the model in analyzing a longitudinal network of friendship ties within a school. PMID:24443639
Launch Vehicle Dynamics Demonstrator Model
NASA Technical Reports Server (NTRS)
1963-01-01
The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control.
Map-based models in neuronal dynamics
NASA Astrophysics Data System (ADS)
Ibarz, B.; Casado, J. M.; Sanjuán, M. A. F.
2011-04-01
Ever since the pioneering work of Hodgkin and Huxley, biological neuron models have consisted of ODEs representing the evolution of the transmembrane voltage and the dynamics of ionic conductances. It is only recently that discrete dynamical systems-also known as maps-have begun to receive attention as valid phenomenological neuron models. The present review tries to provide a coherent perspective of map-based biological neuron models, describing their dynamical properties; stressing the similarities and differences, both among them and in relation to continuous-time models; exploring their behavior in networks; and examining their wide-ranging possibilities of application in computational neuroscience.
[Review of dynamic global vegetation models (DGVMs)].
Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun
2014-01-01
Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project. PMID:24765870
Stirling Convertor System Dynamic Model Developed
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Regan, Timothy F.
2005-01-01
Free-piston Stirling convertors are being developed for potential use on NASA exploration missions. In support of this effort, the NASA Glenn Research Center has developed the Stirling convertor System Dynamic Model (SDM). The SDM models the Stirling cycle thermodynamics; heat flow; gas, mechanical, and mounting dynamics; the linear alternator; and the controller. The SDM s scope extends from the thermal energy input to thermal, mechanical, and electrical energy output, allowing one to study complex system interactions among subsystems. Thermal, mechanical, fluid, magnetic, and electrical subsystems can be studied in one model. The SDM is a nonlinear time-domain model containing sub-cycle dynamics, which simulates transient and dynamic phenomena that other models cannot. The entire range of convertor operation is modeled, from startup to full-power conditions.
Modelling Information System Dynamics: A Perspective.
ERIC Educational Resources Information Center
Oswitch, Pauline
1983-01-01
Describes British Library's work on Systems Dynamics, a set of techniques for building simulation models based on analysis of information feedback loops. Highlights include macro-simulation modelling activities of social science disciplines, systems analyses and models of information retrieval processes and library services, policy models, and…
Johnson, Samuel G. B.; Ahn, Woo-kyoung
2014-01-01
Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge—an interconnected causal network, where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms—causal islands—such that events in different mechanisms are not thought to be related even when they belong to the same causal chain. To distinguish these possibilities, we used causal transitivity—the inference given A causes B and B causes C that A causes C. Specifically, causal chains schematized as one chunk or mechanism in semantic memory (e.g., exercising, becoming thirsty, drinking water) led to transitive causal judgments. On the other hand, chains schematized as multiple chunks (e.g., having sex, becoming pregnant, becoming nauseous) led to intransitive judgments despite strong intermediate links (Experiments 1–3). Normative accounts of causal intransitivity could not explain these intransitive judgments (Experiments 4–5). PMID:25556901
Very Large System Dynamics Models - Lessons Learned
Jacob J. Jacobson; Leonard Malczynski
2008-10-01
This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.
Comparing models of Red Knot population dynamics
McGowan, Conor
2015-01-01
Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.
Human systems dynamics: Toward a computational model
NASA Astrophysics Data System (ADS)
Eoyang, Glenda H.
2012-09-01
A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.
Modeling microbial growth and dynamics.
Esser, Daniel S; Leveau, Johan H J; Meyer, Katrin M
2015-11-01
Modeling has become an important tool for widening our understanding of microbial growth in the context of applied microbiology and related to such processes as safe food production, wastewater treatment, bioremediation, or microbe-mediated mining. Various modeling techniques, such as primary, secondary and tertiary mathematical models, phenomenological models, mechanistic or kinetic models, reactive transport models, Bayesian network models, artificial neural networks, as well as agent-, individual-, and particle-based models have been applied to model microbial growth and activity in many applied fields. In this mini-review, we summarize the basic concepts of these models using examples and applications from food safety and wastewater treatment systems. We further review recent developments in other applied fields focusing on models that explicitly include spatial relationships. Using these examples, we point out the conceptual similarities across fields of application and encourage the combined use of different modeling techniques in hybrid models as well as their cross-disciplinary exchange. For instance, pattern-oriented modeling has its origin in ecology but may be employed to parameterize microbial growth models when experimental data are scarce. Models could also be used as virtual laboratories to optimize experimental design analogous to the virtual ecologist approach. Future microbial growth models will likely become more complex to benefit from the rich toolbox that is now available to microbial growth modelers.
Modeling microbial growth and dynamics.
Esser, Daniel S; Leveau, Johan H J; Meyer, Katrin M
2015-11-01
Modeling has become an important tool for widening our understanding of microbial growth in the context of applied microbiology and related to such processes as safe food production, wastewater treatment, bioremediation, or microbe-mediated mining. Various modeling techniques, such as primary, secondary and tertiary mathematical models, phenomenological models, mechanistic or kinetic models, reactive transport models, Bayesian network models, artificial neural networks, as well as agent-, individual-, and particle-based models have been applied to model microbial growth and activity in many applied fields. In this mini-review, we summarize the basic concepts of these models using examples and applications from food safety and wastewater treatment systems. We further review recent developments in other applied fields focusing on models that explicitly include spatial relationships. Using these examples, we point out the conceptual similarities across fields of application and encourage the combined use of different modeling techniques in hybrid models as well as their cross-disciplinary exchange. For instance, pattern-oriented modeling has its origin in ecology but may be employed to parameterize microbial growth models when experimental data are scarce. Models could also be used as virtual laboratories to optimize experimental design analogous to the virtual ecologist approach. Future microbial growth models will likely become more complex to benefit from the rich toolbox that is now available to microbial growth modelers. PMID:26298697
Dynamic phase transition in diluted Ising model
NASA Astrophysics Data System (ADS)
Chattopadhyay, Sourav; Gorai, Gopal; Santra, S. B.
