Sample records for dynamic chamber system

  1. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  2. Environmental chamber for in situ dynamic control of temperature and relative humidity during x-ray scattering

    NASA Astrophysics Data System (ADS)

    Salas-de la Cruz, David; Denis, Jeffrey G.; Griffith, Matthew D.; King, Daniel R.; Heiney, Paul A.; Winey, Karen I.

    2012-02-01

    We have designed, constructed, and evaluated an environmental chamber that has in situ dynamic control of temperature (25 to 90 °C) and relative humidity (0% to 95%). The compact specimen chamber is designed for x-ray scattering in transmission with an escape angle of 2θ = ±30°. The specimen chamber is compatible with a completely evacuated system such as the Rigaku PSAXS system, in which the specimen chamber is placed inside a larger evacuated chamber (flight path). It is also compatible with x-ray systems consisting of evacuated flight tubes separated by small air gaps for sample placement. When attached to a linear motor (vertical displacement), the environmental chamber can access multiple sample positions. The temperature and relative humidity inside the specimen chamber are controlled by passing a mixture of dry and saturated gas through the chamber and by heating the chamber walls. Alternatively, the chamber can be used to control the gaseous environment without humidity. To illustrate the value of this apparatus, we have probed morphology transformations in Nafion® membranes and a polymerized ionic liquid as a function of relative humidity in nitrogen.

  3. Development of a new dynamic chamber system for measuring harmful gas emissions from composting livestock waste.

    PubMed

    Osada, T; Fukumoto, Y

    2001-01-01

    A dynamic chamber system consisting of a chamber covering a composting mixture (3 m in diameter, 2.2 m in height, 13 m3), a ventilator for suction of air into the chamber, and equipment to measure the gas composition and indicate temperature, was developed for evaluation of harmful gas emissions from such livestock waste composting. Fresh air was introduced through the space between the floor and the lower edge of the chamber, and exhaust gas was removed through an outlet placed on top of the chamber. NH3, CH4 and N2O concentrations in exhaust air from the chamber were measured by Infrared Photoacoustic Detector (IPD, multi gas monitor type 1312, INNOVA, Copenhagen, Denmark) at 5 minutes intervals. The system was evaluated with standard gas of NH3, CH4 and N2O. High recoveries of 98.5% (NH3, SD 6.25), 96.6% (CH4, SD 4.03) and 99.5% ( N2O, SD 2.68) were obtained for each gas emission in the chamber over 17-20 min. The measured values of those gases obtained by the IPD method and conventional method at the time of a composting examination of swine waste were measured, and the differences were only a few percent of the total emissions.

  4. Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber.

    PubMed

    Gillis, A; Miller, D R

    2000-10-09

    A series of controlled environment experiments were conducted to examine the use of a dynamic flux chamber to measure soil emission and absorption of total gaseous mercury (TGM). Uncertainty about the appropriate airflow rates through the chamber and chamber exposure to ambient wind are shown to be major sources of potential error. Soil surface mercury flux measurements over a range of chamber airflow rates showed a positive linear relationship between flux rates and airflow rate through the chamber. Mercury flux measurements using the chamber in an environmental wind tunnel showed that exposure of the system to ambient winds decreased the measured flux rates by 40% at a wind speed of 1.0 m s(-1) and 90% at a wind speed of 2 m s(-1). Wind tunnel measurements also showed that the chamber footprint was limited to the area of soil inside the chamber and there is little uncertainty of the footprint size in dry soil.

  5. Optoelectronic system for the determination of blood volume in pneumatic heart assist devices.

    PubMed

    Konieczny, Grzegorz; Pustelny, Tadeusz; Setkiewicz, Maciej; Gawlikowski, Maciej

    2015-12-10

    The following article describes the concept of optical measurement of blood volume in ventricular assist devices (VAD's) of the pulsatile type. The paper presents the current state of art in blood volume measurements of such devices and introduces a newly developed solution in the optic domain. The objective of the research is to overcome the disadvantages of the previously developed acoustic method-the requirement of additional sensor chamber. The idea of a compact measurement system has been introduced, followed by laboratory measurements. Static tests of the system have been presented, followed by dynamic measurements on a physical model of the human ventricular system. The results involving the measurements of blood chamber volume acquired by means of an optical system have been compared with the results acquired by means of the Transonic T410 ultrasound flow rate sensor (11PLX transducer, uncertainty ±5 %). Preliminary dynamic measurements conducted on the physical model of the human cardiovascular system show that the proposed optical measurement system may be used to measure the transient blood chamber volumes of pulsatile VAD's with the uncertainties (standard mean deviation) lower than 10 %. The results show that the noninvasive measurements of the temporary blood chamber volume in the POLVAD prosthesis with the use of the developed optical system allows us to carry out accurate static and dynamic measurements.

  6. System and method for reducing combustion dynamics in a combustor

    DOEpatents

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  7. Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture.

    PubMed

    Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia

    2017-05-25

    The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes.

  8. Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture

    PubMed Central

    Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia

    2017-01-01

    The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes. PMID:28952530

  9. Test stand for gas-discharge chamber of TEA CO2 lasers with pulse-periodical energy supply

    NASA Astrophysics Data System (ADS)

    Shorin, Vladimyr P.; Bystrov, N. D.; Zhuravlyov, O. A.; Nekrasov, V. V.

    1997-05-01

    Test stand for function optimization (incomposition of gas- dynamic circuit (GDC) of operating characteristics of full- size discharge chamber of flowing TEA carbon-dioxide lasers (power up to 100 kW) was created in Samara State Aerospace University (former Kuibyshev Aviation Institute). Test stand includes an inside-type GDC, low inductive generators of voltage pulses of preionization and main discharges, two-flow rate system of gas supply and noise immunity diagnostic system. Module construction of units of GDC, power supplies of preionization and main discharges allows to change configuration of stand's systems for providing given properties of gas flow and its energy supply. This test stand can also be used in servicing of laser system. The diagnostic system of this stand allows us to analyze energy properties of discharge by means of oscillographic measurements of voltage and current with following processing of discharges' volt- ampere characteristics by means of a computer; rate of non- stationary gas-dynamic disturbances in discharge gap of discharge chamber was measured by means of pulse holographic system (UlG-1M) with data processing of schliren- and interferogram (density fluctuation sensitivity approximately 10-2) and sensor measurement system of gas-dynamic shock and acoustics process with resonance frequency exceeding 100 kHz. Research results of process of plasma plate wave and channel structures interaction with mediums, including actuation non-stationary gas-dynamic flows, cavitation erosion of preionization electrodes' dielectric substructure, ancillary heating of channels by main volumetric discharge are presented as well.

  10. Generation of a medium vacuum pressure by using two different pumping methods in the KRISS dynamic flow-control system

    NASA Astrophysics Data System (ADS)

    Hong, S. S.; Lim, J. Y.; Khan, W.

    2014-02-01

    Pumping systems with large vacuum chambers have numerous applications in the process industry: for example, mixing of various types of gases as in the semiconductor industry, the calibration of vacuum gauges, the measurement of outgassing rates of various materials in the field of space technology, etc. Most often, these systems are used in the medium vacuum range (10-1 Pa-102 Pa) and in the dynamically-generated pressure mode. We have designed and developed a new dynamic flow system at the KRISS (Korea Research Institute of Standards and Science) that can be used for such applications with reliability in the range from 0.1 Pa - 133 Pa. In this report, the design philosophy, operational procedure and experimental data for the generated stable pressure points in the chamber of the system are discussed. The data consist the pressure points generated in the medium vacuum range while pumping the chamber of the system by using two different methods: first by using a dry scroll pump and then by using a combination of a turbomolecular pump backed by the same scroll pump. The relative standard deviations in the pressure points were calculated and were found to be greater than 1.5% for the scroll pump and less than 0.5% for the turbomolecular pump.

  11. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    PubMed

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  12. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    PubMed Central

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-01-01

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141

  13. Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom

    2013-01-01

    Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.

  14. Periodic behavior in lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Barmin, A.; Melnik, O.; Sparks, R. S. J.

    2002-05-01

    Lava dome eruptions commonly display fairly regular alternations between periods of high activity and periods of low or no activity. The time scale for these alternations is typically months to several years. Here we develop a generic model of magma discharge through a conduit from an open-system magma chamber with continuous replenishment. The model takes account of the principal controls on flow, namely the replenishment rate, magma chamber size, elastic deformation of the chamber walls, conduit resistance, and variations of magma viscosity, which are controlled by degassing during ascent and kinetics of crystallization. The analysis indicates a rich diversity of behavior with periodic patterns similar to those observed. Magma chamber size can be estimated from the period with longer periods implying larger chambers. Many features observed in volcanic eruptions such as alternations between periodic behaviors and continuous discharge, sharp changes in discharge rate, and transitions from effusive to catastrophic explosive eruption can be understood in terms of the non-linear dynamics of conduit flows from open-system magma chambers. The dynamics of lava dome growth at Mount St. Helens (1980-1987) and Santiaguito (1922-2000) was analyzed with the help of the model. The best-fit models give magma chamber volumes of ∼0.6 km3 for Mount St. Helens and ∼65 km3 for Santiaguito. The larger magma chamber volume is the major factor in explaining why Santiaguito is a long-lived eruption with a longer periodicity of pulsations in comparison with Mount St. Helens.

  15. Intragroup Processes and Teamwork within a Successful Chamber Choir

    ERIC Educational Resources Information Center

    Kirrane, Melrona; O'Connor, Cliodhna; Dunne, Ann-Marie; Moriarty, Patricia

    2017-01-01

    Despite the ubiquity of choirs across time and cultures, relatively little is known about the internal dynamics of these social systems. This article examines the group processes involved in a small European chamber choir. The research adopted a mixed-methods qualitative approach that combined individual interviews (n = 13) with ethnographic…

  16. An Automated Chamber Network for Evaluation the Long-term Response and Feedback of Soil Carbon Dynamics to Global Change

    NASA Astrophysics Data System (ADS)

    Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Fujinuma, Y.; Mukai, H.; Takahashi, Y.; Kakubari, Y.; Wang, Q.; Nakane, K.

    2007-12-01

    Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux. The system equips 8 to 24 large automated chambers (90*90*50 cm, L*W*H). Since 1997, we have installed the chamber systems in the tundra in west Siberia, boreal forest in Alaska, cool- temperate and temperate forests in Japan, Korea and China, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 effluxes were estimated to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 30 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. From 2007, a big project that funded by Ministry of the Environment of Japan (MOE) has launched to evaluate the response and feedback of soil carbon dynamics of Japanese forest ecosystems to global change. We are installing another 6 chamber systems at the six of Japanese typical forests to conduct the soil warming experiments. For scaling-up the chamber experiments and understanding the mechanisms of soil organic matter (SOM) dynamics to global change, soil samples from about 100 forest ecosystems will be incubated for modeling development. Furthermore, the environmental (temperature and CO2) controlled large open-top chambers have been employed to investigate the balance of SOM (the input from litter falls and loss due to the decomposition) of forest ecosystems with global change.

  17. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  18. Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions

    NASA Astrophysics Data System (ADS)

    Papapostolou, Vasileios; Zhang, Hang; Feenstra, Brandon J.; Polidori, Andrea

    2017-12-01

    A state-of-the-art integrated chamber system has been developed for evaluating the performance of low-cost air quality sensors. The system contains two professional grade chamber enclosures. A 1.3 m3 stainless-steel outer chamber and a 0.11 m3 Teflon-coated stainless-steel inner chamber are used to create controlled aerosol and gaseous atmospheres, respectively. Both chambers are temperature and relative humidity controlled with capability to generate a wide range of environmental conditions. The system is equipped with an integrated zero-air system, an ozone and two aerosol generation systems, a dynamic dilution calibrator, certified gas cylinders, an array of Federal Reference Method (FRM), Federal Equivalent Method (FEM), and Best Available Technology (BAT) reference instruments and an automated control and sequencing software. Our experiments have demonstrated that the chamber system is capable of generating stable and reproducible aerosol and gas concentrations at low, medium, and high levels. This paper discusses the development of the chamber system along with the methods used to quantitatively evaluate sensor performance. Considering that a significant number of academic and research institutions, government agencies, public and private institutions, and individuals are becoming interested in developing and using low-cost air quality sensors, it is important to standardize the procedures used to evaluate their performance. The information discussed herein provides a roadmap for entities who are interested in characterizing air quality sensors in a rigorous, systematic and reproducible manner.

  19. Real-time combustion control and diagnostics sensor-pressure oscillation monitor

    DOEpatents

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV

    2009-07-14

    An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.

  20. Design and Dynamic Model of a Frog-inspired Swimming Robot Powered by Pneumatic Muscles

    NASA Astrophysics Data System (ADS)

    Fan, Ji-Zhuang; Zhang, Wei; Kong, Peng-Cheng; Cai, He-Gao; Liu, Gang-Feng

    2017-09-01

    Pneumatic muscles with similar characteristics to biological muscles have been widely used in robots, and thus are promising drivers for frog inspired robots. However, the application and nonlinearity of the pneumatic system limit the advance. On the basis of the swimming mechanism of the frog, a frog-inspired robot based on pneumatic muscles is developed. To realize the independent tasks by the robot, a pneumatic system with internal chambers, micro air pump, and valves is implemented. The micro pump is used to maintain the pressure difference between the source and exhaust chambers. The pneumatic muscles are controlled by high-speed switch valves which can reduce the robot cost, volume, and mass. A dynamic model of the pneumatic system is established for the simulation to estimate the system, including the chamber, muscle, and pneumatic circuit models. The robot design is verified by the robot swimming experiments and the dynamic model is verified through the experiments and simulations of the pneumatic system. The simulation results are compared to analyze the functions of the source pressure, internal volume of the muscle, and circuit flow rate which is proved the main factor that limits the response of muscle pressure. The proposed research provides the application of the pneumatic muscles in the frog inspired robot and the pneumatic model to study muscle controller.

  1. Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule

    NASA Astrophysics Data System (ADS)

    Yue, Shuai; Nie, Hong; Zhang, Ming; Wei, Xiaohui; Gan, Shengyong

    2018-06-01

    To improve the landing performance of a near-space manned capsule under various landing conditions, a novel landing system is designed that employs double chamber and single chamber dampers in the primary and auxiliary struts, respectively. A dynamic model of the landing system is established, and the damper parameters are determined by employing the design method. A single-leg drop test with different initial pitch angles is then conducted to compare and validate the simulation model. Based on the validated simulation model, seven critical landing conditions regarding nine crucial landing responses are found by combining the radial basis function (RBF) surrogate model and adaptive simulated annealing (ASA) optimization method. Subsequently, the adaptability of the landing system under critical landing conditions is analyzed. The results show that the simulation effectively results match the test results, which validates the accuracy of the dynamic model. In addition, all of the crucial responses under their corresponding critical landing conditions satisfy the design specifications, demonstrating the feasibility of the landing system.

  2. System and method for reducing combustion dynamics in a combustor

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2015-09-01

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend from the upstream surface through the downstream surface. A divider inside a tube bundle defines a diluent passage that extends axially through the downstream surface, and a diluent supply in fluid communication with the divider provides diluent flow to the diluent passage. A method for reducing combustion dynamics in a combustor includes flowing a fuel through tube bundles, flowing a diluent through a diluent passage inside a tube bundle, wherein the diluent passage extends axially through at least a portion of the end cap into a combustion chamber, and forming a diluent barrier in the combustion chamber between the tube bundle and at least one other adjacent tube bundle.

  3. Potentials and challenges associated with automated closed dynamic chamber measurements of soil CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart

    2015-04-01

    Soil respiration fluxes are influenced by natural factors such as climate and soil type, but also by anthropogenic activities in managed ecosystems. As a result, soil CO2 fluxes show a large intra- and interannual as well as intra- and intersite variability. Most of the available soil CO2 flux data giving insights into this variability have been measured with manually closed static chambers, but technological advances in the past 15 years have also led to an increased use of automated closed chamber systems. The great advantage of automated chambers in comparison to manually operated chambers is the higher temporal resolution of the flux data. This is especially important if we want to better understand the effects of short-term events, e.g. fertilization or heavy rainfall, on soil CO2 flux variability. However, the chamber method is an invasive measurement method which can potentially alter soil CO2 fluxes and lead to biased measurement results. In the peer-reviewed literature, many papers compare the field performance and results of different closed static chamber designs, or compare manual chambers with automated chamber systems, to identify potential biases in CO2 flux measurements, and thus help to reduce uncertainties in the flux data. However, inter-comparisons of different automated closed dynamic chamber systems are still lacking. Here we are going to present a field comparison of the most-cited automated chamber system, the LI-8100A Automated Soil Flux System, with the also commercially available Greenhouse Gas Monitoring System AGPS. Both measurement systems were installed side by side at a recently harvested poplar bioenergy plantation (POPFULL, http://uahost.uantwerpen.be/popfull/) from April 2014 until August 2014. The plantation provided optimal comparison conditions with a bare field situation after the harvest and a regrowing canopy resulting in a broad variety of microclimates. Furthermore, the plantation was planted in a double-row system with the row width alternating between 1.50 m and 0.75 m, creating spatial differences in e.g. dry bulk density and soil organic carbon content. The soil CO2 flux data sets were split into four subsets each characterized by different environmental conditions, thus presenting different challenges for the measurement equipment, namely 1) daytime, calm conditions, 2) daytime, windy conditions, 3) nighttime, calm conditions, and 4) nighttime, windy conditions. In parallel to the chamber measurements, soil CO2 concentrations were manually measured in the topsoil. Soil CO2 fluxes calculated from this dataset were used as a reference range of soil CO2 fluxes at the field site. Funding support: ERC Advanced Grant agreement (# 233366) POPFULL under the EC 7th Framework Program (FP7/2007-2013), Flemish Hercules Foundation as Infrastructure contract # ZW09-06, and the Methusalem Program of the Flemish Government.

  4. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  5. Design and Applications of a Climatic Chamber for in-situ Neutron Imaging Experiments

    NASA Astrophysics Data System (ADS)

    Mannes, David; Schmid, Florian; Wehmann, Timon; Lehmann, Eberhard

    Due to the high sensitivity for hydrogen, the detection and quantification of moisture and moisture transport processes are some of the key topics in neutron imaging. Especially when dealing with hygroscopic material, such as wood and other porous media, it is crucial for quantitative analyses to know and control the ambient conditions of the sample precisely. In this work, a neutron transparent climatic chamber is presented, which was designed and built for the imaging facilities at the Paul Scherrer Institut (PSI), Villigen (CH). The air-conditioned measuring system consists of the actual sample chamber and a moisture generator providing air with adjustable temperature and relative humidity (%RH) (up to a dew point temperature of 70 °C). The two components are connected with a flexible tube, which features insulation, a heating system and temperature sensors to prevent condensation within the tube. The sample chamber itself is equipped with neutron transparent windows, insulating double walls with three feed-through openings for the rotation stage, sensors for humidity and temperature. Thermoelectric modules allow to control the chamber temperature in the range of -20 °C to 100 °C. The chamber allows to control the climatic conditions either in a static mode (stable temperature and %RH) or in dynamic mode (humidity or temperature cycles). The envisaged areas of application are neutron radiography and tomography investigations of dynamic processes in building materials (e.g. wood, concrete), food science and any other application necessitating the control of the climatic conditions.

  6. Tunable osteogenic differentiation of hMPCs in tubular perfusion system bioreactor.

    PubMed

    Nguyen, Bao-Ngoc B; Ko, Henry; Fisher, John P

    2016-08-01

    The use of bioreactors for bone tissue engineering has been widely investigated. While the benefits of shear stress on osteogenic differentiation are well known, the underlying effects of dynamic culture on subpopulations within a bioreactor are less evident. In this work, we explore the influence of applied flow in the tubular perfusion system (TPS) bioreactor on the osteogenic differentiation of human mesenchymal progenitor cells (hMPCs), specifically analyzing the effects of axial position along the growth chamber. TPS bioreactor experiments conducted with unidirectional flow demonstrated enhanced expression of osteogenic markers in cells cultured downstream from the inlet flow. We utilized computational fluid dynamic modeling to confirm uniform shear stress distribution on the surface of the scaffolds and along the length of the growth chamber. The concept of paracrine signaling between cell populations was validated with the use of alternating flow, which diminished the differences in osteogenic differentiation between cells cultured at the inlet and outlet of the growth chamber. After the addition of controlled release of bone morphogenic protein-2 (BMP-2) into the system, osteogenic differentiation among subpopulations along the growth chamber was augmented, yet remained homogenous. These results allow for greater understanding of axial bioreactor cultures, their microenvironment, and how well-established parameters of osteogenic differentiation affect bone tissue development. With this work, we have demonstrated the capability of tuning osteogenic differentiation of hMPCs through the application of fluid flow and the addition of exogenous growth factors. Such precise control allows for the culture of distinct subpopulation within one dynamic system for the use of complex engineered tissue constructs. Biotechnol. Bioeng. 2016;113: 1805-1813. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. An experimental and theoretical investigation of the liquefaction dynamics of a phase change material in a normal gravity environment

    NASA Technical Reports Server (NTRS)

    Bain, R. L.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Experimental and theoretical investigations were undertaken to determine the role of gravity-induced free convection upon the liquefaction dynamics of a cylindrical paraffin slab under normal gravity conditions. The experimental equipment consisted of a test cell, a fluid-loop heating system, and a multipoint recorder. The test chamber was annular in shape with an effective radius of 1.585 cm and a length of 5.08 cm. The heating chamber was a 1.906 cm diameter tube going through the center of the test chamber, and connected to the fluid loop heating system. All experimental runs were made with the longitudinal axis of the test cell in the vertical direction to insure that convection was not a function of the angular axis of the cell. Ten melting runs were made at various hot wall temperatures. Also, two pure conduction solidification runs were made to determine an experimental latent heat of fusion.

  8. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    1999-01-01

    A method and apparatus for dynamically controlling the crystallization of proteins including a crystallization chamber or chambers for holding a protein in a salt solution, one or more salt solution chambers, two communication passages respectively coupling the crystallization chamber with each of the salt solution chambers, and transfer mechanisms configured to respectively transfer salt solution between each of the salt solution chambers and the crystallization chamber. The transfer mechanisms are interlocked to maintain the volume of salt solution in the crystallization chamber substantially constant. Salt solution of different concentrations is transferred into and out of the crystallization chamber to adjust the salt concentration in the crystallization chamber to achieve precise control of the crystallization process.

  9. System and method for reducing combustion dynamics in a combustor

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2013-08-20

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

  10. Study on the stability of waterpower-speed control system for hydropower station with air cushion surge chamber

    NASA Astrophysics Data System (ADS)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Teng, Y.

    2014-03-01

    According to the fact that the effects of penstock, unit and governor on stability of water level fluctuation for hydropower station with air cushion surge chamber are neglected in previous researches, in this paper, Thoma assumption is broken through, the complete mathematical model of waterpower-speed control system for hydropower station with air cushion surge chamber is established, and the comprehensive transfer function and linear homogeneous differential equation that characterize the dynamic characteristics of system are derived. The stability domain that characterizes the good or bad of stability quantitatively is drawn by using the stability conditions. The effects of the fluid inertia in water diversion system, the air cushion surge chamber parameters, hydraulic turbine characteristics, generator characteristics, and regulation modes of governor on the stability of waterpower-speed control system are analyzed through stability domain. The main conclusions are as follows: The fluid inertia in water diversion system and hydraulic turbine characteristics have unfavorable effects on the system while generator characteristics have favorable effect. The stability keeps getting better with the increase of chamber height and basal area and the decrease of air pressure and air polytropic exponent. The stability of power regulation mode is obviously better than that of frequency regulation mode.

  11. A methodology to study the possible occurrence of chugging in liquid rocket engines during transient start-up

    NASA Astrophysics Data System (ADS)

    Leonardi, Marco; Nasuti, Francesco; Di Matteo, Francesco; Steelant, Johan

    2017-10-01

    An investigation on the low frequency combustion instabilities due to the interaction of combustion chamber and feed line dynamics in a liquid rocket engine is carried out implementing a specific module in the system analysis software EcosimPro. The properties of the selected double time lag model are identified according to the two classical assumptions of constant and variable time lag. Module capabilities are evaluated on a literature experimental set up consisting of a combustion chamber decoupled from the upstream feed lines. The computed stability map results to be in good agreement with both experimental data and analytical models. Moreover, the first characteristic frequency of the engine is correctly predicted, giving confidence on the use of the module for the analysis of chugging instabilities. As an example of application, a study is carried out on the influence of the feed lines on the system stability, correctly capturing that the lines extend the stable regime of the combustion chamber and that the propellant domes play a key role in coupling the dynamics of combustion chamber and feed lines. A further example is presented to discuss on the role of pressure growth rate and of the combustion chamber properties on the possible occurrence of chug instability during engine start-up and on the conditions that lead to its damping or growth.

  12. The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.

    2014-12-01

    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.

  13. An online proton beam monitor for cancer therapy based on ionization chambers with micro pattern readout

    NASA Astrophysics Data System (ADS)

    Basile, E.; Carloni, A.; Castelluccio, D. M.; Cisbani, E.; Colilli, S.; De Angelis, G.; Fratoni, R.; Frullani, S.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Vacca, G.

    2012-03-01

    A unique compact LINAC accelerator for proton therapy is under development in Italy within the TOP-IMPLART project. The proton beam will reach the kinetic energy of 230 MeV, it will have a widely variable current intensity (0.1-10 μA, with average up to 3.5 nA) associated with a high pulse repetition frequency (1-3.5 μs long pulses at 10-100 Hz). The TOP-IMPLART system will provide a fully active 3+1D dose delivery, that is longitudinal (energy modulation), transverse active spot scanning, and current intensity modulation. These accelerator features will permit a highly conformational dose distribution, which therefore requires an effective, online, beam monitor system with wide dynamic range, good sensitivity, adequate spatial resolution and rapid response. In order to fulfill these requisites a new device is under development for the monitoring of the beam intensity profile, its centroid and direction; it is based on transmission, segmented, ionization chambers with typical active area of 100 × 100 mm2. Micro pattern x/y pad like design has been used for the readout plane in order to maximize the field uniformity, reduce the chamber thickness and obtain both beam coordinates on a single chamber. The chamber prototype operates in ionization region to minimize saturation and discharge effects. Simulations (based on FLUKA) have been carried on to study the perturbation of the chamber on the beam parameters and the effects on the delivered dose (on a water phantom). The charge collected in each channel is integrated by dedicated auto-ranging readout electronics: an original scheme has been developed in order to have an input dynamic range greater than 104 with sensitivity better than 3%. This is achieved by a dynamical adjustment of the integrating capacitance to the signal intensity.

  14. Lunar-Mars Life Support Test Project. Phase 2; Human Factors and Crew Interactions

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Hurlbert, K. M.; Kirby, G.; Lewis, J. F.; ORear, P.

    1997-01-01

    Phase 2 of the Lunar-Mars Life Support Test Project was conducted in June and July of 1996 at the NASA Johnson Space Center. The primary objective of Phase 2 was to demonstrate and evaluate an integrated physicochemical air revitalization and regenerative water recovery system capable of sustaining a human crew of four for 30 days inside a closed chamber. The crew (3 males and 1 female) was continuously present inside a chamber throughout the 30-day test. The objective of this paper was to describe crew interactions and human factors for the test. Crew preparations for the test included training and familiarization of chamber systems and accommodations, and medical and psychological evaluations. During the test, crew members provided metabolic loads for the life support systems, performed maintenance on chamber systems, and evaluated human factors inside the chamber. Overall, the four crew members found the chamber to be comfortable for the 30-day test. The crew performed well together and this was attributed in part to team dynamics, skill mix (one commander, two system experts, and one logistics lead), and a complementary mix of personalities. Communication with and support by family, friends, and colleagues were identified as important contributors to the high morale of the crew during the test. Lessons learned and recommendations for future testing are presented by the crew in this paper.

  15. Major Disruptions and Other Issues Driving the Design of the Ignitor Plasma Chamber

    NASA Astrophysics Data System (ADS)

    Ramogida, G.; Frosi, P.; Coppi, B.

    2012-10-01

    The Plasma Chamber of the Ignitor machine is designed according to the information available about electromagnetic loads coming from the experimental knowledge and the increasingly accurate numerical models of the eddy and halo currents resulting from the worst disruption events in existing machines. The developed models deal with static, dynamic and modal analysis. The loads during nominal operations and also those arising from plasma disruptions, by far the most important ones, have been taken into account, as well as the design problems arising from the Mo tiles in the inboard edge of the vacuum vessel, the Faraday shields covering the 6 ports devoted to the ICRH system and, finally, the reaction forces coming from the regions of constraints with the C-Clamps (the retaining structure that support the plasma chamber both statically and dynamically). The plasma chamber has to perform several additional functions, such as to keep the vacuum, be bakeable, and support the set of plates that carry the Mo tiles facing the plasma column. According to the present design the chamber is made of Inconel and has a thickness varying from 26 to 52 mm.

  16. Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren

    2017-11-01

    The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.

  17. Alpha LAMP Integration Facility

    NASA Technical Reports Server (NTRS)

    Oshiro, Richard; Sowers, Dennis; Gargiulo, Joe; Mcgahey, Mark

    1994-01-01

    This paper describes the activity recently completed to meet the simulated space environment requirements for the ground-based testing of an integrated Space Based Laser (SBL) system experiment. The need to maintain optical alignment in the challenging dynamic environment of the pressure recovery system required to simulate space dominated the design requirements. A robust system design was established which minimized the total program costs, most notably by reducing the cost of integrating the components of the experiment. The components of the experiment are integrated on an optical bench in a clean area adjacent to the vacuum chamber and moved on air bearings into the chamber for testing.

  18. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator

    NASA Astrophysics Data System (ADS)

    Li, F. S.; Chen, Q.; Zhou, J. H.

    2016-07-01

    The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.

  19. Combustion Processes in the Aerospace Environment

    NASA Technical Reports Server (NTRS)

    Huggett, Clayton

    1969-01-01

    The aerospace environment introduces new and enhanced fire hazards because the special atmosphere employed may increase the frequency and intensity of fires, because the confinement associated with aerospace systems adversely affects the dynamics of fire development and control, and because the hostile external environments limit fire control and rescue operations. Oxygen enriched atmospheres contribute to the fire hazard in aerospace systems by extending the list of combustible fuels, increasing the probability of ignition, and increasing the rates of fire spread and energy release. A system for classifying atmospheres according to the degree of fire hazard, based on the heat capacity of the atmosphere per mole of oxygen, is suggested. A brief exploration of the dynamics of chamber fires shows that such fires will exhibit an exponential growth rate and may grow to dangerous size in a very short time. Relatively small quantities of fuel and oxygen can produce a catastrophic fire in a closed chamber.

  20. Dynamic cell culture system (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  1. Nonlinear dynamic characteristics of dielectric elastomer membranes

    NASA Astrophysics Data System (ADS)

    Fox, Jason W.; Goulbourne, Nakhiah C.

    2008-03-01

    The dynamic response of dielectric elastomer membranes subject to time-varying voltage inputs for various initial inflation states is investigated. These results provide new insight into the differences observed between quasi-static and dynamic actuation and presents a new challenge to modeling efforts. Dielectric elastomer membranes are a potentially enabling technology for soft robotics and biomedical devices such as implants and surgical tools. In this work, two key system parameters are varied: the chamber volume and the voltage signal offset. The chamber volume experiments reveal that increasing the size of the chamber onto which the membrane is clamped will increase the deformations as well as cause the membrane's resonance peaks to shift and change in number. For prestretched dielectric elastomer membranes at the smallest chamber volume, the maximum actuation displacement is 81 microns; while at the largest chamber volume, the maximum actuation displacement is 1431 microns. This corresponds to a 1767% increase in maximum pole displacement. In addition, actuating the membrane at the resonance frequencies provides hundreds of percent increase in strain compared to the quasi-static strain. Adding a voltage offset to the time-varying input signal causes the membrane to oscillate at two distinct frequencies rather than one and also presents a unique opportunity to increase the output displacement without electrically overloading the membrane. Experiments to capture the entire motion of the membrane reveal that classical membrane mode shapes are electrically generated although all points of the membrane do not pass through equilibrium at the same moments in time.

  2. Technical note: A facility for respiration measurements in cattle.

    PubMed

    Machado, F S; Tomich, T R; Ferreira, A L; Cavalcanti, L F L; Campos, M M; Paiva, C A V; Ribas, M N; Pereira, L G R

    2016-06-01

    A respiration system consisting of 4 climate-controlled chambers and 1 set of flowmeters and analyzers was constructed and validated. Each chamber had volume of 21.10m(3) (3.68×2.56×2.24m) and was made from steel with double-glazed windows on either side enabling visual contact between animals. The chambers are independently climate-controlled and can maintain temperature and relative humidity in a range from 5 to 45°C and 30 to 80%, respectively. A flow generator and mass flowmeter continuously pull air from each chamber and a slight negative pressure inside the chamber is ensured. Air from all chambers and ambient air share a common gas analysis and data acquisition system for monitoring O2, CO2, and CH4 concentrations over the measurement period, with the cycle time set to 20min. Analyzers are regularly calibrated and the chambers have mean recoveries of 99.0 and 98.0% for CO2 and CH4, respectively. The chambers are equipped with infrared cameras and electronic feed and water bins for intake measurements, as well as sensors for monitoring animal position and heart rate. Data acquisition and analysis software is used to calculate the rate of consumption of O2 and production of CO2 and CH4. The dynamic respiration measurements are integrated with feed intake data and other sensors. The daily gas exchanges are estimated by integration to determine methane emission and heat production. We conducted a trial with 12 lactating 3/4 Holstein × 1/4 Gyr crossbred dairy cows (6 multiparous and 6 primiparous) under 2 feeding regimens (ad libitum or restricted) to validate the system. Two 22-h respiration measurements were obtained from each cow. Restricted-fed cows showed lower values for milk yield, methane emission, and heat production compared with ad libitum-fed animals. We found no difference between groups for CH4 produced per kilogram of dry matter intake. Repeatability for CH4 emission and heat production was high (0.97 and 0.92, respectively). The respiration system described herein is a useful tool for measuring the dynamic and accumulated data of heat production, methane emission, and feed intake. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Sealable femtoliter chamber arrays for cell-free biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retterer, Scott T.; Fowlkes, Jason Davidson; Collier, Charles Patrick

    Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g. global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) devicemore » contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Lastly, we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques to characterize CFPS gene circuits and their interactions with the cell-free environment.« less

  4. Sealable femtoliter chamber arrays for cell-free biology

    DOE PAGES

    Retterer, Scott T.; Fowlkes, Jason Davidson; Collier, Charles Patrick; ...

    2015-03-11

    Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g. global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) devicemore » contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Lastly, we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques to characterize CFPS gene circuits and their interactions with the cell-free environment.« less

  5. Modeling and simulation of combustion chamber and propellant dynamics and issues in active control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Isella, Giorgio Carlo

    A method for a comprehensive approach to analysis of the dynamics of an actively controlled combustion chamber, with detailed analysis of the combustion models for the case of a solid rocket propellant, is presented here. The objective is to model the system as interconnected blocks describing the dynamics of the chamber, combustion and control. The analytical framework for the analysis of the dynamics of a combustion chamber is based on spatial averaging, as introduced by Culick. Combustion dynamics are analyzed for the case of a solid propellant. Quasi-steady theory is extended to include the dynamics of the gas-phase and also of a surface layer. The models are constructed so that they produce a combustion response function for the solid propellant that can be immediately introduced in the our analytical framework. The principal objective mechanisms responsible for the large sensitivity, observed experimentally, of propellant response to small variations. We show that velocity coupling, and not pressure coupling, has the potential to be the mechanism responsible for that high sensitivity. We also discuss the effect of particulate modeling on the global dynamics of the chamber and revisit the interpretation of the intrinsic stability limit for burning of solid propellants. Active control is also considered. Particular attention is devoted to the effect of time delay (between sensing and actuation); several methods to compensate for it are discussed, with numerical examples based on the approximate analysis produced by our framework. Experimental results are presented for the case of a Dump Combustor. The combustor exhibits an unstable burning mode, defined through the measurement of the pressure trace and shadowgraph imaging. The transition between stable and unstable modes of operation is characterized by the presence of hysteresis, also observed in other experimental works, and hence not a special characteristic of this combustor. Control is introduced in the form of pulsed secondary fuel. We show the capability of forcing the transition from unstable to stable burning, hence extending the stable operating regime of the combustor. The transition, characterized by the use of a shadowgraph movie sequence, is attributed to a combined fluid-mechanic and combustion mechanism.

  6. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    NASA Astrophysics Data System (ADS)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  7. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Kopicz, Charles; Bullard, Brad; Michaels, Scott

    2003-01-01

    NASA Marshall Space Flight Center (MSFC) and the U. S. Army are jointly investigating vortex chamber concepts for cryogenic oxygen/hydrocarbon fuel rocket engine applications. One concept, the Impinging Stream Vortex Chamber Concept (ISVC), has been tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RP-1) propellant system is derived from the one for the gel propellant. An unlike impinging injector is employed to deliver the propellants to the chamber. MSFC has also designed two alternative injection schemes, called the chasing injectors, associated with this vortex chamber concept. In these injection techniques, both propellant jets and their impingement point are in the same chamber cross-sectional plane. One injector has a similar orifice size with the original unlike impinging injector. The second chasing injector has small injection orifices. The team has achieved their objectives of demonstrating the self-cooled chamber wall benefits of ISVC and of providing the test data for validating computational fluids dynamics (CFD) models. These models, in turn, will be used to design the optimum vortex chambers in the future.

  8. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    2003-01-01

    A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.

  9. Mammalian cell cultivation in space

    NASA Astrophysics Data System (ADS)

    Gmünder, Felix K.; Suter, Robert N.; Kiess, M.; Urfer, R.; Nordau, C.-G.; Cogoli, A.

    Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 μl. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible.

  10. Technique for predicting high-frequency stability characteristics of gaseous-propellant combustors

    NASA Technical Reports Server (NTRS)

    Priem, R. J.; Jefferson, Y. S. Y.

    1973-01-01

    A technique for predicting the stability characteristics of a gaseous-propellant rocket combustion system is developed based on a model that assumes coupling between the flow through the injector and the oscillating chamber pressure. The theoretical model uses a lumped parameter approach for the flow elements in the injection system plus wave dynamics in the combustion chamber. The injector flow oscillations are coupled to the chamber pressure oscillations with a delay time. Frequency and decay (or growth) rates are calculated for various combustor design and operating parameters to demonstrate the influence of various parameters on stability. Changes in oxidizer design parameters had a much larger influence on stability than a similar change in fuel parameters. A complete description of the computer program used to make these calculations is given in an appendix.

  11. Lab-on-a-chip platform for high throughput drug discovery with DNA-encoded chemical libraries

    NASA Astrophysics Data System (ADS)

    Grünzner, S.; Reddavide, F. V.; Steinfelder, C.; Cui, M.; Busek, M.; Klotzbach, U.; Zhang, Y.; Sonntag, F.

    2017-02-01

    The fast development of DNA-encoded chemical libraries (DECL) in the past 10 years has received great attention from pharmaceutical industries. It applies the selection approach for small molecular drug discovery. Because of the limited choices of DNA-compatible chemical reactions, most DNA-encoded chemical libraries have a narrow structural diversity and low synthetic yield. There is also a poor correlation between the ranking of compounds resulted from analyzing the sequencing data and the affinity measured through biochemical assays. By combining DECL with dynamical chemical library, the resulting DNA-encoded dynamic library (EDCCL) explores the thermodynamic equilibrium of reversible reactions as well as the advantages of DNA encoded compounds for manipulation/detection, thus leads to enhanced signal-to-noise ratio of the selection process and higher library quality. However, the library dynamics are caused by the weak interactions between the DNA strands, which also result in relatively low affinity of the bidentate interaction, as compared to a stable DNA duplex. To take advantage of both stably assembled dual-pharmacophore libraries and EDCCLs, we extended the concept of EDCCLs to heat-induced EDCCLs (hi-EDCCLs), in which the heat-induced recombination process of stable DNA duplexes and affinity capture are carried out separately. To replace the extremely laborious and repetitive manual process, a fully automated device will facilitate the use of DECL in drug discovery. Herein we describe a novel lab-on-a-chip platform for high throughput drug discovery with hi-EDCCL. A microfluidic system with integrated actuation was designed which is able to provide a continuous sample circulation by reducing the volume to a minimum. It consists of a cooled and a heated chamber for constant circulation. The system is capable to generate stable temperatures above 75 °C in the heated chamber to melt the double strands of the DNA and less than 15 °C in the cooled chamber, to reanneal the reshuffled library. In the binding chamber (the cooled chamber) specific retaining structures are integrated. These hold back beads functionalized with the target protein, while the chamber is continuously flushed with library molecules. Afterwards the whole system can be flushed with buffer to wash out unspecific bound molecules. Finally the protein-loaded beads with attached molecules can be eluted for further investigation.

  12. Hybrid Modeling for Testing Intelligent Software for Lunar-Mars Closed Life Support

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Intelligent software is being developed for closed life support systems with biological components, for human exploration of the Moon and Mars. The intelligent software functions include planning/scheduling, reactive discrete control and sequencing, management of continuous control, and fault detection, diagnosis, and management of failures and errors. Four types of modeling information have been essential to system modeling and simulation to develop and test the software and to provide operational model-based what-if analyses: discrete component operational and failure modes; continuous dynamic performance within component modes, modeled qualitatively or quantitatively; configuration of flows and power among components in the system; and operations activities and scenarios. CONFIG, a multi-purpose discrete event simulation tool that integrates all four types of models for use throughout the engineering and operations life cycle, has been used to model components and systems involved in the production and transfer of oxygen and carbon dioxide in a plant-growth chamber and between that chamber and a habitation chamber with physicochemical systems for gas processing.

  13. Flux Chamber Measurements of Methane Emissions and Stable Isotope Composition from an Arctic Wetland Using Field-Deployed Real-Time CRDS Vs Lab Measurements

    NASA Astrophysics Data System (ADS)

    Thompson, H. A.; Stern, J. C.; Graham, H. V.; Pratt, L. M.; White, J. R.

    2014-12-01

    The emission of CH4 from Arctic landscapes under warming climate is an important feedback in Earth's climate system. Studies of CH4 flux from Arctic wetlands have been growing in recent years, but few provide details on biogeochemical controls. Stable isotopic measurements help elucidate methane production and consumption pathways and offer important understanding about dynamics of CH4 cycling in Arctic systems. In order to demonstrate the possible instrumental approaches to measuring methane dynamics of wetlands in the Arctic, a fringing wetland of a small lake near the Russell Glacier in Southwestern Greenland was outfitted with static flux chambers and instrumented with a field-deployable Cavity Ring Down Spectrometer (CRDS) to measure real-time concentrations of CH4 and CO2 and their stable carbon isotopes. Several different wetland plant communities were included in the flux chamber experiments and field tests were conducted during several weeks in July 2014. Analytical measurements by CRDS were compared to batch samples analyzed in the laboratory using both Off-Axis Integrated Cavity Output Spectroscopy (ICOS) and Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS) with cryogenic pre-concentration. Results from flux chamber deployments will be presented and comparisons between the real-time field measurements and laboratory instrumental techniques will be evaluated.

  14. Fixed Equipment in the Energy Systems Integration Facility | Energy Systems

    Science.gov Websites

    dynamic simulation of future energy systems. Photo of a robot used to test hydrogen coupling hardware. At test chambers (rated up to 60°C) for testing HVAC systems under simulated loading conditions Two bench performance Test stand for measuring performance of receiver tubes for concentrating solar power applications

  15. PlasmaLab/Eco-Plasma - The future of complex plasma research in space

    NASA Astrophysics Data System (ADS)

    Knapek, Christina; Thomas, Hubertus; Huber, Peter; Mohr, Daniel; Hagl, Tanja; Konopka, Uwe; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir

    The next Russian-German cooperation for the investigation of complex plasmas under microgravity conditions on the International Space Station (ISS) is the PlasmaLab/Eco-Plasma project. Here, a new plasma chamber -- the ``Zyflex'' chamber -- is being developed. The chamber is a cylindrical plasma chamber with parallel electrodes and a flexible system geometry. It is designed to extend the accessible plasma parameter range, i.e. neutral gas pressure, plasma density and electron temperature, and also to allow an independent control of the plasma parameters, therefore increasing the experimental quality and expected knowledge gain significantly. With this system it will be possible to reach low neutral gas pressures (which means weak damping of the particle motion) and to generate large, homogeneous 3D particle systems for studies of fundamental phenomena such as phase transitions, dynamics of liquids or phase separation. The Zyflex chamber has already been operated in several parabolic flight campaigns with different configurations during the last years, yielding a promising outlook for its future development. Here, we will present the current status of the project, the technological advancements the Zyflex chamber will offer compared to its predecessors, and the latest scientific results from experiments on ground and in microgravity conditions during parabolic flights. This work and some of the authors are funded by DLR/BMWi (FKZ 50 WP 0700).

  16. Pulsed fusion space propulsion: Computational Magneto-Hydro Dynamics of a multi-coil parabolic reaction chamber

    NASA Astrophysics Data System (ADS)

    Romanelli, Gherardo; Mignone, Andrea; Cervone, Angelo

    2017-10-01

    Pulsed fusion propulsion might finally revolutionise manned space exploration by providing an affordable and relatively fast access to interplanetary destinations. However, such systems are still in an early development phase and one of the key areas requiring further investigations is the operation of the magnetic nozzle, the device meant to exploit the fusion energy and generate thrust. One of the last pulsed fusion magnetic nozzle design is the so called multi-coil parabolic reaction chamber: the reaction is thereby ignited at the focus of an open parabolic chamber, enclosed by a series of coaxial superconducting coils that apply a magnetic field. The field, beside confining the reaction and preventing any contact between hot fusion plasma and chamber structure, is also meant to reflect the explosion and push plasma out of the rocket. Reflection is attained thanks to electric currents induced in conductive skin layers that cover each of the coils, the change of plasma axial momentum generates thrust in reaction. This working principle has yet to be extensively verified and computational Magneto-Hydro Dynamics (MHD) is a viable option to achieve that. This work is one of the first detailed ideal-MHD analysis of a multi-coil parabolic reaction chamber of this kind and has been completed employing PLUTO, a freely distributed computational code developed at the Physics Department of the University of Turin. The results are thus a preliminary verification of the chamber's performance. Nonetheless, plasma leakage through the chamber structure has been highlighted. Therefore, further investigations are required to validate the chamber design. Implementing a more accurate physical model (e.g. Hall-MHD or relativistic-MHD) is thus mandatory, and PLUTO shows the capabilities to achieve that.

  17. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  18. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  19. A dynamic magneto-optical trap for atom chips

    NASA Astrophysics Data System (ADS)

    Rushton, Jo; Roy, Ritayan; Bateman, James; Himsworth, Matt

    2016-11-01

    We describe a dynamic magneto-optical trap (MOT) suitable for the use with vacuum systems in which optical access is limited to a single window. This technique facilitates the long-standing desire of producing integrated atom chips, many of which are likely to have severely restricted optical access compared with conventional vacuum chambers. This ‘switching-MOT’ relies on the synchronized pulsing of optical and magnetic fields at audio frequencies. The trap’s beam geometry is obtained using a planar mirror surface, and does not require a patterned substrate or bulky optics inside the vacuum chamber. Central to the design is a novel magnetic field geometry that requires no external quadrupole or bias coils which leads toward a very compact system. We have implemented the trap for 85Rb and shown that it is capable of capturing 2 million atoms and directly cooling below the Doppler temperature.

