Sample records for dynamic characteristic analysis

  1. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  2. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  3. Modeling and analysis of dynamic characteristics of carrier system of machining center in MSC.Adams

    NASA Astrophysics Data System (ADS)

    Grinek, A. V.; Rybina, A. V.; Boychuk, I. P.; Dantsevich, I. M.; Hurtasenko, A. V.

    2018-03-01

    The simulation model with the help of vibration analysis was developed in MSC.Adams/Vibration and experimental research of the dynamic characteristics of a five-axis machining center was carried out. The amplitude-frequency characteristics, resonant frequencies in various directions are investigated. Dynamic and static rigidity, damping intensity and the coefficient of dynamism of the center are determined.

  4. Computational Methods for Structural Mechanics and Dynamics

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.

  5. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  6. 14 CFR 25.473 - Landing load conditions and assumptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... presence of systems or procedures significantly affects the lift. (c) The method of analysis of airplane... dynamic characteristics. (2) Spin-up and springback. (3) Rigid body response. (4) Structural dynamic response of the airframe, if significant. (d) The landing gear dynamic characteristics must be validated by...

  7. Dynamic load-sharing characteristic analysis of face gear power-split gear system based on tooth contact characteristics

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Hu, Yahui

    2018-04-01

    The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.

  8. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. K.

    1985-01-01

    Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.

  9. The method of the gas-dynamic centrifugal compressor stage characteristics recalculation for variable rotor rotational speeds and the rotation angle of inlet guide vanes blades if the kinematic and dynamic similitude conditions are not met

    NASA Astrophysics Data System (ADS)

    Vanyashov, A. D.; Karabanova, V. V.

    2017-08-01

    A mathematical description of the method for obtaining gas-dynamic characteristics of a centrifugal compressor stage is proposed, taking into account the control action by varying the rotor speed and the angle of rotation of the guide vanes relative to the "basic" characteristic, if the kinematic and dynamic similitude conditions are not met. The formulas of the correction terms for the non-dimensional coefficients of specific work, consumption and efficiency are obtained. A comparative analysis of the calculated gas-dynamic characteristics of a high-pressure centrifugal stage with experimental data is performed.

  10. Dynamic evolution characteristics of a fractional order hydropower station system

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Chen, Diyi; Yan, Donglin; Xu, Beibei; Wang, Xiangyu

    2018-01-01

    This paper investigates the dynamic evolution characteristics of the hydropower station by introducing the fractional order damping forces. A careful analysis of the dynamic characteristics of the generator shaft system is carried out under different values of fractional order. It turns out the vibration state of the axis coordinates has a certain evolution law with the increase of the fractional order. Significantly, the obtained law exists in the horizontal evolution and vertical evolution of the dynamical behaviors. Meanwhile, some interesting dynamical phenomena were found in this process. The outcomes of this study enrich the nonlinear dynamic theory from the engineering practice of hydropower stations.

  11. Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes

    NASA Technical Reports Server (NTRS)

    Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank

    2004-01-01

    Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.

  12. Dynamic characteristics and simplified numerical methods of an all-vertical-piled wharf in offshore deep water

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-qing; Sun, Xi-ping; Wang, Yuan-zhan; Yin, Ji-long; Wang, Chao-yang

    2015-10-01

    There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.

  13. Variable Dynamic Testbed Vehicle Dynamics Analysis

    DOT National Transportation Integrated Search

    1996-03-01

    ANTI-ROLL BAR, EMULATION, FOUR-WHEEL-STEERING, LATERAL RESPONSE CHARACTERISTICS, SIMULATION, VARIABLE DYNAMIC TESTBED VEHICLE, INTELLIGENT VEHICLE INITIATIVE OR IVI : THE VARIABLE DYNAMIC TESTBED VEHICLE (VDTV) CONCEPT HAS BEEN PROPOSED AS A TOOL...

  14. Elastic, Frictional, Strength and Dynamic Characteristics of the Bell Shape Shock Absorbers Made of MR Wire Material

    NASA Astrophysics Data System (ADS)

    Lazutkin, G. V.; Davydov, D. P.; Boyarov, K. V.; Volkova, T. V.

    2018-01-01

    The results of the mechanical characteristic experimental studies are presented for the shock absorbers of DKU type with the elastic elements of the bell shape made of MR material and obtained by the cold pressing of mutually crossing wire spirals with their inclusion in the array of reinforcing wire harnesses. The design analysis and the technology of MR production based on the methods of similarity theory and dimensional analysis revealed the dimensionless determined and determining parameters of elastic frictional, dynamic and strength characteristics under the static and dynamic loading of vibration isolators. The main similarity criteria of mechanical characteristics for vibration isolators and their graphical and analytical representation are determined, taking into account the coefficients of these (affine) transformations of the hysteresis loop family field.

  15. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 1: Analysis methods

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. S.

    1985-01-01

    As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.

  16. Possibilities of fractal analysis of the competitive dynamics: Approaches and procedures

    NASA Astrophysics Data System (ADS)

    Zagornaya, T. O.; Medvedeva, M. A.; Panova, V. L.; Isaichik, K. F.; Medvedev, A. N.

    2017-11-01

    The possibilities of the fractal approach are used for the study of non-linear nature of the competitive dynamics of the market of trading intermediaries. Based on a statistical study of the functioning of retail indicators in the region, the approach to the analysis of the characteristics of the competitive behavior of market participants is developed. The authors postulate the principles of studying the dynamics of competition as a result of changes in the characteristics of the vector and the competitive behavior of market agents.

  17. Calculation and Analysis of Dynamic Characteristics of Multilink Permanent Magnetic Actuator in Vacuum Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Liu, Yingyi; Yuan, Haiwen; Zhang, Qingjie; Chen, Degui; Yuan, Haibin

    The dynamic characteristics are the key issues in the optimum design of a permanent magnetic actuator (PMA). A new approach to forecast the dynamic characteristics of the multilink PMA is proposed. By carrying out further developments of ADAMS and ANSOFT, a mathematic calculation model describing the coupling of mechanical movement, electric circuit and magnetic field considering eddy current effect, is constructed. With this model, the dynamic characteristics of the multilink PMA are calculated and compared with the experimental results. Factors that affect the opening time of the multilink PMA are analyzed with the model as well. The method is capable of providing a reference for the design of the PMA.

  18. Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.

  19. Modification of the SAS4A Safety Analysis Code for Integration with the ADAPT Discrete Dynamic Event Tree Framework.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankovsky, Zachary Kyle; Denman, Matthew R.

    It is difficult to assess the consequences of a transient in a sodium-cooled fast reactor (SFR) using traditional probabilistic risk assessment (PRA) methods, as numerous safety-related sys- tems have passive characteristics. Often there is significant dependence on the value of con- tinuous stochastic parameters rather than binary success/failure determinations. One form of dynamic PRA uses a system simulator to represent the progression of a transient, tracking events through time in a discrete dynamic event tree (DDET). In order to function in a DDET environment, a simulator must have characteristics that make it amenable to changing physical parameters midway through themore » analysis. The SAS4A SFR system analysis code did not have these characteristics as received. This report describes the code modifications made to allow dynamic operation as well as the linking to a Sandia DDET driver code. A test case is briefly described to demonstrate the utility of the changes.« less

  20. Evaluation of Ares-I Control System Robustness to Uncertain Aerodynamics and Flex Dynamics

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; VanTassel, Chris; Bedrossian, Nazareth; Hall, Charles; Spanos, Pol

    2008-01-01

    This paper discusses the application of robust control theory to evaluate robustness of the Ares-I control systems. Three techniques for estimating upper and lower bounds of uncertain parameters which yield stable closed-loop response are used here: (1) Monte Carlo analysis, (2) mu analysis, and (3) characteristic frequency response analysis. All three methods are used to evaluate stability envelopes of the Ares-I control systems with uncertain aerodynamics and flex dynamics. The results show that characteristic frequency response analysis is the most effective of these methods for assessing robustness.

  1. Dynamic characteristic of electromechanical coupling effects in motor-gear system

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-06-01

    Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.

  2. The dynamic analysis of drum roll lathe for machining of rollers

    NASA Astrophysics Data System (ADS)

    Qiao, Zheng; Wu, Dongxu; Wang, Bo; Li, Guo; Wang, Huiming; Ding, Fei

    2014-08-01

    An ultra-precision machine tool for machining of the roller has been designed and assembled, and due to the obvious impact which dynamic characteristic of machine tool has on the quality of microstructures on the roller surface, the dynamic characteristic of the existing machine tool is analyzed in this paper, so is the influence of circumstance that a large scale and slender roller is fixed in the machine on dynamic characteristic of the machine tool. At first, finite element model of the machine tool is built and simplified, and based on that, the paper carries on with the finite element mode analysis and gets the natural frequency and shaking type of four steps of the machine tool. According to the above model analysis results, the weak stiffness systems of machine tool can be further improved and the reasonable bandwidth of control system of the machine tool can be designed. In the end, considering the shock which is caused by Z axis as a result of fast positioning frequently to feeding system and cutting tool, transient analysis is conducted by means of ANSYS analysis in this paper. Based on the results of transient analysis, the vibration regularity of key components of machine tool and its impact on cutting process are explored respectively.

  3. Dynamic analysis of clamp band joint system subjected to axial vibration

    NASA Astrophysics Data System (ADS)

    Qin, Z. Y.; Yan, S. Z.; Chu, F. L.

    2010-10-01

    Clamp band joints are commonly used for connecting circular components together in industry. Some of the systems jointed by clamp band are subjected to dynamic load. However, very little research on the dynamic characteristics for this kind of joint can be found in the literature. In this paper, a dynamic model for clamp band joint system is developed. Contact and frictional slip between the components are accommodated in this model. Nonlinear finite element analysis is conducted to identify the model parameters. Then static experiments are carried out on a scaled model of the clamp band joint to validate the joint model. Finally, the model is adopted to study the dynamic characteristics of the clamp band joint system subjected to axial harmonic excitation and the effects of the wedge angle of the clamp band joint and the preload on the response. The model proposed in this paper can represent the nonlinearity of the clamp band joint and be used conveniently to investigate the effects of the structural and loading parameters on the dynamic characteristics of this type of joint system.

  4. Development of methodology for horizontal axis wind turbine dynamic analysis

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1982-01-01

    Horizontal axis wind turbine dynamics were studied. The following findings are summarized: (1) review of the MOSTAS computer programs for dynamic analysis of horizontal axis wind turbines; (2) review of various analysis methods for rotating systems with periodic coefficients; (3) review of structural dynamics analysis tools for large wind turbine; (4) experiments for yaw characteristics of a rotating rotor; (5) development of a finite element model for rotors; (6) development of simple models for aeroelastics; and (7) development of simple models for stability and response of wind turbines on flexible towers.

  5. Investigation of transient thermal dissipation in thinned LSI for advanced packaging

    NASA Astrophysics Data System (ADS)

    Araga, Yuuki; Shimamoto, Haruo; Melamed, Samson; Kikuchi, Katsuya; Aoyagi, Masahiro

    2018-04-01

    Thinning of LSI is necessary for superior form factor and performance in dense cutting-edge packaging technologies. At the same time, degradation of thermal characteristics caused by the steep thermal gradient on LSIs with thinned base silicon is a concern. To manage a thermal environment in advanced packages, thermal characteristics of the thinned LSIs must be clarified. In this study, static and dynamic thermal dissipations were analyzed before and after thinning silicon to determine variations of thermal characteristics in thinned LSI. Measurement results revealed that silicon thinning affects dynamic thermal characteristics as well as static one. The transient variations of thermal characteristics of thinned LSI are precisely verified by analysis using an equivalent model based on the thermal network method. The results of analysis suggest that transient thermal characteristics can be easily estimated by employing the equivalent model.

  6. NASTRAN analysis of the 1/8-scale space shuttle dynamic model

    NASA Technical Reports Server (NTRS)

    Bernstein, M.; Mason, P. W.; Zalesak, J.; Gregory, D. J.; Levy, A.

    1973-01-01

    The space shuttle configuration has more complex structural dynamic characteristics than previous launch vehicles primarily because of the high model density at low frequencies and the high degree of coupling between the lateral and longitudinal motions. An accurate analytical representation of these characteristics is a primary means for treating structural dynamics problems during the design phase of the shuttle program. The 1/8-scale model program was developed to explore the adequacy of available analytical modeling technology and to provide the means for investigating problems which are more readily treated experimentally. The basic objectives of the 1/8-scale model program are: (1) to provide early verification of analytical modeling procedures on a shuttle-like structure, (2) to demonstrate important vehicle dynamic characteristics of a typical shuttle design, (3) to disclose any previously unanticipated structural dynamic characteristics, and (4) to provide for development and demonstration of cost effective prototype testing procedures.

  7. Application of computer-aided diagnosis (CAD) in MR-mammography (MRM): do we really need whole lesion time curve distribution analysis?

    PubMed

    Baltzer, Pascal Andreas Thomas; Renz, Diane M; Kullnig, Petra E; Gajda, Mieczyslaw; Camara, Oumar; Kaiser, Werner A

    2009-04-01

    The identification of the most suspect enhancing part of a lesion is regarded as a major diagnostic criterion in dynamic magnetic resonance mammography. Computer-aided diagnosis (CAD) software allows the semi-automatic analysis of the kinetic characteristics of complete enhancing lesions, providing additional information about lesion vasculature. The diagnostic value of this information has not yet been quantified. Consecutive patients from routine diagnostic studies (1.5 T, 0.1 mmol gadopentetate dimeglumine, dynamic gradient-echo sequences at 1-minute intervals) were analyzed prospectively using CAD. Dynamic sequences were processed and reduced to a parametric map. Curve types were classified by initial signal increase (not significant, intermediate, and strong) and the delayed time course of signal intensity (continuous, plateau, and washout). Lesion enhancement was measured using CAD. The most suspect curve, the curve-type distribution percentage, and combined dynamic data were compared. Statistical analysis included logistic regression analysis and receiver-operating characteristic analysis. Fifty-one patients with 46 malignant and 44 benign lesions were enrolled. On receiver-operating characteristic analysis, the most suspect curve showed diagnostic accuracy of 76.7 +/- 5%. In comparison, the curve-type distribution percentage demonstrated accuracy of 80.2 +/- 4.9%. Combined dynamic data had the highest diagnostic accuracy (84.3 +/- 4.2%). These differences did not achieve statistical significance. With appropriate cutoff values, sensitivity and specificity, respectively, were found to be 80.4% and 72.7% for the most suspect curve, 76.1% and 83.6% for the curve-type distribution percentage, and 78.3% and 84.5% for both parameters. The integration of whole-lesion dynamic data tends to improve specificity. However, no statistical significance backs up this finding.

  8. Fault feature analysis of cracked gear based on LOD and analytical-FE method

    NASA Astrophysics Data System (ADS)

    Wu, Jiateng; Yang, Yu; Yang, Xingkai; Cheng, Junsheng

    2018-01-01

    At present, there are two main ideas for gear fault diagnosis. One is the model-based gear dynamic analysis; the other is signal-based gear vibration diagnosis. In this paper, a method for fault feature analysis of gear crack is presented, which combines the advantages of dynamic modeling and signal processing. Firstly, a new time-frequency analysis method called local oscillatory-characteristic decomposition (LOD) is proposed, which has the attractive feature of extracting fault characteristic efficiently and accurately. Secondly, an analytical-finite element (analytical-FE) method which is called assist-stress intensity factor (assist-SIF) gear contact model, is put forward to calculate the time-varying mesh stiffness (TVMS) under different crack states. Based on the dynamic model of the gear system with 6 degrees of freedom, the dynamic simulation response was obtained for different tooth crack depths. For the dynamic model, the corresponding relation between the characteristic parameters and the degree of the tooth crack is established under a specific condition. On the basis of the methods mentioned above, a novel gear tooth root crack diagnosis method which combines the LOD with the analytical-FE is proposed. Furthermore, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) are contrasted with the LOD by gear crack fault vibration signals. The analysis results indicate that the proposed method performs effectively and feasibility for the tooth crack stiffness calculation and the gear tooth crack fault diagnosis.

  9. Dynamical mechanical characteristic simulation and analysis of the low voltage switch under vibration and shock conditions

    NASA Astrophysics Data System (ADS)

    Miao, Xiaodan; Han, Feng

    2017-04-01

    The low voltage switch has widely application especially in the hostile environment such as large vibration and shock conditions. In order to ensure the validity of the switch in the hostile environment, it is necessary to predict its mechanical characteristic. In traditional method, the complex and expensive testing system is build up to verify its validity. This paper presented a method based on finite element analysis to predict the dynamic mechanical characteristic of the switch by using ANSYS software. This simulation could provide the basis for the design and optimization of the switch to shorten the design process to improve the product efficiency.

  10. Design and analysis of the Gemini chain system in dual clutch transmission of automobile

    NASA Astrophysics Data System (ADS)

    Cheng, Yabing; Guo, Haitao; Fu, Zhenming; Wan, Nen; Li, Lei; Wang, Yang

    2015-01-01

    Chain drive system is widely used in the conditions of high-speed, overload, variable speed and load. Many studies are focused on the meshing theory and wear characteristics of chain drive system, but system design, analysis, and noise characteristics of the chain drive system are weak. System design and noise characteristic are studied for a new type Gemini chain of dual-clutch automatic transmission. Based on the meshing theory of silent chain, the design parameters of the Gemini chain system are calculated and the mathematical models and dynamic analysis models of the Gemini chain system are established. Dynamic characteristics of the Gemini chain system is simulated and the contact force of plate and pin, plate and sprockets, the chain tension forces, the transmission error and the stress of plates and pins are analyzed. According to the simulation results of the Gemini chain system, the noise experiment about system is carried out. The noise values are tested at different speed and load and spectral characteristics are analyzed. The results of simulation and experimental show that the contact forces of plate and pin, plate and sprockets are smaller than the allowable stress values, the chain tension force is less than ultimate tension and transmission error is limited in 1.2%. The noise values can meet the requirements of industrial design, and it is proved that the design and analysis method of the Gemini chain system is scientific and feasible. The design and test system is built from analysis to test of Gemini chain system. This research presented will provide a corresponding theoretical guidance for the design and dynamic characteristics and noise characteristics of chain drive system.

  11. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    USDA-ARS?s Scientific Manuscript database

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  12. The analysis of dynamic characteristics and wind-induced displacement response of space Beam String Structure

    NASA Astrophysics Data System (ADS)

    Chen, Yong Jian; Feng, Zhen Fa; Qi, Ai; Huang, Ying

    2018-06-01

    The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1)The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2)From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3)The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.

  13. Modelling and Analysis on Biomechanical Dynamic Characteristics of Knee Flexion Movement under Squatting

    PubMed Central

    Wang, Jianping; Tao, Kun; Li, Huanyi; Wang, Chengtao

    2014-01-01

    The model of three-dimensional (3D) geometric knee was built, which included femoral-tibial, patellofemoral articulations and the bone and soft tissues. Dynamic finite element (FE) model of knee was developed to simulate both the kinematics and the internal stresses during knee flexion. The biomechanical experimental system of knee was built to simulate knee squatting using cadaver knees. The flexion motion and dynamic contact characteristics of knee were analyzed, and verified by comparing with the data from in vitro experiment. The results showed that the established dynamic FE models of knee are capable of predicting kinematics and the contact stresses during flexion, and could be an efficient tool for the analysis of total knee replacement (TKR) and knee prosthesis design. PMID:25013852

  14. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    NASA Astrophysics Data System (ADS)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  15. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  16. Aerodynamic characteristics at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.

    1977-01-01

    An overview is presented of the aerodynamic inputs required for analysis of flight dynamics in the high-angle-of-attack regime wherein large-disturbance, nonlinear effects predominate. An outline of the presentation is presented. The discussion includes: (1) some important fundamental phenomena which determine to a large extent the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area.

  17. Stability analysis using SDSA tool

    NASA Astrophysics Data System (ADS)

    Goetzendorf-Grabowski, Tomasz; Mieszalski, Dawid; Marcinkiewicz, Ewa

    2011-11-01

    The SDSA (Simulation and Dynamic Stability Analysis) application is presented as a tool for analysing the dynamic characteristics of the aircraft just in the conceptual design stage. SDSA is part of the CEASIOM (Computerized Environment for Aircraft Synthesis and Integrated Optimization Methods) software environment which was developed within the SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) project, funded by the European Commission 6th Framework Program. SDSA can also be used as stand alone software, and integrated with other design and optimisation systems using software wrappers. This paper focuses on the main functionalities of SDSA and presents both computational and free flight experimental results to compare and validate the presented software. Two aircraft are considered, the EADS Ranger 2000 and the Warsaw University designed PW-6 glider. For the two cases considered here the SDSA software is shown to be an excellent tool for predicting dynamic characteristics of an aircraft.

  18. Dynamic Characteristics and Stability Analysis of Space Shuttle Main Engine Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Gunter, Edgar J.; Branagan, Lyle

    1991-01-01

    The dynamic characteristics of the Space Shuttle high pressure oxygen pump are presented. Experimental data is presented to show the vibration spectrum and response under actual engine operation and also in spin pit testing for balancing. The oxygen pump appears to be operating near a second critical speed and is sensitive to self excited aerodynamic cross coupling forces in the turbine and pump. An analysis is presented to show the improvement in pump stability by the application of turbulent flow seals, preburner seals, and pump shaft cross sectional modifications.

  19. Dynamic analysis and assessment for sustainable development.

    PubMed

    Shi, Xiao-qing

    2002-01-01

    The assessment of sustainable development is crucial for constituting sustainable development strategies. Assessment methods that exist so far usually only use an indicator system for making sustainable judgement. These indicators rarely reflect dynamic characteristics. However, sustainable development is influenced by changes in the social-economic system and in the eco-environmental system at different times. Besides the spatial character, sustainable development has a temporal character that can not be neglected; therefore the research system should also be dynamic. This paper focuses on this dynamic trait, so that the assessment results obtained provide more information for judgements in decision-making processes. Firstly the dynamic characteristics of sustainable development are analyzed, which point to a track of sustainable development that is an upward undulating curve. According to the dynamic character and the development rules of a social, economic and ecological system, a flexible assessment approach that is based on tendency analysis, restrictive conditions and a feedback system is then proposed for sustainable development.

  20. Analysis and control of the vibration of doubly fed wind turbine

    NASA Astrophysics Data System (ADS)

    Yu, Manye; Lin, Ying

    2017-01-01

    The fault phenomena of the violent vibration of certain doubly-fed wind turbine were researched comprehensively, and the dynamic characteristics, load and fault conditions of the system were discussed. Firstly, the structural dynamics analysis of wind turbine is made, and the dynamics mold is built. Secondly, the vibration testing of wind turbine is done with the German test and analysis systems BBM. Thirdly, signal should be analyzed and dealt with. Based on the experiment, spectrum analysis of the motor dynamic balance can be made by using signal processing toolbox of MATLAB software, and the analysis conclusions show that the vibration of wind turbine is caused by dynamic imbalance. The results show that integrating mechanical system dynamics theory with advanced test technology can solve the vibration problem more successfully, which is important in vibration diagnosis of mechanical equipment.

  1. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  2. Dynamic Testing of a Pre-stretched Flexible Tube for Identifying the Factors Affecting Modal Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Madhusudanan; Rajan, Akash; Basanthvihar Raghunathan, Binulal; Kochupillai, Jayaraj

    2017-08-01

    Experimental modal analysis is the primary tool for obtaining the fundamental dynamic characteristics like natural frequency, mode shape and modal damping ratio that determine the behaviour of any structure under dynamic loading conditions. This paper discusses about a carefully designed experimental method for calculating the dynamic characteristics of a pre-stretched horizontal flexible tube made of polyurethane material. The factors that affect the modal parameter estimation like the application time of shaker excitation, pause time between successive excitation cycles, averaging and windowing of measured signal, as well as the precautions to be taken during the experiment are explained in detail. The modal parameter estimation is done using MEscopeVESTM software. A finite element based pre-stressed modal analysis of the flexible tube is also done using ANSYS ver.14.0 software. The experimental and analytical results agreed well. The proposed experimental methodology may be extended for carrying out the modal analysis of many flexible structures like inflatables, tires and membranes.

  3. Dynamic Characteristics of Simple Cylindrical Hydraulic Engine Mount Utilizing Air Compressibility

    NASA Astrophysics Data System (ADS)

    Nakahara, Kazunari; Nakagawa, Noritoshi; Ohta, Katsutoshi

    A cylindrical hydraulic engine mount with simple construction has been developed. This engine mount has a sub chamber formed by utilizing air compressibility without a diaphragm. A mathematical model of the mount is presented to predict non-linear dynamic characteristics in consideration of the effect of the excitation amplitude on the storage stiffness and loss factor. The mathematical model predicts experimental results well for the frequency responses of the storage stiffness and loss factor over the frequency range of 5 Hz to 60Hz. The effect of air volume and internal pressure on the dynamic characteristics is clarified by the analysis and dynamic characterization testing. The effectiveness of the cylindrical hydraulic engine mount on the reduction of engine shake is demonstrated for riding comfort through on-vehicle testing with a chassis dynamometer.

  4. Effect of mass variation on dynamics of tethered system in orbital maneuvering

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zhao, Guowei; Huang, Hai

    2018-05-01

    In orbital maneuvering, the mass variation due to fuel consumption has an obvious impact on the dynamics of tethered system, which cannot be neglected. The contributions of the work are mainly shown in two aspects: 1) the improvement of the model; 2) the analysis of dynamics characteristics. As the mass is variable, and the derivative of the mass is directly considered in the traditional Lagrange equation, the expression of generalized force is complicated. To solve this problem, the coagulated derivative is adopted in the paper; besides, the attitude dynamics equations derived in this paper take into account the effect of mass variation and the drift of orbital trajectory at the same time. The bifurcation phenomenon, the pendular motion angular frequency, and amplitudes of tether vibration revealed in this paper can provide a reference for the parameters and controller design in practical engineering. In the article, a dumbbell model is adopted to analyze the dynamics of tethered system, in which the mass variation of base satellite is fully considered. Considering the practical application, the case of orbital transfer under a transversal thrust is mainly studied. Besides, compared with the analytical solutions of librational angles, the effects of mass variation on stability and librational characteristic are studied. Finally, in order to make an analysis of the effect on vibrational characteristic, a lumped model is introduced, which reveals a strong coupling of librational and vibrational characteristics.

  5. Dynamic Characteristics of Buildings from Signal Processing of Ambient Vibration

    NASA Astrophysics Data System (ADS)

    Dobre, Daniela; Sorin Dragomir, Claudiu

    2017-10-01

    The experimental technique used to determine the dynamic characteristics of buildings is based on records of low intensity oscillations of the building produced by various natural factors, such as permanent agitation type microseismic motions, city traffic, wind etc. The possibility of recording these oscillations is provided by the latest seismic stations (Geosig and Kinemetrics digital accelerographs). The permanent microseismic agitation of the soil is a complex form of stationary random oscillations. The building filters the soil excitation, selects and increases the components of disruptive vibrations corresponding to its natural vibration periods. For some selected buildings, with different instrumentation schemes for the location of sensors (in free-field, at basement, ground floor, roof level), a correlation between the dynamic characteristics resulted from signal processing of ambient vibration and from a theoretical analysis will be presented. The interpretation of recording results could highlight the behavior of the whole structure. On the other hand, these results are compared with those from strong motions, or obtained from a complex dynamic analysis, and they are quite different, but they are explicable.

  6. An air brake model for longitudinal train dynamics studies

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Hu, Yang; Wu, Qing; Zhao, Xubao; Zhang, Jun; Zhang, Yuan

    2017-04-01

    Experience of heavy haul train operation shows that heavy haul train fatigue fracture of coupler and its related components, even the accidents are caused by excessive coupler force. The most economical and effective method to study on train longitudinal impulse by reducing the coupler force is simulation method. The characteristics of train air brake system is an important excitation source for the study of longitudinal impulse. It is very difficult to obtain the braking characteristic by the test method, a better way to get the input parameters of the excitation source in the train longitudinal dynamics is modelling the train air brake system. In this paper, the air brake system model of integrated system of air brake and longitudinal dynamics is introduced. This introduce is focus on the locomotive automatic brake valve and vehicle distribution valve model, and the comparative analysis of the simulation and test results of the braking system is given. It is proved that the model can predict the characteristics of train braking system. This method provides a good solution for the excitation source of longitudinal dynamic analysis system.

  7. A Practice-Oriented Bifurcation Analysis for Pulse Energy Converters. Part 2: An Operating Regime

    NASA Astrophysics Data System (ADS)

    Kolokolov, Yury; Monovskaya, Anna

    The paper continues the discussion on bifurcation analysis for applications in practice-oriented solutions for pulse energy conversion systems (PEC-systems). Since a PEC-system represents a nonlinear object with a variable structure, then the description of its dynamics evolution involves bifurcation analysis conceptions. This means the necessity to resolve the conflict-of-units between the notions used to describe natural evolution (i.e. evolution of the operating process towards nonoperating processes and vice versa) and the notions used to describe a desirable artificial regime (i.e. an operating regime). We consider cause-effect relations in the following sequence: nonlinear dynamics-output signal-operating characteristics, where these characteristics include stability and performance. Then regularities of nonlinear dynamics should be translated into regularities of the output signal dynamics, and, after, into an evolutional picture of each operating characteristic. In order to make the translation without losses, we first take into account heterogeneous properties within the structures of the operating process in the parametrical (P-) and phase (X-) spaces, and analyze regularities of the operating stability and performance on the common basis by use of the modified bifurcation diagrams built in joint PX-space. Then, the correspondence between causes (degradation of the operating process stability) and effects (changes of the operating characteristics) is decomposed into three groups of abnormalities: conditionally unavoidable abnormalities (CU-abnormalities); conditionally probable abnormalities (CP-abnormalities); conditionally regular abnormalities (CR-abnormalities). Within each of these groups the evolutional homogeneity is retained. After, the resultant evolution of each operating characteristic is naturally aggregated through the superposition of cause-effect relations in accordance with each of the abnormalities. We demonstrate that the practice-oriented bifurcation analysis has fundamentally specific purposes and tools, like for the computer-based bifurcation analysis and the experimental bifurcation analysis. That is why, from our viewpoint, it seems to be a rather novel direction in the general context of bifurcation analysis conceptions. We believe that the discussion could be interesting to pioneer research intended for the design of promising systems of pulse energy conversion.

  8. Flight dynamic investigations of flying wing with winglet configured unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Ro, Kapseong

    2006-05-01

    A swept wing tailless vehicle platform is well known in the radio control (RC) and sailing aircraft community for excellent spiral stability during soaring or thermaling, while exhibiting no Dutch roll behavior at high speed. When an unmanned aerial vehicle (UAV) is subjected to fly a mission in a rugged mountainous terrain where air current or thermal up-drift is frequently present, this is great aerodynamic benefit over the conventional cross-tailed aircraft which requires careful balance between lateral and directional stability. Such dynamic characteristics can be studied through vehicle dynamic modeling and simulation, but it requires configuration aerodynamic data through wind tunnel experiments. Obtaining such data is very costly and time consuming, and it is not feasible especially for low cost and dispensable UAVs. On the other hand, the vehicle autonomy is quite demanding which requires substantial understanding of aircraft dynamic characteristics. In this study, flight dynamics of an UAV platform based on flying wing with a large winglet was investigated through analytical modeling and numerical simulation. Flight dynamic modeling software and experimental formulae were used to obtain essential configuration aerodynamic characteristics, and linear flight dynamic analysis was carried out to understand the effect of wing sweep angle and winglet size on the vehicle dynamic characteristics.

  9. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1987-01-01

    A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. The effects of system parameters on beam response are explored with a perturbation expansion technique. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

  10. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    NASA Astrophysics Data System (ADS)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  11. Low-Speed Dynamic Wind Tunnel Test Analysis of a Generic 53 Degree Swept UCAV Configuration With Controls

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Huber, Kerstin C.; Rohlf, Detlef; Loser, Thomas

    2014-01-01

    Several static and dynamic forced-motion wind tunnel tests have been conducted on a generic unmanned combat air vehicle (UCAV) configuration with a 53deg swept leading edge. These tests are part of an international research effort to assess and advance the state-of-art of computational fluid dynamics (CFD) methods to predict the static and dynamic stability and control characteristics for this type of configuration. This paper describes the dynamic forced motion data collected from two different models of this UCAV configuration as well as analysis of the control surface deflections on the dynamic forces and moments.

  12. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures

    PubMed Central

    Strnad, Ondrej; Brezovsky, Jan; Kozlikova, Barbora; Gora, Artur; Sustr, Vilem; Klvana, Martin; Medek, Petr; Biedermannova, Lada; Sochor, Jiri; Damborsky, Jiri

    2012-01-01

    Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz. PMID:23093919

  13. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures.

    PubMed

    Chovancova, Eva; Pavelka, Antonin; Benes, Petr; Strnad, Ondrej; Brezovsky, Jan; Kozlikova, Barbora; Gora, Artur; Sustr, Vilem; Klvana, Martin; Medek, Petr; Biedermannova, Lada; Sochor, Jiri; Damborsky, Jiri

    2012-01-01

    Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz.

  14. Limit Cycle Analysis Applied to the Oscillations of Decelerating Blunt-Body Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.

    2008-01-01

    Many blunt-body entry vehicles have nonlinear dynamic stability characteristics that produce self-limiting oscillations in flight. Several different test techniques can be used to extract dynamic aerodynamic coefficients to predict this oscillatory behavior for planetary entry mission design and analysis. Most of these test techniques impose boundary conditions that alter the oscillatory behavior from that seen in flight. Three sets of test conditions, representing three commonly used test techniques, are presented to highlight these effects. Analytical solutions to the constant-coefficient planar equations-of-motion for each case are developed to show how the same blunt body behaves differently depending on the imposed test conditions. The energy equation is applied to further illustrate the governing dynamics. Then, the mean value theorem is applied to the energy rate equation to find the effective damping for an example blunt body with nonlinear, self-limiting dynamic characteristics. This approach is used to predict constant-energy oscillatory behavior and the equilibrium oscillation amplitudes for the various test conditions. These predictions are verified with planar simulations. The analysis presented provides an overview of dynamic stability test techniques and illustrates the effects of dynamic stability, static aerodynamics and test conditions on observed dynamic motions. It is proposed that these effects may be leveraged to develop new test techniques and refine test matrices in future tests to better define the nonlinear functional forms of blunt body dynamic stability curves.

  15. Movement Characteristics Analysis and Dynamic Simulation of Collaborative Measuring Robot

    NASA Astrophysics Data System (ADS)

    guoqing, MA; li, LIU; zhenglin, YU; guohua, CAO; yanbin, ZHENG

    2017-03-01

    Human-machine collaboration is becoming increasingly more necessary, and so collaborative robot applications are also in high demand. We selected a UR10 robot as our research subject for this study. First, we applied D-H coordinate transformation of the robot to establish a link system, and we then used inverse transformation to solve the robot’s inverse kinematics and find all the joints. Use Lagrange method to analysis UR robot dynamics; use ADAMS multibody dynamics simulation software to dynamic simulation; verifying the correctness of the derived kinetic models.

  16. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    PubMed

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  17. Transition Characteristic Analysis of Traffic Evolution Process for Urban Traffic Network

    PubMed Central

    Chen, Hong; Li, Yang

    2014-01-01

    The characterization of the dynamics of traffic states remains fundamental to seeking for the solutions of diverse traffic problems. To gain more insights into traffic dynamics in the temporal domain, this paper explored temporal characteristics and distinct regularity in the traffic evolution process of urban traffic network. We defined traffic state pattern through clustering multidimensional traffic time series using self-organizing maps and construct a pattern transition network model that is appropriate for representing and analyzing the evolution progress. The methodology is illustrated by an application to data flow rate of multiple road sections from Network of Shenzhen's Nanshan District, China. Analysis and numerical results demonstrated that the methodology permits extracting many useful traffic transition characteristics including stability, preference, activity, and attractiveness. In addition, more information about the relationships between these characteristics was extracted, which should be helpful in understanding the complex behavior of the temporal evolution features of traffic patterns. PMID:24982969

  18. Nonlinear Structural Analysis Methodology and Dynamics Scaling of Inflatable Parabolic Reflector Antenna Concepts

    NASA Technical Reports Server (NTRS)

    Sreekantamurthy, Tham; Gaspar, James L.; Mann, Troy; Behun, Vaughn; Pearson, James C., Jr.; Scarborough, Stephen

    2007-01-01

    Ultra-light weight and ultra-thin membrane inflatable antenna concepts are fast evolving to become the state-of-the-art antenna concepts for deep-space applications. NASA Langley Research Center has been involved in the structural dynamics research on antenna structures. One of the goals of the research is to develop structural analysis methodology for prediction of the static and dynamic response characteristics of the inflatable antenna concepts. This research is focused on the computational studies to use nonlinear large deformation finite element analysis to characterize the ultra-thin membrane responses of the antennas. Recently, structural analyses have been performed on a few parabolic reflector antennas of varying size and shape, which are referred in the paper as 0.3 meters subscale, 2 meters half-scale, and 4 meters full-scale antenna. The various aspects studied included nonlinear analysis methodology and solution techniques, ways to speed convergence in iterative methods, the sensitivities of responses with respect to structural loads, such as inflation pressure, gravity, and pretension loads in the ground and in-space conditions, and the ultra-thin membrane wrinkling characteristics. Several such intrinsic aspects studied have provided valuable insight into evaluation of structural characteristics of such antennas. While analyzing these structural characteristics, a quick study was also made to assess the applicability of dynamics scaling of the half-scale antenna. This paper presents the details of the nonlinear structural analysis results, and discusses the insight gained from the studies on the various intrinsic aspects of the analysis methodology. The predicted reflector surface characteristics of the three inflatable ultra-thin membrane parabolic reflector antenna concepts are presented as easily observable displacement fringe patterns with associated maximum values, and normal mode shapes and associated frequencies. Wrinkling patterns are presented to show how surface wrinkle progress with increasing tension loads. Antenna reflector surface accuracies were found to be very much dependent on the type and size of the antenna, the reflector surface curvature, reflector membrane supports in terms of spacing of catenaries, as well as the amount of applied load.

  19. Fluid Compressibility Effects on the Dynamic Response of Hydrostatic Journal Bearings

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis A.

    1991-01-01

    A theoretical analysis for the dynamic performance characteristics of laminar flow, capillar/orifice compensated hydrostatic journal bearings is presented. The analysis considers in detail the effect of fluid compressibility in the bearing recesses. At high frequency excitations beyond a break frequency, the bearing hydrostatic stiffness increases sharply and it is accompanied by a rapid decrease in direct damping. Also, the potential of pneumatic hammer instability (negative damping) at low frequencies is likely to occur in hydrostatic bearing applications handling highly compressible fluids. Useful design criteria to avoid undesirable dynamic operating conditions at low and high frequencies are determined. The effect of fluid recess compressibility is brought into perspective, and found to be of utmost importance on the entire frequency spectrum response and stability characteristics of hydrostatic/hybrid journal bearings.

  20. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  1. Detrended fluctuation analysis of human brain electroencephalogram

    NASA Astrophysics Data System (ADS)

    Pan, C. P.; Zheng, B.; Wu, Y. Z.; Wang, Y.; Tang, X. W.

    2004-08-01

    With the detrended fluctuation analysis, we investigate dynamics of human brain electroencephalogram. Long-range temporal correlation and scaling behavior are observed, and certain characteristic of the Alzheimer's disease is revealed.

  2. Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Li-wei; Li, Xin

    2017-10-01

    Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.

  3. Specialized data analysis of SSME and advanced propulsion system vibration measurements

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi

    1993-01-01

    The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.

  4. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.

    2018-04-01

    Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.