2015-06-01
Dynamic phase transition in disordered Ising model in two dimensions has been studied in presence of external time dependent oscillating magnetic field applying Glauber Monte Carlo techniques. Dynamic phase transitions are identified estimating dynamic order parameter against temperature for different concentrations of disorder. For a given field strength and frequency for which there was no hysteresis, it is observed that disorder is able induce hysteresis in the system. Effect of increasing concentration of disorder on hysteresis loop area has also been studied.
Differential equation models for sharp threshold dynamics.
Schramm, Harrison C; Dimitrov, Nedialko B
2014-01-01
We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. PMID:24184349
Equivalent dynamic model of DEMES rotary joint
NASA Astrophysics Data System (ADS)
Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong
2016-07-01
The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward–feedback compound control.
Differential equation models for sharp threshold dynamics.
Schramm, Harrison C; Dimitrov, Nedialko B
2014-01-01
We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations.
Dynamics Modelling of Biolistic Gene Guns
Zhang, M.; Tao, W.; Pianetta, P.A.
2009-06-04
The gene transfer process using biolistic gene guns is a highly dynamic process. To achieve good performance, the process needs to be well understood and controlled. Unfortunately, no dynamic model is available in the open literature for analysing and controlling the process. This paper proposes such a model. Relationships of the penetration depth with the helium pressure, the penetration depth with the acceleration distance, and the penetration depth with the micro-carrier radius are presented. Simulations have also been conducted. The results agree well with experimental results in the open literature. The contribution of this paper includes a dynamic model for improving and manipulating performance of the biolistic gene gun.
Forces and Motion: How Young Children Understand Causal Events
ERIC Educational Resources Information Center
Goksun, Tilbe; George, Nathan R.; Hirsh-Pasek, Kathy; Golinkoff, Roberta M.
2013-01-01
How do children evaluate complex causal events? This study investigates preschoolers' representation of "force dynamics" in causal scenes, asking whether (a) children understand how single and dual forces impact an object's movement and (b) this understanding varies across cause types (Cause, Enable, Prevent). Three-and-a half-…
Deshpande, Gopikrishna; Hu, Xiaoping
2012-01-01
Interactions between brain regions have been recognized as a critical ingredient required to understand brain function. Two modes of interactions have held prominence-synchronization and causal influence. Efforts to ascertain causal influence from functional magnetic resonance imaging (fMRI) data have relied primarily on confirmatory model-driven approaches, such as dynamic causal modeling and structural equation modeling, and exploratory data-driven approaches such as Granger causality analysis. A slew of recent articles have focused on the relative merits and caveats of these approaches. The relevant studies can be classified into simulations, theoretical developments, and experimental results. In the first part of this review, we will consider each of these themes and critically evaluate their arguments, with regard to Granger causality analysis. Specifically, we argue that simulations are bounded by the assumptions and simplifications made by the simulator, and hence must be regarded only as a guide to experimental design and should not be viewed as the final word. On the theoretical front, we reason that each of the improvements to existing, yet disparate, methods brings them closer to each other with the hope of eventually leading to a unified framework specifically designed for fMRI. We then review latest experimental results that demonstrate the utility and validity of Granger causality analysis under certain experimental conditions. In the second part, we will consider current issues in causal connectivity analysis-hemodynamic variability, sampling, instantaneous versus causal relationship, and task versus resting states. We highlight some of our own work regarding these issues showing the effect of hemodynamic variability and sampling on Granger causality. Further, we discuss recent techniques such as the cubature Kalman filtering, which can perform blind deconvolution of the hemodynamic response robustly well, and hence enabling wider application of
2012-01-01
Abstract Interactions between brain regions have been recognized as a critical ingredient required to understand brain function. Two modes of interactions have held prominence—synchronization and causal influence. Efforts to ascertain causal influence from functional magnetic resonance imaging (fMRI) data have relied primarily on confirmatory model-driven approaches, such as dynamic causal modeling and structural equation modeling, and exploratory data-driven approaches such as Granger causality analysis. A slew of recent articles have focused on the relative merits and caveats of these approaches. The relevant studies can be classified into simulations, theoretical developments, and experimental results. In the first part of this review, we will consider each of these themes and critically evaluate their arguments, with regard to Granger causality analysis. Specifically, we argue that simulations are bounded by the assumptions and simplifications made by the simulator, and hence must be regarded only as a guide to experimental design and should not be viewed as the final word. On the theoretical front, we reason that each of the improvements to existing, yet disparate, methods brings them closer to each other with the hope of eventually leading to a unified framework specifically designed for fMRI. We then review latest experimental results that demonstrate the utility and validity of Granger causality analysis under certain experimental conditions. In the second part, we will consider current issues in causal connectivity analysis—hemodynamic variability, sampling, instantaneous versus causal relationship, and task versus resting states. We highlight some of our own work regarding these issues showing the effect of hemodynamic variability and sampling on Granger causality. Further, we discuss recent techniques such as the cubature Kalman filtering, which can perform blind deconvolution of the hemodynamic response robustly well, and hence enabling wider
Simple Dynamic Gasifier Model That Runs in Aspen Dynamics
Robinson, P.J.; Luyben, W.L.