  20. Calibration of gravitational radiation antenna by dynamic Newton field

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Tsubono, K.; Kuroda, K.; Hirakawa, H.

    1981-07-01

    A method is presented of calibrating antennas for gravitational radiation. The method, which used the dynamic Newton field of a rotating body, is suitable in experiments for frequencies up to several hundred hertz. What is more, the method requires no hardware inside the vacuum chamber of the antenna and is particularly convenient for calibration of low-temperature antenna systems.

  1. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, George A.; Gemmen, Randall S.

    1998-01-01

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.

  2. Intelligent sensor in control systems for objects with changing thermophysical properties

    NASA Astrophysics Data System (ADS)

    Belousov, O. A.; Muromtsev, D. Yu; Belyaev, M. P.

    2018-04-01

    The control of heat devices in a wide temperature range given thermophysical properties of an object is a topical issue. Optimal control systems of electric furnaces have to meet strict requirements in terms of accuracy of production procedures and efficiency of energy consumption. The fulfillment of these requirements is possible only if the dynamics model describing adequately the processes occurring in the furnaces is used to calculate the optimal control actions. One of the types of electric furnaces is the electric chamber furnace intended for heat treatment of various materials at temperatures from thousands of degrees Celsius and above. To solve the above-mentioned problem and to determine its place in the system of energy-efficient control of dynamic modes in the electric furnace, we propose the concept of an intelligent sensor and a method of synthesizing variables on sets of functioning states. The use of synthesis algorithms for optimal control in real time ensures the required accuracy when operating under different conditions and operating modes of the electric chamber furnace.

  3. Carbon dioxide dynamics in an artificial ecosystem

    NASA Astrophysics Data System (ADS)

    Hu, Enzhu; Hu, Dawei; Tong, Ling; Li, Ming; Fu, Yuming; He, Wenting; Liu, Hong

    An experimental artificial ecosystem was established as a tool to understand the behavior of closed ecosystem and to develop the technology for a future bioregenerative life support system for lunar or planetary exploration. Total effective volume of the system is 0.7 m3 . It consists of a higher plant chamber, an animal chamber and a photo-bioreactor which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella), respectively. For uniform and sustained observations, lettuce and silkworms was cultivated using sequential cultivation method, and microalgae using continuous culture. Four researchers took turns breathing the system air through a tube for brief periods every few hours. A mathematic model, simulating the carbon dioxide dynamics was developed. The main biological parameters concerning photosynthesis of lettuce and microalgae, respiration of silkworms and human were validated by the experimental data. The model described the respiratory relationship between autotrophic and heterotrophic compartments. A control strategy was proposed as a tool for the atmosphere management of the artificial ecosystem.

  4. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces.

    PubMed

    Liang, Y; Liu, X; Allen, M R

    2018-02-01

    Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important to improve our knowledge of the fate and transport of OPFRs in indoor environments. The sorption processes of semivolatile organic compounds (SVOCs) on indoor surfaces are heterogeneous (multilayer sorption) or homogeneous (monolayer sorption). In this study, we adopted simplified Langmuir isotherm and Freundlich isotherm in a dynamic sink model to characterize the sorption dynamics of OPFRs on impervious surfaces such as stainless steel and made comparisons between the two models through a series of empty chamber studies. The tests involve two types of stainless steel chambers (53-L small chambers and 44-mL micro chambers) using tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCPP) as target compounds. Our test results show that the dynamic sink model using Freundlich isotherm can better represent the sorption process in the empty small chamber. Micro chamber test results from this study show that the sink model using both simplified Langmuir isotherm and Freundlich isotherm can well fit the measured gas-phase concentrations of OPFRs. We further applied both models and the parameters obtained to predict the gas phase concentrations of OPFRs in a small chamber with an emission source. Comparisons between model predictions and measurements demonstrate the reliability and applicability of the sorption parameters. Published by Elsevier Ltd.

  5. Validation of a pretreatment delivery quality assurance method for the CyberKnife Synchrony system.

    PubMed

    Mastella, E; Vigorito, S; Rondi, E; Piperno, G; Ferrari, A; Strata, E; Rozza, D; Jereczek-Fossa, B A; Cattani, F

    2016-08-01

    To evaluate the geometric and dosimetric accuracies of the CyberKnife Synchrony respiratory tracking system (RTS) and to validate a method for pretreatment patient-specific delivery quality assurance (DQA). An EasyCube phantom was mounted on the ExacTrac gating phantom, which can move along the superior-inferior (SI) axis of a patient to simulate a moving target. The authors compared dynamic and static measurements. For each case, a Gafchromic EBT3 film was positioned between two slabs of the EasyCube, while a PinPoint ionization chamber was placed in the appropriate space. There were three steps to their evaluation: (1) the field size, the penumbra, and the symmetry of six secondary collimators were measured along the two main orthogonal axes. Dynamic measurements with deliberately simulated errors were also taken. (2) The delivered dose distributions (from step 1) were compared with the planned ones, using the gamma analysis method. The local gamma passing rates were evaluated using three acceptance criteria: 3% local dose difference (LDD)/3 mm, 2%LDD/2 mm, and 3%LDD/1 mm. (3) The DQA plans for six clinical patients were irradiated in different dynamic conditions, to give a total of 19 cases. The measured and planned dose distributions were evaluated with the same gamma-index criteria used in step 2 and the measured chamber doses were compared with the planned mean doses in the sensitive volume of the chamber. (1) A very slight enlargement of the field size and of the penumbra was observed in the SI direction (on average <1 mm), in line with the overall average CyberKnife system error for tracking treatments. (2) Comparison between the planned and the correctly delivered dose distributions confirmed the dosimetric accuracy of the RTS for simple plans. The multicriteria gamma analysis was able to detect the simulated errors, proving the robustness of their method of analysis. (3) All of the DQA clinical plans passed the tests, both in static and dynamic conditions. No statistically significant differences were found between static and dynamic cases, confirming the high degree of accuracy of the Synchrony RTS. The presented methods and measurements verified the mechanical and dosimetric accuracy of the Synchrony RTS. Their method confirms the fact that the RTS, if used properly, is able to treat a moving target with great precision. By combining PinPoint ion chamber, EBT3 films, and gamma evaluation of dose distributions, their DQA method robustly validated the effectiveness of CyberKnife and Synchrony system.

  6. Numerical simulation of magma chamber dynamics.

    NASA Astrophysics Data System (ADS)

    Longo, Antonella; Papale, Paolo; Montagna, Chiara Paola; Vassalli, Melissa; Giudice, Salvatore; Cassioli, Andrea

    2010-05-01

    Magma chambers are characterized by periodic arrivals of deep magma batches that give origin to complex patterns of magma convection and mixing, and modify the distribution of physical quantities inside the chamber. We simulate the transient, 2D, multi-component homogeneous dynamics in geometrically complex dyke+chamber systems, by means of GALES, a finite element parallel C++ code solving mass, momentum and energy equations for multi-component homogeneous gas-liquid (± crystals) mixtures in compressible-to-incompressible flow conditions. Code validation analysis includes several cases from the classical engineering literature, corresponding to a variety of subsonic to supersonic gas-liquid flow regimes (see http://www.pi.ingv.it/~longo/gales/gales.html). The model allows specification of the composition of the different magmas in the domain, in terms of ten major oxides plus the two volatile species H2O and CO2. Gas-liquid thermodynamics are modeled by using the compositional dependent, non-ideal model in Papale et al. (Chem.. Geol., 2006). Magma properties are defined in terms of local pressure, temperature, and composition including volatiles. Several applications are performed within domains characterized by the presence of one or more magma chambers and one or more dykes, with different geometries and characteristic size from hundreds of m to several km. In most simulations an initial compositional interface is placed at the top of a feeding dyke, or at larger depth, with the deeper magma having a lower density as a consequence of larger volatile content. The numerical results show complex patterns of magma refilling in the chamber, with alternating phases of magma ingression and magma sinking from the chamber into the feeding dyke. Intense mixing takes place in feeding dykes, so that the new magma entering the chamber is always a mixture of the deep and the initially resident magma. Buoyant plume rise occurs through the formation of complex convective patterns, giving origin to a density-stratified magma chamber.

  7. Uncertainty Quantification of Non-linear Oscillation Triggering in a Multi-injector Liquid-propellant Rocket Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Popov, Pavel; Sideris, Athanasios; Sirignano, William

    2014-11-01

    We examine the non-linear dynamics of the transverse modes of combustion-driven acoustic instability in a liquid-propellant rocket engine. Triggering can occur, whereby small perturbations from mean conditions decay, while larger disturbances grow to a limit-cycle of amplitude that may compare to the mean pressure. For a deterministic perturbation, the system is also deterministic, computed by coupled finite-volume solvers at low computational cost for a single realization. The randomness of the triggering disturbance is captured by treating the injector flow rates, local pressure disturbances, and sudden acceleration of the entire combustion chamber as random variables. The combustor chamber with its many sub-fields resulting from many injector ports may be viewed as a multi-scale complex system wherein the developing acoustic oscillation is the emergent structure. Numerical simulation of the resulting stochastic PDE system is performed using the polynomial chaos expansion method. The overall probability of unstable growth is assessed in different regions of the parameter space. We address, in particular, the seven-injector, rectangular Purdue University experimental combustion chamber. In addition to the novel geometry, new features include disturbances caused by engine acceleration and unsteady thruster nozzle flow.

  8. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  9. Magnetic Suspension for Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter

    1998-01-01

    NASA Lewis Research Center's Dynamic Spin Rig, located in Building 5, Test Cell CW-18, is used to test turbomachinery blades and components by rotating them in a vacuum chamber. A team from Lewis' Machine Dynamics Branch successfully integrated a magnetic bearing and control system into the Dynamic Spin Rig. The magnetic bearing worked very well both to support and shake the shaft. It was demonstrated that the magnetic bearing can transmit more vibrational energy into the shaft and excite some blade modes to larger amplitudes than the existing electromagnetic shakers can.

  10. Continuous soil VOCl measurements with automated flux chambers and micro-ECD gas chromatography coupled with the thermal desorption and cooled injection systems

    NASA Astrophysics Data System (ADS)

    Molodovskaya, M. S.; Svensson, T.; Pitts, A.; Delmonte, J.; Nesic, Z.; Oberg, G.

    2010-12-01

    The volatile organic chlorinated compounds (VOCl) are important components of the global chlorine budget. The origin of VOCl in the environment was for decades thought to be strictly anthropogenic. Over the past decade, a number of studies have however shown that VOCls are naturally formed in soil, and nowadays this source is recognized as a crucial part of the global biogeochemical chlorine cycle. The relative contribution of soil VOCl to the global chlorine cycle is however unclear, a key reason being that monitoring of soil VOCl is complicated by low concentrations and high variability of emission rates. Static chamber deployments coupled with canister gas sampling and gas chromatography (GC) analysis is the most commonly used method for quantifying VOCl emissions. Static chambers are however of limited use for estimating larger scale fluxes since the method is highly labor intensive (leading low sampling frequency). The poor data resolution resulting from these limitations can strongly bias the data extrapolation. Here, we report a method that would allow more continuous and precise VOCl flux measurements. The study has been carried out in a forest in British Columbia, Canada, using automated dynamic chambers and advanced GC technique. The chamber setup is based on a design that previously has been employed and proven successful for carbon dioxide and soil respiration measurements. The method includes a collar permanently inserted into the ground and an attached dome-shaped cover. The air from the closed chamber is pumped through the on-site sampling device. The cover opens and closes automatically between deployments (40 min in average), which helps to minimize the chamber supervision and obtain more continuous data. Soil VOCl concentrations are commonly at the ppt-level, much lower than atmospheric carbon dioxide, so necessary adjustments were made to the chamber system to pre-concentrate the compounds of interest. During each deployment, soil air from the automated chamber was continuously pumped through the glass tubes filled with carbon-based absorbent (Carbotrap 300) to capture and retain VOCl. At the end of each measurement period, the tubes are brought back to the lab, and the content is analyzed by Agilent 7890 GC/micro-ECD coupled with the Gerstel Thermal Desorption System (TDS) and Cooled Injection System (CIS). The ultra sensitive micro-ECD detection and high-efficiency capillary column (Rtx®-VMS, 20m x 0.18mm ID x 1.0µm) allows rapid separation and quantification of the mid-weight VOCl such as chloroform, carbon tetrachloride, 1,1,1-trichloroethane and bromochloromethane. The GC-method dynamic range is linear within 0.1-200.0ng, and the analytical precision is determined to be 4%. The described system can be used for the analysis of soil/atmosphere exchange of VOCl at the detection limit of 1.9ng m-2 h-1, which is far below previously reported average soil emission levels from forest soils. The high precision GC analysis combined with the automatic chambers makes it possible to study the high spatial and temporal variability of soil VOCl fluxes.

  11. Application of the coplanar principle to dynamic epidural pressure measurements.

    PubMed

    Beck, J; Schettini, A; Salton, R

    1984-10-01

    The application of the coplanar principle to dynamic epidural pressure measurements was investigated in vitro. The authors used a coplanar pressure-displacement transducer, commonly employed to measure the viscoelastic properties of brain tissue in vivo. The present studies were performed using canine dura and a specially constructed fluid-filled chamber. The accuracy of the technique was assessed by comparing the pressure in the chamber recorded by the coplanar transducer to the pressure measured by a transducer directly vented to the chamber. The results show that the coplanar principle remained valid for dynamic measurements with the transducer under a variety of conditions.

  12. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE PAGES

    Fan, D.; Huang, J. W.; Zeng, X. L.; ...

    2016-05-23

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  13. Gas identification by dynamic measurements of SnO2 sensors

    NASA Astrophysics Data System (ADS)

    Vorobioff, Juan; Rodriguez, Daniel; Boselli, Alfredo; Lamagna, Alberto; Rinaldi, Carlos

    2011-09-01

    It is well know that the use of chambers with the sensors in the e-nose improves the measurements, due to a constant gas flow and the controlled temperature sensors[1]. Normally, the chamber temperature is above room temperature due to the heat generated by the heater of sensors. Also, the chamber takes a long time to reach a stable equilibrium temperature and it depends on enviromental conditions. Besides, the temperature variations modify the humidity producing variations in resistance measurements[2]. In this work using a heater system that controls the temperature of the chamber, the desorption process on SnO2 sensor array was study[3]. Also, it was fitted the data signal sensors using a two exponential decay functions in order to determine the desorbing constant process. These constants were used to classify and identify different alcohols and their concentrations.

  14. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D.; Huang, J. W.; Zeng, X. L.

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  15. Development and validation of inexpensive, automated, dynamic flux chambers

    EPA Science Inventory

    We developed and validated an automated, inexpensive, and continuous multiple-species gas-flux monitoring system that can provide data for a variety of relevant atmospheric pollutants, including O3, CO2, and NOx. Validation consisted of conducting concurrent gas-phase dry deposit...

  16. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, G.A.; Gemmen, R.S.

    1998-09-22

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.

  17. Characterisation of acoustic energy content in an experimental combustion chamber with and without external forcing

    NASA Astrophysics Data System (ADS)

    Webster, S.; Hardi, J.; Oschwald, M.

    2015-03-01

    The influence of injection conditions on rocket engine combustion stability is investigated for a sub-scale combustion chamber with shear coaxial injection elements and the propellant combination hydrogen-oxygen. The experimental results presented are from a series of tests conducted at subcritical and supercritical pressures for oxygen and for both ambient and cryogenic temperature hydrogen. The stability of the system is characterised by the root mean squared amplitude of dynamic combustion chamber pressure in the upper part of the acoustic spectrum relevant for high frequency combustion instabilities. Results are presented for both unforced and externally forced combustion chamber configurations. It was found that, for both the unforced and externally forced configurations, the injection velocity had the strongest influence on combustion chamber stability. Through the use of multivariate linear regression the influence of hydrogen injection temperature and hydrogen injection mass flow rate were best able to explain the variance in stability for dependence on injection velocity ratio. For unforced tests turbulent jet noise from injection was found to dominate the energy content of the signal. For the externally forced configuration a non-linear regression model was better able to predict the variance, suggesting the influence of non-linear behaviour. The response of the system to variation of injection conditions was found to be small; suggesting that the combustion chamber investigated in the experiment is highly stable.

  18. A novel design for a dual stable isotope continuous labeling chamber: results on labeling efficiency and C and N allocation in Andropogon gerardii

    NASA Astrophysics Data System (ADS)

    Soong, J.; Stewart, C.; Reuss, D.; Pinney, C.; Cotrufo, F. M.

    2010-12-01

    The use of stable isotope enriched plant material can provide an unobstructed method of studying ecosystem nutrient dynamics between plants, soil, and atmosphere. However, the production of uniformly labeled perennial plant material is challenging due to plant physiological constraints and the mechanics of building and operating an isotope labeling system. In this study we present the design of a novel dual 13C and 15N continuous isotope labeling chamber located at Colorado State University. The chamber is equipped with automatic controls for CO2 concentration, temperature, and humidity, and has successfully been used to grow and label the tallgrass perennial Andropogon gerardii in pots from rhizomes. Three different nitrogen fertilization levels were applied to assess how substrate availability may alter growth and overall performance in the system. The efficiency of the 13C and 15N labeling chamber, its design and overall performance, as well as a full C, N, 13C, and 15N budget of the aboveground biomass, belowground biomass, and soil will be presented. Solid samples were analyzed on an EA-IRMS, while air samples from the chamber were analyzed using a precon-GC-IRMS system. The dual stable isotope labeled A. gerardii produced from this chamber will be used in a decomposition experiment to quantify the relative contribution of aboveground litter derived C to soil respiration, dissolved organic carbon, and various soil organic matter pools. Based on the results of our A. gerardii 13C and 15N labeling experiment we believe that this chamber design can be used to successfully produce dual stable isotope labeled plants for a wide variety of terrestrial nutrient flux experiments.

  19. Understanding the physics of the Yellowstone magmatic system with geodynamic inverse modelling

    NASA Astrophysics Data System (ADS)

    Reuber, Georg; Kaus, Boris

    2017-04-01

    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Thus, it is important to understand the geodynamic processes that drive this very complex system on a larger scale ranging from the mantle plume up to the shallow magma chamber in the upper crust. Recent geophysical results suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper and partially molten chamber above the Moho [1]. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is puzzling. Therefore, we employ lithospheric-scale 2D and 3D geodynamic models to test the influence of different model parameters, such as the geometry of the magma chamber, the melt fraction, the rheological flow law, the densities and the thermal structure on their influence on the dynamics of the lithosphere. The melt content and the rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. We present derivations in the stress field around the Yellowstone plume, diking areas and different melt accumulations. Our model predictions can be tested with available geophysical data (uplift rates, melt fractions, stress states, seismicity). By framing it in an inverse modelling approach we can constrain which parameters (melt fractions, viscosities, geometries) are consistent with the data and which are not. [1] Huang, Hsin-Hua, et al. "The Yellowstone magmatic system from the mantle plume to the upper crust." Science 348.6236 (2015): 773-776.

  20. SU-E-T-651: Quantification of Dosimetric Accuracy of Respiratory Gated Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiyagarajan, Rajesh; Vikraman, S; Maragathaveni, S

    2015-06-15

    Purpose: To quantify the dosimetric accuracy of respiratory gated stereotactic body radiation therapy delivery using dynamic thorax phantom. Methods: Three patients with mobile target (2 lung, 1liver) were chosen. Retrospective 4DCT image sets were acquired for using Varian RPM system. An in-house MATLAB program was designed for MIP, MinIP and AvgIP generation. ITV was contoured on MIP image set for lung patients and on MinIP for liver patient. Dynamic IMRT plans were generated on selected phase bin image set in Eclipse (v10.0) planning system. CIRS dynamic thorax phantom was used to perform the dosimetric quality assurance. Patient breathing pattern filemore » from RPM system was converted to phantom compatible file by an in-house MATLAB program. This respiratory pattern fed to the CIRS dynamic thorax phantom. 4DCT image set was acquired for this phantom using patient breathing pattern. Verification plans were generated using patient gating window and delivered on the phantom. Measurements were carried out using with ion chamber and EBT2 film. Exposed films were analyzed and evaluated in FilmQA software. Results: The stability of gated output in comparison with un-gated output was within 0.5%. The Ion chamber measured and TPS calculated dose compared for all the patients. The difference observed was 0.45%, −0.52% and −0.54 for Patient 1, Patient2 and Patient 3 respectively.Gamma value evaluated from EBT film shows pass rates from 92.41% to 99.93% for 3% dose difference and 3mm distance to agreement criteria. Conclusion: Dosimetric accuracy of respiratory gated SBRT delivery for lung and liver was dosimetrically acceptable. The Ion chamber measured dose was within 0.203±0.5659% of the expected dose. Gamma pass rates were within 96.63±3.84% of the expected dose.« less

  1. in silico Vascular Modeling for Personalized Nanoparticle Delivery

    DTIC Science & Technology

    2012-02-01

    stent implantation . Annals of Biomedical Engineering 2003;31(8): 972-80. 21. Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular Delivery of...transport and adhesion dynamics under controlled flow conditions (Supplementary Figure 1A). The flow chamber system comprises a PMMA flow deck, a

  2. The dynamics of magma chamber refilling at the Campi Flegrei caldera.

    NASA Astrophysics Data System (ADS)

    Montagna, Chiara Paola; Vassalli, Melissa; Longo, Antonella; Papale, Paolo; Giudice, Salvatore; Saccorotti, Gilberto

    2010-05-01

    The volcanologic and petrologic reconstructions of several eruptions during the last tens of thousand years of volcanism at the Campi Flegrei caldera show that in most cases a small, chemically evolved, partially degassed magma chamber was refilled by magma of deeper origin shortly before the eruption. New magma input in a shallow chamber is revealed from a variety of indicators, well described in the literature, that include major-trace element and isotope heterogeneities, and crystal-liquid disequilibria (e.g., Arienzo et al., Bull. Volcanol., 2009). In the case of the 4100 BP Agnano Monte Spina eruption, representing the highest intensity and magnitude event of the last epoch of activity, it has been suggested that the refilling occurred within a few tens of hours from the start of the eruption. Notably, in such a case the two end-member magmas that mixed shortly before eruption onset are not recognized as individual members in the deposits, rather, their composition and characteristics are reconstructed from small scale disequilibria, revealing that a relatively short time was sufficient for efficient mixing of the liquid components. In order to investigate the dynamics of magma chamber refilling and mixing at Campi Flegrei we have applied the GALES code (Longo et al., Geophys. Res. Lett., 2006) in a series of numerical simulations. The initial and boundary conditions have been defined in the frame of two subsequent projects coordinated by INGV and funded by the Italian Civil Protection Department, that gather a large number of experts on Campi Flegrei, and are consistent with the bulk of knowledge on the deep magmatic system. In all cases an initial compositional interface is placed at a certain depth, with non-degassed, buoyant magma placed below. The simulations investigate both the dynamics in a very large, 8 km deep reservoir revealed by seismic tomography (Zollo et al., Geophys. Res. Lett., 2008), and those in shallower and smaller chamber systems connected by dykes and representative of pre-eruptive conditions. The numerical results reveal the complex dynamics of magma mixing, dominated by the interplay between buoyant magma rise and dense magma sinking. In all simulated cases efficient mixing takes place at dyke levels, the buoyant magma entering the chamber is already a mixture of the two initial end-members, and the initial deep magma is never found as an individual component in the chamber. Over the time scale of our longest simulation (about 8 hours of real time), and with reference to the spatial resolution of our simulations (max 1 m), the magma chamber is occupied by a nearly homogeneous mixture of the two initial end-members, with minor but still visible density stratification continuously perturbed by the rise of small buoyant plumes. Consistent with the observations, an eruption occurring a few tens of hours after new magma ingression would be characterized by a magmatic composition intermediate between the two initial end-members, that can therefore be revealed only from small-scale heterogeneities and possibly from crystal-liquid disequilibria.

  3. Understanding the Yellowstone magmatic system using 3D geodynamic inverse models

    NASA Astrophysics Data System (ADS)

    Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.

    2017-12-01

    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.

  4. Analytical and computational studies on the vacuum performance of a chevron ejector

    NASA Astrophysics Data System (ADS)

    Kong, F. S.; Jin, Y. Z.; Kim, H. D.

    2016-11-01

    The effects of chevrons on the performance of a supersonic vacuum ejector-diffuser system are investigated numerically and evaluated theoretically in this work. A three-dimensional geometrical domain is numerically solved using a fully implicit finite volume scheme based on the unsteady Reynolds stress model. A one-dimensional mathematical model provides a useful tool to reveal the steady flow physics inside the vacuum ejector-diffuser system. The effects of the chevron nozzle on the generation of recirculation regions and Reynolds stress behaviors are studied and compared with those of a conventional convergent nozzle. The present performance parameters obtained from the simulated results and the mathematical results are validated with existing experimental data and show good agreement. Primary results show that the duration of the transient period and the secondary chamber pressure at a dynamic equilibrium state depend strongly on the primary jet conditions, such as inlet pressure and primary nozzle shape. Complicated oscillatory flow, generated by the unsteady movement of recirculation, finally settles into a dynamic equilibrium state. As a vortex generator, the chevron demonstrated its strong entrainment capacity to accelerate the starting transient flows to a certain extent and reduce the dynamic equilibrium pressure of the secondary chamber significantly.

  5. Technical Review of the Laboratory Biosphere Closed Ecological System Facility

    NASA Astrophysics Data System (ADS)

    Dempster, W.; van Thillo, M.; Alling, A.; Allen, J.; Silverstone, S.; Nelson, M.

    The "Laboratory Biosphere", a new closed ecological system facility in Santa Fe, New Mexico (USA) has been constructed and became operational in May 2002. Built and operated by the Global Ecotechnics consortium (Biosphere Technologies and Biosphere Foundation with Biospheric Design Inc., and the Institute of Ecotechnics), the research apparatus for intensive crop growth, biogeochemical cycle dynamics and recycling of inedible crop biomass comprises a sealed cylindrical steel chamber and attached variable volume chamber (lung) to prevent pressures caused by the expansion and contraction of the contained air. The cylindrical growing chamber is 3.7m (12 feet) long and 3.7m (12 foot) diameter, giving an internal volume of 34 m3 (1200 ft 3 ). The two crop growth beds cover 5.5 m2, with a soil depth of 0.3m (12 inches), with 12 x 1000 watt high-pressure sodium lights capable of variable lighting of 40-70 mol per m2 per day. A small soil bed reactor in the chamber can be activated to help with metabolism of chamber trace gases. The volume of the attached variable volume chamber (lung) can range between 0-11 m3 (0-400 ft 3 ). Evapotranspired and soil leachate water are collected, combined and recycled to water the planting beds. Sampling ports enable testing of water quality of leachate, condensate and irrigation water. Visual inspection windows provide views of the entire interior and growing beds. The chamber is also outfitted with an airlock to minimize air exchange when people enter and work in the chamber. Continuous sensors include atmospheric CO2 and oxygen, temperature, humidity, soil moisture, light level and water levels in reservoirs. Both "sniffer" (air ports) and "sipper" (water ports) will enable collection of water or air samples for detailed analysis. This paper reports on the development of this new soil-based bioregenerative life support closed system apparatus and its technical challenges and capabilities.

  6. Cancellation of residual spacecraft accelerations for zero-G space physics experiments

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.

    1977-01-01

    The Drop Dynamics Module houses an acoustic positioning system which counteracts the effects of small accelerations of a spacecraft and thus allows long-term study of free-floating materials such as liquid drops. The acoustic positioning system provides an acoustic 'well' in the center of the experiment chamber. Data collection is by cinematographic photography. The module subsystems are discussed.

  7. Hot-Fire Test Results of an Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged-Combustion Integrated Test Article

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for combustion analysis model development. Hot-fire testing was conducted with main combustion chamber pressures ranging from 1400 to 2100 psia, and main combustion chamber mixture ratios ranging from 2.4 to 2.9. Different levels of fuel film cooling injected from the injector face were examined ranging from none to about 12% of the total fuel flow. This paper presents the hot-fire test results of the integrated test article. Combustion performance, stability, thermal, and compatibility characteristics of both the preburner and the thrust chamber are described. Another companion paper at this JANNAF meeting includes additional and more detailed test data regarding the combustion dynamics and stability characteristics.

  8. SSME thrust chamber simulation using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of the PHOENICS fluid dynamics code in predicting two-dimensional, compressible, and reacting flow in the combustion chamber and nozzle of the space shuttle main engine (SSME) was evaluated. A non-orthogonal body fitted coordinate system was used to represent the nozzle geometry. The Navier-Stokes equations were solved for the entire nozzle with a turbulence model. The wall boundary conditions were calculated based on the wall functions which account for pressure gradients. Results of the demonstration test case reveal all expected features of the transonic nozzle flows. Of particular interest are the locations of normal and barrel shocks, and regions of highest temperature gradients. Calculated performance (global) parameters such as thrust chamber flow rate, thrust, and specific impulse are also in good agreement with available data.

  9. Cellular characterization of compression-induceddamage in live biological samples

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William

    2012-03-01

    Understanding the damage that high intensity compression waves induce in human tissues is critical for developing improved therapies for patients suffering from blast injuries. Experimentally based models of blast injury using live biological samples are needed. In this study we have developed a system to directly assess the effects of dynamic loading conditions on live cells. Here, we describe a confinement chamber designed to subject live cell cultures in a liquid environment to high intensity compression waves using a split Hopkinson pressure bar system. Signals from the strain gauges mounted on the bars and the chamber allow the measurement of parameters such as pressure and duration of the stimulus. The chamber itself also allows recovery of cells subjected to compression for assessment of cellular damage. In these studies we present evidence of increased levels of damage and loss of cellular integrity in cultured mouse mesenchymal stem cells subjected to a high-intensity compression wave with a peak pressure of 7.6 ± 0.8 MPa.

  10. Density and mixture fraction measurements in a GO2/GH2 uni-element rocket chamber

    NASA Technical Reports Server (NTRS)

    Moser, M. D.; Pal, S.; Santoro, R. J.

    1994-01-01

    In recent years, there has been a renewed interest in gas/gas injectors for rocket combustion. Specifically, the proposed new concept of full-flow oxygen rich preburner systems calls for the injection of both oxygen and hydrogen into the main chamber as gaseous propellants. The technology base for gas/gas injection must mature before actual booster class systems can be designed and fabricated. Since the data base for gas/gas injection is limited to studies focusing on the global parameters of small reaction engines, there is a critical need for experiment programs that emphasize studying the mixing and combustion characteristics of GO2 and GH2 propellants from a uni-element injector point of view. The experimental study of the combusting GO2/GH2 propellant combination in a uni-element rocket chamber also provides a simplified environment, in terms of both geometry and chemistry, that can be used to verify and validate computational fluid dynamic (CFD) models.

  11. Full GHG balance of a drained fen peatland cropped to spring barley and reed canary grass using comparative assessment of CO2 fluxes.

    PubMed

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka P; Lærke, Poul Erik

    2015-03-01

    Empirical greenhouse gas (GHG) flux estimates from diverse peatlands are required in order to derive emission factors for managed peatlands. This study on a drained fen peatland quantified the annual GHG balance (Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and C exported in crop yield) from spring barley (SB) and reed canary grass (RCG) using static opaque chambers for GHG flux measurements and biomass yield for indirectly estimating gross primary production (GPP). Estimates of ecosystem respiration (ER) and GPP were compared with more advanced but costly and labor-intensive dynamic chamber studies. Annual GHG balance for the two cropping systems was 4.0 ± 0.7 and 8.1 ± 0.2 Mg CO2-Ceq ha(-1) from SB and RCG, respectively (mean ± standard error, n = 3). Annual CH4 emissions were negligible (<0.006 Mg CO2-Ceq ha(-1)), and N2O emissions contributed only 4-13 % of the full GHG balance (0.5 and 0.3 Mg CO2-Ceq ha(-1) for SB and RCG, respectively). The statistical significance of low CH4 and N2O fluxes was evaluated by a simulation procedure which showed that most of CH4 fluxes were within the range that could arise from random variation associated with actual zero-flux situations. ER measured by static chamber and dynamic chamber methods was similar, particularly when using nonlinear regression techniques for flux calculations. A comparison of GPP derived from aboveground biomass and from measuring net ecosystem exchange (NEE) showed that GPP estimation from biomass might be useful, or serve as validation, for more advanced flux measurement methods. In conclusion, combining static opaque chambers for measuring ER of CO2 and CH4 and N2O fluxes with biomass yield for GPP estimation worked well in the drained fen peatland cropped to SB and RCG and presented a valid alternative to estimating the full GHG balance by dynamic chambers.

  12. Evaluation of Start Transient Oscillations with the J-2X Engine Gas Generator Assembly

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Morgan, C. J.; Casiano, M. J.

    2015-01-01

    During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, distinctive and oftentimes high-amplitude pressure oscillations and hardware vibrations occurred during the start transient of nearly every workhorse gas generator assembly test, as well as during many tests of engine system hardware. These oscillations appeared whether the steady-state conditions exhibited stable behavior or not. They occurred similarly with three different injector types, and with every combustion chamber configuration tested, including chamber lengths ranging over a 5:1 range, several different nozzle types, and with or without a side branch line simulating a turbine spin start gas supply line. Generally, two sets of oscillations occurred, one earlier in the start transient and at higher frequencies, and the other almost immediately following and at lower frequencies. Multiple dynamic pressure measurements in the workhorse combustion chambers indicated that the oscillations were associated with longitudinal acoustic modes of the combustion chambers, with the earlier and higher frequency oscillation usually related to the second longitudinal acoustic mode and the later and lower frequency oscillation usually related to the first longitudinal acoustic mode. Given that several early development gas generator assemblies exhibited unstable behavior at frequencies near the first longitudinal acoustic modes of longer combustion chambers, the start transient oscillations are presumed to provide additional insight into the nature of the combustion instability mechanisms. Aspects of the steadystate oscillations and combustion instabilities from development and engine system test programs have been reported extensively in the three previous JANNAF Liquid Propulsion Subcommittee meetings (see references below). This paper describes the hardware configurations, start transient sequence operations, and transient and dynamic test data during the start transient. The implications of these results on previous analyses and understanding of the combustion instability observed during steady-state conditions, especially the effects of injector influences, is discussed.

  13. Manipulation of intraocular pressure for studying the effects on accommodation.

    PubMed

    He, Lin; Wendt, Mark; Glasser, Adrian

    2012-09-01

    A reliable experimental system in which IOP can be manipulated or a rapid IOP change can be induced while simultaneously and continuously measuring IOP and the ocular accommodative changes would be useful for understanding the physiological effect of intraocular pressure (IOP) on the accommodative mechanism. In this study, an IOP perfusion and recording system was developed and tested using 13 enucleated pig eyes. The vitreous chamber of the pig eyes was cannulated with a needle connected to two fluid reservoirs at different heights. One reservoir was set to achieve one of three baseline pressures of 5.5 mmHg, 13.0 mmHg and 20.5 mmHg. The other reservoir was moved to achieve pressures of 1.5 mmHg, 3.0 mmHg, 4.5 mmHg and 6.0 mmHg higher than the baseline pressure. The height differential between the reservoirs determined the amplitude of IOP changes. Rapid IOP changes were induced by switching the reservoirs with a solenoid pinch-valve. Two needles, one each attached to a pressure transducer were inserted into the anterior chamber and vitreous chamber respectively. Custom developed software was used to measure the anterior chamber pressure and vitreous chamber pressure at 80 Hz. A high-resolution continuous A-scan ultrasound biometer (CUB) was used to dynamically measure changes in ocular biometry including anterior chamber depth (ACD), lens thickness (LT) and vitreous chamber depth (VCD) while the vitreous chamber pressure was manipulated. The changes in ACD, LT and VCD were analyzed as a function of the pressure change. Perfusion-induced axial biometric changes were quantified by the slopes of linear regression relationships. Both anterior chamber pressure and vitreous chamber pressure changed relatively systematically with the induced vitreous chamber pressure changes (anterior chamber: y = 0.863x + 0.030, r(2) = 0.983; vitreous chamber: y = 0.883x + 0.009, r(2) = 0.981). At perfusion pressures of 5.5, 13.0 and 20.5 mmHg, the slopes for ACD were -5.72, -2.75 and -2.36 μm/mmHg, for LT were -3.31, -1.59 and -1.03 μm/mmHg and for VCD were 19.05, 8.63 and 5.18 μm/mmHg. The system was able to manipulate and monitor IOP while axial biometry changes were recorded. This system will allow the relationship between IOP and accommodation to be studied in non-human primate eyes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Orbital maneuvering engine feed system coupled stability investigation

    NASA Technical Reports Server (NTRS)

    Kahn, D. R.; Schuman, M. D.; Hunting, J. K.; Fertig, K. W.

    1975-01-01

    A digital computer model used to analyze and predict engine feed system coupled instabilities over a frequency range of 10 to 1000 Hz was developed and verified. The analytical approach to modeling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure is described and the governing equations in each of the technical areas are presented. This is followed by a description of the generalized computer model, including formulation of the discrete subprograms and their integration into an overall engineering model structure. The operation and capabilities of the engineering model were verified by comparing the model's theoretical predictions with experimental data from an OMS-type engine with a known feed system/engine chugging history.

  15. Combustion Stability Verification for the Thrust Chamber Assembly of J-2X Developmental Engines 10001, 10002, and 10003

    NASA Technical Reports Server (NTRS)

    Morgan, C. J.; Hulka, J. R.; Casiano, M. J.; Kenny, R. J.; Hinerman, T. D.; Scholten, N.

    2015-01-01

    The J-2X engine, a liquid oxygen/liquid hydrogen propellant rocket engine available for future use on the upper stage of the Space Launch System vehicle, has completed testing of three developmental engines at NASA Stennis Space Center. Twenty-one tests of engine E10001 were conducted from June 2011 through September 2012, thirteen tests of the engine E10002 were conducted from February 2013 through September 2013, and twelve tests of engine E10003 were conducted from November 2013 to April 2014. Verification of combustion stability of the thrust chamber assembly was conducted by perturbing each of the three developmental engines. The primary mechanism for combustion stability verification was examining the response caused by an artificial perturbation (bomb) in the main combustion chamber, i.e., dynamic combustion stability rating. No dynamic instabilities were observed in the TCA, although a few conditions were not bombed. Additional requirements, included to guard against spontaneous instability or rough combustion, were also investigated. Under certain conditions, discrete responses were observed in the dynamic pressure data. The discrete responses were of low amplitude and posed minimal risk to safe engine operability. Rough combustion analyses showed that all three engines met requirements for broad-banded frequency oscillations. Start and shutdown transient chug oscillations were also examined to assess the overall stability characteristics, with no major issues observed.

  16. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes.« less

  17. Generation of a modeling and simulation system for a semi-closed plant growth chamber

    NASA Technical Reports Server (NTRS)

    Blackwell, A. L.; Maa, S.; Kliss, M.; Blackwell, C. C.

    1993-01-01

    The fluid and thermal dynamics of the environment of plants in a small controlled-environment system have been modeled. The results of the simulation under two scenarios have been compared to measurements taken during tests on the actual system. The motivation for the modeling effort and the status of the modeling exercise and system scenario studies are described. An evaluation of the model and a discussion of future studies are included.

  18. Phakic iris-fixated intraocular lens placement in the anterior chamber: effects on aqueous flow.

    PubMed

    Repetto, Rodolfo; Pralits, Jan O; Siggers, Jennifer H; Soleri, Paolo

    2015-05-01

    Phakic intraocular lenses (pIOLs) are used for correcting vision; in this paper we investigate the fluid dynamical effects of an iris-fixated lens in the anterior chamber. In particular, we focus on changes in the wall shear stress (WSS) on the cornea and iris, which could be responsible for endothelial and pigment cell loss, respectively, and also on the possible increase of the intraocular pressure, which is known to correlate with the incidence of secondary glaucoma. We use a mathematical model to study fluid flow in the anterior chamber in the presence of a pIOL. The governing equations are solved numerically using the open source software OpenFOAM. We use an idealized standard geometry for the anterior chamber and a realistic geometric description of the pIOL. We consider separately the main mechanisms that produce fluid flow in the anterior chamber. The numerical simulations allow us to obtain a detailed description of the velocity and pressure distribution in the anterior chamber, and indicated that implantation of the pIOL significantly modifies the fluid dynamics in the anterior chamber. However, lens implantation has negligible influence on the intraocular pressure and does not produce a significant increase of the shear stress on the cornea, while the shear stress on the iris, although increased, is not enough to cause detachment of cells. We conclude that alterations in the fluid dynamics in the anterior chamber as a result of lens implantation are unlikely to be the cause of medical complications associated with its use.

  19. Comparison of ammonia emissions determined using different sampling methods

    USDA-ARS?s Scientific Manuscript database

    Dynamic, flow-through flux chambers are sometimes used to estimate ammonia emissions from livestock operations; however, ammonia emissions from the surfaces are affected by many factors which can be affected by the chamber. Ammonia emissions estimated using environmental flow-through chambers may be...

  20. Construction and Characterization of an Indoor Smog Chamber for Measuring Chemical and Optical Properties of Biomass Burning Aerosols as a Function of Age

    NASA Astrophysics Data System (ADS)

    Smith, D. M.; Fiddler, M. N.; Sexton, K.; Bililign, S.; Dowdell, T. M.

    2016-12-01

    Biomass burning is recognized as one of the largest sources of absorbing aerosols in the atmosphere and significantly influences the radiative properties of the atmosphere. In the atmosphere, aerosols dynamically change in complex ways. The chemical composition and physical properties of particles evolve during their atmospheric lifetime due to condensation, oxidation reactions, etc. Changes in chemical composition due to aging is likely to change the optical properties of these particles as well. We have built a 9.01m3 indoor smog chamber made of FEP Teflon. Wood and other organic samples are burned in a tube furnace with the exhaust going directly into the chamber. The construction, characterization, and calibration of the smog chamber will be presented, along with preliminary measurements of extinction and scattering of biomass burning aerosols measured using a Cavity Ring-down and Integrating Nephelometry system. This system allows us to measure any changes in the optical properties of the soot as it ages. Injections to the chamber can be controlled to simulate various atmospheric conditions. These include clean (dry) air, laboratory (room) air, water vapor, NOX, and various biogenic and anthropogenic VOCs such as aromatic hydrocarbons. These components and some of their oxidation products can also be monitored and characterized during aging. The authors acknowledge the support from the National Science Foundation through Grant Number NSF-AGS-1555479

  1. A novel system for tracking social preference dynamics in mice reveals sex- and strain-specific characteristics.

    PubMed

    Netser, Shai; Haskal, Shani; Magalnik, Hen; Wagner, Shlomo

    2017-01-01

    Deciphering the biological mechanisms underlying social behavior in animal models requires standard behavioral paradigms that can be unbiasedly employed in an observer- and laboratory-independent manner. During the past decade, the three-chamber test has become such a standard paradigm used to evaluate social preference (sociability) and social novelty preference in mice. This test suffers from several caveats, including its reliance on spatial navigation skills and negligence of behavioral dynamics. Here, we present a novel experimental apparatus and an automated analysis system which offer an alternative to the three-chamber test while solving the aforementioned caveats. The custom-made apparatus is simple for production, and the analysis system is publically available as an open-source software, enabling its free use. We used this system to compare the dynamics of social behavior during the social preference and social novelty preference tests between male and female C57BL/6J mice. We found that in both tests, male mice keep their preference towards one of the stimuli for longer periods than females. We then employed our system to define several new parameters of social behavioral dynamics in mice and revealed that social preference behavior is segregated in time into two distinct phases. An early exploration phase, characterized by high rate of transitions between stimuli and short bouts of stimulus investigation, is followed by an interaction phase with low transition rate and prolonged interactions, mainly with the preferred stimulus. Finally, we compared the dynamics of social behavior between C57BL/6J and BTBR male mice, the latter of which are considered as asocial strain serving as a model for autism spectrum disorder. We found that BTBR mice ( n  = 8) showed a specific deficit in transition from the exploration phase to the interaction phase in the social preference test, suggesting a reduced tendency towards social interaction. We successfully employed our new experimental system to unravel previously unidentified sex- and strain-specific differences in the dynamics of social behavior in mice. Thus, the system presented here facilitates a more thorough and detailed analysis of social behavior in small rodent models, enabling a better comparison between strains and treatments.

  2. COMPARISON OF THE SINK CHARACTERISTICS OF THREE FULL-SCALE ENVIRONMENTAL CHAMBERS

    EPA Science Inventory

    The paper gives results of an investigation of the interaction of vapor-phase organic compounds with the interior surfaces of three large dynamic test chambers. A pattern of adsorption and reemission of the test compounds was observed in all three chambers. Quantitative compari...

  3. Operationally Efficient Propulsion System Study (OEPSS) Data Book. Volume 8; Integrated Booster Propulsion Module (BPM) Engine Start Dynamics

    NASA Technical Reports Server (NTRS)

    Kemp, Victoria R.

    1992-01-01

    A fluid-dynamic, digital-transient computer model of an integrated, parallel propulsion system was developed for the CDC mainframe and the SUN workstation computers. Since all STME component designs were used for the integrated system, computer subroutines were written characterizing the performance and geometry of all the components used in the system, including the manifolds. Three transient analysis reports were completed. The first report evaluated the feasibility of integrated engine systems in regards to the start and cutoff transient behavior. The second report evaluated turbopump out and combined thrust chamber/turbopump out conditions. The third report presented sensitivity study results in staggered gas generator spin start and in pump performance characteristics.

  4. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  5. 26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward

    NASA Technical Reports Server (NTRS)

    Packard, Edward A.

    2010-01-01

    Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation Thermal Vacuum Control System; Robotic Lunar Lander Development Project: Three-Dimensional Dynamic Stability Testing and Analysis; Thermal Physical Properties of Thermal Coatings for Spacecraft in Wide Range of Environmental Conditions: Experimental and Theoretical Study; Molecular Contamination Generated in Thermal Vacuum Chambers; Preventing Cross Contamination of Hardware in Thermal Vacuum Chambers; Towards Validation of Particulate Transport Code; Updated Trends in Materials' Outgassing Technology; Electrical Power and Data Acquisition Setup for the CBER 3 and 4 Satellite TBT; Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations; and Thermal Vacuum Testing with Scalable Software Developed In-House.

  6. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    EPA Science Inventory

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  7. MEASUREMENT OF NITROGEN OXIDE EMISSIONS FROM AN AGRICULTURAL SOIL WITH A DYNAMIC CHAMBER SYSTEM

    EPA Science Inventory

    Biogenic soil emissions of nitric oxide (NO) were measured from an intensively managed agricultural row crop (corn, Zea mays) during a 4 week period May 15 through June 9, 1995). The site was located in Washington County, near the town of Plymouth, which is in the Lower Coastal P...

  8. A new apparatus for studies of quantized vortex dynamics in dilute-gas Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Newman, Zachary L.