  5. Higher-Order Hurst Signatures: Dynamical Information in Time Series

    NASA Astrophysics Data System (ADS)

    Ferenbaugh, Willis

    2005-10-01

    Understanding and comparing time series from different systems requires characteristic measures of the dynamics embedded in the series. The Hurst exponent is a second-order dynamical measure of a time series which grew up within the blossoming fractal world of Mandelbrot. This characteristic measure is directly related to the behavior of the autocorrelation, the power-spectrum, and other second-order things. And as with these other measures, the Hurst exponent captures and quantifies some but not all of the intrinsic nature of a series. The more elusive characteristics live in the phase spectrum and the higher-order spectra. This research is a continuing quest to (more) fully characterize the dynamical information in time series produced by plasma experiments or models. The goal is to supplement the series information which can be represented by a Hurst exponent, and we would like to develop supplemental techniques in analogy with Hurst's original R/S analysis. These techniques should be another way to plumb the higher-order dynamics.

  6. Analysis of passive damping in thick composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.

    1993-01-01

    Computational mechanics for the prediction of damping and other dynamic characteristics in composite structures of general thicknesses and laminations are presented. Discrete layer damping mechanics that account for the representation of interlaminar shear effects in the material are summarized. Finite element based structural mechanics for the analysis of damping are described, and a specialty finite element is developed. Applications illustrate the quality of the discrete layer damping mechanics in predicting the damped dynamic characteristics of composite structures with thicker sections and/or laminate configurations that induce interlaminar shear. The results also illustrate and quantify the significance of interlaminar shear damping in such composite structures.

  7. An investigation into NVC characteristics of vehicle behaviour using modal analysis

    NASA Astrophysics Data System (ADS)

    Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini

    2017-03-01

    NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.

  8. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  9. Theoretical and experimental investigations on the dynamic and thermodynamic characteristics of the linear compressor for the pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Dang, H. Z.; Tan, J.; Bao, D.; Zhao, Y. B.; Qian, G. Z.

    2015-12-01

    Theoretical and experimental investigations on the dynamic and thermodynamic characteristics of a linear compressor incorporating the thermodynamic characteristics of the inertance tube pulse tube cold finger have been made. Both the compressor and cold finger are assumed as a one-dimensional thermodynamic model. The governing equations of the thermodynamic characteristics of the working gas are summarized, and the effects of the cooling performance on the working gas in the compression space are discussed. Based on the analysis of the working gas, the governing equations of the dynamic and thermodynamic characteristics of the compressor are deduced, and then the principles of achieving the optimal performance of the compressor are discussed in detail. Systematic experimental investigations are conducted on a developed moving-coil linear compressor which drives a pulse tube cold finger, which indicate the general agreement with the simulated results, and thus verify the rationality of the theoretical model and analyses.

  10. Static and dynamic characteristics of parallel-grooved seals

    NASA Technical Reports Server (NTRS)

    Iwatsubo, Takuzo; Yang, Bo-Suk; Ibaraki, Ryuji

    1987-01-01

    Presented is an analytical method to determine static and dynamic characteristics of annular parallel-grooved seals. The governing equations were derived by using the turbulent lubrication theory based on the law of fluid friction. Linear zero- and first-order perturbation equations of the governing equations were developed, and these equations were analytically investigated to obtain the reaction force of the seals. An analysis is presented that calculates the leakage flow rate, the torque loss, and the rotordynamic coefficients for parallel-grooved seals. To demonstrate this analysis, we show the effect of changing number of stages, land and groove width, and inlet swirl on stability of the boiler feed water pump seals. Generally, as the number of stages increased or the grooves became wider, the leakage flow rate and rotor-dynamic coefficients decreased and the torque loss increased.

  11. [EEG-correlates of pilots' functional condition in simulated flight dynamics].

    PubMed

    Kiroy, V N; Aslanyan, E V; Bakhtin, O M; Minyaeva, N R; Lazurenko, D M

    2015-01-01

    The spectral characteristics of the EEG recorded on two professional pilots in the simulator TU-154 aircraft in flight dynamics, including takeoff, landing and horizontal flight (in particular during difficult conditions) were analyzed. EEG recording was made with frequency band 0.1-70 Hz continuously from 15 electrodes. The EEG recordings were evaluated using analysis of variance and discriminant analysis. Statistical significant of the identified differences and the influence of the main factors and their interactions were evaluated using Greenhouse - Gaiser corrections. It was shown that the spectral characteristics of the EEG are highly informative features of the state of the pilots, reflecting the different flight phases. High validity ofthe differences including individual characteristic, indicates their non-random nature and the possibility of constructing a system of pilots' state control during all phases of flight, based on EEG features.

  12. Development of a Probabilistic Component Mode Synthesis Method for the Analysis of Non-Deterministic Substructures

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ferri, Aldo A.

    1995-01-01

    Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature, researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. This paper presents a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.

  13. Bat Dynamics of Female Fast Pitch Softball Batters.

    ERIC Educational Resources Information Center

    Messier, Stephen P.; Owen, Marjorie G.

    1984-01-01

    Female fast pitch softball batters served in an examination of the dynamic characteristics of the bat during the swing through the use of three-dimensional cinematographic analysis techniques. These results were compared with those from previous studies of baseball batting. Findings are listed. (Author/DF)

  14. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  15. Control and dynamics study for the satellite power system. Volume 1: MPTS/SPS collector dynamic analysis and surface deformation

    NASA Technical Reports Server (NTRS)

    Wang, S. J.

    1980-01-01

    The basic dynamic properties and performance characteristics of the microwave power transmission satellite antenna were analyzed in an effort to develop criteria, requirements, and constraints for the control and structure design. The vibrational properties, the surface deformation, and the corresponding scan loss under the influence of disturbances are considered.

  16. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1987-01-01

    A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the free vibration solution is obtained in a closed-form, and the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

  17. Dynamics of absence seizures

    NASA Astrophysics Data System (ADS)

    Deeba, Farah; Sanz-Leon, Paula; Robinson, Peter

    A neural field model of the corticothalamic system is used to investigate the dynamics of absence seizures in the presence of temporally varying connection strength between the cerebral cortex and thalamus. Variation of connection strength from cortex to thalamus drives the system into seizure once a threshold is passed and a supercritical Hopf bifurcation occurs. The dynamics and spectral characteristics of the resulting seizures are explored as functions of maximum connection strength, time above threshold, and ramp rate. The results enable spectral and temporal characteristics of seizures to be related to underlying physiological variations via nonlinear dynamics and neural field theory. Notably, this analysis adds to neural field modeling of a wide variety of brain activity phenomena and measurements in recent years. Australian Research Council Grants FL1401000225 and CE140100007.

  18. Modelling and Analysis of a New Piezoelectric Dynamic Balance Regulator

    PubMed Central

    Du, Zhe; Mei, Xue-Song; Xu, Mu-Xun

    2012-01-01

    In this paper, a new piezoelectric dynamic balance regulator, which can be used in motorised spindle systems, is presented. The dynamic balancing adjustment mechanism is driven by an in-plane bending vibration from an annular piezoelectric stator excited by a high-frequency sinusoidal input voltage. This device has different construction, characteristics and operating principles than a conventional balance regulator. In this work, a dynamic model of the regulator is first developed using a detailed analytical method. Thereafter, MATLAB is employed to numerically simulate the relations between the dominant parameters and the characteristics of the regulator based on thedynamic model. Finally, experimental measurements are used to certify the validity of the dynamic model. Consequently, the mathematical model presented and analysed in this paper can be used as a tool for optimising the design of a piezoelectric dynamic balance regulator during steady state operation. PMID:23202182

  19. Correlation of finite-element structural dynamic analysis with measured free vibration characteristics for a full-scale helicopter fuselage

    NASA Technical Reports Server (NTRS)

    Kenigsberg, I. J.; Dean, M. W.; Malatino, R.

    1974-01-01

    The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.

  20. Geometrical analysis of the LiCN vibrational dynamics: a stability geometrical indicator.

    PubMed

    Vergel, A; Benito, R M; Losada, J C; Borondo, F

    2014-02-01

    The vibrational dynamics of the LiNC/LiCN molecular system is examined making use of the Riemannian geometry. Stability and chaoticity are analyzed, in this context, by means of the Jacobi-Levi-Civita equations, derived from the Jacobi metric, and its solutions. A dynamical indicator, called stability geometrical indicator, is introduced in order to ascertain the dynamical characteristics of stability and chaos in the molecule under study.

  1. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.

  2. Modeling of human operator dynamics in simple manual control utilizing time series analysis. [tracking (position)

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.

    1982-01-01

    Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.

  3. Comparative analysis of on-orbit dynamic performance of several large antenna concepts

    NASA Technical Reports Server (NTRS)

    Andersen, G. C.; Garrett, L. B.; Calleson, R. E.

    1985-01-01

    A comparative analysis of the on-orbit dynamic performance of four large anetanna concepts is presented. Among the antenna concepts evaluated are: the box truss; tetrahedral truss; warp-radial rib; and the hoop and column antenna designs. The characteristics and magnitudes of the antennas' dynamic response were evaluated in terms of structural displacements and member loads incurred during various slew-rate maneuvers. The results of the dynamic response analysis are compared to the design requirements of the Land Mobile Satellite System (LMSS) with respect to surface accuracy, decenter, defocus, and angular rocking. Comments are made on the effectiveness of structural damping and the application of active controls for vibrational response reduction. Schematic illustrations of the antenna design concepts are provided.

  4. Nonlinear Dynamics Used to Classify Effects of Mild Traumatic Brain Injury

    DTIC Science & Technology

    2012-01-11

    evaluate random fractal characteristics, and scale-dependent Lyapunov exponents (SDLE) to evaluate chaotic characteristics. Both Shannon and Renyi entropy...fluctuation analysis to evaluate random fractal characteristics, and scale-dependent Lyapunov exponents (SDLE) to evaluate chaotic characteristics. Both...often called the Hurst parameter [32]. When the scaling law described by Eq. (2) holds, the September 2011 I Volume 6 I Issue 9 I e24446 -Q.384

  5. Analysis of high injection pressure and ambient temperature on biodiesel spray characteristics using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal

    2017-09-01

    Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.

  6. Integrated analysis and design of thick composite structures for optimal passive damping characteristics

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.

    1993-01-01

    The development of novel composite mechanics for the analysis of damping in composite laminates and structures and the more significant results of this effort are summarized. Laminate mechanics based on piecewise continuous in-plane displacement fields are described that can represent both intralaminar stresses and interlaminar shear stresses and the associated effects on the stiffness and damping characteristics of a composite laminate. Among other features, the mechanics can accurately model the static and damped dynamic response of either thin or thick composite laminates, as well as, specialty laminates with embedded compliant damping layers. The discrete laminate damping theory is further incorporated into structural analysis methods. In this context, an exact semi-analytical method for the simulation of the damped dynamic response of composite plates was developed. A finite element based method and a specialty four-node plate element were also developed for the analysis of composite structures of variable shape and boundary conditions. Numerous evaluations and applications demonstrate the quality and superiority of the mechanics in predicting the damped dynamic characteristics of composite structures. Finally, additional development was focused on the development of optimal tailoring methods for the design of thick composite structures based on the developed analytical capability. Applications on composite plates illustrated the influence of composite mechanics in the optimal design of composites and the potential for significant deviations in the resultant designs when more simplified (classical) laminate theories are used.

  7. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    NASA Technical Reports Server (NTRS)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  8. Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.

    2016-08-01

    Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.

  9. A dynamic analysis of the radiation excitation from the activation of a current collecting system in space

    NASA Technical Reports Server (NTRS)

    Wang, J.; Hastings, D. E.

    1991-01-01

    Current collecting systems moving in the ionosphere will induce electromagnetic wave radiation. The commonly used static analysis is incapable of studying the situation when such systems undergo transient processes. A dynamic analysis has been developed, and the radiation excitation processes are studied. This dynamic analysis is applied to study the temporal wave radiation from the activation of current collecting systems in space. The global scale electrodynamic interactions between a space-station-like structure and the ionospheric plasma are studied. The temporal evolution and spatial propagation of the electric wave field after the activation are described. The wave excitations by tethered systems are also studied. The dependencies of the temporal Alfven wave and lower hybrid wave radiation on the activation time and the space system structure are discussed. It is shown that the characteristics of wave radiation are determined by the matching of two sets of characteristic frequencies, and a rapid change in the current collection can give rise to substantial transient radiation interference. The limitations of the static and linear analysis are examined, and the condition under which the static assumption is valid is obtained.

  10. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

    NASA Astrophysics Data System (ADS)

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings and controlling manufacturing process parameters for the opening mechanism. Several optimization objectives such as x/y/z accelerations for various measuring points and dynamic reaction forces of mounting brackets, and a few constraints including manufacturing process were taken into account in the optimization models, which were solved by utilizing the multi-objective genetic algorithm (NSGA-II). The vibration characteristics of the optimized opening mechanism are superior to those of the original design. In addition, the numerical forecast results are in good agreement with the test results of the prototype.

  11. An analytical Study on Dynamics of Public Procurement System and Bidding-Strategy in Local Contractor's Management

    NASA Astrophysics Data System (ADS)

    Ninomiya, Hitoshi; Nanerikawa, Susumu

    Public procurement system such as Overall-Evaluation dynamically has been changed on local public works in Japan. However some characteristics of Bidding-Strategy and procurement system have not enough clarified. This paper attempt to analysis for a syatem dynamics and mechanisum of Overall-Evaluation by developing new simulation model focused on Bidding-Strategy, to propose some improvement scenario.

  12. Nonlinear Dynamics and Bifurcation Analysis of a Boost Converter for Battery Charging in Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; Giaouris, Damian; Mandal, Kuntal; Banerjee, Soumitro

    Photovoltaic (PV) systems with a battery back-up form an integral part of distributed generation systems and therefore have recently attracted a lot of interest. In this paper, we consider a system of charging a battery from a PV panel through a current mode controlled boost dc-dc converter. We analyze its complete nonlinear/nonsmooth dynamics, using a piecewise model of the converter and realistic nonlinear v-i characteristics of the PV panel. Through this study, it is revealed that system design without taking into account the nonsmooth dynamics of the converter combined with the nonlinear v-i characteristics of the PV panel can lead to unpredictable responses of the overall system with high current ripple and other undesirable phenomena. This analysis can lead to better designed converters that can operate under a wide variation of the solar irradiation and the battery's state of charge. We show that the v-i characteristics of the PV panel combined with the battery's output voltage variation can increase or decrease the converter's robustness, both under peak current mode control and average current mode control. We justify the observation in terms of the change in the discrete-time map caused by the nonlinear v-i characteristics of the PV panel. The theoretical results are validated experimentally.

  13. Dynamic Response Analysis of Microflow Electrochemical Sensors with Two Types of Elastic Membrane

    PubMed Central

    Zhou, Qiuzhan; Wang, Chunhui; Chen, Yongzhi; Chen, Shuozhang; Lin, Jun

    2016-01-01

    The Molecular Electric Transducer (MET), widely applied for vibration measurement, has excellent sensitivity and dynamic response at low frequencies. The elastic membrane in the MET is a significant factor with an obvious effect on the performance of the MET in the low frequency domain and is the focus of this paper. In simulation experiments, the elastic membrane and the reaction cavity of the MET were analysed in a model based on the multiphysics finite element method. Meanwhile, the effects caused by the elastic membrane elements are verified in this paper. With the numerical simulation and practical experiments, a suitable elastic membrane can be designed for different cavity structures. Thus, the MET can exhibit the best dynamic response characteristics to measure the vibration signals. With the new method presented in this paper, it is possible to develop and optimize the characteristics of the MET effectively, and the dynamic characteristics of the MET can be improved in a thorough and systematic manner. PMID:27171086

  14. Flexible aircraft dynamic modeling for dynamic analysis and control synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1989-01-01

    The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.

  15. Study on static and dynamic characteristics of moving magnet linear compressors

    NASA Astrophysics Data System (ADS)

    Chen, N.; Tang, Y. J.; Wu, Y. N.; Chen, X.; Xu, L.

    2007-09-01

    With the development of high-strength NdFeB magnetic material, moving magnet linear compressors have been gradually introduced in the fields of refrigeration and cryogenic engineering, especially in Stirling and pulse tube cryocoolers. This paper presents simulation and experimental investigations on the static and dynamic characteristics of a moving magnet linear motor and a moving magnet linear compressor. Both equivalent magnetic circuits and finite element approaches have been used to model the moving magnet linear motor. Subsequently, the force and equilibrium characteristics of the linear motor have been predicted and verified by detailed static experimental analyses. In combination with a harmonic analysis, experimental investigations were conducted on a prototype of a moving magnet linear compressor. A voltage-stroke relationship, the effect of charging pressure on the performance and dynamic frequency response characteristics are investigated. Finally, the method to identify optimal points of the linear compressor has been described, which is indispensable to the design and operation of moving magnet linear compressors.

  16. Dynamical characteristics of surface EMG signals of hand grasps via recurrence plot.

    PubMed

    Ouyang, Gaoxiang; Zhu, Xiangyang; Ju, Zhaojie; Liu, Honghai

    2014-01-01

    Recognizing human hand grasp movements through surface electromyogram (sEMG) is a challenging task. In this paper, we investigated nonlinear measures based on recurrence plot, as a tool to evaluate the hidden dynamical characteristics of sEMG during four different hand movements. A series of experimental tests in this study show that the dynamical characteristics of sEMG data with recurrence quantification analysis (RQA) can distinguish different hand grasp movements. Meanwhile, adaptive neuro-fuzzy inference system (ANFIS) is applied to evaluate the performance of the aforementioned measures to identify the grasp movements. The experimental results show that the recognition rate (99.1%) based on the combination of linear and nonlinear measures is much higher than those with only linear measures (93.4%) or nonlinear measures (88.1%). These results suggest that the RQA measures might be a potential tool to reveal the sEMG hidden characteristics of hand grasp movements and an effective supplement for the traditional linear grasp recognition methods.

  17. Identification of Rotorcraft Structural Dynamics from Flight and Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    McKillip, Robert M., Jr.

    1997-01-01

    Excessive vibration remains one one of the most difficult problems that faces the helicopter industry today, affecting all production helicopters at some phase of their development. Vibrations in rotating structures may arise from external periodic dynamic airloads whose frequencies are are close to the natural frequencies of the rotating system itself. The goal for the structures engineer would thus be to design a structure as free from resonance effects as possible. In the case of a helicopter rotor blade these dynamic loads are a consequence of asymmetric airload distribution on the rotor blade in forward flight, leading to a rich collection of higher harmonic airloads that force rotor and airframe response. Accurate prediction of the dynamic characteristics of a helicopter rotor blade will provide the opportunity to affect in a positive manner noise intensity, vibration level, durability, reliability and operating costs by reducing objectionable frequencies or moving them to a different frequency range and thus providing us with a lower vibration rotor. In fact, the dynamic characteristics tend to define the operating limits of a rotorcraft. As computing power has increased greatly over the last decade, researchers and engineers have turned to analyzing the vibrational characteristics of aerospace structures at the design and development stage of the production of an aircraft. Modern rotor blade construction methods lead to products with low mass and low inherent damping so careful design and analysis is required to avoid resonance and an undesirable dynamic performance. In addition, accurate modal analysis is necessary for several current approaches in elastic system identification and active control.

  18. Nonlinear modeling and dynamic analysis of a hydro-turbine governing system in the process of sudden load increase transient

    NASA Astrophysics Data System (ADS)

    Li, Huanhuan; Chen, Diyi; Zhang, Hao; Wang, Feifei; Ba, Duoduo

    2016-12-01

    In order to study the nonlinear dynamic behaviors of a hydro-turbine governing system in the process of sudden load increase transient, we establish a novel nonlinear dynamic model of the hydro-turbine governing system which considers the elastic water-hammer model of the penstock and the second-order model of the generator. The six nonlinear dynamic transfer coefficients of the hydro-turbine are innovatively proposed by utilizing internal characteristics and analyzing the change laws of the characteristic parameters of the hydro-turbine governing system. Moreover, from the point of view of engineering, the nonlinear dynamic behaviors of the above system are exhaustively investigated based on bifurcation diagrams and time waveforms. More importantly, all of the above analyses supply theoretical basis for allowing a hydropower station to maintain a stable operation in the process of sudden load increase transient.

  19. Modeling and Dynamic Analysis of Paralleled dc/dc Converters With Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  20. Engine dynamic analysis with general nonlinear finite element codes. Part 2: Bearing element implementation overall numerical characteristics and benchmaking

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Adams, M.; Fertis, J.; Zeid, I.; Lam, P.

    1982-01-01

    Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved.

  1. Research on influence factor about the dynamic characteristic of armored vehicle hydraulic-driven fan system

    NASA Astrophysics Data System (ADS)

    Chao, Zhiqiang; Mao, Feiyue; Liu, Xiangbo; Li, Huaying; Han, Shousong

    2017-01-01

    In view of the large power of armored vehicle cooling system, the demand for high fan speed control and energy saving, this paper expounds the basic composition and principle of hydraulic-driven fan system and establishes the mathematical model of the system. Through the simulation analysis of different parameters, such as displacement of motor and working volume of fan system, the influences of performance parameters on the dynamic characteristic of hydraulic-driven fan system are obtained, which can provide theoretical guidance for system optimization design.

  2. The task of validation of gas-dynamic characteristics of a multistage centrifugal compressor for a natural gas booster compressor station

    NASA Astrophysics Data System (ADS)

    Danilishin, A. M.; Kozhukhov, Y. V.; Neverov, V. V.; Malev, K. G.; Mironov, Y. R.

    2017-08-01

    The aim of this work is the validation study for the numerical modeling of characteristics of a multistage centrifugal compressor for natural gas. In the research process was the analysis used grid interfaces and software systems. The result revealed discrepancies between the simulated and experimental characteristics and outlined the future work plan.

  3. Mother-Infant Dyadic State Behaviour: Dynamic Systems in the Context of Risk

    ERIC Educational Resources Information Center

    Coburn, Shayna S.; Crnic, Keith A.; Ross, Emily K.

    2015-01-01

    Dynamic systems methods offer invaluable insight into the nuances of the early parent-child relationship. This prospective study aimed to highlight the characteristics of mother-infant dyadic behavior at 12?weeks post-partum using state space grid analysis (total n?=?322). We also examined whether maternal prenatal depressive symptoms and…

  4. Dynamic characterization and microprocessor control of the NASA/UVA proof mass actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1984-01-01

    The self-contained electromagnetic-reaction-type force-actuator system developed by NASA/UVA for the verification of spacecraft-structure vibration-control laws is characterized and demonstrated. The device is controlled by a dedicated microprocessor and has dynamic characteristics determined by Fourier analysis. Test data on a cantilevered beam are shown.

  5. A comparison of dynamic mechanical properties of processing-tomato peel as affected by hot lye and infrared radiation heating for peeling

    USDA-ARS?s Scientific Manuscript database

    This study investigated the viscoelastic characteristics of tomato skins subjected to conventional hot lye peeling and emerging infrared-dry peeling by using dynamic mechanical analysis (DMA). Three DMA testing modes, including temperature ramp, frequency sweep, and creep behavior test, were conduct...

  6. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    PubMed Central

    Yahaya Rashid, Aizzat S.; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  7. User's guide for a computer program to analyze the LRC 16 ft transonic dynamics tunnel cable mount system

    NASA Technical Reports Server (NTRS)

    Barbero, P.; Chin, J.

    1973-01-01

    The theoretical derivation of the set of equations is discussed which is applicable to modeling the dynamic characteristics of aeroelastically-scaled models flown on the two-cable mount system in a 16 ft transonic dynamics tunnel. The computer program provided for the analysis is also described. The program calculates model trim conditions as well as 3 DOF longitudinal and lateral/directional dynamic conditions for various flying cable and snubber cable configurations. Sample input and output are included.

  8. Analysis of Handling Qualities Design Criteria for Active Inceptor Force-Feel Characteristics

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos A.; Lusardi, Jeff A.

    2013-01-01

    The force-feel system characteristics of the cyclic inceptors of most helicopters are set based on the characteristics of the mechanical components in the control system (mass, springs, friction dampers, etc.). For these helicopters, the force-feel characteristics typically remain constant over the entire flight envelope, with perhaps a trim release to minimize control forces while maneuvering. With the advent of fly-by-wire control systems and active inceptors in helicopters, the force-feel characteristics are now determined by the closed-loop response of the active inceptor itself as defined by the inertia, force/displacement gradient, damping, breakout force and detent shape configuration parameters in the inceptor control laws. These systems give the flexibility to dynamically prescribe different feel characteristics for different control modes or flight conditions, and the ability to provide tactile cueing to the pilot through the actively controlled side-stick or center-stick cyclic inceptor. For rotorcraft, a few studies have been conducted to assess the effects of cyclic force-feel characteristics on handling qualities in flight. An early study provided valuable insight into the static force-deflection characteristics (force gradient) and the number of axes controlled by the side-stick controller for the U.S. Army's Advanced Digital/Optical Control System (ADOCS) demonstrator aircraft [1]. The first of a series of studies providing insight on the inceptor dynamic force-feel characteristics was conducted on the NASA/Army CH-47B variable-stability helicopter [2]. This work led to a proposed requirement that set boundaries based on the cyclic natural frequency and inertia, with the stipulation of a lower damping ratio limit of 0.3 [3]. A second study was conducted by the Canadian Institute for Aerospace Research using their variable-stability Bell 205A helicopter [4]. This research suggested boundaries for stick dynamics based on natural frequency and damping ratio. While these two studies produced boundaries for acceptable/unacceptable stick dynamics for rotorcraft, they were not able to provide guidance on how variations of the stick dynamics in the acceptable region impact handling qualities. More recently, a ground based simulation study [5] suggested little benefit was to be obtained from variations of the damping ratio for a side-stick controller exhibiting high natural frequencies (greater than 17 rad/s) and damping ratios (greater than 2.0). A flight test campaign was conducted concurrently on the RASCAL JUH-60A in-flight simulator and the ACT/FHS EC-135 in flight simulator [6]. Upon detailed analysis of the pilot evaluations the study identified a clear preference for a high damping ratio and natural frequency of the center stick inceptors. Side stick controllers were found to be less sensitive to the damping. While these studies have compiled a substantial amount of data, in the form of qualitative and quantitative pilot opinion, a fundamental analysis of the effect of the inceptor force-feel system on flight control is found to be lacking. The study of Ref. [6] specifically concluded that a systematic analysis was necessary, since discrepancies with the assigned handling qualities showed that proposed analytical design metrics, or criteria, were not suitable. The overall goal of the present study is to develop a clearer fundamental understanding of the underlying mechanisms associated with the inceptor dynamics that govern the handling qualities using a manageable analytical methodology.

  9. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  10. The power law and dynamic rheology in food analysis

    USDA-ARS?s Scientific Manuscript database

    Protein networks impart functional and structural characteristics to food, and should be examined to gain an understanding of properties of the product. Food matrices are investigated nondestructively by small amplitude oscillatory shear analysis, which provides information on viscoelasticity, incl...

  11. Characterizing and modeling the dynamics of online popularity.

    PubMed

    Ratkiewicz, Jacob; Fortunato, Santo; Flammini, Alessandro; Menczer, Filippo; Vespignani, Alessandro

    2010-10-08

    Online popularity has an enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems: the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and interevent time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.

  12. Nonlinear Recurrent Dynamics and Long-Term Nonstationarities in EEG Alpha Cortical Activity: Implications for Choosing Adequate Segment Length in Nonlinear EEG Analyses.

    PubMed

    Cerquera, Alexander; Vollebregt, Madelon A; Arns, Martijn

    2018-03-01

    Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.

  13. Signal analysis techniques for incipient failure detection in turbomachinery

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1985-01-01

    Signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery were developed, implemented and evaluated. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques were implemented on a computer and applied to dynamic signals. A laboratory evaluation of the methods with respect to signal detection capability is described. Plans for further technique evaluation and data base development to characterize turbopump incipient failure modes from Space Shuttle main engine (SSME) hot firing measurements are outlined.

  14. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    NASA Astrophysics Data System (ADS)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.

  15. Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification

    NASA Astrophysics Data System (ADS)

    Kim, Sang Hwa; Tahk, Min-Jea

    2018-04-01

    In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.

  16. Dynamics of a distributed drill string system: Characteristic parameters and stability maps

    NASA Astrophysics Data System (ADS)

    Aarsnes, Ulf Jakob F.; van de Wouw, Nathan

    2018-03-01

    This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.

  17. Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan

    2009-01-01

    An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.

  18. Spatio-temporal organization of dynamics in a two-dimensional periodically driven vortex flow: A Lagrangian flow network perspective.

    PubMed

    Lindner, Michael; Donner, Reik V

    2017-03-01

    We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.

  19. Uncertainty quantification analysis of the dynamics of an electrostatically actuated microelectromechanical switch model

    NASA Astrophysics Data System (ADS)

    Snow, Michael G.; Bajaj, Anil K.

    2015-08-01

    This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.

  20. Techniques of data analysis and presentation for planners of the metropolitan environment

    Treesearch

    Joelee Normand

    1977-01-01

    Relationships between the characteristics of the physical environment of a metropolitan area and the activities of its human inhabitants can be used to predict probable future dynamic trends, both demographic and environmental. Using simple linear regression, we were able to highlight several dynamic features of the metropolitan area of Tulsa, Oklahoma. Computer movies...

  1. A System Dynamics Approach to Understanding Cost and Revenue Interactions in the Community College Financial System.

    ERIC Educational Resources Information Center

    Howard, James E.

    After identifying the components of a community college financial system as enrollment, costs, revenues and tuition, this paper addresses the need for a system dynamics analysis of a California community college district. This systems approach would assess the possible effects of alternative policies on the characteristic behavior modes of the…

  2. Study on model design and dynamic similitude relations of vibro-acoustic experiment for elastic cavity

    NASA Astrophysics Data System (ADS)

    Shi, Ao; Lu, Bo; Yang, Dangguo; Wang, Xiansheng; Wu, Junqiang; Zhou, Fangqi

    2018-05-01

    Coupling between aero-acoustic noise and structural vibration under high-speed open cavity flow-induced oscillation may bring about severe random vibration of the structure, and even cause structure to fatigue destruction, which threatens the flight safety. Carrying out the research on vibro-acoustic experiments of scaled down model is an effective means to clarify the effects of high-intensity noise of cavity on structural vibration. Therefore, in allusion to the vibro-acoustic experiments of cavity in wind tunnel, taking typical elastic cavity as the research object, dimensional analysis and finite element method were adopted to establish the similitude relations of structural inherent characteristics and dynamics for distorted model, and verifying the proposed similitude relations by means of experiments and numerical simulation. Research shows that, according to the analysis of scale-down model, the established similitude relations can accurately simulate the structural dynamic characteristics of actual model, which provides theoretic guidance for structural design and vibro-acoustic experiments of scaled down elastic cavity model.

  3. Design and Analysis of a Dynamic Mobility Management Scheme for Wireless Mesh Network

    PubMed Central

    Roy, Sudipta

    2013-01-01

    Seamless mobility management of the mesh clients (MCs) in wireless mesh network (WMN) has drawn a lot of attention from the research community. A number of mobility management schemes such as mesh network with mobility management (MEMO), mesh mobility management (M3), and wireless mesh mobility management (WMM) have been proposed. The common problem with these schemes is that they impose uniform criteria on all the MCs for sending route update message irrespective of their distinct characteristics. This paper proposes a session-to-mobility ratio (SMR) based dynamic mobility management scheme for handling both internet and intranet traffic. To reduce the total communication cost, this scheme considers each MC's session and mobility characteristics by dynamically determining optimal threshold SMR value for each MC. A numerical analysis of the proposed scheme has been carried out. Comparison with other schemes shows that the proposed scheme outperforms MEMO, M3, and WMM with respect to total cost. PMID:24311982

  4. Age-Related Locomotion Characteristics in Association with Balance Function in Young, Middle-Aged, and Older Adults.

    PubMed

    Lee, Hwang-Jae; Chang, Won Hyuk; Hwang, Sun Hee; Choi, Byung-Ok; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-04-01

    The purpose of this study was to examine age-related gait characteristics and their associations with balance function in older adults. A total of 51 adult volunteers participated. All subjects underwent locomotion analysis using a 3D motion analysis and 12-channel dynamic electromyography system. Dynamic balance function was assessed by the Berg Balance Scale. Older adults showed a higher level of muscle activation than young adults, and there were significant positive correlations between increased age and activation of the trunk and thigh muscles in the stance and swing phase of the gait cycle. In particular, back extensor muscle activity was mostly correlated with the dynamic balance in older adults. Thus, back extensor muscle activity in walking may provide a clue for higher falling risk in older adults. This study demonstrates that the back extensor muscles play very important roles with potential for rehabilitation training to improve balance and gait in older adults.

  5. Formalization and analysis of reasoning by assumption.

    PubMed

    Bosse, Tibor; Jonker, Catholijn M; Treur, Jan

    2006-01-02

    This article introduces a novel approach for the analysis of the dynamics of reasoning processes and explores its applicability for the reasoning pattern called reasoning by assumption. More specifically, for a case study in the domain of a Master Mind game, it is shown how empirical human reasoning traces can be formalized and automatically analyzed against dynamic properties they fulfill. To this end, for the pattern of reasoning by assumption a variety of dynamic properties have been specified, some of which are considered characteristic for the reasoning pattern, whereas some other properties can be used to discriminate among different approaches to the reasoning. These properties have been automatically checked for the traces acquired in experiments undertaken. The approach turned out to be beneficial from two perspectives. First, checking characteristic properties contributes to the empirical validation of a theory on reasoning by assumption. Second, checking discriminating properties allows the analyst to identify different classes of human reasoners. 2006 Lawrence Erlbaum Associates, Inc.

  6. Design and Performance Analysis of a new Rotary Hydraulic Joint

    NASA Astrophysics Data System (ADS)

    Feng, Yong; Yang, Junhong; Shang, Jianzhong; Wang, Zhuo; Fang, Delei

    2017-07-01

    To improve the driving torque of the robots joint, a wobble plate hydraulic joint is proposed, and the structure and working principle are described. Then mathematical models of kinematics and dynamics was established. On the basis of this, dynamic simulation and characteristic analysis are carried out. Results show that the motion curve of the joint is continuous and the impact is small. Moreover the output torque of the joint characterized by simple structure and easy processing is large and can be rotated continuously.

  7. Correlated and uncorrelated heart rate fluctuations during relaxing visualization

    NASA Astrophysics Data System (ADS)

    Papasimakis, N.; Pallikari, F.

    2010-05-01

    The heart rate variability (HRV) of healthy subjects practicing relaxing visualization is studied by use of three multiscale analysis techniques: the detrended fluctuation analysis (DFA), the entropy in natural time (ENT) and the average wavelet (AWC) coefficient. The scaling exponent of normal interbeat interval increments exhibits characteristics of the presence of long-range correlations. During relaxing visualization the HRV dynamics change in the sense that two new features emerge independent of each other: a respiration-induced periodicity that often dominates the HRV at short scales (<40 interbeat intervals) and the decrease of the scaling exponent at longer scales (40-512 interbeat intervals). In certain cases, the scaling exponent during relaxing visualization indicates the breakdown of long-range correlations. These characteristics have been previously seen in the HRV dynamics during non-REM sleep.

  8. Analysis of BF Hearth Reasonable Cooling System Based on the Water Dynamic Characteristics

    NASA Astrophysics Data System (ADS)

    Zuo, Haibin; Jiao, Kexin; Zhang, Jianliang; Li, Qian; Wang, Cui

    A rational cooling water system is the assurance for long campaign life of blast furnace. In the paper, the heat transfer of different furnace period and different furnace condition based on the water quality characteristics were analysed, and the reason of the heat flux over the normal from the hydrodynamics was analysed. The results showed that, the vapour-film and scale existence significantly influenced the hearth heat transfer, which accelerated the brick lining erosion. The water dynamic characteristics of the parallel inner pipe or among the pipes were the main reason for the abnormal heat flux and film boiling. As to the reasonable cooling water flow, the gas film and the scale should be controlled and the energy saving should be considered.

  9. Probabilistic Component Mode Synthesis of Nondeterministic Substructures

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ferri, Aldo A.

    1996-01-01

    Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. We present a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.

  10. Modeling and Dynamic Analysis of Paralleled of dc/dc Converters with Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  11. A nonlinear dynamical system for combustion instability in a pulse model combustor

    NASA Astrophysics Data System (ADS)

    Takagi, Kazushi; Gotoda, Hiroshi

    2016-11-01

    We theoretically and numerically study the bifurcation phenomena of nonlinear dynamical system describing combustion instability in a pulse model combustor on the basis of dynamical system theory and complex network theory. The dynamical behavior of pressure fluctuations undergoes a significant transition from steady-state to deterministic chaos via the period-doubling cascade process known as Feigenbaum scenario with decreasing the characteristic flow time. Recurrence plots and recurrence networks analysis we adopted in this study can quantify the significant changes in dynamic behavior of combustion instability that cannot be captured in the bifurcation diagram.

  12. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  13. Research on hysteresis loop considering the prestress effect and electrical input dynamics for a giant magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Zhu, Yuchuan; Yang, Xulei; Wereley, Norman M.

    2016-08-01

    In this paper, focusing on the application-oriented giant magnetostrictive material (GMM)-based electro-hydrostatic actuator, which features an applied magnetic field at high frequency and high amplitude, and concentrating on the static and dynamic characteristics of a giant magnetostrictive actuator (GMA) considering the prestress effect on the GMM rod and the electrical input dynamics involving the power amplifier and the inductive coil, a methodology for studying the static and dynamic characteristics of a GMA using the hysteresis loop as a tool is developed. A GMA that can display the preforce on the GMM rod in real-time is designed, and a magnetostrictive model dependent on the prestress on a GMM rod instead of the existing quadratic domain rotation model is proposed. Additionally, an electrical input dynamics model to excite GMA is developed according to the simplified circuit diagram, and the corresponding parameters are identified by the experimental data. A dynamic magnetization model with the eddy current effect is deduced according to the Jiles-Atherton model and the Maxwell equations. Next, all of the parameters, including the electrical input characteristics, the dynamic magnetization and the mechanical structure of GMA, are identified by the experimental data from the current response, magnetization response and displacement response, respectively. Finally, a comprehensive comparison between the model results and experimental data is performed, and the results show that the test data agree well with the presented model results. An analysis on the relation between the GMA displacement response and the parameters from the electrical input dynamics, magnetization dynamics and mechanical structural dynamics is performed.

  14. Decomposition-aggregation stability analysis. [for large scale dynamic systems with application to spinning Skylab control system

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Weissenberger, S.; Cuk, S. M.

    1973-01-01

    This report presents the development and description of the decomposition aggregation approach to stability investigations of high dimension mathematical models of dynamic systems. The high dimension vector differential equation describing a large dynamic system is decomposed into a number of lower dimension vector differential equations which represent interconnected subsystems. Then a method is described by which the stability properties of each subsystem are aggregated into a single vector Liapunov function, representing the aggregate system model, consisting of subsystem Liapunov functions as components. A linear vector differential inequality is then formed in terms of the vector Liapunov function. The matrix of the model, which reflects the stability properties of the subsystems and the nature of their interconnections, is analyzed to conclude over-all system stability characteristics. The technique is applied in detail to investigate the stability characteristics of a dynamic model of a hypothetical spinning Skylab.

  15. [Dynamics of decapitation after falling in a self-tightening rope noose].

    PubMed

    Wehner, Heinz-Dieter; Schulz, Martin Manfred; Wehner, Arno

    2006-01-01

    In decapitation by dropping into a slip noose, it is in principle justified to doubt that suicide is involved. It must hence always be checked whether the dynamics to be inferred from the concrete facts can result in decapitation. Essential characteristics of the dynamics are the deceleration forces (tractional force of the rope) that are determined by the height of the drop, the directional force of the rope and the body mass of the victim as well as the density of the lines of centripetal force acting on the neck. However, the appropriateness of the dynamics must at all events be corroborated by compatible autopsy and scientific criminological findings with regard to the characteristic wound morphology, the intravital signs, the trace analysis and the topography of the fiber ablation traces on the rope that are due to the effect of heat.

  16. Dynamic analysis of a pumped-storage hydropower plant with random power load

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  17. Determination of the smoke-plume heights and their dynamics with ground-based scanning LIDAR

    Treesearch

    V. Kovalev; A. Petkov; C. Wold; S. Urbanski; W. M. Hao

    2015-01-01

    Lidar-data processing techniques are analyzed, which allow determining smoke-plume heights and their dynamics and can be helpful for the improvement of smoke dispersion and air quality models. The data processing algorithms considered in the paper are based on the analysis of two alternative characteristics related to the smoke dispersion process: the regularized...