2008-10-15
Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.
Markov state models of biomolecular conformational dynamics
Chodera, John D.; Noé, Frank
2014-01-01
It has recently become practical to construct Markov state models (MSMs) that reproduce the long-time statistical conformational dynamics of biomolecules using data from molecular dynamics simulations. MSMs can predict both stationary and kinetic quantities on long timescales (e.g. milliseconds) using a set of atomistic molecular dynamics simulations that are individually much shorter, thus addressing the well-known sampling problem in molecular dynamics simulation. In addition to providing predictive quantitative models, MSMs greatly facilitate both the extraction of insight into biomolecular mechanism (such as folding and functional dynamics) and quantitative comparison with single-molecule and ensemble kinetics experiments. A variety of methodological advances and software packages now bring the construction of these models closer to routine practice. Here, we review recent progress in this field, considering theoretical and methodological advances, new software tools, and recent applications of these approaches in several domains of biochemistry and biophysics, commenting on remaining challenges. PMID:24836551
Causal Responsibility and Counterfactuals
ERIC Educational Resources Information Center
Lagnado, David A.; Gerstenberg, Tobias; Zultan, Ro'i
2013-01-01
How do people attribute responsibility in situations where the contributions of multiple agents combine to produce a joint outcome? The prevalence of over-determination in such cases makes this a difficult problem for counterfactual theories of causal responsibility. In this article, we explore a general framework for assigning responsibility in…
Ahn, Woo-kyoung; Taylor, Eric G; Kato, Daniel; Marsh, Jessecae K; Bloom, Paul
2013-06-01
The current study examines causal essentialism, derived from psychological essentialism of concepts. We examine whether people believe that members of a category share some underlying essence that is both necessary and sufficient for category membership and that also causes surface features. The main claim is that causal essentialism is restricted to categories that correspond to our intuitive notions of existing kinds and hence is more attenuated for categories that are based on arbitrary criteria. Experiments 1 and 3 found that people overtly endorse causal essences in nonarbitrary kinds but are less likely to do so for arbitrary categories. Experiments 2 and 4 found that people were more willing to generalize a member's known causal relations (or lack thereof) when dealing with a kind than when dealing with an arbitrary category. These differences between kinds and arbitrary categories were found across various domains-not only for categories of living things, but also for artefacts. These findings have certain real-world implications, including how people make sense of mental disorders that are treated as real kinds. PMID:23098315
ERIC Educational Resources Information Center
White, Peter A.
2006-01-01
It is hypothesized that there is a pervasive and fundamental bias in humans' understanding of physical causation: Once the roles of cause and effect are assigned to objects in interactions, people tend to overestimate the strength and importance of the causal object and underestimate that of the effect object in bringing about the outcome. This…
Causality: Physics and Philosophy
ERIC Educational Resources Information Center
Chatterjee, Atanu
2013-01-01
Nature is a complex causal network exhibiting diverse forms and species. These forms or rather systems are physically open, structurally complex and naturally adaptive. They interact with the surrounding media by operating a positive-feedback loop through which, they adapt, organize and self-organize themselves in response to the ever-changing…
Causal diagrams in systems epidemiology
2012-01-01
Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s). Transmitted causes ("causes of causes") tend not to be systematically analysed. The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties. The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets. Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback. PMID:22429606
Airship dynamics modeling: A literature review
NASA Astrophysics Data System (ADS)
Li, Yuwen; Nahon, Meyer; Sharf, Inna
2011-04-01
The resurgence of airships has created a need for dynamics models and simulation capabilities adapted to these lighter-than-air vehicles. However, the modeling techniques for airship dynamics have lagged behind and are less systematic than those for fixed-wing aircraft. A state-of-the-art literature review is presented on airship dynamics modeling, aiming to provide a comprehensive description of the main problems in this area and a useful source of references for researchers and engineers interested in modern airship applications. The references are categorized according to the major topics in this area: aerodynamics, flight dynamics, incorporation of structural flexibility, incorporation of atmospheric turbulence, and effects of ballonets. Relevant analytical, numerical, and semi-empirical techniques are discussed, with a particular focus on how the main differences between lighter-than-air and heavier-than-air aircraft have been addressed in the modeling. Directions are suggested for future research on each of these topics.
Constructing minimal models for complex system dynamics
NASA Astrophysics Data System (ADS)
Barzel, Baruch; Liu, Yang-Yu; Barabási, Albert-László
2015-05-01
One of the strengths of statistical physics is the ability to reduce macroscopic observations into microscopic models, offering a mechanistic description of a system's dynamics. This paradigm, rooted in Boltzmann's gas theory, has found applications from magnetic phenomena to subcellular processes and epidemic spreading. Yet, each of these advances were the result of decades of meticulous model building and validation, which are impossible to replicate in most complex biological, social or technological systems that lack accurate microscopic models. Here we develop a method to infer the microscopic dynamics of a complex system from observations of its response to external perturbations, allowing us to construct the most general class of nonlinear pairwise dynamics that are guaranteed to recover the observed behaviour. The result, which we test against both numerical and empirical data, is an effective dynamic model that can predict the system's behaviour and provide crucial insights into its inner workings.