    The presence of quantized vortices and a high level of control over trap geometries and other system parameters make dilute-gas Bose-Einstein condensates (BECs) a natural environment for studies of vortex dynamics and quantum turbulence in superfluids, primary interests of the BEC group at the University of Arizona. Such research may lead to deeper understanding of the nature of quantum fluid dynamics and far-from-equilbrium phenomena. Despite the importance of quantized vortex dynamics in the fields of superfluidity, superconductivity and quantum turbulence, direct imaging of vortices in trapped BECs remains a significant technical challenge. This is primarily due to the small size of the vortex core in a trapped gas, which is typically a few hundred nanometers in diameter. In this dissertation I present the design and construction of a new 87Rb BEC apparatus with the goal of studying vortex dynamics in trapped BECs. The heart of the apparatus is a compact vacuum chamber with a custom, all-glass science cell designed to accommodate the use of commercial high-numerical-aperture microscope objectives for in situ imaging of vortices. The designs for the new system are, in part, based on prior work in our group on in situ imaging of vortices. Here I review aspects of our prior work and discuss some of the successes and limitations that are relevant to the new apparatus. The bulk of the thesis is used to described the major subsystems of the new apparatus which include the vacuum chamber, the laser systems, the magnetic transfer system and the final magnetic trap for the atoms. Finally, I demonstrate the creation of a BEC of ˜ 2 x 106 87Rb atoms in our new system and show that the BEC can be transferred into a weak, spherical, magnetic trap with a well defined magnetic field axis that may be useful for future vortex imaging studies.

  9. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    NASA Astrophysics Data System (ADS)

    Walsh, A. J.; Ruth, A. A.; Gash, E. W.; Mansfield, M. W. D.

    2013-08-01

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamics of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a sink. The wall conditions (which could not be quantitatively characterized) have a profound influence on the dynamics of the system and on its slow return to an equilibrium state.

  10. Ethylene dynamics in the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1994-01-01

    A material balance model for ethylene was developed and applied retrospectively to data obtained in the Biomass Production Chamber of CELSS in order to calculate true plant production rates of ethylene. Four crops were analyzed: wheat, lettuce, soybean, and potato. The model represents an effort to account for each and every source and sink for ethylene in the system. The major source of ethylene is the plant biomass and the major sink is leakage to the surroundings. The result, expressed in the units of ppd/day, were converted to nl of ethylene per gram of plant dry mass per hour and compare favorably with recent glasshouse to belljar experiments.

  11. RS-88 Pad Abort Demonstrator Thrust Chamber Assembly Testing at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Sanders, Timothy M.

    1990-01-01

    This paper documents the effort conducted to collect hot-tire dynamic and acoustics environments data during 50,000-lb thrust lox-ethanol hot-fire rocket testing at NASA Marshall Space Flight Center (MSFC) in November-December 2003. This test program was conducted during development testing of the Boeing Rocketdyne RS-88 development engine thrust chamber assembly (TCA) in support of the Orbital Space Plane (OSP) Crew Escape System Propulsion (CESP) Program Pad Abort Demonstrator (PAD). In addition to numerous internal TCA and nozzle measurements, induced acoustics environments data were also collected. Provided here is an overview of test parameters, a discussion of the measurements, test facility systems and test operations, and a quality assessment of the data collected during this test program.

  12. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.

  13. Effects of outgassing of loader chamber walls on hydriding of thin films for commercial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provo, James L., E-mail: jlprovo@verizon.net

    2014-07-01

    An important aspect of understanding industrial processing is to know the characteristics of the materials used in such processes. A study was performed to determine the effects of hydriding chamber material on the degree of hydriding for the commercial production of thin film hydride targets for various research universities, commercial companies, and government national laboratories. The goal was to increase the degree of hydriding of various thin film hydrides and to study the vacuum environment during air-exposure hydriding. For this purpose, dynamic residual gas analysis during deuterium gas hydride processing was utilized with erbium thin films, employing a special set-upmore » for direct dynamic hydride gas sampling during processing at elevated temperature and full loading gas pressure. Complete process data for (1) a copper–(1.83 wt. %)beryllium wet hydrogen fired passivated (600 °C–1 h) externally heated pipe hydriding chamber are reported. Dynamic residual gas analysis comparisons during hydriding are presented for hydriding chambers made from (2) alumina (99.8 wt. %), (3) copper (with an interior aluminum coating ∼10 k Å thick, and (4) for a stainless-steel air-fired passivated (900 °C–1 h) chamber. Dynamic data with deuterium gas in the chamber at the hydriding temperature (450 °C) showed the presence and growth of water vapor (D{sub 2}O) and related mixed ion species(H{sub 2}O{sup +}, HDO{sup +}, D{sub 2}O{sup +}, and OD{sup +}) from hydrogen isotope exchange reactions during the 1 h process time. Peaks at mass-to-charge ratios (i.e., m/e) of 12(C{sup +}), 16(CD{sub 2}{sup +}), 17(CHD{sub 2}{sup +}), and 18(CD{sub 3}{sup +}, OD{sup +}) increased for approximately the first half hour of a 1 h hydriding process and then approach steady state. Mass-to-charge peaks at 19(HDO{sup +}) and 20(D{sub 2}O{sup +}) continue to increase throughout the process cycle. Using the m/e = 20 (D{sub 2}O{sup +}) peak intensity from chamber (1)–Cu(1.83 wt. %)Be as a standard, the peak intensity from chamber (4)—stainless-steel (air-fired) was 7.1× higher, indicating that the surface of stainless-steel had a larger concentration of reactive oxygen and/or water than hydrogen. The (D{sub 2}O{sup +}) peak intensity from chamber (3)—Cu (interior Al coating) was 1.55× larger and chamber (2)—alumina(99.8%) was 1.33× higher than Cu(1.83 wt. %)Be. Thus copper–(1.83 wt. %)beryllium was the best hydriding chamber material studied followed closely by the alumina (99.8 wt. %) chamber. Gas take-up by Er occluder targets processed in Cu(1.83 wt. %)Be hydriding chambers (i.e., gas/metal atomic ratios) correlate with the dynamic RGA data.« less

  14. Unsteady flowfield in an integrated rocket ramjet engine and combustion dynamics of a gas turbine swirl-stabilized injector

    NASA Astrophysics Data System (ADS)

    Sung, Hong-Gye

    This research focuses on the time-accurate simulation and analysis of the unsteady flowfield in an integrated rocket-ramjet engine (IRR) and combustion dynamics of a swirl-stabilized gas turbine engine. The primary objectives are: (1) to establish a unified computational framework for studying unsteady flow and flame dynamics in ramjet propulsion systems and gas turbine combustion chambers, and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations. The first part of the thesis deals with a complete axi-symmetric IRR engine. The domain of concern includes a supersonic inlet diffuser, a combustion chamber, and an exhaust nozzle. This study focused on the physical mechanism of the interaction between the oscillatory terminal shock in the inlet diffuser and the flame in the combustion chamber. In addition, the flow and ignition transitions from the booster to the sustainer phase were analyzed comprehensively. Even though the coupling between the inlet dynamics and the unsteady motions of flame shows that they are closely correlated, fortunately, those couplings are out of phase with a phase lag of 90 degrees, which compensates for the amplification of the pressure fluctuation in the inlet. The second part of the thesis treats the combustion dynamics of a lean-premixed gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) Parallel architecture and large-eddy-simulation technique was applied. Vortex breakdown in the swirling flow is clearly visualized and explained on theoretical bases. The unsteady turbulent flame dynamics are carefully simulated so that the flow motion can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots and large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by both the spatial and temporal Rayleigh parameters. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis.

  15. Construction and Characterization of a Novel Vocal Fold Bioreactor

    PubMed Central

    Zerdoum, Aidan B.; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-01-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues. PMID:25145349

  16. Construction and characterization of a novel vocal fold bioreactor.

    PubMed

    Zerdoum, Aidan B; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-08-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.

  17. Quantitative analysis of multiple biokinetic models using a dynamic water phantom: A feasibility study

    PubMed Central

    Chiang, Fu-Tsai; Li, Pei-Jung; Chung, Shih-Ping; Pan, Lung-Fa; Pan, Lung-Kwang

    2016-01-01

    ABSTRACT This study analyzed multiple biokinetic models using a dynamic water phantom. The phantom was custom-made with acrylic materials to model metabolic mechanisms in the human body. It had 4 spherical chambers of different sizes, connected by 8 ditches to form a complex and adjustable water loop. One infusion and drain pole connected the chambers to an auxiliary silicon-based hose, respectively. The radio-active compound solution (TC-99m-MDP labeled) formed a sealed and static water loop inside the phantom. As clean feed water was infused to replace the original solution, the system mimicked metabolic mechanisms for data acquisition. Five cases with different water loop settings were tested and analyzed, with case settings changed by controlling valve poles located in the ditches. The phantom could also be changed from model A to model B by transferring its vertical configuration. The phantom was surveyed with a clinical gamma camera to determine the time-dependent intensity of every chamber. The recorded counts per pixel in each chamber were analyzed and normalized to compare with theoretical estimations from the MATLAB program. Every preset case was represented by uniquely defined, time-dependent, simultaneous differential equations, and a corresponding MATLAB program optimized the solutions by comparing theoretical calculations and practical measurements. A dimensionless agreement (AT) index was recommended to evaluate the comparison in each case. ATs varied from 5.6 to 48.7 over the 5 cases, indicating that this work presented an acceptable feasibility study. PMID:27286096

  18. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber

    PubMed Central

    Burchardt, Steffi; Troll, Valentin R.; Mathieu, Lucie; Emeleus, Henry C.; Donaldson, Colin H.

    2013-01-01

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system. PMID:24100542

  19. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    PubMed

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  20. SOYCHMBR.I - A model designed for the study of plant growth in a closed chamber

    NASA Technical Reports Server (NTRS)

    Reinhold, C.

    1982-01-01

    The analytical model SOYCHMBER.I, an update and alteration of the SOYMOD/OARDC model, for describing the total processes experienced by a plant in a controlled mass environment is outlined. The model is intended for use with growth chambers for examining plant growth in a completely controlled environment, leading toward a data base for the design of spacecraft food supply systems. SOYCHMBER.I accounts for the assimilation, respiration, and partitioning of photosynthate and nitrogen compounds among leaves, stems, roots, and potentially, flowers of the soybean plant. The derivation of the governing equations is traced, and the results of the prediction of CO2 dynamics for a seven day experiment with rice in a closed chamber are reported, together with data from three model runs for soybean. It is concluded that the model needs expansion to account for factors such as relative humidity.

  1. Three dimensional drop tracking flow chamber for coalescence studies

    DOE PAGES

    Grillet, Anne M.; Brooks, Carlton F.; Bourdon, Chris J.; ...

    2007-09-12

    Here, we have developed a novel flow chamber which imposes a controlled axisymmetric stagnation flow to enable the study of external flow effects on coalescence dynamics. This system allows for the first time the precise positioning of a drop in a three dimensional flow and additionally enforces a highly symmetric flow around the drop. We focus on the study of a single drop approaching a stationary flat plane as this is analogous to two drops approaching each other. A single drop is created and then guided along the unsteady center line of a stagnation flow. The real time computer controlmore » algorithm analyzes video images of the drop in two orthogonal planes and manipulates flow restricting valves along the four outlets of the flow. We demonstrate using particle image velocimetry that the computer control not only controls the drop position but also ensures a symmetric flow inside the flow chamber. Finally, this chamber will enable a detailed investigation of the drainage of the thin film between the drop and the lower surface in order to probe the effect of external flow on coalescence.« less

  2. Experimental investigation of a reacting transverse jet in a high pressure oscillating vitiated crossflow

    NASA Astrophysics Data System (ADS)

    Fugger, Christopher A.

    Staged combustion is one design approach in a gas turbine engine to reduce pollutant emission levels. In axially staged combustion, portions of the air and fuel are injected downstream of a lean premixed low NOx primary combustion zone. The gas residence time at elevated temperatures is decreased resulting in lower thermal NOx, and the reduced oxygen and high temperature vitiated primary zone flow further help to reduce pollutant emissions and quickly complete combustion. One implementation of axially staged combustion is transverse fuel jet injection. An important consideration for staged combustion systems, though, is how the primary and secondary combustion zones can couple through the acoustic resonances of the chamber. These couplings can lead to additional source terms that pump energy into the resonant acoustic field and help sustain the high-amplitude combustor pressure oscillations. An understanding of these couplings is important so that it may be possible to design a secondary combustion system that provides inherent damping to the combustor system. To systematically characterize the coupling of a reacting jet in unsteady crossflow in detail, the effects of an an unsteady pressure flowfield and an unsteady velocity flowfield are separately investigated. An optically accessible resonant combustion chamber was designed and built as part of this work to generate a standing wave unsteady vitiated crossflow at a chamber pressure of 0.9 MPa. The location of transverse jet injection corresponds to one of two locations, where one location is the pressure node and the other location the pressure anti-node of the resonant chamber acoustic mode. The injection location is optically accessible, and the dynamic interactions between the transverse jet flow and the 1st and 2nd axial combustor modes are measured using 10 kHz OH-PLIF and 2D PIV. This document analyzes five test cases: two non-reacting jets and three reacting jets. All cases correspond to jet injection near a pressure node of the 1st axial combustor mode, where the dominant flowfield fluctuations are a time-varying crossflow velocity. For the non-reacting jets, the nominal jet-to-crossflow momentum flux ratio is 19. For the reacting jets, the nominal jet-to-crossflow momentum flux ratio is 6. Two cross sectional planes parallel to the jet injection wall are investigated: 1 and 2.7 jet diameters from the jet injection wall. The combustor crossflow high frequency wall mounted pressure data is given for each test case. The velocity and OH-PLIF data is presented as instantaneous snapshots, time and phase averaged flowfields, modal decompositions using Proper Orthogonal Decomposition and Dynamic Mode Decomposition, and a jet cycle analysis relative to the crossflow acoustic cycle. Analysis of the five test cases shows that the jet cross sectional velocity and OH-PLIF dynamics display a multitude of dynamics. These are often organized into shear layer dynamics and wake dynamics, but are not mutually exclusive. For large unsteady crossflow velocity oscillations at the 1st axial combustor mode, both dynamics show strong organization at the unsteady crossflow frequency. Deciphering these dynamics is complicated by the fact that the ostensible jet response to the time-varying crossflow is a time-varying jet penetration. This drives the jet toward and away from the jet injection wall. These motions are perpendicular to the laser sheet and creates significant out-of-plane motions. The amplitude of crossflow unsteadiness appears to play a role in the sharpness of the wake dynamics. For the non-reacting cases, the wake dynamics are strong and dominant spectral features in the flowfield. For the reacting cases, the wake dynamics are spectrally distinct in the lower amplitude crossflow unsteadiness case, but a large unsteady amplitude crossflow appears to suppress the spectral bands in the frequency range corresponding to wake vortex dynamics.

  3. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion.

    PubMed

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-02-17

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.

  4. Dynamic cell culture system: a new cell cultivation instrument for biological experiments in space

    NASA Technical Reports Server (NTRS)

    Gmunder, F. K.; Nordau, C. G.; Tschopp, A.; Huber, B.; Cogoli, A.

    1988-01-01

    The prototype of a miniaturized cell cultivation instrument for animal cell culture experiments aboard Spacelab is presented (Dynamic cell culture system: DCCS). The cell chamber is completely filled and has a working volume of 200 microliters. Medium exchange is achieved with a self-powered osmotic pump (flowrate 1 microliter h-1). The reservoir volume of culture medium is 230 microliters. The system is neither mechanically stirred nor equipped with sensors. Hamster kidney (Hak) cells growing on Cytodex 3 microcarriers were used to test the biological performance of the DCCS. Growth characteristics in the DCCS, as judged by maximal cell density, glucose consumption, lactic acid secretion and pH, were similar to those in cell culture tubes.

  5. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples.

    PubMed

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-03-18

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.

  6. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    PubMed Central

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems. PMID:26999129

  7. Toxicokinetic Study for Investigation of Sex Differences in Internal Dosimetry of Jet Propulsion Fuel 8 (JP-8) in the Laboratory Rat

    DTIC Science & Technology

    2013-07-26

    8 (2000 mg/m 3 ) may have produced transient impairment of rat cochlear outer hair cell function in the absence of noise (Fechter et al., 2010); the...system is a dynamic, non- rebreathing system. In this system, an exposure atmosphere flow rate of approximately 0.5 L/min per open port was maintained...exposure atmosphere flow to the chamber or the exhaust. The outer plenum of the nose-only exposure system carried the animals’ exhaled breath and excess

  8. Ozone and limonene in indoor air: a source of submicron particle exposure.

    PubMed Central

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-01-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to overall particle exposure. This study provides data for assessing the impact of outdoor ozone on indoor particles. This is important to determine the efficacy of the mass-based particulate matter standards in protecting public health because the indoor secondary particles can vary coincidently with the variations of outdoor fine particles in summer. PMID:11133393

  9. Ozone and limonene in indoor air: a source of submicron particle exposure.

    PubMed

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-12-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to overall particle exposure. This study provides data for assessing the impact of outdoor ozone on indoor particles. This is important to determine the efficacy of the mass-based particulate matter standards in protecting public health because the indoor secondary particles can vary coincidently with the variations of outdoor fine particles in summer.

  10. Guide for the Assessment of the Vapor Intrusion Pathway

    DTIC Science & Technology

    2006-02-01

    variability. There are two basic types of flux chambers: the static chamber and the dynamic chamber. The static chamber does not use "sweep" gas to maintain...DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED I February 2006 FINAL 4. TITLE AND SUBTITLE 5. FUNDING...sites, the problem is typically limited to a handful of chemicals. This guidance will be most useful for two groups of Air Force environmental managers

  11. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    PubMed

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  12. SSME main combustion chamber and nozzle flowfield analysis

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Wang, T. S.; Smith, S. D.; Prozan, R. J.

    1986-01-01

    An investigation is presented of the computational fluid dynamics (CFD) tools which would accurately analyze main combustion chamber and nozzle flow. The importance of combustion phenomena and local variations in mixture ratio are fully appreciated; however, the computational aspects of the gas dynamics involved were the sole issues addressed. The CFD analyses made are first compared with conventional nozzle analyses to determine the accuracy for steady flows, and then transient analyses are discussed.

  13. Degassing processes at Stromboli volcano inferred from short-lived disequilibria ( 210Pb- 210Bi- 210Po) in volcanic gases

    NASA Astrophysics Data System (ADS)

    Gauthier, P.-J.; Le Cloarec, M.-F.; Condomines, M.

    2000-10-01

    Volcanic aerosols and gases released by three active craters at Stromboli volcano have been regularly collected since 1985. In this paper, we present new evidence of the high volatility of some nuclides among radon daughters (210Pb, 210Bi and 210Po), which are strongly fractionated, leading to significant radioactive disequilibria in volcanic exhalations. The very low volcanic activity in October 1996 allowed a separate sampling of each crater plume for the first time; remote sampling of the bulk plume were also performed. These data show that the chemical composition of volcanic aerosols remains constant within the first few hundred meters from their source vents, ensuring the validity of remote sampling when the activity does not allow one to approach the active craters. Moreover, it appears that there is no differentiation of gases from one crater to another suggesting that the geometry of the upper plumbing system of the volcano is rather simple, gases being directly emitted from a shallow magma chamber without significant cooling inside the edifice. On the basis of the assumption of a continuously replenished shallow magma reservoir in steady state, we propose a dynamic model of degassing accounting for the variations of radionuclide contents and ratios observed in the gas phase since 1985. This model allows us to relate these variations to changes in the magma chamber dynamics, namely the magma residence time inside the chamber and the escape time of gases from it, both parameters being closely linked to the volcanic activity. While gases are always emitted within a few hours after bubble nucleation, suggesting that the chamber is no deeper than a few hundred meters, magma residence time varies from less than 20 days during eruptive periods (highly explosive or effusive periods) to more than 200 days before the 1985 eruption. The latter figure is explained by the storage at shallow depth of a poorly renewed magma batch that fed the eruption. The variations of the residence time observed over the studied period suggest that the steady-state dynamics of the Stromboli magma chamber is sustained for rather short periods of a few months at most. On basis of the knowledge of the deep undegassed magma supply and the magma residence time, we estimate the volume of the shallow magma chamber at about 7±2×105 m3. The good agreement of our results with previous estimates based on both geochemical and geophysical studies suggests that the measurement of radioactive disequilibria in the gas phase provides a robust tool for a deeper understanding of the volcanic activity and the magma dynamics beneath active volcanoes.

  14. SU-E-T-82: A Study On Enhanced Dynamic Wedge (EDW) Dosimetry Using 2D Seven29 Ion Chamber Array Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Syam; Aparna

    2015-06-15

    Purpose: To study the dosimetric properties of Enhanced Dynamic Wedge (EDW) using PTW Seven29 ion chamber array Methods: PTW Seven29 ion chamber array and Solid Water phantoms for different depths were used for the study. The study was carried out in Varian Clinac ix with photon energies, 6MV & 15MV. Primarily the solid water phantoms with the 2D array were scanned using a CT scanner (GE Optima 580) at different depths. These scanned images were used for EDW planning in an Eclipse treatment planning system (version 10). Planning was done for different wedge angles and for different depths for 6MVmore » & 15MV. A dose of 100 CGy was delivered in each cases. For each delivery, calculated the Monitoring Unit (MU) required. Same set-up was created before delivering the plans in Varian Clinac-ix. For each clinically relevant depth and for different wedge angles, the same MU was delivered as calculated. Different wedged dose distributions where reconstructed from the measured 2D array data using the in-house developed excel program. Results: It is observed that the shoulder like region in the profile which reduces as depth increases. For the same depth and energy, the percentage difference between planned and measured dose is lesser than 3%. For smaller wedge angles, the percentage difference is found to be greater than 3% for the largest wedge angle. Standard deviation between measured doses at shoulder region for planned and measured profiles is 0.08 and 0.02 respectively. Standard deviations between planned and measured wedge factors for different depths (2.5cm, 5cm, 10cm, and 15cm) are (0.0021, 0.0007, 0.0050, 0.0001) for 6MV and (0.0024, 0.0191, 0.0013, 0.0005) for 15MV respectively. Conclusion: The 2D Seven29 ion chamber array is a good tool for the Enhanced Dynamic Wedge (EDW) dosimetry.« less

  15. Use of Computational Fluid Dynamics for improving freeze-dryers design and process understanding. Part 2: Condenser duct and valve modelling.

    PubMed

    Marchisio, Daniele L; Galan, Miquel; Barresi, Antonello A

    2018-05-05

    This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular in this part the duct connecting the chamber with the condenser, with its valves, is considered, while the chamber design and its effect on drying kinetics have been investigated in Part 1. Such an approach allows a much deeper process understanding and assessment of the critical aspects of lyophilisation. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating influence of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions. The role of the inlet and boundary conditions considered has been assessed, also by modelling the whole apparatus including chamber and condenser, and the influence of the duct diameter has been discussed; the results show a little dependence of the relationship between critical mass flux and chamber pressure on the duct size. Results concerning the fluid dynamics of a simple disk valve, a profiled butterfly valve and a mushroom valve installed in a medium size horizontal condenser are presented. Also in these cases the maximum allowable flow when sonic flow conditions are reached can be described by a correlation similar to that found valid for empty ducts; for the mushroom valve the parameters are dependent on the valve opening length. The possibility to use the equivalent length concept, and to extend the validity of the results obtained for empty ducts will be also discussed. Finally the presence of the inert gas modifies the conductance of the duct, reducing the maximum flow rate of water that can be removed through it before the flow is choked; this also requires a proper over-sizing of the duct (or duct-butterfly valve system). Copyright © 2018. Published by Elsevier B.V.

  16. Orbital Maneuvering Engine Feed System Coupled Stability Investigation, Computer User's Manual

    NASA Technical Reports Server (NTRS)

    Schuman, M. D.; Fertig, K. W.; Hunting, J. K.; Kahn, D. R.

    1975-01-01

    An operating manual for the feed system coupled stability model was given, in partial fulfillment of a program designed to develop, verify, and document a digital computer model that can be used to analyze and predict engine/feed system coupled instabilities in pressure-fed storable propellant propulsion systems over a frequency range of 10 to 1,000 Hz. The first section describes the analytical approach to modelling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure, and presents the governing equations in each of the technical areas. This is followed by the program user's guide, which is a complete description of the structure and operation of the computerized model. Last, appendices provide an alphabetized FORTRAN symbol table, detailed program logic diagrams, computer code listings, and sample case input and output data listings.

  17. Micronozzles: 3D numerical structural and gas dynamics modeling, fabrication, and preliminary experimental results

    NASA Astrophysics Data System (ADS)

    Borovkov, Alexei I.; Pyatishev, Evgenij N.; Lurie, Mihail S.; Korshunov, Andrey V.; Akulshin, Y. D.; Dolganov, A. G.; Sabadash, V. O.

    2000-02-01

    The tiny engines, founded on the principle of reactive thrust, are one of most perspective actuators developed by modern micromechanics. These engines can be applied for such apparent problems, as orientation and stabilization of small space objects, but also as local or distributed reactive thrust of new phylum of aerospace objects, for control of boundary layer of flying objects and in series of converting power devices of different purposes. Distinctive features of jet tiny engines are profitability (very large thrust-to-weight ratio) and high (milliseconds) response, which makes them to irreplaceable elements in control systems and, specially, in distributed power generations. These features are provided the minimum sizes, high pressure in working chambers and hypersonic velocity of propulsive jet. Topologically micronozzles are designed as the flat batch devices (3 layers as minimum). The lower and upper layers make flat walls of the nozzle and mainly influence on strength properties of the device. The mean layer reshapes geometry and determines gas dynamic characteristic of the nozzle. A special problem is the opening-up of the combustion-mixture, which is not esteemed in this work. It is necessary to allow for effect of considerable local stresses arising at the expense of static and dynamic loading at design of the jet tiny engines. Thermal gas dynamic processes in the chamber and nozzle determine the values and nature of these stresses, which are hardly studied for the microdevices. The priority is mathematical and experimental simulation of these processes. The most suitable object for initial phase of experimental simulation is the 'cold' engine. The demanded chamber static pressure is formed by external compressed air. In Laboratory of Microtechnology and MicroElectroMechanical Systems a number of such tiny engines with different shapes of the chamber's and the nozzles' surfaces were designed, made and tested. The engines were produced from photosensing glass by methods of microtechnology on the basis of photolithography processes. After expositing through a mask the latent map of the glass was 'showed' by heat treatment and etched. The obtained parts sitallized and subjected to level-by-level assembly. At experiments on 'ardent' engines it is supposed to keep the basic stages of a technological route, but to use stronger and temperature- resistant materials including coating from high-strength membranes plotted by vacuum deposition methods. During trial tests, for the 'cold' engine with an altitude of a nozzle of 1.2 mm and width of the throat of 0.4 mm at chamber pressure 0.6 MPa the exhaust velocity on escaping of the nozzle about 1.5 M was obtained. The engine thrust has compounded 45 gr. The obtained data are in satisfactory conformity with 1D computation and allow to proceed piloting objects of other range of the characteristics. The microactuators having high response and profitability are demanded for perspective small aerospace objects. This activators are indispensable for creation of distributed thrust and control of boundary layer of micro air flying objects (MAV), for devices of stabilization and orientation of micro-satellites. A number of such activators forms on the areas of flat micronozzle devices. Developed micronozzles should provide demanded parameters at the expense of a high level of pressure in working chamber and supersonic exhaust velocities. At creation of the micronozzle the effect of considerable loads arising as at the expense of static, and dynamic loading should be mentioned. Thermomechanics-gasodynamic processes in the chamber and nozzle determine the nature and kind of loading. Mathematical and experimental simulation of these hardly studied for the microscopic object processes is necessary.

  18. Micronozzles: 3D numerical structural and gas dynamics modeling, fabrication, and preliminary experimental results

    NASA Astrophysics Data System (ADS)

    Borovkov, Alexei I.; Pyatishev, Evgenij N.; Lurie, Mihail S.; Korshunov, Andrey V.; Akulshin, Y. D.; Dolganov, A. G.; Sabadash, V. O.

    2001-02-01

    The tiny engines, founded on the principle of reactive thrust, are one of most perspective actuators developed by modern micromechanics. These engines can be applied for such apparent problems, as orientation and stabilization of small space objects, but also as local or distributed reactive thrust of new phylum of aerospace objects, for control of boundary layer of flying objects and in series of converting power devices of different purposes. Distinctive features of jet tiny engines are profitability (very large thrust-to-weight ratio) and high (milliseconds) response, which makes them to irreplaceable elements in control systems and, specially, in distributed power generations. These features are provided the minimum sizes, high pressure in working chambers and hypersonic velocity of propulsive jet. Topologically micronozzles are designed as the flat batch devices (3 layers as minimum). The lower and upper layers make flat walls of the nozzle and mainly influence on strength properties of the device. The mean layer reshapes geometry and determines gas dynamic characteristic of the nozzle. A special problem is the opening-up of the combustion-mixture, which is not esteemed in this work. It is necessary to allow for effect of considerable local stresses arising at the expense of static and dynamic loading at design of the jet tiny engines. Thermal gas dynamic processes in the chamber and nozzle determine the values and nature of these stresses, which are hardly studied for the microdevices. The priority is mathematical and experimental simulation of these processes. The most suitable object for initial phase of experimental simulation is the 'cold' engine. The demanded chamber static pressure is formed by external compressed air. In Laboratory of Microtechnology and MicroElectroMechanical Systems a number of such tiny engines with different shapes of the chamber's and the nozzles' surfaces were designed, made and tested. The engines were produced from photosensing glass by methods of microtechnology on the basis of photolithography processes. After expositing through a mask the latent map of the glass was 'showed' by heat treatment and etched. The obtained parts sitallized and subjected to level-by-level assembly. At experiments on 'ardent' engines it is supposed to keep the basic stages of a technological route, but to use stronger and temperature- resistant materials including coating from high-strength membranes plotted by vacuum deposition methods. During trial tests, for the 'cold' engine with an altitude of a nozzle of 1.2 mm and width of the throat of 0.4 mm at chamber pressure 0.6 MPa the exhaust velocity on escaping of the nozzle about 1.5 M was obtained. The engine thrust has compounded 45 gr. The obtained data are in satisfactory conformity with 1D computation and allow to proceed piloting objects of other range of the characteristics. The microactuators having high response and profitability are demanded for perspective small aerospace objects. This activators are indispensable for creation of distributed thrust and control of boundary layer of micro air flying objects (MAV), for devices of stabilization and orientation of micro-satellites. A number of such activators forms on the areas of flat micronozzle devices. Developed micronozzles should provide demanded parameters at the expense of a high level of pressure in working chamber and supersonic exhaust velocities. At creation of the micronozzle the effect of considerable loads arising as at the expense of static, and dynamic loading should be mentioned. Thermomechanics-gasodynamic processes in the chamber and nozzle determine the nature and kind of loading. Mathematical and experimental simulation of these hardly studied for the microscopic object processes is necessary.

  19. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

    NASA Astrophysics Data System (ADS)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia

    2017-01-01

    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  20. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  1. Controlling Microbial Byproducts using Model-Based Substrate Monitoring and Control Strategies

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.; Blackwell, Charles; Mancinelli, Rocco L.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    We have developed a computer-controlled bioreactor system to study various aspects of microbially-mediated nitrogen cycling. The system has been used to investigate methods for controlling microbial denitrification (the dissimilatory reduction of nitrate to N2O and N2) in hydroponic plant growth chambers. Such chambers are key elements of advanced life support systems being designed for use on long duration space missions, but nitrogen use efficiency in them is reduced by denitrification. Control software architecture was designed which permits the heterogeneous control of system hardware using traditional feedback control, and quantitative and qualitative models of various system features. Model-based feed forward control entails prediction of future systems in states and automated regulation of system parameters to achieve desired and avoid undesirable system states. A bacterial growth rate model based on the classic Monod model of saturation kinetics was used to evaluate the response of several individual denitrifying species to varying environmental conditions. The system and models are now being applied to mixed microbial communities harvested from the root zone of a hydroponic growth chamber. The use of a modified Monod organism interaction model was evaluated as a means of achieving more accurate description of the dynamic behavior of the communities. A minimum variance parameter estimation routine was also' used to calibrate the constant parameters in the model by iterative evaluation of substrate (nitrate) uptake and growth kinetics. This representation of processes and interactions aids in the formulation of control laws. The feed forward control strategy being developed will increase system autonomy, reduce crew intervention and limit the accumulation of undesirable waste products (NOx).

  2. A dynamic soil chamber system coupled with a tunable diode laser for online measurements of delta-13C, delta-18O, and efflux rate of soil respired CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Heath H; Mcdowell, Nate; Hanson, David

    2009-01-01

    High frequency observations of the stable isotopic composition of CO(2) effluxes from soil have been sparse due in part to measurement challenges. We have developed an open-system method that utilizes a flow-through chamber coupled to a tunable diode laser (TDL) to quantify the rate of soil CO(2) efflux and its delta(13)C and delta(18)O values (delta(13)C(R) and delta(18)O(R), respectively). We tested the method first in the laboratory using an artificial soil test column and then in a semi-arid woodland. We found that the CO(2) efflux rates of 1.2 to 7.3 micromol m(-2) s(-1) measured by the chamber-TDL system were similar tomore » measurements made using the chamber and an infrared gas analyzer (IRGA) (R(2) = 0.99) and compared well with efflux rates generated from the soil test column (R(2) = 0.94). Measured delta(13)C and delta(18)O values of CO(2) efflux using the chamber-TDL system at 2 min intervals were not significantly different from source air values across all efflux rates after accounting for diffusive enrichment. Field measurements during drought demonstrated a strong dependency of CO(2) efflux and isotopic composition on soil water content. Addition of water to the soil beneath the chamber resulted in average changes of +6.9 micromol m(-2) s(-1), -5.0 per thousand, and -55.0 per thousand for soil CO(2) efflux, delta(13)C(R) and delta(18)O(R), respectively. All three variables initiated responses within 2 min of water addition, with peak responses observed within 10 min for isotopes and 20 min for efflux. The observed delta(18)O(R) was more enriched than predicted from temperature-dependent H(2)O-CO(2) equilibration theory, similar to other recent observations of delta(18)O(R) from dry soils (Wingate L, Seibt U, Maseyk K, Ogee J, Almeida P, Yakir D, Pereira JS, Mencuccini M. Global Change Biol. 2008; 14: 2178). The soil chamber coupled with the TDL was found to be an effective method for capturing soil CO(2) efflux and its stable isotope composition at high temporal frequency.« less

  3. Partitioning an Artificial Anterior Chamber With a Latex Diaphragm to Simulate Anterior and Posterior Segment Pressure Dynamics: The "DMEK Practice Stage," Where Surgeons Can Rehearse the "DMEK Dance".

    PubMed

    Sáles, Christopher S; Straiko, Michael D; Fernandez, Ana Alzaga; Odell, Kelly; Dye, Philip K; Tran, Khoa D

    2018-02-01

    To present a novel apparatus for simulating the anterior and posterior segment pressure dynamics involved in executing Descemet membrane endothelial keratoplasty (DMEK) surgery when using a chamber-shallowing technique. An artificial anterior chamber (AAC), 18-mm trephine, latex glove, two 3-mL syringes, and one donor cornea comprising an intact corneoscleral cap from which a DMEK tissue was peeled and punched are required for the model. After making the corneal incisions with the corneoscleral cap mounted on the AAC in the usual fashion, the corneoscleral cap is remounted onto the dried AAC over an 18-mm latex diaphragm. The space between the latex diaphragm and the cornea is filled with saline to pressurize the anterior chamber, and the posterior segment is pressurized with air from a syringe. The resulting apparatus comprises a posterior segment and anterior chamber that exert pressure on each other by way of a distensible latex diaphragm. A novice and experienced DMEK surgeon and 2 eye bank technicians were able to assemble the apparatus and perform the routine steps of a DMEK procedure, including maneuvers that require shallowing the anterior chamber and lowering its pressure. Only one cornea was required per apparatus. We present a novel in vitro model of the human eye that more closely mimics the anterior and posterior segment pressure dynamics of in vivo DMEK surgery than average human and animal cadaveric globes. The model is easy to assemble, inexpensive, and applicable to a range of teaching environments.

  4. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    NASA Technical Reports Server (NTRS)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  5. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    NASA Technical Reports Server (NTRS)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated to Acquire, Process, Trend Data and Produce Radiometric System Assessment Reports; Exhaustive Thresholds and Resistance Checkpoints; Reconfigurable HIL Testing of Earth Satellites; FPGA Control System for the Automated Test of MicroShutters; Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM; Operationally Responsive Space Standard Bus Battery Thermal Balance Testing and Heat Dissipation Analysis; Galileo - The Serial-Production AIT Challenge; The Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Simulated Reentry Heating by Torching; Micro-Vibration Measurements on Thermally Loaded Multi-Layer Insulation Samples in Vacuum; High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber; The Planning and Implementation of Test Facility Improvements; and Development of a Silicon Carbide Molecular Beam Nozzle for Simulation Planetary Flybys and Low-Earth Orbit.

  6. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  7. Wood Combustion Behaviour in a Fixed Bed Combustor

    NASA Astrophysics Data System (ADS)

    Tokit, Ernie Mat; Aziz, Azhar Abdul; Ghazali, Normah Mohd

    2010-06-01

    Waste wood is used as feedstock for Universiti Teknologi Malaysia's newly-developed two-stage incinerator system. The research goals are to optimize the operation of the thermal system to the primary chamber, to improve its combustion efficiency and to minimize its pollutants formation. The combustion process is evaluated with the variation of fuel's moisture content. For optimum operating condition, where the gasification efficiency is 95.53%, the moisture content of the fuel is best set at 17%; giving outlet operating temperature of 550°C and exhaust gas concentrations with 1213 ppm of CO, 6% of CO2 and 14% of O2 respectively. In line to the experimental work, a computational fluid dynamics software, Fluent is used to simulate the performance of the primary chamber. Here the predicted optimum gasification efficiency stands at 95.49% with CO, CO2 and O2 concentrations as 1301 ppm, 6.5% and 13.5% respectively.

  8. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion

    PubMed Central

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-01-01

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green’s function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s2 in the horizontal direction and 0.0917 m/s2 in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0–7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals. PMID:26884136

  9. Detailed Measurement of ORSC Main Chamber Injector Dynamics

    NASA Astrophysics Data System (ADS)

    Bedard, Michael J.

    Improving fidelity in simulation of combustion dynamics in rocket combustors requires an increase in experimental measurement fidelity for validation. In a model rocket combustor, a chemiluminescence based spectroscopy technique was used to capture flame light emissions for direct comparison to a computational simulation of the production of chemiluminescent species. The comparison indicated that high fidelity models of rocket combustors can predict spatio-temporal distribution of chemiluminescent species with trend-wise accuracy. The comparison also indicated the limited ability of OH* and CH* emission to indicate flame heat release. Based on initial spectroscopy experiments, a photomultiplier based chemiluminescence sensor was designed to increase the temporal resolution of flame emission measurements. To apply developed methodologies, an experiment was designed to investigate the flow and combustion dynamics associated with main chamber injector elements typical of the RD-170 rocket engine. A unique feature of the RD-170 injector element is the beveled expansion between the injector recess and combustion chamber. To investigate effects of this geometry, a scaling methodology was applied to increase the physical scale of a single injector element while maintaining traceability to the RD-170 design. Two injector configurations were tested, one including a beveled injector face and the other a flat injector face. This design enabled improved spatial resolution of pressure and light emission measurements densely arranged in the injector recess and near-injector region of the chamber. Experimental boundary conditions were designed to closely replicate boundary conditions in simulations. Experimental results showed that the beveled injector face had a damping effect on pressure fluctuations occurring near the longitudinal resonant acoustic modes of the chamber, implying a mechanism for improved overall combustion stability. Near the injector, the beveled geometry resulted in more acoustic energy into higher frequency modes, while the flat-face geometry excited modes closer to the fundamental longitudinal mode frequency and its harmonics. Multi-scale analysis techniques were used to investigate intermittency and the range of physical scales present in measured signals. Flame light emission measurements confirmed the presence of flame holding in the injector recess in both configurations. Analysis of dynamics in light emission signals showed flame response at the chamber acoustic resonance frequency in addition to non-acoustic modes associated with mixing shear layer dynamics in the injector recess. The first known benchmark quality data sets of such injector dynamics were recorded in each configuration to enable pressure-based validation of high fidelity models of gas-centered swirl coaxial injectors. This work presents a critical contribution to development of validated combustion dynamics predictive tools and to the understanding of gas-centered swirl coaxial injector elements.

  10. Liquid rocket engine combustion stabilization devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Combustion instability, which results from a coupling of the combustion process and the fluid dynamics of the engine system, was investigated. The design of devices which reduce coupling (combustion chamber baffles) and devices which increase damping (acoustic absorbers) are described. Included in the discussion are design criteria and recommended practices, structural and mechanical design, thermal control, baffle geometry, baffle/engine interactions, acoustic damping analysis, and absorber configurations.

  11. A blood circulation model for reference man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    This paper describes a dynamic blood circulation model that predicts the movement and gradual dispersal of a bolus of material in the circulation after its intravascular injection into an adult human. The main purpose of the model is to improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The total blood volume is partitioned into the blood contents of 24 separate organs or tissues, right heart chambers, left heart chambers, pulmonary circulation, arterial outflow to the systemic tissues (aorta and large arteries), and venous return from the systemic tissues (large veins). As amore » compromise between physical reality and computational simplicity, the circulation of blood is viewed as a system of first-order transfers between blood pools, with the delay time depending on the mean transit time across the pool. The model allows consideration of incomplete, tissue-dependent extraction of material during passage through the circulation and return of material from tissues to plasma.« less

  12. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, A. J.; Gash, E. W.; Mansfield, M. W. D.

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamicsmore » of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a sink. The wall conditions (which could not be quantitatively characterized) have a profound influence on the dynamics of the system and on its slow return to an equilibrium state.« less

  13. Turbine combustor configured for high-frequency dynamics mitigation and related method

    DOEpatents

    Uhm, Jong Ho; Zuo, Baifang; York, William David; Srinivasan, Shivakumar

    2014-11-04

    A turbomachine combustor includes a combustion chamber; a plurality of micro-mixer nozzles mounted to an end cover of the combustion chamber, each including a fuel supply pipe affixed to a nozzle body located within the combustion chamber, wherein fuel from the supply pipe mixes with air in the nozzle body prior to discharge into the combustion chamber; and wherein at least some of the nozzle bodies of the plurality of micro-mixer nozzles have axial length dimensions that differ from axial length dimensions of other of the nozzle bodies.

  14. Heat transfer simulation of unsteady swirling flow in a vortex tube

    NASA Astrophysics Data System (ADS)

    Veretennikov, S. V.; Piralishvili, Sh A.; Evdokimov, O. A.; Guryanov, A. I.

    2018-03-01

    Effectiveness of not-adiabatic vortex tube application in the cooling systems of gas turbine blades depends on characteristics of swirling flows formed in the energy separation chamber. An analysis of the flow structure in the vortex tube channels has shown a presence of a complex three-dimensional spiral vortex, formed under relatively high turbulence intensity and vortex core precession. This indicates the presence of a significant unsteady flow in the energy separation chamber of the vortex tube that has a great influence on convective heat transfer of the swirling flow to the inner surface of tube. The paper contains the results of investigation of gas dynamics and heat transfer in the vortex tube taking into account the flow unsteadiness.

  15. Automation of Vapor-Diffusion Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hamrick, David T.; Bray, Terry L.

    2005-01-01

    Some improvements have been made in a system of laboratory equipment developed previously for studying the crystallization of proteins from solution by use of dynamically controlled flows of dry gas. The improvements involve mainly (1) automation of dispensing of liquids for starting experiments, (2) automatic control of drying of protein solutions during the experiments, and (3) provision for automated acquisition of video images for monitoring experiments in progress and for post-experiment analysis. The automation of dispensing of liquids was effected by adding an automated liquid-handling robot that can aspirate source solutions and dispense them in either a hanging-drop or a sitting-drop configuration, whichever is specified, in each of 48 experiment chambers. A video camera of approximately the size and shape of a lipstick dispenser was added to a mobile stage that is part of the robot, in order to enable automated acquisition of images in each experiment chamber. The experiment chambers were redesigned to enable the use of sitting drops, enable backlighting of each specimen, and facilitate automation.

  16. Combustion-gas recirculation system

    DOEpatents

    Baldwin, Darryl Dean

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  17. Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland

    NASA Astrophysics Data System (ADS)

    Osterwalder, S.; Sommar, J.; Åkerblom, S.; Jocher, G.; Fritsche, J.; Nilsson, M. B.; Bishop, K.; Alewell, C.

    2018-01-01

    Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon® dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 ± 8 ng g-1, average ± SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, α = 0.05). Even though the correlation between the Teflon® DFC and Aero-DFC was significant (r = 0.76, p < 0.05) the cumulative flux of the Aero-DFC was a factor of three larger. The average flux of the Aero-DFC (1.9 ng m-2 h-1) and REA (2 ng m-2 h-1) were in good agreement. The results indicate that the novel REA design is in agreement for cumulative flux estimates with the Aero-DFC, which incorporates the effect of atmospheric turbulence. The comparison was performed over a fetch with spatially rather homogenous GEM flux dynamics under fairly consistent weather conditions, minimizing the effect of weather influence on the data from the three measurement systems. However, in complex biomes with heterogeneous surface characteristics where there can be large spatial variability in GEM gas exchange, the small footprint of chambers (<0.2 m2) makes for large coefficients of variation. Thus many chamber measurement replications are needed to establish a credible biome GEM flux estimate, even for a single point in time. Dynamic flux chambers will, however, be able to resolve systematic differences between small scale features, such as experimentally manipulated plots or small scale spatial heterogeneity.

  18. Quantifying evapotranspiration from urban green roofs: a comparison of chamber measurements with commonly used predictive methods.

    PubMed

    Marasco, Daniel E; Hunter, Betsy N; Culligan, Patricia J; Gaffin, Stuart R; McGillis, Wade R

    2014-09-02

    Quantifying green roof evapotranspiration (ET) in urban climates is important for assessing environmental benefits, including stormwater runoff attenuation and urban heat island mitigation. In this study, a dynamic chamber method was developed to quantify ET on two extensive green roofs located in New York City, NY. Hourly chamber measurements taken from July 2009 to December 2009 and April 2012 to October 2013 illustrate both diurnal and seasonal variations in ET. Observed monthly total ET depth ranged from 0.22 cm in winter to 15.36 cm in summer. Chamber results were compared to two predictive methods for estimating ET; namely the Penman-based ASCE Standardized Reference Evapotranspiration (ASCE RET) equation, and an energy balance model, both parametrized using on-site environmental conditions. Dynamic chamber ET results were similar to ASCE RET estimates; however, the ASCE RET equation overestimated bottommost ET values during the winter months, and underestimated peak ET values during the summer months. The energy balance method was shown to underestimate ET compared the ASCE RET equation. The work highlights the utility of the chamber method for quantifying green roof evapotranspiration and indicates green roof ET might be better estimated by Penman-based evapotranspiration equations than energy balance methods.