  18. Effects of cockpit lateral stick characteristics on handling qualities and pilot dynamics

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Aponso, Bimal L.; Klyde, David H.

    1992-01-01

    This report presents the results of analysis of cockpit lateral control feel-system studies. Variations in feel-system natural frequency, damping, and command sensing reference (force and position) were investigated, in combination with variations in the aircraft response characteristics. The primary data for the report were obtained from a flight investigation conducted with a variable-stability airplane, with additional information taken from other flight experiments and ground-based simulations for both airplanes and helicopters . The study consisted of analysis of handling qualities ratings and extraction of open-loop, pilot-vehicle describing functions from sum-of-sines tracking data, including, for a limited subset of these data, the development of pilot models. The study confirms the findings of other investigators that the effects on pilot opinion of cockpit feel-system dynamics are not equivalent to a comparable level of added time delay, and until a more comprehensive set of criteria are developed, it is recommended that feel-system dynamics be considered a delay-inducing element in the aircraft response. The best correlation with time-delay requirements was found when the feel-system dynamics were included in the delay measurements, regardless of the command reference. This is a radical departure from past approaches.

  19. Static and dynamic stability analysis of the space shuttle vehicle-orbiter

    NASA Technical Reports Server (NTRS)

    Chyu, W. J.; Cavin, R. K.; Erickson, L. L.

    1978-01-01

    The longitudinal static and dynamic stability of a Space Shuttle Vehicle-Orbiter (SSV Orbiter) model is analyzed using the FLEXSTAB computer program. Nonlinear effects are accounted for by application of a correction technique in the FLEXSTAB system; the technique incorporates experimental force and pressure data into the linear aerodynamic theory. A flexible Orbiter model is treated in the static stability analysis for the flight conditions of Mach number 0.9 for rectilinear flight (1 g) and for a pull-up maneuver (2.5 g) at an altitude of 15.24 km. Static stability parameters and structural deformations of the Orbiter are calculated at trim conditions for the dynamic stability analysis, and the characteristics of damping in pitch are investigated for a Mach number range of 0.3 to 1.2. The calculated results for both the static and dynamic stabilities are compared with the available experimental data.

  20. Motion characteristics of the lumbar spine in the normal population.

    PubMed

    McGregor, A H; McCarthy, I D; Hughes, S P

    1995-11-15

    The present study investigated the dynamic motion characteristics of the lumbar spine in the normal population using a potentiometric analysis system. To assess the ability of a triaxial potentiometric analysis system to measure dynamic motion in the lumbar spine, and to use this system to form a database of dynamic motion characteristics from which normal parameters of motion and the factors affecting this motion could be defined. Spinal motion has been studied using a variety of different methods, the majority of which have been limited either in terms of reliability, accuracy, or invasiveness and many have been only of a static nature. There has been no previous study into the normal dynamic motion characteristics of the lumbar spine. The accuracy of the system was determined by a series of tests against a calibrated engineering mill, and the reliability of the system was assessed on 10 subjects with repeated measurements over a 3-day period. Values of range of motion and angular velocity were obtained from 203 normal subjects during flexion and extension, lateral flexion, and rotation. The results of the calibration testing revealed excellent accuracy, and it was shown that the system was repeatable. Initial analysis of the results indicated that sex differences did exist with men having 58.4 degrees of flexion and women having 53.4 degrees. Age appeared to have an influence on motion, and a gradual reduction was seen with each decade (P < 0.001), with the 20-29-year age range having 59.5 degrees mean flexion, the 30-39-year group having 58.1 degrees, the 40-49-year group having 53.7 degrees, the 50-60-year group having 57.5 degrees, and the 60-70-year group having 45.9 degrees. Multiple regression techniques revealed that only a few factors are important with respect to motion and that these varied according to the characteristic being defined. Range of motion tended to be affected by age and sex, whereas velocity was only affected by distance moved, with occupation and body mass index having little or no influence on the motion. The factors identified could only account for a small proportion of the variation seen, suggesting that it is difficult to predict the motion characteristics with any degree of sensitivity.

  1. Long-Term Dynamic Monitoring of the Historical Masonry FAÇADE: the Case of Palazzo Ducale in Venice, Italy

    NASA Astrophysics Data System (ADS)

    Noh, J.; Russo, S.

    2017-08-01

    Long-term dynamic monitoring of the masonry façade of Palazzo Ducale known as Doge's palace in Venice, Italy was performed from September 2010 to October 2012. This article demonstrates the results of preliminary analysis on the data set of the first 12-month long monitoring campaign for out-of-plumb dynamic responses of the medieval façade of the monument. The aim of the analysis of the dynamic signals is to validate the data set and investigate dynamic characteristics of the vibration signature of the historical masonry wall in the long-term. Palazzo Ducale is a heavily visited heritage due to its high cultural importance and architectural value. Nevertheless, little is known about the dynamic behaviour of the double-leaf masonry façade. In this study, the dynamic properties of the structure are presented by dynamic identification carried out with the effect of the ambient vibration measured at four different locations on the façade and portico level. The trend and intensity of the vibration at each measurement locations are identified over the year. In addition, the issue on eliminating the noise blended in the signals for reliable analysis are also discussed.

  2. New Representation of Bearings in LS-DYNA

    NASA Technical Reports Server (NTRS)

    Carney, Kelly S.; Howard, Samuel A.; Miller, Brad A.; Benson, David J.

    2014-01-01

    Non-linear, dynamic, finite element analysis is used in various engineering disciplines to evaluate high-speed, dynamic impact and vibration events. Some of these applications require connecting rotating to stationary components. For example, bird impacts on rotating aircraft engine fan blades are a common analysis performed using this type of analysis tool. Traditionally, rotating machines utilize some type of bearing to allow rotation in one degree of freedom while offering constraints in the other degrees of freedom. Most times, bearings are modeled simply as linear springs with rotation. This is a simplification that is not necessarily accurate under the conditions of high-velocity, high-energy, dynamic events such as impact problems. For this reason, it is desirable to utilize a more realistic non-linear force-deflection characteristic of real bearings to model the interaction between rotating and non-rotating components during dynamic events. The present work describes a rolling element bearing model developed for use in non-linear, dynamic finite element analysis. This rolling element bearing model has been implemented in LS-DYNA as a new element, *ELEMENT_BEARING.

  3. Surge of Bering Glacier and Bagley Ice Field: Parameterization of surge characteristics based on automated analysis of crevasse image data and laser altimeter data

    NASA Astrophysics Data System (ADS)

    Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.

    2012-12-01

    The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.

  4. A longitudinal analysis of the relationship between fertility timing and schooling.

    PubMed

    Stange, Kevin

    2011-08-01

    This article quantifies the contribution of pre-treatment dynamic selection to the relationship between fertility timing and postsecondary attainment, after controlling for a rich set of predetermined characteristics. Eventual mothers and nonmothers are matched using their predicted birth hazard rate, which shares the desirable properties of a propensity score but in a multivalued treatment setting. I find that eventual mothers and matched nonmothers enter college at the same rate, but their educational paths diverge well before the former become pregnant. This pre-pregnancy divergence creates substantial differences in ultimate educational attainment that cannot possibly be due to the childbirth itself. Controls for predetermined characteristics and fixed effects do not address this form of dynamic selection bias. A dynamic model of the simultaneous childbirth-education sequencing decision is necessary to address it.

  5. A Study on a Centralized Under-Voltage Load Shedding Scheme Considering the Load Characteristics

    NASA Astrophysics Data System (ADS)

    Deng, Jiyu; Liu, Junyong

    Under-voltage load shedding is an important measure for maintaining voltage stability.Aiming at the optimal load shedding problem considering the load characteristics,firstly,the traditional under-voltage load shedding scheme based on a static load model may cause the analysis inaccurate is pointed out on the equivalent Thevenin circuit.Then,the dynamic voltage stability margin indicator is derived through local measurement.The derived indicator can reflect the voltage change of the key area in a myopia linear way.Dimensions of the optimal problem will be greatly simplified using this indicator.In the end,mathematical model of the centralized load shedding scheme is built with the indicator considering load characteristics.HSPPSO is introduced to slove the optimal problem.Simulation results on IEEE-39 system show that the proposed scheme display a good adaptability in solving the under-voltage load shedding considering dynamic load characteristics.

  6. Navier-Stokes dynamics on a differential one-form

    NASA Astrophysics Data System (ADS)

    Story, Troy L.

    2006-11-01

    After transforming the Navier-Stokes dynamic equation into a characteristic differential one-form on an odd-dimensional differentiable manifold, exterior calculus is used to construct a pair of differential equations and tangent vector(vortex vector) characteristic of Hamiltonian geometry. A solution to the Navier-Stokes dynamic equation is then obtained by solving this pair of equations for the position x^k and the conjugate to the position bk as functions of time. The solution bk is shown to be divergence-free by contracting the differential 3-form corresponding to the divergence of the gradient of the velocity with a triple of tangent vectors, implying constraints on two of the tangent vectors for the system. Analysis of the solution bk shows it is bounded since it remains finite as | x^k | ->,, and is physically reasonable since the square of the gradient of the principal function is bounded. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian is obtained.

  7. Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic

    PubMed Central

    de Groot, Maartje H.; van Campen, Jos P.; Beijnen, Jos H.; Hortobágyi, Tibor; Vuillerme, Nicolas; Lamoth, Claudine C. J.

    2017-01-01

    Fall prediction in geriatric patients remains challenging because the increased fall risk involves multiple, interrelated factors caused by natural aging and/or pathology. Therefore, we used a multi-factorial statistical approach to model categories of modifiable fall risk factors among geriatric patients to identify fallers with highest sensitivity and specificity with a focus on gait performance. Patients (n = 61, age = 79; 41% fallers) underwent extensive screening in three categories: (1) patient characteristics (e.g., handgrip strength, medication use, osteoporosis-related factors) (2) cognitive function (global cognition, memory, executive function), and (3) gait performance (speed-related and dynamic outcomes assessed by tri-axial trunk accelerometry). Falls were registered prospectively (mean follow-up 8.6 months) and one year retrospectively. Principal Component Analysis (PCA) on 11 gait variables was performed to determine underlying gait properties. Three fall-classification models were then built using Partial Least Squares–Discriminant Analysis (PLS-DA), with separate and combined analyses of the fall risk factors. PCA identified ‘pace’, ‘variability’, and ‘coordination’ as key properties of gait. The best PLS-DA model produced a fall classification accuracy of AUC = 0.93. The specificity of the model using patient characteristics was 60% but reached 80% when cognitive and gait outcomes were added. The inclusion of cognition and gait dynamics in fall classification models reduced misclassification. We therefore recommend assessing geriatric patients’ fall risk using a multi-factorial approach that incorporates patient characteristics, cognition, and gait dynamics. PMID:28575126

  8. Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic.

    PubMed

    Kikkert, Lisette H J; de Groot, Maartje H; van Campen, Jos P; Beijnen, Jos H; Hortobágyi, Tibor; Vuillerme, Nicolas; Lamoth, Claudine C J

    2017-01-01

    Fall prediction in geriatric patients remains challenging because the increased fall risk involves multiple, interrelated factors caused by natural aging and/or pathology. Therefore, we used a multi-factorial statistical approach to model categories of modifiable fall risk factors among geriatric patients to identify fallers with highest sensitivity and specificity with a focus on gait performance. Patients (n = 61, age = 79; 41% fallers) underwent extensive screening in three categories: (1) patient characteristics (e.g., handgrip strength, medication use, osteoporosis-related factors) (2) cognitive function (global cognition, memory, executive function), and (3) gait performance (speed-related and dynamic outcomes assessed by tri-axial trunk accelerometry). Falls were registered prospectively (mean follow-up 8.6 months) and one year retrospectively. Principal Component Analysis (PCA) on 11 gait variables was performed to determine underlying gait properties. Three fall-classification models were then built using Partial Least Squares-Discriminant Analysis (PLS-DA), with separate and combined analyses of the fall risk factors. PCA identified 'pace', 'variability', and 'coordination' as key properties of gait. The best PLS-DA model produced a fall classification accuracy of AUC = 0.93. The specificity of the model using patient characteristics was 60% but reached 80% when cognitive and gait outcomes were added. The inclusion of cognition and gait dynamics in fall classification models reduced misclassification. We therefore recommend assessing geriatric patients' fall risk using a multi-factorial approach that incorporates patient characteristics, cognition, and gait dynamics.

  9. The design and development of a two-dimensional adaptive truss structure

    NASA Technical Reports Server (NTRS)

    Kuwao, Fumihiro; Motohashi, Shoichi; Yoshihara, Makoto; Takahara, Kenichi; Natori, Michihiro

    1987-01-01

    The functional model of a two dimensional adaptive truss structure which can purposefully change its geometrical configuration is introduced. The details of design and fabrication such as kinematic analysis, dynamic characteristics analysis and some test results are presented for the demonstration of this two dimensional truss concept.

  10. Analysis of Design Parameters Effects on Vibration Characteristics of Fluidlastic Isolators

    NASA Astrophysics Data System (ADS)

    Deng, Jing-hui; Cheng, Qi-you

    2017-07-01

    The control of vibration in helicopters which consists of reducing vibration levels below the acceptable limit is one of the key problems. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters is very important to obtain efficient vibration-suppressed. Aiming at getting the effect of design parameters on the property of fluidlastic isolator, a dynamic equation is set up based on the theory of dynamics. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. Dynamic analysis results have shown that fluidlastic isolator can reduce the vibration effectively. Analysis results also showed that the design parameters such as the fluid density, viscosity coefficient, stiffness (K1 and K2) and loss coefficient have obvious influence on the performance of isolator. The efficient vibration-suppressed can be obtained by the design optimization of parameters.

  11. Scaling analysis of bilateral hand tremor movements in essential tremor patients.

    PubMed

    Blesic, S; Maric, J; Dragasevic, N; Milanovic, S; Kostic, V; Ljubisavljevic, Milos

    2011-08-01

    Recent evidence suggests that the dynamic-scaling behavior of the time-series of signals extracted from separate peaks of tremor spectra may reveal existence of multiple independent sources of tremor. Here, we have studied dynamic characteristics of the time-series of hand tremor movements in essential tremor (ET) patients using the detrended fluctuation analysis method. Hand accelerometry was recorded with (500 g) and without weight loading under postural conditions in 25 ET patients and 20 normal subjects. The time-series comprising peak-to-peak (PtP) intervals were extracted from regions around the first three main frequency components of power spectra (PwS) of the recorded tremors. The data were compared between the load and no-load condition on dominant (related to tremor severity) and non-dominant tremor side and with the normal (physiological) oscillations in healthy subjects. Our analysis shows that, in ET, the dynamic characteristics of the main frequency component of recorded tremors exhibit scaling behavior. Furthermore, they show that the two main components of ET tremor frequency spectra, otherwise indistinguishable without load, become significantly different after inertial loading and that they differ between the tremor sides (related to tremor severity). These results show that scaling, a time-domain analysis, helps revealing tremor features previously not revealed by frequency-domain analysis and suggest that distinct oscillatory central circuits may generate the tremor in ET patients.

  12. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1994-05-01

    Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  13. Numerical investigation of bubble nonlinear dynamics characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jie, E-mail: shijie@hrbeu.edu.cn; Yang, Desen; Shi, Shengguo

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  14. Unsteady aerodynamic analysis of space shuttle vehicles. Part 2: Steady and unsteady aerodynamics of sharp-edged delta wings

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1973-01-01

    An analysis of the steady and unsteady aerodynamics of sharp-edged slender wings has been performed. The results show that slender wing theory can be modified to give the potential flow static and dynamic characteristics in incompressible flow. A semiempirical approximation is developed for the vortex-induced loads, and it is shown that the analytic approximation for sharp-edged slender wings gives good prediction of experimentally determined steady and unsteady aerodynamics at M = 0 and M = 1. The predictions are good not only for delta wings but also for so-called arrow and diamond wings. The results indicate that the effects of delta planform lifting surfaces can be included in a simple manner when determining elastic launch vehicle dynamic characteristics. For Part 1 see (N73-32763).

  15. Combining ANOVA-PCA with POCHEMON to analyse micro-organism development in a polymicrobial environment.

    PubMed

    Geurts, Brigitte P; Neerincx, Anne H; Bertrand, Samuel; Leemans, Manja A A P; Postma, Geert J; Wolfender, Jean-Luc; Cristescu, Simona M; Buydens, Lutgarde M C; Jansen, Jeroen J

    2017-04-22

    Revealing the biochemistry associated to micro-organismal interspecies interactions is highly relevant for many purposes. Each pathogen has a characteristic metabolic fingerprint that allows identification based on their unique multivariate biochemistry. When pathogen species come into mutual contact, their co-culture will display a chemistry that may be attributed both to mixing of the characteristic chemistries of the mono-cultures and to competition between the pathogens. Therefore, investigating pathogen development in a polymicrobial environment requires dedicated chemometric methods to untangle and focus upon these sources of variation. The multivariate data analysis method Projected Orthogonalised Chemical Encounter Monitoring (POCHEMON) is dedicated to highlight metabolites characteristic for the interaction of two micro-organisms in co-culture. However, this approach is currently limited to a single time-point, while development of polymicrobial interactions may be highly dynamic. A well-known multivariate implementation of Analysis of Variance (ANOVA) uses Principal Component Analysis (ANOVA-PCA). This allows the overall dynamics to be separated from the pathogen-specific chemistry to analyse the contributions of both aspects separately. For this reason, we propose to integrate ANOVA-PCA with the POCHEMON approach to disentangle the pathogen dynamics and the specific biochemistry in interspecies interactions. Two complementary case studies show great potential for both liquid and gas chromatography - mass spectrometry to reveal novel information on chemistry specific to interspecies interaction during pathogen development. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Kinematic, Dynamic, and Energy Characteristics of Diastolic Flow in the Left Ventricle

    PubMed Central

    Khalafvand, Seyed Saeid; Hung, Tin-Kan; Ng, Eddie Yin-Kwee; Zhong, Liang

    2015-01-01

    Blood flow characteristics in the normal left ventricle are studied by using the magnetic resonance imaging, the Navier-Stokes equations, and the work-energy equation. Vortices produced during the mitral valve opening and closing are modeled in a two-dimensional analysis and correlated with temporal variations of the Reynolds number and pressure drop. Low shear stress and net pressures on the mitral valve are obtained for flow acceleration and deceleration. Bernoulli energy flux delivered to blood from ventricular dilation is practically balanced by the energy influx and the rate change of kinetic energy in the ventricle. The rates of work done by shear and energy dissipation are small. The dynamic and energy characteristics of the 2D results are comparable to those of a 3D model. PMID:26417381

  17. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    PubMed Central

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-01-01

    Within the framework of ‘Network Physiology’, we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain–heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain–heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991

  18. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    NASA Astrophysics Data System (ADS)

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-05-01

    Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.

  19. [The characteristic of stomatologic service manpower in Omsk region].

    PubMed

    Prokop'ev, K A; Ravdugina, T G

    2013-01-01

    The article considers the network and manpower characteristics of stomatologic service in Omsk oblast during 2006-3011. The results are presented concerning statistical analysis of dynamics of manpower size and staffing of specialists in stomatologic rooms (departments) in state (budget) health institutions. The differences are demonstrated concerning the accessibility of stomatologic care to residents of city and rural regions of oblast.

  20. Vortex dynamics in type-II superconductors under strong pinning conditions

    NASA Astrophysics Data System (ADS)

    Thomann, A. U.; Geshkenbein, V. B.; Blatter, G.

    2017-10-01

    We study effects of pinning on the dynamics of a vortex lattice in a type-II superconductor in the strong-pinning situation and determine the force-velocity (or current-voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density np of defects that act with a large force fp on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density 〈Fp(v ) 〉 and find that it changes on the velocity scale vp˜fp/η a03 , where η is the viscosity of vortex motion and a0 the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity vc˜Fc/η of the free vortex system at drives near the critical force density Fc=〈Fp(v =0 ) 〉 ∝npfp . As a result, we find a generic excess-force characteristic, a nearly linear force-velocity characteristic shifted by the critical force density Fc; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulomb's law of dry friction for the case of strong vortex pinning.

  1. Evaluating the Dynamic Characteristics of Retrofitted RC Beams

    NASA Astrophysics Data System (ADS)

    Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang

    2008-07-01

    The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.

  2. Development of a Probabilistic Dynamic Synthesis Method for the Analysis of Nondeterministic Structures

    NASA Technical Reports Server (NTRS)

    Brown, A. M.

    1998-01-01

    Accounting for the statistical geometric and material variability of structures in analysis has been a topic of considerable research for the last 30 years. The determination of quantifiable measures of statistical probability of a desired response variable, such as natural frequency, maximum displacement, or stress, to replace experience-based "safety factors" has been a primary goal of these studies. There are, however, several problems associated with their satisfactory application to realistic structures, such as bladed disks in turbomachinery. These include the accurate definition of the input random variables (rv's), the large size of the finite element models frequently used to simulate these structures, which makes even a single deterministic analysis expensive, and accurate generation of the cumulative distribution function (CDF) necessary to obtain the probability of the desired response variables. The research presented here applies a methodology called probabilistic dynamic synthesis (PDS) to solve these problems. The PDS method uses dynamic characteristics of substructures measured from modal test as the input rv's, rather than "primitive" rv's such as material or geometric uncertainties. These dynamic characteristics, which are the free-free eigenvalues, eigenvectors, and residual flexibility (RF), are readily measured and for many substructures, a reasonable sample set of these measurements can be obtained. The statistics for these rv's accurately account for the entire random character of the substructure. Using the RF method of component mode synthesis, these dynamic characteristics are used to generate reduced-size sample models of the substructures, which are then coupled to form system models. These sample models are used to obtain the CDF of the response variable by either applying Monte Carlo simulation or by generating data points for use in the response surface reliability method, which can perform the probabilistic analysis with an order of magnitude less computational effort. Both free- and forced-response analyses have been performed, and the results indicate that, while there is considerable room for improvement, the method produces usable and more representative solutions for the design of realistic structures with a substantial savings in computer time.

  3. Modeling and design of a pre-stressed piezoelectric stack actuator

    NASA Astrophysics Data System (ADS)

    Jiang, Shiping; Cheng, Lei

    2017-07-01

    To provide a method for designing a pre-stressed PSA with high-performance, it is very meaningful to model the dynamic characteristics of the pre-stressed PSA accurately. A novel model, which considers both the electric side and the mechanical side of the PSA as distributed systems, is put forward to describe the dynamics characteristics of the PSA and the pre-stressed PSA. The role of the pre-stressed mechanism is derived and analyzed by extended transfer matrix method, and then the principle of design of the pre-stressed mechanism is obtained. The theoretical analysis is in accordance with the experimental results.

  4. Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures

    NASA Technical Reports Server (NTRS)

    Chang, C. S.

    1975-01-01

    The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.

  5. A new sensitivity analysis for structural optimization of composite rotor blades

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.; Yuan, Kuo-An

    1993-01-01

    This paper presents a detailed mathematical derivation of the sensitivity derivatives for the structural dynamic, aeroelastic stability and response characteristics of a rotor blade in hover and forward flight. The formulation is denoted by the term semianalytical approach, because certain derivatives have to be evaluated by a finite difference scheme. Using the present formulation, sensitivity derivatives for the structural dynamic and aeroelastic stability characteristics, were evaluated for both isotropic and composite rotor blades. Based on the results, useful conclusions are obtained regarding the relative merits of the semi-analytical approach, for calculating sensitivity derivatives, when compared to a pure finite difference approach.

  6. Characterization of Microgravity Environment on Mir

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung; Kaouk, Mohamed

    2000-01-01

    This paper presents the microgravity analysis results using dynamic response data collected during the first phase of the Mir Structural Dynamics Experiment (MiSDE). Although MiSDE was designed and performed to verify structural dynamic models, it also provided information for determining microgravity characteristics of the structure. This study analyzed ambient responses acquired during orbital day-to-night and night-to-day transitions, crew treadmill and ergometer exercises, and intentional crew activities. Acceleration levels for one-third octave bands were calculated to characterize the microgravity environment of the station. Spectrograms were also used to analyze the time transient nature of the responses. Detailed theoretical background and analysis results will also be included in the final draft.

  7. Frequency analysis of a step dynamic pressure calibrator.

    PubMed

    Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon

    2012-09-01

    A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.

  8. Frequency analysis of a step dynamic pressure calibrator

    NASA Astrophysics Data System (ADS)

    Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon

    2012-09-01

    A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.

  9. Investigation of strength characteristics of aluminum alloy under dynamic tension

    NASA Astrophysics Data System (ADS)

    Evstifeev, A. D.

    2018-04-01

    The study presents the results of experimental-theoretical analysis for aluminum alloy subjected to static and dynamic tension on samples of different types. The material was tested under initial coarse-grained (CG) and in ultrafine-grained (UFG) condition. The time dependence of the tensile strength is calculated using an incubation time fracture criterion based on a set of fixed constants of the material.

  10. Ion Channel Conductance Measurements on a Silicon-Based Platform

    DTIC Science & Technology

    2006-01-01

    calculated using the molecular dynamics code, GROMACS . Reasonable agreement is obtained in the simulated versus measured conductance over the range of...measurements of the lipid giga-seal characteristics have been performed, including AC conductance measurements and statistical analysis in order to...Dynamics kernel self-consistently coupled to Poisson equations using a P3M force field scheme and the GROMACS description of protein structure and

  11. Age-dependent seizures of absence epilepsy and sleep spindles dynamics in WAG/Rij rats

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Y.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In the given paper, a relation between time-frequency characteristics of sleep spindles and the age-dependent epileptic activity in WAG/Rij rats is discussed. Analysis of sleep spindles based on the continuous wavelet transform is performed for rats of different ages. It is shown that the epileptic activity affects the time-frequency intrinsic dynamics of sleep spindles.

  12. Dynamic properties of the adaptive optics system depending on the temporary transformations of mirror control voltages

    NASA Astrophysics Data System (ADS)

    Lavrinov, V. V.; Lavrinova, L. N.

    2017-11-01

    The statistically optimal control algorithm for the correcting mirror is formed by constructing a prediction of distortions of the optical signal and improves the time resolution of the adaptive optics system. The prediction of distortions is based on an analysis of the dynamics of changes in the optical inhomogeneities of the turbulent atmosphere or the evolution of phase fluctuations at the input aperture of the adaptive system. Dynamic properties of the system are manifested during the temporary transformation of the stresses controlling the mirror and are determined by the dynamic characteristics of the flexible mirror.

  13. Integrated dynamic analysis simulation of space stations with controllable solar array

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.

  14. Application and Mechanics Analysis of Multi-Function Construction Platforms in Prefabricated-Concrete Construction

    NASA Astrophysics Data System (ADS)

    Wang, Meihua; Li, Rongshuai; Zhang, Wenze

    2017-11-01

    Multi-function construction platforms (MCPs) as an “old construction technology, new application” of the building facade construction equipment, its efforts to reduce labour intensity, improve labour productivity, ensure construction safety, shorten the duration of construction and other aspects of the effect are significant. In this study, the functional analysis of the multi-function construction platforms is carried out in the construction of the assembly building. Based on the general finite element software ANSYS, the static calculation and dynamic characteristics analysis of the MCPs structure are analysed, the simplified finite element model is constructed, and the selection of the unit, the processing and solution of boundary are under discussion and research. The maximum deformation value, the maximum stress value and the structural dynamic characteristic model are obtained. The dangerous parts of the platform structure are analysed, too. Multiple types of MCPs under engineering construction conditions are calculated, so as to put forward the rationalization suggestions for engineering application of the MCPs.

  15. Dynamic characterization of a damaged beam using empirical mode decomposition and Hilbert spectrum method

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chen; Poon, Chun-Wing

    2004-07-01

    Recently, the empirical mode decomposition (EMD) in combination with the Hilbert spectrum method has been proposed to identify the dynamic characteristics of linear structures. In this study, this EMD and Hilbert spectrum method is used to analyze the dynamic characteristics of a damaged reinforced concrete (RC) beam in the laboratory. The RC beam is 4m long with a cross section of 200mm X 250mm. The beam is sequentially subjected to a concentrated load of different magnitudes at the mid-span to produce different degrees of damage. An impact load is applied around the mid-span to excite the beam. Responses of the beam are recorded by four accelerometers. Results indicate that the EMD and Hilbert spectrum method can reveal the variation of the dynamic characteristics in the time domain. These results are also compared with those obtained using the Fourier analysis. In general, it is found that the two sets of results correlate quite well in terms of mode counts and frequency values. Some differences, however, can be seen in the damping values, which perhaps can be attributed to the linear assumption of the Fourier transform.

  16. Evaluation of RCAS Inflow Models for Wind Turbine Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangler, J.; Bir, G.

    The finite element structural modeling in the Rotorcraft Comprehensive Analysis System (RCAS) provides a state-of-the-art approach to aeroelastic analysis. This, coupled with its ability to model all turbine components, results in a methodology that can simulate complex system interactions characteristic of large wind. In addition, RCAS is uniquely capable of modeling advanced control algorithms and the resulting dynamic responses.

  17. Scaled Tank Test Design and Results for the Aquantis 2.5 MW Ocean Current Generation Device

    DOE Data Explorer

    Swales, Henry; Kils, Ole; Coakley, David B.; Sites, Eric; Mayer, Tyler

    2015-06-03

    Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This dataset also includes specific information on drivetrain, roller bearing, blade fabrication, mooring, and rotor characteristics.

  18. Dynamic analysis of Space Shuttle/RMS configuration using continuum approach

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.

    1994-01-01

    The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.

  19. Characterization of the Space Shuttle Ascent Debris using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    After video analysis of space shuttle flight STS-107's ascent showed that an object shed from the bipod-ramp region impacted the left wing, a transport analysis was initiated to determine a credible flight path and impact velocity for the piece of debris. This debris transport analysis was performed both during orbit, and after the subsequent re-entry accident. The analysis provided an accurate prediction of the velocity a large piece of foam bipod ramp would have as it impacted the wing leading edge. This prediction was corroborated by video analysis and fully-coupled CFD/six degree of freedom (DOF) simulations. While the prediction of impact velocity was accurate enough to predict critical damage in this case, one of the recommendations of the Columbia Accident Investigation Board (CAIB) for return-to-flight (RTF) was to analyze the complete debris environment experienced by the shuttle stack on ascent. This includes categorizing all possible debris sources, their probable geometric and aerodynamic characteristics, and their potential for damage. This paper is chiefly concerned with predicting the aerodynamic characteristics of a variety of potential debris sources (insulating foam and cork, nose-cone ablator, ice, ...) for the shuttle ascent configuration using CFD methods. These aerodynamic characteristics are used in the debris transport analysis to predict flight path, impact velocity and angle, and provide statistical variation to perform risk analyses where appropriate. The debris aerodynamic characteristics are difficult to determine using traditional methods, such as static or dynamic test data, due to the scaling requirements of simulating a typical debris event. The use of CFD methods has been a critical element for building confidence in the accuracy of the debris transport code by bridging the gap between existing aerodynamic data and the dynamics of full-scale, in-flight events.

  20. Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guangzhong; Zhang, Nong; Roser, Holger M.

    2015-12-01

    In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.

  1. Operational Modal Analysis of the Cablestayed Footbridge

    NASA Astrophysics Data System (ADS)

    Kortiš, Ján; Daniel, Ľuboš; Farbák, Matúš; Maliar, Lukáš; Škarupa, Milan

    2017-12-01

    Modern architecture leads to design subtle bridge structures that are more sensitive to increased dynamic loading than the massive ones. This phenomenon can be especially observed on lightweight steel structures such as suspended footbridges. As a result, it is necessary to know precisely its dynamic characteristics, such as natural frequencies, natural shapes and damping of construction. This information can be used for further analysis such as damage detection, system identification, health monitoring, etc. or also for the design of new types of construction. For this purpose, classical modal analysis using trigger load or harmonic vibration exciter in combination with acceleration sensors is used in practice. However, there are many situations where it is not possible to stop the traffic or operation of the bridge. The article presents an experimental measurement of the dynamic parameters of the structure at the operating load using the operational modal analysis.

  2. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  3. Stochastic ground motion simulation

    USGS Publications Warehouse

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  4. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  5. Nonlinear analysis of pupillary dynamics.

    PubMed

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

  6. [The marketing analysis of assortment of market of pharmaceuticals applied in treatment of psoriasis in Ukraine].

    PubMed

    Kotvitskaya, A A; Karlo, V V

    2013-01-01

    The analysis of assortment of pharmaceuticals for treatment of psoriasis recommended by Minzdrav of Ukraine and present at the national pharmaceutical market is made. The characteristics of distribution of national and foreign producers of antihistamine and anti-psoriatic pharmaceuticals are established The availability of particular medicinal forms of various producers is analyzed too. The characteristics and tendencies in consumption of these groups of pharmaceuticals in natural and monetary units are analyzed including dynamics of changes of mean wholesale prices during the analyzed period.

  7. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  8. Characteristic Analysis and Experiment of a Dynamic Flow Balance Valve

    NASA Astrophysics Data System (ADS)

    Bin, Li; Song, Guo; Xuyao, Mao; Chao, Wu; Deman, Zhang; Jin, Shang; Yinshui, Liu

    2017-12-01

    Comprehensive characteristics of a dynamic flow balance valve of water system were analysed. The flow balance valve can change the drag efficient automatically according to the condition of system, and the effective control flowrate is constant in the range of job pressure. The structure of the flow balance valve was introduced, and the theoretical calculation formula for the variable opening of the valve core was derived. A rated pressure of 20kPa to 200kPa and a rated flowrate of 10m3/h were offered in the numerical work. Static and fluent CFX analyses show good behaviours: through the valve core structure optimization and improve design of the compressive spring, the dynamic flow balance valve can stabilize the flowrate of system evidently. And experiments show that the flow control accuracy is within 5%.

  9. Quantitative description of human skin water dynamics by a disposition-decomposition analysis (DDA) of trans-epidermal water loss and epidermal capacitance.

    PubMed

    Rodrigues, Luis Monteiro; Pinto, Pedro Contreiras; Pereira, Luis Marcelo

    2003-02-01

    In vivo water assessment would greatly benefit from a dynamical approach since the evaluation of common related variables such as trans-epidermal water loss or "capacitance" measurements is always limited to instantaneous data. Mathematical modelling is still an attractive alternative already attempted with bi-exponential empirical models. A classical two-compartment interpretation of such models raises a number of questions about the underlying fundamentals, which can hardly be experimentally confirmed. However, in a system analysis sense, skin water dynamics may be approached as an ensemble of many factors, impossible to discretize, but conceptually grouped in terms of feasible properties of the system. The present paper explores the applicability of this strategy to the in vivo water dynamics assessment. From the plastic occlusion stress test (POST) skin water balance is assessed by modelling trans-epidermal water loss (TEWL) and "capacitance" data obtained at skin's surface. With system analysis (disposition-decomposition analysis) the distribution function, H(t), modelled as a sum of exponential terms, covers only the distribution characteristics of water molecules traversing the skin. This may correspond macroscopically to the experimental data accessed by "corneometry". Separately, the hyperbolic elimination function Q(TEWL) helps to characterise the dynamic aspects of water influx through the skin. In the observable range there seems to be a linear relationship between the net amount of water lost at the surface by evaporation, and the capability of the system to replenish that loss. This may be a specific characteristic of the system related to what may be described as the skin's "intrinsic hydration capacity" (IHC) a new functional parameter only identified by this strategy. These new quantitative tools are expected to find different applicabilities (from the in vivo skin characterisation to efficacy testing) contributing to disclose the dynamical nature of the skin water balance process. Copyright Blackwell Munksgaard 2003

  10. Modeling analysis of pulsed magnetization process of magnetic core based on inverse Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang

    2018-05-01

    The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.

  11. Entropy for the Complexity of Physiological Signal Dynamics.

    PubMed

    Zhang, Xiaohua Douglas

    2017-01-01

    Recently, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of biological dynamics. Portable noninvasive medical devices are crucial to capture individual characteristics of biological dynamics. The wearable noninvasive medical devices and the analysis/management of related digital medical data will revolutionize the management and treatment of diseases, subsequently resulting in the establishment of a new healthcare system. One of the key features that can be extracted from the data obtained by wearable noninvasive medical device is the complexity of physiological signals, which can be represented by entropy of biological dynamics contained in the physiological signals measured by these continuous monitoring medical devices. Thus, in this chapter I present the major concepts of entropy that are commonly used to measure the complexity of biological dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi entropy, approximate entropy, sample entropy, and multiscale entropy. I also demonstrate an example of using entropy for the complexity of glucose dynamics.

  12. Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors

    NASA Astrophysics Data System (ADS)

    Chen, Liangyuan

    2018-03-01

    The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.

  13. Analysis of the Spatiotemporal Characteristics of Hemorrhagic Fever with Renal Syndrome in Hubei Province, China

    NASA Astrophysics Data System (ADS)

    Fan, H.; Ge, L.; Song, L.; Zhao, Q.

    2015-07-01

    Hemorrhagic fever with renal syndrome(HFRS) is a worldwide fulminant infectious disease. Since the first HFRS cases in Hubei Province were reported in 1957, the disease has spread across the province and Hubei has become one of seriously affected areas in China. However, the epidemic characteristics of HFRS are still not entirely clear. Therefore, a systematic investigation of spatial and temporal distribution pattern of HFRS system is needed. In order to facilitate better prevention and control of HFRS in Hubei Province, in this paper, a GIS spatiotemporal analysis and modeling tool was developed to analyze the spatiotemporal dynamics of the HFRS epidemic, as well as providinga comprehensive examination the dynamic pattern of HFRS in Hubei over the past 30 years (1980-2009), to determine spatiotemporal change trends and the causes of HFRS. This paper describes the experiments and their results.

  14. Rotordynamic Characteristics of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine)

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1984-01-01

    Rotational stability of turbopump components in the space shuttle main engine was studied via analysis of component and structural dynamic models. Subsynchronous vibration caused unacceptable migration of the rotor/housing unit with unequal load sharing of the synchronous bearings that resulted in the failure of the High Pressure Oxygen Turbopump. Linear analysis shows that a shrouded inducer eliminates the second critical speed and the stability problem, a stiffened rotor improves the rotordynamic characteristics of the turbopump, and installing damper boost/impeller seals reduces bearing loads. Nonlinear analysis shows that by increasing the "dead band' clearances, a marked reduction in peak bearing loads occurs.

  15. Vulcanization characteristics and dynamic mechanical behavior of natural rubber reinforced with silane modified silica.

    PubMed

    Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold

    2011-03-01

    Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.

  16. A study of low-cost reliable actuators for light aircraft. Part A: Chapters 1-8

    NASA Technical Reports Server (NTRS)

    Eijsink, H.; Rice, M.

    1978-01-01

    An analysis involving electro-mechanical, electro-pneumatic, and electro-hydraulic actuators was performed to study which are compatible for use in the primary and secondary flight controls of a single engine light aircraft. Actuator characteristics under investigation include cost, reliability, weight, force, volumetric requirements, power requirements, response characteristics and heat accumulation characteristics. The basic types of actuators were compared for performance characteristics in positioning a control surface model and then were mathematically evaluated in an aircraft to get the closed loop dynamic response characteristics. Conclusions were made as to the suitability of each actuator type for use in an aircraft.

  17. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi

    2017-08-01

    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  18. Dynamic stability of electrodynamic maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1997-01-01

    Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on mathematical models and experimental data. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis for motion-dependent magnetic-force-induced instability developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  19. The Shock and Vibration Bulletin. Part 3: Structure Medium Interaction, Case Studies in Dynamics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Structure and medium interactions topics are addressed. Topics include: a failure analysis of underground concrete structures subjected to blast loadings, an optimization design procedure for concrete slabs, and a discussion of the transient response of a cylindrical shell submerged in a fluid. Case studies in dynamics are presented which include an examination of a shock isolation platform for a seasparrow launcher, a discussion of hydrofoil fatigue load environments, and an investigation of the dynamic characteristics of turbine generators and low tuned foundations.