Automated adaptive inference of phenomenological dynamical models
Daniels, Bryan C.; Nemenman, Ilya
2015-01-01
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508
The Higher Moments Dynamic on SIS Model
NASA Astrophysics Data System (ADS)
Pinto, Alberto; Martins, José; Stollenwerk, Nico
2009-09-01
The basic contact process or the SIS model is a well known epidemic process and have been studied for a wide class of people. In an epidemiological context, many authors worked on the SIS model considering only the dynamic of the first moments of infecteds, i.e., the mean value and the variance of the infected individuals. In this work, we study not only the dynamic of the first moments of infecteds but also on the dynamic of the higher moments. Recursively, we consider the dynamic equations for all the moments of infecteds and, applying the moment closure approximation, we obtain the stationary states of the state variables. We observe that the stationary states of the SIS model, in the moment closure approximation, can be used to obtain good approximations of the quasi-stationary states of the SIS model.
MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS*
CHAHINE, Georges L.; HSIAO, Chao-Tsung
2012-01-01
Controlling microbubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge, which can be achieved only through a combination of experimental and numerical/analytical techniques. The present communication presents a multi-physics approach to study the dynamics combining viscous- in-viscid effects, liquid and structure dynamics, and multi bubble interaction. While complex numerical tools are developed and used, the study aims at identifying the key parameters influencing the dynamics, which need to be included in simpler models. PMID:22833696
Causal simulation and sensor planning in predictive monitoring
NASA Technical Reports Server (NTRS)
Doyle, Richard J.
1989-01-01
Two issues are addressed which arise in the task of detecting anomalous behavior in complex systems with numerous sensor channels: how to adjust alarm thresholds dynamically, within the changing operating context of the system, and how to utilize sensors selectively, so that nominal operation can be verified reliably without processing a prohibitive amount of sensor data. The approach involves simulation of a causal model of the system, which provides information on expected sensor values, and on dependencies between predicted events, useful in assessing the relative importance of events so that sensor resources can be allocated effectively. The potential applicability of this work to the execution monitoring of robot task plans is briefly discussed.
Dynamic metabolic models in context: biomass backtracking.
Tummler, Katja; Kühn, Clemens; Klipp, Edda
2015-08-01
Mathematical modeling has proven to be a powerful tool to understand and predict functional and regulatory properties of metabolic processes. High accuracy dynamic modeling of individual pathways is thereby opposed by simplified but genome scale constraint based approaches. A method that links these two powerful techniques would greatly enhance predictive power but is so far lacking. We present biomass backtracking, a workflow that integrates the cellular context in existing dynamic metabolic models via stoichiometrically exact drain reactions based on a genome scale metabolic model. With comprehensive examples, for different species and environmental contexts, we show the importance and scope of applications and highlight the improvement compared to common boundary formulations in existing metabolic models. Our method allows for the contextualization of dynamic metabolic models based on all available information. We anticipate this to greatly increase their accuracy and predictive power for basic research and also for drug development and industrial applications.
Single timepoint models of dynamic systems.
Sachs, K; Itani, S; Fitzgerald, J; Schoeberl, B; Nolan, G P; Tomlin, C J
2013-08-01
Many interesting studies aimed at elucidating the connectivity structure of biomolecular pathways make use of abundance measurements, and employ statistical and information theoretic approaches to assess connectivities. These studies often do not address the effects of the dynamics of the underlying biological system, yet dynamics give rise to impactful issues such as timepoint selection and its effect on structure recovery. In this work, we study conditions for reliable retrieval of the connectivity structure of a dynamic system, and the impact of dynamics on structure-learning efforts. We encounter an unexpected problem not previously described in elucidating connectivity structure from dynamic systems, show how this confounds structure learning of the system and discuss possible approaches to overcome the confounding effect. Finally, we test our hypotheses on an accurate dynamic model of the IGF signalling pathway. We use two structure-learning methods at four time points to contrast the performance and robustness of those methods in terms of recovering correct connectivity. PMID:24511382
Illness causal beliefs in Turkish immigrants
Minas, Harry; Klimidis, Steven; Tuncer, Can
2007-01-01
acculturative influences. Different types of causal beliefs are held in relation to somatic or mental illness, and a variety of apparently logically incompatible beliefs may be concurrently held. Illness causal beliefs are dynamic and are related to demographic, modernizing, and acculturative factors, and to the current presence of illness. Any assumption of uniformity of illness causal beliefs within a community, even one that is relatively culturally homogeneous, is likely to be misleading. A better understanding of the diversity, and determinants, of illness causal beliefs can be of value in improving our understanding of illness experience, the clinical process, and in developing more effective health services and population health strategies. PMID:17645806
Swarm Intelligence for Urban Dynamics Modelling
NASA Astrophysics Data System (ADS)
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.
2009-04-01
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
Swarm Intelligence for Urban Dynamics Modelling
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.