  19. Biogenic volatile organic compounds (BVOCs) emission of Scots pine under drought stress - a 13CO2 labeling study to determine de novo and pool emissions under different treatments

    NASA Astrophysics Data System (ADS)

    Lüpke, M.

    2015-12-01

    Plants emit biogenic volatile organic compounds (BVOCs) to e.g. communicate and to defend herbivores. Yet BVOCs also impact atmospheric chemistry processes, and lead to e.g. the built up of secondary organic aerosols. Abiotic stresses, such as drought, however highly influence plant physiology and subsequently BVOCs emission rates. In this study, we investigated the effect of drought stress on BVOCs emission rates of Scots pine trees, a de novo and pool emitter, under controlled climate chamber conditions within a dynamic enclosure system consisting of four plant chambers. Isotopic labeling with 13CO2 was used to detect which ratio of emissions of BVOCs derives from actual synthesis and from storage organs under different treatments. Additionally, the synthesis rate of the BVOCs synthesis can be determined. The experiment consisted of two campaigns (July 2015 and August 2015) of two control and two treated trees respectively in four controlled dynamic chambers simultaneously. Each campaign lasted for around 21 days and can be split into five phases: adaptation, control, dry-out, drought- and re-watering phase. The actual drought phase lasted around five days. During the campaigns two samples of BVOCs emissions were sampled per day and night on thermal desorption tubes and analyzed by a gas chromatograph coupled with a mass spectrometer and a flame ionization detector. Additionally, gas exchange of water and CO2, soil moisture, as well as leaf and chamber temperature was monitored continuously. 13CO2 labeling was performed simultaneously in all chambers during the phases control, drought and re-watering for five hours respectively. During the 13CO2 labeling four BVOCs emission samples per chamber were taken to identify the labeling rate on emitted BVOCs. First results show a decrease of BVOCs emissions during the drought phase and a recovery of emission after re-watering, as well as different strength of reduction of single compounds. The degree of labeling with 13CO2 differed between the emitted compounds, indicating different sources (pool / de novo) within the plant.

  20. Development of a magneto-rheological fluid based hybrid actuation system

    NASA Astrophysics Data System (ADS)

    John, Shaju

    A hybrid hydraulic actuation system is proposed as an active pitch link for rotorcraft applications. Such an active pitch link can be used to implement Individual Blade Control (IBC) techniques for vibration and noise reduction, in addition to providing primary control for the helicopter. Conventional technologies like electric motors and hydraulic actuators have major disadvantages when it come to applications on a rotating environment. Centralized hydraulic system require the use of mechanically complex hydraulic slip rings and electric motors have high precision mechanical moving parts that make them unattractive in application with high centrifugal load. The high energy density of smart materials can be used to design hydraulic actuators in a compact package. MagnetoRheological (MR) fluids can be used as the working fluid in such a hybrid hydraulic actuation system to implement a valving system with no moving parts. Thus, such an actuation system can be theoretically well-suited for application in a rotating environment. To develop an actuation system based on an active material stack and MR fluidic valves, a fundamental understanding of the hydraulic circuit is essential. In order to address this issue, a theoretical model was developed to understand the effect of pumping chamber geometry on the pressure losses in the pumping chamber. Three dimensional analytical models were developed for steady and unsteady flow and the results were correlated to results obtained from Computation Fluid Dynamic simulation of fluid flow inside the pumping chamber. Fundamental understanding regarding the pressure losses in a pumping chamber are obtained from the modeling process. Vortices that form in the pumping chamber (during intake) and the discharge tube (during discharge) are identified as a major cause of pressure loss in the chamber. The role of vortices during dynamic operation is also captured through a frequency domain model. Extensive experimental studies were conducted on a hybrid hydraulic system driven by a pump (actuated by a 2" long and 1/4" diameter Terfenol-D rod) and a Wheatstone bridge network of MR fluidic valves. The Wheatstone bridge network is used to provide bi-directionality to the load. Through a variety of experimental studies, the main performance metrics of the actuation system, like output power, blocked force, maximum no-load velocity and efficiency, are obtained. The actuation system exhibits a blocked force of 30 N and a maximum no-load velocity of 50 mm/s. Extensive bi-directional tests were also done for cases of no-load, inertial load and spring load to establish the frequency bandwidth of the actuator. The actuation system can output a stroke of 9 mm at an output actuator frequency of 4 Hz. An analytical model was developed to predict the performance of the hybrid hydraulic actuation system. A state space representation of the system was derived using equations derived from the control volume considerations. The results of the analytical model show that the model predicts the frequency peak of the system to within 20 Hz of the actual resonance frequency. In the third part of this dissertation, the effectiveness of the hybrid hydraulic actuation system is evaluated in a rotating environment. A piezoelectric stack that is driven by three PI-804.10 stacks was attached at the end of a spin bar. After balancing the spin bar using a counterweight, the spin bar is spun to an RPM of 300. This simulates a centrifugal loading of 400 g, which is slightly higher than the full-scale centrifugal loads experienced by a pitch link on a UH-60. The performance of the actuator was measured in terms of velocity of an output cylinder shaft. Since some deterioration of performance was expected at 300 RPM, the output cylinder was redesigned to include roller bearings to support the excess force. Through no load and load tests, the effectiveness of the current hybrid actuation system design was shown as the performance of the system did not deteriorate in performance with greater centrifugal acceleration.

  1. Ion Separation using a Y-Junction Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyun; Sinnott, Susan; Aluru, Narayana

    2005-11-01

    Using molecular dynamics simulations, we show that a Y-junction carbon nanotube can be used to separate potassium and chloride ions from a KCl solution. The system consists of a KCl solution chamber connected to an (8,8) carbon nanotube, which acts as the stem. Two carbon nanotube branches of sizes (5,5) and (6,6) are connected to the (8,8) nanotube forming the Y-junction. Uncharged (5,5) and (6,6) carbon nanotubes show close to zero occupancy for transport of potassium and chloride ions. By functionalizing a (5,5) carbon nanotube with a negative charge, we show that we can selectively transport potassium ions. Similarly, by functionalizing a (6,6) carbon nanotube with a positive charge, we can selectively transport chloride ions. By performing molecular dynamics simulations on the entire system comprising the two branches, stem and the KCl solution chamber, we show that perfect ion separation is observed when (5,5) and (6,6) nanotubes are charged with σw,(5,5)=-0.181 C/m^2 and σw,(6,6)=+0.143 C/m^2, respectively, whereas for the system with σw,(5,5)=-0.168 C/m^2 and σw,(6,6)=+0.131 C/m^2 the separation is not perfect because of the formation of ion pairs. We discuss the formation and control of ion pairing, which is a common phenomenon in confined nanochannels.

  2. Dynamics of Variable Mass Systems

    NASA Technical Reports Server (NTRS)

    Eke, Fidelis O.

    1998-01-01

    This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.

  3. Improving the performance and emission characteristics of a single cylinder diesel engine having reentrant combustion chamber using diesel and Jatropha methyl esters.

    PubMed

    Premnath, S; Devaradjane, G

    2015-11-01

    The emissions from the Compression ignition (CI) engines introduce toxicity to the atmosphere. The undesirable carbon deposits from these engines are realized in the nearby static or dynamic systems such as vehicles, inhabitants, etc. The objective of this research work is to improve the performance and emission characteristics of a diesel engine in the modified re-entrant combustion chamber using a diesel and Jatropha methyl ester blend (J20) at three different injection pressures. From the literature, it is revealed that the shape of the combustion chamber and the fuel injection pressure have an impact on the performance and emission parameters of the CI engine. In this work, a re-entrant combustion chamber with three different fuel injection pressures (200, 220 and 240bars) has been used in the place of the conventional hemispherical combustion chamber for diesel and J20. From the experimental results, it is found that the re-entrant chamber improves the brake thermal efficiency of diesel and J20 in all the tested conditions. It is also found that the 20% blend of Jatropha methyl ester showed 4% improvement in the brake thermal efficiency in the re-entrant chamber at the maximum injection pressure. Environmental safety directly relates to the reduction in the undesirable effects on both living and non-living things. Currently environmental pollution is of major concern. Even with the stringent emission norms new methods are required to reduce the harmful effects from automobiles. The toxicity of carbon monoxide (CO) is well known. In the re-entrant combustion chamber, the amount of CO emission is reduced by 26% when compared with the conventional fuel operation of the engine. Moreover, the amount of smoke is reduced by 24% and hydrocarbons (HC) emission by 24%. Thus, the modified re-entrant combustion chamber reduces harmful pollutants such as unburned HC and CO as well as toxic smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Benthic long-term Observatories based on Lander Technology

    NASA Astrophysics Data System (ADS)

    Linke, P.; Pfannkuche, O.; Sommer, S.; Gubsch, S.; Gust, G.

    2003-04-01

    Landers are autonomous carrier systems for a wide range of scientific applications. The GEOMAR Lander System is based on a tripod-shaped platform for various scientific payloads to monitor, measure and experiment at the deep sea floor. These landers can be deployed using hybrid fibre optical or coaxial cables with a special launching device or in the conventional free falling mode. The launcher enables accurate positioning on meter scale, soft deployment and rapid disconnection of lander and launcher by an electric release. The bi-directional video and data telemetry provides on line video transmission, power supply and surface control of various relay functions. Within the collaborative project LOTUS novel long-term observatories have been developed and integrated into the GEOMAR Lander System. An overview of the recent developments is presented. Two new observatories are presented in detail to study the temporal variability of physico-chemical and biogeochemical mechanisms, flux- and turnover rates related to the decomposition and formation of near surface gas hydrates embedded in their original sedimentary matrix. With the Biogeochemical Observatory, BIGO, the temporal variability of the biologically facilitated methane turnover in the sediment and fluxes across the sediment water interface is studied in two mesocosms. Inside the mesocosms the oxygen content can be maintained by a chemostat. The in situ flow regime is measured outside the mesocosms and is reproduced within the chamber with an intelligent stirring system. This approach represents a major step in the development of benthic chambers from stationary to dynamic systems. The Fluid-Flux Observatory (FLUFO) measures the different types of fluid fluxes at the benthic boundary layer of sediments overlying near surface gas hydrates and monitors relevant environmental parameters as temperature, pressure and near bottom currents. FLUFO consists of two chamber units. Both units separate the gas phase from the aqueous phase and measure their individual contribution to the total fluid flux. Whereas the first (reference) chamber measures the aqueous flux without obtaining information about their direction, the second (FLUFO) chamber measures the aqueous flux including the direction discriminating between outward flow, stagnation and inward flow.

  5. Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber

    USGS Publications Warehouse

    Graydon, J.A.; St. Louis, V.L.; Lindberg, S.E.; Hintelmann, H.; Krabbenhoft, D.P.

    2006-01-01

    This paper presents the design of a dynamic chamber system that allows full transmission of PAR and UV radiation and permits enclosed intact foliage to maintain normal physiological function while Hg(0) flux rates are quantified in the field. Black spruce and jack pine foliage both emitted and absorbed Hg(0), exhibiting compensation points near atmospheric Hg(0) concentrations of ???2-3 ng m-3. Using enriched stable Hg isotope spikes, patterns of spike Hg(II) retention on foliage were investigated. Hg(0) evasion rates from foliage were simultaneously measured using the chamber to determine if the decline of foliar spike Hg(II) concentrations overtime could be explained by the photoreduction and re-emission of spike Hg to the atmosphere. This mass balance approach suggested that spike Hg(0) fluxes alone could not account for the measured decrease in spike Hg(II) on foliage following application, implying that either the chamber underestimates the true photoreduction of Hg(II) to Hg(0) on foliage, or other mechanisms of Hg(II) loss from foliage, such as cuticle weathering, are in effect. The radiation spectrum responsible for the photoreduction of newly deposited Hg(II) on foliage was also investigated. Our spike experiments suggest that some of the Hg(II) in wet deposition retained by the forest canopy may be rapidly photoreduced to Hg(0) and re-emitted back to the atmosphere, while another portion may be retained by foliage at the end of the growing season, with some being deposited in litterfall. This finding has implications for the estimation of Hg dry deposition based on throughfall and litterfall fluxes. ?? 2006 American Chemical Society.

  6. EVALUATION OF RIGHT AND LEFT VENTRICULAR DIASTOLIC FILLING

    PubMed Central

    Pasipoularides, Ares

    2013-01-01

    A conceptual fluid-dynamics framework for diastolic filling is developed. The convective deceleration load (CDL) is identified as an important determinant of ventricular inflow during the E-wave (A-wave) upstroke. Convective deceleration occurs as blood moves from the inflow anulus through larger-area cross-sections toward the expanding walls. Chamber dilatation underlies previously unrecognized alterations in intraventricular flow dynamics. The larger the chamber, the larger become the endocardial surface and the CDL. CDL magnitude affects strongly the attainable E-wave (A-wave) peak. This underlies the concept of diastolic ventriculoannular disproportion. Large vortices, whose strength decreases with chamber dilatation, ensue after the E-wave peak and impound inflow kinetic energy, averting an inflow-impeding, convective Bernoulli pressure-rise. This reduces the CDL by a variable extent depending on vortical intensity. Accordingly, the filling vortex facilitates filling to varying degrees, depending on chamber volume. The new framework provides stimulus for functional genomics research, aimed at new insights into ventricular remodeling. PMID:23585308

  7. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3)more » and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.« less

  8. Thermal Property Analysis of Axle Load Sensors for Weighing Vehicles in Weigh-in-Motion System

    PubMed Central

    Burnos, Piotr; Gajda, Janusz

    2016-01-01

    Systems which permit the weighing of vehicles in motion are called dynamic Weigh-in-Motion scales. In such systems, axle load sensors are embedded in the pavement. Among the influencing factors that negatively affect weighing accuracy is the pavement temperature. This paper presents a detailed analysis of this phenomenon and describes the properties of polymer, quartz and bending plate load sensors. The studies were conducted in two ways: at roadside Weigh-in-Motion sites and at a laboratory using a climate chamber. For accuracy assessment of roadside systems, the reference vehicle method was used. The pavement temperature influence on the weighing error was experimentally investigated as well as a non-uniform temperature distribution along and across the Weigh-in-Motion site. Tests carried out in the climatic chamber allowed the influence of temperature on the sensor intrinsic error to be determined. The results presented clearly show that all kinds of sensors are temperature sensitive. This is a new finding, as up to now the quartz and bending plate sensors were considered insensitive to this factor. PMID:27983704

  9. Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew

    2011-01-01

    The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response's frequency over the test duration. This characterization process assists in evaluating the discreteness of a signal as well as the stability of the chamber response. Broadband stability was assessed using a running root-mean-square evaluation. These techniques were also employed, in a comparative analysis, on available Fastrac data, and these results are presented here.

  10. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU

    NASA Astrophysics Data System (ADS)

    Lin, Po-Hsu; Hong, Che-Wun

    This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.

  11. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench) Genotypes Subjected to Dry-Down.

    PubMed

    Fracasso, Alessandra; Magnanini, Eugenio; Marocco, Adriano; Amaducci, Stefano

    2017-01-01

    Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum.

  12. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench) Genotypes Subjected to Dry-Down

    PubMed Central

    Fracasso, Alessandra; Magnanini, Eugenio; Marocco, Adriano; Amaducci, Stefano

    2017-01-01

    Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum. PMID:28620409

  13. Laser ignition of a multi-injector LOX/methane combustor

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-06-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  14. Laser ignition of a multi-injector LOX/methane combustor

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-02-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  15. Characterization of Formaldehyde Emissions from Tire Crumb Rubber in Small Environmental Chambers - 2

    EPA Science Inventory

    Concerns have been raised about the safety of recycled rubber tire crumbs used in synthetic turf fields and playgrounds in the United States. To support federal efforts to better characterize recycled tire-derived surface materials, dynamic small chamber tests were conducted at...

  16. Development of a new dynamic gas flow-control system in the pressure range of 1 Pa-133 Pa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, S. S.; Chung, J. W.; Khan, Wakil

    2011-12-15

    A new flow-control system (FCS-705) has been developed at Korea Research Institute of Standards and Science. The system is intended for calibration of vacuum gauges in the pressure range of 1 Pa-133 Pa by comparison method. This paper describes some basic characteristics of the system including; (1) the design and construction of the system, (2) the generation of stable pressures in the chamber, (3) achieving high upstream pressure limit by installing a short duct in the by-pass pumping line, and (4) investigation of the gas flow regimes within the short duct.

  17. Design and Study of a LOX/GH2 Throttleable Swirl Injector for Rocket Applications

    NASA Technical Reports Server (NTRS)

    Greene, Christopher; Woodward, Roger; Pal, Sibtosh; Santoro, Robert

    2002-01-01

    A LOX/GH2 swirl injector was designed for a 10:1 propellant throttling range. To accomplish this, a dual LOX manifold was used feeding a single common vortex chamber of the swirl element. Hot-fire experiments were conducted for rocket chamber pressures from 80 to 800 psia at a mixture ratio of nominally 6.0 using steady flow, single-point-per-firing cases as well as dynamic throttling conditions. Low frequency (mean) and high frequency (fluctuating) pressure transducer data, flow meter measurements, and Raman spectroscopy images for mixing information were obtained. The injector design, experimental setup, low frequency pressure data, and injector performance analysis are presented. C* efficiency was very high (approx. 100%) at the middle of the throttleable range with somewhat lower performance at the high and low ends. From the analysis of discreet steady state operating conditions, injector pressure drop was slightly higher than predicted with an inviscid analysis, but otherwise agreed well across the design throttling range. Dynamic throttling of this injector was attempted with marginal success due to the immaturity of the throttling control system. Although the targeted mixture ratio of 6.0 was not maintained throughout the dynamic throttling profile, the injector behaved well over the wide range of conditions.

  18. Multiphysics Simulation of Welding-Arc and Nozzle-Arc System: Mathematical-Model, Solution-Methodology and Validation

    NASA Astrophysics Data System (ADS)

    Pawar, Sumedh; Sharma, Atul

    2018-01-01

    This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.

  19. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  20. Dosimetric verification for primary focal hypermetabolism of nasopharyngeal carcinoma patients treated with dynamic intensity-modulated radiation therapy.

    PubMed

    Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen

    2012-01-01

    To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.

  1. A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils.

    PubMed

    Allaire, S E; Yates, S R; Ernst, F F; Gan, J

    2002-01-01

    There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br-) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.

  2. Understanding the dynamics of magmatic systems - evidence from Long Valley Caldera and Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Hill, D. P.; Swanson, D. A.

    2001-12-01

    Active magmatic processes produce a wide range of signals that are capable of detection at the Earth's surface by modern geophysical and geochemical instrumentation. The most robust of these signals include spatial-temporal patterns of (1) ground deformation spanning a broad spectrum from gradual secular and quasi-static changes to the high-frequency vibrations associated with seismic waves generated by local, brittle-failure earthquakes and (2) magmatic gas emissions of, most notably, SO2 and CO2. The long records of deformation (in this broad sense) and geochemical data accumulated for Kilauea Volcano on the Island of Hawai`i and in Long Valley Caldera in eastern California exemplify the value of spatially and temporally dense monitoring as a basis for understanding the dynamics of magmatic systems. Kilauea's magma conduit, defined by brittle failure and LP earthquakes, has the form of a narrow, straw-like structure extending from within the lithosphere at a depth of >40 km to a magma chamber centered roughly 5 km beneath the summit crater (Halemaumau). This shallow magma chamber, which consists of a plexus of dikes and sills, is capable of feeding eruptions both within the summit caldera and along the east and southwest rift zones. The current eruption from vents along the east rift zone, which began 18 years ago, appears to be gradually draining this summit magma chamber, as Kilauea's summit has been subsiding about 10 cm/yr since the eruption began. This is equivalent to a volume of about 0.01 km3/yr, 10 percent of the eruption rate of 0.1 km3/yr. Most of the gas released by the magma column escapes through the summit caldera as it ascends from the magma chamber toward the summit and thence through conduits to the active vents on the east rift zone. Indeed, the CO2 flux (about 10,000 tones/yr) from the caldera serves as a proxy for magma flux through the conduit system. Dynamic interaction of the active magma conduit with the hydrothermal system beneath the summit crater produces sequences of shallow LP and VLP earthquakes. Two magmatic systems contribute to the 20 years of unrest in Long Valley Caldera: one beneath the resurgent dome in the center of the caldera and the other beneath Mammoth Mountain on the southwest rim of the caldera. Cumulative uplift of the resurgent dome by 80 cm reflects a volume increase of roughly 0.3 km3 in magma to chamber centered at a depth of 7 to 10 km beneath the surface. Recurring swarms of brittle-failure earthquakes in the south moat follow increased inflation rates with the more energetic episodes associated with intrusions of magma or magmatic brine into the brittle crust. The absence of seismicity at depths greater than 10 km beneath the caldera, however, leaves a question mark for the nature of this magmatic system at mid- to lower-crustal depths. The absence of magmatic gas emissions in the vicinity of the resurgent dome and south moat suggests that the volatile components of this magmatic system remain trapped below an impermeable seal. In contrast, a dike-like distribution of deep LP earthquakes overlain by a volume of brittle-failure earthquakes, including several shallow VLP earthquakes, delineate the magmatic system beneath Mammoth Mountain from mid-crustal depths of 30 km to within 3 or 4 km of the surface. This system, which became activated with a six-month-long earthquake swarm and intrusion beneath Mammoth Mountain in 1989, has continued to produce a diffuse efflux of magmatic CO2 at a rate of 200 to 300 tones/day apparently fed by basaltic magma distributed in a plexus of dikes and sills at mid-crustal depths.

  3. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  4. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  5. Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.; Carruthers, George R.

    1989-01-01

    In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.

  6. Mass action at the single-molecule level.

    PubMed

    Shon, Min Ju; Cohen, Adam E

    2012-09-05

    We developed a system to reversibly encapsulate small numbers of molecules in an array of nanofabricated "dimples". This system enables highly parallel, long-term, and attachment-free studies of molecular dynamics via single-molecule fluorescence. In studies of bimolecular reactions of small numbers of confined molecules, we see phenomena that, while expected from basic statistical mechanics, are not observed in bulk chemistry. Statistical fluctuations in the occupancy of sealed reaction chambers lead to steady-state fluctuations in reaction equilibria and rates. These phenomena are likely to be important whenever reactions happen in confined geometries.

  7. Microbiological and biochemical aspects of Camembert-type cheeses depend on atmospheric composition in the ripening chamber.

    PubMed

    Leclercq-Perlat, M-N; Picque, D; Riahi, H; Corrieu, G

    2006-08-01

    Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical dynamics were studied in relation to ripening chamber CO(2) atmospheric composition using 31 descriptors based on kinetic data. The chamber ripening was carried out under 5 different controlled atmospheres: continuously renewed atmosphere, periodically renewed atmosphere, no renewed atmosphere, and 2 for which CO(2) was either 2% or 6%. All microorganism dynamics depended on CO(2) level. Kluyveromyces lactis was not sensitive to CO(2) during its growth phases, but its death did depend on it. An increase of CO(2) led to a significant improvement in G. candidum. Penicillium camemberti mycelium development was enhanced by 2% CO(2). The equilibrium between P. camemberti and G. candidum populations was disrupted in favor of the yeast when CO(2) was higher than 4%. Growth of B. aurantiacum depended more on O(2) than on CO(2). Two ripening progressions were observed in relation to the presence of CO(2) at the beginning of ripening: in the presence of CO(2), the ripening was fast-slow, and in the absence of CO(2), it was slow-fast. The underrind was too runny if CO(2) was equal to or higher than 6%. The nitrogen substrate progressions were slightly related to ripening chamber CO(2) and O(2) levels. During chamber ripening, the best atmospheric condition to produce an optimum between microorganism growth, biochemical dynamics, and cheese appearance was a constant CO(2) level close to 2%.

  8. Dynamic Spin Rig Upgraded With a Five- Axis-Controlled Three-Magnetic-Bearing Support System With Forward Excitation

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Mehmed, Oral

    2003-01-01

    The NASA Glenn Research Center Dynamic Spin Rig is used for experimental evaluation of vibration analysis methods and dynamic characteristics for rotating systems. Measurements are made while rotors are spun and vibrated in a vacuum chamber. The rig has been upgraded with a new active magnetic bearing rotor support and excitation system. This design is expected to provide operational improvements over the existing rig. The rig will be able to be operated in either the old or new configuration. In the old configuration, two ball bearings support the vertical shaft of the rig, with the test article located between the bearings. Because the bearings operate in a vacuum, lubrication is limited to grease. This limits bearing life and speed. In addition, the old configuration employs two voice-coil electromagnetic shakers to apply oscillatory axial forces or transverse moments to the rotor shaft through a thrust bearing. The excitation amplitudes that can be imparted to the test article with this system are not adequate for components that are highly damped. It is expected that the new design will overcome these limitations.

  9. Echo Chambers: Emotional Contagion and Group Polarization on Facebook

    NASA Astrophysics Data System (ADS)

    Del Vicario, Michela; Vivaldo, Gianna; Bessi, Alessandro; Zollo, Fabiana; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter

    2016-12-01

    Recent findings showed that users on Facebook tend to select information that adhere to their system of beliefs and to form polarized groups - i.e., echo chambers. Such a tendency dominates information cascades and might affect public debates on social relevant issues. In this work we explore the structural evolution of communities of interest by accounting for users emotions and engagement. Focusing on the Facebook pages reporting on scientific and conspiracy content, we characterize the evolution of the size of the two communities by fitting daily resolution data with three growth models - i.e. the Gompertz model, the Logistic model, and the Log-logistic model. Although all the models appropriately describe the data structure, the Logistic one shows the best fit. Then, we explore the interplay between emotional state and engagement of users in the group dynamics. Our findings show that communities’ emotional behavior is affected by the users’ involvement inside the echo chamber. Indeed, to an higher involvement corresponds a more negative approach. Moreover, we observe that, on average, more active users show a faster shift towards the negativity than less active ones.

  10. Feasibility of Conducting J-2X Engine Testing at the Glenn Research Center Plum Brook Station B-2 Facility

    NASA Technical Reports Server (NTRS)

    Schafer, Charles F.; Cheston, Derrick J.; Worlund, Armis L.; Brown, James R.; Hooper, William G.; Monk, Jan C.; Winstead, Thomas W.

    2008-01-01

    A trade study of the feasibility of conducting J-2X testing in the Glenn Research Center (GRC) Plum Brook Station (PBS) B-2 facility was initiated in May 2006 with results available in October 2006. The Propulsion Test Integration Group (PTIG) led the study with support from Marshall Space Flight Center (MSFC) and Jacobs Sverdrup Engineering. The primary focus of the trade study was on facility design concepts and their capability to satisfy the J-2X altitude simulation test requirements. The propulsion systems tested in the B-2 facility were in the 30,000-pound (30K) thrust class. The J-2X thrust is approximately 10 times larger. Therefore, concepts significantly different from the current configuration are necessary for the diffuser, spray chamber subsystems, and cooling water. Steam exhaust condensation in the spray chamber is judged to be the key risk consideration relative to acceptable spray chamber pressure. Further assessment via computational fluid dynamics (CFD) and other simulation capabilities (e.g. methodology for anchoring predictions with actual test data and subscale testing to support investigation.

  11. Biases in field measurements of ice nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Voigtländer, J.; Kulkarni, G.; Stratmann, F.; Cziczo, D. J.

    2015-12-01

    Ice nuclei (IN) play an important role in the climate system by influencing cloud properties, precipitation, and radiative transfer. Despite their importance, there are significant uncertainties in estimating IN concentrations because of the complexities of atmospheric ice nucleation processes. Field measurements of IN concentrations with Continuous Flow Diffusion Chamber (CFDC) IN counters have been vital to constrain IN number concentrations and have led to various parameterizations of IN number vs. temperature and particle concentration. These parameterizations are used in many global climate models, which are very sensitive to the treatment of cloud microphysics. However, due to non-idealities in CFDC behavior, especially at high relative humidity, many of these measurements are likely biased too low. In this study, the extent of this low bias is examined with laboratory experiments at a variety of instrument conditions using the SPectrometer for Ice Nucleation, a commercially-available CFDC-style chamber. These laboratory results are compared to theoretical calculations and computational fluid dynamics models to map the variability of this bias as a function of chamber temperature and relative humidity.

  12. Echo Chambers: Emotional Contagion and Group Polarization on Facebook.

    PubMed

    Del Vicario, Michela; Vivaldo, Gianna; Bessi, Alessandro; Zollo, Fabiana; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter

    2016-12-01

    Recent findings showed that users on Facebook tend to select information that adhere to their system of beliefs and to form polarized groups - i.e., echo chambers. Such a tendency dominates information cascades and might affect public debates on social relevant issues. In this work we explore the structural evolution of communities of interest by accounting for users emotions and engagement. Focusing on the Facebook pages reporting on scientific and conspiracy content, we characterize the evolution of the size of the two communities by fitting daily resolution data with three growth models - i.e. the Gompertz model, the Logistic model, and the Log-logistic model. Although all the models appropriately describe the data structure, the Logistic one shows the best fit. Then, we explore the interplay between emotional state and engagement of users in the group dynamics. Our findings show that communities' emotional behavior is affected by the users' involvement inside the echo chamber. Indeed, to an higher involvement corresponds a more negative approach. Moreover, we observe that, on average, more active users show a faster shift towards the negativity than less active ones.

  13. A Microfluidic Platform for Correlative Live-Cell and Super-Resolution Microscopy

    PubMed Central

    Tam, Johnny; Cordier, Guillaume Alan; Bálint, Štefan; Sandoval Álvarez, Ángel; Borbely, Joseph Steven; Lakadamyali, Melike

    2014-01-01

    Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images. PMID:25545548

  14. Development of a Gas Dynamic and Thermodynamic Simulation Model of the Lontra Blade Compressor™

    NASA Astrophysics Data System (ADS)

    Karlovsky, Jerome

    2015-08-01

    The Lontra Blade Compressor™ is a patented double acting, internally compressing, positive displacement rotary compressor of innovative design. The Blade Compressor is in production for waste-water treatment, and will soon be launched for a range of applications at higher pressure ratios. In order to aid the design and development process, a thermodynamic and gas dynamic simulation program has been written in house. The software has been successfully used to optimise geometries and running conditions of current designs, and is also being used to evaluate future designs for different applications and markets. The simulation code has three main elements. A positive displacement chamber model, a leakage model and a gas dynamic model to simulate gas flow through ports and to track pressure waves in the inlet and outlet pipes. All three of these models are interlinked in order to track mass and energy flows within the system. A correlation study has been carried out to verify the software. The main correlation markers used were mass flow, chamber pressure, pressure wave tracking in the outlet pipe, and volumetric efficiency. It will be shown that excellent correlation has been achieved between measured and simulated data. Mass flow predictions were to within 2% of measured data, and the timings and magnitudes of all major gas dynamic effects were well replicated. The simulation will be further developed in the near future to help with the optimisation of exhaust and inlet silencers.

  15. Source emission and model evaluation of formaldehyde from composite and solid wood furniture in a full-scale chamber

    EPA Science Inventory

    This paper describes the measurement and model evaluation of formaldehyde source emissions from composite and solid wood furniture in a full-scale chamber under dynamic conditions using ASTM D 6670-01 (2007). Four brands of the same type furniture product were tested. The data we...

  16. Sleeve reaction chamber system

    DOEpatents

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  17. Analysis of dynamic characteristics of fluid force induced by labyrinth seal

    NASA Technical Reports Server (NTRS)

    Iwatsubo, T.; Kawai, R.; Kagawa, N.; Kakiuchi, T.; Takahara, K.

    1984-01-01

    Flow patterns of the labyrinth seal are experimentally investigated for making a mathematical model of labyrinth seal and to obtain the flow induced force of the seal. First, the flow patterns in the labyrinth chamber are studied on the circumferential flow using bubble and on the cross section of the seal chamber using aluminum powder as tracers. And next, the fluid force and its phase angle are obtained from the measured pressure distribution in the chamber and the fluid force coefficients are derived from the fluid force and the phase angle. Those are similar to the expression of oil film coefficients. As a result, it is found that the vortices exist in the labyrinth chambers and its center moves up and down periodically. The pressure drop is biggest in the first stage of chambers and next in the last stage of chambers.

  18. Design of a hydraulic analog of the circulatory system for evaluating artificial hearts.

    PubMed

    Donovan, F M

    1975-01-01

    A major problem in improving artificial heart designs is the absence of methods for accurate in vitro testing of artificial heart systems. A mock circulatory system has been constructed which hydraulically simulates the systemic and pulmonary circulations of the normal human. The device is constructed of 1/2 in. acrylic sheet and has overall dimensions of 24 in. wide, 16 in. tall, and 8 in. deep. The artificial heart to be tested is attached to the front of the device, and pumps fluid from the systemic venous chamber into the pulmonary arterial chamber and from the pulmonary venous chamber into the systemic arterial chamber. Each of the four chambers is hermetically sealed. The compliance of each chamber is determined by the volume of air trapped above the fluid in that chamber. The pulmonary and systemic resistances are set automatically by bellows-operated valves to simulate the barroreceptor response in the systemic arteries and the passive pulmonary resistance response in the pulmonary arteries. Cardiac output is measured by a turbine flowmeter in the systemic circulation. Results using the Kwan-Gett artificial heart show a good comparison between the mock circulatory system response and the calf response.

  19. Particle based plasma simulation for an ion engine discharge chamber

    NASA Astrophysics Data System (ADS)

    Mahalingam, Sudhakar

    Design of the next generation of ion engines can benefit from detailed computer simulations of the plasma in the discharge chamber. In this work a complete particle based approach has been taken to model the discharge chamber plasma. This is the first time that simplifying continuum assumptions on the particle motion have not been made in a discharge chamber model. Because of the long mean free paths of the particles in the discharge chamber continuum models are questionable. The PIC-MCC model developed in this work tracks following particles: neutrals, singly charged ions, doubly charged ions, secondary electrons, and primary electrons. The trajectories of these particles are determined using the Newton-Lorentz's equation of motion including the effects of magnetic and electric fields. Particle collisions are determined using an MCC statistical technique. A large number of collision processes and particle wall interactions are included in the model. The magnetic fields produced by the permanent magnets are determined using Maxwell's equations. The electric fields are determined using an approximate input electric field coupled with a dynamic determination of the electric fields caused by the charged particles. In this work inclusion of the dynamic electric field calculation is made possible by using an inflated plasma permittivity value in the Poisson solver. This allows dynamic electric field calculation with minimal computational requirements in terms of both computer memory and run time. In addition, a number of other numerical procedures such as parallel processing have been implemented to shorten the computational time. The primary results are those modeling the discharge chamber of NASA's NSTAR ion engine at its full operating power. Convergence of numerical results such as total number of particles inside the discharge chamber, average energy of the plasma particles, discharge current, beam current and beam efficiency are obtained. Steady state results for the particle number density distributions and particle loss rates to the walls are presented. Comparisons of numerical results with experimental measurements such as currents and the particle number density distributions are made. Results from a parametric study and from an alternative magnetic field design are also given.

  20. Parasitic load control system for exhaust temperature control

    DOEpatents

    Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.

    2009-04-28

    A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.

  1. Development of a bench-top device for parallel climate-controlled recordings of neuronal cultures activity with microelectrode arrays.

    PubMed

    Regalia, Giulia; Biffi, Emilia; Achilli, Silvia; Ferrigno, Giancarlo; Menegon, Andrea; Pedrocchi, Alessandra

    2016-02-01

    Two binding requirements for in vitro studies on long-term neuronal networks dynamics are (i) finely controlled environmental conditions to keep neuronal cultures viable and provide reliable data for more than a few hours and (ii) parallel operation on multiple neuronal cultures to shorten experimental time scales and enhance data reproducibility. In order to fulfill these needs with a Microelectrode Arrays (MEA)-based system, we designed a stand-alone device that permits to uninterruptedly monitor neuronal cultures activity over long periods, overcoming drawbacks of existing MEA platforms. We integrated in a single device: (i) a closed chamber housing four MEAs equipped with access for chemical manipulations, (ii) environmental control systems and embedded sensors to reproduce and remotely monitor the standard in vitro culture environment on the lab bench (i.e. in terms of temperature, air CO2 and relative humidity), and (iii) a modular MEA interface analog front-end for reliable and parallel recordings. The system has been proven to assure environmental conditions stable, physiological and homogeneos across different cultures. Prolonged recordings (up to 10 days) of spontaneous and pharmacologically stimulated neuronal culture activity have not shown signs of rundown thanks to the environmental stability and have not required to withdraw the cells from the chamber for culture medium manipulations. This system represents an effective MEA-based solution to elucidate neuronal network phenomena with slow dynamics, such as long-term plasticity, effects of chronic pharmacological stimulations or late-onset pathological mechanisms. © 2015 Wiley Periodicals, Inc.

  2. Oman Drilling Project GT3 site survey: dynamics at the roof of an oceanic magma chamber

    NASA Astrophysics Data System (ADS)

    France, L.; Nicollet, C.; Debret, B.; Lombard, M.; Berthod, C.; Ildefonse, B.; Koepke, J.

    2017-12-01

    Oman Drilling Project (OmanDP) aims at bringing new constraints on oceanic crust accretion and evolution by drilling Holes in the whole ophiolite section (mantle and crust). Among those, operations at GT3 in the Sumail massif drilled 400 m to sample the dike - gabbro transition that corresponds to the top (gabbros) and roof (dikes) of the axial magma chamber, an interface where hydrothermal and magmatic system interacts. Previous studies based on oceanic crust formed at present day fast-spreading ridges and preserved in ophiolites have highlighted that this interface is a dynamic horizon where the axial melt lens that top the main magma chamber can intrude, reheat, and partially assimilate previously hydrothermally altered roof rocks. Here we present the preliminary results obtained in GT3 area that have allowed the community to choose the drilling site. We provide a geological and structural map of the area, together with new petrographic and chemical constraints on the dynamics of the dike - gabbro transition. Our new results allow us to quantify the dynamic processes, and to propose that 1/ the intrusive contact of the varitextured gabbro within the dikes highlights the intrusion of the melt lens top in the dike rooting zone, 2/ both dikes and previously crystallized gabbros are reheated, and recrystallized by underlying melt lens dynamics (up to 1050°C, largely above the hydrous solidus temperature of altered dikes and gabbros), 3/ the reheating range can be > 200°C, 4/ the melt lens depth variations for a given ridge position is > 200m, 5/ the reheating stage and associated recrystallization within the dikes occurred under hydrous conditions, 6/ the reheating stage is recorded at the root zone of the sheeted dike complex by one of the highest stable conductive thermal gradient ever recorded on Earth ( 3°C/m), 7/ local chemical variations in recrystallized dikes and gabbros are highlighted and used to quantify crystallization and anatectic processes, and the presence of trapped melt, 8/ melt lens cannibalism is attested by numerous assimilation figures close its roof. Besides providing a general context for future studies at OmanDP GT3 site, those new results allow us to quantify the dynamic processes that govern the layer 2 - layer 3 transition in ocean lithosphere.

  3. System Configured For Applying Multiple Modifying Agents To A Substrate.

    DOEpatents

    Propp, W. Alan; Argyle, Mark D.; Janikowski, Stuart K.; Fox, Robert V.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Miller, David L.

    2005-11-08

    The present invention is related to the modifying of substrates with multiple modifying agents in a single continuous system. At least two processing chambers are configured for modifying the substrate in a continuous feed system. The processing chambers can be substantially isolated from one another by interstitial seals. Additionally, the two processing chambers can be substantially isolated from the surrounding atmosphere by end seals. Optionally, expansion chambers can be used to separate the seals from the processing chambers.

  4. System configured for applying multiple modifying agents to a substrate

    DOEpatents

    Propp, W. Alan; Argyle, Mark D.; Janikowski, Stuart K.; Fox, Robert V.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Miller, David L.

    2003-11-25

    The present invention is related to the modifying of substrates with multiple modifying agents in a single continuous system. At least two processing chambers are configured for modifying the substrate in a continuous feed system. The processing chambers can be substantially isolated from one another by interstitial seals. Additionally, the two processing chambers can be substantially isolated from the surrounding atmosphere by end seals. Optionally, expansion chambers can be used to separate the seals from the processing chambers.

  5. Introduction to Magneto-Fluid-Dynamics for Aerospace Applications

    DTIC Science & Technology

    2004-07-08

    exposure time down to 100 ns. The diagnostic systems were built and tested in the discharge chamber VKI Lecture Series - 5 - 27–30 October 2003 1...thermodynamics VKI Lecture Series - 7 - 27–30 October 2003 2 STOICHIOMETRIC ASPECTS (20; 21; 23; 35; 36; 37) based on the entropy -balance equation is...exploitation of the entropy production and of the VKI Lecture Series - 28 - 27–30 October 2003 9 LINEAR IRREVERSIBLE THERMODYNAMICS second law of

  6. Holographic Methods Of Dynamic Particulate Measurements ¬â€?Current Status

    NASA Astrophysics Data System (ADS)

    Thompson, Brian J.

    1983-03-01

    The field of holographic particulate measurements continues to be very active with many new applications in such diverse fields as bubble chamber recording and contaminant measurements in small vials. The methods have also been extended to measure velocity distributions of particles within a volume, particularly by the application of subsequent image processing methods. These techniques could be coupled with hybrid systems to become near real time. The current status of these more recent developments is reviewed.

  7. The dynamic range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  8. System for sterilizing objects. [cleaning space vehicle systems

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (Inventor)

    1981-01-01

    A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.

  9. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  10. Ionization chamber-based reference dosimetry of intensity modulated radiation beams.

    PubMed

    Bouchard, Hugo; Seuntjens, Jan

    2004-09-01

    The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.

  11. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  12. Strategic tradeoffs in competitor dynamics on adaptive networks.

    PubMed

    Hébert-Dufresne, Laurent; Allard, Antoine; Noël, Pierre-André; Young, Jean-Gabriel; Libby, Eric

    2017-08-08

    Recent empirical work highlights the heterogeneity of social competitions such as political campaigns: proponents of some ideologies seek debate and conversation, others create echo chambers. While symmetric and static network structure is typically used as a substrate to study such competitor dynamics, network structure can instead be interpreted as a signature of the competitor strategies, yielding competition dynamics on adaptive networks. Here we demonstrate that tradeoffs between aggressiveness and defensiveness (i.e., targeting adversaries vs. targeting like-minded individuals) creates paradoxical behaviour such as non-transitive dynamics. And while there is an optimal strategy in a two competitor system, three competitor systems have no such solution; the introduction of extreme strategies can easily affect the outcome of a competition, even if the extreme strategies have no chance of winning. Not only are these results reminiscent of classic paradoxical results from evolutionary game theory, but the structure of social networks created by our model can be mapped to particular forms of payoff matrices. Consequently, social structure can act as a measurable metric for social games which in turn allows us to provide a game theoretical perspective on online political debates.

  13. Multiphysics Thrust Chamber Modeling for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Cheng, Gary; Chen, Yen-Sen

    2006-01-01

    The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation. A two-pronged approach is employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of heat transfer on thrust performance. Preliminary results on both aspects are presented.

  14. Vibrating-chamber levitation systems

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C. (Inventor)

    1985-01-01

    Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.

  15. Electrochemical cell for rebalancing REDOX flow system

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1979-01-01

    An electrically rechargeable REDOX cell or battery system including one of more rebalancing cells is described. Each rebalancing cell is divided into two chambers by an ion permeable membrane. The first chamber is fed with gaseous hydrogen and a cathode fluid which is circulated through the cathode chamber of the REDOX cell is also passed through the second chamber of the rebalancing cell. Electrochemical reactions take place on the surface of insert electrodes in the first and second chambers to rebalance the electrochemical capacity of the anode and cathode fluids of the REDOX system.

  16. Static and dynamic stability of pneumatic vibration isolators and systems of isolators

    NASA Astrophysics Data System (ADS)

    Ryaboy, Vyacheslav M.

    2014-01-01

    Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.

  17. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction.

    PubMed

    Korakianitis, Theodosios; Shi, Yubing

    2006-09-01

    Numerical modeling of the human cardiovascular system has always been an active research direction since the 19th century. In the past, various simulation models of different complexities were proposed for different research purposes. In this paper, an improved numerical model to study the dynamic function of the human circulation system is proposed. In the development of the mathematical model, the heart chambers are described with a variable elastance model. The systemic and pulmonary loops are described based on the resistance-compliance-inertia concept by considering local effects of flow friction, elasticity of blood vessels and inertia of blood in different segments of the blood vessels. As an advancement from previous models, heart valve dynamics and atrioventricular interaction, including atrial contraction and motion of the annulus fibrosus, are specifically modeled. With these improvements the developed model can predict several important features that were missing in previous numerical models, including regurgitant flow on heart valve closure, the value of E/A velocity ratio in mitral flow, the motion of the annulus fibrosus (called the KG diaphragm pumping action), etc. These features have important clinical meaning and their changes are often related to cardiovascular diseases. Successful simulation of these features enhances the accuracy of simulations of cardiovascular dynamics, and helps in clinical studies of cardiac function.

  18. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  19. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    NASA Astrophysics Data System (ADS)

    Bradley, Christopher M.

    The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot-section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.

  20. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.

  1. Advances in the Control System for a High Precision Dissolved Organic Carbon Analyzer

    NASA Astrophysics Data System (ADS)

    Liao, M.; Stubbins, A.; Haidekker, M.

    2017-12-01

    Dissolved organic carbon (DOC) is a master variable in aquatic ecosystems. DOC in the ocean is one of the largest carbon stores on earth. Studies of the dynamics of DOC in the ocean and other low DOC systems (e.g. groundwater) are hindered by the lack of high precision (sub-micromolar) analytical techniques. Results are presented from efforts to construct and optimize a flow-through, wet chemical DOC analyzer. This study focused on the design, integration and optimization of high precision components and control systems required for such a system (mass flow controller, syringe pumps, gas extraction, reactor chamber with controlled UV and temperature). Results of the approaches developed are presented.

  2. Methane exchange at the peatland forest floor - automatic chamber system exposes the dynamics of small fluxes

    NASA Astrophysics Data System (ADS)

    Korkiakoski, Mika; Tuovinen, Juha-Pekka; Aurela, Mika; Koskinen, Markku; Minkkinen, Kari; Ojanen, Paavo; Penttilä, Timo; Rainne, Juuso; Laurila, Tuomas; Lohila, Annalea

    2017-04-01

    We measured methane (CH4) exchange rates with automatic chambers at the forest floor of a nutrient-rich drained peatland in 2011-2013. The fen, located in southern Finland, was drained for forestry in 1969 and the tree stand is now a mixture of Scots pine, Norway spruce, and pubescent birch. Our measurement system consisted of six transparent chambers and stainless steel frames, positioned on a number of different field and moss layer compositions. Gas concentrations were measured with an online cavity ring-down spectroscopy gas analyzer. Fluxes were calculated with both linear and exponential regression. The use of linear regression resulted in systematically smaller CH4 fluxes by 10-45 % as compared to exponential regression. However, the use of exponential regression with small fluxes ( < 2.5 µg CH4 m-2 h-1) typically resulted in anomalously large absolute fluxes and high hour-to-hour deviations. Therefore, we recommend that fluxes are initially calculated with linear regression to determine the threshold for low fluxes and that higher fluxes are then recalculated using exponential regression. The exponential flux was clearly affected by the length of the fitting period when this period was < 190 s, but stabilized with longer periods. Thus, we also recommend the use of a fitting period of several minutes to stabilize the results and decrease the flux detection limit. There were clear seasonal dynamics in the CH4 flux: the forest floor acted as a CH4 sink particularly from early summer until the end of the year, while in late winter the flux was very small and fluctuated around zero. However, the magnitude of fluxes was relatively small throughout the year, ranging mainly from -130 to +100 µg CH4 m-2 h-1. CH4 emission peaks were observed occasionally, mostly in summer during heavy rainfall events. Diurnal variation, showing a lower CH4 uptake rate during the daytime, was observed in all of the chambers, mainly in the summer and late spring, particularly in dry conditions. It was attributed more to changes in wind speed than air or soil temperature, which suggest that physical rather than biological phenomena are responsible for the observed variation. The annual net CH4 exchange varied from -104 ± 30 to -505 ± 39 mg CH4 m-2 yr-1 among the six chambers, with an average of -219 mg CH4 m-2 yr-1 over the 2-year measurement period.