  20. A digital computer program for the dynamic interaction simulation of controls and structure (DISCOS), volume 1

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.

    1978-01-01

    A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.

  1. Insulation commonality assessment (phase 1). Volume 2: Section 7.0 through 16.0. [evaluation of materials used for spacecraft thermal insulation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The heat transfer characteristics of various materials used for the thermal insulation of spacecraft are discussed. Techniques for conducting thermal performance analysis, structural performance analysis, and dynamic analysis are described. Processes for producing and finishing the materials are explained. The methods for determining reliability, system safety, materials tests, and design effectiveness are explained.

  2. Dynamic Singularity Spectrum Distribution of Sea Clutter

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Yu, Wenxian; Zhang, Shuning

    2015-12-01

    The fractal and multifractal theory have provided new approaches for radar signal processing and target-detecting under the background of ocean. However, the related research mainly focuses on fractal dimension or multifractal spectrum (MFS) of sea clutter. In this paper, a new dynamic singularity analysis method of sea clutter using MFS distribution is developed, based on moving detrending analysis (DMA-MFSD). Theoretically, we introduce the time information by using cyclic auto-correlation of sea clutter. For transient correlation series, the instantaneous singularity spectrum based on multifractal detrending moving analysis (MF-DMA) algorithm is calculated, and the dynamic singularity spectrum distribution of sea clutter is acquired. In addition, we analyze the time-varying singularity exponent ranges and maximum position function in DMA-MFSD of sea clutter. For the real sea clutter data, we analyze the dynamic singularity spectrum distribution of real sea clutter in level III sea state, and conclude that the radar sea clutter has the non-stationary and time-varying scale characteristic and represents the time-varying singularity spectrum distribution based on the proposed DMA-MFSD method. The DMA-MFSD will also provide reference for nonlinear dynamics and multifractal signal processing.

  3. Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.

    2016-01-01

    The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.

  4. Analysis of a digital RF memory in a signal-delay application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinek, D.A.

    1992-03-01

    Laboratory simulation of the approach of a radar fuze towards a target is an important factor in our ability to accurately measure the radar's performance. This simulation is achieved, in part, by dynamically delaying and attenuating the radar's transmitted pulse and sending the result back to the radar's receiver. Historically, the device used to perform the dynamic delay has been a limiting factor in the evaluation of a radar's performance and characteristics. A new device has been proposed that appears to have more capability than previous dynamic delay devices. This device is the digital RF memory. This report presents themore » results of an analysis of a digital RF memory used in a signal-delay application. 2 refs.« less

  5. Multivariate frequency domain analysis of protein dynamics

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori

    2009-03-01

    Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.

  6. Cluster analysis of accelerated molecular dynamics simulations: A case study of the decahedron to icosahedron transition in Pt nanoparticles.

    PubMed

    Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F; Perez, Danny

    2017-10-21

    Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.

  7. Cluster analysis of accelerated molecular dynamics simulations: A case study of the decahedron to icosahedron transition in Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F.; Perez, Danny

    2017-10-01

    Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.

  8. JPRS report: Science and technology. Central Eurasia: Engineering and equipment

    NASA Astrophysics Data System (ADS)

    1993-10-01

    Translated articles cover the following topics: transient gas dynamic processes in ramjet engines; aerodynamic characteristics of delta wings with detached leading edge shock wave at hypersonic flight velocities; effect of atmospheric density gradient on aerodynamic stabilization; measurement of target radar scattering characteristics using frequency synthesized signals; assessing survivability and ensuring safety of large axial-flow compressor blades; procedure for experimentally determining transient aerodynamic forces caused by flat vane cascade; analysis of aerodynamic interaction of profile and vortex; laser machine for balancing dynamically adjusted gyros; use of heat pumps in solar heat supply systems; numerical simulation of deflagration transition to detonation in homogeneous combustible fuel mixture; and investigation of chemically nonequilibrium flow about bodies allowing for vibrational relaxation.

  9. Dynamic response characteristics of steel portal frames having semi-rigid joints under sinusoidal wave excitation

    NASA Astrophysics Data System (ADS)

    Bhatti, Abdul Qadir

    2017-12-01

    To demonstrate the characteristics of the nonlinear response of steel frames, an elastic dynamic response analysis of the semi-rigid frame is performed under the harmonic wave. The semi-rigid contact is represented by the alternating spring which is given stiffness by a three-parameter energy model which approaches the hysterical curve by hardening model. The properties of spectra and hysteric curves are presented. This study shows that (1) the greater the acceleration input capacitance the smaller the instant connection capability and the smaller is the response. (2) However, by allowing an extreme increase in capacitance input acceleration, response spectra can be increased as the contact stiffness results near zero.

  10. Effect of Sensors on the Reliability and Control Performance of Power Circuits in the Web of Things (WoT)

    PubMed Central

    Bae, Sungwoo; Kim, Myungchin

    2016-01-01

    In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype. PMID:27608020

  11. Down syndrome's brain dynamics: analysis of fractality in resting state.

    PubMed

    Hemmati, Sahel; Ahmadlou, Mehran; Gharib, Masoud; Vameghi, Roshanak; Sajedi, Firoozeh

    2013-08-01

    To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.

  12. Investigation of dynamic characteristics of a rotor system with surface coatings

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Cao, Dengqing; Wang, Deyou

    2017-02-01

    A Jeffcott rotor system with surface coatings capable of describing the mechanical vibration resulting from unbalance and rub-impact is formulated in this article. A contact force model proposed recently to describe the impact force between the disc and casing with coatings is employed to do the dynamic analysis for the rotor system with rubbing fault. Due to the variation of penetration, the contact force model is correspondingly modified. Meanwhile, the Coulomb friction model is applied to simulate the friction characteristics. Then, the case study of rub-impact with surface coatings is simulated by the Runge-Kutta method, in which a linear interpolation method is adopted to predict the rubbing instant. Moreover, the dynamic characteristics of the rotor system with surface coatings are analyzed in terms of bifurcation plot, waveform, whirl orbit, Poincaré map and spectrum plot. And the effects of the hardness of surface coatings on the response are investigated as well. Finally, compared with the classical models, the modified contact force model is shown to be more suitable to solve the rub-impact of aero-engine with surface coatings.

  13. Strength and dynamic characteristics analyses of wound composite axial impeller

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert

    2012-03-01

    A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.

  14. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  15. An analysis of the synoptic and dynamical characteristics of hurricane Sandy (2012)

    NASA Astrophysics Data System (ADS)

    Varlas, George; Papadopoulos, Anastasios; Katsafados, Petros

    2018-01-01

    Hurricane Sandy affected the Caribbean Islands and the Northeastern United States in October 2012 and caused 233 fatalities, severe rainfalls, floods, electricity blackouts, and 75 billion U.S. dollars in damages. In this study, the synoptic and dynamical characteristics that led to the formation of the hurricane are investigated. The system was driven by the interaction between the polar jet displacement and the subtropical jet stream. In particular, Sandy was initially formed as a tropical depression system over the Caribbean Sea and the unusually warm sea drove its intensification. The interaction between a rapidly approaching trough from the northwest and the stagnant ridge over the Atlantic Ocean drove Sandy to the northeast coast of United States. To better understand the dynamical characteristics and the mechanisms that triggered Sandy, a non-hydrostatic mesoscale model has been used. Model results indicate that the surface heat fluxes and the moisture advection enhanced the convective available potential energy, increased the low-level convective instability, and finally deepened the hurricane. Moreover, the upper air conditions triggered the low-level frontogenesis and increased the asymmetry of the system which finally affected its trajectory.

  16. Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.

    PubMed

    Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen

    2016-12-01

    In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Study on Nonlinear Vibration Analysis of Gear System with Random Parameters

    NASA Astrophysics Data System (ADS)

    Tong, Cao; Liu, Xiaoyuan; Fan, Li

    2018-03-01

    In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.

  18. Fundamentals of quantitative dynamic contrast-enhanced MR imaging.

    PubMed

    Paldino, Michael J; Barboriak, Daniel P

    2009-05-01

    Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.

  19. Low-speed Aerodynamic Investigations of a Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Gatlin, Gregory M.; Jenkins, Luther N.; Murphy, Patrick C.; Carter, Melissa B.

    2014-01-01

    Two low-speed static wind tunnel tests and a water tunnel static and dynamic forced-motion test have been conducted on a hybrid wing-body (HWB) twinjet configuration. These tests, in addition to computational fluid dynamics (CFD) analysis, have provided a comprehensive dataset of the low-speed aerodynamic characteristics of this nonproprietary configuration. In addition to force and moment measurements, the tests included surface pressures, flow visualization, and off-body particle image velocimetry measurements. This paper will summarize the results of these tests and highlight the data that is available for code comparison or additional analysis.

  20. Global dynamics and diffusion in triaxial galactic models

    NASA Astrophysics Data System (ADS)

    Papaphilippou, Y.

    We apply the Frequency Map Analysis method to the 3--dimensional logarithmic galactic potential in order to clarify the dynamical behaviour of triaxial power--law galactic models. All the fine dynamical details are displayed in the complete frequency map, a direct representation of the system's Arnol'd web. The influence of resonant lines and the extent of the chaotic zones are directly associated with the physical space of the system. Some new results related with the diffusion of galactic orbits are also discussed. This approach reveals many unknown dynamical features of triaxial galactic potentials and provides strong indications that chaos should be an innate characteristic of triaxial configurations.

  1. Li conduction pathways in solid-state electrolytes: Insights from dynamics and polarizability

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsukasa; Nagagiri, Koki; Iwadate, Yasuhiko; Utsuno, Futoshi; Yamaguchi, Hiroshi; Ohkubo, Takahiro

    2018-04-01

    We investigated the dynamical and polarizable properties of Li7P3S11, which is a fast Li-conducting material, by performing ab initio molecular dynamics simulations. A zone analysis based on Li migration highlighted the effective path along which Li diffuses in the crystal. The effective Li diffusion was analyzed in terms of the dynamics and polarizability of the sulfur surrounding the Li migration path. High flexibility and large anisotropic polarizability were the characteristics identified as necessary for the formation of an effective Li migration path. These findings provide principles for understanding Li conduction in solid-state electrolytes.

  2. Manifestations of Dynamical Localization in the Disordered XXZ Spin Chain

    NASA Astrophysics Data System (ADS)

    Elgart, Alexander; Klein, Abel; Stolz, Günter

    2018-04-01

    We study disordered XXZ spin chains in the Ising phase exhibiting droplet localization, a single cluster localization property we previously proved for random XXZ spin chains. It holds in an energy interval I near the bottom of the spectrum, known as the droplet spectrum. We establish dynamical manifestations of localization in the energy window I, including non-spreading of information, zero-velocity Lieb-Robinson bounds, and general dynamical clustering. Our results do not rely on knowledge of the dynamical characteristics of the model outside the droplet spectrum. A byproduct of our analysis is that for random XXZ spin chains this droplet localization can happen only inside the droplet spectrum.

  3. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  4. Bifilar analysis study, volume 1

    NASA Technical Reports Server (NTRS)

    Miao, W.; Mouzakis, T.

    1980-01-01

    A coupled rotor/bifilar/airframe analysis was developed and utilized to study the dynamic characteristics of the centrifugally tuned, rotor-hub-mounted, bifilar vibration absorber. The analysis contains the major components that impact the bifilar absorber performance, namely, an elastic rotor with hover aerodynamics, a flexible fuselage, and nonlinear individual degrees of freedom for each bifilar mass. Airspeed, rotor speed, bifilar mass and tuning variations are considered. The performance of the bifilar absorber is shown to be a function of its basic parameters: dynamic mass, damping and tuning, as well as the impedance of the rotor hub. The effect of the dissimilar responses of the individual bifilar masses which are caused by tolerance induced mass, damping and tuning variations is also examined.

  5. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  6. Stochastic Resonance and Safe Basin of Single-Walled Carbon Nanotubes with Strongly Nonlinear Stiffness under Random Magnetic Field.

    PubMed

    Xu, Jia; Li, Chao; Li, Yiran; Lim, Chee Wah; Zhu, Zhiwen

    2018-05-04

    In this paper, a kind of single-walled carbon nanotube nonlinear model is developed and the strongly nonlinear dynamic characteristics of such carbon nanotubes subjected to random magnetic field are studied. The nonlocal effect of the microstructure is considered based on Eringen’s differential constitutive model. The natural frequency of the strongly nonlinear dynamic system is obtained by the energy function method, the drift coefficient and the diffusion coefficient are verified. The stationary probability density function of the system dynamic response is given and the fractal boundary of the safe basin is provided. Theoretical analysis and numerical simulation show that stochastic resonance occurs when varying the random magnetic field intensity. The boundary of safe basin has fractal characteristics and the area of safe basin decreases when the intensity of the magnetic field permeability increases.

  7. The Finite Element Modelling and Dynamic Characteristics Analysis about One Kind of Armoured Vehicles’ Fuel Tanks

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Ge, Zhishang; Zhai, Weihao; Tan, Shiwang; Zhang, Feng

    2018-01-01

    The static and dynamic characteristics of fuel tank are studied for the armoured vehicle in this paper. The CATIA software is applied to build the CAD model of the armoured vehicles’ fuel tank, and the finite element model is established in ANSYS Workbench. The finite element method is carried out to analyze the static and dynamic mechanical properties of the fuel tank, and the first six orders of mode shapes and their frequencies are also computed and given in the paper, then the stress distribution diagram and the high stress areas are obtained. The results of the research provide some references to the fuel tanks’ design improvement, and give some guidance for the installation of the fuel tanks on armoured vehicles, and help to improve the properties and the service life of this kind of armoured vehicles’ fuel tanks.

  8. Complexity of EEG-signal in Time Domain - Possible Biomedical Application

    NASA Astrophysics Data System (ADS)

    Klonowski, Wlodzimierz; Olejarczyk, Elzbieta; Stepien, Robert

    2002-07-01

    Human brain is a highly complex nonlinear system. So it is not surprising that in analysis of EEG-signal, which represents overall activity of the brain, the methods of Nonlinear Dynamics (or Chaos Theory as it is commonly called) can be used. Even if the signal is not chaotic these methods are a motivating tool to explore changes in brain activity due to different functional activation states, e.g. different sleep stages, or to applied therapy, e.g. exposure to chemical agents (drugs) and physical factors (light, magnetic field). The methods supplied by Nonlinear Dynamics reveal signal characteristics that are not revealed by linear methods like FFT. Better understanding of principles that govern dynamics and complexity of EEG-signal can help to find `the signatures' of different physiological and pathological states of human brain, quantitative characteristics that may find applications in medical diagnostics.

  9. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns.

    PubMed

    Liu, Jin; Liao, Xuhong; Xia, Mingrui; He, Yong

    2018-02-01

    The human brain is a large, interacting dynamic network, and its architecture of coupling among brain regions varies across time (termed the "chronnectome"). However, very little is known about whether and how the dynamic properties of the chronnectome can characterize individual uniqueness, such as identifying individuals as a "fingerprint" of the brain. Here, we employed multiband resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 105) and a sliding time-window dynamic network analysis approach to systematically examine individual time-varying properties of the chronnectome. We revealed stable and remarkable individual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and variability), which was mainly distributed in three higher order cognitive systems (i.e., default mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimotor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could successfully identify individuals with high accuracy and could further significantly predict individual higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily contributed by the higher order cognitive systems. Together, our findings highlight that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease. © 2017 Wiley Periodicals, Inc.

  10. Numerical Analysis of the Dynamics of Nonlinear Solids and Structures

    DTIC Science & Technology

    2008-08-01

    to arrive to a new numerical scheme that exhibits rigorously the dissipative character of the so-called canonical free en - ergy characteristic of...UCLA), February 14 2006. 5. "Numerical Integration of the Nonlinear Dynamics of Elastoplastic Solids," keynote lecture , 3rd European Conference on...Computational Mechanics (ECCM 3), Lisbon, Portugal, June 5-9 2006. 6. "Energy-Momentum Schemes for Finite Strain Plasticity," keynote lecture , 7th

  11. Nike Black Brant V high altitude dynamic instability characteristics

    NASA Technical Reports Server (NTRS)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  12. Development and application of a technique for reducing airframe finite element models for dynamics analysis

    NASA Technical Reports Server (NTRS)

    Hashemi-Kia, Mostafa; Toossi, Mostafa

    1990-01-01

    A computational procedure for the reduction of large finite element models was developed. This procedure is used to obtain a significantly reduced model while retaining the essential global dynamic characteristics of the full-size model. This reduction procedure is applied to the airframe finite element model of AH-64A Attack Helicopter. The resulting reduced model is then validated by application to a vibration reduction study.

  13. FORUM: Dynamics and Causation of Environmental Equity, Locally Unwanted Land Uses, and Neighborhood Changes

    PubMed

    Liu

    1997-09-01

    / Why are some environmental risks distributed disproportionately in the neighborhoods of the minorities and the poor? A hypothesis was proposed in a recent study that market dynamics contributed to the current environmental inequity. That is, locally unwanted land uses (LULUs) make the host communities home to more poor people and people of color. This hypothesis was allegedly supported by a Houston case study, whereby its author analyzed the postsiting changes of the socioeconomic characteristics of the neighborhoods surrounding solid waste facilities. I argue that such an analysis of postsiting changes alone is insufficient to test the causation hypothesis. Instead, I propose a conceptual framework for analysis of environmental equity dynamics and causation. I suggest that the presiting neighborhood dynamics and the characteristics of control neighborhoods be analyzed as the first test for the causation hypothesis. Furthermore, I present theories of neighborhood change and then examine alternative hypotheses that these theories offer for explaining neighborhood changes and for the roles of LULUs in neighborhood changes. These alternative hypotheses should be examined when analyzing the relationship between LULUs and neighborhood changes in a metropolitan area. Using this framework of analysis, I revisited the Houston case. First, I found no evidence that provided support for the hypothesis that the presence of LULUs made the neighborhoods home to more blacks and poor people, contrary to the conclusion made by the previous study. Second, I examined alternative hypotheses for explaining neighborhood changes-invasion-succession, other push forces, and neighborhood life-cycle; the former two might offer better explanation.KEY WORDS: Environmental equity and justice; Locally unwanted lane uses; Siting; Market dynamics; Invasion-succession; Neighborhood changes

  14. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series

    NASA Technical Reports Server (NTRS)

    Vautard, R.; Ghil, M.

    1989-01-01

    Two dimensions of a dynamical system given by experimental time series are distinguished. Statistical dimension gives a theoretical upper bound for the minimal number of degrees of freedom required to describe the attractor up to the accuracy of the data, taking into account sampling and noise problems. The dynamical dimension is the intrinsic dimension of the attractor and does not depend on the quality of the data. Singular Spectrum Analysis (SSA) provides estimates of the statistical dimension. SSA also describes the main physical phenomena reflected by the data. It gives adaptive spectral filters associated with the dominant oscillations of the system and clarifies the noise characteristics of the data. SSA is applied to four paleoclimatic records. The principal climatic oscillations and the regime changes in their amplitude are detected. About 10 degrees of freedom are statistically significant in the data. Large noise and insufficient sample length do not allow reliable estimates of the dynamical dimension.

  15. Modes and emergent time scales of embayed beach dynamics

    NASA Astrophysics Data System (ADS)

    Ratliff, Katherine M.; Murray, A. Brad

    2014-10-01

    In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.

  16. Exploring the History of Time in an Integrated System: the Ramifications for Water

    NASA Astrophysics Data System (ADS)

    Green, M. B.; Adams, L. E.; Allen, T. L.; Arrigo, J. S.; Bain, D. J.; Bray, E. N.; Duncan, J. M.; Hermans, C. M.; Pastore, C.; Schlosser, C. A.; Vorosmarty, C. J.; Witherell, B. B.; Wollheim, W. M.; Wreschnig, A. J.

    2009-12-01

    Characteristic time scales are useful and simple descriptors of geophysical and socio-economic system dynamics. Focusing on the integrative nature of the hydrologic cycle, new insights into system couplings can be gained by compiling characteristic time scales of important processes driving these systems. There are many examples of changing characteristic time scales. Human life expectancy has increased over the recent history of medical advancement. The transport time of goods has decreased with the progression from horse to rail to car to plane. The transport time of information changed with the progression from letter to telegraph to telephone to networked computing. Soil residence time (pedogenesis to estuary deposition) has been influenced by changing agricultural technology, urbanization, and forest practices. Surface water residence times have varied as beaver dams have disappeared and been replaced with modern reservoirs, flood control works, and channelization. These dynamics raise the question of how these types of time scales interact with each other to form integrated Earth system dynamics? Here we explore the coupling of geophysical and socio-economic systems in the northeast United States over the 1600 to 2010 period by examining characteristic time scales. This visualization of many time scales serves as an exploratory analysis, producing new hypotheses about how the integrated system dynamics have evolved over the last 400 years. Specifically, exponential population growth and the evolving strategies to maintain that population appears as fundamental to many of the time scales.

  17. Dynamic Analysis and Test Results for an STC Stirling Generator

    NASA Astrophysics Data System (ADS)

    Qiu, Songgang; Peterson, Allen A.

    2004-02-01

    Long-life, high-efficiency generators based on free-piston Stirling machines are a future energy-conversion solution for both space and commercial applications. To aid in design and system integration efforts, Stirling Technology Company (STC) has developed dynamic simulation models for the internal moving subassemblies and for complete Stirling convertor assemblies. These dynamic models have been validated using test data from operating prototypes. Simplified versions of these models are presented to help explain the operating characteristics of the Stirling convertor. Power spectrum analysis is presented for the test data for casing acceleration, piston motion, displacer motion, and controller current/voltage during full power operation. The harmonics of a Stirling convertor and its moving components are identified for the STC zener-diode control scheme. The dynamic behavior of each moving component and its contribution to the system dynamics and resultant vibration forces are discussed. Additionally, the effects of a passive balancer and external suspension are predicted by another simplified system model.

  18. Nonlinear bivariate dependency of price-volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis

    NASA Astrophysics Data System (ADS)

    He, Ling-Yun; Chen, Shu-Peng

    2011-01-01

    Nonlinear dependency between characteristic financial and commodity market quantities (variables) is crucially important, especially between trading volume and market price. Studies on nonlinear dependency between price and volume can provide practical insights into market trading characteristics, as well as the theoretical understanding of market dynamics. Actually, nonlinear dependency and its underlying dynamical mechanisms between price and volume can help researchers and technical analysts in understanding the market dynamics by integrating the market variables, instead of investigating them in the current literature. Therefore, for investigating nonlinear dependency of price-volume relationships in agricultural commodity futures markets in China and the US, we perform a new statistical test to detect cross-correlations and apply a new methodology called Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), which is an efficient algorithm to analyze two spatially or temporally correlated time series. We discuss theoretically the relationship between the bivariate cross-correlation exponent and the generalized Hurst exponents for time series of respective variables. We also perform an empirical study and find that there exists a power-law cross-correlation between them, and that multifractal features are significant in all the analyzed agricultural commodity futures markets.

  19. Time-dependent inertia analysis of vehicle mechanisms

    NASA Astrophysics Data System (ADS)

    Salmon, James Lee

    Two methods for performing transient inertia analysis of vehicle hardware systems are developed in this dissertation. The analysis techniques can be used to predict the response of vehicle mechanism systems to the accelerations associated with vehicle impacts. General analytical methods for evaluating translational or rotational system dynamics are generated and evaluated for various system characteristics. The utility of the derived techniques are demonstrated by applying the generalized methods to two vehicle systems. Time dependent acceleration measured during a vehicle to vehicle impact are used as input to perform a dynamic analysis of an automobile liftgate latch and outside door handle. Generalized Lagrange equations for a non-conservative system are used to formulate a second order nonlinear differential equation defining the response of the components to the transient input. The differential equation is solved by employing the fourth order Runge-Kutta method. The events are then analyzed using commercially available two dimensional rigid body dynamic analysis software. The results of the two analytical techniques are compared to experimental data generated by high speed film analysis of tests of the two components performed on a high G acceleration sled at Ford Motor Company.

  20. Analysis of the dynamic avalanche of carrier stored trench bipolar transistor (CSTBT) during clamped inductive turn-off transient

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Fu, Guicui

    2017-03-01

    The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.

  1. Acoustic analysis of trill sounds.

    PubMed

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  2. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe

    NASA Astrophysics Data System (ADS)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde

    2017-08-01

    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  3. Numerical analysis of a microwave torch with axial gas injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru

    2013-07-15

    The characteristics of a microwave discharge in an argon jet injected axially into a coaxial channel with a shortened inner electrode are numerically analyzed using a self-consistent equilibrium gas-dynamic model. The specific features of the excitation and maintenance of the microwave discharge are determined, and the dependences of the discharge characteristics on the supplied electromagnetic power and gas flow rate are obtained. The calculated results are compared with experimental data.

  4. Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation.

    PubMed

    Giraud, Nicolas; Blackledge, Martin; Goldman, Maurice; Böckmann, Anja; Lesage, Anne; Penin, François; Emsley, Lyndon

    2005-12-28

    A detailed analysis of nitrogen-15 longitudinal relaxation times in microcrystalline proteins is presented. A theoretical model to quantitatively interpret relaxation times is developed in terms of motional amplitude and characteristic time scale. Different averaging schemes are examined in order to propose an analysis of relaxation curves that takes into account the specificity of MAS experiments. In particular, it is shown that magic angle spinning averages the relaxation rate experienced by a single spin over one rotor period, resulting in individual relaxation curves that are dependent on the orientation of their corresponding carousel with respect to the rotor axis. Powder averaging thus leads to a nonexponential behavior in the observed decay curves. We extract dynamic information from experimental decay curves, using a diffusion in a cone model. We apply this study to the analysis of spin-lattice relaxation rates of the microcrystalline protein Crh at two different fields and determine differential dynamic parameters for several residues in the protein.

  5. Review on the Modeling of Electrostatic MEMS

    PubMed Central

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  6. Oxygenation of the Root Zone and TCE Remediation: A Plant Model of Rhizosphere Dynamics

    DTIC Science & Technology

    2008-03-01

    Behavior Test .......................................................................................... 128 IV. Results and Analysis ...Circadian Rhythms and Diurnal Cycles. Just as humans have a rhythmic response to the environment, plants also have a periodic cycle governed by light...characteristics, fatty acid carbon lengths, G + C values, and 16S rRNA sequences. 16S RNA sequence analysis has identified eight genera of methanotrophs

  7. Reconfigurable and responsive droplet-based compound micro-lenses.

    PubMed

    Nagelberg, Sara; Zarzar, Lauren D; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M; Kolle, Mathias

    2017-03-07

    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.

  8. Reconfigurable and responsive droplet-based compound micro-lenses

    PubMed Central

    Nagelberg, Sara; Zarzar, Lauren D.; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A.; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M.; Kolle, Mathias

    2017-01-01

    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. PMID:28266505

  9. Analysis of a digital RF memory in a signal-delay application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinek, D.A.

    1992-03-01

    Laboratory simulation of the approach of a radar fuze towards a target is an important factor in our ability to accurately measure the radar`s performance. This simulation is achieved, in part, by dynamically delaying and attenuating the radar`s transmitted pulse and sending the result back to the radar`s receiver. Historically, the device used to perform the dynamic delay has been a limiting factor in the evaluation of a radar`s performance and characteristics. A new device has been proposed that appears to have more capability than previous dynamic delay devices. This device is the digital RF memory. This report presents themore » results of an analysis of a digital RF memory used in a signal-delay application. 2 refs.« less

  10. Dynamic test/analysis correlation using reduced analytical models

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Angelucci, A. Filippo; Javeed, Mehzad

    1992-01-01

    Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System (IRS) reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.

  11. Some Implications of Cognitive Theory for Instructional Design.

    ERIC Educational Resources Information Center

    Winn, William

    1990-01-01

    Examines some of the recent developments in cognitive theory and explores their implications for instructional design. Topics discussed include a shift from emphasis on behavioral theory to cognitive theory; task analysis; instructional objectives; learner characteristics; instructional strategies; metacognition; and the dynamic nature of…

  12. Emergent user behavior on Twitter modelled by a stochastic differential equation.

    PubMed

    Mollgaard, Anders; Mathiesen, Joachim

    2015-01-01

    Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise.

  13. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.

    Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

  14. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1992-09-01

    Since the occurrence of dynamic instabilities is not acceptable for any commercial maglev systems, it is important to consider the dynamic instability in the development of all maglev systems. This study is to consider the stability of maglev systems based on experimental data, scoping calculations and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on the guideway which consists of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev system.

  15. Emergent User Behavior on Twitter Modelled by a Stochastic Differential Equation

    PubMed Central

    Mollgaard, Anders; Mathiesen, Joachim

    2015-01-01

    Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise. PMID:25955783

  16. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

    DOE PAGES

    Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.; ...

    2017-09-13

    Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

  17. Guidelines for Computing Longitudinal Dynamic Stability Characteristics of a Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Thompson, Joseph R.; Frank, Neal T.; Murphy, Patrick C.

    2010-01-01

    A systematic study is presented to guide the selection of a numerical solution strategy for URANS computation of a subsonic transport configuration undergoing simulated forced oscillation about its pitch axis. Forced oscillation is central to the prevalent wind tunnel methodology for quantifying aircraft dynamic stability derivatives from force and moment coefficients, which is the ultimate goal for the computational simulations. Extensive computations are performed that lead in key insights of the critical numerical parameters affecting solution convergence. A preliminary linear harmonic analysis is included to demonstrate the potential of extracting dynamic stability derivatives from computational solutions.

  18. Exciton-polariton dynamics in a GaAs bulk microcavity

    NASA Astrophysics Data System (ADS)

    Ceccherini, S.; Gurioli, M.; Bogani, F.; Colocci, M.; Tredicucci, A.; Bassani, F.; Beltram, F.; Sorba, L.

    1998-01-01

    We present a full analysis of exciton dynamics in a GaAs λ/2 bulk microcavity following excitation by ultrafast laser pulses. Coherent dynamics was probed by means of an interferometric technique; beating and dephasing times were studied for various excitation intensities. At high incident power, population effects begin to show up reducing exciton oscillator strength and suppressing Rabi splitting. This feature produces marked non-linearities in the input-output characteristic of the optical functions, which were studied in view of reaching bistable operation. Theoretical calculations performed within the transfer-matrix framework show good agreement with experimental results.

  19. Investigation of mixed saliva by optoelectronic methods

    NASA Astrophysics Data System (ADS)

    Savchenko, Ekaterina; Nepomnyashchaya, Elina; Baranov, Maksim; Velichko, Elena; Aksenov, Evgenii; Bogomaz, Tatyana

    2018-04-01

    At present, saliva and its properties are being actively studied. Human saliva is a unique biological material that has potential in clinical practice. A detailed analysis of the characteristics and properties of saliva is relevant for diagnostic purposes. In this paper, the properties and characteristics of saliva are studied using optoelectronic methods: dynamic light scattering, electrophoretic light scattering and optical microscopy. Mixed saliva from a healthy patient and patient with diabetes mellitus type 2 was used as an object of the study. The dynamics of the behavior of a healthy and patient with diabetes mellitus type 2 is visible according to the results obtained. All three methods confirm hypothesis of structural changes in mixed saliva in the disease of diabetes mellitus type 2.

  20. Dynamic characteristic investigation on the fuel pressure of diesel engines electronic in-line pump system

    NASA Astrophysics Data System (ADS)

    Liu, You; Yuan, Zhi-Guo; Fan, Li-Yun; Tian, Bin-Qi

    2010-12-01

    The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.

  1. Complexity and Hopf Bifurcation Analysis on a Kind of Fractional-Order IS-LM Macroeconomic System

    NASA Astrophysics Data System (ADS)

    Ma, Junhai; Ren, Wenbo

    On the basis of our previous research, we deepen and complete a kind of macroeconomics IS-LM model with fractional-order calculus theory, which is a good reflection on the memory characteristics of economic variables, we also focus on the influence of the variables on the real system, and improve the analysis capabilities of the traditional economic models to suit the actual macroeconomic environment. The conditions of Hopf bifurcation in fractional-order system models are briefly demonstrated, and the fractional order when Hopf bifurcation occurs is calculated, showing the inherent complex dynamic characteristics of the system. With numerical simulation, bifurcation, strange attractor, limit cycle, waveform and other complex dynamic characteristics are given; and the order condition is obtained with respect to time. We find that the system order has an important influence on the running state of the system. The system has a periodic motion when the order meets the conditions of Hopf bifurcation; the fractional-order system gradually stabilizes with the change of the order and parameters while the corresponding integer-order system diverges. This study has certain significance to policy-making about macroeconomic regulation and control.

  2. Extended aeroelastic analysis for helicopter rotors with prescribed hub motion and blade appended penduluum vibration absorbers

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1984-01-01

    The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.

  3. Reversible elementary cellular automaton with rule number 150 and periodic boundary conditions over 𝔽p

    NASA Astrophysics Data System (ADS)

    Martín Del Rey, A.; Rodríguez Sánchez, G.

    2015-03-01

    The study of the reversibility of elementary cellular automata with rule number 150 over the finite state set 𝔽p and endowed with periodic boundary conditions is done. The dynamic of such discrete dynamical systems is characterized by means of characteristic circulant matrices, and their analysis allows us to state that the reversibility depends on the number of cells of the cellular space and to explicitly compute the corresponding inverse cellular automata.

  4. Research developing closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.

    1981-01-01

    Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.

  5. Two reference time scales for studying the dynamic cavitation of liquid films

    NASA Technical Reports Server (NTRS)

    Sun, D. C.; Brewe, David E.

    1991-01-01

    Two formulas, one for characteristic time of filling a void with a vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. Based on this analysis, it is seen that in an oil film bearing operating under dynamic loads, the content of cavitation region should be oil vapor rather than the air liberated from solution, if the oil is free of entrained air.

  6. Modelling and Testing of Blast Effect On the Structures

    NASA Astrophysics Data System (ADS)

    Figuli, Lucia; Jangl, Štefan; Papán, Daniel

    2016-10-01

    As a blasting agent in the blasting and mining engineering, has been using one of so called new generation of explosives which offer greater flexibility in their range and application, and such explosive is ANFO. It is type of explosive consists of an oxidiser and a fuel (ammonium nitrate and fuel oil). One of such ANFO explosives which are industrially made in Slovakia is POLONIT. The explosive is a mixture of ammonium nitrate, methyl esters of higher fatty acids, vegetable oil and red dye. The paper deals with the analysis of structure subjected to the blast load created by the explosion of POLONIT charge. First part of paper is describing behaviour and characteristic of blast wave generated from the blast (detonation characteristics, physical characteristics, time-history diagram etc.) and the second part presents the behaviour of such loaded structures, because of the analysis of such dynamical loaded structure is required knowing the parameters of blast wave, its effect on structure and the tools for the solution of dynamic analysis. The real field tests of three different weight of charges and two different structures were done. The explosive POLONIT was used together with 25 g of ignition explosive PLNp10. Analytical and numerical model of blast loaded structure is compared with the results obtained from the field tests (is compared with the corresponding experimental accelerations). For the modelling structures were approximated as a one-degree system of freedom (SDOF), where the blast wave was estimated with linear decay and exponential decay using positive and negative phase of blast wave. Numerical solution of the steel beam dynamic response was performed via FEM (Finite Element Method) using standard software Visual FEA.

  7. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    NASA Astrophysics Data System (ADS)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  8. Characterization of the Electric Double Layer Formation Dynamics of a Metal/Ionic Liquid/Metal Structure.

    PubMed

    Schmidt, Elliot; Shi, Sha; Ruden, P Paul; Frisbie, C Daniel

    2016-06-15

    Although ionic liquids (ILs) have been used extensively in recent years as a high-capacitance "dielectric" in electric double layer transistors, the dynamics of the double layer formation have remained relatively unexplored. Better understanding of the dynamics and relaxation processes involved in electric double layer formation will guide device optimization, particularly with regard to switching speed. In this paper, we explore the dynamical characteristics of an IL in a metal/ionic liquid/metal (M/IL/M) capacitor. In particular, we examine a Au/IL/Au structure where the IL is 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. The experiments consist of frequency-dependent impedance measurements and time-dependent current vs voltage measurements for applied linear voltage ramps and abrupt voltage steps. The parameters of an equivalent circuit model are determined by fits to the impedance vs frequency data and subsequently verified by calculating the current vs voltage characteristics for the applied potential profiles. The data analysis indicates that the dynamics of the structure are characterized by a wide distribution of relaxation times spanning the range of less than microseconds to longer than seconds. Possible causes for these time scales are discussed.

  9. Lane-changing model with dynamic consideration of driver's propensity

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyuan; Wang, Jianqiang; Zhang, Jinglei; Ban, Xuegang Jeff

    2015-07-01

    Lane-changing is the driver's selection result of the satisfaction degree in different lane driving conditions. There are many different factors influencing lane-changing behavior, such as diversity, randomicity and difficulty of measurement. So it is hard to accurately reflect the uncertainty of drivers' lane-changing behavior. As a result, the research of lane-changing models is behind that of car-following models. Driver's propensity is her/his emotion state or the corresponding preference of a decision or action toward the real objective traffic situations under the influence of various dynamic factors. It represents the psychological characteristics of the driver in the process of vehicle operation and movement. It is an important factor to influence lane-changing. In this paper, dynamic recognition of driver's propensity is considered during simulation based on its time-varying discipline and the analysis of the driver's psycho-physic characteristics. The Analytic Hierarchy Process (AHP) method is used to quantify the hierarchy of driver's dynamic lane-changing decision-making process, especially the influence of the propensity. The model is validated using real data. Test results show that the developed lane-changing model with the dynamic consideration of a driver's time-varying propensity and the AHP method are feasible and with improved accuracy.

  10. Dynamic characteristics of motor-gear system under load saltations and voltage transients

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-02-01

    In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.

  11. Sun glitter imaging analysis of submarine sand waves in HJ-1A/B satellite CCD images

    NASA Astrophysics Data System (ADS)

    Zhang, Huaguo; He, Xiekai; Yang, Kang; Fu, Bin; Guan, Weibing

    2014-11-01

    Submarine sand waves are a widespread bed-form in tidal environment. Submarine sand waves induce current convergence and divergence that affect sea surface roughness thus become visible in sun glitter images. These sun glitter images have been employed for mapping sand wave topography. However, there are lots of effect factors in sun glitter imaging of the submarine sand waves, such as the imaging geometry and dynamic environment condition. In this paper, several sun glitter images from HJ-1A/B in the Taiwan Banks are selected. These satellite sun glitter images are used to discuss sun glitter imaging characteristics in different sensor parameters and dynamic environment condition. To interpret the imaging characteristics, calculating the sun glitter radiance and analyzing its spatial characteristics of the sand wave in different images is the best way. In this study, a simulated model based on sun glitter radiation transmission is adopted to certify the imaging analysis in further. Some results are drawn based on the study. Firstly, the sun glitter radiation is mainly determined by sensor view angle. Second, the current is another key factor for the sun glitter. The opposite current direction will cause exchanging of bright stripes and dark stripes. Third, brightness reversal would happen at the critical angle. Therefore, when using sun glitter image to obtain depth inversion, one is advised to take advantage of image properties of sand waves and to pay attention to key dynamic environment condition and brightness reversal.

  12. ULF waves: the main periodicities and their relationships with solar wind structures and magnetospheric electron flux

    NASA Astrophysics Data System (ADS)

    Piersanti, M.; Alberti, T.; Lepreti, F.; Vecchio, A.; Villante, U.; Carbone, V.; Waters, C. L.