2009-04-16
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
Rehan, R; Knight, M A; Unger, A J A; Haas, C T
2013-12-15
This paper develops causal loop diagrams and a system dynamics model for financially sustainable management of urban water distribution networks. The developed causal loop diagrams are a novel contribution in that it illustrates the unique characteristics and feedback loops for financially self-sustaining water distribution networks. The system dynamics model is a mathematical realization of the developed interactions among system variables over time and is comprised of three sectors namely watermains network, consumer, and finance. This is the first known development of a water distribution network system dynamics model. The watermains network sector accounts for the unique characteristics of watermain pipes such as service life, deterioration progression, pipe breaks, and water leakage. The finance sector allows for cash reserving by the utility in addition to the pay-as-you-go and borrowing strategies. The consumer sector includes controls to model water fee growth as a function of service performance and a household's financial burden due to water fees. A series of policy levers are provided that allow the impact of various financing strategies to be evaluated in terms of financial sustainability and household affordability. The model also allows for examination of the impact of different management strategies on the water fee in terms of consistency and stability over time. The paper concludes with a discussion on how the developed system dynamics water model can be used by water utilities to achieve a variety of utility short and long-term objectives and to establish realistic and defensible water utility policies. It also discusses how the model can be used by regulatory bodies, government agencies, the financial industry, and researchers.
Dynamic process modeling with recurrent neural networks
You, Yong; Nikolaou, M. . Dept. of Chemical Engineering)
1993-10-01
Mathematical models play an important role in control system synthesis. However, due to the inherent nonlinearity, complexity and uncertainty of chemical processes, it is usually difficult to obtain an accurate model for a chemical engineering system. A method of nonlinear static and dynamic process modeling via recurrent neural networks (RNNs) is studied. An RNN model is a set of coupled nonlinear ordinary differential equations in continuous time domain with nonlinear dynamic node characteristics as well as both feed forward and feedback connections. For such networks, each physical input to a system corresponds to exactly one input to the network. The system's dynamics are captured by the internal structure of the network. The structure of RNN models may be more natural and attractive than that of feed forward neural network models, but computation time for training is longer. Simulation results show that RNNs can learn both steady-state relationships and process dynamics of continuous and batch, single-input/single-output and multi-input/multi-output systems in a simple and direct manner. Training of RNNs shows only small degradation in the presence of noise in the training data. Thus, RNNs constitute a feasible alternative to layered feed forward back propagation neural networks in steady-state and dynamic process modeling and model-based control.
Tucker, Bram; Tsiazonera; Tombo, Jaovola; Hajasoa, Patricia; Nagnisaha, Charlotte
2015-01-01
A fact of life for farmers, hunter-gatherers, and fishermen in the rural parts of the world are that crops fail, wild resources become scarce, and winds discourage fishing. In this article we approach subsistence risk from the perspective of "coexistence thinking," the simultaneous application of natural and supernatural causal models to explain subsistence success and failure. In southwestern Madagascar, the ecological world is characterized by extreme variability and unpredictability, and the cosmological world is characterized by anxiety about supernatural dangers. Ecological and cosmological causes seem to point to different risk minimizing strategies: to avoid losses from drought, flood, or heavy winds, one should diversify activities and be flexible; but to avoid losses caused by disrespected spirits one should narrow one's range of behaviors to follow the code of taboos and offerings. We address this paradox by investigating whether southwestern Malagasy understand natural and supernatural causes as occupying separate, contradictory explanatory systems (target dependence), whether they make no categorical distinction between natural and supernatural forces and combine them within a single explanatory system (synthetic thinking), or whether they have separate natural and supernatural categories of causes that are integrated into one explanatory system so that supernatural forces drive natural forces (integrative thinking). Results from three field studies suggest that (a) informants explain why crops, prey, and market activities succeed or fail with reference to natural causal forces like rainfall and pests, (b) they explain why individual persons experience success or failure primarily with supernatural factors like God and ancestors, and (c) they understand supernatural forces as driving natural forces, so that ecology and cosmology represent distinct sets of causes within a single explanatory framework. We expect that future cross-cultural analyses may
Tucker, Bram; Tsiazonera; Tombo, Jaovola; Hajasoa, Patricia; Nagnisaha, Charlotte
2015-01-01
A fact of life for farmers, hunter-gatherers, and fishermen in the rural parts of the world are that crops fail, wild resources become scarce, and winds discourage fishing. In this article we approach subsistence risk from the perspective of “coexistence thinking,” the simultaneous application of natural and supernatural causal models to explain subsistence success and failure. In southwestern Madagascar, the ecological world is characterized by extreme variability and unpredictability, and the cosmological world is characterized by anxiety about supernatural dangers. Ecological and cosmological causes seem to point to different risk minimizing strategies: to avoid losses from drought, flood, or heavy winds, one should diversify activities and be flexible; but to avoid losses caused by disrespected spirits one should narrow one’s range of behaviors to follow the code of taboos and offerings. We address this paradox by investigating whether southwestern Malagasy understand natural and supernatural causes as occupying separate, contradictory explanatory systems (target dependence), whether they make no categorical distinction between natural and supernatural forces and combine them within a single explanatory system (synthetic thinking), or whether they have separate natural and supernatural categories of causes that are integrated into one explanatory system so that supernatural forces drive natural forces (integrative thinking). Results from three field studies suggest that (a) informants explain why crops, prey, and market activities succeed or fail with reference to natural causal forces like rainfall and pests, (b) they explain why individual persons experience success or failure primarily with supernatural factors like God and ancestors, and (c) they understand supernatural forces as driving natural forces, so that ecology and cosmology represent distinct sets of causes within a single explanatory framework. We expect that future cross-cultural analyses
Battery electrochemical nonlinear/dynamic SPICE model
Glass, M.C.