  3. Methods and systems for combustion dynamics reduction

    DOEpatents

    Kraemer, Gilbert Otto [Greer, SC; Varatharajan, Balachandar [Cincinnati, OH; Srinivasan, Shiva [Greer, SC; Lynch, John Joseph [Wilmington, NC; Yilmaz, Ertan [Albany, NY; Kim, Kwanwoo [Greer, SC; Lacy, Benjamin [Greer, SC; Crothers, Sarah [Greenville, SC; Singh, Kapil Kumar [Rexford, NY

    2009-08-25

    Methods and systems for combustion dynamics reduction are provided. A combustion chamber may include a first premixer and a second premixer. Each premixer may include at least one fuel injector, at least one air inlet duct, and at least one vane pack for at least partially mixing the air from the air inlet duct or ducts and fuel from the fuel injector or injectors. Each vane pack may include a plurality of fuel orifices through which at least a portion of the fuel and at least a portion of the air may pass. The vane pack or packs of the first premixer may be positioned at a first axial position and the vane pack or packs of the second premixer may be positioned at a second axial position axially staggered with respect to the first axial position.

  4. A dynamic bead-based microarray for parallel DNA detection

    NASA Astrophysics Data System (ADS)

    Sochol, R. D.; Casavant, B. P.; Dueck, M. E.; Lee, L. P.; Lin, L.

    2011-05-01

    A microfluidic system has been designed and constructed by means of micromachining processes to integrate both microfluidic mixing of mobile microbeads and hydrodynamic microbead arraying capabilities on a single chip to simultaneously detect multiple bio-molecules. The prototype system has four parallel reaction chambers, which include microchannels of 18 × 50 µm2 cross-sectional area and a microfluidic mixing section of 22 cm length. Parallel detection of multiple DNA oligonucleotide sequences was achieved via molecular beacon probes immobilized on polystyrene microbeads of 16 µm diameter. Experimental results show quantitative detection of three distinct DNA oligonucleotide sequences from the Hepatitis C viral (HCV) genome with single base-pair mismatch specificity. Our dynamic bead-based microarray offers an effective microfluidic platform to increase parallelization of reactions and improve microbead handling for various biological applications, including bio-molecule detection, medical diagnostics and drug screening.

  5. Continuous measurements of methane flux in two Japanese temperate forests based on the micrometeorological and chamber methods

    NASA Astrophysics Data System (ADS)

    Yoshikawa, K.; Ueyama, M.; Takagi, K.; Kominami, Y.

    2015-12-01

    Methane (CH4) budget in forest ecosystems have not been accurately quantified due to limited measurements and considerable spatiotemporal heterogeneity. In order to quantify CH4 fluxes at temperate forest at various spatiotemporal scales, we have continuously measured CH4 fluxes at two upland forests based on the micrometeorological hyperbolic relaxed eddy accumulation (HREA) and automated dynamic closed chamber methods.The measurements have been conducted at Teshio experimental forest (TSE) since September 2013 and Yamashiro forest meteorology research site (YMS) since November 2014. Three automated chambers were installed on each site. Our system can measure CH4 flux by the micrometeorological HREA, vertical concentration profile at four heights, and chamber measurements by a laser-based gas analyzer (FGGA-24r-EP, Los Gatos Research Inc., USA).Seasonal variations of canopy-scale CH4 fluxes were different in each site. CH4 was consumed during the summer, but was emitted during the fall and winter in TSE; consequently, the site acted as a net annual CH4 source. CH4 was steadily consumed during the winter, but CH4 fluxes fluctuated between absorption and emission during the spring and summer in YMS. YMS acted as a net annual CH4 sink. CH4 uptake at the canopy scale generally decreased with rising soil temperature and increased with drying condition for both sites. CH4 flux measured by most of chambers showed the consistent sensitivity examined for the canopy scale to the environmental variables. CH4 fluxes from a few chambers located at a wet condition were independent of variations in soil temperature and moisture at both sites. Magnitude of soil CH4 uptake was higher than the canopy-scale CH4 uptake. Our results showed that the canopy-scale CH4 fluxes were totally different with the plot-scale CH4 fluxes by chambers, suggesting the considerable spatial heterogeneity in CH4 flux at the temperate forests.

  6. Study on optimization of multiionization-chamber system for BNCT.

    PubMed

    Fujii, T; Tanaka, H; Maruhashi, A; Ono, K; Sakurai, Y

    2011-12-01

    In order to monitor stability of doses from the four components such as thermal, epi-thermal, fast neutron and gamma-ray during BNCT irradiation, we are developing a multiionization-chamber system. This system is consisted of four kinds of ionization chamber, which have specific sensitivity for each component, respectively. Since a suitable structure for each chamber depends on the energy spectrum of the irradiation field, the optimization study of the chamber structures for the epi-thermal neutron beam of cyclotron-based epi-thermal neutron source (C-BENS) was performed by using a Monte Carlo simulation code "PHITS" and suitable chamber-structures were determined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. High-throughput separation of cells by dielectrophoresis enhanced with 3D gradient AC electric field.

    PubMed

    Tada, Shigeru; Hayashi, Masako; Eguchi, Masanori; Tsukamoto, Akira

    2017-11-01

    We propose a novel, high-performance dielectrophoretic (DEP) cell-separation flow chamber with a parallel-plate channel geometry. The flow chamber, consisting of a planar electrode on the top and an interdigitated-pair electrode array at the bottom, was developed to facilitate the separation of cells by creating a nonuniform AC electric field throughout the volume of the flow chamber. The operation and performance of the device were evaluated using live and dead human epithermal breast (MCF10A) cells. The separation dynamics of the cell suspension in the flow chamber was also investigated by numerically simulating the trajectories of individual cells. A theoretical model to describe the dynamic cell behavior under the action of DEP, including dipole-dipole interparticle, viscous, and gravitational forces, was developed. The results demonstrated that the live cells traveling through the flow chamber congregated into sites where the electric field gradient was minimal, in the middle of the flow stream slightly above the centerlines of the grounded electrodes at the bottom. Meanwhile, the dead cells were trapped on the edges of the high-voltage electrodes at the bottom. Cells were thus successfully separated with a remarkably high separation ratio (∼98%) at the appropriately tuned field frequency and applied voltage. The numerically predicted behavior and spatial distribution of the cells during separation also showed good agreement with those observed experimentally.

  8. An investigation of air inlet velocity in simulating the dispersion of indoor contaminants via computational fluid dynamics.

    PubMed

    Lee, Eungyoung; Feigley, Charles E; Khan, Jamil

    2002-11-01

    Computational fluid dynamics (CFD) is potentially a valuable tool for simulating the dispersion of air contaminants in workrooms. However, CFD-estimated airflow and contaminant concentration patterns have not always shown good agreement with experimental results. Thus, understanding the factors affecting the accuracy of such simulations is critical for their successful application in occupational hygiene. The purposes of this study were to validate CFD approaches for simulating the dispersion of gases and vapors in an enclosed space at two air flow rates and to demonstrate the impact of one important determinant of simulation accuracy. The concentration of a tracer gas, isobutylene, was measured at 117 points in a rectangular chamber [1 (L) x 0.3 (H) x 0.7 m (W)] using a photoionization analyzer. Chamber air flow rates were scaled using geometric and kinematic similarity criteria to represent a full-sized room at two Reynolds numbers (Re = 5 x 10(2) and 5 x 10(3)). Also, CFD simulations were conducted to estimate tracer gas concentrations throughout the chamber. The simulation results for two treatments of air inlet velocity (profiled inlet velocity measured in traverses across the air inlet and the assumption that air velocity is uniform across the inlet) were compared with experimental observations. The CFD-simulated 3-dimensional distribution of tracer gas concentration using the profiled inlet velocity showed better agreement qualitatively and quantitatively with measured chamber concentration, while the concentration estimated using the uniform inlet velocity showed poor agreement for both comparisons. For estimating room air contaminant concentrations when inlet velocities can be determined, this study suggests that using the inlet velocity distribution to define inlet boundary conditions for CFD simulations can provide more reliable estimates. When the inlet velocity distribution is not known, for instance for prospective design of dilution ventilation systems, the trials of several velocity profiles with different source, air inlet and air outlet locations may be useful for determining the most efficient workroom layout.

  9. Impact of rapeseed cropping on the soil carbon balance

    NASA Astrophysics Data System (ADS)

    Moffat, Antje Maria; Herbst, Mathias; Huth, Vytas; Andres, Monique; Augustin, Jürgen

    2015-04-01

    Winter oilseed rape is the dominant biofuel crop in the young moraine landscape in Northern Germany. Since the cultivation of biofuel crops requires sustainability compared to fossil fuels by law, detailed knowledge about their green house gas (GHG) balance is necessary. The soil carbon balance is one of the key contributors to the total GHG balance and also very important for the assessment of soil fertility. However, the knowledge about the impact of different management practices on the soil carbon balance is very limited up to now. Therefore, we investigated the carbon fluxes of winter oilseed rape at field plots near Dedelow/Uckermark in NE Germany with different treatments of fertilization (mineral versus organic) and tillage (no-till and mulch-till versus ploughing). The dynamics of the carbon fluxes are mainly driven by the current climatic conditions but the overall response depends strongly on the ecosystem state (with its physiological and microbiological properties) which is affected by management. To get the full carbon flux dynamics but also the impact of the different management practices, two different approaches were used: The eddy covariance technique to get continuous fluxes throughout the year and the manual chamber technique to detect flux differences between specific management practices. The manual chamber measurements were conducted four-weekly as all-day campaigns using a flow-through non-steady-state closed chamber system. The fluxes in-between campaigns were gap-filled based on functional relationships with soil and air temperature (for the ecosystem respiration) and photosynthetic active radiation (for the gross primary production). All results presented refer to the cropping season 2012-2013. The combination of the two measurement techniques allows the evaluation of chamber fluxes including an independent estimate of the error on the overall balances. Despite the considerable errors, there are significant differences in the soil carbon balance between the tillage and fertilization treatments - ranging from net losses to net gains in the soil carbon stock.

  10. Main Chamber Injectors for Advanced Hydrocarbon Booster Engines

    NASA Technical Reports Server (NTRS)

    Long, Matthew R.; Bazarov, Vladimir G.; Anderson, William E.

    2003-01-01

    Achieving the highest possible specific impulse has long been a key driver for space launch systems. Recently, more importance has been placed on the need for increased reliability and streamlined launch operations. These general factors along with more specific mission requirements have provided a new focus that is centered on the oxidizer rich staged combustion (ORSC) cycle. Despite a history of use in Russia that extends back to the 1960's, a proven design methodology for ORSC cycle engines does not exist in the West. This lack of design expertise extends to the main chamber injector, a critical subcomponent that largely determines the engine performance and main chamber life. The goals of the effort described here are to establish an empirical knowledge base to provide a fundamental understanding of main chamber injectors and for verification of an injector design methodology for the ORSC cycle. The design of a baseline injector element, derived from information on Russian engines in the open literature, is presented. The baseline injector comprises a gaseous oxidizer core flow and an annular swirling fuel flow. Sets of equations describing the steady-state and the dynamic characteristics of the injector are presented; these equations, which form the basis of the design analysis methodology, will be verified in tests later this year. On-going cold flow studies, using nitrogen and water as simulants, are described which indicate highly atomized and symmetric sprays.

  11. Influence of volatile degassing on the eruptibility of large igneous province magmatic systems

    NASA Astrophysics Data System (ADS)

    Mittal, T.; Richards, M. A.

    2017-12-01

    Magmatic volatiles, in particular their buoyancy, may play a critical role in determining whether a magma reservoir can build up enough overpressure leading to drive flood basalt eruptions (Black & Manga 2017). Thus, it is important to understand the extent to which volatiles can remain trapped in a magmatic system and how they influence the eruptibility. Although the high-temperature metamorphic aureloe around a magma chamber is typically considered to have low permeability due to ductile creep, recent theoretical, experimental, and field work (e.g. Noriaki et al. 2017) have highlighted the role of dynamic permeability in magmatic systems. Consequently, the effective permeability of the crust when magma is present in the system can be orders of magnitude larger than that of exhumed rock samples. We model dynamic permeability changes as a competition between hydro-fracturing (increased porosity) and fracture closure by ductile creep and hydrothermal mineral precipitation (reduced porosity) and find yearly-to-decadal time-scales for periodic fracturing and fluid loss events and an increase in average permeability. We then use a fully coupled poro-thermo-elastic framework to model to explore the macroscopic influence of volatile loss on the stress state of the crust in this higher time-averaged permeability setting. We derive new semi-analytical solutions and combine them with a magma chamber box model (modified from Degruyter & Huber 2014) to analyze system-scale dynamics for both basaltic and silicic magmatic systems. We find that passive degassing likely has a substantial temporal influence on the stress distribution in the crust and the highly crystalline mush zone immediately surrounding a magma reservoir, and find an additional scale : pore-pressure diffusion timescale that exerts a first-order control on the magnitude and frequency of volcanic eruptions. We also explore how disconnected magma batches interact indirectly with each other and its implications for mobilizing large volumes of magma during flood basalt eruptions as well as dike location and orientation. These coupled process may help us better understand the relationship between climate warming events (due to volatiles) and the eruption intervals and sizes of eruptions in flood basalts (e.g Woelders et al. 2017 for the Deccan volcanism).

  12. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array

    PubMed Central

    Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  13. Johnson Space Center's regenerative life support systems test bed

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Tri, Terry O.; Barta, Daniel J.; Stahl, Randal S.

    1991-01-01

    The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies.

  14. Venturi vacuum systems for hypobaric chamber operations.

    PubMed

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  15. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Detailed computer models of the engine were developed to predict both the steady state and transient operation of the engine system. Mechanical design layout drawings were prepared for the following components: thrust chamber and nozzle; extendible nozzle actuating mechanism and seal; LOX turbopump and boost pump; hydrogen turbopump and boost pump; and the propellant control valves. The necessary heat transfer, stress, fluid flow, dynamic, and performance analyses were performed to support the mechanical design.

  16. Combustion dynamics in liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Mclain, W. H.

    1971-01-01

    A chemical analysis of the emission and absorption spectra in the combustion chamber of a nitrogen tetroxide/aerozine-50 rocket engine was conducted. Measurements were made under conditions of preignition, ignition, and post combustion operating periods. The cause of severe ignition overpressures sporadically observed during the vacuum startup of the Apollo reaction control system engine was investigated. The extent to which residual propellants or condensed intermediate reaction products remain after the engine has been operated in a pulse mode duty cycle was determined.

  17. Towards a Fast Dynamic Model of the Human Circulatory System

    DTIC Science & Technology

    2011-10-06

    heart chambers, and the local time-varying pressure is not prescribed anywhere. The effects of muscle contraction and relaxation on the circulatory...0.5 < S < 2) area during skeletal muscle contraction . Contraction only applied on the venous end of the vascular tree (1.25 < S < 2). For the... contraction , occurring during time (tam < t < tbm), and ∆Am is the maximum contraction amplitude. A visualization of the muscle contraction model is shown in

  18. A Low-Noise, Modular, and Versatile Analog Front-End Intended for Processing In Vitro Neuronal Signals Detected by Microelectrode Arrays

    PubMed Central

    Regalia, Giulia; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2015-01-01

    The collection of good quality extracellular neuronal spikes from neuronal cultures coupled to Microelectrode Arrays (MEAs) is a binding requirement to gather reliable data. Due to physical constraints, low power requirement, or the need of customizability, commercial recording platforms are not fully adequate for the development of experimental setups integrating MEA technology with other equipment needed to perform experiments under climate controlled conditions, like environmental chambers or cell culture incubators. To address this issue, we developed a custom MEA interfacing system featuring low noise, low power, and the capability to be readily integrated inside an incubator-like environment. Two stages, a preamplifier and a filter amplifier, were designed, implemented on printed circuit boards, and tested. The system is characterized by a low input-referred noise (<1 μV RMS), a high channel separation (>70 dB), and signal-to-noise ratio values of neuronal recordings comparable to those obtained with the benchmark commercial MEA system. In addition, the system was successfully integrated with an environmental MEA chamber, without harming cell cultures during experiments and without being damaged by the high humidity level. The devised system is of practical value in the development of in vitro platforms to study temporally extended neuronal network dynamics by means of MEAs. PMID:25977683

  19. A low-noise, modular, and versatile analog front-end intended for processing in vitro neuronal signals detected by microelectrode arrays.

    PubMed

    Regalia, Giulia; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2015-01-01

    The collection of good quality extracellular neuronal spikes from neuronal cultures coupled to Microelectrode Arrays (MEAs) is a binding requirement to gather reliable data. Due to physical constraints, low power requirement, or the need of customizability, commercial recording platforms are not fully adequate for the development of experimental setups integrating MEA technology with other equipment needed to perform experiments under climate controlled conditions, like environmental chambers or cell culture incubators. To address this issue, we developed a custom MEA interfacing system featuring low noise, low power, and the capability to be readily integrated inside an incubator-like environment. Two stages, a preamplifier and a filter amplifier, were designed, implemented on printed circuit boards, and tested. The system is characterized by a low input-referred noise (<1 μV RMS), a high channel separation (>70 dB), and signal-to-noise ratio values of neuronal recordings comparable to those obtained with the benchmark commercial MEA system. In addition, the system was successfully integrated with an environmental MEA chamber, without harming cell cultures during experiments and without being damaged by the high humidity level. The devised system is of practical value in the development of in vitro platforms to study temporally extended neuronal network dynamics by means of MEAs.

  20. Dynamic behavior of semivolatile organic compounds in indoor air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loy, Michael David Van

    1998-12-09

    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release ofmore » reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.« less

  1. Electrification of Shaken Granular Flows as a Model of Natural Storm Charging

    NASA Astrophysics Data System (ADS)

    Kara, O.; Nordsiek, F.; Lathrop, D. P.

    2015-12-01

    The charging of particulates in nature is widespread and observed in thunderstorms, volcanic ash clouds, thunder-snow, and dust storms. However the mechanism of charge separation at large (> 1km) scale is poorly understood. We perform simple laboratory experiments to better understand the collective phenomena involved in granular electrification. We confine granular particles in an oscillating cylindrical chamber which is enclosed and sealed by two conducting plates. The primary measurement is the voltage difference between the two plates. We find that collective effects occurring in the bulk of the material play a significant role in the electrification process. We extend that by addition of photodetection capabilities to the experimental chamber to detect electrical discharges between the particles and each other and the plates. We present measurements of electrical discharges in addition to the slower dynamics of voltage variation in the system.

  2. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  3. A model-based approach for automated in vitro cell tracking and chemotaxis analyses.

    PubMed

    Debeir, Olivier; Camby, Isabelle; Kiss, Robert; Van Ham, Philippe; Decaestecker, Christine

    2004-07-01

    Chemotaxis may be studied in two main ways: 1) counting cells passing through an insert (e.g., using Boyden chambers), and 2) directly observing cell cultures (e.g., using Dunn chambers), both in response to stationary concentration gradients. This article promotes the use of Dunn chambers and in vitro cell-tracking, achieved by video microscopy coupled with automatic image analysis software, in order to extract quantitative and qualitative measurements characterizing the response of cells to a diffusible chemical agent. Previously, we set up a videomicroscopy system coupled with image analysis software that was able to compute cell trajectories from in vitro cell cultures. In the present study, we are introducing a new software increasing the application field of this system to chemotaxis studies. This software is based on an adapted version of the active contour methodology, enabling each cell to be efficiently tracked for hours and resulting in detailed descriptions of individual cell trajectories. The major advantages of this method come from an improved robustness with respect to variability in cell morphologies between different cell lines and dynamical changes in cell shape during cell migration. Moreover, the software includes a very small number of parameters which do not require overly sensitive tuning. Finally, the running time of the software is very short, allowing improved possibilities in acquisition frequency and, consequently, improved descriptions of complex cell trajectories, i.e. trajectories including cell division and cell crossing. We validated this software on several artificial and real cell culture experiments in Dunn chambers also including comparisons with manual (human-controlled) analyses. We developed new software and data analysis tools for automated cell tracking which enable cell chemotaxis to be efficiently analyzed. Copyright 2004 Wiley-Liss, Inc.

  4. Thermal behavior of heat-pipe-assisted alkali-metal thermoelectric converters

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Su; Lee, Wook-Hyun; Chi, Ri-Guang; Chung, Won-Sik; Lee, Kye-Bock; Rhi, Seok-Ho; Jeong, Seon-Yong; Park, Jong-Chan

    2017-11-01

    The alkali-metal thermal-to-electric converter (AMTEC) changes thermal energy directly into electrical energy using alkali metals, such as sodium and potassium, as the working fluid. The AMTEC system primarily consists of beta-alumina solid electrolyte (BASE) tubes, low and high-pressure chambers, an evaporator, and a condenser and work through continuous sodium circulation, similar to conventional heat pipes. When the sodium ions pass through the BASE tubes with ion conductivity, this ion transfer generates electricity. The efficiency of the AMTEC directly depends on the temperature difference between the top and bottom of the system. The optimum design of components of the AMTEC, including the condenser, evaporator, BASE tubes, and artery wick, can improve power output and efficiency. Here, a radiation shield was installed in the low-pressure chamber of the AMTEC and was investigated experimentally and numerically to determine an optimum design for preventing radiation heat loss through the condenser and the wall of AMTEC container. A computational fluid dynamics (CFD) simulation was carried out to decide the optimum size of the low-pressure chamber. The most suitable height and diameter of the chamber were 270 mm and 180 mm, respectively, with eight BASE tubes, which were 150 mm high, 25 mm in diameter, and 105 mm in concentric diameter. Increasing the temperature ratio ( T Cond /T B ) led to high power output. The minimum dimensionless value (0.4611) for temperature ( T Cond /T B ) appeared when the radiation shield was made of 500-mesh nickel. Simulation results for the best position and shape for the radiation shield, revealed that maximum power was generated when a stainless steel shield was installed in between the BASE tubes and condenser.

  5. Effects of AEC chamber selection on patient dose and image quality.

    PubMed

    Hawking, Nancy; Elmore, Angie

    2009-01-01

    To determine whether manipulation of the standard automatic exposure control (AEC) chamber selections reduces the patient's entrance skin exposure (ESE) without compromising image quality. Data for density and radiation dose were gathered at 2 clinical locations by exposing abdomen and pelvis phantoms to radiation using 3 AEC chamber selection configurations. ESE (skin dose) was measured using a multipurpose dosimeter. The experiment included both film-screen and computed radiography (CR) systems. For both phantoms, using the 2 outside chambers resulted in the lowest dose on the film-screen and CR systems. In general, optical density (OD) and exposure indicator (EI) remained within acceptable ranges and image quality was maintained using this chamber configuration. Using only the center chamber resulted in the highest dose increases and lowest image quality for film-screen and CR systems. When performing anteroposterior (AP) abdomen and AP pelvis examinations, radiographers can reduce patients' ESE and maintain image quality by selecting the 2 outside AEC chambers. Further research on AEC chamber selection should be conducted for additional anatomical regions.

  6. A macrosonic system for industrial processing

    PubMed

    Gallego-Juarez; Rodriguez-Corral; Riera-Franco de Sarabia E; Campos-Pozuelo; Vazquez-Martinez; Acosta-Aparicio

    2000-03-01

    The development of high-power applications of sonic and ultrasonic energy in industrial processing requires a great variety of practical systems with characteristics which are dependent on the effect to be exploited. Nevertheless, the majority of systems are basically constituted of a treatment chamber and one or several transducers coupled to it. Therefore, the feasibility of the application mainly depends on the efficiency of the transducer-chamber system. This paper deals with a macrosonic system which is essentially constituted of a high-power transducer with a double stepped-plate radiator coupled to a chamber of square section. The radiator, which has a rectangular shape, is placed on one face of the chamber in order to drive the inside fluid volume. The stepped profile of the radiator allows a piston-like radiation to be obtained. The radiation from the back face of the radiator is also applied to the chamber by using adequate reflectors. Transducer-chamber systems for sonic and ultrasonic frequencies have been developed with power capacities up to about 5 kW for the treatment of fluid volumes of several cubic meters. The characteristics of these systems are presented in this paper.

  7. Design and testing of a unique randomized gravity, continuous flow bioreactor

    NASA Technical Reports Server (NTRS)

    Lassiter, Carroll B.

    1993-01-01

    A rotating, null gravity simulator, or Couette bioreactor was successfully used for the culture of mammalian cells in a simulated microgravity environment. Two limited studies using Lipomyces starkeyi and Streptomyces clavuligerus were also conducted under conditions of simulated weightlessness. Although these studies with microorganisms showed promising preliminary results, oxygen limitations presented significant limitations in studying the biochemical and cultural characteristics of these cell types. Microbial cell systems such as bacteria and yeast promise significant potential as investigative models to study the effects of microgravity on membrane transport, as well as substrate induction of inactive enzyme systems. Additionally, the smaller size of the microorganisms should further reduce the gravity induced oscillatory particle motion and thereby improve the microgravity simulation on earth. Focus is on the unique conceptual design, and subsequent development of a rotating bioreactor that is compatible with the culture and investigation of microgravity effects on microbial systems. The new reactor design will allow testing of highly aerobic cell types under simulated microgravity conditions. The described reactor affords a mechanism for investigating the long term effects of reduced gravity on cellular respiration, membrane transfer, ion exchange, and substrate conversions. It offers the capability of dynamically altering nutrients, oxygenation, pH, carbon dioxide, and substrate concentration without disturbing the microgravity simulation, or Couette flow, of the reactor. All progeny of the original cell inoculum may be acclimated to the simulated microgravity in the absence of a substrate or nutrient. The reactor has the promise of allowing scientists to probe the long term effects of weightlessness on cell interactions in plants, bacteria, yeast, and fungi. The reactor is designed to have a flow field growth chamber with uniform shear stress, yet transfer high concentrations of oxygen into the culture medium. The system described allows for continuous, on line sampling for production of product without disturbing fluid and particle dynamics in the reaction chamber. It provides for the introduction of substrate, or control substances after cell adaptation to simulated microgravity has been accomplished. The reactor system provides for the nondisruptive, continuous flow replacement of nutrient and removal of product. On line monitoring and control of growth conditions such as pH and nutrient status are provided. A rotating distribution valve allows cessation of growth chamber rotation, thereby preserving the simulated microgravity conditions over longer periods of time.

  8. Characterization of Low-Frequency Combustion Stability of the Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Jones, Preston (Technical Monitor)

    2002-01-01

    A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. During mainstage, the thrust chamber exhibited no large-amplitude chamber pressure oscillations that could be identified as low-frequency combustion instability or 'chug'. However, during start-up and shutdown, the thrust chamber very briefly exhibited large-amplitude chamber pressure oscillations that were identified as chug. These instabilities during start-up and shutdown were regarded as benign due to their brevity. Linear models of the thrust chamber and the propellant feed systems were formulated for both the thrust chamber component tests and the flight engine tests. These linear models determined the frequency and decay rate of chamber pressure oscillations given the design and operating conditions of the thrust chamber and feed system. The frequency of chamber pressure oscillations determined from the model closely matched the frequency of low-amplitude, low-frequency chamber pressure oscillations exhibited in some of the later thrust chamber mainstage tests. The decay rate of the chamber pressure oscillations determined from the models indicated that these low-frequency oscillations were stable. Likewise, the decay rate, determined from the model of the flight engine tests indicated that the low-frequency chamber pressure oscillations would be stable.

  9. Development of a large-scale isolation chamber system for the safe and humane care of medium-sized laboratory animals harboring infectious diseases*

    PubMed Central

    Pan, Xin; Qi, Jian-cheng; Long, Ming; Liang, Hao; Chen, Xiao; Li, Han; Li, Guang-bo; Zheng, Hao

    2010-01-01

    The close phylogenetic relationship between humans and non-human primates makes non-human primates an irreplaceable model for the study of human infectious diseases. In this study, we describe the development of a large-scale automatic multi-functional isolation chamber for use with medium-sized laboratory animals carrying infectious diseases. The isolation chamber, including the transfer chain, disinfection chain, negative air pressure isolation system, animal welfare system, and the automated system, is designed to meet all biological safety standards. To create an internal chamber environment that is completely isolated from the exterior, variable frequency drive blowers are used in the air-intake and air-exhaust system, precisely controlling the filtered air flow and providing an air-barrier protection. A double door transfer port is used to transfer material between the interior of the isolation chamber and the outside. A peracetic acid sterilizer and its associated pipeline allow for complete disinfection of the isolation chamber. All of the isolation chamber parameters can be automatically controlled by a programmable computerized menu, allowing for work with different animals in different-sized cages depending on the research project. The large-scale multi-functional isolation chamber provides a useful and safe system for working with infectious medium-sized laboratory animals in high-level bio-safety laboratories. PMID:20872984

  10. Temporal variability of nitrous oxide fluxes from a fertilized grassland in Belgium: preliminary results from dynamic closed chambers.

    NASA Astrophysics Data System (ADS)

    Beekkerk van Ruth, Joran; Moureaux, Christine; Degré, Aurore; Jérome, Elisabeth; Beckers, Yves; Bodson, Bernard; Aubinet, Marc

    2013-04-01

    This work presents preliminary results of nitrous oxide (N2O) fluxes measured by dynamic closed chambers from a fertilized grassland grazed by the Belgian Blue breed of cattle. It is part of a project funded by the public service of Wallonia (SPW-DGARNE), whose objectives are to make a carbon/CO2 balance of the grassland (Jérôme et al., 2013) and to quantify CH4 (Dumortier et al., 2013) and N2O fluxes. The site is located in Dorinne (Dorinne Terrestrial Observatory), Belgium (50° 18' 44" N; 4° 58' 07" E; 248 m al.). It is a permanent grassland of ca. 4.2 ha with a moderate slope of 1 to 2 %. Mineral fertilisation took place in March and May 2012. Two cylindrical chambers of 19,2 cm diameter and 11,5 cm height were placed inside a protected area around a micrometeorological station. An infrared gas analyser (Thermofischer 46i) was used in order to measure the N2O concentrations inside of the chambers, closed by automatically controlled lids and ventilated by a constant air flow of 1liter/min. These devices were completed by adjacent soil humidity and temperature sensors. The first measurement campaign took place during June and July 2012. The chambers were installed in the field and N2O fluxes were followed without manipulation. N2O fluxes were characterised by a background emission (between 2 and 10 ngN.m2s-1) on which intense but time limited peaks (between 50 and 300 ngN.m2s-1) superimposed. Peaks were found to be mainly linked to fertilisation and driven by precipitation. Background fluxes were found to correlate positively with soil temperature. Secondly, a manipulation experiment took place in November 2012: two different fertilizer treatments were applied to the chambers. Doses of respectively 100 and 200 kg N/ha of ammonium nitrate were sprayed in the chambers (equivalent to a 8 mm precipitation). N2O fluxes peaked shortly after fertiliser application (respectively 300 and 550 ngN.m2s-1), as well as after a posterior rain event (respectively 800 and 1500 ngN.m2s-1). The peak dynamics suggests a complex interaction between soil humidity and nitrogen availability, which is under study. Dumortier et al., Geophysical Research Abstracts, Vol. 15, EGU2013-2083-1, 2013 Jérôme et al., Geophysical Research Abstracts Vol. 15, EGU2013-6989, 2013 Keywords: grassland, N2O, chamber method, fertilizer

  11. Almond Test Body. [for microwave anechoic chambers

    NASA Technical Reports Server (NTRS)

    Dominek, Allen K. (Inventor); Wood, Richard M. (Inventor); Gilreath, Melvin C. (Inventor)

    1989-01-01

    The invention is an almond shaped test body for use in measuring the performance characteristics of microwave anechoic chambers and for use as a support for components undergoing radar cross-section measurements. The novel aspect of this invention is its shape, which produces a large dynamic scattered field over large angular regions making the almond valuable for verifying the performance of microwave anechoic chambers. As a component mount, the almond exhibits a low return that does not perturb the measurement of the component and it simulates the backscatter characteristics of the component as if over an infinite ground plane.

  12. Beyond CO2 - Tackling the full greenhouse gas budget of a sub-alpine forest ecosystem

    NASA Astrophysics Data System (ADS)

    Burri, Susanne; Merbold, Lutz; Meier, Philip; Eugster, Werner; Hörtnagl, Lukas; Buchmann, Nina

    2017-04-01

    In order to tackle the full greenhouse gas (GHG) budgets of forest ecosystems, it is desirable but challenging to quantify the three major GHGs, i.e. CO2, CH4 and N2O simultaneously in-situ. At the long-term forest research site Davos (Candidate Class I Ecosystem Station within the Integrated Carbon Observation System - ICOS), we have recently installed a state-of-the-art measuring system simultaneously to observe the three GHGs on a high temporal resolution and both within and above the forest canopy. Thereby, we combine above-canopy eddy covariance flux measurements and forest floor chamber flux measurements (using five custom-made fully automated chambers). Both systems are connected to a quantum cascade laser absorption spectrometer (QCL, Aerodyne) and measurements are switched between three hours of above-canopy and one hour of forest floor GHG flux measurements. Using this approach, we will be able to study the full GHG budget as well as the dynamics of the individual fluxes on two vertical levels within the forest using a single instrument. The first results presented here will highlight the suitability of this promising tool for quantifying the full GHG budget of forest ecosystems.

  13. Chambers versus Relaxed Eddy Accumulation: an intercomparison study of two methods for short-term measurements of biogenic CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Chmura, Lukasz; Necki, Jaroslaw

    2014-05-01

    The presented work is a part of comprehensive study aimed at thorough characterization of carbon cycle in the urban environment of Krakow, southern Poland. In the framework of this study two independent methods were employed to quantify biogenic CO2 flux in the city: (i) closed chambers, and (ii) Relaxed Eddy Accumulation (REA). The results of a three-day intensive intercomparison campaign performed in July 2013 and utilizing both measurement methods are reported here. The chamber method is a widely used approach for measurements of gas exchange between the soil and the atmosphere. The system implemented in this study consisted of a single chamber operating in a closed-dynamic mode, combined with Vaisala CarboCAP infrared CO2 sensor in a mobile setup. An alternative flux measurement method, covering larger area is represented by REA, which is a modification of the eddy covariance method. It consists of a 3D anemometer (Gill Windmaster Pro) and the system collecting updraft and downdraft samples to 5-litre Tedlar bags. The CO2 mixing ratios in the collected samples are measured by Picarro G2101i analyzer. The setup consists of two sets of bags so that the sampling can be performed continuously with 15-min temporal resolution. A 48-hectares open meadow located close the city center was chosen as a test site for comparison of the two methods of CO2 flux measurements outlined above. In the middle of the meadow a 3-metre high tripod was installed with the anemometer and REA inlet system. For a period of 46 hours the system was measuring net CO2 flux from the surrounding area. A meteorological conditions and intensity of photosynthetically active radiation (PAR) were also recorded. In the same time, CO2 flux from several points around the REA inlet was measured with the chamber system, resulting in 93 values for both respiration and net CO2 flux. Chamber results show rather homogenous distribution of the soil CO2 flux (the mean value equal to 40.9 ± 2.2 mmol/m2h), with slight increase towards the city centre. Good agreement between the two measurement methods was obtained, with night-time flux ranging from around 10 to 80 mmol/m2h and day-time net flux reaching -88 mmol/m2h at peak PAR intensity. Positive correlation between the net CO2 flux and intensity of PAR was also observed. Acknowledgements: The study was supported by the Ministry of Science and Higher Education (817.N-COST/2010/0) and the statutory funds of the AGH University of Science and Technology (11.11.220.01).

  14. Thermohydrodynamic model: Hydrothermal system, shallowly seated magma chamber

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.

    1985-02-01

    The results of numerical modeling of heat exchange in the Hawaiian geothermal reservoir demonstrate the possibility of appearance of a hydrothermal system over a magma chamber. This matter was investigated in hydrothermal system. The equations for the conservation of mass and energy are discussed. Two possible variants of interaction between the magma chamber and the hydrothermal system were computated stationary dry magma chamber and dry magma chamber changing volume in dependence on the discharge of magma and taking into account heat exchange with the surrounding rocks. It is shown that the thermal supplying of the hydrothermal system can be ensured by the extraction of heat from a magma chamber which lies at a depth of 3 km and is melted out due to receipt of 40 cubic km of basalt melt with a temperature of 1,300 C. The initial data correspond with computations made with the model to the temperature values in the geothermal reservoir and a natural heat transfer comparable with the actually observed values.

  15. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    NASA Astrophysics Data System (ADS)

    Naidu, M. C. A.; Nolakha, Dinesh; Saharkar, B. S.; Kavani, K. M.; Patel, D. R.

    2012-11-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of "Open loop, auto reversing liquid nitrogen based thermal system". System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  16. CFD Code Survey for Thrust Chamber Application

    NASA Technical Reports Server (NTRS)

    Gross, Klaus W.

    1990-01-01

    In the quest fo find analytical reference codes, responses from a questionnaire are presented which portray the current computational fluid dynamics (CFD) program status and capability at various organizations, characterizing liquid rocket thrust chamber flow fields. Sample cases are identified to examine the ability, operational condition, and accuracy of the codes. To select the best suited programs for accelerated improvements, evaluation criteria are being proposed.

  17. Two-statge sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  18. Advanced Expander Test Bed Program

    DTIC Science & Technology

    1991-04-01

    CHAMBER COOLANT DP 503. CHAMBER COOLANT DT 896. ETA C* 0.993 CHAMBER Q 12371. ENGINE STATION CONDITIONS FUEL SYSTEM CONDITIONS STATION PRESS TEMP FLOW...1597.3 452.5 7.44 1507.1 0.62 CHAMBER 1500.0 * OXYGEN SYSTEM CONDITIONS STATION PRESS TEMP FLOW ENTHALPY DENSITY ENGINE INLET 70.0 163.0- 44.64 61.2...FUEL SYSTEM CONOITIONS PRESS TEMP FLOM ENTHALPY OENSITY STATION (PSIA) (DEG R) (LB/SEC) [(BTU/LB) (LB/FT31 ENGINE INLET 73.0 38.0 7.440 -104.8 4.389

  19. The 'Natural Laboratory', a tool for deciphering growth, lifetime and population dynamics in larger benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Hohenegger, Johann

    2015-04-01

    The shells of symbiont-bearing larger benthic Foraminifera (LBF) represent the response to physiological requirements in dependence of environmental conditions. All compartments of the shell such as chambers and chamberlets accommodate the growth of the cell protoplasm and are adaptations for housing photosymbiotic algae. Investigations on the biology of LBF were predominantly based on laboratory studies. The lifetime of LBF under natural conditions is still unclear. LBF, which can build >100 chambers during their lifetime, are thought to live at least one year under natural conditions. This is supported by studies on population dynamics of eulittoral foraminifera. In species characterized by a time-restricted single reproduction period the mean size of specimens increases from small to large during lifetime simultaneously reducing individual number. This becomes more complex when two or more reproduction times are present within a one-year cycle leading to a mixture of abundant small individuals with few large specimens during the year, while keeping mean size more or less constant. This mixture is typical for most sublittoral megalospheric (gamonts or schizonts) LBF. Nothing is known on the lifetime of agamonts, the diploid asexually reproducing generation. In all hyaline LBF it is thought to be significantly longer than 1 year based on the large size and considering the mean chamber building rate of the gamont/schizonts. Observations on LBF under natural conditions have not been performed yet in the deeper sublittoral. This reflects the difficulties due to intense hydrodynamics that hinder deploying technical equipment for studies in the natural environment. Therefore, studying growth, lifetime and reproduction of sublittoral LBF under natural conditions can be performed using the so-called 'natural laboratory' in comparison with laboratory investigations. The best sampling method in the upper sublittoral from 5 to 70 m depth is by SCUBA diving. Irregular sampling intervals caused by differing weather conditions may range from weeks to one month, whereby the latter represents the upper limit: larger intervals could render the data set worthless. The number of sampling points at the location must be more than 4, randomly distributed and approximately 5m apart to smooth the effects of patchy distributions, which are typical for most LBF. Only three simple measurements are necessary to determine chamber building rate and population dynamics under natural conditions. These are the number of individuals, number of chambers and the largest diameter of the individual. The determination of a standardized sample surface area, which is necessary for population dynamic investigations, depends on the sampling method. Reproduction and longevity can be estimated based on shell size using the date where the mean abundance of specimens with minimum size (expected after a one month's growth) characterizes the reproduction period. Then the difference to the date with the mean abundance of specimens characterized by large size indicating readiness for reproduction marks the life time. Calculation of the chamber-building rate based on chamber number is more complex and depends on the reproduction period and longevity. This can be fitted with theoretical growth functions (e.g. Michaelis Menten Function). According to the above mentioned methods, chamber building rates, longevity and population dynamics can be obtained for the shallow sublittoral symbiont-bearing LBF using the 'natural laboratory'.

  20. Quantification of wind flow in the European Mars Simulation Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Merrison, J. P.; Iversen, J. J.; Nornberg, P.

    2012-04-01

    We present the European Mars Simulation Wind Tunnel facility, a unique prototype facility capable of simulating a wide range of environmental conditions, such as those which can be found at the surface of Earth or Mars. The chamber complements several other large-scale simulation facilities at Aarhus University, Denmark. The facility consists of a 50 m3 environmental chamber capable of operating at low pressure (0.02 - 1000 mbar) and cryogenic temperatures (-130 °C up to +60 °C). This chamber houses a re-circulating wind tunnel capable of generating wind speeds up to 25 m/s and has a dust injection system that can produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor wind flow, dust suspension and deposition. This involves a commercial Laser Doppler Anemometer (LDA) and a Particle Dynamics Analysis receiver (PDA), which are small laser based instruments specifically designed for measuring wind speed and sizes of particles situated in a wind flow. Wind flow calibrations will be performed with the LDA system and presented. Pressure and temperature calibrations will follow in order to enable the facility to be used for the testing, development, calibration and comparison of e.g. meteorological sensors under a wide range of environmental conditions as well as multi-disciplinary scientific studies. The wind tunnel is accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European Space Agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kann Rasmussen Foundation.

  1. Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong

    2005-11-01

    A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.

  2. Oxide Protective Coats for Ir/Re Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Fortini, Arthur; Tuffias, Robert H.

    2003-01-01

    An improved material system has been developed for rocket engine combustion chambers for burning oxygen/ hydrogen mixtures or novel monopropellants, which are highly oxidizing at operating temperatures. The baseline for developing the improved material system is a prior iridium/rhenium system for chambers burning nitrogen tetroxide/monomethyl hydrazine mixtures, which are less oxidizing. The baseline combustion chamber comprises an outer layer of rhenium that provides structural support, plus an inner layer of iridium that acts as a barrier to oxidation of the rhenium. In the improved material system, the layer of iridium is thin and is coated with a thermal fatigue-resistant refractory oxide (specifically, hafnium oxide) that serves partly as a thermal barrier to decrease the temperature and thus the rate of oxidation of the rhenium. The oxide layer also acts as a barrier against the transport of oxidizing species to the surface of the iridium. Tests in which various oxygen/hydrogen mixtures were burned in iridium/rhenium combustion chambers lined with hafnium oxide showed that the operational lifetimes of combustion chambers of the improved material system are an order of magnitude greater than those of the baseline combustion chambers.

  3. Catalyst Bed Instability Within the USFE H2O2/JP-8 Rocket Engine

    NASA Technical Reports Server (NTRS)

    Johnson, Curtis W.; Anderson, William; Ross, Robert; Lyles, G. (Technical Monitor)

    2000-01-01

    Orbital Sciences Corporation has been awarded a contract by NASA's Marshall Space Flight Center, in cooperation with the U.S. Air Force Research Laboratory's Military Space Plane Technology Program Office, for the Upper Stage Flight Experiment (USFE) program. Orbital is designing, developing, and will flight test a new low-cost, 10,000 lbf hydrogen peroxide/ JP-8 pressure fed liquid rocket. During combustion chamber tests at NASA Stennis Space Center (SSC) of the USFE engine, the catalyst bed showed a low frequency instability occurring as the H202 flow reached about 1/3 its design rate. This paper reviews the USFE catalyst bed and combustion chamber and its operation, then discusses the dynamics of the instability. Next the paper describes the dynamic computer model used to recreate the instability. The model was correlated to the SSC test data, and used to investigate possible solutions to the problem. The combustion chamber configuration which solved the instability is shown, and the subsequent stable operation presented.

  4. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  5. Volume-based characterization of postocclusion surge.

    PubMed

    Zacharias, Jaime; Zacharias, Sergio

    2005-10-01

    To propose an alternative method to characterize postocclusion surge using a collapsible artificial anterior chamber to replace the currently used rigid anterior chamber model. Fundación Oftamológica Los Andes, Santiago, Chile. The distal end of a phacoemulsification handpiece was placed inside a compliant artificial anterior chamber. Digital recordings of chamber pressure, chamber volume, inflow, and outflow were performed during occlusion break of the phacoemulsification tip. The occlusion break profile of 2 different consoles was compared. Occlusion break while using a rigid anterior chamber model produced a simultaneous increase of chamber inflow and outflow. In the rigid chamber model, pressure decreased sharply, reaching negative pressure values. Alternatively, with the collapsible chamber model, a delay was observed in the inflow that occurs to compensate the outflow surge. Also, the chamber pressure drop was smaller in magnitude, never undershooting below atmospheric pressure into negative values. Using 500 mm Hg as vacuum limit, the Infiniti System (Alcon) performed better that the Legacy (Alcon), showing an 18% reduction in peak volume variation. The collapsible anterior chamber model provides a more realistic representation of the postocclusion surge events that occur in the real eye during cataract surgery. Peak volume fluctuation (mL), half volume recovery time(s), and volume fluctuation integral value (mL x s) are proposed as realistic indicators to characterize the postocclusion surge performance. These indicators show that the Infiniti System has a better postocclusion surge behavior than the Legacy System.