    2015-12-01

    We use high latitude ULF wave power in the range 2-7 mHz (Pc5 geomagnetic micropulsations), solar wind speed and dynamic pressure, and relativistic magnetospheric electron flux (E > 0.6 MeV), in the period January - September 2008, in order to detect typical periodicities and physical mechanisms involved into the solar wind-magnetosphere coupling during the declining phase of the 23th solar cycle. Using the Empirical Mode Decomposition (EMD) and applying a statistical test and cross-correlation analysis,we investigate the timescales and the physical mechanisms involved into the solar wind-magnetosphere coupling.Summarizing, we obtain the following results:1. We note the existence of two different timescales into the four datasets which are related to the short-term dynamics, with a characteristic timescale τ<3 days, and to the longer timescale dynamics, with a timescale between 7 and 80 days. The short-term variations could be related to the fluctuations around a characteristic mean value, while longer timescales dynamics can be associated with solar rotational periodicity and mechanisms regarding the occurrence of high-speed streams and corotating interaction regions but also with stream-stream interactions and synodic solar rotation.2. The cross-correlation analysis highlights the relevant role of the dynamical coupling between solar wind and magnetosphere via pressure balance and direct transfer of compressional waves into the magnetosphere. Moreover, it shows that the Kelvin-Helmholtz instability is not the primary source of geomagnetic ultra-low frequency wave activity. These results are in agreement with previous works [Engebretson et al, 1998].3. The cross-correlation coefficient between Pc5 wave power and relativistic electron flux longscale reconstructions shows that Pc5 wave activity leads enhancements in magnetospheric electron flux to relativistic energy with a characteristic time delay of about 54 hours, which is in agreement with the lag of about 2 days found by [Mann et al., 2004].

  13. Dynamic Crushing Response of Closed-cell Aluminium Foam at Variable Strain Rates

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Kader, M. A.; Escobedo, J. P.; Hazell, P. J.; Appleby-Thomas, G. J.; Quadir, M. Z.

    2015-06-01

    The impact response of aluminium foams is essential for assessing their crashworthiness and energy absorption capacity for potential applications. The dynamic compactions of closed-cell aluminium foams (CYMAT) have been tested at variable strain rates. Microstructural characterization has also been carried out. The low strain rate impact test has been carried out using drop weight experiments while the high strain compaction test has been carried out via plate impact experiments. The post impacted samples have been examined using optical and electron microscopy to observe the microstructural changes during dynamic loading. This combination of dynamic deformation during impact and post impact microstructural analysis helped to evaluate the pore collapse mechanism and impact energy absorption characteristics.

  14. Interaction between Liénard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed bandpass feedback.

    PubMed

    Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime

    2016-12-01

    We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.

  15. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries.

    PubMed

    Canstein, C; Cachot, P; Faust, A; Stalder, A F; Bock, J; Frydrychowicz, A; Küffer, J; Hennig, J; Markl, M

    2008-03-01

    The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used to transform aortic geometries as measured by contrast-enhanced MR angiography into realistic vascular models with large anatomical coverage. Integration into a flow circuit with patient-specific pulsatile in-flow conditions and application of flow-sensitive 4D MRI permitted detailed analysis of local and global 3D flow dynamics in a realistic vascular geometry. Visualization of characteristic 3D flow patterns and quantitative comparisons of the in vitro experiments with in vivo data and CFD simulations in identical vascular geometries were performed to evaluate the accuracy of vascular model systems. The results indicate the potential of such patient-specific model systems for detailed experimental simulation of realistic vascular hemodynamics. Further studies are warranted to examine the influence of refined boundary conditions of the human circulatory system such as fluid-wall interaction and their effect on normal and pathological blood flow characteristics associated with vascular geometry. (c) 2008 Wiley-Liss, Inc.

  16. Dynamic characterization of HLA-B*44 Alleles: A comparative molecular dynamics simulation study.

    PubMed

    Ozbek, Pemra

    2016-06-01

    Human Leukocyte Antigens (HLA) are highly polymorphic proteins that play a key role in the immune system. HLA molecule is present on the cell membrane of antigen-presenting cells of the immune system and presents short peptides, originating from the proteins of invading pathogens or self-proteins, to the T-cell Receptor (TCR) molecule of the T-cells. In this study, peptide-binding characteristics of HLA-B*44:02, 44:03, 44:05 alleles bound to three nonameric peptides were studied using molecular dynamics simulations. Polymorphisms among these alleles (Asp116Tyr and Asp156Leu) result in major differences in the allele characteristics. While HLA-B*44:02 (Asp116, Asp156) and HLA-B*44:03 (Asp116, Leu156) depend on tapasin for efficient peptide loading, HLA-B*44:05 (Tyr116, Asp156) is tapasin independent. On the other hand, HLA-B*44:02 and HLA-B*44:03 mismatch is closely related to transplant rejection and acute-graft-versus-host disease. In order to understand the dynamic characteristics, the simulation trajectories were analyzed by applying Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) calculations and hydrogen bonding analysis. Binding dynamics of the three HLA-B*44 alleles and peptide sequences are comparatively discussed. In general, peptide binding stability is found to depend on the peptide rather than the allele type for HLA-B*44 alleles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  18. Small expendable deployer system measurement analysis

    NASA Technical Reports Server (NTRS)

    Carrington, Connie K.

    1988-01-01

    The first on-orbit experiment of the Small Expendable Deployer System (SEDS) for tethered satellites will collect telemetry data for tether length, rate of deployment, and tether tension. The post-flight analysis will use this data to reconstruct the deployment history and determine dynamic characteristics such as tether shape and payload position. Linearized observability analysis has determined that these measurements are adequate to define states for a two-mass tether model, and two state estimators were written.

  19. Individual-Environment Interactions in Swimming: The Smallest Unit for Analysing the Emergence of Coordination Dynamics in Performance?

    PubMed

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic

    2017-08-01

    Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.

  20. Unbalance response of a two spool gas turbine engine with squeeze film bearings

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Barrett, L. E.; Li, D. F.

    1981-01-01

    This paper presents a dynamic analysis of a two-spool gas turbine helicopter engine incorporating intershaft rolling element bearings between the gas generator and power turbine rotors. The analysis includes the nonlinear effects of a squeeze film bearing incorporated on the gas generator rotor. The analysis includes critical speeds and forced response of the system and indicates that substantial dynamic loads may be imposed on the intershaft bearings and main bearing supports with an improperly designed squeeze film bearing. A comparison of theoretical and experimental gas generator rotor response is presented illustrating the nonlinear characteristics of the squeeze film bearing. It was found that large intershaft bearing forces may occur even though the engine is not operating at a resonant condition.

  1. Fractal Dynamics of Heartbeat Interval Fluctuations in Health and Disease

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Marconi, C.; Rahmel, A.; Grassi, B.; Ferretti, G.; Skinner, J. E.; Cerretelli, P.

    The dynamics of heartbeat interval time series were studied by a modified random walk analysis recently introduced as Detrended Fluctuation Analysis. In this analysis, the intrinsic fractal long-range power-law correlation properties of beat-to-beat fluctuations generated by the dynamical system (i.e. cardiac rhythm generator), after decomposition from extrinsic uncorrelated sources, can be quantified by the scaling exponent which, in healthy subjects, is about 1.0. The finding of a scaling coefficient of 1.0, indicating scale-invariant long-range power-law correlations (1/ƒnoise) of heartbeat fluctuations, would reflect a genuinely self-similar fractal process that typically generates fluctuations on a wide range of time scales. Lack of a characteristic time scale suggests that the neuroautonomic system underlying the control of heart rate dynamics helps prevent excessive mode-locking (error tolerance) that would restrict its functional responsiveness (plasticity) to environmental stimuli. The 1/ƒ dynamics of heartbeat interval fluctuations are unaffected by exposure to chronic hypoxia suggesting that the neuroautonomic cardiac control system is preadapted to hypoxia. Functional (hypothermia, cardiac disease) and/or structural (cardiac transplantation, early cardiac development) inactivation of neuroautonomic control is associated with the breakdown or absence of fractal complexity reflected by anticorrelated random walk-like dynamics, indicating that in these conditions the heart is unadapted to its environment.

  2. Spontaneous imbibition in fractal tortuous micro-nano pores considering dynamic contact angle and slip effect: phase portrait analysis and analytical solutions.

    PubMed

    Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Zhang, Yanjun; Liu, Tao

    2018-03-02

    Shales have abundant micro-nano pores. Meanwhile, a considerable amount of fracturing liquid is imbibed spontaneously in the hydraulic fracturing process. The spontaneous imbibition in tortuous micro-nano pores is special to shale, and dynamic contact angle and slippage are two important characteristics. In this work, we mainly investigate spontaneous imbibition considering dynamic contact angle and slip effect in fractal tortuous capillaries. We introduce phase portrait analysis to analyse the dynamic state and stability of imbibition. Moreover, analytical solutions to the imbibition equation are derived under special situations, and the solutions are verified by published data. Finally, we discuss the influences of slip length, dynamic contact angle and gravity on spontaneous imbibition. The analysis shows that phase portrait is an ideal tool for analysing spontaneous imbibition because it can evaluate the process without solving the complex governing ordinary differential equations. Moreover, dynamic contact angle and slip effect play an important role in fluid imbibition in fractal tortuous capillaries. Neglecting slip effect in micro-nano pores apparently underestimates imbibition capability, and ignoring variations in contact angle causes inaccuracy in predicting imbibition speed at the initial stage of the process. Finally, gravity is one of the factors that control the stabilisation of the imbibition process.

  3. DYNAMIC TUNING OF INSECT AND BIRD WINGS AND COPEPOD AND DAPHNIA APPENDAGES

    EPA Science Inventory

    Compressible flow theory suggests, and dimensional analysis and growing empirical evidence confirm that, to aid flight, many insects and even some birds, notably hummingbirds, tune their wing-beat frequency to a corresponding characteristic harmonic frequency of air. The same pro...

  4. Fractal scaling analysis of groundwater dynamics in confined aquifers

    NASA Astrophysics Data System (ADS)

    Tu, Tongbi; Ercan, Ali; Kavvas, M. Levent

    2017-10-01

    Groundwater closely interacts with surface water and even climate systems in most hydroclimatic settings. Fractal scaling analysis of groundwater dynamics is of significance in modeling hydrological processes by considering potential temporal long-range dependence and scaling crossovers in the groundwater level fluctuations. In this study, it is demonstrated that the groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior. Detrended fluctuation analysis (DFA) was utilized to quantify the monofractality, and multifractal detrended fluctuation analysis (MF-DFA) and multiscale multifractal analysis (MMA) were employed to examine the multifractal behavior. The DFA results indicated that fractals exist in groundwater level time series, and it was shown that the estimated Hurst exponent is closely dependent on the length and specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist, which may be partially due to a broad probability density distribution with infinite moments. Furthermore, it is demonstrated that the underlying distribution of groundwater level fluctuations exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics depending on the site characteristics. However, fractional Brownian motion (fBm), which has been identified as an appropriate model to characterize groundwater level fluctuation, is Gaussian with finite moments. Therefore, fBm may be inadequate for the description of physical processes with infinite moments, such as the groundwater level fluctuations in this study. It is concluded that there is a need for generalized governing equations of groundwater flow processes that can model both the long-memory behavior and the Brownian finite-memory behavior.

  5. Nanoparticle Tracking Analysis for Determination of Hydrodynamic Diameter, Concentration, and Zeta-Potential of Polyplex Nanoparticles.

    PubMed

    Wilson, David R; Green, Jordan J

    2017-01-01

    Nanoparticle tracking analysis (NTA) is a recently developed nanoparticle characterization technique that offers certain advantages over dynamic light scattering for characterizing polyplex nanoparticles in particular. Dynamic light scattering results in intensity-weighted average measurements of nanoparticle characteristics. In contrast, NTA directly tracks individual particles, enabling concentration measurements as well as the direct determination of number-weighted particle size and zeta-potential. A direct number-weighted assessment of nanoparticle characteristics is particularly useful for polydisperse samples of particles, including many varieties of gene delivery particles that can be prone to aggregation. Here, we describe the synthesis of poly(beta-amino ester)/deoxyribonucleic acid (PBAE/DNA) polyplex nanoparticles and their characterization using NTA to determine hydrodynamic diameter, zeta-potential, and concentration. Additionally, we detail methods of labeling nucleic acids with fluorophores to assess only those polyplex nanoparticles containing plasmids via NTA. Polymeric gene delivery of exogenous plasmid DNA has great potential for treating a wide variety of diseases by inducing cells to express a gene of interest.

  6. Implementation of a Trailing-Edge Flap Analysis Model in the NASA Langley CAMRAD.MOD1/Hires Program

    NASA Technical Reports Server (NTRS)

    Charles, Bruce

    1999-01-01

    Continual advances in rotorcraft performance, vibration and acoustic characteristics are being sought by rotary-wing vehicle manufacturers to improve efficiency, handling qualities and community noise acceptance of their products. The rotor system aerodynamic and dynamic behavior are among the key factors which must be addressed to meet the desired goals. Rotor aerodynamicists study how airload redistribution impacts performance and noise, and seek ways to achieve better airload distribution through changes in local aerodynamic response characteristics. One method currently receiving attention is the use of trailing-edge flaps mounted on the rotor blades to provide direct control of a portion of the spanwise lift characteristics. The following work describes the incorporation of a trailing-edge flap model in the CAMRAD.Mod1/FHUS comprehensive rotorcraft analysis code. The CAM-RAD.Mod1/HIRES analysis consists of three separate executable codes. These include the comprehensive trim analysis, CAMRAD.Mod1, the Indicial Post-Processor, IPP, for high resolution airloads, and AIRFOIL, which produces the rotor airfoil tables from input airfoil section characteristics. The modifications made to these components permitting analysis of flapped rotor configurations are documented herein along with user instructions detailing the new input variables and operational notes.

  7. Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs).

    PubMed

    Can, Hatice Kaplan; Kavlak, Serap; ParviziKhosroshahi, Shahed; Güner, Ali

    2018-03-01

    Dextran-coated iron oxide nanoparticles (DIONPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging (MRI) contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. This paper reports the experimental detail for preparation, characterization and investigation of thermal and dynamical mechanical characteristics of the dextran-coated Fe 3 O 4 magnetic nanoparticles. In our work, DIONPs were prepared in a 1:2 ratio of Fe(II) and Fe(III) salt in the HCl solution with NaOH at given temperature. The obtained dextran-coated iron-oxide nanoparticles structure-property correlation was characterized by spectroscopic methods; attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and XRD. Coating dextran on the iron-oxide proof of important peaks can be seen from the ATR-FTIR. Dramatic crystallinity increment can be observed from the XRD pattern of the iron-oxide dextran nanoparticles. The thermal analysis was examined by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Dynamical mechanical properties of dextran nanoparticles were analysed by dynamic mechanical analysis (DMA). Thermal stability of the iron oxide dextran nanoparticles is higher than that of the dextran.

  8. Dynamic response analysis of surrounding rock under the continuous blasting seismic wave

    NASA Astrophysics Data System (ADS)

    Gao, P. F.; Zong, Q.; Xu, Y.; Fu, J.

    2017-10-01

    The blasting vibration that is caused by blasting excavation will generate a certain degree of negative effect on the stability of surrounding rock in underground engineering. A dynamic response analysis of surrounding rock under the continuous blasting seismic wave is carried out to optimize blasting parameters and guide underground engineering construction. Based on the theory of wavelet analysis, the reconstructed signals of each layer of different frequency bands are obtained by db8 wavelet decomposition. The difference of dynamic response of the continuous blasting seismic wave at a certain point caused by different blasting sources is discussed. The signal in the frequency band of natural frequency of the surrounding rock shows a certain degree of amplification effect deduced from the dynamic response characteristics of the surrounding rock under the influence of continuous blasting seismic wave. Continuous blasting operations in a fixed space will lead to the change of internal structure of the surrounding rock. It may result in the decline of natural frequency of the whole surrounding rock and it is also harmful for the stability of the surrounding rock.

  9. Analysis of vibration characteristics of opening device for deepwater robot cabin door and study of its structural optimization design

    NASA Astrophysics Data System (ADS)

    Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations of key structure locations.

  10. Neuromorphic Implementation of Attractor Dynamics in a Two-Variable Winner-Take-All Circuit with NMDARs: A Simulation Study

    PubMed Central

    You, Hongzhi; Wang, Da-Hui

    2017-01-01

    Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory and hysteresis in visual perceptions. The method proposed is a dynamical system approach of circuit synthesis based on a biophysically plausible WTA model. Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses was generated. Circuit simulations in Cadence reproduced ramping neural activities observed in electrophysiological recordings in experiments of decision-making, the sustained activities observed in the prefrontal cortex during working memory, and classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical analysis of the dynamical system approach illuminated the underlying mechanisms of decision-making, memory capacity and hysteresis loops. The consistence between the circuit simulations and theoretical analysis demonstrated that the WTA circuit with NMDARs was able to capture the attractor dynamics underlying these cognitive functions. Their physical implementations as elementary modules are promising for assembly into integrated neuromorphic cognitive systems. PMID:28223913

  11. Neuromorphic Implementation of Attractor Dynamics in a Two-Variable Winner-Take-All Circuit with NMDARs: A Simulation Study.

    PubMed

    You, Hongzhi; Wang, Da-Hui

    2017-01-01

    Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory and hysteresis in visual perceptions. The method proposed is a dynamical system approach of circuit synthesis based on a biophysically plausible WTA model. Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses was generated. Circuit simulations in Cadence reproduced ramping neural activities observed in electrophysiological recordings in experiments of decision-making, the sustained activities observed in the prefrontal cortex during working memory, and classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical analysis of the dynamical system approach illuminated the underlying mechanisms of decision-making, memory capacity and hysteresis loops. The consistence between the circuit simulations and theoretical analysis demonstrated that the WTA circuit with NMDARs was able to capture the attractor dynamics underlying these cognitive functions. Their physical implementations as elementary modules are promising for assembly into integrated neuromorphic cognitive systems.

  12. A Study on Seismic Hazard Evaluation at the Nagaoka CO2 Storage Site, Japan

    NASA Astrophysics Data System (ADS)

    Horikawa, S.

    2015-12-01

    RITE carried out the first Japanese pilot-scale CO2 sequestration project from July, 2003 to January, 2005 in Nagaoka City.Supercritical CO2 was injected into an onshore saline aquifer at a depth of 1,100m. CO2 was injected at a rate of 10,400 tonnes. 'Mid Niigata Prefecture Earthquake in 2004' (Mw6.6) and 'The Niigataken Chuetsu-oki Earthquake in 2007' (Mw6.6) occurred during the CO2 injection-test and after the completion of injection-test. Japan is one of the world's major countries with frequent earthquakes.This paper presents a result of seismic response analysis, and reports of seismic hazard evaluation of a reservoir and a caprock. In advance of dynamic response analysis, the earthquake motion recorded on the earth surface assumed the horizontally layer model, and set up the input wave from a basement layer by SHAKE ( = One-Dimensional Seismic Response Analysis). This wave was inputted into the analysis model and the equation of motion was solved using the direct integral calculus by Newmark Beta Method. In Seismic Response Analysis, authors have used Multiple Yield Model (MYM, Iwata, et al., 2013), which can respond also to complicated geological structure. The intensity deformation property of the foundation added the offloading characteristic to the composition rule of Duncan-Chang model in consideration of confining stress dependency, and used for and carried out the nonlinear repetition model. And the deformation characteristic which made it depend on confining stress with the cyclic loadings and un-loadings, and combined Mohr-Coulomb's law as a strength characteristic.The maximum dynamic shearing strain of caprock was generated about 1.1E-04 after the end of an earthquake. Although the dynamic safety factor was 1.925 on the beginning, after the end of an earthquake fell 0.05 point. The dynamic safety factor of reservoir fell to 1.20 from 1.29. As a result of CO2 migration monitoring by the seismic cross-hole tomography, CO2 has stopped in the reservoir through two earthquakes till the present after injection, and the leak is not accepted till the present. By the result of seismic response simulation, it turned out that the stability of the foundation is not spoiled after the earthquake.

  13. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  14. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out

    NASA Astrophysics Data System (ADS)

    Yu, Pingchao; Zhang, Dayi; Ma, Yanhong; Hong, Jie

    2018-06-01

    Fan Blade Out (FBO) from a running rotor of the turbofan engine will not only introduce the sudden unbalance and inertia asymmetry into the rotor, but also apply large impact load and induce rotor-to-stator rubbing on the rotor, which makes the mass, gyroscopic and stiffness matrixes of the dynamic equation become time-varying and highly nonlinear, consequently leads to the system's complicated vibration. The dynamic analysis of the aero-engine rotor system is one essential requirement of the authorities and is vital to the aero-engine's safety. The paper aims at studying the dynamic responses of the complicated dual-rotor systems at instantaneous and windmilling statuses when FBO event occurs. The physical process and mechanical characteristics of the FBO event are described qualitatively, based on which the dynamic modeling for an aero-engine dual-rotor system is carried out considering several excitations caused by FBO. Meanwhile the transient response during the instantaneous status and steady-state response at the windmilling status are obtained. The results reveal that the sudden unbalance can induce impact load to the rotor, and lead to the sharp increase of the vibration amplitude and reaction force. The rub-impact will apply constraint effects on the rotor and restrict the transient vibration amplitude, while the inertia asymmetry has little influence on the transient response. When the rotor with huge unbalance operates at windmilling status, the rub-impact turns to be the main factor determining the rotor's dynamic behavior, and several potential motion states, such as instable dry whip, intermittent rubbing and synchronous full annular rubbing would happen on certain conditions.

  15. Comparison of four specific dynamic office chairs with a conventional office chair: impact upon muscle activation, physical activity and posture.

    PubMed

    Ellegast, Rolf P; Kraft, Kathrin; Groenesteijn, Liesbeth; Krause, Frank; Berger, Helmut; Vink, Peter

    2012-03-01

    Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore physical activity. The aim of the present study was to evaluate the effects of four specific dynamic chairs on erector spinae and trapezius EMG, postures/joint angles and physical activity intensity (PAI) compared to those of a conventional standard office chair. All chairs were fitted with sensors for measurement of the chair parameters (backrest inclination, forward and sideward seat pan inclination), and tested in the laboratory by 10 subjects performing 7 standardized office tasks and by another 12 subjects in the field during their normal office work. Muscle activation revealed no significant differences between the specific dynamic chairs and the reference chair. Analysis of postures/joint angles and PAI revealed only a few differences between the chairs, whereas the tasks performed strongly affected the measured muscle activation, postures and kinematics. The characteristic dynamic elements of each specific chair yielded significant differences in the measured chair parameters, but these characteristics did not appear to affect the sitting dynamics of the subjects performing their office tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Dynamic Evolution Model Based on Social Network Services

    NASA Astrophysics Data System (ADS)

    Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen

    2013-11-01

    Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.

  17. The "Chaos Theory" and nonlinear dynamics in heart rate variability analysis: does it work in short-time series in patients with coronary heart disease?

    PubMed

    Krstacic, Goran; Krstacic, Antonija; Smalcelj, Anton; Milicic, Davor; Jembrek-Gostovic, Mirjana

    2007-04-01

    Dynamic analysis techniques may quantify abnormalities in heart rate variability (HRV) based on nonlinear and fractal analysis (chaos theory). The article emphasizes clinical and prognostic significance of dynamic changes in short-time series applied on patients with coronary heart disease (CHD) during the exercise electrocardiograph (ECG) test. The subjects were included in the series after complete cardiovascular diagnostic data. Series of R-R and ST-T intervals were obtained from exercise ECG data after sampling digitally. The range rescaled analysis method determined the fractal dimension of the intervals. To quantify fractal long-range correlation's properties of heart rate variability, the detrended fluctuation analysis technique was used. Approximate entropy (ApEn) was applied to quantify the regularity and complexity of time series, as well as unpredictability of fluctuations in time series. It was found that the short-term fractal scaling exponent (alpha(1)) is significantly lower in patients with CHD (0.93 +/- 0.07 vs 1.09 +/- 0.04; P < 0.001). The patients with CHD had higher fractal dimension in each exercise test program separately, as well as in exercise program at all. ApEn was significant lower in CHD group in both RR and ST-T ECG intervals (P < 0.001). The nonlinear dynamic methods could have clinical and prognostic applicability also in short-time ECG series. Dynamic analysis based on chaos theory during the exercise ECG test point out the multifractal time series in CHD patients who loss normal fractal characteristics and regularity in HRV. Nonlinear analysis technique may complement traditional ECG analysis.

  18. Flutter Analysis of a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Bakhle, M. A.; Keith, T. G., Jr.; Stefko, G. L.

    2002-01-01

    This paper describes the calculation of flutter stability characteristics for a transonic forward swept fan configuration using a viscous aeroelastic analysis program. Unsteady Navier-Stokes equations are solved on a dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics using the energy exchange method. The non-zero inter-blade phase angle is modeled using phase-lagged boundary conditions. Results obtained show good correlation with measurements. It is found that the location of shock and variation of shock strength strongly influenced stability. Also, outboard stations primarily contributed to stability characteristics. Results demonstrate that changes in blade shape impact the calculated aerodynamic damping, indicating importance of using accurate blade operating shape under centrifugal and steady aerodynamic loading for flutter prediction. It was found that the calculated aerodynamic damping was relatively insensitive to variation in natural frequency.

  19. Comparison of atomization characteristics of drop-in and conventional jet fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; Micro Scale Thermo-Fluids Lab Team

    2016-11-01

    Surge in energy demand and stringent emission norms have been driving the interest on alternative drop-in fuels in aviation industry. The gas-to-liquid (GTL), synthetic paraffinic kerosene fuel derived from natural gas, has drawn significant attention as drop-in fuel due to its cleaner combustion characteristics when compared to other alternative fuels derived from various feedstocks. The fuel specifications such as chemical and physical properties of drop-in fuels are different from those of the conventional jet fuels, which can affect their atomization characteristics and in turn the combustion performance. The near nozzle liquid sheet dynamics of the drop-in fuel, GTL, is studied at different nozzle operating conditions and compared with that of the conventional Jet A-1 fuel. The statistical analysis of the near nozzle sheet dynamics shows that the drop-in fuel atomization characteristics are comparable to those of the conventional fuel. Furthermore, the microscopic spray characteristics measured using phase Doppler anemometry at downstream locations are slightly different between the fuels. Authors acknowledge the support by National Priorities Research Program (NPRP) of Qatar National Research Fund through the Grant NPRP-7-1449-2-523.

  20. Aerodynamic analysis of Pegasus - Computations vs reality

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan

    1993-01-01

    Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.

  1. Restrictive Factors and Output Forecast of Green Development of Agricultural Industry Based on Gray System

    NASA Astrophysics Data System (ADS)

    Sun, Fengru

    2018-01-01

    This paper analyzes the characteristics of agricultural products from the perspective of agricultural production, farmers’ income, adjustment of agricultural structure and environmental improvement, and analyzes the characteristics of agricultural products in LanZhou area. Through data mining and empirical analysis, the regional agriculture (1) forecasting model of gray system with dynamic data processing, combined with the output data of lily in 2004-2003, the yield prediction is predicted and the fitting state is good and the error is small. Finally, combined with the relevant characteristics of the local characteristics of the agricultural industry to make reference, by changing the characteristics of agricultural production as the center of the mindset, and agricultural industrialization and organic combination, take the characteristics of efficient industrialization of agricultural products.

  2. Interaction Dynamics Between a Flexible Rotor and an Auxiliary Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Lawen, James L., Jr.; Flowers, George T.

    1996-01-01

    This study investigates the application of synchronous interaction dynamics methodology to the design of auxiliary bearing systems. The technique is applied to a flexible rotor system and comparisons are made between the behavior predicted by this analysis method and the observed simulation response characteristics. Of particular interest is the influence of coupled shaft/bearing vibration modes on rotordynamical behavior. Experimental studies are also perFormed to validate the simulation results and provide insight into the expected behavior of such a system.

  3. A Flight Prediction for Performance of the SWAS Solar Array Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Seniderman, Gary; Daniel, Walter K.

    1999-01-01

    The focus of this paper is a comparison of ground-based solar array deployment tests with the on-orbit deployment. The discussion includes a summary of the mechanisms involved and the correlation of a dynamics model with ground based test results. Some of the unique characteristics of the mechanisms are explained through the analysis of force and angle data acquired from the test deployments. The correlated dynamics model is then used to predict the performance of the system in its flight application.

  4. Changes in frontal plane dynamics and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis application of a multidimensional analysis technique.

    PubMed

    Astephen, J L; Deluzio, K J

    2005-02-01

    Osteoarthritis of the knee is related to many correlated mechanical factors that can be measured with gait analysis. Gait analysis results in large data sets. The analysis of these data is difficult due to the correlated, multidimensional nature of the measures. A multidimensional model that uses two multivariate statistical techniques, principal component analysis and discriminant analysis, was used to discriminate between the gait patterns of the normal subject group and the osteoarthritis subject group. Nine time varying gait measures and eight discrete measures were included in the analysis. All interrelationships between and within the measures were retained in the analysis. The multidimensional analysis technique successfully separated the gait patterns of normal and knee osteoarthritis subjects with a misclassification error rate of <6%. The most discriminatory feature described a static and dynamic alignment factor. The second most discriminatory feature described a gait pattern change during the loading response phase of the gait cycle. The interrelationships between gait measures and between the time instants of the gait cycle can provide insight into the mechanical mechanisms of pathologies such as knee osteoarthritis. These results suggest that changes in frontal plane loading and alignment and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis gait patterns. Subsequent investigations earlier in the disease process may suggest the importance of these factors to the progression of knee osteoarthritis.

  5. A controls engineering approach for analyzing airplane input-output characteristics

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas

    1991-01-01

    An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.

  6. A reduced basis method for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Vincent-Finley, Rachel Elisabeth

    In this dissertation, we develop a method for molecular simulation based on principal component analysis (PCA) of a molecular dynamics trajectory and least squares approximation of a potential energy function. Molecular dynamics (MD) simulation is a computational tool used to study molecular systems as they evolve through time. With respect to protein dynamics, local motions, such as bond stretching, occur within femtoseconds, while rigid body and large-scale motions, occur within a range of nanoseconds to seconds. To capture motion at all levels, time steps on the order of a femtosecond are employed when solving the equations of motion and simulations must continue long enough to capture the desired large-scale motion. To date, simulations of solvated proteins on the order of nanoseconds have been reported. It is typically the case that simulations of a few nanoseconds do not provide adequate information for the study of large-scale motions. Thus, the development of techniques that allow longer simulation times can advance the study of protein function and dynamics. In this dissertation we use principal component analysis (PCA) to identify the dominant characteristics of an MD trajectory and to represent the coordinates with respect to these characteristics. We augment PCA with an updating scheme based on a reduced representation of a molecule and consider equations of motion with respect to the reduced representation. We apply our method to butane and BPTI and compare the results to standard MD simulations of these molecules. Our results indicate that the molecular activity with respect to our simulation method is analogous to that observed in the standard MD simulation with simulations on the order of picoseconds.

  7. Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development.

    PubMed

    Morishita, Yoshihiro; Kuroiwa, Atsushi; Suzuki, Takayuki

    2015-05-01

    Tissue-level characterization of deformation dynamics is crucial for understanding organ morphogenetic mechanisms, especially the interhierarchical links among molecular activities, cellular behaviors and tissue/organ morphogenetic processes. Limb development is a well-studied topic in vertebrate organogenesis. Nevertheless, there is still little understanding of tissue-level deformation relative to molecular and cellular dynamics. This is mainly because live recording of detailed cell behaviors in whole tissues is technically difficult. To overcome this limitation, by applying a recently developed Bayesian approach, we here constructed tissue deformation maps for chick limb development with high precision, based on snapshot lineage tracing using dye injection. The precision of the constructed maps was validated with a clear statistical criterion. From the geometrical analysis of the map, we identified three characteristic tissue growth modes in the limb and showed that they are consistent with local growth factor activity and cell cycle length. In particular, we report that SHH signaling activity changes dynamically with developmental stage and strongly correlates with the dynamic shift in the tissue growth mode. We also found anisotropic tissue deformation along the proximal-distal axis. Morphogenetic simulation and experimental studies suggested that this directional tissue elongation, and not local growth, has the greatest impact on limb shaping. This result was supported by the novel finding that anisotropic tissue elongation along the proximal-distal axis occurs independently of cell proliferation. Our study marks a pivotal point for multi-scale system understanding in vertebrate development. © 2015. Published by The Company of Biologists Ltd.

  8. Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Wang, Yao; Hei, Baoping

    2013-12-01

    The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.

  9. Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control

    PubMed Central

    Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing

    2012-01-01

    In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results. PMID:22666072

  10. Simulation and experimental investigation of structural dynamic frequency characteristics control.

    PubMed

    Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing

    2012-01-01

    In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.

  11. Coupled rotor/airframe vibration analysis

    NASA Technical Reports Server (NTRS)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  12. Modeling and analysis of friction clutch at a driveline for suppressing car starting judder

    NASA Astrophysics Data System (ADS)

    Li, Liping; Lu, Zhaijun; Liu, Xue-Lai; Sun, Tao; Jing, Xingjian; Shangguan, Wen-Bin

    2018-06-01

    Car judder is a kind of back-forth vibration during vehicle starting which caused by the torsional oscillation of the driveline. This paper presents a systematic study on the dynamic response characteristics of the clutch driven disc for suppression of the judder during vehicle starting. Self-excited vibration behavior of the clutch driven disc is analyzed based on the developed 4DOF non-linear multi-body dynamic model of the clutch driving process considering stick-slip characteristics and using Karnopp friction models. Physical parameters of a clutch determining the generations of the judder behaviors are discussed and the revised designs of the driven disc of a clutch for suppression of the judder are consequently investigated and validated with experiments for two real cars.

  13. Analysis of structural patterns in the brain with the complex network approach

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Makarov, Vladimir V.; Kharchenko, Alexander A.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In this paper we study mechanisms of the phase synchronization in a model network of Van der Pol oscillators and in the neural network of the brain by consideration of macroscopic parameters of these networks. As the macroscopic characteristics of the model network we consider a summary signal produced by oscillators. Similar to the model simulations, we study EEG signals reflecting the macroscopic dynamics of neural network. We show that the appearance of the phase synchronization leads to an increased peak in the wavelet spectrum related to the dynamics of synchronized oscillators. The observed correlation between the phase relations of individual elements and the macroscopic characteristics of the whole network provides a way to detect phase synchronization in the neural networks in the cases of normal and pathological activity.

  14. Traffic dynamics of carnival processions

    NASA Astrophysics Data System (ADS)

    Polichronidis, Petros; Wegerle, Dominik; Dieper, Alexander; Schreckenberg, Michael

    2018-03-01

    The traffic dynamics of processions are described in this study. GPS data from participating groups in the Cologne Rose Monday processions 2014–2017 are used to analyze the kinematic characteristics. The preparation of the measured data requires an adjustment by a specially adapted algorithm for the map matching method. A higher average velocity is observed for the last participant, the Carnival Prince, than for the leading participant of the parade. Based on the results of the data analysis, for the first time a model can be established for defilading parade groups as a modified Nagel-Schreckenberg model. This model can reproduce the observed characteristics in simulations. They can be explained partly by the constantly moving vehicle driving ahead of the parade leaving the pathway and partly due to a spatial contraction of the parade during the procession.

  15. Analysis encapsulation of fiber Bragg gratings into polydimethylsiloxane for the needs of dynamic weighing

    NASA Astrophysics Data System (ADS)

    Fajkus, M.; Nedoma, J.; Martinek, R.; Novak, M.; Jargus, J.; Vasinek, V.

    2017-05-01

    Authors of the article focused on the possible encapsulation method of fiber Bragg gratings (FBGs) for the needs of dynamic weighing. For monitoring the parameters, we used broad-spectrum light source LED (Light-Emitting Diode) with a central wavelength of 1550 nm and optical spectrum analyzer with sampling rate 300 Hz. For encapsulation of used FBGs was chosen a specific material polymer polydimethylsiloxane (PDMS). A characteristic feature of this material is very high mechanical resistance, chemical resistance and temperature stability in the range of values -60 °C to + 200 °C. The combination of characteristic advantages of optical fibers (electromagnetic immunity) with stated properties of PDMS gives us the innovative type of encapsulated sensor which could be used for example for the needs of dynamic weighing in worsened or potentially hazardous conditions. This type of monitoring weighing is fully dielectric. Experimental measurements were carried out in laboratory conditions in the weight range of 35 up to 180 kg.

  16. Supersonic dynamic stability characteristics of the test technique demonstrator NASP configuration

    NASA Technical Reports Server (NTRS)

    Dress, David A.; Boyden, Richmond P.; Cruz, Christopher I.

    1992-01-01

    Wind tunnel tests of a National Aero-Space Plane (NASP) configuration were conducted in both test sections of the Langley Unitary Plan Wind Tunnel. The model used is a Langley designed blended body NASP configuration. Dynamic stability characteristics were measured on this configuration at Mach numbers of 2.0, 2.5, 3.5, and 4.5. In addition to tests of the baseline configuration, component buildup tests were conducted. The test results show that the baseline configuration generally has positive damping about all three axes with only isolated exceptions. In addition, there was generally good agreement between the in-pulse dynamic parameters and the corresponding static data which were measured during another series of tests in the Unitary Plan Wind Tunnel. Also included are comparisons of the experimental damping parameters with results from the engineering predictive code APAS (Aerodynamic Preliminary Analysis System). These comparisons show good agreement at low angles of attack; however, the comparisons are generally not as good at the higher angles of attack.

  17. Impact analysis of two kinds of failure strategies in Beijing road transportation network

    NASA Astrophysics Data System (ADS)

    Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan

    The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.

  18. Physical characteristics of cometary dust from dynamical studies - A review

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1980-01-01

    Progress made in the determination of the physical characteristics of cometary dust particles from studies of dust tail dynamics is reviewed. Applications of the combined dynamical photometric approach of Finson and Probstein (1968) to studies of cometary tails exhibiting continuous light intensity variations are discussed, with attention given to determinations of the particle-size-related distribution function of the solar radiation pressure exerted on the particles, the contribution of comets to the interplanetary dust, calculations of dust ejection rates and a Monte Carlo approach to the analysis of dust tails. Investigations of dust streamers and striae, which are believed to be related to comet outbursts entailing brief but sharp enhancements of dust production, are then reviewed, with particular attention given to observations of Comet West 1976 VI. Finally, the question of cometary particle type is addressed, and it is pointed out that the presence of submicron absorbing particles in the striae of Comet West is not incompatible with the presence of micron-size dielectric particles in the inner coma.

  19. On the influence of hydrated ionic liquids on the dynamical structure of model proteins: a computational study.

    PubMed

    Haberler, Michael; Steinhauser, Othmar

    2011-10-28

    The solvation of the protein ubiquitin (PDB entry "1UBQ") in hydrated molecular ionic liquids was studied for varying water content or, equivalently, a diversity of ionic strengths. The cations and anions were 1-ethyl-3-methylimidazolium and trifluoromethanesulfonate, respectively. The protein's shape and stability as well as the solvation structure, the shell dynamics and the shell resolved dielectric properties were investigated by means of molecular dynamics simulations. The respective simulation trajectories covered 200 nanoseconds. Besides the characteristic point already found for the zinc finger motif at the transition from the pure aqueous environment to the ionic solution an even more pronounced state is found where several properties show extremal behaviour (maximum or minimum). This second characteristic point occurs at the transition from the ionic solution to the hydrated ionic melt where water changes its role from a solvent to a co-solvent. Most of the data analysis presented here is based on the Voronoi decomposition of space. This journal is © the Owner Societies 2011

  20. Dynamical analysis of relaxation luminescence in ZnS:Er3+ thin film devices

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Jiang; Wu, Chen-Xu; Chen, Mou-Zhi; Huang, Mei-Chun

    2003-06-01

    The relaxation luminescence of ZnS:Er3+ thin film devices fabricated by thermal evaporation with two boats is studied. The dynamical processes of the luminescence of Er3+ in ZnS are described in terms of a resonant energy transfer model, assuming that the probability of collision excitation of injected electrons with luminescence centers is expressed as a Gaussian function. It is found that the frequency distribution depends on the Lorentzian function by considering the emission from excited states as a damped oscillator. Taking into consideration the energy storing effect of traps, an expression is obtained to describe a profile that contains multiple relaxation luminescence peaks using the convolution theorem. Fitting of experimental results shows that the relaxation characteristics of the electroluminescence are related to the carriers captured by bulk traps as well as by interface states. The numerical calculation carried out agrees well with the dynamical characteristics of relaxation luminescence obtained by experiments.