1996-12-31
An Integrated Battery Model has been produced which accurately represents DC nonlinear battery behavior together with transient dynamics. The NiH{sub 2} battery model begins with a given continuous-function electrochemical math model. The math model for the battery consists of the sum of two electrochemical process DC currents, which are a function of the battery terminal voltage. This paper describes procedures for realizing a voltage-source SPICE model which implements the electrochemical equations using behavioral sources. The model merges the essentially DC non-linear behavior of the electrochemical model, together with the empirical AC dynamic terminal impedance from measured data. Thus the model integrates the short-term linear impedance behavior, with the long-term nonlinear DC resistance behavior. The long-duration non-Faradaic capacitive behavior of the battery is represented by a time constant. Outputs of the model include battery voltage/current, state-of-charge, and charge-current efficiency.
Model systems for single molecule polymer dynamics
Latinwo, Folarin
2012-01-01
Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980
Integration of Dynamic Models in Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.
A stochastic model of human gait dynamics
NASA Astrophysics Data System (ADS)
Ashkenazy, Yosef; M. Hausdorff, Jeffrey; Ch. Ivanov, Plamen; Eugene Stanley, H.
2002-12-01
We present a stochastic model of gait rhythm dynamics, based on transitions between different “neural centers”, that reproduces distinctive statistical properties of normal human walking. By tuning one model parameter, the transition (hopping) range, the model can describe alterations in gait dynamics from childhood to adulthood-including a decrease in the correlation and volatility exponents with maturation. The model also generates time series with multifractal spectra whose broadness depends only on this parameter. Moreover, we find that the volatility exponent increases monotonically as a function of the width of the multifractal spectrum, suggesting the possibility of a change in multifractality with maturation.
The future dynamic world model
NASA Astrophysics Data System (ADS)
Karr, Thomas J.
2014-10-01
Defense and security forces exploit sensor data by means of a model of the world. They use a world model to geolocate sensor data, fuse it with other data, navigate platforms, recognize features and feature changes, etc. However, their need for situational awareness today exceeds the capabilities of their current world model for defense operations, despite the great advances of sensing technology in recent decades. I review emerging technologies that may enable a great improvement in the spatial and spectral coverage, the timeliness, and the functional insight of their world model.
Multi-scale modelling and dynamics
NASA Astrophysics Data System (ADS)
Müller-Plathe, Florian
Moving from a fine-grained particle model to one of lower resolution leads, with few exceptions, to an acceleration of molecular mobility, higher diffusion coefficient, lower viscosities and more. On top of that, the level of acceleration is often different for different dynamical processes as well as for different state points. While the reasons are often understood, the fact that coarse-graining almost necessarily introduces unpredictable acceleration of the molecular dynamics severely limits its usefulness as a predictive tool. There are several attempts under way to remedy these shortcoming of coarse-grained models. On the one hand, we follow bottom-up approaches. They attempt already when the coarse-graining scheme is conceived to estimate their impact on the dynamics. This is done by excess-entropy scaling. On the other hand, we also pursue a top-down development. Here we start with a very coarse-grained model (dissipative particle dynamics) which in its native form produces qualitatively wrong polymer dynamics, as its molecules cannot entangle. This model is modified by additional temporary bonds, so-called slip springs, to repair this defect. As a result, polymer melts and solutions described by the slip-spring DPD model show correct dynamical behaviour. Read more: ``Excess entropy scaling for the segmental and global dynamics of polyethylene melts'', E. Voyiatzis, F. Müller-Plathe, and M.C. Böhm, Phys. Chem. Chem. Phys. 16, 24301-24311 (2014). [DOI: 10.1039/C4CP03559C] ``Recovering the Reptation Dynamics of Polymer Melts in Dissipative Particle Dynamics Simulations via Slip-Springs'', M. Langeloth, Y. Masubuchi, M. C. Böhm, and F. Müller-Plathe, J. Chem. Phys. 138, 104907 (2013). [DOI: 10.1063/1.4794156].
Stirling Engine Dynamic System Modeling
NASA Technical Reports Server (NTRS)
Nakis, Christopher G.
2004-01-01
The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.
Detecting Causality by Combined Use of Multiple Methods: Climate and Brain Examples
Hirata, Yoshito; Amigó, José M.; Matsuzaka, Yoshiya; Yokota, Ryo; Mushiake, Hajime; Aihara, Kazuyuki
2016-01-01
Identifying causal relations from time series is the first step to understanding the behavior of complex systems. Although many methods have been proposed, few papers have applied multiple methods together to detect causal relations based on time series generated from coupled nonlinear systems with some unobserved parts. Here we propose the combined use of three methods and a majority vote to infer causality under such circumstances. Two of these methods are proposed here for the first time, and all of the three methods can be applied even if the underlying dynamics is nonlinear and there are hidden common causes. We test our methods with coupled logistic maps, coupled Rössler models, and coupled Lorenz models. In addition, we show from ice core data how the causal relations among the temperature, the CH4 level, and the CO2 level in the atmosphere changed in the last 800,000 years, a conclusion also supported by irregularly sampled data analysis. Moreover, these methods show how three regions of the brain interact with each other during the visually cued, two-choice arm reaching task. Especially, we demonstrate that this is due to bottom up influences at the beginning of the task, while there exist mutual influences between the posterior medial prefrontal cortex and the presupplementary motor area. Based on our results, we conclude that identifying causality with an appropriate ensemble of multiple methods ensures the validity of the obtained results more firmly. PMID:27380515
Uncertainty and Sensitivity in Surface Dynamics Modeling
NASA Astrophysics Data System (ADS)
Kettner, Albert J.; Syvitski, James P. M.