  6. Distributed Parameter Analysis of Pressure and Flow Disturbances in Rocket Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Wood, Don J.; Lightner, Charlene

    1966-01-01

    A digital distributed parameter model for computing the dynamic response of propellant feed systems is formulated. The analytical approach used is an application of the wave-plan method of analyzing unsteady flow. Nonlinear effects are included. The model takes into account locally high compliances at the pump inlet and at the injector dome region. Examples of the calculated transient and steady-state periodic responses of a simple hypothetical propellant feed system to several types of disturbances are presented. Included are flow disturbances originating from longitudinal structural motion, gimbaling, throttling, and combustion-chamber coupling. The analytical method can be employed for analyzing developmental hardware and offers a flexible tool for the calculation of unsteady flow in these systems.

  7. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott; Turner, James (Technical Monitor)

    2001-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity, but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to-diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer and one fuel orifices) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme as Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 92%, can be obtained. MSFC and the U.S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RPM) system has been derived from the one for the gel propellant.

  8. Systems for column-based separations, methods of forming packed columns, and methods of purifying sample components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  9. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2006-02-21

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  10. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components.

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2004-08-24

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  11. Real time viability detection of bacterial spores

    DOEpatents

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  12. Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures

    NASA Astrophysics Data System (ADS)

    Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer

    2016-03-01

    Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.

  13. Numerical model for the evaluation of Earthquake effects on a magmatic system.

    NASA Astrophysics Data System (ADS)

    Garg, Deepak; Longo, Antonella; Papale, Paolo

    2016-04-01

    A finite element numerical model is presented to compute the effect of an Earthquake on the dynamics of magma in reservoirs with deformable walls. The magmatic system is hit by a Mw 7.2 Earthquake (Petrolia/Capo Mendocina 1992) with hypocenter at 15 km diagonal distance. At subsequent times the seismic wave reaches the nearest side of the magmatic system boundary, travels through the magmatic fluid and arrives to the other side of the boundary. The modelled physical system consists in the magmatic reservoir with a thin surrounding layer of rocks. Magma is considered as an homogeneous multicomponent multiphase Newtonian mixture with exsolution and dissolution of volatiles (H2O+CO2). The magmatic reservoir is made of a small shallow magma chamber filled with degassed phonolite, connected by a vertical dike to a larger deeper chamber filled with gas-rich shoshonite, in condition of gravitational instability. The coupling between the Earthquake and the magmatic system is computed by solving the elastostatic equation for the deformation of the magmatic reservoir walls, along with the conservation equations of mass of components and momentum of the magmatic mixture. The characteristic elastic parameters of rocks are assigned to the computational domain at the boundary of magmatic system. Physically consistent Dirichlet and Neumann boundary conditions are assigned according to the evolution of the seismic signal. Seismic forced displacements and velocities are set on the part of the boundary which is hit by wave. On the other part of boundary motion is governed by the action of fluid pressure and deviatoric stress forces due to fluid dynamics. The constitutive equations for the magma are solved in a monolithic way by space-time discontinuous-in-time finite element method. To attain additional stability least square and discontinuity capturing operators are included in the formulation. A partitioned algorithm is used to couple the magma and thin layer of rocks. The magmatic system is highly disturbed during the maximum amplitude of the seismic wave, showing random to oscillatory velocity and pressure, after which it follows the natural dynamic state of gravitational destabilization. The seismic disturbance remarkably triggers propagation of pressure waves at magma sound speed, reflecting from bottom to top, left and right of the magmatic system. A signal analysis of the frequency energy content is reported.

  14. A multiple chamber, semicontinuous, crop carbon dioxide exchange system: design, calibration, and data interpretation

    NASA Technical Reports Server (NTRS)

    van Iersel, M. W.; Bugbee, B.

    2000-01-01

    Long-term, whole crop CO2 exchange measurements can be used to study factors affecting crop growth. These factors include daily carbon gain, cumulative carbon gain, and carbon use efficiency, which cannot be determined from short-term measurements. We describe a system that measures semicontinuously crop CO2 exchange in 10 chambers over a period of weeks or months. Exchange of CO2 in every chamber can be measured at 5 min intervals. The system was designed to be placed inside a growth chamber, with additional environmental control provided by the individual gas exchange chambers. The system was calibrated by generating CO2 from NaHCO3 inside the chambers, which indicated that accuracy of the measurements was good (102% and 98% recovery for two separate photosynthesis systems). Since the systems measure net photosynthesis (P-net, positive) and dark respiration(R-dark, negative), the data can be used to estimate gross photosynthesis, daily carbon gain, cumulative carbon gain, and carbon use efficiency. Continuous whole-crop measurements are a valuable tool that complements leaf photosynthesis measurements. Multiple chambers allow for replication and comparison among several environmental or cultural treatments that may affect crop growth. Example data from a 2 week study with petunia (Petunia x hybrida Hort. Vilm.-Andr.) are presented to illustrate some of the capabilities of this system.

  15. Viking 1975 Orbiter Development Test Model/Lander Dynamic Test Model dynamic environmental testing - An overview

    NASA Technical Reports Server (NTRS)

    Milder, G.

    1975-01-01

    The current work presents an overview of the Viking 1975 environmental testing from an engineering standpoint. An extremely large vibration test fixture had to be designed, analyzed, and integrated into a test setup that employed hydrostatic bearings in a new fashion. A vibration control system was also required that would allow for thirty-six channels of sine-wave peak select control from acceleration, force-of-strain transducers. In addition, some 68 channels of peak limiting shutdown capability were needed for backup and monitoring of other data during the forced vibration test. Pretesting included analyses of the fixture design, overturning moment, control system capabilities, and response of the entire spacecraft/fixture/exciter system to the test environment. Closed-loop control for acoustic testing was a necessity due to the fact that the Viking spacecraft took up a major portion of the volume of the 10,000 cu ft chamber. The spacecraft emerged from testing undamaged.

  16. Trace explosives sensor testbed (TESTbed)

    NASA Astrophysics Data System (ADS)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  17. History and overview of the in vivo diffusion chamber (D. C. ) culture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carsten, A.L.

    The development of the modern diffusion chamber system has been traced from the nearly 100 year old concept for in vivo growth of isolated cells in a semi-permeable container to the modern systems consisting of single and multiple chambers with differing wall materials. Various applications of the system and methods of analysis are discussed. The many advantages and disadvantages of this system are considered as compared with other available culture systems.

  18. Experimental study of the vidicon system for information recording using the wide-gap spark chamber of gamma - telescope gamma-I

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Bazer-Bashv, R.; Voronov, S. A.; Galper, A. M.; Gro, M.; Kalinkin, L. F.; Kerl, P.; Kozlov, V. D.; Koten, F.; Kretol, D.

    1979-01-01

    The development of the gamma ray telescope is investigated. The wide gap spark chambers, used to identify the gamma quanta and to determine the directions of their arrival, are examined. Two systems of information recording with the spark chambers photographic and vidicon system are compared.

  19. (TES) Thermal Enclosure System with (COS) Crystal Observation System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The COS consists of a specially designed (VDA) Vapor Diffusion Apparatus tray with 6 chambers, a video camera for each chamber, a lighting system, and associated hardware. By observing the crystal growth in each chamber, researchers can identify which conditions and concentrations of proteins and precipitants are best for promoting the crystal growth to a particular protein.

  20. NEUTRONIC REACTION SYSTEM

    DOEpatents

    Wigner, E.P.

    1963-09-01

    A nuclear reactor system is described for breeding fissionable material, including a heat-exchange tank, a high- and a low-pressure chamber therein, heat- exchange tubes connecting these chambers, a solution of U/sup 233/ in heavy water in a reaction container within the tank, a slurry of thorium dioxide in heavy water in a second container surrounding the first container, an inlet conduit including a pump connecting the low pressure chamber to the reaction container, an outlet conduit connecting the high pressure chamber to the reaction container, and means of removing gaseous fission products released in both chambers. (AEC)

  1. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  2. Two stage sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system is disclosed. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  3. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrudan, R.; Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin; Brüssing, F.

    2015-06-15

    We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses tomore » excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.« less

  4. Transfer Ionization Studies for Proton on He - new Inside into the World of Correlation

    NASA Astrophysics Data System (ADS)

    Schmidt-Böcking, Horst

    2005-04-01

    Correlated many-particle dynamics in Coulombic systems, which is one of the unsolved fundamental problems in AMO-physics, can now be experimentally approached with so far unprecedented completeness and precision. The recent development of the COLTRIMS technique (COLd Target Recoil Ion Momentum Spectroscopy) provides a coincident multi-fragment imaging technique for eV and sub-eV fragment detection. In its completeness it is as powerful as the bubble chamber in high energy physics. In recent benchmark experiments quasi snapshots (duration as short an atto-sec) of the correlated dynamics between electrons and nuclei has been made for atomic and molecular objects. This new imaging technique has opened a powerful observation window into the hidden world of many-particle dynamics. Recent transfer ionization studies will be presented and the direct observation of correlated electron pairs will be discussed.

  5. Davisson-Germer Prize in Atomic or Surface Physics: The COLTRIMS multi-particle imaging technique-new Insight into the World of Correlation

    NASA Astrophysics Data System (ADS)

    Schmidt-Bocking, Horst

    2008-05-01

    The correlated many-particle dynamics in Coulombic systems, which is one of the unsolved fundamental problems in AMO-physics, can now be experimentally approached with so far unprecedented completeness and precision. The recent development of the COLTRIMS technique (COLd Target Recoil Ion Momentum Spectroscopy) provides a coincident multi-fragment imaging technique for eV and sub-eV fragment detection. In its completeness it is as powerful as the bubble chamber in high energy physics. In recent benchmark experiments quasi snapshots (duration as short as an atto-sec) of the correlated dynamics between electrons and nuclei has been made for atomic and molecular objects. This new imaging technique has opened a powerful observation window into the hidden world of many-particle dynamics. Recent multiple-ionization studies will be presented and the observation of correlated electron pairs will be discussed.

  6. Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.

    2015-09-01

    We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.

  7. Technology, Applications, and Process Challenges of Dual Chamber Systems.

    PubMed

    Werk, Tobias; Ludwig, Imke S; Luemkemann, Joerg; Mahler, Hanns-Christian; Huwyler, Joerg; Hafner, Mathias

    2016-01-01

    Dual-chamber systems provide an option as a drug and device combination product, when home care and emergency lyophilized products are intended. Nevertheless, until today, there are only a few products on the market, due to the challenges and limitations in manufacturability, product formulation, and product stability in a dual-chamber configuration, as well as economic considerations. This review serves to describe currently available dual-chamber systems and to discuss factors to be considered for appropriate selection and establishing fill-finish processes. Copyright © 2016. Published by Elsevier Inc.

  8. Visual-motor response of crewmen during a simulated 90-day space mission as measured by the critical task battery

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Jex, H. R.

    1973-01-01

    In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in a space station simulator for 90 days and administered a tracking test battery. The battery included a clinical test (Critical Instability Task) designed to measure a subject's dynamic time delay, and a more conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The levels of each parameter span the range observed with professional pilots and astronaut candidates tested previously. The chamber environment caused no significant decrement on the average crewman's dynamic response behavior, and the subjects continued to improve slightly in their tracking skills during the 90-day confinement period.

  9. Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs.

    PubMed

    Costa, Pedro F; Hutmacher, Dietmar W; Theodoropoulos, Christina; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck

    2015-04-22

    The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New Processes for Freeze-Drying in Dual-Chamber Systems.

    PubMed

    Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M

    2016-01-01

    Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this challenge by (1) freeze-drying the drug product in the syringe in an orientation in which the product is closest to the heat source, or (2) freeze-drying the drug product outside the syringe in a metal tube. The latter requires filling the freeze-dried product subsequently into the dual-chamber syringe. Both processes were very efficient and promised to achieve similar freeze-drying conditions for all dual-chamber syringes within one production run. The proposed processes may help to considerably decrease investment costs into dual-chamber syringe fill-finish equipment. © PDA, Inc. 2016.

  11. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  12. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  13. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  14. Theoretical Investigation of the Viscous Damping Coefficient of Hydraulic Actuators

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Hui; Pan, Qing; Li, Yi-Bo; Ma, Peng-Da; Ma, Jun

    2017-07-01

    The viscous damping coefficient (VDC) of hydraulic actuators is crucial for system modeling, control and dynamic characteristic analysis. Currently, the researches on hydraulic actuators focus on behavior assessment, promotion of control performance and efficiency. However, the estimation of the VDC is difficult due to a lack of study. Firstly, using two types of hydraulic cylinders, behaviors of the VDC are experimentally examined with velocities and pressure variations. For the tested plunger type hydraulic cylinder, the exponential model B = α υ^{ - β } ,(α > 0,β > 0) or B = α1 e^{{ - β1 υ }} + α2 e^{{ - β2 υ }} (α1 ,α2 > 0,β1 ,β2 > 0), fits the relation between the VDC and velocities for a given pressure of chamber with high precision. The magnitude of the VDC decreases almost linearly under certain velocities when increasing the chamber pressure from 0.6 MPa to 6.0 MPa. Furthermore, the effects of the chamber pressures on the VDC of piston and plunge type hydraulic cylinders are different due to different sealing types. In order to investigate the VDC of a plunger type hydraulic actuator drastically, a steady-state numerical model has been developed to describe the mechanism incorporating tandem seal lubrication, back-up ring related friction behaviors and shear stress of fluid. It is shown that the simulated results of VDC agree with the measured results with a good accuracy. The proposed method provides an instruction to predict the VDC in system modeling and analysis.

  15. Plant growth chamber based on space proven controlled environment technology

    NASA Astrophysics Data System (ADS)

    Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.

    1997-01-01

    Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.

  16. Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm.

    PubMed

    Del Gallego, R; Sadeghi, S; Blasco, E; Soler, C; Yániz, J L; Silvestre, M A

    2017-02-01

    Several factors unrelated to the semen samples could be influencing in the sperm motility analysis. The aim of the present research was to study the effect of four chambers with different characteristics, namely; slide-coverslip, Spermtrack, ISAS D4C10, and ISAS D4C20 on the sperm motility. The filling procedure (drop or capillarity) and analysis time (0, 120 and 240s), depth of chamber (10 or 20μm) and field on motility variables were analysed by use of the CASA-mot system in goat sperm. Use of the drop-filling chambers resulted in greater values than capillarity-filling chambers for all sperm motility and kinetic variables, except for LIN (64.5% compared with 56.3% of motility for drop- and capillarity-filling chambers respectively, P<0.05). There were no significant differences in total sperm motility between different chamber depths, however, use of the 20μm-chambers resulted in greater sperm progressive motility rate, VSL and LIN, and less VCL and VAP than chambers with a lesser depth. There was less sperm motility and lesser values for kinetic variables as time that elapsed increased between sample loading and sperm evaluation. For sperm motility, use of droplet-loaded chambers resulted in similar values of MOT in all microscopic fields, but sperm motility assessed in capillarity-loaded chambers was less in the central fields than in the outermost microscopic fields. For goats, it is recommended that sperm motility be analysed using the CASA-mot system with a drop-loaded chamber within 2min after filling the chamber. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Neuronal Cell Cultures from Aplysia for High-Resolution Imaging of Growth Cones

    PubMed Central

    Lee, Aih Cheun; Decourt, Boris; Suter, Daniel

    2008-01-01

    Neuronal growth cones are the highly motile structures at the tip of axons that can detect guidance cues in the environment and transduce this information into directional movement towards the appropriate target cell. To fully understand how guidance information is transmitted from the cell surface to the underlying dynamic cytoskeletal networks, one needs a model system suitable for live cell imaging of protein dynamics at high temporal and spatial resolution. Typical vertebrate growth cones are too small to quantitatively analyze F-actin and microtubule dynamics. Neurons from the sea hare Aplysia californica are 5-10 times larger than vertebrate neurons, can easily be kept at room temperature and are very robust cells for micromanipulation and biophysical measurements. Their growth cones have very defined cytoplasmic regions and a well-described cytoskeletal system. The neuronal cell bodies can be microinjected with a variety of probes for studying growth cone motility and guidance. In the present protocol we demonstrate a procedure for dissection of the abdominal ganglion, culture of bag cell neurons and setting up an imaging chamber for live cell imaging of growth cones. PMID:19066568

  18. Using dynamic flux chambers to estimate the natural attenuation rates in the subsurface at petroleum contaminated sites.

    PubMed

    Verginelli, Iason; Pecoraro, Roberto; Baciocchi, Renato

    2018-04-01

    In this work, we introduce a screening method for the evaluation of the natural attenuation rates in the subsurface at sites contaminated by petroleum hydrocarbons. The method is based on the combination of the data obtained from standard source characterization with dynamic flux chambers measurements. The natural attenuation rates are calculated as difference between the flux of contaminants estimated with a non-reactive diffusive model starting from the concentrations of the contaminants detected in the source (soil and/or groundwater) and the effective emission rate of the contaminants measured using dynamic flux chambers installed at ground level. The reliability of this approach was tested in a contaminated site characterized by the presence of BTEX in soil and groundwater. Namely, the BTEX emission rates from the subsurface were measured in 4 seasonal campaigns using dynamic flux chambers installed in 14 sampling points. The comparison of measured fluxes with those predicted using a non-reactive diffusive model, starting from the source concentrations, showed that, in line with other recent studies, the modelling approach can overestimate the expected outdoor concentration of petroleum hydrocarbons even up to 4 orders of magnitude. On the other hand, by coupling the measured data with the fluxes estimated with the diffusive non-reactive model, it was possible to perform a mass balance to evaluate the natural attenuation loss rates of petroleum hydrocarbons during the migration from the source to ground level. Based on this comparison, the estimated BTEX loss rates in the test site were up to almost 0.5kg/year/m 2 . These rates are in line with the values reported in the recent literature for natural source zone depletion. In short, the method presented in this work can represent an easy-to-use and cost-effective option that can provide a further line of evidence of natural attenuation rates expected at contaminated sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Volume measuring system

    NASA Technical Reports Server (NTRS)

    Oele, J. S.

    1975-01-01

    Chamber is designed to be airtight; it includes face mask for person to breathe outside air so that he does not disturb chamber environment. Chamber includes piston to vary air volume inside. Also included are two microphone transducers which record pressure information inside chamber.

  20. Gaseous diffusion system

    DOEpatents

    Garrett, George A.; Shacter, John

    1978-01-01

    1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.

  1. Burner systems

    DOEpatents

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  2. Recirculating Molten Metal Supply System And Method

    DOEpatents

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-07-01

    The melter furnace includes a heating chamber (16), a pump chamber (18), a degassing chamber (20), and a filter chamber (22). The pump chamber (18) is located adjacent the heating chamber (16) and houses a molten metal pump (30). The degassing chamber (20) is located adjacent and in fluid communication with the pump chamber (18), and houses a degassing mechanism (36). The filter chamber (22) is located adjacent and in fluid communication with the degassing chamber (20). The filter chamber (22) includes a molten metal filter (38). The melter furnace (12) is used to supply molten metal to an externally located holder furnace (14), which then recirculates molten metal back to the melter furnace (12).

  3. Highly Permeable Silicon Membranes for Shear Free Chemotaxis and Rapid Cell Labeling

    PubMed Central

    Chung, Henry H.; Chan, Charles K.; Khire, Tejas S.; Marsh, Graham A.; Clark, Alfred; Waugh, Richard E.; McGrath, James L.

    2015-01-01

    Microfluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream. Here we demonstrate a chemotaxis system in which two chambers are separated by a molecularly thin (15 nm), transparent, and nanoporous silicon membrane. One chamber is a microfluidic channel that carries a flow-generated gradient while the other chamber is a shear-free environment for cell observation. The molecularly thin membranes provide effectively no resistance to molecular diffusion between the two chambers, making them ideal elements for creating flow-free chambers in microfluidic systems. Analytical and computational flow models that account for membrane and chamber geometry, predict shear reduction of more than five orders of magnitude. This prediction is confirmed by observing the pure diffusion of nanoparticles in the cell-hosting chamber despite high input flow (Q = 10 µL min−1; vavg ~45 mm min−1) in the flow chamber only 15 nm away. Using total internal reflection fluorescence (TIRF) microscopy, we show that a flow-generated molecular gradient will pass through the membrane into the quiescent cell chamber. Finally we demonstrate that our device allows us to expose migrating neutrophils to a chemotactic gradient or fluorescent label without any influence from flow. PMID:24850320

  4. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1984-01-01

    An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.

  5. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1982-01-01

    The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.

  6. BRIEF COMMUNICATIONS: Dynamics of lasing of two TEA CO2 lasers coupled by a nonlinear SF6 cell

    NASA Astrophysics Data System (ADS)

    Baranov, V. Yu; Dyad'kin, A. P.; Shpilyun, O. V.

    1991-10-01

    A study was made of the kinetics of stimulated emission from two TEA CO2 lasers in a system with frequency locking by phase conjugation as a result of a four-wave interaction of light [V. Yu. Baranov, A. P. Dyad'kin, V. V. Likhanskiĭ et al., Sov. J. Quantum Electron. 18, 1462 (1988)]. A simple method for ensuring two-pulse lasing with a variable time delay between the pulses in one gas-discharge chamber was proposed.

  7. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The activities leading to a tentative concept selection for a pressure-fed engine and propulsion support are outlined. Multiple engine concepts were evaluted through parallel engine major component and system analyses. Booster vehicle coordination, tradeoffs, and technology/development aspects are included. The concept selected for further evaluation has a regeneratively cooled combustion chamber and nozzle in conjuction with an impinging element injector. The propellants chosen are LOX/RP-1, and combustion stabilizing baffles are used to assure dynamic combustion stability.

  8. Dynamical Simulations of HD 69830

    NASA Astrophysics Data System (ADS)

    Payne, Matthew J.; Ford, Eric B.; Wyatt, Mark C.; Booth, Mark

    2009-02-01

    Previous studies have developed models for the growth and migration of three planets orbiting HD 69830. We perform n-body simulations using MERCURY (Chambers 1999) to explore the implications of these models for: 1) the excitation of planetary orbits via planet-planet interactions, 2) the accretion and clearing of a putative planetesimal disk, 3) the distribution of planetesimal orbits following migration, and 4) the implications for the origin of the observed infrared emission from the HD 69830 system. We report preliminary results that suggest new constraints on the formation of HD 69830.

  9. Material-controlled dynamic vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  10. Material-controlled dynamic vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1996-10-08

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  11. Radiation-controlled dynamic vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1995-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  12. Radiation-controlled dynamic vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  13. Gas exchange in NASA's biomass production chamber - A preprototype closed human life support system

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.; Wheeler, Raymond M.

    1992-01-01

    The unique capabilities of the NASA biomass production chamber for monitoring and evaluating gas exchange rates are examined. Special emphasis is given to results with wheat and soybeans. The potential of the chamber as a preprototype of a closed human life support system is considered.

  14. Recent Infrasound Calibration Activity at Los Alamos

    NASA Astrophysics Data System (ADS)

    Whitaker, R. W.; Marcillo, O. E.

    2014-12-01

    Absolute infrasound sensor calibration is necessary for estimating source sizes from measured waveforms. This can be an important function in treaty monitoring. The Los Alamos infrasound calibration chamber is capable of absolute calibration. Early in 2014 the Los Alamos infrasound calibration chamber resumed operations in its new location after an unplanned move two years earlier. The chamber has two sources of calibration signals. The first is the original mechanical piston, and the second is a CLD Dynamics Model 316 electro-mechanical unit that can be digitally controlled and provide a richer set of calibration options. During 2008-2010 a number of upgrades were incorporated for improved operation and recording. In this poster we give an overview of recent chamber work on sensor calibrations, calibration with the CLD unit, some measurements with different porous hoses and work with impulse sources.

  15. Microfluidic co-culture platform for investigating osteocyte-osteoclast signalling during fluid shear stress mechanostimulation.

    PubMed

    Middleton, K; Al-Dujaili, S; Mei, X; Günther, A; You, L

    2017-07-05

    Bone cells exist in a complex environment where they are constantly exposed to numerous dynamic biochemical and mechanical stimuli. These stimuli regulate bone cells that are involved in various bone disorders, such as osteoporosis. Knowledge of how these stimuli affect bone cells have been utilised to develop various treatments, such as pharmaceuticals, hormone therapy, and exercise. To investigate the role that bone loading has on these disorders in vitro, bone cell mechanotransduction studies are typically performed using parallel plate flow chambers (PPFC). However, these chambers do not allow for dynamic cellular interactions among different cell populations to be investigated. We present a microfluidic approach that exposes different cell populations, which are located at physiologically relevant distances within adjacent channels, to different levels of fluid shear stress, and promotes cell-cell communication between the different channels. We employed this microfluidic system to assess mechanically regulated osteocyte-osteoclast communication. Osteoclast precursors (RAW264.7 cells) responded to cytokine gradients (e.g., RANKL, OPG, PGE-2) developed by both mechanically stimulated (fOCY) and unstimulated (nOCY) osteocyte-like MLO-Y4 cells simultaneously. Specifically, we observed increased osteoclast precursor cell densities and osteoclast differentiation towards nOCY. We also used this system to show an increased mechanoresponse of osteocytes when in co-culture with osteoclasts. We envision broad applicability of the presented approach for microfluidic perfusion co-culture of multiple cell types in the presence of fluid flow stimulation, and as a tool to investigate osteocyte mechanotransduction, as well as bone metastasis extravasation. This system could also be applied to any multi-cell population cross-talk studies that are typically performed using PPFCs (e.g. endothelial cells, smooth muscle cells, and fibroblasts). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Steering and positioning targets for HWIL IR testing at cryogenic conditions

    NASA Astrophysics Data System (ADS)

    Perkes, D. W.; Jensen, G. L.; Higham, D. L.; Lowry, H. S.; Simpson, W. R.

    2006-05-01

    In order to increase the fidelity of hardware-in-the-loop ground-truth testing, it is desirable to create a dynamic scene of multiple, independently controlled IR point sources. ATK-Mission Research has developed and supplied the steering mirror systems for the 7V and 10V Space Simulation Test Chambers at the Arnold Engineering Development Center (AEDC), Air Force Materiel Command (AFMC). A portion of the 10V system incorporates multiple target sources beam-combined at the focal point of a 20K cryogenic collimator. Each IR source consists of a precision blackbody with cryogenic aperture and filter wheels mounted on a cryogenic two-axis translation stage. This point source target scene is steered by a high-speed steering mirror to produce further complex motion. The scene changes dynamically in order to simulate an actual operational scene as viewed by the System Under Test (SUT) as it executes various dynamic look-direction changes during its flight to a target. Synchronization and real-time hardware-in-the-loop control is accomplished using reflective memory for each subsystem control and feedback loop. This paper focuses on the steering mirror system and the required tradeoffs of optical performance, precision, repeatability and high-speed motion as well as the complications of encoder feedback calibration and operation at 20K.

  17. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  18. RECORDING DEVICE FOR 128 CHANNEL IONIZATION CHAMBERS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goryunov, N.N.

    1959-05-01

    Descriptions are given of a 128-channel amplitude recording device desiged for operation with ionization chambers. Each channl has a large puse recording dynamic amplitude range (amplitudes can vary from each other up to 8000 fold). The recording of amplitudes is accomplished by photographing pulses on a cathode ray tube. With the aid of a commutation device it is possible to record 64 pulses simultaneously on one tube screen. (tr-auth)

  19. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  20. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  1. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  2. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  3. Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil

    NASA Astrophysics Data System (ADS)

    Koskinen, M.; Minkkinen, K.; Ojanen, P.; Kämäräinen, M.; Laurila, T.; Lohila, A.

    2014-01-01

    We built an automatic chamber system to measure greenhouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpack in addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) respiration flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the night-time respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the starting point of the fit after closing the chamber, (2) the length of the fit, (3) the type of the fit (linear and polynomial), (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u*). The best fitting method (the most robust, least random variation) for respiration measurements on our sites was linear fitting with the period of 120-240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If night-time problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.

  4. The drift velocity monitoring system of the CMS barrel muon chambers

    NASA Astrophysics Data System (ADS)

    Altenhöfer, Georg; Hebbeker, Thomas; Heidemann, Carsten; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel

    2018-04-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  5. Evaluation of automatic exposure control system chamber for the dose optimization when examining pelvic in digital radiography.

    PubMed

    Kim, Sung-Chul; Lee, Hae-Kag; Lee, Yang-Sub; Cho, Jae-Hwan

    2015-01-01

    We found a way to optimize the image quality and reduce the exposure dose of patients through the proper activity combination of the automatic exposure control system chamber for the dose optimization when examining the pelvic anteroposterior side using the phantom of the human body standard model. We set 7 combinations of the chamber of automatic exposure control system. The effective dose was yielded by measuring five times for each according to the activity combination of the chamber for the dose measurement. Five radiologists with more than five years of experience evaluated the image through picture archiving and communication system using double blind test while classifying the 6 anatomical sites into 3-point level (improper, proper, perfect). When only one central chamber was activated, the effective dose was found to be the highest level, 0.287 mSv; and lowest when only the top left chamber was used, 0.165 mSv. After the subjective evaluation by five panel members on the pelvic image was completed, there was no statistically meaningful difference between the 7 chamber combinations, and all had good image quality. When testing the pelvic anteroposterior side with digital radiography, we were able to reduce the exposure dose of patients using the combination of the top right side of or the top two of the chamber.

  6. Apparatus and method for gas turbine active combustion control system

    NASA Technical Reports Server (NTRS)

    Knobloch, Aaron (Inventor); Mancini, Alfred Albert (Inventor); Myers, William J. (Inventor); Fortin, Jeffrey B. (Inventor); Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  7. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  8. The Impacts of Changes in Snowfall on Soil Greenhouse Gas Emissions Using an Automated Chamber System

    NASA Astrophysics Data System (ADS)

    Ruan, L.; Kahmark, K.; Robertson, G.

    2012-12-01

    Snow cover has decreased in many regions of the northern hemisphere and is projected to decrease further in most. The reduced snow cover may enhance soil freezing and increase the depth of frost. The frequency of freeze-thaw cycles is likely to increase due to the reduction of snowpack thickness. Freeze and thaw cycles can strongly affect soil C and N dynamics. The pulses of N2O and CO2 emissions from soil after thawing have been reported in various studies. However, most studies were based on the controlled laboratory conditions or low resolution static chamber methods in situ. Near-continuous automated chambers provide the temporal resolution needed for capturing short-lived pulses of greenhouse gases after intermittent melting events. We investigated the winter and spring response of soil greenhouse gas emissions (CO2, CH4 and N2O) to changes of snow depth using an automated chamber system. This study was established in 2010 at the Kellogg Biological Station (KBS) in southwest Michigan. The plot was no till rotational (corn-soybean-wheat) cropland, most recently in corn. The experiment was a completely randomized design (CRD) with three levels of snow depth: ambient, double, and no snow. Each level had four replicates. Twelve automated chambers were randomly assigned to treatments and greenhouse gas fluxes measured 4 times per day in each plot. There were more freeze-thaw cycles in the no snow treatment than in the ambient and double snow treatments. Soil temperature at 5 cm depth was more variable in the no snow treatment than in the ambient and double snow treatments. CH4 fluxes were uniformly low with no significant difference across three treatments. CO2 showed expected seasonal changes with the highest emission in spring and lowest emissions through the winter. N2O peaks were higher in spring due to freeze thaw effects and cumulative N2O fluxes were substantially higher in the no snow treatment than in the ambient and double snow treatments.

  9. CFD simulation of coaxial injectors

    NASA Technical Reports Server (NTRS)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial injectors. The following sections will discuss the physical aspects of injectors, the CFD code employed, and preliminary results of a simulation of a single coaxial injector for which experimental data is available. It is hoped that this work will lay the foundation for the development of a unique and useful tool to support the SSME program.

  10. Surveyor Atlas-Centaur Shroud Venting Structural Test in the Space Power Chambers

    NASA Image and Video Library

    1967-06-21

    Setup of a Surveyor/Atlas/Centaur shroud in the Space Power Chambers for a leak test at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Centaur was a 15,000-pound thrust second-stage rocket designed for the military in 1957 and 1958 by General Dynamics. It was the first major rocket to use the liquid hydrogen technology developed by Lewis in the 1950s. The Centaur Program suffered numerous problems before being transferred to Lewis in 1962. Several test facilities at Lewis’ main campus and Plum Brook Station were built or modified specifically for Centaur, including the Space Power Chambers. In 1961, NASA Lewis management decided to convert its Altitude Wind Tunnel into two large test chambers and later renamed it the Space Power Chambers. The conversion, which took over 2 years, included the removal of the tunnel’s internal components and insertion of bulkheads to seal off the new chambers. The larger chamber, seen here, could simulate altitudes of 100,000 feet. It was used for Centaur shroud separation and propellant management studies until the early 1970s. The leak test in this photograph was likely an attempt to verify that the shroud’s honeycomb shell did not seep any of its internal air when the chamber was evacuated to pressures similar to those found in the upper atmosphere.

  11. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  12. Space station solar concentrator materials research

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1988-01-01

    The Space Station will represent the first time that a solar dynamic power system will be used to generate electrical power in space. In a system such as this, sunlight is collected and focused by a solar concentrator onto the receiver of a heat engine which converts the energy into electricity. The concentrator must be capable of collecting and focusing as much of the incident sunlight as possible, and it must also withstand the atomic oxygen bombardment which occurs in low Earth orbit (LEO). This has led to the development of a system of thin film coatings applied to the concentrator facet surface in a chamber designed especially for this purpose. The system of thin film coatings employed gives both the necessary degree of reflectance and the required protection from the LEO atomic oxygen environment.

  13. Development of a dose-controlled multiculture cell exposure chamber for efficient delivery of airborne and engineered nanoparticles

    NASA Astrophysics Data System (ADS)

    Asimakopoulou, Akrivi; Daskalos, Emmanouil; Lewinski, Nastassja; Riediker, Michael; Papaioannou, Eleni; Konstandopoulos, Athanasios G.

    2013-04-01

    In order to study the various health influencing parameters related to engineered nanoparticles as well as to soot emitted by Diesel engines, there is an urgent need for appropriate sampling devices and methods for cell exposure studies that simulate the respiratory system and facilitate associated biological and toxicological tests. The objective of the present work was the further advancement of a Multiculture Exposure Chamber (MEC) into a dose-controlled system for efficient delivery of nanoparticles to cells. It was validated with various types of nanoparticles (Diesel engine soot aggregates, engineered nanoparticles for various applications) and with state-of-the-art nanoparticle measurement instrumentation to assess the local deposition of nanoparticles on the cell cultures. The dose of nanoparticles to which cell cultures are being exposed was evaluated in the normal operation of the in vitro cell culture exposure chamber based on measurements of the size specific nanoparticle collection efficiency of a cell free device. The average efficiency in delivering nanoparticles in the MEC was approximately 82%. The nanoparticle deposition was demonstrated by Transmission Electron Microscopy (TEM). Analysis and design of the MEC employs Computational Fluid Dynamics (CFD) and true to geometry representations of nanoparticles with the aim to assess the uniformity of nanoparticle deposition among the culture wells. Final testing of the dose-controlled cell exposure system was performed by exposing A549 lung cell cultures to fluorescently labeled nanoparticles. Delivery of aerosolized nanoparticles was demonstrated by visualization of the nanoparticle fluorescence in the cell cultures following exposure. Also monitored was the potential of the aerosolized nanoparticles to generate reactive oxygen species (ROS) (e.g. free radicals and peroxides generation), thus expressing the oxidative stress of the cells which can cause extensive cellular damage or damage on DNA.

  14. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  15. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Astrophysics Data System (ADS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m^2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  16. Analysis of the Radiated Field in an Electromagnetic Reverberation Chamber as an Upset-Inducing Stimulus for Digital Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2012-01-01

    Preliminary data analysis for a physical fault injection experiment of a digital system exposed to High Intensity Radiated Fields (HIRF) in an electromagnetic reverberation chamber suggests a direct causal relation between the time profile of the field strength amplitude in the chamber and the severity of observed effects at the outputs of the radiated system. This report presents an analysis of the field strength modulation induced by the movement of the field stirrers in the reverberation chamber. The analysis is framed as a characterization of the discrete features of the field strength waveform responsible for the faults experienced by a radiated digital system. The results presented here will serve as a basis to refine the approach for a detailed analysis of HIRF-induced upsets observed during the radiation experiment. This work offers a novel perspective into the use of an electromagnetic reverberation chamber to generate upset-inducing stimuli for the study of fault effects in digital systems.

  17. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  18. Convection pump and method of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhour, Leif Alexi

    2017-07-11

    This disclosure provides systems, methods, and apparatus related to a convection pump. In one aspect, an apparatus includes a chamber, the chamber having an inlet at a first end of the chamber and an outlet at a second end of the chamber. The chamber further has a first surface and a second surface, the first surface being opposite to the second surface. A baffle having a substantially helical shape is disposed inside the chamber. A heating device is configured to heat the first surface of the chamber. A cooling device is configured to cool the second surface of the chamber.

  19. Methods of Testing Thermal Insulation and Associated Test Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2004-01-01

    The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.

  20. Emergence of metapopulations and echo chambers in mobile agents

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Frasca, Mattia; Baronchelli, Andrea

    2016-08-01

    Multi-agent models often describe populations segregated either in the physical space, i.e. subdivided in metapopulations, or in the ecology of opinions, i.e. partitioned in echo chambers. Here we show how both kinds of segregation can emerge from the interplay between homophily and social influence in a simple model of mobile agents endowed with a continuous opinion variable. In the model, physical proximity determines a progressive convergence of opinions but differing opinions result in agents moving away from each others. This feedback between mobility and social dynamics determines the onset of a stable dynamical metapopulation scenario where physically separated groups of like-minded individuals interact with each other through the exchange of agents. The further introduction of confirmation bias in social interactions, defined as the tendency of an individual to favor opinions that match his own, leads to the emergence of echo chambers where different opinions coexist also within the same group. We believe that the model may be of interest to researchers investigating the origin of segregation in the offline and online world.

  1. Acoustic system for material transport

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E. H.; Wang, T. G.; Elleman, D. D.; Jacobi, N. (Inventor)

    1983-01-01

    An object within a chamber is acoustically moved by applying wavelengths of different modes to the chamber to move the object between pressure wells formed by the modes. In one system, the object is placed in one end of the chamber while a resonant mode, applied along the length of the chamber, produces a pressure well at the location. The frequency is then switched to a second mode that produces a pressure well at the center of the chamber, to draw the object. When the object reaches the second pressure well and is still traveling towards the second end of the chamber, the acoustic frequency is again shifted to a third mode (which may equal the first model) that has a pressure well in the second end portion of the chamber, to draw the object. A heat source may be located near the second end of the chamber to heat the sample, and after the sample is heated it can be cooled by moving it in a corresponding manner back to the first end of the chamber. The transducers for levitating and moving the object may be all located at the cool first end of the chamber.

  2. Molecular-beam gas-sampling system

    NASA Technical Reports Server (NTRS)

    Young, W. S.; Knuth, E. L.

    1972-01-01

    A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.

  3. Interfacial and Thin Film Chemistry in Electron Device Fabrication

    DTIC Science & Technology

    1990-11-20

    mounted on our UHV surface analysis system, and J. Forster and D. V. Podlesnik of the IBM General Technology Division. The following discussion...IBM (East Fishkill). The system being built consists of three chambers: one UHV analysis chamber, one UHV reaction chamber and one high pressure...system will be equipped with several surface analysis and cleaning techniques. Fourier transform infrared spectrometry will be used to do attenuated

  4. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  5. Thermal ignition combustion system

    DOEpatents

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  6. Thermal ignition combustion system

    DOEpatents

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  7. SpectraCAM SPM: a camera system with high dynamic range for scientific and medical applications

    NASA Astrophysics Data System (ADS)

    Bhaskaran, S.; Baiko, D.; Lungu, G.; Pilon, M.; VanGorden, S.

    2005-08-01

    A scientific camera system having high dynamic range designed and manufactured by Thermo Electron for scientific and medical applications is presented. The newly developed CID820 image sensor with preamplifier-per-pixel technology is employed in this camera system. The 4 Mega-pixel imaging sensor has a raw dynamic range of 82dB. Each high-transparent pixel is based on a preamplifier-per-pixel architecture and contains two photogates for non-destructive readout of the photon-generated charge (NDRO). Readout is achieved via parallel row processing with on-chip correlated double sampling (CDS). The imager is capable of true random pixel access with a maximum operating speed of 4MHz. The camera controller consists of a custom camera signal processor (CSP) with an integrated 16-bit A/D converter and a PowerPC-based CPU running a Linux embedded operating system. The imager is cooled to -40C via three-stage cooler to minimize dark current. The camera housing is sealed and is designed to maintain the CID820 imager in the evacuated chamber for at least 5 years. Thermo Electron has also developed custom software and firmware to drive the SpectraCAM SPM camera. Included in this firmware package is the new Extreme DRTM algorithm that is designed to extend the effective dynamic range of the camera by several orders of magnitude up to 32-bit dynamic range. The RACID Exposure graphical user interface image analysis software runs on a standard PC that is connected to the camera via Gigabit Ethernet.

  8. Calibrating pressure switch

    NASA Technical Reports Server (NTRS)

    Smith, N. J. (Inventor)

    1968-01-01

    A pressure switch assembly comprising a body portion and a switch mechanism having a contact element operable between opposite limit positions is described. A diaphragm chamber is provided in the body portion which mounts therein a system diaphragm and a calibration diaphragm which are of generally the same configuration and having outer faces conforming to the inner and outer walls of the diaphragm chamber. The space between the inner faces of the diaphragms defines a first chamber section and the space between the outer face of one of the diaphragms and the outer wall of the diaphragm chamber defines a second chamber section. The body portion includes a system pressure port communicating with one of the chamber sections and a calibration pressure port communicating with the other chamber section. An actuator connected to one of the diaphragms and the contact element of the switch operates upon pressure change in the diaphragm sections to move said contact element between limit positions.

  9. Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Richter, Peter R.; Hao, Zongjie; An, Yanjun; Wang, Gaohong; Li, Dunhai; Liu, Yongding; Strauch, Sebastian M.; Schuster, Martin; Haag, Ferdinand W.; Lebert, Michael

    2017-05-01

    Long- term spaceflight needs reliable Biological life support systems (BLSS) to supply astronauts with enough food, fresh air and recycle wasters, but the knowledge about the operation pattern and controlling strategy is rear. For this purpose, a miniaturized enclosed aquatic ecosystem was developed and flown on the Chinese spaceship Shenzhou-8. The system with a total volume of about 60 mL was separated into two chambers by means of a gas transparent membrane. The lower chamber was inoculated with Euglena gracilis cells, and the upper chamber was cultured with Chlorella cells and three snails. After 17.5 days flight, the samples were analyzed. It was found that all snails in the ground module (GM) were alive, while in the flight module (FM) only one snail survived. The total cell numbers, assimilation of nutrients like nitrogen and phosphorus, soluble proteins and carbohydrate contents showed a decrease in FM than in GM. The correlation analysis showed upper chambers of both FM and GM had the same positive and negative correlation factors, while differential correlation was found in lower chambers. These results suggested primary productivity in the enclosed system decreased in microgravity, accompanied with nutrients assimilation. The FM chamber endured lacking of domination species to sustain the system development and GM chamber endured richness in population abundance. These results implied photosynthesis intensity should be reduced to keep the system healthy. More Chlorella but less Euglena might be a useful strategy to sustain system stability. It is the first systematic analysis of enclosed systems in microgravity.

  10. Multiphysics Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2006-01-01

    The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics methodology. Formulations for heat transfer in solids and porous media were implemented and anchored. A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of hydrogen dissociation and recombination on heat transfer and thrust performance. The formulations and preliminary results on both aspects are presented.

  11. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    DOEpatents

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  12. Development of an Efficient CFD Model for Nuclear Thermal Thrust Chamber Assembly Design

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed thermo-fluid environments and global characteristics of the internal ballistics for a hypothetical solid-core nuclear thermal thrust chamber assembly (NTTCA). Several numerical and multi-physics thermo-fluid models, such as real fluid, chemically reacting, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver as the underlying computational methodology. The numerical simulations of detailed thermo-fluid environment of a single flow element provide a mechanism to estimate the thermal stress and possible occurrence of the mid-section corrosion of the solid core. In addition, the numerical results of the detailed simulation were employed to fine tune the porosity model mimic the pressure drop and thermal load of the coolant flow through a single flow element. The use of the tuned porosity model enables an efficient simulation of the entire NTTCA system, and evaluating its performance during the design cycle.

  13. Divalent Cation Control of Flagellar Motility in African Trypanosomes

    NASA Astrophysics Data System (ADS)

    Westergard, Anna M.; Hutchings, Nathan R.

    2005-03-01

    Changes in calcium concentration have been shown to dynamically affect flagellar motility in several eukaryotic systems. The African trypanosome is a monoflagellated protozoan parasite and the etiological agent of sleeping sickness. Although cell motility has been implicated in disease progression, very little is currently known about biochemical control of the trypanosome flagellum. In this study, we assess the effects of extracellular changes in calcium and nickel concentration on trypanosome flagellar movement. Using a flow through chamber, we determine the relative changes in motility in individual trypanosomes in response to various concentrations of calcium and nickel, respectively. Extracellular concentrations of calcium and nickel (as low as 100 micromolar) significantly inhibit trypanosome cell motility. The effects are reversible, as indicated by the recovery of motion after removal of the calcium or nickel from the chamber. We are currently investigating the specific changes in flagellar oscillation and coordination that result from calcium and nickel, respectively. These results verify the presence of a calcium-responsive signaling mechanism(s) that regulates flagellar beat in trypanosomes.

  14. Gas dynamics and mixture formation in swirled flows with precession of air flow

    NASA Astrophysics Data System (ADS)

    Tretyakov, V. V.; Sviridenkov, A. A.

    2017-10-01

    The effect of precessing air flow on the processes of mixture formation in the wake of the front winding devices of the combustion chambers is considered. Visual observations have shown that at different times the shape of the atomized jet is highly variable and has signs of precessing motion. The experimental data on the distribution of the velocity and concentration fields of the droplet fuel in the working volume of the flame tube of a typical combustion chamber are obtained. The method of calculating flows consisted in integrating the complete system of Reynolds equations written in Euler variables and closed with the two-parameter model of turbulence k-ε. Calculation of the concentration fields of droplet and vapor fuel is based on the use of models for disintegration into droplets of fuel jets, fragmentation of droplets and analysis of motion and evaporation of individual droplets in the air flow. Comparison of the calculation results with experimental data showed their good agreement.

  15. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model.

    PubMed

    Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di

    2016-07-15

    We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.

  16. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott

    2002-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio (LD). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer orifices and one fuel orifice) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme an Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 9295, can be obtained. MSFC and the U. S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX) hydrocarbon fuel (RP-1) system has been derived from the one for the gel propellant. An unlike impinging injector was employed to deliver the propellants to the chamber. MSFC is also conducting an alternative injection scheme, called the chasing injector, associated with this vortex chamber concept. In this injection technique, both propellant jets and their impingement point are in the same chamber cross-sectional plane. Long duration tests (approximately up to 15 seconds) will be conducted on the ISVC to study the thermal effects. This paper will report the progress of the subject efforts at NASA Marshall Space Flight Center. Thrust chamber performance and thermal wall compatibility will be evaluated. The chamber pressures, wall temperatures, and thrust will be measured as appropriate. The test data will be used to validate CFD models, which, in turn, will be used to design the optimum vortex chambers. Measurements in the previous tests showed that the chamber pressures vary significantly with radius. This is due to the existence of the vortices in the chamber flow field. Hence, the combustion efficiency may not be easily determined from chamber pressure. For this project, measured thrust data will be collected. The performance comparison will be in terms of specific impulse efficiencies. In addition to the thrust measurements, several pressure and temperature readings at various locations on the chamber head faceplate and the chamber wall will be made. The first injector and chamber were designed and fabricated based on the available data and experience gained during gel propellant system tests by the U.S. Army. The alternate injector for the ISVC was also fabricated. Hot-fire tests of the vortex chamber are about to start and are expected to complete in February of 2003 at the TS115 facility of MSFC.