  1. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing

    PubMed Central

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  2. Evaluation of Dynamic Characteristics of the Footbridge with Integral Abutments

    NASA Astrophysics Data System (ADS)

    Pańtak, Marek; Jarek, Bogusław

    2017-09-01

    The paper presents the results of dynamic field tests and numerical analysis of the footbridge designed as a three-span composite structure with integral abutments. The adopted design solution which has allowed to achieve a high resistance of the structure to dynamic loads and to meet the requirements of the criteria of comfort of use with a large reserve has been characterized. For comparative purposes, numerical analyzes of three construction variants of the footbridge were presented: F-1 - construction with integral abutments (realized variant), F-2 - construction with girders anchored in the abutments by means of tension rocker bearings, F-3 - construction with concrete side spans.

  3. Gait analysis--precise, rapid, automatic, 3-D position and orientation kinematics and dynamics.

    PubMed

    Mann, R W; Antonsson, E K

    1983-01-01

    A fully automatic optoelectronic photogrammetric technique is presented for measuring the spatial kinematics of human motion (both position and orientation) and estimating the inertial (net) dynamics. Calibration and verification showed that in a two-meter cube viewing volume, the system achieves one millimeter of accuracy and resolution in translation and 20 milliradians in rotation. Since double differentiation of generalized position data to determine accelerations amplifies noise, the frequency domain characteristics of the system were investigated. It was found that the noise and all other errors in the kinematic data contribute less than five percent error to the resulting dynamics.

  4. The influence of carrier dynamics on double-state lasing in quantum dot lasers at variable temperature

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-12-01

    It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences.

  5. Dependency of outbreaks distribution from insects - defoliators' seasonal development

    Treesearch

    Valentina Meshkova

    2003-01-01

    Analysis of data on the population dynamics of foliage browsing insects in time and space was conducted in the Ukraine. For each of the main species, correlation indices were calculated between outbreak characteristics (mean and specific foci area, outbreak probability), weather elements (air temperature, precipitation), indices (hydrothermal coefficient, winter...

  6. Feminist Research Methodology Groups: Origins, Forms, Functions.

    ERIC Educational Resources Information Center

    Reinharz, Shulamit

    Feminist Research Methodology Groups (FRMGs) have developed as a specific type of women's group in which feminist academics can find supportive audiences for their work while contributing to a feminist redefinition of research methods. An analysis of two FRMGs reveals common characteristics, dynamics, and outcomes. Both were limited to small…

  7. Mobility of Labour, Technological Transformations and the Right to Work.

    ERIC Educational Resources Information Center

    Gelpi, Ettore

    1985-01-01

    The author discusses the macro level of analysis and focuses on the nature of work within the world economy. He examines the cultural characteristics of work, the dynamics of international economic relations, the transformation of international relations, geographical mobility, technological transformation and immigration, professional mobility,…

  8. From Policy to Pedagogy: Prudence and Precariousness; Actors and Artefacts

    ERIC Educational Resources Information Center

    Penney, Dawn

    2013-01-01

    This paper draws on concepts from contemporary education policy sociology to explore the prospective interpretation, contextualisation and enactment of Health and Physical Education in the Australian Curriculum. Analysis examines the dynamic between characteristics of official texts and the contexts in which responses will be made. The paper…

  9. Network Analysis of a Virtual Community of Learning of Economics Educators

    ERIC Educational Resources Information Center

    Fontainha, Elsa; Martins, Jorge Tiago; Vasconcelos, Ana Cristina

    2015-01-01

    Introduction: This paper aims at understanding virtual communities of learning in terms of dynamics, types of knowledge shared by participants, and network characteristics such as size, relationships, density, and centrality of participants. It looks at the relationships between these aspects and the evolution of communities of learning. It…

  10. NERVA 400E thrust train dynamic analysis

    NASA Technical Reports Server (NTRS)

    Vronay, D. F.

    1972-01-01

    The natural frequencies and dynamic responses of the NERVA 400E engine thrust train were determined for nuclear space operations (NSO), and earth-orbital shuttle (EOS) during launch and boost conditions. For NSO, a mini-tank configuration was analyzed with the forward end of the upper truss assumed fixed at the stage/mini-tank interface. For EOS, both a mini-tank and an engine only configuration were analyzed for a specific engine assembly support (EAS) stiffness. For all cases the effect of the shield on dynamic response characteristics was determined by performing parallel analyses with and without the shield. Gimbaling loads were not generated as that effort was scheduled after the termination date. The analysis, while demonstrating the adequacy of the engine design, revealed serious deficiencies in the EAS. Responses at the unsupported ends of the engine are excessive. Responses at the nuclear subsystem interface appear acceptable. It is recommended that additional analysis and design effort be expended upon the EAS to ensure that all engine responses stay within reasonable bounds.

  11. Interevent time distributions of human multi-level activity in a virtual world

    NASA Astrophysics Data System (ADS)

    Mryglod, O.; Fuchs, B.; Szell, M.; Holovatch, Yu.; Thurner, S.

    2015-02-01

    Studying human behavior in virtual environments provides extraordinary opportunities for a quantitative analysis of social phenomena with levels of accuracy that approach those of the natural sciences. In this paper we use records of player activities in the massive multiplayer online game Pardus over 1238 consecutive days, and analyze dynamical features of sequences of actions of players. We build on previous work where temporal structures of human actions of the same type were quantified, and provide an empirical understanding of human actions of different types. This study of multi-level human activity can be seen as a dynamic counterpart of static multiplex network analysis. We show that the interevent time distributions of actions in the Pardus universe follow highly non-trivial distribution functions, from which we extract action-type specific characteristic 'decay constants'. We discuss characteristic features of interevent time distributions, including periodic patterns on different time scales, bursty dynamics, and various functional forms on different time scales. We comment on gender differences of players in emotional actions, and find that while males and females act similarly when performing some positive actions, females are slightly faster for negative actions. We also observe effects on the age of players: more experienced players are generally faster in making decisions about engaging in and terminating enmity and friendship, respectively.

  12. [Clinical and electroencephalographic characteristic of noopept in patients with mild cognitive impairment of posttraumatic and vascular origin].

    PubMed

    Bochkarev, V K; Teleshova, E S; Siuniakov, S A; Davydova, D V; Neznamov, G G

    2008-01-01

    An effect of a new nootropic drug noopept on the dynamics of main EEG rhythms and narrow-band spectral EEG characteristics in patients with cerebral asthenic and cognitive disturbances caused by traumas or vascular brain diseases has been studied. Noopept caused the EEG changes characteristic of the action of nootropics: the increase of alpha- and beta-rhythms power and reduction of delta-rhythms power. The reaction of alpha-rhythm was provided mostly by the dynamics of its low and medium frequencies (6,7-10,2 Hz), the changes of beta-rhythm were augmented in frontal and attenuated in occipital areas. The analysis of frequency and spatial structure of EEG changes reveals that noopept exerts a nonspecific activation and anxyolytic effect. The differences in EEG changes depending on the brain pathology were found. The EEG indices of nootropic effect of the drug were most obvious in cerebral vascular diseases. The EEG changes in posttraumatic brain lesion were less typical.

  13. Error modeling of precision orientation sensors in a fixed base simulation. Ph.D. Thesis; [models of noise and dynamic characteristics of a gyro and autocollimator for very small signals

    NASA Technical Reports Server (NTRS)

    Klinger, D. L.

    1974-01-01

    Models of noise and dynamic characteristics of gyro and autocollimator for very small signal levels are presented. Measurements were evaluated using spectral techniques for identifying noise from base motion. The experiment was constructed to measure the precession, due to relativistic effects, of an extremely precise earth-orbiting gyroscope. The design goal for nonrelativistic gyro drift is 0.001 arcsec per year. An analogous fixed base simulator was used in developing methods of instrument error modeling and performance evaluation applicable to the relativity experiment sensors and other precision pointing instruments. Analysis of autocollimator spectra uncovered the presence of a platform gimbal resonance. The source of resonance was isolated to gimbal bearing elastic restraint properties most apparent at very small levels of motion. A model of these properties which include both elastic and coulomb friction characteristics is discussed, and a describing function developed.

  14. Evaluation of space shuttle main engine fluid dynamic frequency response characteristics

    NASA Technical Reports Server (NTRS)

    Gardner, T. G.

    1980-01-01

    In order to determine the POGO stability characteristics of the space shuttle main engine liquid oxygen (LOX) system, the fluid dynamic frequency response functions between elements in the SSME LOX system was evaluated, both analytically and experimentally. For the experimental data evaluation, a software package was written for the Hewlett-Packard 5451C Fourier analyzer. The POGO analysis software is documented and consists of five separate segments. Each segment is stored on the 5451C disc as an individual program and performs its own unique function. Two separate data reduction methods, a signal calibration, coherence or pulser signal based frequency response function blanking, and automatic plotting features are included in the program. The 5451C allows variable parameter transfer from program to program. This feature is used to advantage and requires only minimal user interface during the data reduction process. Experimental results are included and compared with the analytical predictions in order to adjust the general model and arrive at a realistic simulation of the POGO characteristics.

  15. Modeling and Analysis of the Static Characteristics and Dynamic Responses of Herringbone-grooved Thrust Bearings

    NASA Astrophysics Data System (ADS)

    Yu, Yunluo; Pu, Guang; Jiang, Kyle

    2017-12-01

    This paper describes a theoretical investigation of static and dynamic characteristics of herringbone-grooved air thrust bearings. Firstly, Finite Difference Method (FDM) and Finite Volume Method (FVM) are used in combination to solve the non-linear Reynolds equation and to find the pressure distribution of the film and the total loading capacity of the bearing. The influence of design parameters on air film gap characteristics, including the air film thickness, depth of the groove and rotating speed, are analyzed based on the FDM model. The simulation results show that hydrostatic thrust bearings can achieve a better load capacity with less air consumption than herringbone grooved thrust bearings at low compressibility number; herringbone grooved thrust bearings can achieve a higher load capacity but with more air consumption than hydrostatic thrust bearing at high compressibility number; herringbone grooved thrust bearings would lose stability at high rotating speeds, and the stability increases with the depth of the grooves.

  16. Spray visualization of alternative fuels at hot ambient conditions

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2017-11-01

    Gas-to-Liquid (GTL) has gained significant interest as drop-in alternative jet fuel owing to its cleaner combustion characteristics. The physical and evaporation properties of GTL fuels are different from those of the conventional jet fuels. Those differences will have an effect on the spray, and in turn, the combustion performance. In this study, the non-reacting near nozzle spray dynamics such as spray cone angle, liquid sheet breakup and liquid velocity of GTL fuel will be investigated and compared with those of the conventional jet fuel. This work is a follow up of the preliminary study performed at atmospheric ambient conditions where differences were observed in the near nozzle spray characteristics between the fuels. Whereas, in this study the spray visualization will be performed in a hot and inert environment to account for the difference in evaporation characteristics of the fuels. The spray visualization images will be captured using the shadowgraph technique. A rigorous statistical analysis of the images will be performed to compare the spray dynamics between the fuels.

  17. Nonlinear dynamics behavior analysis of the spatial configuration of a tendril-bearing plant

    NASA Astrophysics Data System (ADS)

    Feng, Jingjing; Zhang, Qichang; Wang, Wei; Hao, Shuying

    2017-03-01

    Tendril-bearing plants appear to have a spiraling shape when tendrils climb along a support during growth. The growth characteristics of a tendril-bearer can be simplified to a model of a thin elastic rod with a cylindrical constraint. In this paper, the connection between some typical configuration characteristics of tendrils and complex nonlinear dynamic behavior are qualitatively analyzed. The space configuration problem of tendrils can be explained through the study of the nonlinear dynamic behavior of the thin elastic rod system equation. In this study, the complex non-Z2 symmetric critical orbits in the system equation under critical parameters were presented. A new function transformation method that can effectively maintain the critical orbit properties was proposed, and a new nonlinear differential equations system containing complex nonlinear terms can been obtained to describe the cross section position and direction of a rod during climbing. Numerical simulation revealed that the new system can describe the configuration of a rod with reasonable accuracy. To adequately explain the growing regulation of the rod shape, the critical orbit and configuration of rod are connected in a direct way. The high precision analytical expressions of these complex non-Z2 symmetric critical orbits are obtained by introducing a suitable analytical method, and then these expressions are used to draw the corresponding three-dimensional configuration figures of an elastic thin rod. Combined with actual tendrils on a live plant, the space configuration of the winding knots of tendril is explained by the concept of heteroclinic orbit from the perspective of nonlinear dynamics, and correctness of the theoretical analysis was verified. This theoretical analysis method could also be effectively applied to other similar slender structures.

  18. Dynamic torsional response analysis of mechanoluminescent paint and its application to non-contacting automotive torque transducers

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Kim, Ji-Sik

    2014-01-01

    This paper presents the result of a preliminary experimental study on the dynamic torsional response analysis of mechanoluminescent (ML) paint for potential development as a new type of non-contacting torque transducer. The torsional torque applied to a transmission shaft is measured by sensing the ML intensity emitting from an ML paint coating a transmission shaft. This study provides the fundamental knowledge for the development of new non-contacting torque sensing technology based on the ML intensity detection. The proposed measurement principle appears to offer potential applications in automotive torque measurement systems, even though the loading rate-dependent characteristics of the ML intensity needs to be examined further.

  19. Analysis of electric vehicle extended range misalignment based on rigid-flexible dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaowei; Lv, Mingliang; Chen, Zibo; Ji, Wei; Gao, Ruiceng

    2017-04-01

    The safety of the extended range electric vehicle is seriously affected by the misalignment fault. Therefore, this paper analyzed the electric vehicle extended range misalignment based on rigid-flexible dynamics. Through comprehensively applied the hybrid modeling of rigid-flexible and the method of fault diagnosis of machinery and equipment comprehensively, it established a extender hybrid rigid flexible mechanical model by means of the software ADAMS and ANSYS. By setting the relevant parameters to simulate the misalignment of shafting, the failure phenomenon, the spectrum analysis and the evolution rules were analyzed. It concluded that 0.5th and 1 harmonics are considered as the characteristic parameters of misalignment diagnostics for electric vehicle extended range.

  20. Time Analysis of Building Dynamic Response Under Seismic Action. Part 1: Theoretical Propositions

    NASA Astrophysics Data System (ADS)

    Ufimtcev, E. M.

    2017-11-01

    The first part of the article presents the main provisions of the analytical approach - the time analysis method (TAM) developed for the calculation of the elastic dynamic response of rod structures as discrete dissipative systems (DDS) and based on the investigation of the characteristic matrix quadratic equation. The assumptions adopted in the construction of the mathematical model of structural oscillations as well as the features of seismic forces’ calculating and recording based on the data of earthquake accelerograms are given. A system to resolve equations is given to determine the nodal (kinematic and force) response parameters as well as the stress-strain state (SSS) parameters of the system’s rods.

  1. Near ground level sensing for spatial analysis of vegetation

    NASA Technical Reports Server (NTRS)

    Sauer, Tom; Rasure, John; Gage, Charlie

    1991-01-01

    Measured changes in vegetation indicate the dynamics of ecological processes and can identify the impacts from disturbances. Traditional methods of vegetation analysis tend to be slow because they are labor intensive; as a result, these methods are often confined to small local area measurements. Scientists need new algorithms and instruments that will allow them to efficiently study environmental dynamics across a range of different spatial scales. A new methodology that addresses this problem is presented. This methodology includes the acquisition, processing, and presentation of near ground level image data and its corresponding spatial characteristics. The systematic approach taken encompasses a feature extraction process, a supervised and unsupervised classification process, and a region labeling process yielding spatial information.

  2. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations

    NASA Astrophysics Data System (ADS)

    Hausdorff, Jeffrey M.; Ashkenazy, Yosef; Peng, Chang-K.; Ivanov, Plamen Ch.; Stanley, H. Eugene; Goldberger, Ary L.

    2001-12-01

    We present a random walk, fractal analysis of the stride-to-stride fluctuations in the human gait rhythm. The gait of healthy young adults is scale-free with long-range correlations extending over hundreds of strides. This fractal scaling changes characteristically with maturation in children and older adults and becomes almost completely uncorrelated with certain neurologic diseases. Stochastic modeling of the gait rhythm dynamics, based on transitions between different “neural centers”, reproduces distinctive statistical properties of the gait pattern. By tuning one model parameter, the hopping (transition) range, the model can describe alterations in gait dynamics from childhood to adulthood - including a decrease in the correlation and volatility exponents with maturation.

  3. The study on the parallel processing based time series correlation analysis of RBC membrane flickering in quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag

    2017-02-01

    Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.

  4. Analysis of stationary and dynamic factors affecting highway accident occurrence: A dynamic correlated grouped random parameters binary logit approach.

    PubMed

    Fountas, Grigorios; Sarwar, Md Tawfiq; Anastasopoulos, Panagiotis Ch; Blatt, Alan; Majka, Kevin

    2018-04-01

    Traditional accident analysis typically explores non-time-varying (stationary) factors that affect accident occurrence on roadway segments. However, the impact of time-varying (dynamic) factors is not thoroughly investigated. This paper seeks to simultaneously identify pre-crash stationary and dynamic factors of accident occurrence, while accounting for unobserved heterogeneity. Using highly disaggregate information for the potential dynamic factors, and aggregate data for the traditional stationary elements, a dynamic binary random parameters (mixed) logit framework is employed. With this approach, the dynamic nature of weather-related, and driving- and pavement-condition information is jointly investigated with traditional roadway geometric and traffic characteristics. To additionally account for the combined effect of the dynamic and stationary factors on the accident occurrence, the developed random parameters logit framework allows for possible correlations among the random parameters. The analysis is based on crash and non-crash observations between 2011 and 2013, drawn from urban and rural highway segments in the state of Washington. The findings show that the proposed methodological framework can account for both stationary and dynamic factors affecting accident occurrence probabilities, for panel effects, for unobserved heterogeneity through the use of random parameters, and for possible correlation among the latter. The comparative evaluation among the correlated grouped random parameters, the uncorrelated random parameters logit models, and their fixed parameters logit counterpart, demonstrate the potential of the random parameters modeling, in general, and the benefits of the correlated grouped random parameters approach, specifically, in terms of statistical fit and explanatory power. Published by Elsevier Ltd.

  5. Biomechanics of milk extraction during breast-feeding.

    PubMed

    Elad, David; Kozlovsky, Pavel; Blum, Omry; Laine, Andrew F; Po, Ming Jack; Botzer, Eyal; Dollberg, Shaul; Zelicovich, Mabel; Ben Sira, Liat

    2014-04-08

    How do infants extract milk during breast-feeding? We have resolved a century-long scientific controversy, whether it is sucking of the milk by subatmospheric pressure or mouthing of the nipple-areola complex to induce a peristaltic-like extraction mechanism. Breast-feeding is a dynamic process, which requires coupling between periodic motions of the infant's jaws, undulation of the tongue, and the breast milk ejection reflex. The physical mechanisms executed by the infant have been intriguing topics. We used an objective and dynamic analysis of ultrasound (US) movie clips acquired during breast-feeding to explore the tongue dynamic characteristics. Then, we developed a new 3D biophysical model of the breast and lactiferous tubes that enables the mimicking of dynamic characteristics observed in US imaging during breast-feeding, and thereby, exploration of the biomechanical aspects of breast-feeding. We have shown, for the first time to our knowledge, that latch-on to draw the nipple-areola complex into the infant mouth, as well as milk extraction during breast-feeding, require development of time-varying subatmospheric pressures within the infant's oral cavity. Analysis of the US movies clearly demonstrated that tongue motility during breast-feeding was fairly periodic. The anterior tongue, which is wedged between the nipple-areola complex and the lower lips, moves as a rigid body with the cycling motion of the mandible, while the posterior section of the tongue undulates in a pattern similar to a propagating peristaltic wave, which is essential for swallowing.

  6. Biomechanics of milk extraction during breast-feeding

    PubMed Central

    Elad, David; Kozlovsky, Pavel; Blum, Omry; Laine, Andrew F.; Po, Ming Jack; Botzer, Eyal; Dollberg, Shaul; Zelicovich, Mabel; Ben Sira, Liat

    2014-01-01

    How do infants extract milk during breast-feeding? We have resolved a century-long scientific controversy, whether it is sucking of the milk by subatmospheric pressure or mouthing of the nipple–areola complex to induce a peristaltic-like extraction mechanism. Breast-feeding is a dynamic process, which requires coupling between periodic motions of the infant’s jaws, undulation of the tongue, and the breast milk ejection reflex. The physical mechanisms executed by the infant have been intriguing topics. We used an objective and dynamic analysis of ultrasound (US) movie clips acquired during breast-feeding to explore the tongue dynamic characteristics. Then, we developed a new 3D biophysical model of the breast and lactiferous tubes that enables the mimicking of dynamic characteristics observed in US imaging during breast-feeding, and thereby, exploration of the biomechanical aspects of breast-feeding. We have shown, for the first time to our knowledge, that latch-on to draw the nipple–areola complex into the infant mouth, as well as milk extraction during breast-feeding, require development of time-varying subatmospheric pressures within the infant’s oral cavity. Analysis of the US movies clearly demonstrated that tongue motility during breast-feeding was fairly periodic. The anterior tongue, which is wedged between the nipple–areola complex and the lower lips, moves as a rigid body with the cycling motion of the mandible, while the posterior section of the tongue undulates in a pattern similar to a propagating peristaltic wave, which is essential for swallowing. PMID:24706845

  7. A fractal approach to dynamic inference and distribution analysis

    PubMed Central

    van Rooij, Marieke M. J. W.; Nash, Bertha A.; Rajaraman, Srinivasan; Holden, John G.

    2013-01-01

    Event-distributions inform scientists about the variability and dispersion of repeated measurements. This dispersion can be understood from a complex systems perspective, and quantified in terms of fractal geometry. The key premise is that a distribution's shape reveals information about the governing dynamics of the system that gave rise to the distribution. Two categories of characteristic dynamics are distinguished: additive systems governed by component-dominant dynamics and multiplicative or interdependent systems governed by interaction-dominant dynamics. A logic by which systems governed by interaction-dominant dynamics are expected to yield mixtures of lognormal and inverse power-law samples is discussed. These mixtures are described by a so-called cocktail model of response times derived from human cognitive performances. The overarching goals of this article are twofold: First, to offer readers an introduction to this theoretical perspective and second, to offer an overview of the related statistical methods. PMID:23372552

  8. Body measurements of Chinese males in dynamic postures and application.

    PubMed

    Wang, Y J; Mok, P Y; Li, Y; Kwok, Y L

    2011-11-01

    It is generally accepted that there is a relationship between body dimensions, body movement and clothing wearing ease design, and yet previous research in this area has been neither sufficient nor systematic. This paper proposes a method to measure the human body in the static state and in 17 dynamic postures, so as to understand dimensional changes of different body parts during dynamic movements. Experimental work is carried out to collect 30 measurements of 10 male Chinese subjects in both static and dynamic states. Factor analysis is used to analyse body measurement data in a static state, and such key measurements describe the characteristics of different body figures. Moreover, one-way ANOVA is used to analyse how dynamic postures affect these key body measurements. Finally, an application of the research results is suggested: a dynamic block patternmaking method for high-performance clothing design. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Subsonic Dynamic Stability Tests of a Sample Return Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Fremaux, C. Michael; Johnson, R. Keith

    2006-01-01

    An investigation has been conducted in the NASA Langley 20-Foot Vertical Spin Tunnel (VST) to determine the subsonic dynamic stability characteristics of a proposed atmospheric entry vehicle for sample return missions. In particular, the effects of changes in aft-body geometry on stability were examined. Freeflying tests of a dynamically scaled model with various geometric features were conducted, including cases in which the model was perturbed to measure dynamic response. Both perturbed and non-perturbed runs were recorded as motion time histories using the VST optical data acquisition system and reduced for post-test analysis. In addition, preliminary results from a static force and moment test of a similar model in the Langley 12-Foot Low Speed Tunnel are presented. Results indicate that the configuration is dynamically stable for the baseline geometry, but exhibits degraded dynamic behavior for the geometry modifications tested.

  10. Experimental Waterflow Determination of the Dynamic Hydraulic Transfer Function for the J-2X Oxidizer Turbopump. Part Two; Results and Interpretation

    NASA Technical Reports Server (NTRS)

    Zoladz, Tom; Patel, Sandeep; Lee, Erik; Karon, Dave

    2011-01-01

    Experimental results describing the hydraulic dynamic pump transfer matrix (Yp) for a cavitating J-2X oxidizer turbopump inducer+impeller tested in subscale waterflow are presented. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Dynamic transfer functions across widely varying pump hydrodynamic inlet conditions are extracted from measured data in conjunction with 1D-model based corrections. Derived Dynamic transfer functions are initially interpreted relative to traditional Pogo pump equations. Water-to-liquid oxygen scaling of measured cavitation characteristics are discussed. Comparison of key dynamic transfer matrix terms derived from waterflow testing are made with those implemented in preliminary Ares Upper Stage Pogo stability modeling. Alternate cavitating pump hydraulic dynamic equations are suggested which better reflect frequency dependencies of measured transfer matrices.

  11. Effects of the dynamic modification of stationary phases by sorbates in gas chromatography: The possibility of separating enantiomers in achiral systems

    NASA Astrophysics Data System (ADS)

    Zenkevich, I. G.; Pavlovskii, A. A.

    2016-10-01

    It is shown that the gas chromatographic separation of enantiomers on columns with achiral nonpolar stationary phases is principally possible as a result of the dynamic modification of stationary phases by sorbates under analysis. It is found that a number of key characteristic features is intrinsic to such separation: it can be only partial, it does not occur for all chromatographic columns, and it is observed only for some compounds and only within narrow ranges of quantities of sorbates that are close to the limits of mass overload of chromatographic systems. These characteristic features are illustrated by the examples of separating (1 R,5 R)-(+)- and (1 S,5 S)-(-)-α-pinenes on a WCOT column with an RTX-5 phase. The main characteristic feature of the separation of enantiomers as a result of the dynamic modification of stationary phases is the nonconformity of peaks in chromatograms with two individual enantiomers, compared to other ways and means for their separation; the first eluting peak belongs to the enantiomer that predominates in a mixture irrespective of its configuration, while the second peak corresponds to the racemic mixture of enantiomers; i.e., the ratio of peak areas in chromatograms does not correspond to the actual ratio of enantiomers in samples under analysis and is strongly distorted as a result of their incomplete separation. It is concluded that the separation of racemic mixtures in achiral systems is fundamentally impossible under any conditions, and this is one of the key criteria of the validity of the considered concept as a whole.

  12. Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Brodeur, Stephen J. (Technical Monitor)

    2002-01-01

    The deployable sunshield is an example of a gossamer structure envisioned for use on future space telescopes. The basic structure consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The prediction and verification of sunshield dynamics has been identified as an area in need of technology development due to the difficulties inherent in predicting nonlinear structural behavior of the membranes and because of the challenges involved. in ground testing of the full-scale structure. This paper describes a finite element analysis of a subscale sunshield that has been subjected to ground testing in support of the Next Generation Space Telescope (NGST) program. The analysis utilizes a nonlinear material model that accounts for wrinkling of the membranes. Results are presented from a nonlinear static preloading analysis and subsequent dynamics analyses to illustrate baseline sunshield structural characteristics. Studies are then described which provide further insight into the effect of membrane. preload on sunshield dynamics and the performance of different membrane modeling techniques. Lastly, a comparison of analytical predictions and ground test results is presented.

  13. Structure and dynamics of European sports science textual contents: Analysis of ECSS abstracts (1996-2014).

    PubMed

    Hristovski, Robert; Aceski, Aleksandar; Balague, Natalia; Seifert, Ludovic; Tufekcievski, Aleksandar; Cecilia, Aguirre

    2017-02-01

    The article discusses general structure and dynamics of the sports science research content as obtained from the analysis of 21998 European College of Sport Science abstracts belonging to 12 science topics. The structural analysis showed intertwined multidisciplinary and unifying tendencies structured along horizontal (scope) and vertical (level) axes. Methodological (instrumental and mode of inquiry) integrative tendencies are dominant. Theoretical integrative tendencies are much less detectable along both horizontal and vertical axes. The dynamic analysis of written abstracts text content over the 19 years reveals the contextualizing and guiding role of thematic skeletons of each sports science topic in forming more detailed contingent research ideas and the role of the latter in stabilizing and procreating the former. This circular causality between both hierarchical levels and functioning on separate characteristic time scales is crucial for understanding how stable research traditions self-maintain and self-procreate through innovative contingencies. The structure of sports science continuously rebuilds itself through use and re-use of contingent research ideas. The thematic skeleton ensures its identity and the contingent conceptual sets its flexibility and adaptability to different research or applicative problems.

  14. The dynamics of information-driven coordination phenomena: A transfer entropy analysis

    PubMed Central

    Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro

    2016-01-01

    Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data. PMID:27051875

  15. The dynamics of information-driven coordination phenomena: A transfer entropy analysis.

    PubMed

    Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro

    2016-04-01

    Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data.

  16. Analysis on pressure characteristics of pump turbine guide bearing rotating sump based on VOF model

    NASA Astrophysics Data System (ADS)

    Zhai, L. M.; Yao, Z.; Huang, Q. S.; Xiao, Y. X.; Wang, Z. W.

    2013-12-01

    With the technology of Computational Fluid Dynamics (CFD), this paper conducts a 3D numerical simulation for the oil and gas flow field in the Pump turbine guide bearing rotating sump. VOF model is adopted in this simulation. This study calculates distribution of the oil-air phase and characteristics of the pressure. The influence of sump rotating speed, oil level and oil viscosity on the pressure at the inlet of oil-immersion plate are discussed. The results demonstrate that the static pressure at the inlet is roughly proportional to oil level. Too low level may result in the separation between lubrication oil and supply hole on the oil-immersion plate, which then disables the oil supply. The static pressure at the inlet increases parabola as the sump rotating speed increases. To ensure the supply pressure, the unit is not suitable for long time operation under low rotating speed. The temperature-viscosity effect of the lubricant oil has little influence on the oil pressure at the supply hole. This paper provides a theoretical base for the safe design and operation of the pump turbine rotating sump, and offers the inlet boundary condition for the analysis of the oil film dynamic characteristics of the turbine guide bearing.

  17. Formulation of dynamical theory of X-ray diffraction for perfect crystals in the Laue case using the Riemann surface.

    PubMed

    Saka, Takashi

    2016-05-01

    The dynamical theory for perfect crystals in the Laue case was reformulated using the Riemann surface, as used in complex analysis. In the two-beam approximation, each branch of the dispersion surface is specified by one sheet of the Riemann surface. The characteristic features of the dispersion surface are analytically revealed using four parameters, which are the real and imaginary parts of two quantities specifying the degree of departure from the exact Bragg condition and the reflection strength. By representing these parameters on complex planes, these characteristics can be graphically depicted on the Riemann surface. In the conventional case, the absorption is small and the real part of the reflection strength is large, so the formulation is the same as the traditional analysis. However, when the real part of the reflection strength is small or zero, the two branches of the dispersion surface cross, and the dispersion relationship becomes similar to that of the Bragg case. This is because the geometrical relationships among the parameters are similar in both cases. The present analytical method is generally applicable, irrespective of the magnitudes of the parameters. Furthermore, the present method analytically revealed many characteristic features of the dispersion surface and will be quite instructive for further numerical calculations of rocking curves.

  18. Analysis on pseudo excitation of random vibration for structure of time flight counter

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Dapeng

    2015-03-01

    Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.

  19. Flight Dynamic Simulation of Fighter In the Asymmetric External Store Release Process

    NASA Astrophysics Data System (ADS)

    Safi’i, Imam; Arifianto, Ony; Nurohman, Chandra

    2018-04-01

    In the fighter design, it is important to evaluate and analyze the flight dynamic of the aircraft earlier in the development process. One of the case is the dynamics of external store release process. A simulation tool can be used to analyze the fighter/external store system’s dynamics in the preliminary design stage. This paper reports the flight dynamics of Jet Fighter Experiment (JF-1 E) in asymmetric Advance Medium Range Air to Air Missile (AMRAAM) release process through simulations. The JF-1 E and AIM 120 AMRAAAM models are built by using Advanced Aircraft Analysis (AAA) and Missile Datcom software. By using these softwares, the aerodynamic stability and control derivatives can be obtained and used to model the dynamic characteristic of the fighter and the external store. The dynamic system is modeled by using MATLAB/Simulink software. By using this software, both the fighter/external store integration and the external store release process is simulated, and the dynamic of the system can be analyzed.

  20. Performance of Koyna dam based on static and dynamic analysis

    NASA Astrophysics Data System (ADS)

    Azizan, Nik Zainab Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar

    2017-10-01

    This paper discusses the performance of Koyna dam based on static pushover analysis (SPO) and incremental dynamic analysis (IDA). The SPO in this study considered two type of lateral load which is inertial load and hydrodynamic load. The structure was analyse until the damage appears on the structure body. The IDA curves were develop based on 7 ground motion, where the characteristic of the ground motions: i) the distance from the epicenter is less than 15km, (ii) the magnitude is equal to or greater than 5.5 and (iii) the PGA is equal to or greater than 0.15g. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. Elastic respond spectrum developed based on soil type B by using Eurocode 8. By using SPO and IDA method are able to determine the limit states of the dam. The limit state proposed in this study are yielding and ultimate state which is identified base on crack pattern perform on the structure model. The comparison of maximum crest displacement for both methods is analysed to define the limit state of the dam. The displacement of yielding state for Koyna dam is 23.84mm and 44.91mm for the ultimate state. The results are able to be used as a guideline to monitor Koyna dam under seismic loadings which are considering static and dynamic.

  1. [Dynamic Wavelength Characteristics of Semiconductor Laser in Electric Current Tuning Process].

    PubMed

    Liu, Jing-wang; Li, Zhong-yang; Zhang, Wei-zhong; Wang, Qing-chuan; An, Ying; Li, Yong-hui

    2015-11-01

    In order to measure the dynamic wavelength of semiconductor lasers under current tuning, an improved method of fi- ber delay self-heterodyne interferometer was proposed. The measurement principle, as well the beat frequency and dynamic wavelength of recursive relations are theoretically analyzed. The application of the experimental system measured the dynamic wavelength characteristics of distributed feedback semiconductor laser and the static wavelength characteristics measurement by the spectrometer. The comparison between the two values indicates that both dynamic and static wavelength characteristic with the current tuning are the similar non-linear curve. In 20-100 mA current tuning range, the difference of them is less than 0.002 nm. At the same time, according to the absorption lines of CO2 gas, and HITRAN spectrum library, we can identify the dynamic wavelength of the laser. Comparing it with dynamic wavelength calculated by the beat signal, the difference is only 0.001 nm, which verifies the reliability of the experimental system to measure the dynamic wavelength.

  2. Investigation on coupling error characteristics in angular rate matching based ship deformation measurement approach

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang

    2018-01-01

    The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.

  3. Analysis and design of numerical schemes for gas dynamics. 2: Artificial diffusion and discrete shock structure

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1994-01-01

    The effect of artificial diffusion on discrete shock structures is examined for a family of schemes which includes scalar diffusion, convective upwind and split pressure (CUSP) schemes, and upwind schemes with characteristics splitting. The analysis leads to conditions on the diffusive flux such that stationary discrete shocks can contain a single interior point. The simplest formulation which meets these conditions is a CUSP scheme in which the coefficients of the pressure differences is fully determined by the coefficient of convective diffusion. It is also shown how both the characteristic and CUSP schemes can be modified to preserve constant stagnation enthalpy in steady flow, leading to four variants, the E and H-characteristic schemes, and the E and H-CUSP schemes. Numerical results are presented which confirm the properties of these schemes.

  4. 3D Finite Element Analysis of Some Structural Modified PC Sleeper with the Vibration Characteristics between Sleeper and Ballast

    NASA Astrophysics Data System (ADS)

    Sakai, Hirotaka; Urakawa, Fumihiro; Aikawa, Akira; Namura, Akira

    The vibration of concrete sleepers is an important factor engendering track deterioration. In this paper, we created a three-dimensional finite element model to reproduce a prestressed concrete (PC) sleeper in detail, expressing influence of ballast layers with a 3D spring series and dampers to reproduce their vibration and dynamic characteristics. Determination of these parameters bases on the experimental modal analysis using an impact excitation technique for PC sleepers by adjusting the accelerance between the analytical results and experimental results. Furthermore, we compared the difference of these characteristics between normal sleepers and those with some structural modifications. Analytical results clarified that such means as sleeper width extension and increased sleeper thickness will influence the reduction of ballasted track vibration as improvements of PC sleepers.

  5. Mesoscale Characteristics and the Role of Deformation on Ocean Dynamics

    DTIC Science & Technology

    1991-06-05

    34 Thilus, 41 (A), 416-435, 1989. 3. "Ring Evolution in General Circulation Models from Path Analysis ," J. Geo- phys. Res., 95(C10), 18057-18073, 1990...Loop Curren: (up to three in I year [Elliot,. by Vaukovih and Crt, ,tman (19861. Analysis of drifter data 19821). Lewi.a and Kirwan (1983. 19871...seventh drifter. the Lagrangian data sets along with an analysis and anterpre- number 3354. was entrained in the Loop Current at the tim. tation of

  6. Astronaut activity in weightlessness and unsupported space

    NASA Technical Reports Server (NTRS)

    Ivanov, Y. A.; Popov, V. A.; Kachaturyants, L. S.

    1975-01-01

    For the purpose of study of the performance ability of a human operator in prolonged weightless conditions was studied by the following methods: (1) psychophysiological analysis of certain operations; (2) the dynamic characteristics of a man, included in a model control system, with direct and delayed feedback; (3) evaluation of the singularities of analysis and quality of the working memory, in working with outlines of patterned and random lines; and (4) biomechanical analysis of spatial orientation and motor activity in unsupported space.

  7. Superspace and global stability in general relativity

    NASA Astrophysics Data System (ADS)

    Gurzadyan, A. V.; Kocharyan, A. A.

    A framework is developed enabling the global analysis of the stability of cosmological models using the local geometric characteristics of the infinite-dimensional superspace, i.e. using the generalized Jacobi equation reformulated for pseudo-Riemannian manifolds. We give a direct formalism for dynamical analysis in the superspace, the requisite equation pertinent for stability analysis of the universe by means of generalized covariant and Fermi derivative is derived. Then, the relevant definitions and formulae are retrieved for cosmological models with a scalar field.

  8. Higher Dimensional Meta-State Analysis Reveals Reduced Resting fMRI Connectivity Dynamism in Schizophrenia Patients.

    PubMed

    Miller, Robyn L; Yaesoubi, Maziar; Turner, Jessica A; Mathalon, Daniel; Preda, Adrian; Pearlson, Godfrey; Adali, Tulay; Calhoun, Vince D

    2016-01-01

    Resting-state functional brain imaging studies of network connectivity have long assumed that functional connections are stationary on the timescale of a typical scan. Interest in moving beyond this simplifying assumption has emerged only recently. The great hope is that training the right lens on time-varying properties of whole-brain network connectivity will shed additional light on previously concealed brain activation patterns characteristic of serious neurological or psychiatric disorders. We present evidence that multiple explicitly dynamical properties of time-varying whole-brain network connectivity are strongly associated with schizophrenia, a complex mental illness whose symptomatic presentation can vary enormously across subjects. As with so much brain-imaging research, a central challenge for dynamic network connectivity lies in determining transformations of the data that both reduce its dimensionality and expose features that are strongly predictive of important population characteristics. Our paper introduces an elegant, simple method of reducing and organizing data around which a large constellation of mutually informative and intuitive dynamical analyses can be performed. This framework combines a discrete multidimensional data-driven representation of connectivity space with four core dynamism measures computed from large-scale properties of each subject's trajectory, ie., properties not identifiable with any specific moment in time and therefore reasonable to employ in settings lacking inter-subject time-alignment, such as resting-state functional imaging studies. Our analysis exposes pronounced differences between schizophrenia patients (Nsz = 151) and healthy controls (Nhc = 163). Time-varying whole-brain network connectivity patterns are found to be markedly less dynamically active in schizophrenia patients, an effect that is even more pronounced in patients with high levels of hallucinatory behavior. To the best of our knowledge this is the first demonstration that high-level dynamic properties of whole-brain connectivity, generic enough to be commensurable under many decompositions of time-varying connectivity data, exhibit robust and systematic differences between schizophrenia patients and healthy controls.