2016-05-01
Papers for this special issue on 'Uncertainty and Sensitivity in Surface Dynamics Modeling' heralds from papers submitted after the 2014 annual meeting of the Community Surface Dynamics Modeling System or CSDMS. CSDMS facilitates a diverse community of experts (now in 68 countries) that collectively investigate the Earth's surface-the dynamic interface between lithosphere, hydrosphere, cryosphere, and atmosphere, by promoting, developing, supporting and disseminating integrated open source software modules. By organizing more than 1500 researchers, CSDMS has the privilege of identifying community strengths and weaknesses in the practice of software development. We recognize, for example, that progress has been slow on identifying and quantifying uncertainty and sensitivity in numerical modeling of earth's surface dynamics. This special issue is meant to raise awareness for these important subjects and highlight state-of-the-art progress.
Energy Balance Models and Planetary Dynamics
NASA Technical Reports Server (NTRS)
Domagal-Goldman, Shawn
2012-01-01
We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.
ERIC Educational Resources Information Center
Liang, Ling L.; Fulmer, Gavin W.; Majerich, David M.; Clevenstine, Richard; Howanski, Raymond
2012-01-01
The purpose of this study is to examine the effects of a model-based introductory physics curriculum on conceptual learning in a Physics First (PF) Initiative. This is the first comparative study in physics education that applies the Rasch modeling approach to examine the effects of a model-based curriculum program combined with PF in the United…
Modeling cell shape and dynamics on micropatterns
Albert, Philipp J.; Schwarz, Ulrich S.
2016-01-01
ABSTRACT Adhesive micropatterns have become a standard tool to study cells under defined conditions. Applications range from controlling the differentiation and fate of single cells to guiding the collective migration of cell sheets. In long-term experiments, single cell normalization is challenged by cell division. For all of these setups, mathematical models predicting cell shape and dynamics can guide pattern design. Here we review recent advances in predicting and explaining cell shape, traction forces and dynamics on micropatterns. Starting with contour models as the simplest approach to explain concave cell shapes, we move on to network and continuum descriptions as examples for static models. To describe dynamic processes, cellular Potts, vertex and phase field models can be used. Different types of model are appropriate to address different biological questions and together, they provide a versatile tool box to predict cell behavior on micropatterns. PMID:26838278
Haptics-based dynamic implicit solid modeling.
Hua, Jing; Qin, Hong
2004-01-01
This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.
Synaptic dynamics: linear model and adaptation algorithm.
Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W
2014-08-01
In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and
Conditional Granger causality and partitioned Granger causality: differences and similarities.
Malekpour, Sheida; Sethares, William A
2015-12-01
Neural information modeling and analysis often requires a measurement of the mutual influence among many signals. A common technique is the conditional Granger causality (cGC) which measures the influence of one time series on another time series in the presence of a third. Geweke has translated this condition into the frequency domain and has explored the mathematical relationships between the time and frequency domain expressions. Chen has observed that in practice, the expressions may return (meaningless) negative numbers, and has proposed an alternative which is based on a partitioned matrix scheme, which we call partitioned Granger causality (pGC). There has been some confusion in the literature about the relationship between cGC and pGC; some authors treat them as essentially identical measures, while others have noted that some properties (such as the relationship between the time and frequency domain expressions) do not hold for the pGC. This paper presents a series of matrix equalities that simplify the calculation of the pGC. In this simplified expression, the essential differences and similarities between the cGC and the pGC become clear; in essence, the pGC is dependent on only a subset of the parameters in the model estimation, and the noise residuals (which are uncorrelated in the cGC) need not be uncorrelated in the pGC. The mathematical results are illustrated with a simulation, and the measures are applied to an EEG dataset.
NASA Astrophysics Data System (ADS)
Liang, Ling L.; Fulmer, Gavin W.; Majerich, David M.; Clevenstine, Richard; Howanski, Raymond
2012-02-01
The purpose of this study is to examine the effects of a model-based introductory physics curriculum on conceptual learning in a Physics First (PF) Initiative. This is the first comparative study in physics education that applies the Rasch modeling approach to examine the effects of a model-based curriculum program combined with PF in the United States. Five teachers and 301 students (in grades 9 through 12) in two mid-Atlantic high schools participated in the study. The students' conceptual learning was measured by the Force Concept Inventory (FCI). It was found that the ninth-graders enrolled in the model-based program in a PF initiative achieved substantially greater conceptual understanding of the physics content than those 11th-/12th-graders enrolled in the conventional non-modeling, non-PF program (Honors strand). For the 11th-/12th-graders enrolled in the non-PF, non-honors strands, the modeling classes also outperformed the conventional non-modeling classes. The instructional activity reports by students indicated that the model-based approach was generally implemented in modeling classrooms. A closer examination of the field notes and the classroom observation profiles revealed that the greatest inconsistencies in model-based teaching practices observed were related to classroom interactions or discourse. Implications and recommendations for future studies are also discussed.
Modeling Dynamic Regulatory Processes in Stroke.