  17. Drift chamber readout system of the DIRAC experiment

    NASA Astrophysics Data System (ADS)

    Afanasyev, L.; Karpukhin, V.

    2002-10-01

    A drift chamber readout system of the DIRAC experiment at CERN is presented. The system is intended to read out the signals from planar chambers operating in a high current mode. The sense wire signals are digitized in the 16-channel time-to-digital converter boards which are plugged in the signal plane connectors. This design results in a reduced number of modules, a small number of cables and high noise immunity. The system has been successfully operating in the experiment since 1999.

  18. Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber

    NASA Astrophysics Data System (ADS)

    Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.

    2011-03-01

    Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.

  19. Study of low speed flow cytometry for diffraction imaging with different chamber and nozzle designs.

    PubMed

    Sa, Yu; Feng, Yuanming; Jacobs, Kenneth M; Yang, Jun; Pan, Ran; Gkigkitzis, Ioannis; Lu, Jun Q; Hu, Xin-Hua

    2013-11-01

    Achieving effective hydrodynamic focusing and flow stability at low speed presents a challenging design task in flow cytometry for studying phenomena such as cell adhesion and diffraction imaging of cells with low-cost cameras. We have developed different designs of flow chamber and sheath nozzle to accomplish the above goal. A 3D computational model of the chambers has been established to simulate the fluid dynamics in different chamber designs and measurements have been performed to determine the velocity and size distributions of the core fluid from the nozzle. Comparison of the simulation data with experimental results shows good agreement. With the computational model significant insights were gained for optimization of the chamber design and improvement of the cell positioning accuracy for study of slow moving cells. The benefit of low flow speed has been demonstrated also by reduced blurring in the diffraction images of single cells. Based on these results, we concluded that the new designs of chamber and sheath nozzle produce stable hydrodynamic focusing of the core fluid at low speed and allow detailed study of cellular morphology under various rheological conditions using the diffraction imaging method. © 2013 International Society for Advancement of Cytometry.

  20. Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.

    1993-01-01

    Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.

  1. Characterization of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanyi, James A.; Nitzling, Kevin D.; Lodwick, Camille J.

    2011-02-15

    Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation {+-}0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibilitymore » of the system was {+-}0.55% for dose fractions of {approx}100 cGy. Energy dependence was within {+-}1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R{sup 2}=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within {+-}0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.« less

  2. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    NASA Astrophysics Data System (ADS)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  3. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Kanc, James A. (Inventor); Richard, II, Roy V. (Inventor)

    2000-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  4. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Kane, James A. (Inventor); Richard, II, Roy V. (Inventor)

    2001-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  5. Design and testing of a model CELSS chamber robot

    NASA Astrophysics Data System (ADS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-08-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system. A stability pre-test was used to determine whether the model robot arm would tip over on the stand when it was fully extended. Results showed the stand tipped when 50 Newtons were applied horizontally to the top of the vertical shaft while the arm was fully extended.

  6. Design and testing of a model CELSS chamber robot

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; Mccarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-01-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system. A stability pre-test was used to determine whether the model robot arm would tip over on the stand when it was fully extended. Results showed the stand tipped when 50 Newtons were applied horizontally to the top of the vertical shaft while the arm was fully extended. This proved that it was stable. Another pre-test was the actuator slip test used to determine if there is an adequate coefficient of friction between the actuator drive wheels and drive cable to enable the actuator to fully extend and retract the arm. This pre-test revealed that the coefficient of friction was not large enough to prevent slippage. Sandpaper was glued to the drive wheel and this eliminated the slippage problem. The class preformed a fit test in the CELSS chamber to ensure that the completed robot arm is capable of reaching the entire working envelope. The robot was centered in the chamber and the arm was fully extended to the sides of the chamber. The arm was also able to retract to clear the drain pipes separating the upper and lower plant trays.

  7. Predicted performance of an integrated modular engine system

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Felder, James L.

    1993-01-01

    Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.

  8. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  9. Air ion exposure system for plants.

    PubMed

    Morrow, R C; Tibbitts, T W

    1987-02-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  10. Comparative evaluation of aqueous humor viscosity.

    PubMed

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P < 0.0001). The aqueous humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  11. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  12. Dynamics of differentiation in magma reservoirs

    NASA Astrophysics Data System (ADS)

    Jaupart, Claude; Tait, Stephen

    1995-09-01

    In large magma chambers, gradients of temperature and composition develop due to cooling and to fractional crystallization. Unstable density differences lead to differential motions between melt and crystals, and a major goal is to explain how this might result in chemical differentiation of magma. Arriving at a full description of the physics of crystallizing magma chambers is a challenge because of the large number of processes potentially involved, the many coupled variables, and the different geometrical shapes. Furthermore, perturbations are caused by the reinjection of melt from a deep source, eruption to the Earth's surface, and the assimilation of country rock. Physical models of increasing complexity have been developed with emphasis on three fundamental approaches. One is, given that large gradients in temperature and composition may occur, to specify how to apply thermodynamic constraints so that coexisting liquid and solid compositions may be calculated. The second is to leave the differentiation trend as the solution to be found, i.e., to specify how cooling occurs and to predict the evolution of the composition of the residual liquid and of the solid forming. The third is to simplify the physics so that the effects of coupled heat and mass transfer may be studied with a reduced set of variables. The complex shapes of magma chambers imply that boundary layers develop with density gradients at various angles to gravity, leading to various convective flows and profiles qf liquid stratification. Early studies were mainly concerned with describing fluid flow in the liquid interior of large reservoirs, due to gradients developed at the margins. More recent work has focused on the internal structure and flow field of boundary layers and in particular on the gradients of solid fraction and interstitial melt composition which develop within them. Crystal settling may occur in a surprisingly diverse range of regimes and may lead to intermittent deposition events even with small crystal concentrations. Incorporating thermodynamic constraints in the study of the dynamics of settling has only just begun. Many dynamical phenomena have been found using theoretical arguments, laboratory experiments on analog systems, and numerical calculations on simplified chemical systems. However, they have seldom been applied to natural silicate melts whose phase diagrams and important physical properties such as thermal conductivity and chemical diffusion coefficients remain poorly known. There is a gap between model predictions and observations, as many models are designed to explain large-scale features and many observations deal with the local texture and mineral assemblages of the rocks. This review stresses the relevance to the geological problem of the work carried out in parallel in other disciplines, such as physics, fluid dynamics, and metallurgy.

  13. Energy efficient fluid powered linear actuator with variable area and concentric chambers

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-11-15

    Hydraulic actuation systems having concentric chambers, variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  14. High temporal resolution ecosystem CH4, CO2 and H2O flux data measured with a novel chamber technique

    NASA Astrophysics Data System (ADS)

    Steenberg Larsen, Klaus; Riis Christiansen, Jesper

    2016-04-01

    Soil-atmosphere exchange of greenhouse gases (GHGs) is commonly measured with closed static chambers (Pihlatie et al., 2013) with off-site gas chromatographic (GC) analysis for CH4 and N2O. Static chambers are widely used to observe in detail the effect of experimental manipulations, like climate change experiments, on GHG exchange (e.g. Carter et al., 2012). However, the low sensitivity of GC systems necessitates long measurement times and manual sampling, which increases the disturbance of the exchange of GHGs and leads to potential underestimation of fluxes (Christiansen et al., 2011; Creelman et al., 2013). The recent emergence of field proof infrared lasers using cavity ring-down spectroscopy (CRDS) have increased frequency and precision of concentration measurements and enabled better estimates of GHG fluxes (Christiansen et al., 2015) due to shorter chamber enclosure times. This minimizes the negative impact of the chamber enclosure on the soil-atmosphere gas exchange rate. Secondly, an integral aspect of understanding GHG exchange in terrestrial ecosystem is to achieve high temporal coverage. This is needed to capture the often dynamic behavior where fluxes can change rapidly over the course of days or even a few hours in response to e.g. rain events. Consequently, low temporal coverage in measurements of GHG exchange have in many past investigations led to highly uncertain annual budgets which severely limits our understanding of the ecosystem processes interacting with the climate system through GHG exchange. Real-time field measurements at high temporal resolution are needed to obtain a much more detailed understanding of the processes governing ecosystem CH4 exchange as well as for better predicting the effects of climate and environmental changes. We combined a state-of-the-art field applicable CH4 sensor (Los Gatos UGGA) with a newly developed ecosystem-level automatic chamber controlled by a LI-COR 8100/8150 system. The chamber is capable of switching automatically between transparent and darkened mode enabling for separation of light-sensitive and light-indifferent processes in chambers. In a pilot study we measured hourly fluxes of CO2, H2O and CH4 continuously for two weeks in Danish Calluna vulgaris (common heather) heathland (Larsen et al. 2011). We will present an analysis of the novel, high-frequency data of CH4 fluxes under light and dark conditions, assess the advantages and limitations of the experimental setup and recommend future improvements of the technology involved. References: Carter, M.S., Larsen, K.S., et al. 2012. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands: responses to climatic and environmental changes. Biogeosciences 3739-3755. Christiansen, J.R., Korhonen, J.F.J., et al. 2011. Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 fluxes in a laboratory experiment. Plant and Soil 343, 171-185. Christiansen, J.R., Outhwaite, J., et al. 2015. Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agricultural and Forest Meteorology 211-212, 48-57. Creelman, C., Nickerson, N., Risk, D., 2013. Quantifying Lateral Diffusion Error in Soil Carbon Dioxide Respiration Estimates using Numerical Modeling. Soil Science Society of America Journal 77, 699-708. Larsen, K.S., Andresen, L.C., et al. 2011. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biology 17, 1884-1899. Pihlatie, M.K., Christiansen, J.R., et al. 2013. Comparison of static chambers to measure CH4 emissions from soils. Agricultural and Forest Meteorology 171-172, 124-136.

  15. Dynamics of CO2-exchange and C-budgets due to soil erosion: Insights from a 4 years observation period

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Albiac Borraz, Elisa; Garcia Alba, Juana; Augustin, Jürgen; Sommer, Michael

    2015-04-01

    Agriculture in the hummocky ground moraine landscape of NE-Germany is characterized by an increase in energy crop cultivation, like maize or sorghum. Both enhance lateral C fluxes by erosion and induce feedbacks on C dynamics of agroecosystems as a result of reduced wintertime plant cover and vigorous crop growth during summer. However, the actual impact of these phenomena on the CO2-sink/-source function of agricultural landscapes, is still not clear. Therefore, the interdisciplinary project "CarboZALF" was established in Dedelow/Prenzlau (NE-Germany) in 2009. Within the field experiment CarboZALF-D, CO2 fluxes for the soil-plant systems were monitored, covering typical landscape relevant soil states in respect to erosion and deposition, like Calcic Cutanic Luvisol and Endogleyic Colluvic Regosol. Automated chamber systems, each consisting of four transparent chambers (2.5 m height, basal area 2.25 m2), were placed along gradients at both measurement sites. Monitored CO2 fluxes were gap-filled on a high-temporal resolution by modelling ecosystem respiration (Reco), gross primary productivity (GPP) and net ecosystem exchange (NEE) based on parallel and continuous measurements of the CO2 exchange, soil and air temperatures as well as photosynthetic active radiation (PAR). Gap-filling was e.g. needed in case of chamber malfunctions and abrupt disturbances by farming practice. The monitored crop rotation was corn-winter wheat (2 a), sorghum-winter triticale and alfalfa (1.5 a). In our presentation we would like to show insights from a 4 years observation period, with prounounced differences between the eroded and the colluvial soil: The Endogleyic Colluvic Regosol showed higher flux rates for Reco, GPP and NEE compared to the Calcic Cutanic Luvisol. Site-specific NEE and C-balances were positively related to soil C-stocks as well as biomass production, and generated a minor C-sink in case of the Calcic Cutanic Luvisol and a highly variable C-source in case of the Endogleyic Colluvic Regosol. Moreover, obtained high local variability in CO2 fluxes and C-balances at both sites, can be interpreted in terms of relevant drivers.

  16. Simultaneous refraction measurement and OCT axial biometry of the eye during accommodation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    De Freitas, Carolina; Hernandez, Victor M.; Ruggeri, Marco; Durkee, Heather A.; Williams, Siobhan; Gregori, Giovanni; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2016-03-01

    The purpose of this project is to design and evaluate a system that will enable objective assessment of the optical accommodative response in real-time while acquiring axial biometric information. The system combines three sub-systems which were integrated and mounted on a joystick x-y-z adjustable modified slit-lamp base to facilitate alignment and data acquisition: (1) a Shack-Hartmann wavefront sensor for dynamic refraction measurement, provided software calculates sphere, cylinder and axis values, (2) an extended-depth Optical Coherence Tomography (OCT) system using an optical switch records high-resolution cross-sectional images across the length of the eye, from which, dynamic axial biometry (corneal thickness, anterior chamber depth, crystalline lens thickness and vitreous depth) can be extracted, and (3) a modified dual-channel accommodation stimulus unit based on the Badal optometer for providing a step change in accommodative stimulus. The prototypal system is capable of taking simultaneous measurements of both the optical and the mechanical response of lens accommodation. These measurements can provide insight into correlating changes in lens shape with changes in lens power and ocular refraction and ultimately provide a more comprehensive understanding of accommodation, presbyopia and an objective assessment of presbyopia correction techniques.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A. A.; Hesjedal, T.; Diamond Light Source, Didcot OX11 0DE

    We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined withmore » ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr{sub 2}O{sub 3} on c-plane sapphire and ferrimagnetic Fe{sub 3}O{sub 4} on MgO (001)« less

  18. System and method for detecting components of a mixture including a valving scheme for competition assays

    DOEpatents

    Koh, Chung-Yan; Piccini, Matthew E.; Singh, Anup K.

    2017-09-19

    Examples are described including measurement systems for conducting competition assays. A first chamber of an assay device may be loaded with a sample containing a target antigen. The target antigen in the sample may be allowed to bind to antibody-coated beads in the first chamber. A control layer separating the first chamber from a second chamber may then be opened to allow a labeling agent loaded in a first portion of the second chamber to bind to any unoccupied sites on the antibodies. A centrifugal force may then be applied to transport the beads through a density media to a detection region for measurement by a detection unit.

  19. System and method for detecting components of a mixture including a valving scheme for competition assays

    DOEpatents

    Koh, Chung-Yan; Piccini, Matthew E.; Singh, Anup K.

    2017-07-11

    Examples are described including measurement systems for conducting competition assays. A first chamber of an assay device may be loaded with a sample containing a target antigen. The target antigen in the sample may be allowed to bind to antibody-coated beads in the first chamber. A control layer separating the first chamber from a second chamber may then be opened to allow a labeling agent loaded in a first portion of the second chamber to bind to any unoccupied sites on the antibodies. A centrifugal force may then be applied to transport the beads through a density media to a detection region for measurement by a detection unit.

  20. AGATE: A High Energy Gamma-Ray Telescope Using Drift Chambers

    NASA Astrophysics Data System (ADS)

    Mukherjee, R.; Dingus, B. L.; Esposito, J. A.; Bertsch, D. L.; Cuddapah, R.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Thompson, D. J.

    1996-01-01

    The exciting results from the highly successful Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory (CGRO) has contributed significantly to increasing our understanding of high energy gamma-ray astronomy. A follow-on mission to EGRET is needed to continue these scientific advances as well as to address the several new scientific questions raised by EGRET. Here we describe the work being done on the development of the Advanced Gamma-Ray Astronomy Telescope Experiment (AGATE), visualized as the successor to EGRET. In order to achieve the scientific goals, AGATE will have higher sensitivity than EGRET in the energy range 30 MeV to 30 GeV, larger effective area, better angular resolution, and an extended low and high energy range. In its design, AGATE will follow the tradition of the earlier gamma-ray telescopes, SAS-2, COS B, and EGRET, and will have the same four basic components of an anticoincidence system, directional coincidence system, track imaging, and energy measurement systems. However, due to its much larger size, AGATE will use drift chambers as its track imaging system rather than the spark chambers used by EGRET. Drift chambers are an obvious choice as they have less deadtime per event, better spatial resolution, and are relatively easy and inexpensive to build. Drift chambers have low power requirements, so that many layers of drift chambers can be included. To test the feasibility of using drift chambers, we have constructed a prototype instrument consisting of a stack of sixteen 1/2m × 1/2m drift chambers and have measured the spatial resolution using atmospheric muons. The results on the drift chamber performance in the laboratory are presented here.

  1. Two years experience with quality assurance protocol for patient related Rapid Arc treatment plan verification using a two dimensional ionization chamber array

    PubMed Central

    2011-01-01

    Purpose To verify the dose distribution and number of monitor units (MU) for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany). Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany). Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99% than the verification protocol is able to detect clinically significant errors. PMID:21342509

  2. Peristaltic pump-based low range pressure sensor calibration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinayakumar, K. B.; Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 5600012; Naveen Kumar, G.

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressuremore » leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.« less

  3. Peristaltic pump-based low range pressure sensor calibration system

    NASA Astrophysics Data System (ADS)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  4. Conceptual design of a stray light facility for Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hellin, M. L.; Marcotte, S.; Mazy, E.; Versluys, J.; François, M.; Taccola, M.; Zuccaro Marchi, A.

    2017-11-01

    With the upcoming of TMA or FMA (Three or Four Mirrors Anastigmat) telescope design in Earth Observation system, stray light is a major contributor to the degradation of the image quality. Numerous sources of stray light can be identified and theoretically evaluated. Nevertheless in order to build a stray light model of the instrument, the Point Spread Function(s) of the instrument, i.e., the flux response of the instrument to the flux received at the instrument entrance from an infinite distant point source needs to be determined. This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.

  5. Poster — Thur Eve — 28: Enabling trajectory-based radiotherapy on a TrueBeam accelerator with the Eclipse treatment planning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, J; Asiev, K; DeBlois, F

    2014-08-15

    The TrueBeam linear accelerator platform has a developer's mode which permits the user dynamic control over many of the machine's mechanical and radiation systems. Using this research tool, synchronous couch and gantry motion can be programmed to simulate isocentric treatment with a shortened SAD, with benefits such as smaller projected MLC leaf widths and an increased dose rate. In this work, water tank measurements were used to commission a virtual linear accelerator with an 85 cm SAD in Eclipse, from which several arc-based radiotherapy treatments were generated, including an inverse optimized VMAT delivery. For each plan, the pertinent treatment deliverymore » information was extracted from control points specified in the Eclipse-exported DICOM files using the pydicom package in Python, allowing construction of an XML control file. The dimensions of the jaws and MLC positions, defined for an 85 cm SAD in Eclipse, were scaled for delivery on a conventional SAD linear accelerator, and translational couch motion was added as a function of gantry angle to simulate delivery at 85 cm SAD. Ionization chamber and Gafchromic film measurements were used to compare the radiation delivery to dose calculations in Eclipse. With the exception of the VMAT delivery, ionization chamber measurements agreed within 3.3% of the Eclipse calculations. For the VMAT delivery, the ionization chamber was located in an inhomogeneous region, but gamma evaluation of the Gafchromic film plane resulted in a 94.5% passing rate using criteria of 3 mm/3%. The results indicate that Eclipse calculation infrastructure can be used.« less

  6. Laser controlled flame stabilization

    DOEpatents

    Early, James W.; Thomas, Matthew E.

    2001-01-01

    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  7. Safety shield for vacuum/pressure-chamber windows

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Spencer, R.

    1980-01-01

    Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.

  8. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  9. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.

    PubMed

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10(-7) Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  10. Method and apparatus for coating thin foil with a boron coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Jeffrey L.

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to amore » thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.« less

  11. A closed-loop photon beam control study for the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less

  12. HNBody: A Simulation Package for Hierarchical N-Body Systems

    NASA Astrophysics Data System (ADS)

    Rauch, Kevin P.

    2018-04-01

    HNBody (http://www.hnbody.org/) is an extensible software package forintegrating the dynamics of N-body systems. Although general purpose, itincorporates several features and algorithms particularly well-suited tosystems containing a hierarchy (wide dynamic range) of masses. HNBodyversion 1 focused heavily on symplectic integration of nearly-Kepleriansystems. Here I describe the capabilities of the redesigned and expandedpackage version 2, which includes: symplectic integrators up to eighth order(both leap frog and Wisdom-Holman type methods), with symplectic corrector andclose encounter support; variable-order, variable-timestep Bulirsch-Stoer andStörmer integrators; post-Newtonian and multipole physics options; advancedround-off control for improved long-term stability; multi-threading and SIMDvectorization enhancements; seamless availability of extended precisionarithmetic for all calculations; extremely flexible configuration andoutput. Tests of the physical correctness of the algorithms are presentedusing JPL Horizons ephemerides (https://ssd.jpl.nasa.gov/?horizons) andpreviously published results for reference. The features and performanceof HNBody are also compared to several other freely available N-body codes,including MERCURY (Chambers), SWIFT (Levison & Duncan) and WHFAST (Rein &Tamayo).

  13. Experimental studies of characteristic combustion-driven flows for CFD validation

    NASA Technical Reports Server (NTRS)

    Santoro, R. J.; Moser, M.; Anderson, W.; Pal, S.; Ryan, H.; Merkle, C. L.

    1992-01-01

    A series of rocket-related studies intended to develop a suitable data base for validation of Computational Fluid Dynamics (CFD) models of characteristic combustion-driven flows was undertaken at the Propulsion Engineering Research Center at Penn State. Included are studies of coaxial and impinging jet injectors as well as chamber wall heat transfer effects. The objective of these studies is to provide fundamental understanding and benchmark quality data for phenomena important to rocket combustion under well-characterized conditions. Diagnostic techniques utilized in these studies emphasize determinations of velocity, temperature, spray and droplet characteristics, and combustion zone distribution. Since laser diagnostic approaches are favored, the development of an optically accessible rocket chamber has been a high priority in the initial phase of the project. During the design phase for this chamber, the advice and input of the CFD modeling community were actively sought through presentations and written surveys. Based on this procedure, a suitable uni-element rocket chamber was fabricated and is presently under preliminary testing. Results of these tests, as well as the survey findings leading to the chamber design, were presented.

  14. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa.

    PubMed

    Hawks, John; Elliott, Marina; Schmid, Peter; Churchill, Steven E; Ruiter, Darryl J de; Roberts, Eric M; Hilbert-Wolf, Hannah; Garvin, Heather M; Williams, Scott A; Delezene, Lucas K; Feuerriegel, Elen M; Randolph-Quinney, Patrick; Kivell, Tracy L; Laird, Myra F; Tawane, Gaokgatlhe; DeSilva, Jeremy M; Bailey, Shara E; Brophy, Juliet K; Meyer, Marc R; Skinner, Matthew M; Tocheri, Matthew W; VanSickle, Caroline; Walker, Christopher S; Campbell, Timothy L; Kuhn, Brian; Kruger, Ashley; Tucker, Steven; Gurtov, Alia; Hlophe, Nompumelelo; Hunter, Rick; Morris, Hannah; Peixotto, Becca; Ramalepa, Maropeng; Rooyen, Dirk van; Tsikoane, Mathabela; Boshoff, Pedro; Dirks, Paul Hgm; Berger, Lee R

    2017-05-09

    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi . Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi . Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi , and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species.

  15. Dual chamber system providing simultaneous etch and deposition on opposing substrate sides for growing low defect density epitaxial layers

    DOEpatents

    Kulkarni, Nagraj S [Knoxville, TN; Kasica, Richard J. ,

    2011-03-08

    A dual-chamber reactor can include a housing enclosing a volume having a divider therein, where the divider defines a first chamber and a second chamber. The divider can include a substrate holder that supports at least one substrate and exposes a first side of the substrate to the first chamber and a second side of the substrate to the second chamber. The first chamber can include an inlet for delivering at least one reagent to the first chamber for forming a film on the first side of the substrate, and the second chamber can include a removal device for removing material from the second side of the substrate.

  16. Dual nozzle single pump fuel injection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is suppliedmore » by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.« less

  17. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  18. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  19. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    PubMed Central

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  20. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  1. Optoelectrofluidic enhanced immunoreaction based on optically-induced dynamic AC electroosmosis.

    PubMed

    Han, Dongsik; Park, Je-Kyun

    2016-04-07

    We report a novel optoelectrofluidic immunoreaction system based on electroosmotic flow for enhancing antibody-analyte binding efficiency on a surface-based sensing system. Two conventional indium tin oxide glass slides are assembled to provide a reaction chamber for a tiny volume of sample droplet (∼5 μL), in which the top layer is employed as an antibody-immobilized substrate and the bottom layer acts as a photoconductive layer of an optoelectrofluidic device. Under the application of an AC voltage, an illuminated light pattern on the photoconductive layer causes strong counter-rotating vortices to transport analytes from the bulk solution to the vicinity of the assay spot on the glass substrate. This configuration overcomes the slow immunoreaction problem of a diffusion-based sensing system, resulting in the enhancement of binding efficiency via an optoelectrofluidic method. Furthermore, we investigate the effect of optically-induced dynamic AC electroosmotic flow on optoelectrofluidic enhancement for surface-based immunoreaction with a mathematical simulation study and real experiments using immunoglobulin G (IgG) and anti-IgG. As a result, dynamic light patterns provided better immunoreaction efficiency than static light patterns due to effective mass transport of the target analyte, resulting in an achievement of 2.18-fold enhancement under a growing circular light pattern compared to the passive mode.

  2. Advanced Small Rocket Chambers. Basic Program and Option 2: Fundamental Processes and Material Evaluation

    NASA Technical Reports Server (NTRS)

    Jassowski, Donald M.

    1993-01-01

    Propellants, chamber materials, and processes for fabrication of small high performance radiation cooled liquid rocket engines were evaluated to determine candidates for eventual demonstration in flight-type thrusters. Both storable and cryogenic propellant systems were considered. The storable propellant systems chosen for further study were nitrogen tetroxide oxidizer with either hydrazine or monomethylhydrazine as fuel. The cryogenic propellants chosen were oxygen with either hydrogen or methane as fuel. Chamber material candidates were chemical vapor deposition (CVD) rhenium protected from oxidation by CVD iridium for the chamber hot section, and film cooled wrought platinum-rhodium or regeneratively cooled stainless steel for the front end section exposed to partially reacted propellants. Laser diagnostics of the combustion products near the hot chamber surface and measurements at the surface layer were performed in a collaborative program at Sandia National Laboratories, Livermore, CA. The Material Sample Test Apparatus, a laboratory system to simulate the combustion environment in terms of gas and material temperature, composition, and pressure up to 6 Atm, was developed for these studies. Rocket engine simulator studies were conducted to evaluate the materials under simulated combustor flow conditions, in the diagnostic test chamber. These tests used the exhaust species measurement system, a device developed to monitor optically species composition and concentration in the chamber and exhaust by emission and absorption measurements.

  3. Coagulation dynamics of a blood sample by multiple scattering analysis

    NASA Astrophysics Data System (ADS)

    Faivre, Magalie; Peltié, Philippe; Planat-Chrétien, Anne; Cosnier, Marie-Line; Cubizolles, Myriam; Nougier, Christophe; Négrier, Claude; Pouteau, Patrick

    2011-05-01

    We report a new technique to measure coagulation dynamics on whole-blood samples. The method relies on the analysis of the speckle figure resulting from a whole-blood sample mixed with coagulation reagent and introduced in a thin chamber illuminated with a coherent light. A dynamic study of the speckle reveals a typical behavior due to coagulation. We compare our measured coagulation times to a reference method obtained in a medical laboratory.

  4. Automated Diagnosis Of Conditions In A Plant-Growth Chamber

    NASA Technical Reports Server (NTRS)

    Clinger, Barry R.; Damiano, Alfred L.

    1995-01-01

    Biomass Production Chamber Operations Assistant software and hardware constitute expert system that diagnoses mechanical failures in controlled-environment hydroponic plant-growth chamber and recommends corrective actions to be taken by technicians. Subjects of continuing research directed toward development of highly automated closed life-support systems aboard spacecraft to process animal (including human) and plant wastes into food and oxygen. Uses Microsoft Windows interface to give technicians intuitive, efficient access to critical data. In diagnostic mode, system prompts technician for information. When expert system has enough information, it generates recovery plan.

  5. In Vitro Culturing and Live Imaging of Drosophila Egg Chambers: A History and Adaptable Method.

    PubMed

    Peters, Nathaniel C; Berg, Celeste A

    2016-01-01

    The development of the Drosophila egg chamber encompasses a myriad of diverse germline and somatic events, and as such, the egg chamber has become a widely used and influential developmental model. Advantages of this system include physical accessibility, genetic tractability, and amenability to microscopy and live culturing, the last of which is the focus of this chapter. To provide adequate context, we summarize the structure of the Drosophila ovary and egg chamber, the morphogenetic events of oogenesis, the history of egg-chamber live culturing, and many of the important discoveries that this culturing has afforded. Subsequently, we discuss various culturing methods that have facilitated analyses of different stages of egg-chamber development and different types of cells within the egg chamber, and we present an optimized protocol for live culturing Drosophila egg chambers.We designed this protocol for culturing late-stage Drosophila egg chambers and live imaging epithelial tube morphogenesis, but with appropriate modifications, it can be used to culture egg chambers of any stage. The protocol employs a liquid-permeable, weighted "blanket" to gently hold egg chambers against the coverslip in a glass-bottomed culture dish so the egg chambers can be imaged on an inverted microscope. This setup provides a more buffered, stable, culturing environment than previously published methods by using a larger volume of culture media, but the setup is also compatible with small volumes. This chapter should aid researchers in their efforts to culture and live-image Drosophila egg chambers, further augmenting the impressive power of this model system.

  6. In vitro culturing and live imaging of Drosophila egg chambers: A history and adaptable method

    PubMed Central

    Peters, Nathaniel C.; Berg, Celeste A.

    2017-01-01

    Summary/Abstract The development of the Drosophila egg chamber encompasses a myriad of diverse germline and somatic events, and as such, the egg chamber has become a widely used and influential developmental model. Advantages of this system include physical accessibility, genetic tractability, and amenability to microscopy and live culturing, the last of which is the focus of this chapter. To provide adequate context, we summarize the structure of the Drosophila ovary and egg chamber, the morphogenetic events of oogenesis, the history of egg-chamber live culturing, and many of the important discoveries that this culturing has afforded. Subsequently, we discuss various culturing methods that have facilitated analyses of different stages of egg-chamber development and different types of cells within the egg chamber, and we present an optimized protocol for live culturing Drosophila egg chambers. We designed this protocol for culturing late-stage Drosophila egg chambers and live imaging epithelial tube morphogenesis, but with appropriate modifications it can be used to culture egg chambers of any stage. The protocol employs a liquid-permeable, weighted, “blanket” to gently hold egg chambers against the coverslip in a glass-bottomed culture dish so the egg chambers can be imaged on an inverted microscope. This setup provides a more buffered, stable culturing environment than previously published methods by using a larger volume of culture media, but the setup is also compatible with small volumes. This chapter should aid researchers in their efforts to culture and live image Drosophila egg chambers, further augmenting the impressive power of this model system. PMID:27557572

  7. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2001-01-01

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  8. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2003-04-08

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  9. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2003-04-15

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  10. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  11. Development of an electronic seepage chamber for extended use in a river.

    PubMed

    Fritz, Brad G; Mendoza, Donaldo P; Gilmore, Tyler J

    2009-01-01

    Seepage chambers have been used to characterize the flux of water across the water-sediment interface in a variety of settings. In this work, an electronic seepage chamber was developed specifically for long-term use in a large river where hydraulic gradient reversals occur frequently with river-stage variations. A bidirectional electronic flowmeter coupled with a seepage chamber was used to measure temporal changes in the magnitude and direction of water flux across the water-sediment interface over an 8-week period. The specific discharge measured from the seepage chamber compared favorably with measurements of vertical hydraulic gradient and previous specific discharge calculations. This, as well as other supporting data, demonstrates the effectiveness of the electronic seepage chamber to accurately quantify water flux in two directions over a multimonth period in this setting. The ability to conduct multimonth measurements of water flux at a subhourly frequency in a river system is a critical capability for a seepage chamber in a system where hydraulic gradients change on a daily and seasonal basis.

  12. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications, and describe the new capabilities of the chamber.

  13. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications, and describe the new capabilities of the chamber.

  14. Creating the Deep Space Environment for Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.

    2012-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960's to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and the modifications were funded, by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink and, the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in the overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications, and describe the new capabilities of the chamber.

  15. SU-F-P-11: Long Term Dosimetric Stability of 6 TomoTherapy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smilowitz, J; Dunkerley, D; Geurts, M

    2016-06-15

    Purpose: The dosimetric stability of six TomoTherapy units was analyzed to investigate changes in performance over time and with system upgrades. Methods: Energy and output were tracked using monitor chamber signal, onboard MVCT detector signal and external ion chamber measurements. The systems (and monitoring periods) include 3 Hi-Art (67, 61 and 65 mos.), 2 HDA (29 and 25 mos.) and one research unit (7 mo.). Dose Control Stability system (DCS) was installed on 4 systems. Output stability is reported as deviation from reference monitor chamber signal for all systems, and from an external chamber for 4 systems. Energy stability wasmore » monitored using the relative (center versus off-axis) MVCT detector signal and/or the ratio of chamber measurements at 2 depths. The results from the clinical systems were used to benchmark the stability of the research unit, which has the same linear accelerator but runs at a higher dose rate. Results: The output based on monitor chamber data of all six systems is very stable. Non- DCS had a standard deviation of 1.7% and 1.8%. As expected, DCS systems had improved standard deviation: 0.003–0.05%. The energy was also very stable for all units. The standard deviation in exit detector flatness was 0.02–0.3%. Ion chamber output and 20/10 cm ratios supported these results. The stability for the research system, as monitored with a variety of metrics, is on par with the existing systems. Conclusion: The output and energy of six TomoTherapy units over a total of almost 10 years is quite stable. For each system, the results are consistent between the different measurement tools and techniques, proving not only the dosimetric stability, but that these quality parameters can be confirmed with various metrics. A research unit operating at a higher dose rate performed as well as the clinical treatment units. University of Wisconsin and Accuray Inc. (vendor of TomoTherapy systems) have a research agreement which supplies funds for research to the University. This project was partially supporting with these funds.« less

  16. Design, fabrication, and performance testing of a vacuum chamber for pulse compressor of a 150 TW Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Tripathi, P. K.; Singh, Rajvir; Bhatnagar, V. K.; Sharma, S. D.; Sharma, Sanjay; Sisodia, B.; Yedle, K.; Kushwaha, R. P.; Sebastin, S.; Mundra, G.

    2012-11-01

    A vacuum chamber, to house the optical pulse compressor of a 150 TW Ti:sapphire laser system, has been designed, fabricated, and tested. As the intensity of the laser pulse becomes very high after pulse compression, there is phase distortion of the laser beam in air. Hence, the beam (after pulse compression) has to be transported in vacuum to avoid this distortion, which affects the laser beam focusability. A breadboard with optical gratings and reflective optics for compression of the optical pulse has to be kept inside the chamber. The chamber is made of SS 316L material in cuboidal shape with inside dimensions 1370×1030×650 mm3, with rectangular and circular demountable ports for entry and exit of the laser beam, evacuation, system cables, and ports to access optics mounted inside the chamber. The front and back sides of the chamber are kept demountable in order to insert the breadboard with optical components mounted on it. Leak tightness of 9×10-9 mbar-lit/sec in all the joints and ultimate vacuum of 6.5×10-6 mbar was achieved in the chamber using a turbo molecular pumping system. The paper describe details of the design/ features of the chamber, important procedure involved in machining, fabrication, processing and final testing.

  17. Propagation of a premixed flame in a divided-chamber combustor

    NASA Technical Reports Server (NTRS)

    Cattolica, R. J.; Barr, P. K.; Mansour, N. N.

    1989-01-01

    Experimental observations on the propagation of lean premixed ethylene-air flames in a divided-chamber combustion vessel have been compared with the results of numerical simulations based on a flame sheet-vortex dynamics model in axisymmetric coordinates. Flame speeds were found to increase from 10-24 cm/s as the equivalence ratio was varied from 0.5-0.65 in the experiments. Using the associated increase in gas velocity with equivalence ratio, the estimated Reynolds number in the experiment was changed from 1870 to 8090. Good agreement between experimental and theoretical results was obtained for the prechamber flame propagation rates and for the spatial and temporal development of the flame in the main combustion chamber at the lowest Reynolds number.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K; Able, A

    Purpose: To evaluate an Enhanced Dynamic Wedge (EDW) as part of machine commission process with feature study. Methods: The EDW system in this study was from a Truebeam, which is the Linear accelerator manufactured by Varian Medical Systems. The EDW feature vectors includes selected elements. These elements were dosimetric output spots check, field size, wedge angles, dose rate, collimator orientation, and different energy settings. Point dose measurement was done by a PTW farmer chamber, and profiles were measured by Gafchromic EBT2 films positing at different depths of the Solidwater based on the study elements. The output spot measurements were donemore » with PTW farmer chamber with Solidwater setting for all orientation and wedge angles in the EDW system. The profiles comparisons were done by IMRT measurement function in RIT software at version 6.3. And the films were scanned by Vidar scanner. Dosimetry calculation were done by using the same Solidwater scanned by GE LightSpeed CT in Eclipse Treatment Planning System (TPS). Then measurements were compared to simulation results in TPS. Results: The energy average percentage difference between chamber measurement and TPS was 0.16% with standard deviation (SD) at 0.93%. For selected features, the average percentage difference between film measurement and computation was 0.93% with SD at 1.55% in horizontal profiles, and 1.18% with SD at 0.98% at vertical profiles. The average gamma difference for film measurement and TPS computing results was at 0.924 with SD at 0.314. Conclusion: A feature vector was developed to describe the commission of EDW, and developing a complete set of features for sufficiency of commission of a LINAC function could provide optimal commission instance with acceptable confident level of clinical application of the machine. Given the institution specific vector pattern and big data process, it could provide wide range clinical outcome comparison information in application of EDW.« less

  19. Nanopore detection of DNA molecules in crowded neutral polymer solutions

    NASA Astrophysics Data System (ADS)

    Sharma, Rajesh Kumar; Dai, Liang; Doyle, Patrick; Garaj, Slaven

    Nanopore sensing is a precise technique for analysis of the structure and dynamics of individual biomolecules in different environments, and has even become a prominent technique for next-gen DNA sequencing. In the nanopore sensor, an individual DNA molecule is electrophoretically translocated through a single, nanometer-scaled pore in a solid-state membrane separating two chambers filled with electrolyte. The conformation of the molecule is deduced from modulations in the ionic current through the pore during the translocation event. Using nanopores, we investigated the dynamics of the DNA molecules in a crowded solution of neutral polymers of different sizes and concentrations. The translocation dynamics depends significantly on the size and concentration of the polymers, as different contributions to the electrophoretic and entropic forces on the DNA molecules come into play. This setup offers an excellent, tuneable model-system for probing biologically relevant questions regarding the behaviour of DNA molecules in highly confined and crowded environments. Singapore-MIT Alliance for Research and Technology.

  20. Design and performance of vacuum system for high heat flux test facility

    NASA Astrophysics Data System (ADS)

    Swamy Kidambi, Rajamannar; Mokaria, Prakash; Khirwadkar, Samir; Belsare, Sunil; Khan, M. S.; Patel, Tushar; Krishnan, Deepu S.

    2017-04-01

    High heat flux test facility (HHFTF) at IPR is used for testing thermal performance of plasma facing materials or components. It consists of various subsystems like vacuum system, high power electron beam system, diagnostic and calibration system, data acquisition and control system and high pressure high temperature water circulation system. Vacuum system consists of large D-shaped chamber, target handling system, pumping systems and support structure. The net volume of vacuum chamber is 5 m3 was maintained at the base pressure of the order of 10-6 mbar for operation of electron gun with minimum beam diameter which is achieved with turbo-molecular pump (TMP) and cryo pump. A variable conductance gate valve is used for maintaining required vacuum in the chamber. Initial pumping of the chamber was carried out by using suitable rotary and root pumps. PXI and PLC based faster real time data acquisition and control system is implemented for performing the various operations like remote operation, online vacuum data measurements, display and status indication of all vacuum equipments. This paper describes in detail the design and implementation of various vacuum system for HHFTF.

  1. Techniques for avoiding discrimination errors in the dynamic sampling of condensable vapors

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1983-01-01

    In the mass spectrometric sampling of dynamic systems, measurements of the relative concentrations of condensable and noncondensable vapors can be significantly distorted if some subtle, but important, instrumental factors are overlooked. Even with in situ measurements, the condensables are readily lost to the container walls, and the noncondensables can persist within the vacuum chamber and yield a disproportionately high output signal. Where single pulses of vapor are sampled this source of error is avoided by gating either the mass spectrometer ""on'' or the data acquisition instrumentation ""on'' only during the very brief time-window when the initial vapor cloud emanating directly from the vapor source passes through the ionizer. Instrumentation for these techniques is detailed and its effectiveness is demonstrated by comparing gated and nongated spectra obtained from the pulsed-laser vaporization of several materials.

  2. Portable Automation of Static Chamber Sample Collection for Quantifying Soil Gas Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Morgan P.; Groh, Tyler A.; Parkin, Timothy B.

    Quantification of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled is limited by the spacing between chambers and the availability of trained research technicians. An automated system for collecting gas samples from chambers in the field would eliminate the need for personnel to return to the chamber during a flux measurement period and would allow a single technician to sample multiple chambers simultaneously. This study describes Chamber Automated Sampling Equipment (FluxCASE) to collect and store chamber headspace gas samples at assigned time points for the measurement of soil gasmore » flux. The FluxCASE design and operation is described, and the accuracy and precision of the FluxCASE system is evaluated. In laboratory measurements of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) concentrations of a standardized gas mixture, coefficients of variation associated with automated and manual sample collection were comparable, indicating no loss of precision. In the field, soil gas fluxes measured from FluxCASEs were in agreement with manual sampling for both N2O and CO2. Slopes of regression equations were 1.01 for CO2 and 0.97 for N2O. The 95% confidence limits of the slopes of the regression lines included the value of one, indicating no bias. Additionally, an expense analysis found a cost recovery ranging from 0.6 to 2.2 yr. Implementing the FluxCASE system is an alternative to improve the efficiency of the static chamber method for measuring soil gas flux while maintaining the accuracy and precision of manual sampling.« less

  3. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies.

    PubMed

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments.

  4. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies

    PubMed Central

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  5. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  6. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  7. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2014-05-13

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  8. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  9. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2013-12-03

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  10. Survival and growth of newly transformed Lampsilis cardium and Lampsilis siliquoidea in a flow-through, continuous feeding test system

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Schreier, Theresa M.; Hess, Karina R.; Bartsch, Michelle

    2011-01-01

    A test system was evaluated for assessing chronic toxicity of waterborne chemicals with early life stage mussels. To determine if the test system could result in ≥80% survival in a control (unexposed) group, fat mucket mussels (Lampsilis siliquoidea Barnes, 1823) and plain pocketbook mussels (L. cardium Rafinesque, 1820) 1 day post transformation were stocked into test chambers (250 mL beakers, water volume, 200 mL, 21 °C, 40 mussels of 1 species per chamber) within a test system constructed for conducting chronic, continuous exposure, flow-through toxicity tests. The test system contained 60 chambers containing silica sand, 30 chambers with L. siliquoidea, and 30 with L. cardium. Each chamber in the continuous feeding system received 1 of 6 food types prepared with concentrated algal products. After 28 days, mussels were harvested from chambers to assess survival and growth. For L. siliquoidea, mean survival ranged from 34 to 80% and mean shell length ranged from 464 to 643 µm. For L. cardium, mean survival ranged from 12 to 66% and mean shell length ranged from 437 to 612 µm. The maximum mean growth rate for L. siliquoidea was 12.7 µm/d and for L. cardium was 11.8 µm/d. When offered a continuous diet of Nannochloropsis, Tetraselmis, and Chlorella for 28 days in the test system, the survival of 1 day post transformation L. siliquoidea was 80%. The test system can be easily enhanced with a pumping system continuously delivering test chemical to the test system's flow stream allowing for chronic toxicity tests with 1 day post transformation mussels.

  11. A ZigBee-based wireless system for monitoring vital signs in hyperbaric chambers: Technical report.

    PubMed

    Carmona, Cristian; Alorda, Bartomeu; Gracia, Luis; Perez-Vidal, Carlos; Salinas, Antonio

    2017-01-01

    This paper presents the replacement of a traditional wired communication link of the hyperbaric chambers with a wireless ZigBee-based system. This move allows a reduction in the costs of seals capable of withstanding the internal pressures and gives rise to a more versatile system. The new system is able to capture and process individual vital signs like the electrocardiography signal, and other analog sources, sending the data to an external computer and allowing analysis, representation and sharing with medical staff. This system solves such problems as the attenuation of the signal produced by the metal walls of the hyperbaric chamber and has a coverage area large enough to manage up to six patients with an effective data rate conversion of 2kHz. Furthermore, a battery-based and multiparameter platform is designed for multipatient hyperbaric chambers. Copyright© Undersea and Hyperbaric Medical Society.

  12. A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control.

    PubMed

    Ouyang, Yiwen; Duarte, Gabriela R M; Poe, Brian L; Riehl, Paul S; dos Santos, Fernando M; Martin-Didonet, Claudia C G; Carrilho, Emanuel; Landers, James P

    2015-12-11

    Infrared (IR)-mediated thermal cycling system, a method proven to be a effective for sub-μL scale polymerase chain reaction (PCR) on microchips, has been integrated with DNA extraction and separation on a glass microchip in a fully integrated micro Total Analysis System by Easley et al., in 2006. IR-PCR has been demonstrated on both glass and PMMA microdevices where the fabrication (bonding) is not trivial. Polyester-toner (PeT) microfluidic devices have significant potential as cost-effective, disposable microdevices as a result of the ease of fabrication (∼$0.25 USD and <10 min per device) and availability of commercial substrates. For the first time, we demonstrate here the thermal cycling in PeT microchips on the IR-PCR system. Undesirable IR absorption by the black-toner bonding layer was eliminated with a spatial filter in the form of an aluminum foil mask. The solution heating rate for a black PeT microchip using a tungsten lamp was 10.1 ± 0.7 °C s(-1) with a cooling rate of roughly -12 ± 0.9 °C s(-1) assisted by forced air cooling. Dynamic surface passivation strategies allowed the successful amplification of a 520 bp fragment of the λ-phage genome (in 11 min) and a 1500 bp region of Azospirillum brasilense. Using a centrosymmetric chamber configuration in a multichamber PeT microchip, homogenous temperature distribution over all chambers was achieved with inter-chamber temperature differences at annealing, extension and denaturing steps of less than ±2 °C. The effectiveness of the multichamber system was demonstrated with the simultaneous amplification of a 390 bp amplicon of human β-globin gene in five PeT PCR microchambers. The relative PCR amplification efficiency with a human β-globin DNA fragment ranged from 70% to 90%, in comparison to conventional thermal cyclers, with an inter-chamber standard deviation of ∼10%. Development of PeT microchips for IR-PCR has the potential to provide rapid, low-volume amplification while also integrating PCR with extraction upstream and separation/detection downstream. Copyright © 2015. Published by Elsevier B.V.