  9. Higher Dimensional Meta-State Analysis Reveals Reduced Resting fMRI Connectivity Dynamism in Schizophrenia Patients

    PubMed Central

    Miller, Robyn L.; Yaesoubi, Maziar; Turner, Jessica A.; Mathalon, Daniel; Preda, Adrian; Pearlson, Godfrey; Adali, Tulay; Calhoun, Vince D.

    2016-01-01

    Resting-state functional brain imaging studies of network connectivity have long assumed that functional connections are stationary on the timescale of a typical scan. Interest in moving beyond this simplifying assumption has emerged only recently. The great hope is that training the right lens on time-varying properties of whole-brain network connectivity will shed additional light on previously concealed brain activation patterns characteristic of serious neurological or psychiatric disorders. We present evidence that multiple explicitly dynamical properties of time-varying whole-brain network connectivity are strongly associated with schizophrenia, a complex mental illness whose symptomatic presentation can vary enormously across subjects. As with so much brain-imaging research, a central challenge for dynamic network connectivity lies in determining transformations of the data that both reduce its dimensionality and expose features that are strongly predictive of important population characteristics. Our paper introduces an elegant, simple method of reducing and organizing data around which a large constellation of mutually informative and intuitive dynamical analyses can be performed. This framework combines a discrete multidimensional data-driven representation of connectivity space with four core dynamism measures computed from large-scale properties of each subject’s trajectory, ie., properties not identifiable with any specific moment in time and therefore reasonable to employ in settings lacking inter-subject time-alignment, such as resting-state functional imaging studies. Our analysis exposes pronounced differences between schizophrenia patients (Nsz = 151) and healthy controls (Nhc = 163). Time-varying whole-brain network connectivity patterns are found to be markedly less dynamically active in schizophrenia patients, an effect that is even more pronounced in patients with high levels of hallucinatory behavior. To the best of our knowledge this is the first demonstration that high-level dynamic properties of whole-brain connectivity, generic enough to be commensurable under many decompositions of time-varying connectivity data, exhibit robust and systematic differences between schizophrenia patients and healthy controls. PMID:26981625

  10. Study of Anti-Vortex Baffle Effect in Suppressing Swirling Flow in LOX Tank

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    Experimental results describing the hydraulic dynamic pump transfer matrix (Yp) for a cavitating J-2X oxidizer turbopump inducer+impeller tested in subscale waterflow are presented. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Dynamic transfer functions across widely varying pump hydrodynamic inlet conditions are extracted from measured data in conjunction with 1D-model based corrections. Derived Dynamic transfer functions are initially interpreted relative to traditional Pogo pump equations. Water-to-liquid oxygen scaling of measured cavitation characteristics are discussed. Comparison of key dynamic transfer matrix terms derived from waterflow testing are made with those implemented in preliminary Ares Upper Stage Pogo stability modeling. Alternate cavitating pump hydraulic dynamic equations are suggested which better reflect frequency dependencies of measured transfer matrices.

  11. Modeling the human body/seat system in a vibration environment.

    PubMed

    Rosen, Jacob; Arcan, Mircea

    2003-04-01

    The vibration environment is a common man-made artificial surrounding with which humans have a limited tolerance to cope due to their body dynamics. This research studied the dynamic characteristics of a seated human body/seat system in a vibration environment. The main result is a multi degrees of freedom lumped parameter model that synthesizes two basic dynamics: (i) global human dynamics, the apparent mass phenomenon, including a systematic set of the model parameters for simulating various conditions like body posture, backrest, footrest, muscle tension, and vibration directions, and (ii) the local human dynamics, represented by the human pelvis/vibrating seat contact, using a cushioning interface. The model and its selected parameters successfully described the main effects of the apparent mass phenomenon compared to experimental data documented in the literature. The model provided an analytical tool for human body dynamics research. It also enabled a primary tool for seat and cushioning design. The model was further used to develop design guidelines for a composite cushion using the principle of quasi-uniform body/seat contact force distribution. In terms of evenly distributing the contact forces, the best result for the different materials and cushion geometries simulated in the current study was achieved using a two layer shaped geometry cushion built from three materials. Combining the geometry and the mechanical characteristics of a structure under large deformation into a lumped parameter model enables successful analysis of the human/seat interface system and provides practical results for body protection in dynamic environment.

  12. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  13. A dynamic model using monitoring data and watershed characteristics to project fish tissue mercury concentrations in stream systems.

    PubMed

    Chan, Caroline; Heinbokel, John F; Myers, John A; Jacobs, Robert R

    2012-10-01

    A complex interplay of factors determines the degree of bioaccumulation of Hg in fish in any particular basin. Although certain watershed characteristics have been associated with higher or lower bioaccumulation rates, the relationships between these characteristics are poorly understood. To add to this understanding, a dynamic model was built to examine these relationships in stream systems. The model follows Hg from the water column, through microbial conversion and subsequent concentration, through the food web to piscivorous fish. The model was calibrated to 7 basins in Kentucky and further evaluated by comparing output to 7 sites in, or proximal to, the Ohio River Valley, an underrepresented region in the bioaccumulation literature. Water quality and basin characteristics were inputs into the model, with tissue concentrations of Hg of generic trophic level 3, 3.5, and 4 fish the output. Regulatory and monitoring data were used to calibrate and evaluate the model. Mean average prediction error for Kentucky sites was 26%, whereas mean error for evaluation sites was 51%. Variability within natural systems can be substantial and was quantified for fish tissue by analysis of the US Geological Survey National Fish Database. This analysis pointed to the need for more systematic sampling of fish tissue. Analysis of model output indicated that parameters that had the greatest impact on bioaccumulation influenced the system at several points. These parameters included forested and wetlands coverage and nutrient levels. Factors that were less sensitive modified the system at only 1 point and included the unfiltered total Hg input and the portion of the basin that is developed. Copyright © 2012 SETAC.

  14. Differentiating between Central Nervous System Lymphoma and High-grade Glioma Using Dynamic Susceptibility Contrast and Dynamic Contrast-enhanced MR Imaging with Histogram Analysis.

    PubMed

    Murayama, Kazuhiro; Nishiyama, Yuya; Hirose, Yuichi; Abe, Masato; Ohyu, Shigeharu; Ninomiya, Ayako; Fukuba, Takashi; Katada, Kazuhiro; Toyama, Hiroshi

    2018-01-10

    We evaluated the diagnostic performance of histogram analysis of data from a combination of dynamic susceptibility contrast (DSC)-MRI and dynamic contrast-enhanced (DCE)-MRI for quantitative differentiation between central nervous system lymphoma (CNSL) and high-grade glioma (HGG), with the aim of identifying useful perfusion parameters as objective radiological markers for differentiating between them. Eight lesions with CNSLs and 15 with HGGs who underwent MRI examination, including DCE and DSC-MRI, were enrolled in our retrospective study. DSC-MRI provides a corrected cerebral blood volume (cCBV), and DCE-MRI provides a volume transfer coefficient (K trans ) for transfer from plasma to the extravascular extracellular space. K trans and cCBV were measured from a round region-of-interest in the slice of maximum size on the contrast-enhanced lesion. The differences in t values between CNSL and HGG for determining the most appropriate percentile of K trans and cCBV were investigated. The differences in K trans , cCBV, and K trans /cCBV between CNSL and HGG were investigated using histogram analysis. Receiver operating characteristic (ROC) analysis of K trans , cCBV, and K trans /cCBV ratio was performed. The 30 th percentile (C30) in K trans and 80 th percentile (C80) in cCBV were the most appropriate percentiles for distinguishing between CNSL and HGG from the differences in t values. CNSL showed significantly lower C80 cCBV, significantly higher C30 K trans , and significantly higher C30 K trans /C80 cCBV than those of HGG. In ROC analysis, C30 K trans /C80 cCBV had the best discriminative value for differentiating between CNSL and HGG as compared to C30 K trans or C80 cCBV. The combination of K trans by DCE-MRI and cCBV by DSC-MRI was found to reveal the characteristics of vascularity and permeability of a lesion more precisely than either K trans or cCBV alone. Histogram analysis of these vascular microenvironments enabled quantitative differentiation between CNSL and HGG.

  15. Applying Online Monitoring for Nuclear Power Plant Instrumentation and Control

    NASA Astrophysics Data System (ADS)

    Hashemian, H. M.

    2010-10-01

    This paper presents a practical review of the state-of-the-art means for applying OLM data acquisition in nuclear power plant instrumentation and control, qualifying or validating the OLM data, and then analyzing it for static and dynamic performance monitoring applications. Whereas data acquisition for static or steady-state OLM applications can require sample rates of anywhere from 1 to 10 seconds to 1 minutes per sample, for dynamic data acquisition, higher sampling frequencies are required (e.g., 100 to 1000 Hz) using a dedicated data acquisition system capable of providing isolation, anti-aliasing and removal of extraneous noise, and analog-to-digital (A/D) conversion. Qualifying the data for use with OLM algorithms can involve removing data `dead' spots (for static data) and calculating, examining, and trending amplitude probability density, variance, skewness, and kurtosis. For static OLM applications with redundant signals, trending and averaging qualification techniques are used, and for single or non-redundant signals physical and empirical modeling are used. Dynamic OLM analysis is performed in the frequency domain and/or time domain, and is based on the assumption that sensors' or transmitters' dynamic characteristics are linear and that the input noise signal (i.e., the process fluctuations) has proper spectral characteristics.

  16. Major component analysis of dynamic networks of physiologic organ interactions

    NASA Astrophysics Data System (ADS)

    Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch

    2015-09-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.

  17. Comparison between the Prebolus T1 Measurement and the Fixed T1 Value in Dynamic Contrast-Enhanced MR Imaging for the Differentiation of True Progression from Pseudoprogression in Glioblastoma Treated with Concurrent Radiation Therapy and Temozolomide Chemotherapy.

    PubMed

    Nam, J G; Kang, K M; Choi, S H; Lim, W H; Yoo, R-E; Kim, J-H; Yun, T J; Sohn, C-H

    2017-12-01

    Glioblastoma is the most common primary brain malignancy and differentiation of true progression from pseudoprogression is clinically important. Our purpose was to compare the diagnostic performance of dynamic contrast-enhanced pharmacokinetic parameters using the fixed T1 and measured T1 on differentiating true from pseudoprogression of glioblastoma after chemoradiation with temozolomide. This retrospective study included 37 patients with histopathologically confirmed glioblastoma with new enhancing lesions after temozolomide chemoradiation defined as true progression ( n = 15) or pseudoprogression ( n = 22). Dynamic contrast-enhanced pharmacokinetic parameters, including the volume transfer constant, the rate transfer constant, the blood plasma volume per unit volume, and the extravascular extracellular space per unit volume, were calculated by using both the fixed T1 of 1000 ms and measured T1 by using the multiple flip-angle method. Intra- and interobserver reproducibility was assessed by using the intraclass correlation coefficient. Dynamic contrast-enhanced pharmacokinetic parameters were compared between the 2 groups by using univariate and multivariate analysis. The diagnostic performance was evaluated by receiver operating characteristic analysis and leave-one-out cross validation. The intraclass correlation coefficients of all the parameters from both T1 values were fair to excellent (0.689-0.999). The volume transfer constant and rate transfer constant from the fixed T1 were significantly higher in patients with true progression ( P = .048 and .010, respectively). Multivariate analysis revealed that the rate transfer constant from the fixed T1 was the only independent variable (OR, 1.77 × 10 5 ) and showed substantial diagnostic power on receiver operating characteristic analysis (area under the curve, 0.752; P = .002). The sensitivity and specificity on leave-one-out cross validation were 73.3% (11/15) and 59.1% (13/20), respectively. The dynamic contrast-enhanced parameter of rate transfer constant from the fixed T1 acted as a preferable marker to differentiate true progression from pseudoprogression. © 2017 by American Journal of Neuroradiology.

  18. Recurrence quantity analysis based on matrix eigenvalues

    NASA Astrophysics Data System (ADS)

    Yang, Pengbo; Shang, Pengjian

    2018-06-01

    Recurrence plots is a powerful tool for visualization and analysis of dynamical systems. Recurrence quantification analysis (RQA), based on point density and diagonal and vertical line structures in the recurrence plots, is considered to be alternative measures to quantify the complexity of dynamical systems. In this paper, we present a new measure based on recurrence matrix to quantify the dynamical properties of a given system. Matrix eigenvalues can reflect the basic characteristics of the complex systems, so we show the properties of the system by exploring the eigenvalues of the recurrence matrix. Considering that Shannon entropy has been defined as a complexity measure, we propose the definition of entropy of matrix eigenvalues (EOME) as a new RQA measure. We confirm that EOME can be used as a metric to quantify the behavior changes of the system. As a given dynamical system changes from a non-chaotic to a chaotic regime, the EOME will increase as well. The bigger EOME values imply higher complexity and lower predictability. We also study the effect of some factors on EOME,including data length, recurrence threshold, the embedding dimension, and additional noise. Finally, we demonstrate an application in physiology. The advantage of this measure lies in a high sensitivity and simple computation.

  19. Characterization of the Dynamics of Climate Systems and Identification of Missing Mechanisms Impacting the Long Term Predictive Capabilities of Global Climate Models Utilizing Dynamical Systems Approaches to the Analysis of Observed and Modeled Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Uma S.; Wackerbauer, Renate; Polyakov, Igor V.

    The goal of this research was to apply fractional and non-linear analysis techniques in order to develop a more complete characterization of climate change and variability for the oceanic, sea ice and atmospheric components of the Earth System. This research applied two measures of dynamical characteristics of time series, the R/S method of calculating the Hurst exponent and Renyi entropy, to observational and modeled climate data in order to evaluate how well climate models capture the long-term dynamics evident in observations. Fractional diffusion analysis was applied to ARGO ocean buoy data to quantify ocean transport. Self organized maps were appliedmore » to North Pacific sea level pressure and analyzed in ways to improve seasonal predictability for Alaska fire weather. This body of research shows that these methods can be used to evaluate climate models and shed light on climate mechanisms (i.e., understanding why something happens). With further research, these methods show promise for improving seasonal to longer time scale forecasts of climate.« less

  20. Analysis on the dynamic error for optoelectronic scanning coordinate measurement network

    NASA Astrophysics Data System (ADS)

    Shi, Shendong; Yang, Linghui; Lin, Jiarui; Guo, Siyang; Ren, Yongjie

    2018-01-01

    Large-scale dynamic three-dimension coordinate measurement technique is eagerly demanded in equipment manufacturing. Noted for advantages of high accuracy, scale expandability and multitask parallel measurement, optoelectronic scanning measurement network has got close attention. It is widely used in large components jointing, spacecraft rendezvous and docking simulation, digital shipbuilding and automated guided vehicle navigation. At present, most research about optoelectronic scanning measurement network is focused on static measurement capacity and research about dynamic accuracy is insufficient. Limited by the measurement principle, the dynamic error is non-negligible and restricts the application. The workshop measurement and positioning system is a representative which can realize dynamic measurement function in theory. In this paper we conduct deep research on dynamic error resources and divide them two parts: phase error and synchronization error. Dynamic error model is constructed. Based on the theory above, simulation about dynamic error is carried out. Dynamic error is quantized and the rule of volatility and periodicity has been found. Dynamic error characteristics are shown in detail. The research result lays foundation for further accuracy improvement.

  1. Noise analysis of the seismic system employed in the northern and southern California seismic nets

    USGS Publications Warehouse

    Eaton, J.P.

    1984-01-01

    The seismic networks have been designed and operated to support recording on Develocorders (less than 40db dynamic range) and analog magnetic tape (about 50 db dynamic range). The principal analysis of the records has been based on Develocorder films; and background earth noise levels have been adjusted to be about 1 to 2 mm p-p on the film readers. Since the traces are separated by only 10 to 12 mm on the reader screen, they become hopelessly tangled when signal amplitudes on several adjacent traces exceed 10 to 20 mm p-p. Thus, the background noise level is hardly more than 20 db below the level of largest readable signals. The situation is somewhat better on tape playbacks, but the high level of background noise set to accomodate processing from film records effectively limits the range of maximum-signal to background-earth-noise on high gain channels to a little more than 30 db. Introduction of the PDP 11/44 seismic data acquisition system has increased the potential dynamic range of recorded network signals to more than 60 db. To make use of this increased dynamic range we must evaluate the characteristics and performance of the seismic system. In particular, we must determine whether the electronic noise in the system is or can be made sufficiently low so that background earth noise levels can be lowered significantly to take advantage of the increased dynamic range of the digital recording system. To come to grips with the complex problem of system noise, we have carried out a number of measurements and experiments to evaluate critical components of the system as well as to determine the noise characteristics of the system as a whole.

  2. Sensitivity analysis of free vibration characteristics of an in situ railway concrete sleeper to variations of rail pad parameters

    NASA Astrophysics Data System (ADS)

    Kaewunruen, Sakdirat; Remennikov, Alex M.

    2006-11-01

    The vibration of in situ concrete sleepers in a railway track structure is a major factor causing cracking of prestressed concrete sleepers and excessive railway track maintenance cost. Not only does the ballast interact with the sleepers, but the rail pads also take part in affecting their free vibration characteristics. This paper presents a sensitivity analysis of free vibration behaviors of an in situ railway concrete sleeper (standard gauge sleeper), incorporating sleeper/ballast interaction, subjected to the variations of rail pad properties. Through finite element analysis, Timoshenko-beam and spring elements were used in the in situ railway concrete sleeper modeling. This model highlights the influence of rail pad parameters on the free vibration characteristics of in situ sleepers. In addition, information on the first five flexural vibration modes indicates the dynamic performance of railway track when using different types of rail pads, as it plays a vital role in the cracking deterioration of concrete sleepers.

  3. Characteristic density contrasts in the evolution of superclusters. The case of A2142 supercluster

    NASA Astrophysics Data System (ADS)

    Gramann, Mirt; Einasto, Maret; Heinämäki, Pekka; Teerikorpi, Pekka; Saar, Enn; Nurmi, Pasi; Einasto, Jaan

    2015-09-01

    Context. The formation and evolution of the cosmic web in which galaxy superclusters are the largest relatively isolated objects is governed by a gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). Aims: We study the characteristic density contrasts in the spherical collapse model for several epochs in the supercluster evolution and their dynamical state. Methods: We analysed the density contrasts for the turnaround, future collapse, and zero gravity in different ΛCDM models and applied them to study the dynamical state of the supercluster A2142 with an almost spherical main body, making it a suitable test object to apply a model that assumes sphericity. Results: We present characteristic density contrasts in the spherical collapse model for different cosmological parameters. The analysis of the supercluster A2142 shows that its high-density core has already started to collapse. The zero-gravity line outlines the outer region of the main body of the supercluster. In the course of future evolution, the supercluster may split into several collapsing systems. Conclusions: The various density contrasts presented in our study and applied to the supercluster A2142 offer a promising way to characterise the dynamical state and expected future evolution of galaxy superclusters.

  4. Numerical study on air-structure coupling dynamic characteristics of the axial fan blade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Xie, B.; Li, F.; Gu, W. G.

    2013-12-01

    In order to understand the dynamic characteristics of the axial-flow fan blade due to the effect of rotating stress and the action of unsteady aerodynamic forces caused by the airflow, a numerical simulation method for air-structure coupling in an axial-flow fan with fixed rear guide blades was performed. The dynamic characteristics of an axial-flow fan rotating blade were studied by using the two-way air-structure coupling method. Based on the standard k-ε turbulence model, and using weak coupling method, the preceding six orders modal parameters of the rotating blade were obtained, and the distributions of stress and strain on the rotating blade were presented. The results show that the modal frequency from the first to the sixth order is 3Hz higher than the modal frequency without considering air-structure coupling interaction; the maximum stress and the maximum strain are all occurred in the vicinity of root area of the blade no matter the air-structure coupling is considered or not, thus, the blade root is the dangerous location subjected to fatigue break; the position of maximum deformation is at the blade tip, so the vibration of the blade tip is significant. This study can provide theoretical references for the further study on the strength analysis and mechanical optimal design.

  5. Investigation of Dynamic Force/Vibration Transmission Characteristics of Four-Square Type Gear Durability Test Machines

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet

    2002-01-01

    In this study, design requirements for a dynamically viable, four-square type gear test machine are investigated. Variations of four-square type gear test machines have been in use for durability and dynamics testing of both parallel- and cross-axis gear set. The basic layout of these machines is illustrated. The test rig is formed by two gear pairs, of the same reduction ratio, a test gear pair and a reaction gear pair, connected to each other through shafts of certain torsional flexibility to form an efficient, closed-loop system. A desired level of constant torque is input to the circuit through mechanical (a split coupling with a torque arm) or hydraulic (a hydraulic actuator) means. The system is then driven at any desired speed by a small DC motor. The main task in hand is the isolation of the test gear pair from the reaction gear pair under dynamic conditions. Any disturbances originated at the reaction gear mesh might potentially travel to the test gearbox, altering the dynamic loading conditions of the test gear mesh, and hence, influencing the outcome of the durability or dynamics test. Therefore, a proper design of connecting structures becomes a major priority. Also, equally important is the issue of how close the operating speed of the machine is to the resonant frequencies of the gear meshes. This study focuses on a detailed analysis of the current NASA Glenn Research Center gear pitting test machine for evaluation of its resonance and vibration isolation characteristics. A number of these machines as the one illustrated has been used over last 30 years to establish an extensive database regarding the influence of the gear materials, processes surface treatments and lubricants on gear durability. This study is intended to guide an optimum design of next generation test machines for the most desirable dynamic characteristics.

  6. Above Saddle-Point Regions of Order in a Sea of Chaos in the Vibrational Dynamics of KCN.

    PubMed

    Párraga, H; Arranz, F J; Benito, R M; Borondo, F

    2018-04-05

    The dynamical characteristics of a region of regular vibrational motion in the sea of chaos above the saddle point corresponding to the linear C-N-K configuration is examined in detail. To explain the origin of this regularity, the associated phase space structures were characterized using suitably defined Poincaré surfaces of section, identifying the different resonances between the stretching and bending modes, as a function of excitation energy. The corresponding topology is elucidated by means of periodic orbit analysis.

  7. Supersonic dynamic stability characteristics of a space shuttle orbiter. [wind tunnel tests of scale models

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Boyden, R. P.; Davenport, E. E.

    1976-01-01

    Supersonic forced-oscillation tests of a 0.0165-scale model of a modified 089B Rockwell International shuttle orbiter were conducted in a wind tunnel for several configurations over a Mach range from 1.6 to 4.63. The tests covered angles of attack up to 30 deg. The period and damping of the basic unaugmented vehicle were calculated along the entry trajectory using the measured damping results. Some parameter analysis was made with the measured dynamic derivatives. Photographs of the test configurations and test equipment are shown.

  8. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1992-04-01

    Because dynamic instability is not acceptable for any commercial maglev systems, it is important to consider this phenomenon in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study identifies basic stability characteristics and future research needs of maglev systems.

  9. Polarized-neutron study of spin dynamics in the Kondo insulator YbB12.

    PubMed

    Nemkovski, K S; Mignot, J-M; Alekseev, P A; Ivanov, A S; Nefeodova, E V; Rybina, A V; Regnault, L-P; Iga, F; Takabatake, T

    2007-09-28

    Inelastic neutron scattering experiments have been performed on the archetype compound YbB(12), using neutron polarization analysis to separate the magnetic signal from the phonon background. With decreasing temperature, components characteristic for a single-site spin-fluctuation dynamics are suppressed, giving place to specific, strongly Q-dependent, low-energy excitations near the spin-gap edge. This crossover is discussed in terms of a simple crystal-field description of the incoherent high-temperature state and a predominantly local mechanism for the formation of the low-temperature singlet ground state.

  10. Robust Control Analysis of Hydraulic Turbine Speed

    NASA Astrophysics Data System (ADS)

    Jekan, P.; Subramani, C.

    2018-04-01

    An effective control strategy for the hydro-turbine governor in time scenario is adjective for this paper. Considering the complex dynamic characteristic and the uncertainty of the hydro-turbine governor model and taking the static and dynamic performance of the governing system as the ultimate goal, the designed logic combined the classical PID control theory with artificial intelligence used to obtain the desired output. The used controller will be a variable control techniques, therefore, its parameters can be adaptively adjusted according to the information about the control error signal.

  11. Crystallization Dynamics of Organolead Halide Perovskite by Real-Time X-ray Diffraction.

    PubMed

    Miyadera, Tetsuhiko; Shibata, Yosei; Koganezawa, Tomoyuki; Murakami, Takurou N; Sugita, Takeshi; Tanigaki, Nobutaka; Chikamatsu, Masayuki

    2015-08-12

    We analyzed the crystallization process of the CH3NH3PbI3 perovskite by observing real-time X-ray diffraction immediately after combining a PbI2 thin film with a CH3NH3I solution. A detailed analysis of the transformation kinetics demonstrated the fractal diffusion of the CH3NH3I solution into the PbI2 film. Moreover, the perovskite crystal was found to be initially oriented based on the PbI2 crystal orientation but to gradually transition to a random orientation. The fluctuating characteristics of the crystallization process of perovskites, such as fractal penetration and orientational transformation, should be controlled to allow the fabrication of high-quality perovskite crystals. The characteristic reaction dynamics observed in this study should assist in establishing reproducible fabrication processes for perovskite solar cells.

  12. Inter-Hemispheric Coupling During Recent North Polar Summer Periods as Predicted by MaCWAVE/MIDAS Rocket Data and Traced by TIMED/SABER Measurements

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Feofilov, Artem G.; Kutepov, Alexander A.; Pesnell W. Dean; Schmidlin, Francis J.

    2011-01-01

    In July, 2002, the MaCWAVE-MIDAS Rocket Program was launched from Andoya Rocket Range (ARR) in Norway. Data from these flights demonstrated that the polar summer mesosphere during this period was unusual, at least above ARR. Theoretical studies have since been published that imply that the abnormal characteristics of this polar summer were generated by dynamical processes occurring in the southern polar winter hemisphere. We have used data from the SABER instrument aboard the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite to study these characteristics and compare them with the features observed in the ensuing eight years. For background, the TIMED Satellite was launched on December 7,2001 to study the dynamics and energy of the mesosphere and lower thermosphere. The SABER instrument is a limb scanning infrared radiometer designed to measure temperature of the region as well as a large number of minor constituents. In this study, we review the MaCWAVE rocket results. Next, we investigate the temperature characteristics of the polar mesosphere as a function of spatial and temporal considerations. We have used the most recent SABER dataset (1.07). Weekly averages are used to make comparisons between the winter and summer hemispheres. Furthermore, the data analysis agrees with recent theoretical studies showing that this behavior is a result of anomalous dynamical events in the southern hemisphere. The findings discussed here clearly show the value of scientific rocket flights used in a discovery mode.

  13. Comprehensive helicopter analysis: A state of the art review

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1978-01-01

    An assessment of the status of helicopter theory and analysis is presented. The technology level embodied in available design tools (computer programs) is examined, considering the problem areas of performance, loads and vibration, handling qualities and simulation, and aeroelastic stability. The effectiveness of the present analyses is discussed. The characteristics of the technology in the analyses are reviewed, including the aerodynamics technology, induced velocity and wake geometry, dynamics technology, and machine limitations.

  14. Time Step Considerations when Simulating Dynamic Behavior of High Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabares-Velasco, Paulo Cesar

    2016-09-01

    Building energy simulations, especially those concerning pre-cooling strategies and cooling/heating peak demand management, require careful analysis and detailed understanding of building characteristics. Accurate modeling of the building thermal response and material properties for thermally massive walls or advanced materials like phase change materials (PCMs) are critically important.

  15. Moisture dynamics in masticated fuelbeds: A preliminary analysis

    Treesearch

    Jesse Kreye; J. Morgan Varner

    2007-01-01

    Mastication has become a popular fuels treatment in the Western United States, but predicting subsequent fire behavior and effects has proven difficult. Fire behavior and effects in masticated fuelbeds have been more intense and erratic in comparison with model predictions. While various particle or fuelbed characteristics in these fuels may contribute to the...

  16. Day-Ahead Crude Oil Price Forecasting Using a Novel Morphological Component Analysis Based Model

    PubMed Central

    Zhu, Qing; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations. PMID:25061614

  17. Day-ahead crude oil price forecasting using a novel morphological component analysis based model.

    PubMed

    Zhu, Qing; He, Kaijian; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations.

  18. The dynamics of temperature and light on the growth of phytoplankton.

    PubMed

    Chen, Ming; Fan, Meng; Liu, Rui; Wang, Xiaoyu; Yuan, Xing; Zhu, Huaiping

    2015-11-21

    Motivated by some lab and field observations of the hump shaped effects of water temperature and light on the growth of phytoplankton, a bottom-up nutrient phytoplankton model, which incorporates the combined effects of temperature and light, is proposed and analyzed to explore the dynamics of phytoplankton bloom. The population growth model reasonably captures such observed dynamics qualitatively. An ecological reproductive index is defined to characterize the growth of the phytoplankton which also allows a comprehensive analysis of the role of temperature and light on the growth and reproductive characteristics of phytoplankton in general. The model provides a framework to study the mechanisms of phytoplankton dynamics in shallow lake and may even be employed to study the controlled phytoplankton bloom. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. ESR and PALS detection of the dynamic crossover in the supercooled liquid states of short and medium-sized n-alkanes

    NASA Astrophysics Data System (ADS)

    Bartoš, J.; Zgardzinska, B.; Švajdlenková, H.; Lukešová, M.; Zaleski, R.

    2018-05-01

    A joint study of the spin probe TEMPO dynamics by ESR and the annihilation rate of ortho-positronium by PALS in four short-and medium-sized n-alkanes is presented. In addition to the usually observed changes in both the reorientation dynamics and size of free volumes at the temperature of melting, Tm, and solid-solid phase transition, Tss, an additional coincidence between the characteristic ESR and PALS temperatures TX1fast ≅ Tb1sol < Tm, Tss was found. The phenomenological analysis of the viscosity data of n-alkanes using the power law equation indicates a presence of locally disordered regions in which the dynamic change occurs at the crossover temperature TX ≅ TX1fast ≅ Tb1sol.

  20. Collective Behavior of Camphor Floats Migrating on the Water Surface

    NASA Astrophysics Data System (ADS)

    Nishimori, Hiraku; Suematsu, Nobuhiko J.; Nakata, Satoshi

    2017-10-01

    As simple and easily controllable objects among various self-propelled particles, camphor floats on the water surface have been widely recognized. In this paper, we introduce characteristic behaviors and discuss the background mechanism of camphor floats on water, both in isolated and non-isolated conditions. In particular, we focus on: (i) the transition of dynamical characters through bifurcations exhibited by systems with small number of camphor floats and (ii) the emergence of a rich variety of complex dynamics observed in systems with large number camphor floats, and attempt to elucidate these phenomena through mathematical modeling as well as experimental analysis. Finally, we discuss the connection of the dynamics of camphor floats to that of a wider class of complex and sophisticated dynamics exhibited by various types of self-propelled particles.

  1. Lattice dynamics of the rare-earth element samarium

    NASA Astrophysics Data System (ADS)

    Bauder, Olga; Piekarz, Przemysław; Barla, Alessandro; Sergueev, Ilya; Rüffer, Rudolf; ŁaŻewski, Jan; Baumbach, Tilo; Parlinski, Krzysztof; Stankov, Svetoslav

    2013-12-01

    The lattice dynamics of samarium is determined by in situ low-temperature nuclear inelastic scattering on a single crystalline (0001)Sm film, a polycrystalline Sm foil, and by first-principles theory. The ab initio calculated phonon dispersion relations and phonon density of states for the Sm-type structure and the double hexagonal-close-packed (dhcp) lattice, characteristic for light lanthanides, are compared. The dhcp unit cell, which is a factor of 2.24 smaller in height, exhibits more pronounced vibrational anisotropy in comparison to the Sm-type structure. The analysis reveals a minor influence of the spin-orbit coupling in the Sm atom on the lattice dynamics. A broadening of the longitudinal peak, not found in the calculations, suggests the influence of electron correlations on lattice dynamics in metallic samarium.

  2. Dynamic Characteristics of The DSI-Type Constant-Flow Valves

    NASA Astrophysics Data System (ADS)

    Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han

    Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.

  3. Molecular dynamics studies of polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.

    2013-10-01

    Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.

  4. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  5. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  6. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  7. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.

    PubMed

    Beltrame, Thomas; Amelard, Robert; Wong, Alexander; Hughson, Richard L

    2018-02-01

    Physical activity levels are related through algorithms to the energetic demand, with no information regarding the integrity of the multiple physiological systems involved in the energetic supply. Longitudinal analysis of the oxygen uptake (V̇o 2 ) by wearable sensors in realistic settings might permit development of a practical tool for the study of the longitudinal aerobic system dynamics (i.e., V̇o 2 kinetics). This study evaluated aerobic system dynamics based on predicted V̇o 2 data obtained from wearable sensors during unsupervised activities of daily living (μADL). Thirteen healthy men performed a laboratory-controlled moderate exercise protocol and were monitored for ≈6 h/day for 4 days (μADL data). Variables derived from hip accelerometer (ACC HIP ), heart rate monitor, and respiratory bands during μADL were extracted and processed by a validated random forest regression model to predict V̇o 2 . The aerobic system analysis was based on the frequency-domain analysis of ACC HIP and predicted V̇o 2 data obtained during μADL. Optimal samples for frequency domain analysis (constrained to ≤0.01 Hz) were selected when ACC HIP was higher than 0.05 g at a given frequency (i.e., participants were active). The temporal characteristics of predicted V̇o 2 data during μADL correlated with the temporal characteristics of measured V̇o 2 data during laboratory-controlled protocol ([Formula: see text] = 0.82, P < 0.001, n = 13). In conclusion, aerobic system dynamics can be investigated during unsupervised activities of daily living by wearable sensors. Although speculative, these algorithms have the potential to be incorporated into wearable systems for early detection of changes in health status in realistic environments by detecting changes in aerobic response dynamics. NEW & NOTEWORTHY The early detection of subclinical aerobic system impairments might be indicative of impaired physiological reserves that impact the capacity for physical activity. This study is the first to use wearable sensors in unsupervised activities of daily living in combination with novel machine learning algorithms to investigate the aerobic system dynamics with the potential to contribute to models of functional health status and guide future individualized health care in the normal population.

  8. Historical Delineation of Landscape Units Using Physical Geographic Characteristics and Land Use/Cover Change

    NASA Astrophysics Data System (ADS)

    Campos-Campos, Oswaldo; Cruz-Cárdenas, Gustavo; Aquino, Roque Juan Carrasco; Moncayo-Estrada, Rodrigo; Machuca, Martha Alicia Velázquez; Meléndez, Luis Arturo Ávila

    2018-03-01

    Landscape units are conceived as a part of the territory that share similar physical and geographic characteristics. Their delineation can contribute to identify the physical and social dynamics that emerge in the spatial environment and to propose strategies of planning and management of the territory. The main objective was to make a historical delineation of landscape units in the Duero river basin that demonstrate the dynamics of changes in the territory, the description of the actors involved, and the affectations in the natural and social environment. We analyzed the vegetation change and urban growth from 1983 to 2014, incorporating climatic, edaphic, and topographic variables. A Principal Component Analysis was performed with the information and results were used in Maximum Likelihood procedure to define different clusters based on environmental characteristics. We defined five categories from the Landsat images. Results showed landscape units with homogeneous environmental characteristics and some differences in the units' delineation were mainly influenced by political and socioeconomic factors. Temporally there was an increased tendency of landscape units, three in 1983, nine in 1990, 1995, 2000 and 2011, and eight in 2014. This increase resulted from territory fragmentation because of berries and avocado cultivars expansion over wooded area.

  9. Effect of hybrid composite materials on the dynamic characteristics of helicopter blades

    NASA Astrophysics Data System (ADS)

    Pak, E. G.; Stekol'nikov, V. N.; Ganyushkin, Yu. P.; Ivannikova, R. V.; Kestel'man, V. N.

    1982-05-01

    The strengthening of glass-reinforced plastic by high-modulus carbon fibers makes it possible to vary differentially the stiffness characteristics of existing blades, and, thereby, improve the dynamic characteristics of helicopter rotors.

  10. Fast characterization of cheeses by dynamic headspace-mass spectrometry.

    PubMed

    Pérès, Christophe; Denoyer, Christian; Tournayre, Pascal; Berdagué, Jean-Louis

    2002-03-15

    This study describes a rapid method to characterize cheeses by analysis of their volatile fraction using dynamic headspace-mass spectrometry. Major factors governing the extraction and concentration of the volatile components were first studied. These components were extracted from the headspace of the cheeses in a stream of helium and concentrated on a Tenax TA trap. They were then desorbed by heating and injected directly into the source of a mass spectrometer via a short deactivated silica transfer line. The mass spectra of the mixture of volatile components were considered as fingerprints of the analyzed substances. Forward stepwise factorial discriminant analysis afforded a limited number of characteristic mass fragments that allowed a good classification of the batches of cheeses studied.

  11. Dynamical mechanism in aero-engine gas path system using minimum spanning tree and detrended cross-correlation analysis

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Zhang, Hong; Gao, You

    2017-01-01

    Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.

  12. Gait Characteristic Analysis and Identification Based on the iPhone's Accelerometer and Gyrometer

    PubMed Central

    Sun, Bing; Wang, Yang; Banda, Jacob

    2014-01-01

    Gait identification is a valuable approach to identify humans at a distance. In this paper, gait characteristics are analyzed based on an iPhone's accelerometer and gyrometer, and a new approach is proposed for gait identification. Specifically, gait datasets are collected by the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets are processed to extract gait characteristic parameters which include gait frequency, symmetry coefficient, dynamic range and similarity coefficient of characteristic curves. Finally, a weighted voting scheme dependent upon the gait characteristic parameters is proposed for gait identification. Four experiments are implemented to validate the proposed scheme. The attitude and acceleration solutions are verified by simulation. Then the gait characteristics are analyzed by comparing two sets of actual data, and the performance of the weighted voting identification scheme is verified by 40 datasets of 10 subjects. PMID:25222034

  13. Spatiotemporal chaos in the dynamics of buoyantly and diffusively unstable chemical fronts

    NASA Astrophysics Data System (ADS)

    Baroni, M. P. M. A.; Guéron, E.; De Wit, A.

    2012-03-01

    Nonlinear dynamics resulting from the interplay between diffusive and buoyancy-driven Rayleigh-Taylor (RT) instabilities of autocatalytic traveling fronts are analyzed numerically for various values of the relevant parameters. These are the Rayleigh numbers of the reactant A and autocatalytic product B solutions as well as the ratio D =DB/DA between the diffusion coefficients of the two key chemical species. The interplay between the coarsening dynamics characteristic of the RT instability and the constant short wavelength modulation of the diffusive instability can lead in some regimes to complex dynamics dominated by irregular succession of birth and death of fingers. By using spectral entropy measurements, we characterize the transition between order and spatial disorder in this system. The analysis of the power spectrum and autocorrelation function, moreover, identifies similarities between the various spatial patterns. The contribution of the diffusive instability to the complex dynamics is discussed.

  14. Evaluation of some significant issues affecting trajectory and control management for air-breathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    Horizontal takeoff airbreathing-propulsion launch vehicles require near-optimal guidance and control which takes into account performance sensitivities to atmospheric characteristics while satisfying physically-derived operational constraints. A generic trajectory/control analysis tool that deepens insight into these considerations has been applied to two versions of a winged-cone vehicle model. Information that is critical to the design and trajectory of these vehicles is derived, and several unusual characteristics of the airbreathing propulsion model are shown to have potentially substantial effects on vehicle dynamics.

  15. Pupil movements to light and accommodative stimulation - A comparative study.

    NASA Technical Reports Server (NTRS)

    Semmlow, J.; Stark, L.

    1973-01-01

    Isolation and definition of specific response components in pupil reflexes through comparison of the dynamic features of light-induced and accommodation-induced pupil movements. A quantitative analysis of the behavior of the complex nonlinear pupil responses reveals the presence of two independent nonlinear characteristics: a range-dependent gain and a direction dependence or movement asymmetry. These nonlinear properties are attributed to motor processes because they are observable in pupil responses to both light and accommodation stimuli. The possible mechanisms and consequences of these pupil response characteristics are quantitatively defined and discussed.