McDermott, Jason E.; Jarman, Kenneth D.; Taylor, Ronald C.; Lancaster, Mary J.; Shankaran, Harish; Vartanian, Keri B.; Stevens, S.L.; Stenzel-Poore, Mary; Sanfilippo, Antonio P.
2012-10-11
The ability to examine in silico the behavior of biological systems can greatly accelerate the pace of discovery in disease pathologies, such as stroke, where in vivo experimentation is lengthy and costly. In this paper we describe an approach to in silico examination of blood genomic responses to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) relating regulators and functional clusters from the data. These ODEs were used to develop dynamic models that simulate the expression of regulated functional clusters using system dynamics as the modeling paradigm. The dynamic model has the considerable advantage of only requiring an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. The manipulation of input model parameters, such as changing the magnitude of gene expression, made it possible to assess the behavior of the networks through time under varying conditions. We report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different preconditioning paradigms.
Context, causality, and appreciation.
Ross, Stephanie
2013-04-01
I applaud and elaborate on the contextualism at the heart of Bullot & Reber's (B&R's) theory, challenge two aspects of the appreciative structure they posit (the causal reasoning that allegedly underlies the design stance and the segregation of the component stages), suggest that expert and novice appreciators operate differently, and question the degree to which B&R's final theory is open to empirical investigation. PMID:23507111
Context, causality, and appreciation.
Ross, Stephanie
2013-04-01
I applaud and elaborate on the contextualism at the heart of Bullot & Reber's (B&R's) theory, challenge two aspects of the appreciative structure they posit (the causal reasoning that allegedly underlies the design stance and the segregation of the component stages), suggest that expert and novice appreciators operate differently, and question the degree to which B&R's final theory is open to empirical investigation.
Nordbø, Øyvind; Gjuvsland, Arne B; Nermoen, Anders; Land, Sander; Niederer, Steven; Lamata, Pablo; Lee, Jack; Smith, Nicolas P; Omholt, Stig W; Vik, Jon Olav
2015-05-01
A scientific understanding of individual variation is key to personalized medicine, integrating genotypic and phenotypic information via computational physiology. Genetic effects are often context-dependent, differing between genetic backgrounds or physiological states such as disease. Here, we analyse in silico genotype-phenotype maps (GP map) for a soft-tissue mechanics model of the passive inflation phase of the heartbeat, contrasting the effects of microstructural and other low-level parameters assumed to be genetically influenced, under normal, concentrically hypertrophic and eccentrically hypertrophic geometries. For a large number of parameter scenarios, representing mock genetic variation in low-level parameters, we computed phenotypes describing the deformation of the heart during inflation. The GP map was characterized by variance decompositions for each phenotype with respect to each parameter. As hypothesized, the concentric geometry allowed more low-level parameters to contribute to variation in shape phenotypes. In addition, the relative importance of overall stiffness and fibre stiffness differed between geometries. Otherwise, the GP map was largely similar for the different heart geometries, with little genetic interaction between the parameters included in this study. We argue that personalized medicine can benefit from a combination of causally cohesive genotype-phenotype modelling, and strategic phenotyping that captures effect modifiers not explicitly included in the mechanistic model.
Gates, Kathleen M; Molenaar, Peter C M; Hillary, Frank G; Ram, Nilam; Rovine, Michael J
2010-04-15
Modeling the relationships among brain regions of interest (ROIs) carries unique potential to explicate how the brain orchestrates information processing. However, hurdles arise when using functional MRI data. Variation in ROI activity contains sequential dependencies and shared influences on synchronized activation. Consequently, both lagged and contemporaneous relationships must be considered for unbiased statistical parameter estimation. Identifying these relationships using a data-driven approach could guide theory-building regarding integrated processing. The present paper demonstrates how the unified SEM attends to both lagged and contemporaneous influences on ROI activity. Additionally, this paper offers an approach akin to Granger causality testing, Lagrange multiplier testing, for statistically identifying directional influence among ROIs and employs this approach using an automatic search procedure to arrive at the optimal model. Rationale for this equivalence is offered by explicating the formal relationships among path modeling, vector autoregression, and unified SEM. When applied to simulated data, biases in estimates which do not consider both lagged and contemporaneous paths become apparent. Finally, the use of unified SEM with the automatic search procedure is applied to an empirical data example.
ERIC Educational Resources Information Center
Lefevre, Pierre; de Suremain, Charles-Edouard; Rubin de Celis, Emma; Sejas, Edgar
2004-01-01
The paper discusses the utility of constructing causal models in focus groups. This was experienced as a complement to an in-depth ethnographic research on the differing perceptions of caretakers and health professionals on child's growth and development in Peru and Bolivia. The rational, advantages, difficulties and necessary adaptations of…
Dynamical modeling of laser ablation processes
Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.
1995-09-01
Several physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume; plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms; gas dynamic, hydrodynamic, and collisional descriptions of plume transport; and molecular dynamics models of the interaction of plume particles with the deposition substrate. The complexity of the phenomena involved in the laser ablation process is matched by the diversity of the modeling task, which combines materials science, atomic physics, and plasma physics.
Cellular automata modeling of pedestrian's crossing dynamics.
Zhang, Jin; Wang, Hui; Li, Ping
2004-07-01
Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian's crossing dynamics. A conception of "stop point" is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk. The model can be easily extended, is very efficient for simulation of pedestrian's crossing dynamics, can be integrated into traffic simulation software, and has been proved feasible by simulation experiments.