  13. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yurui; Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, Göteborg, SE 41296; Zhang, Zhenglong

    2016-03-15

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10{sup −7} Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 ×more » 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.« less

  14. High vacuum measurements and calibrations, molecular flow fluid transient effects

    DOE PAGES

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 × 10 -8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreasedmore » during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less

  15. Morphological study on the olfactory systems of the snapping turtle, Chelydra serpentina.

    PubMed

    Nakamuta, Nobuaki; Nakamuta, Shoko; Kato, Hideaki; Yamamoto, Yoshio

    2016-06-01

    In this study, the olfactory system of a semi-aquatic turtle, the snapping turtle, has been morphologically investigated by electron microscopy, immunohistochemistry, and lectin histochemistry. The nasal cavity of snapping turtle was divided into the upper and lower chambers, lined by the sensory epithelium containing ciliated and non-ciliated olfactory receptor neurons, respectively. Each neuron expressed both Gαolf, the α-subunit of G-proteins coupling to the odorant receptors, and Gαo, the α-subunit of G-proteins coupling to the type 2 vomeronasal receptors. The axons originating from the upper chamber epithelium projected to the ventral part of the olfactory bulb, while those from the lower chamber epithelium to the dorsal part of the olfactory bulb. Despite the identical expression of G-protein α-subunits in the olfactory receptor neurons, these two projections were clearly distinguished from each other by the differential expression of glycoconjugates. In conclusion, these data indicate the presence of two types of olfactory systems in the snapping turtle. Topographic arrangement of the upper and lower chambers and lack of the associated glands in the lower chamber epithelium suggest their possible involvement in the detection of odorants: upper chamber epithelium in the air and the lower chamber epithelium in the water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system

    NASA Astrophysics Data System (ADS)

    Palomares, E.; Nieto, A. J.; Morales, A. L.; Chicharro, J. M.; Pintado, P.

    2018-02-01

    This paper presents a Negative Stiffness System (NSS) based on a set of two double-acting pneumatic linear actuators (PLA). The NSS is added to a system with a single degree of freedom, which consists of a sprung mass and a pneumatic spring. One end of each PLA is jointed to the sprung mass while the other end is jointed to the vibrating frame. In addition, the PLAs are symmetrically arranged so that they remain horizontal while the sprung mass is in static conditions. When the rear chamber is pressurised, the vertical component of the force applied by the PLAs will work against the pneumatic spring reducing the dynamic resonance frequency of the overall system. Experimental tests and simulations showed improvements regarding sprung mass isolation in comparison to the passive system without NSS, decreasing the resonance frequency by up to 58 % and improving the vibration attenuation for different experimental excitations.

  17. Does Plant Biomass Manipulation in Static Chambers Affect Nitrous Oxide Emissions from Soils?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, Sarah M.; Dean, Andrew P.; Oates, Lawrence G.

    One of the most widespread approaches for measurement of greenhouse gas emissions from soils involves the use of static chambers. This method is relatively inexpensive, is easily replicated, and is ideally suited to plot-based experimental systems. Among its limitations is the loss of detection sensitivity with increasing chamber height, which creates challenges for deployment in systems including tall vegetation. It is not always possible to avoid inclusion of plants within chambers or to extend chamber height to fully accommodate plant growth. Thus, in many systems, such as perennial forages and biomass crops, plants growing within static chambers must either bemore » trimmed or folded during lid closure. Currently, data on how different types of biomass manipulation affect measured results is limited. For this study, we compare the effects of cutting vs. folding of biomass on nitrous oxide measurements in switchgrass (Panicum virgatum L.) and alfalfa (Medicago sativa L.) systems. We report only limited evidence of treatment effects during discrete sampling events and little basis for concern that effects may intensify over time as biomass manipulation is repeatedly imposed. However, nonsignificant treatment effects that were consistently present amounted to significant overall trends in three out of the four systems studied. Such minor disparities in flux could amount to considerable quantities over time, suggesting that caution should be exercised when comparing cumulative emission values from studies using different biomass manipulation strategies.« less

  18. Does Plant Biomass Manipulation in Static Chambers Affect Nitrous Oxide Emissions from Soils?

    DOE PAGES

    Collier, Sarah M.; Dean, Andrew P.; Oates, Lawrence G.; ...

    2016-01-22

    One of the most widespread approaches for measurement of greenhouse gas emissions from soils involves the use of static chambers. This method is relatively inexpensive, is easily replicated, and is ideally suited to plot-based experimental systems. Among its limitations is the loss of detection sensitivity with increasing chamber height, which creates challenges for deployment in systems including tall vegetation. It is not always possible to avoid inclusion of plants within chambers or to extend chamber height to fully accommodate plant growth. Thus, in many systems, such as perennial forages and biomass crops, plants growing within static chambers must either bemore » trimmed or folded during lid closure. Currently, data on how different types of biomass manipulation affect measured results is limited. For this study, we compare the effects of cutting vs. folding of biomass on nitrous oxide measurements in switchgrass (Panicum virgatum L.) and alfalfa (Medicago sativa L.) systems. We report only limited evidence of treatment effects during discrete sampling events and little basis for concern that effects may intensify over time as biomass manipulation is repeatedly imposed. However, nonsignificant treatment effects that were consistently present amounted to significant overall trends in three out of the four systems studied. Such minor disparities in flux could amount to considerable quantities over time, suggesting that caution should be exercised when comparing cumulative emission values from studies using different biomass manipulation strategies.« less

  19. Use of Computational Fluid Dynamics for improving freeze-dryers design and process understanding. Part 1: Modelling the lyophilisation chamber.

    PubMed

    Barresi, Antonello A; Rasetto, Valeria; Marchisio, Daniele L

    2018-05-15

    This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular, the freeze-dryer chamber and the duct connecting the chamber with the condenser, with the valves and vanes eventually present are analysed in this work. In Part 1, it will be shown how CFD can be employed to improve specific designs, to perform geometry optimization, to evaluate different design choices and how it is useful to evaluate the effect on product drying and batch variance. Such an approach allows an in-depth process understanding and assessment of the critical aspects of lyophilisation. This can be done by running either steady-state or transient simulations with imposed sublimation rates or with multi-scale approaches. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating the influence of the equipment geometry and shelf inter-distance. The effect of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions will be instead investigated in Part 2. Copyright © 2018. Published by Elsevier B.V.

  20. Precision platform for convex lens-induced confinement microscopy

    NASA Astrophysics Data System (ADS)

    Berard, Daniel; McFaul, Christopher M. J.; Leith, Jason S.; Arsenault, Adriel K. J.; Michaud, François; Leslie, Sabrina R.

    2013-10-01

    We present the conception, fabrication, and demonstration of a versatile, computer-controlled microscopy device which transforms a standard inverted fluorescence microscope into a precision single-molecule imaging station. The device uses the principle of convex lens-induced confinement [S. R. Leslie, A. P. Fields, and A. E. Cohen, Anal. Chem. 82, 6224 (2010)], which employs a tunable imaging chamber to enhance background rejection and extend diffusion-limited observation periods. Using nanopositioning stages, this device achieves repeatable and dynamic control over the geometry of the sample chamber on scales as small as the size of individual molecules, enabling regulation of their configurations and dynamics. Using microfluidics, this device enables serial insertion as well as sample recovery, facilitating temporally controlled, high-throughput measurements of multiple reagents. We report on the simulation and experimental characterization of this tunable chamber geometry, and its influence upon the diffusion and conformations of DNA molecules over extended observation periods. This new microscopy platform has the potential to capture, probe, and influence the configurations of single molecules, with dramatically improved imaging conditions in comparison to existing technologies. These capabilities are of immediate interest to a wide range of research and industry sectors in biotechnology, biophysics, materials, and chemistry.

  1. Influence of the operational parameters on bioelectricity generation in continuous microbial fuel cell, experimental and computational fluid dynamics modelling

    NASA Astrophysics Data System (ADS)

    Sobieszuk, Paweł; Zamojska-Jaroszewicz, Anna; Makowski, Łukasz

    2017-12-01

    The influence of the organic loading rate (also known as active anodic chamber volume) on bioelectricity generation in a continuous, two-chamber microbial fuel cell for the treatment of synthetic wastewater, with glucose as the only carbon source, was examined. Ten sets of experiments with different combinations of hydraulic retention times (0.24-1.14 d) and influent chemical oxygen demand concentrations were performed to verify the impact of organic loading rate on the voltage generation capacity of a simple dual-chamber microbial fuel cell working in continuous mode. We found that there is an optimal hydraulic retention time value at which the maximum voltage is generated: 0.41 d. However, there were no similar effects, in terms of voltage generation, when a constant hydraulic retention time with different influent chemical oxygen demand of wastewater was used. The obtained maximal voltage value (600 mV) has also been compared to literature data. Computational fluid dynamics (CFD) was used to calculate the fluid flow and the exit age distribution of fluid elements in the reactor to explain the obtained experimental results and identify the crucial parameters for the design of bioreactors on an industrial scale.

  2. An elutriation apparatus for assessing settleability of combined sewer overflows (CSOs).

    PubMed

    Marsalek, J; Krishnappan, B G; Exall, K; Rochfort, Q; Stephens, R P

    2006-01-01

    An elutriation apparatus was proposed for testing the settleability of combined sewer outflows (CSOs) and applied to 12 CSO samples. In this apparatus, solids settling is measured under dynamic conditions created by flow through a series of settling chambers of varying diameters and upward flow velocities. Such a procedure reproduces better turbulent settling in CSO tanks than the conventional settling columns, and facilitates testing coagulant additions under dynamic conditions. Among the limitations, one could name the relatively large size of the apparatus and samples (60 L), and inadequate handling of floatables. Settleability results obtained for the elutriation apparatus and a conventional settling column indicate large inter-event variation in CSO settleability. Under such circumstances, settling tanks need to be designed for "average" conditions and, within some limits, the differences in test results produced by various settleability testing apparatuses and procedures may be acceptable. Further development of the elutriation apparatus is under way, focusing on reducing flow velocities in the tubing connecting settling chambers and reducing the number of settling chambers employed. The first measure would reduce the risk of floc breakage in the connecting tubing and the second one would reduce the required sample size.

  3. Atmospheric Spray Freeze-Drying: Numerical Modeling and Comparison With Experimental Measurements.

    PubMed

    Borges Sebastião, Israel; Robinson, Thomas D; Alexeenko, Alina

    2017-01-01

    Atmospheric spray freeze-drying (ASFD) represents a novel approach to dry thermosensitive solutions via sublimation. Tests conducted with a second-generation ASFD equipment, developed for pharmaceutical applications, have focused initially on producing a light, fine, high-grade powder consistently and reliably. To better understand the heat and mass transfer physics and drying dynamics taking place within the ASFD chamber, 3 analytical models describing the key processes are developed and validated. First, by coupling the dynamics and heat transfer of single droplets sprayed into the chamber, the velocity, temperature, and phase change evolutions of these droplets are estimated for actual operational conditions. This model reveals that, under typical operational conditions, the sprayed droplets require less than 100 ms to freeze. Second, because understanding the heat transfer throughout the entire freeze-drying process is so important, a theoretical model is proposed to predict the time evolution of the chamber gas temperature. Finally, a drying model, calibrated with hygrometer measurements, is used to estimate the total time required to achieve a predefined final moisture content. Results from these models are compared with experimental data. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. System configured for applying a modifying agent to a non-equidimensional substrate

    DOEpatents

    Janikowski,; Stuart K. , Argyle; Mark D. , Fox; Robert V. , Propp; W Alan, Toth [Idaho Falls, ID; William J. , Ginosar; Daniel M. , Allen; Charles A. , Miller; David, L [Idaho Falls, ID

    2007-07-10

    The present invention is related to systems and methods for modifying various non-equidimensional substrates with modifying agents. The system comprises a processing chamber configured for passing the non-equidimensional substrate therethrough, wherein the processing chamber is further configured to accept a treatment mixture into the chamber during movement of the non-equidimensional substrate through the processing chamber. The treatment mixture can comprise of the modifying agent in a carrier medium, wherein the carrier medium is selected from the group consisting of a supercritical fluid, a near-critical fluid, a superheated fluid, a superheated liquid, and a liquefied gas. Thus, the modifying agent can be applied to the non-equidimensional substrate upon contact between the treatment mixture and the non-equidimensional substrate.

  5. System configured for applying a modifying agent to a non-equidimensional substrate

    DOEpatents

    Janikowski, Stuart K.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Argyle, Mark D.; Fox, Robert V.; Propp, W. Alan; Miller, David L.

    2003-09-23

    The present invention is related to systems and methods for modifying various non-equidimensional substrates with modifying agents. The system comprises a processing chamber configured for passing the non-equidimensional substrate therethrough, wherein the processing chamber is further configured to accept a treatment mixture into the chamber during movement of the non-equidimensional substrate through the processing chamber. The treatment mixture can comprise of the modifying agent in a carrier medium, wherein the carrier medium is selected from the group consisting of a supercritical fluid, a near-critical fluid, a superheated fluid, a superheated liquid, and a liquefied gas. Thus, the modifying agent can be applied to the non-equidimensional substrate upon contact between the treatment mixture and the non-equidimensional substrate.

  6. Field precision machining technology of target chamber in ICF lasers

    NASA Astrophysics Data System (ADS)

    Xu, Yuanli; Wu, Wenkai; Shi, Sucun; Duan, Lin; Chen, Gang; Wang, Baoxu; Song, Yugang; Liu, Huilin; Zhu, Mingzhi

    2016-10-01

    In ICF lasers, many independent laser beams are required to be positioned on target with a very high degree of accuracy during a shot. The target chamber provides a precision platform and datum reference for final optics assembly and target collimation and location system. The target chamber consists of shell with welded flanges, reinforced concrete pedestal, and lateral support structure. The field precision machining technology of target chamber in ICF lasers have been developed based on ShenGuangIII (SGIII). The same center of the target chamber is adopted in the process of design, fabrication, and alignment. The technologies of beam collimation and datum reference transformation are developed for the fabrication, positioning and adjustment of target chamber. A supporting and rotating mechanism and a special drilling machine are developed to bore the holes of ports. An adjustment mechanism is designed to accurately position the target chamber. In order to ensure the collimation requirements of the beam leading and focusing and the target positioning, custom-machined spacers are used to accurately correct the alignment error of the ports. Finally, this paper describes the chamber center, orientation, and centering alignment error measurements of SGIII. The measurements show the field precision machining of SGIII target chamber meet its design requirement. These information can be used on similar systems.

  7. [Transportation and transformation of 14C-phenanthrene in closed chamber (nutrient solution-lava-plant-air) system].

    PubMed

    Jiang, X; Ou, Z; Ying, P; Yediler, A; Ketrrup, A

    2001-06-01

    The transportation and transformation of 14C-phenanthrene in a closed 'plant-lava-nutrient solution-air' chamber system was studied by using radioactivity technology. The results showed that in this closed chamber system, phenanthrene was degraded fast. The radioactivity of 14C left at 23d in the nutrient solution was only 25% of applied. At the end of experiment (46d), the distribution sequence of 14C activity in the components of closed chamber system was root (38.55%) > volatile organic compounds (VOCs, 17.68%) > lava (14.35%) > CO2 (11.42%) > stem (2%). 14C-activities in plant tissue were combined with the tissue, and existed in the forms of lava-bound(root 4.68%; stem and leaves 0.68%) and polar metabolites (root 23.14%; stem 0.78%).

  8. Is our heart a well-designed pump? The heart along animal evolution.

    PubMed

    Bettex, Dominique A; Prêtre, René; Chassot, Pierre-Guy

    2014-09-07

    A carrier system for gases and nutrients became mandatory when primitive animals grew larger and developed different organs. The first circulatory systems are peristaltic tubes pushing slowly the haemolymph into an open vascular tree without capillaries (worms). Arthropods developed contractile bulges on the abdominal aorta assisted by accessory hearts for wings or legs and by abdominal respiratory motions. Two-chamber heart (atrium and ventricle) appeared among mollusks. Vertebrates have a multi-chamber heart and a closed circulation with capillaries. Their heart has two chambers in fishes, three chambers (two atria and one ventricle) in amphibians and reptiles, and four chambers in birds and mammals. The ventricle of reptiles is partially divided in two cavities by an interventricular septum, leaving only a communication of variable size leading to a variable shunt. Blood pressure increases progressively from 15 mmHg (worms) to 170/70 mmHg (birds) according to the increase in metabolic rate. When systemic pressure exceeds 50 mmHg, a lower pressure system appears for the circulation through gills or lungs in order to improve gas exchange. A four-chamber heart allows a complete separation of systemic and pulmonary circuits. This review describes the circulatory pumping systems used in the different classes of animals, their advantages and failures, and the way they have been modified with evolution. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  9. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  10. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshito, T.; Kodama, K.; Yusa, K.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsionmore » film to highly ionizing particles.« less

  11. Test system for exposing fish to resuspended, contaminated sediment

    USGS Publications Warehouse

    Cope, W.G.; Wiener, J.G.; Steingraeber, M.T.

    1996-01-01

    We describe a new test system for exposing fish to resuspended sediments and associated contaminants. Test sediments were resuspended by revolving test chambers on rotating shafts driven by an electric motor. The timing, speed, and duration of test-chamber revolution were controlled by a rheostat and electronic timer. Each chamber held 45 litres of water and accommodated about 49 g of test fish. The system described had three water baths, each holding six test chambers. We illustrate the performance of this system with results from a 28-day test in which juvenile bluegills Lepomis macrochirus were exposed to resuspended, riverine sediments differing in texture and cadmium content. The test had one sediment-free control and five sediment treatments, with three replicates (chambers) per treatment and 25 fish per replicate. Two-thirds (30 litres) of the test water and sediment in each chamber was renewed weekly. The mean concentration of total suspended solids (TSS) did not vary among treatments; the grand-mean TSS in the five sediment treatments was 975 mg litre−1, similar to the target TSS of 1000 mg litre−1. At the end of the test, an average of 50% of the introduced cadmium was associated with the suspended sediment compartment, whereas the filtered (0.45 μm) water contained 0.4% and bluegills 1.8% of the cadmium.

  12. Analyses of ACPL thermal/fluid conditioning system

    NASA Technical Reports Server (NTRS)

    Stephen, L. A.; Usher, L. H.

    1976-01-01

    Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.

  13. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa

    PubMed Central

    Hawks, John; Elliott, Marina; Schmid, Peter; Churchill, Steven E; de Ruiter, Darryl J; Roberts, Eric M; Hilbert-Wolf, Hannah; Garvin, Heather M; Williams, Scott A; Delezene, Lucas K; Feuerriegel, Elen M; Randolph-Quinney, Patrick; Kivell, Tracy L; Laird, Myra F; Tawane, Gaokgatlhe; DeSilva, Jeremy M; Bailey, Shara E; Brophy, Juliet K; Meyer, Marc R; Skinner, Matthew M; Tocheri, Matthew W; VanSickle, Caroline; Walker, Christopher S; Campbell, Timothy L; Kuhn, Brian; Kruger, Ashley; Tucker, Steven; Gurtov, Alia; Hlophe, Nompumelelo; Hunter, Rick; Morris, Hannah; Peixotto, Becca; Ramalepa, Maropeng; van Rooyen, Dirk; Tsikoane, Mathabela; Boshoff, Pedro; Dirks, Paul HGM; Berger, Lee R

    2017-01-01

    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species. DOI: http://dx.doi.org/10.7554/eLife.24232.001 PMID:28483039

  14. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation.

    PubMed

    Park, Sang-Hyug; Sim, Woo Young; Min, Byoung-Hyun; Yang, Sang Sik; Khademhosseini, Ali; Kaplan, David L

    2012-01-01

    Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.

  15. Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation

    PubMed Central

    Min, Byoung-Hyun; Yang, Sang Sik; Khademhosseini, Ali; Kaplan, David L.

    2012-01-01

    Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation. PMID:23029565

  16. Study on ammonium and organics removal combined with electricity generation in a continuous flow microbial fuel cell.

    PubMed

    Liu, Shuxin; Li, Lan; Li, Huiqiang; Wang, Hui; Yang, Ping

    2017-11-01

    A continuous microbial fuel cell system was constructed treating ammonium/organics rich wastewater. Operational performance of MFC system, mechanisms of ammonium removal, effect of ammonium on organics removal and energy output, C and N balance of anode chamber and microbial community analysis of anode chamber were studied. It was concluded that 0.0914kg/m 3 d NH 4 + -N and 5.739kg/m 3 d COD were removed from anode chamber and simultaneous nitrification and denitrification (SND) occurred in cathode chamber resulting in COD, TN removal rate of 88.53%, 71.35% respectively. Excess ammonium affected energy output and the MFC system reached maximum energy output of 816.8mV and 62.94mW/m 3 . In anode chamber, Spirochaetes bacterium sp., Methanobacterium formicicum sp. was predominant in bacteria, archaea communities respectively which contributed to wastewater treatment and electricity generation. This study showed the potential for practical application of continuous flow MFC system treating ammonium/organics rich wastewater and achieving electricity generation simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Hartmann test for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Knight, J. Scott; Feinberg, Lee; Howard, Joseph; Acton, D. Scott; Whitman, Tony L.; Smith, Koby

    2016-07-01

    The James Webb Space Telescope's (JWST) end-to-end optical system will be tested in a cryogenic vacuum environment before launch at NASA Johnson Space Center's (JSC) Apollo-era, historic Chamber A thermal vacuum facility. During recent pre-test runs with a prototype "Pathfinder" telescope, the vibration in this environment was found to be challenging for the baseline test approach, which uses phase retrieval of images created by three sub-apertures of the telescope. To address the vibration, an alternate strategy implemented using classic Hartmann test principles combined with precise mirror mechanisms to provide a testing approach that is insensitive to the dynamics environment of the chamber. The measurements and sensitivities of the Hartmann approach are similar to those using phase retrieval over the original sparse aperture test. The Hartmann test concepts have been implemented on the JWST Test Bed Telescope, which provided the rationale and empirical evidence indicating that this Hartmann style approach would be valuable in supplementing the baseline test approach. This paper presents a Hartmann approach implemented during the recent Pathfinder test along with the test approach that is currently being considered for the full optical system test of JWST. Comparisons are made between the baseline phase retrieval approach and the Hartmann approach in addition to demonstrating how the two test methodologies support each other to reduce risk during the JWST full optical system test.

  18. Computational fluid modeling and performance analysis of a bidirectional rotating perfusion culture system.

    PubMed

    Kang, Chang-Wei; Wang, Yan; Tania, Marshella; Zhou, Huancheng; Gao, Yi; Ba, Te; Tan, Guo-Dong Sean; Kim, Sangho; Leo, Hwa Liang

    2013-01-01

    A myriad of bioreactor configurations have been investigated as extracorporeal medical support systems for temporary replacement of vital organ functions. In recent years, studies have demonstrated that the rotating bioreactors have the potential to be utilized as bioartificial liver assist devices (BLADs) owing to their advantage of ease of scalability of cell-culture volume. However, the fluid movement in the rotating chamber will expose the suspended cells to unwanted flow structures with abnormally high shear conditions that may result in poor cell stability and in turn lower the efficacy of the bioreactor system. In this study, we compared the hydrodynamic performance of our modified rotating bioreactor design with that of an existing rotating bioreactor design. Computational fluid dynamic analysis coupled with experimental results were employed in the optimization process for the development of the modified bioreactor design. Our simulation results showed that the modified bioreactor had lower fluid induced shear stresses and more uniform flow conditions within its rotating chamber than the conventional design. Experimental results revealed that the cells within the modified bioreactor also exhibited better cell-carrier attachment, higher metabolic activity, and cell viability compared to those in the conventional design. In conclusion, this study was able to provide important insights into the flow physics within the rotating bioreactors, and help enhanced the hydrodynamic performance of an existing rotating bioreactor for BLAD applications. © 2013 American Institute of Chemical Engineers.

  19. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    NASA Astrophysics Data System (ADS)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  20. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.

    PubMed

    Dechana, A; Thamboon, P; Boonyawan, D

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.

  1. Dynamics of vacuum-sealed, double-leaf partitions

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  2. Combustion Dynamics and Stability Modeling of a Liquid Oxygen/RP-2 Oxygen-Rich Staged Combustion Preburner and Thrust Chamber Assembly with Gas-Centered Swirl Coaxial Injector Elements

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Kenny, R. J.; Protz, C. S.; Garcia, C. P.; Simpson, S. P.; Elmore, J. L.; Fischbach, S. R.; Giacomoni, C. B.; Hulka, J. R.

    2016-01-01

    The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.

  3. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 2: a Study of Low Frequency Combustion Instability in Rocket Engine Preburners Using a Heterogeneous Stirred Tank Reactor Model. Final Report M.S. Thesis - Aug. 1987

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.

    1988-01-01

    During the shutdown of the space shuttle main engine, oxygen flow is shut off from the fuel preburner and helium is used to push the residual oxygen into the combustion chamber. During this process a low frequency combustion instability, or chug, occurs. This chug has resulted in damage to the engine's augmented spark igniter due to backflow of the contents of the preburner combustion chamber into the oxidizer feed system. To determine possible causes and fixes for the chug, the fuel preburner was modeled as a heterogeneous stirred tank combustion chamber, a variable mass flow rate oxidizer feed system, a constant mass flow rate fuel feed system and an exit turbine. Within the combustion chamber gases were assumed perfectly mixed. To account for liquid in the combustion chamber, a uniform droplet distribution was assumed to exist in the chamber, with mean droplet diameter determined from an empirical relation. A computer program was written to integrate the resulting differential equations. Because chamber contents were assumed perfectly mixed, the fuel preburner model erroneously predicted that combustion would not take place during shutdown. The combustion rate model was modified to assume that all liquid oxygen that vaporized instantaneously combusted with fuel. Using this combustion model, the effect of engine parameters on chamber pressure oscillations during the SSME shutdown was calculated.

  4. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R; Jestings, Lee; Conde, Ricardo

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance andmore » subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.« less

  5. Eight-Liter Hydrogen-Deuterium Bubble Chamber in Magnetic Field; VOS MILITROVAYA VODORODNO-DEITERIEVAYA PUZYR'KOVAYA KAMERA V MAGNITNOM POLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokhintseva, T.D.; Vasilenko, A.T.; Grebinnik, V.G.

    1961-01-01

    A design of an 8-liter hydrogen-deuterium bubble chamber is described, and its operating characteristics are given. The chamber is a metal-glass device with the vertical location of its working volume. The chamber is illuminated by means of a lens. In the expansion system the bellows are used. The magnetic field is 12000 oersted in the working volume. The operating cycle of the chamber does not exceed 2 secs. (auth)

  6. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOEpatents

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  7. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  8. Stirling cycle engine and refrigeration systems

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1976-01-01

    A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.

  9. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.

    PubMed

    Costa, Pedro F; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Gomes, Manuela E; Reis, Rui L; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-09-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

  10. Hydrotectonics; principles and relevance

    USGS Publications Warehouse

    Kopf, R.W.

    1982-01-01

    Hydrotectonics combines the principles of hydraulics and rock mechanics. The hypothesis assumes that: (1) no faults are truly planar, (2) opposing noncongruent wavy wallrock surfaces form chambers and bottlenecks along the fault, and (3) most thrusting occurs beneath the water table. These physical constraints permit the following dynamics. Shear displacement accompanying faulting must constantly change the volume of each chamber. Addition of ground water liquefies dry fault breccia to a heavy incompressible viscous muddy breccia I call fault slurry. When the volume of a chamber along a thrust fault decreases faster than its fault slurry can escape laterally, overpressurized slurry is hydraulically injected into the base of near-vertical fractures in the otherwise impervious overriding plate. Breccia pipes commonly form where such fissures intersect. Alternating decrease and increase in volume of the chamber subjects this injection slurry to reversible surges that not only raft and abrade huge clasts sporadically spalled from the walls of the conduit but also act as a forceful hydraulic ram which periodically widens the conduit and extends its top. If the pipe perforates a petroleum reservoir, leaking hydrocarbons float to its top. Sudden faulting may generate a powerful water hammer that can be amplified at some distal narrow ends of the anastomosing plumbing system, where the shock may produce shatter cones. If vented on the Earth's surface, the muddy breccia, now called extrusion slurry, forms a mud volcano. This hypothesis suggests that many highly disturbed features presently attributed to such catastrophic processes as subsurface explosions or meteorite impacts are due to the rheology of tectonic slurry in an intermittently reactivated pressure-relief tube rooted in a powerful reciprocating hydrotectonic pump activated by a long-lived deep-seated thrust fault.

  11. Spatial and temporal variability of N2O emission on grazed pastures - influence of management and meteorological drivers

    NASA Astrophysics Data System (ADS)

    Ammann, Christof; Voglmeier, Karl; Jocher, Markus

    2017-04-01

    Grazed pastures are considered as strong sources of the greenhouse gas nitrous oxide (N2O) with local hot-spots resulting from the uneven spatial distribution of the excretion of the grazing animals. Especially urine patches can result in a high local nitrogen (N) surplus, which can cause large deviations from average soil conditions. The strong spatial and temporal variability of the gaseous emissions represents an inherent problem for the quantification, interpretation and modelling. Micrometeorological methods integrating over a larger domain like the eddy covariance method are well suited to quantify the integrated ecosystem emissions of N2O. In contrast, chamber methods are more useful to investigate specific underlying processes and their dependences on driving parameters. We present results of a pasture experiment in western Switzerland where eddy covariance and chamber measurements of N2O fluxes have been performed using a very sensitive and fast response quantum cascade laser (QCL) instrument. Small scale emissions of N2O from dung and urine patches as well as from other "background" pasture surface areas were quantified using an optimized 'fast-box' chamber system. Variable and partly high N2O emissions of the pasture were observed during all seasons. Beside management factors (grazing phases, fertiliser application), temperature and soil moisture showed a large effect on the fluxes. Fresh urine patches from grazing cows were found to be main emission sources and their temporal dynamics was studied in detail. We present a first approach to up-scale the chamber measurements to the field-scale and compare the results with the eddy covariance measurements.

  12. A chamber design for closed ecological systems research

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, H.; Stofan, P. E.

    1981-01-01

    A single-plant growth chamber is described which is closed with respect to nutrient and gas flows, in order to serve as a tool in the investigation of control over biological systems. Such control procedures are essential for the use of biological components in the development of a closed ecological life support system (CELSS). The chamber's design consists of two concentric clear plastic cylinders equipped with aeroponic feed tubing, a supporting platform for the plant and a set of sensors that includes an anemometer, thermistors, pressure and strain gauges, and humidity sensors.

  13. A new flow-regulating cell type in the Demosponge Tethya wilhelma - functional cellular anatomy of a leuconoid canal system.

    PubMed

    Hammel, Jörg U; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes.

  14. A New Flow-Regulating Cell Type in the Demosponge Tethya wilhelma – Functional Cellular Anatomy of a Leuconoid Canal System

    PubMed Central

    Hammel, Jörg U.; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes. PMID:25409176

  15. Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.

  16. A metabolic simulator for unmanned testing of breathing apparatuses in hyperbaric conditions.

    PubMed

    Frånberg, Oskar; Loncar, Mario; Larsson, Åke; Ornhagen, Hans; Gennser, Mikael

    2014-11-01

    A major part of testing of rebreather apparatuses for underwater diving focuses on the oxygen dosage system. A metabolic simulator for testing breathing apparatuses was built and evaluated. Oxygen consumption was achieved through catalytic combustion of propene. With an admixture of carbon dioxide in the propene fuel, the system allowed the respiratory exchange ratio to be set freely within human variability and also made it possible to increase test pressures above the condensation pressure of propene. The system was tested by breathing ambient air in a pressure chamber with oxygen uptake (Vo₂) ranging from 1-4 L · min(-1), tidal volume (VT) from 1-3 L, breathing frequency (f) of 20 and 25 breaths/min, and chamber pressures from 100 to 670 kPa. The measured end-tidal oxygen concentration (Fo₂) was compared to calculated end-tidal Fo₂. The largest average difference in end-tidal Fo₂during atmospheric pressure conditions was 0.63%-points with a 0.28%-point average difference during the whole test. During hyperbaric conditions with pressures ranging from 100 to 670 kPa, the largest average difference in Fo₂was 1.68%-points seen during compression from 100 kPa to 400 kPa and the average difference in Fo₂during the whole test was 0.29%-points. In combination with a breathing simulator simulating tidal breathing, the system can be used for dynamic continuous testing of breathing equipment with changes in VT, f, Vo2, and pressure.

  17. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system.

    PubMed

    Gong, Yanming; Radachowsky, Sage E; Wolf, Michael; Nielsen, Mark E; Girguis, Peter R; Reimers, Clare E

    2011-06-01

    Supported by the natural potential difference between anoxic sediment and oxic seawater, benthic microbial fuel cells (BMFCs) promise to be ideal power sources for certain low-power marine sensors and communication devices. In this study a chambered BMFC with a 0.25 m(2) footprint was used to power an acoustic modem interfaced with an oceanographic sensor that measures dissolved oxygen and temperature. The experiment was conducted in Yaquina Bay, Oregon over 50 days. Several improvements were made in the BMFC design and power management system based on lessons learned from earlier prototypes. The energy was harvested by a dynamic gain charge pump circuit that maintains a desired point on the BMFC's power curve and stores the energy in a 200 F supercapacitor. The system also used an ultralow power microcontroller and quartz clock to read the oxygen/temperature sensor hourly, store data with a time stamp, and perform daily polarizations. Data records were transmitted to the surface by the acoustic modem every 1-5 days after receiving an acoustic prompt from a surface hydrophone. After jump-starting energy production with supplemental macroalgae placed in the BMFC's anode chamber, the average power density of the BMFC adjusted to 44 mW/m(2) of seafloor area which is better than past demonstrations at this site. The highest power density was 158 mW/m(2), and the useful energy produced and stored was ≥ 1.7 times the energy required to operate the system.

  18. A simulation of the atmospheric cloud physics laboratory to aid in its design and the design of the experiments within the laboratory

    NASA Technical Reports Server (NTRS)

    Winchester, L. W., Jr.

    1980-01-01

    Using the finite difference method with overrelaxation, numerical solutions of the steady-state vorticity transport equation were obtained for a continuous flow diffusion chamber of the Hudson-Squires type. The calculation neglected the effects due to temperature, gravity, and saturation. The size and shape of the manifold used to inject the aerosol laden flow were varied to obtain a design which would improve the performance of the chamber from strictly low Reynolds number (less than 20) fluid dynamical considerations.

  19. CFD Simulation on the J-2X Engine Exhaust in the Center-Body Diffuser and Spray Chamber at the B-2 Facility

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert

    2009-01-01

    A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.

  20. Experimental evaluation of a 600 lbf spacecraft rocket engine.

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1972-01-01

    Experimental results are presented for a long-duration-capability (1000-sec), space-storable, bipropellant liquid rocket motor burning fluorine/hydrazine or FLOX/monomethylhydrazine. The interrelationship between injected mixture ratio and the per cent film cooling on vacuum specific impulse performance and chamber heat transfer is given. Experimental sea level measurements are used to predict space vacuum performance based upon simplified JANNAF reference procedures. Dynamic combustion stability is demonstrated over a wide range of operating conditions. Analytical results of char penetration, erosion, and ablative wall temperature distributions are presented for prototype chamber designs.

  1. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Bouchier, Francis A.; Hannum, David W.; Rhykerd, Jr., Charles L.

    2003-01-01

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated.

  2. Apparatus for adjusting and maintaining the humidity of gas at a constant value within a closed system

    DOEpatents

    Abernathy, Bethel R.; Walters, Ronald R.

    1986-01-01

    The humidity of a gas within a closed system is maintained at constant level by providing a saturated salt solution within a lower chamber in communication with an upper chamber conjointly defined by upper and lower container sections in sealing contact with each other to establish a closed container. A partition wall separates the salt solution from the test region in the upper chamber. A tube extending through the partition plate allows humidified gas to pass from the lower to the upper chamber. A glass wool plug or membranous material within the tube prevents migration of salt into the test region.

  3. Apparatus for adjusting and maintaining the humidity of gas at a constant value within a closed system

    DOEpatents

    Abernathy, B.R.; Walters, R.R.

    1985-08-05

    The humidity of a gas within a closed system is maintained at constant level by providing a saturated salt solution within a lower chamber in communication with an upper chamber conjointly defined by upper and lower container sections in sealing contact with each other to establish a closed container. A partition wall separates the salt solution from the test region in the upper chamber. A tube extending through the partition plate allows humidified gas to pass from the lower to the upper chamber. A glass wool plug or membranous material within the tube prevents migration of salt into the test region.

  4. Microbial community composition of a multi-stage moving bed biofilm reactor and its interaction with kinetic model parameters estimation.

    PubMed

    Wang, Xiaodong; Bi, Xuejun; Hem, Lars John; Ratnaweera, Harsha

    2018-07-15

    Microbial community diversity determines the function of each chamber of multi-stage moving bed biofilm reactor (MBBR) systems. How the microbial community data can be further used to serve wastewater treatment process modelling and optimization has been rarely studied. In this study, a MBBR system was set up to investigate the microbial community diversity of biofilm in each functional chamber. The compositions of microbial community of biofilm from different chambers of MBBR were quantified by high-throughput sequencing. Significantly higher proportion of autotrophs were found in the second aerobic chamber (15.4%), while 4.3% autotrophs were found in the first aerobic chamber. Autotrophs in anoxic chamber were negligible. Moreover, ratios of active heterotrophic biomass and autotrophic biomass (X H /X A ) were obtained by performing respiration tests. By setting heterotroph/autotroph ratios obtained from sequencing analysis equal to X H /X A , a novel approach for kinetic model parameters estimation was developed. This work not only investigated microbial community of MBBR system, but also it provided an approach to make further use of molecular microbiology analysis results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  6. 78 FR 49272 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... committee regarding classification of triple chamber pacing system analyzers (PSAs) with external pacing... chamber PSA is intended to be used during the implant procedure of pacemakers and defibrillators...

  7. Evaluation of Heat Recuperation in a Concentric Hydrogen Reduction Reactor

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Kleinhenz, Julie; Hegde, Uday

    2012-01-01

    Heat recuperation in an ISRU reactor system involves the recovery of heat from a reacted regolith batch by transferring this energy into a batch of fresh regolith. One concept for a hydrogen reduction reactor is a concentric chamber design where heat is transferred from the inner, reaction chamber into fresh regolith in the outer, recuperation chamber. This concept was tested and analyzed to define the overall benefit compared to a more traditional single chamber batch reactor. Data was gathered for heat-up and recuperation in the inner chamber alone, simulating a single chamber design, as well as recuperation into the outer chamber, simulating a dual chamber design. Experimental data was also used to improve two analytical models, with good agreement for temperature behavior during recuperation, calculated mass of the reactor concepts, and energy required during heat-up. The five tests, performed using JSC-1A regolith simulant, also explored the effectiveness of helium gas fluidization, hydrogen gas fluidization, and vibrational fluidization. Results indicate that higher hydrogen volumetric flow rates are required compared to helium for complete fluidization and mixing, and that vibrational fluidization may provide equivalent mixing while eliminating the need to flow large amounts of excess hydrogen. Analysis of the total energy required for heat-up and steady-state operations for a variety of conditions and assumptions shows that the dual-chamber concept requires the same or more energy than the single chamber concept. With no clear energy savings, the added mass and complexity of the dual-chamber makes it unlikely that this design concept will provide any added benefit to the overall ISRU oxygen production system.

  8. Remote water monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Haynes, D. P. (Inventor)

    1978-01-01

    A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis.

  9. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.

    PubMed

    Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh

    2012-04-01

    Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.

  10. Alternative Method to Simulate a Sub-idle Engine Operation in Order to Synthesize Its Control System

    NASA Astrophysics Data System (ADS)

    Sukhovii, Sergii I.; Sirenko, Feliks F.; Yepifanov, Sergiy V.; Loboda, Igor

    2016-09-01

    The steady-state and transient engine performances in control systems are usually evaluated by applying thermodynamic engine models. Most models operate between the idle and maximum power points, only recently, they sometimes address a sub-idle operating range. The lack of information about the component maps at the sub-idle modes presents a challenging problem. A common method to cope with the problem is to extrapolate the component performances to the sub-idle range. Precise extrapolation is also a challenge. As a rule, many scientists concern only particular aspects of the problem such as the lighting combustion chamber or the turbine operation under the turned-off conditions of the combustion chamber. However, there are no reports about a model that considers all of these aspects and simulates the engine starting. The proposed paper addresses a new method to simulate the starting. The method substitutes the non-linear thermodynamic model with a linear dynamic model, which is supplemented with a simplified static model. The latter model is the set of direct relations between parameters that are used in the control algorithms instead of commonly used component performances. Specifically, this model consists of simplified relations between the gas path parameters and the corrected rotational speed.

  11. Pneumatic Variable Series Elastic Actuator.

    PubMed

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  12. Pneumatic Variable Series Elastic Actuator

    PubMed Central

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-01-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on–off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator. PMID:27354755

  13. Soil GHG emissions in a Miscanthus plantation as affected by increasing rates of biochar application.

    NASA Astrophysics Data System (ADS)

    Panzacchi, P.; Davies, C. A.; Ventura, M.; Michie, E. J.; Tonon, G.

    2012-04-01

    Biochar is defined as charcoal produced by pyrolysis with the aim to apply it to the soil in order to improve its fertility and carbon (C) storage capacity. Biochar physical and chemical properties can vary depending on the original biomass feedstock and pyrolysis conditions. The potential agricultural benefits and CO2 carbon sequestration from the application of biochar to soil, were assessed in field trials with well characterised biochar. In May 2010 we applied biochar from Miscanthus biomass produced at 450 °C at 3 different application rates: 10, 25 and 50 tons ha-1 to a 6 year old Miscanthus x giganteus plantation in Brattleby (Lincoln, UK) . Each treated 25 m2 plot had 4 replicates according to a randomised block experimental design. Biochar was incorporated to a depth of 10 cm in the soil between plant rhizomes after the harvest, through shallow tilling. CO2 emissions from biochar amended soil were monitored every two weeks by a portable infrared gas analyser (IRGA) with a closed dynamic chamber system, and continuously through 8 automated chambers (both systems from Li-COR, Lincoln, Nebraska). N2O fluxes were monitored using a closed static chamber technique with manual gas sampling and subsequent gas chromatography. Cation/anion exchange resin lysimeters were buried 20 cm deep in order to capture the leached nitrogen. Higher biochar applications led to a reduction of CO2 effluxes in the first 10 weeks of the experiment, after which no treatment effect was observed. The emission of N2O was significantly reduced in the 25 and 50 tons ha-1 application rates. Addition of biochar had no significant affect on the surface soil temperature, however the temperature sensitivity of soil respiration in the biochar treated plots decreased with increasing application rates

  14. Near-Continuous Isotopic Characterization of Soil N2O Fluxes from Maize Production

    NASA Astrophysics Data System (ADS)

    Anex, R. P.; Francis Clar, J.

    2015-12-01

    Isotopomer ratios of N2O and especially intramolecular 15N site preference (SP) have been proposed as indicators of the sources of N2O and for providing insight into the contributions of different microbial processes. Current knowledge, however, is mainly based on pure culture studies and laboratory flask studies using mass spectrometric analysis. Recent development of laser spectroscopic methods has made possible high-precision, in situ measurements. We present results from a maize production field in Columbia County, Wisconsin, USA. Data were collected from the fertilized maize phase of a maize-soybean rotation. N2O mole fractions and isotopic composition were determined using an automatic gas flux measurement system comprising a set of custom-designed automatic chambers, circulating gas paths and an OA-ICOS N2O Isotope Analyzer (Los Gatos Research, Inc., Model 914-0027). The instrument system allows for up to 15 user programmable soil gas chambers. Wide dynamic range and parts-per-billion precision of OA-ICOS laser absorption instrument allows for extremely rapid estimation of N2O fluxes. Current operational settings provide measurements of N2O and its isotopes every 20 seconds with a precision of 0.1 ± 0.050 PPB. Comparison of measurements from four chambers (two between row and two in-row) show very different aggregate N2O flux, but SP values suggest similar sources from nitrifier denitrification and incomplete bacterial denitrification. SP values reported are being measured throughout the current growing season. To date, the majority of values are consistent with an origin from bacterial denitrification and coincide with periods of high water filled pore space.

  15. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  16. Dynamic Radioactive Source for Evaluating and Demonstrating Time-dependent Performance of Continuous Air Monitors.

    PubMed

    McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît

    2016-11-01

    Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.

  17. Dynamic Radioactive Source for Evaluating and Demonstrating Time-dependent Performance of Continuous Air Monitors

    DOE PAGES

    McLean, Thomas D.; Moore, Murray E.; Justus, Alan L.; ...

    2016-01-01

    Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. Furthermore, the Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached tomore » the watch’s minute hand, and as it rotates, more of the underlying source is revealed. The alpha activity we measured increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. We also used data obtained using the Dynamic Radioactive Source to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.« less

  18. Further Characterization of an Active Clearance Control Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2007-01-01

    A new test chamber and precision hydraulic actuation system were incorporated into an active clearance control (ACC) test rig at NASA Glenn Research Center. Using the improved system, a fast-acting, mechanically-actuated, ACC concept was evaluated at engine simulated temperatures and pressure differentials up to 1140 F and 120 psig, on the basis of secondary seal leakage and kinematic controllability. During testing, the ACC concept tracked a simulated flight clearance transient profile at 1140 F, 120 psig, with a maximum error of only 0.0012 in. Comparison of average dynamic leakage of the system with average static leakage did not show significant differences between the two operating conditions. Calculated effective clearance values for the rig were approximately 0.0002 in. at 120 psig, well below the industry specified effective clearance threshold of 0.001 in.

  19. Optimization of Thermal Object Nonlinear Control Systems by Energy Efficiency Criterion.

    NASA Astrophysics Data System (ADS)

    Velichkin, Vladimir A.; Zavyalov, Vladimir A.

    2018-03-01

    This article presents the results of thermal object functioning control analysis (heat exchanger, dryer, heat treatment chamber, etc.). The results were used to determine a mathematical model of the generalized thermal control object. The appropriate optimality criterion was chosen to make the control more energy-efficient. The mathematical programming task was formulated based on the chosen optimality criterion, control object mathematical model and technological constraints. The “maximum energy efficiency” criterion helped avoid solving a system of nonlinear differential equations and solve the formulated problem of mathematical programming in an analytical way. It should be noted that in the case under review the search for optimal control and optimal trajectory reduces to solving an algebraic system of equations. In addition, it is shown that the optimal trajectory does not depend on the dynamic characteristics of the control object.

  20. High-Power, High-Thrust Ion Thruster (HPHTion)

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.

    2015-01-01

    Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.

Top