  16. Innovative culture in long-term care settings: the influence of organizational characteristics.

    PubMed

    Nieboer, Anna P; Strating, Mathilde M H

    2012-01-01

    Innovative cultures have been reported to enhance the creation and implementation of new ideas and working methods in organizations. Although there is considerable research on the impact of organizational context on the innovativeness of organizations, the same is not the case for research on the organizational characteristics responsible for an innovative culture in (long-term) care settings. The aim of this study was to identify organizational characteristics that explain innovative culture in the (long-term) care sector. A large cross-sectional study in Dutch long-term care-nursing homes and/or elderly homes, care organizations for the handicapped, and long-term mental health care organizations-was conducted. A total of 432 managers and care professionals in 37 organizations participated. The Group Innovation Inventory was used to measure innovative culture in long-term care organizations. Structural characteristics of the organization were centralization and formalization, environmental dynamism and competitiveness, internal and external exchange of information, leadership style, commitment to quality improvement, and the organization's innovative strategy. The determinants of an innovative culture were estimated with a two-level random-intercepts and fixed-slopes model. Multilevel regression models were used to account for the organizational clustering of individuals within the 37 care organizations. Environmental dynamism, job codification, formal external exchange of information, transformational leadership, commitment to quality, and an exploratory and exploitative innovation strategy were all significantly correlated with an innovative culture in the multivariate multilevel analysis; the other characteristics were not. The explained organizational- and individual-level variance was 52.5% and 49.2%, respectively. The results point to substantial differences in innovative cultures between and within care organizations that can, in part, be explained by organizational characteristics. Efforts must be made to ensure that organizational characteristics such as environmental dynamism do not hamper the development of innovative cultures in long-term care organizations. Organizations' human resource practices and knowledge management are particularly promising in strengthening innovative cultures.

  17. Dynamic Changes in Neutral and Acidic Ginsenosides with Different Cultivation Ages and Harvest Seasons: Identification of Chemical Characteristics for Panax ginseng Quality Control.

    PubMed

    Liu, Zhi; Wang, Chong-Zhi; Zhu, Xing-You; Wan, Jin-Yi; Zhang, Jing; Li, Wei; Ruan, Chang-Chun; Yuan, Chun-Su

    2017-05-04

    In this study, dynamic changes in ginsenoside content and ratios in the Panax ginseng root were investigated with different cultivation ages and different collection months, using high-performance liquid chromatography (HPLC). Our data indicate that changes in ginsenoside Ro and malonyl ginsenosides content were dependent on the ginseng cultivation age ( p < 0.05); especially, the Ro content varied from 0.16 to 4.91 mg/g, with a difference about 30-fold. Further, we found that the samples of 5 and 6-year-old P. ginseng had high Ro/Re ratio, whereas two and three-year-old P. ginseng possessed low Ro/Re ratio. Thus, the Ro/Re ratio can be used as a characteristic marker for differentiating the age of the root. The relative content of ginsenosides Rg₁ and Re were affected by the ginseng's harvest season. The Re content was higher than the Rg₁ content in May and June, but lower than the Rg₁ content from August to October. Thus, the Rg₁/Re ratio can be used as a characteristic marker for differentiating the ginseng's harvest seasons. These results indicate that the chemical characteristics of P. ginseng at different cultivation ages and harvest seasons are clearly different, which may cause differences in pharmacological activities and therapeutic effects. In addition, we developed HPLC coupled with hierarchical cluster analysis and principal component analysis methods to identify the cultivation age and harvest season of P. ginseng using characteristic ginsenosides. Our results showed that this method can be used to discriminate the cultivation age and harvest season of P. ginseng.

  18. Relationships of bone characteristics in MYO9B deficient femurs.

    PubMed

    Kim, Do-Gyoon; Jeong, Yong-Hoon; McMichael, Brooke K; Bähler, Martin; Bodnyk, Kyle; Sedlar, Ryan; Lee, Beth S

    2018-08-01

    The objective of this study was to examine relationships among a variety of bone characteristics, including volumetric, mineral density, geometric, dynamic mechanical analysis, and static fracture mechanical properties. As MYO9B is an unconventional myosin in bone cells responsible for normal skeletal growth, bone characteristics of wild-type (WT), heterozygous (HET), and MYO9B knockout (KO) mice groups were compared as an animal model to express different bone quantity and quality. Forty-five sex-matched 12-week-old mice were used in this study. After euthanization, femurs were isolated and scanned using microcomputed tomography (micro-CT) to assess bone volumetric, tissue mineral density (TMD), and geometric parameters. Then, a non-destructive dynamic mechanical analysis (DMA) was performed by applying oscillatory bending displacement on the femur. Finally, the same femur was subject to static fracture testing. KO group had significantly lower length, bone mineral density (BMD), bone mass and volume, dynamic and static stiffness, and strength than WT and HET groups (p < 0.019). On the other hand, TMD parameters of KO group were comparable with those of WT group. HET group showed volumetric, geometric, and mechanical properties similar to WT group, but had lower TMD (p < 0.014). Non-destructive micro-CT and DMA parameters had significant positive correlations with strength (p < 0.015) without combined effect of groups and sex on the correlations (p > 0.077). This comprehensive characterization provides a better understanding of interactive behavior between the tissue- and organ-level of the same femur. The current findings elucidate that MYO9B is responsible for controlling bone volume to determine the growth rate and fracture risk of bone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effects of stressor characteristics on early warning signs of critical transitions and "critical coupling" in complex dynamical systems.

    PubMed

    Blume, Steffen O P; Sansavini, Giovanni

    2017-12-01

    Complex dynamical systems face abrupt transitions into unstable and catastrophic regimes. These critical transitions are triggered by gradual modifications in stressors, which push the dynamical system towards unstable regimes. Bifurcation analysis can characterize such critical thresholds, beyond which systems become unstable. Moreover, the stochasticity of the external stressors causes small-scale fluctuations in the system response. In some systems, the decomposition of these signal fluctuations into precursor signals can reveal early warning signs prior to the critical transition. Here, we present a dynamical analysis of a power system subjected to an increasing load level and small-scale stochastic load perturbations. We show that the auto- and cross-correlations of bus voltage magnitudes increase, leading up to a Hopf bifurcation point, and further grow until the system collapses. This evidences a gradual transition into a state of "critical coupling," which is complementary to the established concept of "critical slowing down." Furthermore, we analyze the effects of the type of load perturbation and load characteristics on early warning signs and find that gradient changes in the autocorrelation provide early warning signs of the imminent critical transition under white-noise but not for auto-correlated load perturbations. Furthermore, the cross-correlation between all voltage magnitude pairs generally increases prior to and beyond the Hopf bifurcation point, indicating "critical coupling," but cannot provide early warning indications. Finally, we show that the established early warning indicators are oblivious to limit-induced bifurcations and, in the case of the power system model considered here, only react to an approaching Hopf bifurcation.

  20. Observing Consistency in Online Communication Patterns for User Re-Identification.

    PubMed

    Adeyemi, Ikuesan Richard; Razak, Shukor Abd; Salleh, Mazleena; Venter, Hein S

    2016-01-01

    Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas.

  1. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  2. Analysis of migrating diurnal tides detected in FORMOSAT-3/COSMIC temperature data

    NASA Astrophysics Data System (ADS)

    Pirscher, B.; Foelsche, U.; Borsche, M.; Kirchengast, G.; Kuo, Y.-H.

    2010-07-01

    The characteristics of atmospheric tides in the upper troposphere and lower stratosphere region are investigated using radio occultation (RO) measurements performed by the Formosa Satellite Mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) satellite constellation and compared to tides observed in short-term forecast model fields of European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP). Spectral analysis of 2 years of monthly data (2007 to 2008) yields the migrating diurnal tide to be the largest spectral component. This diurnal tide shows similar temporal, latitudinal, and altitudinal characteristics in all data sets equatorward of 50°. Beyond 50°, COSMIC local time sampling is insufficient within 1 month, which prevents space-time spectral analysis from isolating atmospheric waves. Diurnal tides of temperature are characterized by largest amplitudes in the tropics (0.8 K to 1.0 K at an altitude of 30 km). Amplitudes of diurnal tides analyzed in model data are more pronounced by ˜20%. An annual cycle of the amplitudes, characteristically linked to the movement of the intertropical convergence zone, is clearly revealed. Tropical diurnal phase features downward progression of waves fronts with a vertical wavelength of 20 km. Extratropical diurnal tides are most pronounced in the model data sets with amplitudes of up to 0.5 K at 30 km. In this analysis we also see the influence of high-altitude initialization of RO data by background information in using data processed by two different centers (University Corporation for Atmospheric Research (UCAR) and Wegener Center (WEGC)). UCAR data, initialized by a climatology without tidal information, exhibit no appreciable extratropical diurnal tides, while WEGC data, initialized by ECMWF forecasts, show more pronounced ones. Overall the results underpin the utility of the local-time resolving COSMIC RO constellation data for monitoring diurnal tide dynamics in the stratosphere. The agreement between observational and model data further confirms that the tidal dynamics is appropriately captured in the models, which is important for other (middle/upper) atmosphere models relying on ECMWF or NCEP dynamics.

  3. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  4. Conceptual design and analysis of a dynamic scale model of the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Davis, D. A.; Gronet, M. J.; Tan, M. K.; Thorne, J.

    1994-01-01

    This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.

  5. Efficient digital implementation of a conductance-based globus pallidus neuron and the dynamics analysis

    NASA Astrophysics Data System (ADS)

    Yang, Shuangming; Wei, Xile; Deng, Bin; Liu, Chen; Li, Huiyan; Wang, Jiang

    2018-03-01

    Balance between biological plausibility of dynamical activities and computational efficiency is one of challenging problems in computational neuroscience and neural system engineering. This paper proposes a set of efficient methods for the hardware realization of the conductance-based neuron model with relevant dynamics, targeting reproducing the biological behaviors with low-cost implementation on digital programmable platform, which can be applied in wide range of conductance-based neuron models. Modified GP neuron models for efficient hardware implementation are presented to reproduce reliable pallidal dynamics, which decode the information of basal ganglia and regulate the movement disorder related voluntary activities. Implementation results on a field-programmable gate array (FPGA) demonstrate that the proposed techniques and models can reduce the resource cost significantly and reproduce the biological dynamics accurately. Besides, the biological behaviors with weak network coupling are explored on the proposed platform, and theoretical analysis is also made for the investigation of biological characteristics of the structured pallidal oscillator and network. The implementation techniques provide an essential step towards the large-scale neural network to explore the dynamical mechanisms in real time. Furthermore, the proposed methodology enables the FPGA-based system a powerful platform for the investigation on neurodegenerative diseases and real-time control of bio-inspired neuro-robotics.

  6. Dynamic performance and mechanical model analysis of a shear thickening fluid damper

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; He, Yonghui; Yao, Hongliang; Wen, Bangchun

    2018-07-01

    This paper presents an experimental study of the dynamic performance of a self-developed shear thickening fluid (STF) damper and its mechanical model was proposed by nonlinear fitting. First, STF samples with different mass fraction and dispersion medium were fabricated by nano fumed silica and polyethylene glycol, and its rheological properties were investigated by a rheometer. Second, a smart STF damper was developed and manufactured. Its dynamic properties were experimentally investigated by establishing a vibration test bench, and results indicated that the STF damper can output variable damping force by controlling the loading frequency, loading amplitude and fluid gap. Third, the Bouc–Wen model was proposed to address the dynamic properties of STF damper, and mechanical model analysis was carried out by comparing several fitting functions. It verified that the Bouc–Wen hysteresis model can be better used to describe the nonlinear stiffness, nonlinear damping and rate-dependence characteristics of the STF damper. All these investigations can offer an effective guidance for further theoretical and application study of the smart STF damper in energy dissipation fields.

  7. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    NASA Technical Reports Server (NTRS)

    Kreshock, Andrew R.; Thornburgh, Robert P.; Wilbur, Matthew L.

    2017-01-01

    This paper presents the results from an ongoing effort to produce improved correlation between analytical hub force and moment prediction and those measured during wind-tunnel testing on the Aeroelastic Rotor Experimental System (ARES), a conventional rotor testbed commonly used at the Langley Transonic Dynamics Tunnel (TDT). A frequency-dependent transformation between loads at the rotor hub and outputs of the testbed balance is produced from frequency response functions measured during vibration testing of the system. The resulting transformation is used as a dynamic calibration of the balance to transform hub loads predicted by comprehensive analysis into predicted balance outputs. In addition to detailing the transformation process, this paper also presents a set of wind-tunnel test cases, with comparisons between the measured balance outputs and transformed predictions from the comprehensive analysis code CAMRAD II. The modal response of the testbed is discussed and compared to a detailed finite-element model. Results reveal that the modal response of the testbed exhibits a number of characteristics that make accurate dynamic balance predictions challenging, even with the use of the balance transformation.

  8. Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species.

    PubMed

    Jiang, Tao; Chen, Xueshuang; Wang, Dingyong; Liang, Jian; Bai, Weiyang; Zhang, Cheng; Wang, Qilei; Wei, Shiqiang

    2018-01-15

    Dissolved organic matter (DOM) plays an important environmental and ecological role in inland aquatic systems, including lakes. In this study, using fluorescence analysis, we investigated the seasonal dynamics of DOM characteristics in Changshou Lake, which is a typical inland lake in the Three Gorges Reservoir (TGR) area. We also discuss the environmental implications of DOM for mercury (Hg) dynamics. Based on the origins of two end-members, the variations in DOM observed in this study in Changshou Lake suggest that hydrological processes (e.g., terrestrial inputs resulting from runoff and humic-like component residences) and biological activities (e.g., microbial and algae growth) are the two main principal components controlling the seasonal dynamics of DOM characteristics. Furthermore, the dynamics of dissolved Hg co-varied with variations in DOM properties, rather than with dissolved organic carbon (DOC) concentrations. This indicates that the previously reported simple correlations between DOC and Hg were not comprehensive and may lead to misunderstanding the interactions between DOM and Hg. Therefore, we recommend that when using DOM-Hg correlations to evaluate the role of DOM in the environmental fate of Hg, especially in field investigations of the spatial and temporal distribution of Hg, the properties of DOM must be taken into account. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Transient analysis using conical shell elements

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Goeller, J. E.; Messick, W. T.

    1973-01-01

    The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements.

  10. Shuttle structural dynamics characteristics: The analysis and verification

    NASA Technical Reports Server (NTRS)

    Modlin, C. T., Jr.; Zupp, G. A., Jr.

    1985-01-01

    The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.

  11. Thermodynamic performance analysis of ramjet engine at wide working conditions

    NASA Astrophysics Data System (ADS)

    Ou, Min; Yan, Li; Tang, Jing-feng; Huang, Wei; Chen, Xiao-qian

    2017-03-01

    Although ramjet has the advantages of high-speed flying and higher specific impulse, the performance parameters will decline seriously with the increase of flight Mach number and flight height. Therefore, the investigation on the thermodynamic performance of ramjet is very crucial for broadening the working range. In the current study, a typical ramjet model has been employed to investigate the performance characteristics at wide working conditions. First of all, the compression characteristic analysis is carried out based on the Brayton cycle. The obtained results show that the specific cross-section area (A2 and A5) and the air-fuel ratio (f) have a great influence on the ramjet performance indexes. Secondly, the thermodynamic calculation process of ramjet is given from the view of the pneumatic thermal analysis. Then, the variable trends of the ramjet performance indexes with the flow conditions, the air-fuel ratio (f), the specific cross-sectional area (A2 and A5) under the fixed operating condition, equipotential dynamic pressure condition and variable dynamic pressure condition have been discussed. Finally, the optimum value of the specific cross-sectional area (A5) and the air-fuel ratio (f) of the ramjet model at a fixed work condition (Ma=3.5, H=12 km) are obtained.

  12. Hybrid modeling and empirical analysis of automobile supply chain network

    NASA Astrophysics Data System (ADS)

    Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying

    2017-05-01

    Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.

  13. Analysis of the Electrohydrodynamic Flow in a Symmetric System of Electrodes by the Method of Dynamic Current-Voltage Characteristics

    NASA Astrophysics Data System (ADS)

    Stishkov, Yu. K.; Zakir'yanova, R. E.

    2018-04-01

    We have solved the problem of injection-type through electrohydrodynamic (EHD) flow in a closed channel. We have considered a model of a liquid with four types of ions. It is shown that a through EHD flow without internal vortices in the electrode gap is formed for the ratio 2 : 1 of the initial injection current from the electrodes in the channel. The structure of the flow in different parts of the channel and the integral characteristics of the flow have been analyzed. It is shown that for a quadratic function of injection at the electrodes, the current-voltage characteristic of the flow is also quadratic.

  14. Characterization of the space shuttle reaction control system engine

    NASA Technical Reports Server (NTRS)

    Wilson, M. S.; Stechman, R. C.; Edelman, R. B.; Fortune, O. F.; Economos, C.

    1972-01-01

    A computer program was developed and written in FORTRAN 5 which predicts the transient and steady state performance and heat transfer characteristics of a pulsing GO2/GH2 rocket engine. This program predicts the dynamic flow and ignition characteristics which, when combined in a quasi-steady state manner with the combustion and mixing analysis program, will provide the thrust and specific impulse of the engine as a function of time. The program also predicts the transient and steady state heat transfer characteristics of the engine using various cooling concepts. The computer program, test case, and documentation are presented. The program is applicable to any system capable of utilizing the FORTRAN 4 or FORTRAN 5 language.

  15. Autonomous and driven dynamics of spin torque nano-oscillators

    NASA Astrophysics Data System (ADS)

    Urazhdin, Sergei

    2012-02-01

    Understanding the dynamical properties of autonomous spin torque nano-oscillators (STNO) and their response to external perturbations is important for their applications as nanoscale microwave sources. We used spectroscopic measurements to study the dynamical characteristics of nanopillar- and point contact-based STNOs incorporating a microstrip in close proximity to the active magnetic layer. By applying microwave current at frequency fext to the microstrip, we were able to generate large microwave fields of more than 30 Oe rms at the location of STNO. We demonstrate that for a wide range of fext, STNO exhibits multiple synchronization regimes with integer and non-integer rational ratios between fext and the oscillation frequency f. We show that the synchronization ranges are determined by the symmetry of the oscillation orbit and the orientation of the driving field relative to the symmetry axis of the orbit. We observe synchronization hysteresis, i.e. a dependence of the synchronization limits on the dynamical history caused by the nonlinearity of STNO. We also show that the oscillation can be parametrically excited in the subcritical regime of STNO by a microwave field at twice the frequency of the oscillation. By measuring the threshold and the frequency range of parametric excitation, we determine damping, spin-polarization efficiency, and coupling to the microwave signal. In addition, by measuring the frequency range of parametric synchronization in the auto-oscillation regime, we determine the dynamic nonlinearity of the nanomagnet. Thus, analysis of the driven oscillations provides complete information about the dynamical characteristics of STNO. Finally, we discuss several unusual dynamical behaviors of STNO caused by their strong nonlinearity.

  16. Correlation of analytical and experimental hot structure vibration results

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Deaton, Vivian C.

    1993-01-01

    High surface temperatures and temperature gradients can affect the vibratory characteristics and stability of aircraft structures. Aircraft designers are relying more on finite-element model analysis methods to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope. Analysis codes that predict these thermal effects must be correlated and verified with experimental data. Experimental modal data for aluminum, titanium, and fiberglass plates heated at uniform, nonuniform, and transient heating conditions are presented. The data show the effect of heat on each plate's modal characteristics, a comparison of predicted and measured plate vibration frequencies, the measured modal damping, and the effect of modeling material property changes and thermal stresses on the accuracy of the analytical results at nonuniform and transient heating conditions.

  17. Ecohydrology of dry regions of the United States: Precipitation pulses and intraseasonal drought

    Treesearch

    William K. Lauenroth; John B. Bradford

    2009-01-01

    Distribution of precipitation event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosystem dynamics in these regions. Our objective for this paper was to present a comprehensive analysis of the daily precipitation regimes of arid and...

  18. Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions

    NASA Astrophysics Data System (ADS)

    Zainab Nik Azizan, Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar; Abdullah, Junaidah

    2018-03-01

    This paper discovers the incremental dynamic analysis (IDA) of concrete gravity dam under single and repeated earthquake loadings to identify the limit state of the dam. Seven ground motions with horizontal and vertical direction as seismic input considered in the nonlinear dynamic analysis based on the real repeated earthquake in the worldwide. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. The scaled was depends on the fundamental period, T1 of the dam. The Koyna dam has been selected as a case study for the purpose of the analysis by assuming that no sliding and rigid foundation, has been estimated. IDA curves for Koyna dam developed for single and repeated ground motions and the performance level of the dam identifies. The IDA curve of repeated ground motion shown stiffer rather than single ground motion. The ultimate state displacement for a single event is 45.59mm and decreased to 39.33mm under repeated events which are decreased about 14%. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.

  19. Prediction of dynamic and aerodynamic characteristics of the centrifugal fan with forward curved blades

    NASA Astrophysics Data System (ADS)

    Polanský, Jiří; Kalmár, László; Gášpár, Roman

    2013-12-01

    The main aim of this paper is determine the centrifugal fan with forward curved blades aerodynamic characteristics based on numerical modeling. Three variants of geometry were investigated. The first, basic "A" variant contains 12 blades. The geometry of second "B" variant contains 12 blades and 12 semi-blades with optimal length [1]. The third, control variant "C" contains 24 blades without semi-blades. Numerical calculations were performed by CFD Ansys. Another aim of this paper is to compare results of the numerical simulation with results of approximate numerical procedure. Applied approximate numerical procedure [2] is designated to determine characteristics of the turbulent flow in the bladed space of a centrifugal-flow fan impeller. This numerical method is an extension of the hydro-dynamical cascade theory for incompressible and inviscid fluid flow. Paper also partially compares results from the numerical simulation and results from the experimental investigation. Acoustic phenomena observed during experiment, during numerical simulation manifested as deterioration of the calculation stability, residuals oscillation and thus also as a flow field oscillation. Pressure pulsations are evaluated by using frequency analysis for each variant and working condition.

  20. Anomalous Photovoltaic Response of Graphene-on-GaN Schottky Photodiodes.

    PubMed

    Lee, Jae Hyung; Lee, Won Woo; Yang, Dong Won; Chang, Won Jun; Kwon, Sun Sang; Park, Won Il

    2018-04-25

    Graphene has attracted great attention as an alternative to conventional metallic or transparent conducting electrodes. Despite its similarities with conventional electrodes, recent studies have shown that a single-atom layer of graphene possesses unique characteristics, such as a tunable work function and transparencies for electric potential, reactivity, and wetting. Nevertheless, a systematic analysis of graphene and semiconductor junction characteristics has not yet been carried out. Here, we report the photoresponse characteristics of graphene-on-GaN Schottky junction photodiodes (Gr-GaN SJPDs), showing a typical rectifying behavior and distinct photovoltaic and photoelectric responses. Following the initial abrupt response to UV illumination, the Gr-GaN SJPDs exhibited a distinct difference in photocarrier dynamics depending on the applied bias voltage, which is characterized by either a negative or positive change in photocurrent with time. We propose underlying mechanisms for the anomalous photocarrier dynamics based on the interplay between electrostatic molecular interactions over the one-atom-thick graphene and GaN junction and trapped photocarriers at the defect states in the GaN thin film.

  1. Smart Kirigami open honeycombs in shape changing actuation and dynamics

    NASA Astrophysics Data System (ADS)

    Neville, R. M.; Scarpa, F.; Leng, J.

    2017-04-01

    Kirigami is the ancient Japanese art of cutting and folding paper, widespread in Asia since the 17th century. Kirigami offers a broader set of geometries and topologies than classical fold/valleys Origami, because of the presence of cuts. Moreover, Kirigami can be readily applied to a large set of composite and smart 2D materials, and can be used to up-scaled productions with modular molding. We describe the manufacturing and testing of a topology of Kirigami cellular structures defined as Open Honeycombs. Open Honeycombs (OHs) can assume fully closed shape and be alike classical hexagonal centresymmetric honeycombs, or can vary their morphology by tuning the opening angle and rotational stiffness of the folds. We show the performance of experimental PEEK OHs with cable actuation and morphing shape characteristics, and the analogous morphing behavior of styrene SMPs under combined mechanical and thermal loading. We also show the dynamic (modal analysis) behavior of OHs configurations parameterized against their geometry characteristics, and the controllable modal density characteristics that one could obtain by tuning the topology and folding properties.

  2. Definition of Forces on Turbomachinery Rotors. Task B Report: Dynamic Analysis of Rotors

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1983-01-01

    The rotordynamic characteristics of turbomachinery are known to depend on the forces developed due to relative motion between the rotor and the housing. For example, the critical speed locations generally depend on the bearing stiffnesses, seal dampling influences rotor stability and bearing reaction amplitudes near critical speeds, etc. A systematic examination of the influence of changes in the forces acting on rotors is studied. More specifically, the sensitivity of the rotordynamic characteristics to changes in rotor forces is analyzed. Rotordynamic characteristics of the HPOTP (High Pressure Oxygen Turbopump) and HPFTP (High Pressure Fuel Turbopump) of the SSME (Space Shuttle Main Engine) are investigated. Because of their markedly different rotordynamic characteristics, these units are considered to be representative of a range of possible future liquid rocket engine turbomachinery.

  3. Analysis of Petal Rotation Trajectory Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Buffington, Brent B.

    2014-01-01

    In this study, the characteristics of petal rotation trajectories are explored in both the two-body and circular restricted three-body problem (CRTBP) models. Petal rotation trajectories alternate long and short resonances of different kinds to rotate the line of apsides. They are typically computed using the patched conic model, and they are used in a number of different missions and mission concepts including Cassini, JUICE, and Europa mission concepts. Petal rotation trajectories are first analyzed here using the patched conic model to quantify their characteristics and search for cases with fast rotation of the line of apsides. When they are computed in the CRTBP, they are unstable periodic orbits with corresponding stable and unstable manifolds. The characteristics of these orbits are explored from a dynamical systems perspective in the second phase of the study.

  4. A system framework of inter-enterprise machining quality control based on fractal theory

    NASA Astrophysics Data System (ADS)

    Zhao, Liping; Qin, Yongtao; Yao, Yiyong; Yan, Peng

    2014-03-01

    In order to meet the quality control requirement of dynamic and complicated product machining processes among enterprises, a system framework of inter-enterprise machining quality control based on fractal was proposed. In this system framework, the fractal-specific characteristic of inter-enterprise machining quality control function was analysed, and the model of inter-enterprise machining quality control was constructed by the nature of fractal structures. Furthermore, the goal-driven strategy of inter-enterprise quality control and the dynamic organisation strategy of inter-enterprise quality improvement were constructed by the characteristic analysis on this model. In addition, the architecture of inter-enterprise machining quality control based on fractal was established by means of Web service. Finally, a case study for application was presented. The result showed that the proposed method was available, and could provide guidance for quality control and support for product reliability in inter-enterprise machining processes.

  5. Dynamics of social contagions with local trend imitation.

    PubMed

    Zhu, Xuzhen; Wang, Wei; Cai, Shimin; Stanley, H Eugene

    2018-05-09

    Research on social contagion dynamics has not yet included a theoretical analysis of the ubiquitous local trend imitation (LTI) characteristic. We propose a social contagion model with a tent-like adoption probability to investigate the effect of this LTI characteristic on behavior spreading. We also propose a generalized edge-based compartmental theory to describe the proposed model. Through extensive numerical simulations and theoretical analyses, we find a crossover in the phase transition: when the LTI capacity is strong, the growth of the final adoption size exhibits a second-order phase transition. When the LTI capacity is weak, we see a first-order phase transition. For a given behavioral information transmission probability, there is an optimal LTI capacity that maximizes the final adoption size. Finally we find that the above phenomena are not qualitatively affected by the heterogeneous degree distribution. Our suggested theoretical predictions agree with the simulation results.

  6. A Chemical Engineer's Perspective on Health and Disease

    PubMed Central

    Androulakis, Ioannis P.

    2014-01-01

    Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems. PMID:25506103

  7. Dissection of culture media for embryos: the most important and less important components and characteristics.

    PubMed

    Gardner, David K

    2008-01-01

    Improvements in culture media formulations have led to an increase in the ability to maintain the mammalian embryo in culture throughout the preimplantation and pre-attachment period. Amino acids and specific macromolecules have been identified as being key medium components, whereas temporal dynamics have been recognised as important media characteristics. Furthermore, other laboratory factors that directly impact embryo development and viability have been identified. Such factors include the use of a reduced oxygen tension, an appropriate incubation system and an adequate prescreening of all contact supplies. With rigourous quality systems in place, it is possible to obtain in vivo rates of embryo development in vitro using new media formulations while maintaining high levels of embryo viability. The future of embryo culture will likely be based on novel culture chips capable of providing temporal dynamics while facilitating real-time analysis of embryo physiology.

  8. New Methods for the Analysis of Heartbeat Behavior in Risk Stratification

    PubMed Central

    Glass, Leon; Lerma, Claudia; Shrier, Alvin

    2011-01-01

    Developing better methods for risk stratification for tachyarrhythmic sudden cardiac remains a major challenge for physicians and scientists. Since the transition from sinus rhythm to ventricular tachycardia/fibrillation happens by different mechanisms in different people, it is unrealistic to think that a single measure will be adequate to provide a good index for risk stratification. We analyze the dynamical properties of ventricular premature complexes over 24 h in an effort to understand the underlying mechanisms of ventricular arrhythmias and to better understand the arrhythmias that occur in individual patients. Two dimensional density plots, called heartprints, correlate characteristic features of the dynamics of premature ventricular complexes and the sinus rate. Heartprints show distinctive characteristics in individual patients. Based on a better understanding of the natures of transitions from sinus rhythm to sudden cardiac and the mechanisms of arrhythmia prior to cardiac arrest, it should be possible to develop better methods for risk stratification. PMID:22144963

  9. Selection criteria of the addendum modification coefficients of spur gear pairs with smaller number of pinion teeth

    NASA Astrophysics Data System (ADS)

    Atanasiu, V.; Oprişan, C.; Leohchi, D.

    2016-08-01

    A design procedure for the optimum distribution of the addendum modification coefficients of spur gear pairs with smaller number of pinion teeth is presented for the case of a fixed centred distance. The geometrical, kinematics and load capacity criteria are considered in the design analysis. The geometric and kinematics criteria are used to prevent the negative phenomena of the generating and engagement processes. The relation between the contact pressure of meshing teeth and specific sliding are analysed in relation with addendum modification coefficients. A dynamic model is developed to simulate the load sharing characteristics through a mesh cycle. The specific phenomenon of contact tooth pairs alternation during mesh cycle is integrated in this dynamic load modelling. A comparative study is included, which shows the effects of the distribution factor of the addendum modification coefficients on the contact surface characteristics of the gear pairs.

  10. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases.

    PubMed

    McGillewie, Lara; Ramesh, Muthusamy; Soliman, Mahmoud E

    2017-10-01

    Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer's. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in "one pot". We believe that this review would be of critical importance to the researchers from different scientific domains.

  11. Dynamical transitions associated with turbulence in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Light, Adam D.; Tian, Li; Chakraborty Thakur, Saikat; Tynan, George R.

    2017-10-01

    Diagnostic capabilities are often cited as a limiting factor in our understanding of transport in fusion devices. Increasingly advanced multichannel diagnostics are being applied to classify transport regimes and to search for ``trigger'' features that signal an oncoming dynamical event, such as an ELM or an L-H transition. In this work, we explore a technique that yields information about global properties of plasma dynamics from a single time series of a relevant plasma quantity. Electrostatic probe data from the Controlled Shear Decorrelation eXperiment (CSDX) is analyzed using recurrence quantification analysis (RQA) in the context of previous work on the transition to weak drift-wave turbulence. The recurrence characteristics of a phase space trajectory provide a quantitative means to classify dynamics and identify transitions in a complex system. We present and quantify dynamical variations in the plasma variables as a function of the background magnetic field strength. A dynamical transition corresponding to the emergence of broadband fluctuations is identified using RQA measures.

  12. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  13. Study on longitudinal force simulation of heavy-haul train

    NASA Astrophysics Data System (ADS)

    Chang, Chongyi; Guo, Gang; Wang, Junbiao; Ma, Yingming

    2017-04-01

    The longitudinal dynamics model of heavy-haul trains and air brake model used in the longitudinal train dynamics (LTDs) are established. The dry friction damping hysteretic characteristic of steel friction draft gears is simulated by the equation which describes the suspension forces in truck leaf springs. The model of draft gears introduces dynamic loading force, viscous friction of steel friction and the damping force. Consequently, the numerical model of the draft gears is brought forward. The equation of LTDs is strongly non-linear. In order to solve the response of the strongly non-linear system, the high-precision and equilibrium iteration method based on the Newmark-β method is presented and numerical analysis is made. Longitudinal dynamic forces of the 20,000 tonnes heavy-haul train are tested, and models and solution method provided are verified by the test results.

  14. Analysis of dynamic behavior of multiple-stage planetary gear train used in wind driven generator.

    PubMed

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator.

  15. Model of chromosomal loci dynamics in bacteria as fractional diffusion with intermittent transport

    NASA Astrophysics Data System (ADS)

    Gherardi, Marco; Calabrese, Ludovico; Tamm, Mikhail; Cosentino Lagomarsino, Marco

    2017-10-01

    The short-time dynamics of bacterial chromosomal loci is a mixture of subdiffusive and active motion, in the form of rapid relocations with near-ballistic dynamics. While previous work has shown that such rapid motions are ubiquitous, we still have little grasp on their physical nature, and no positive model is available that describes them. Here, we propose a minimal theoretical model for loci movements as a fractional Brownian motion subject to a constant but intermittent driving force, and compare simulations and analytical calculations to data from high-resolution dynamic tracking in E. coli. This analysis yields the characteristic time scales for intermittency. Finally, we discuss the possible shortcomings of this model, and show that an increase in the effective local noise felt by the chromosome associates to the active relocations.

  16. Analysis of Dynamic Behavior of Multiple-Stage Planetary Gear Train Used in Wind Driven Generator

    PubMed Central

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator. PMID:24511295

  17. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  18. Validation of the force and frequency characteristics of the activator adjusting instrument: effectiveness as a mechanical impedance measurement tool.

    PubMed

    Keller, T S; Colloca, C J; Fuhr, A W

    1999-02-01

    To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (<0.1 ms) followed by several lower force (30 to 100 N), longer duration impulses (1 to 5 ms). The force profile was highly reproducible in terms of the peak impulse forces delivered to the beam structure (<8% variance). Spectrum analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (<10% variation). The addition of a preload-control frame to the Activator Adjusting Instrument improved the characteristics of the force frequency spectrum and repeatability of the driving point impedance measurements. These findings indicate that the Activator Adjusting Instrument combined with an integral load cell and accelerometer was able to obtain an accurate description of a steel beam with readily identifiable geometric and dynamic mechanical properties. These findings support the rationale for using the device to assess the dynamic mechanical behavior of the vertebral column. Such information would be useful for SMT and may ultimately be used to evaluate the [corrected] biomechanical effectiveness of various manipulative, surgical, and rehabilitative spinal procedures.

  19. Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde

    2016-08-01

    In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.

  20. Colloquium: Non-Markovian dynamics in open quantum systems

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of non-Markovian quantum dynamics are also briefly discussed.

  1. Experimental determination of dynamic characteristics of the VentrAssist implantable rotary blood pump.

    PubMed

    Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Qian, Yi

    2004-12-01

    The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump consists of a shaftless impeller, which also acts as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, which result from the small clearances between the outside surfaces of the impeller and the pump cavity. These small clearances range from approximately 50 microm to 230 microm in size in the version of pump reported here. This article presents experimental investigation into the dynamic characteristics of the impeller-bearing-pump housing system of the rotary blood pump for increasing pump speeds at different flow rates. The pump was mounted on a suspension system consisting of a platform and springs, where the natural frequency and damping ratio for the suspension system were determined. Real-time measurements of the impeller's displacement were performed using Hall effect sensors. A vertical disturbance force was exerted onto the pump housing, causing the impeller to be displaced in vertical direction from its dynamic equilibrium position within the pump cavity. The impeller displacement was represented by a decaying sine wave, which indicated the impeller restoring to its equilibrium position. From the decaying sine wave the natural frequency and stiffness coefficient of the system were determined. Furthermore, the logarithmic decrement method was used to determine the damping ratio and eventually the damping coefficient of the system. Results indicate that stiffness and damping coefficients increased as flow rate and pump speed increased, representing an increase in stability with these changing conditions. However, pump speed had a greater influence on the stiffness and damping coefficients than flow rate did, which was evident through dynamic analysis. Overall the experimental method presented in this article was successful in determining the dynamic characteristics of the system.

  2. An effective pseudospectral method for constraint dynamic optimisation problems with characteristic times

    NASA Astrophysics Data System (ADS)

    Xiao, Long; Liu, Xinggao; Ma, Liang; Zhang, Zeyin

    2018-03-01

    Dynamic optimisation problem with characteristic times, widely existing in many areas, is one of the frontiers and hotspots of dynamic optimisation researches. This paper considers a class of dynamic optimisation problems with constraints that depend on the interior points either fixed or variable, where a novel direct pseudospectral method using Legendre-Gauss (LG) collocation points for solving these problems is presented. The formula for the state at the terminal time of each subdomain is derived, which results in a linear combination of the state at the LG points in the subdomains so as to avoid the complex nonlinear integral. The sensitivities of the state at the collocation points with respect to the variable characteristic times are derived to improve the efficiency of the method. Three well-known characteristic time dynamic optimisation problems are solved and compared in detail among the reported literature methods. The research results show the effectiveness of the proposed method.

  3. Smooth time-dependent receiver operating characteristic curve estimators.

    PubMed

    Martínez-Camblor, Pablo; Pardo-Fernández, Juan Carlos

    2018-03-01

    The receiver operating characteristic curve is a popular graphical method often used to study the diagnostic capacity of continuous (bio)markers. When the considered outcome is a time-dependent variable, two main extensions have been proposed: the cumulative/dynamic receiver operating characteristic curve and the incident/dynamic receiver operating characteristic curve. In both cases, the main problem for developing appropriate estimators is the estimation of the joint distribution of the variables time-to-event and marker. As usual, different approximations lead to different estimators. In this article, the authors explore the use of a bivariate kernel density estimator which accounts for censored observations in the sample and produces smooth estimators of the time-dependent receiver operating characteristic curves. The performance of the resulting cumulative/dynamic and incident/dynamic receiver operating characteristic curves is studied by means of Monte Carlo simulations. Additionally, the influence of the choice of the required smoothing parameters is explored. Finally, two real-applications are considered. An R package is also provided as a complement to this article.

  4. The effect of support flexibility and damping on the dynamic response of a single mass flexible rotor in elastic bearings

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Gunter, E. J.

    1972-01-01

    The dynamic unabalance response and transient motion of the single mass Jeffcott rotor in elastic bearings mounted on damped, flexible supports are discussed. A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied. Plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer and the performance curves were plotted by an automatic plotter unit. Curves are presented on the optimization of the support housing characteristics of attenuate the rotor synchronous unbalance response.

  5. POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics

    PubMed Central

    2015-01-01

    Analysis of macromolecular/small-molecule binding pockets can provide important insights into molecular recognition and receptor dynamics. Since its release in 2011, the POVME (POcket Volume MEasurer) algorithm has been widely adopted as a simple-to-use tool for measuring and characterizing pocket volumes and shapes. We here present POVME 2.0, which is an order of magnitude faster, has improved accuracy, includes a graphical user interface, and can produce volumetric density maps for improved pocket analysis. To demonstrate the utility of the algorithm, we use it to analyze the binding pocket of RNA editing ligase 1 from the unicellular parasite Trypanosoma brucei, the etiological agent of African sleeping sickness. The POVME analysis characterizes the full dynamics of a potentially druggable transient binding pocket and so may guide future antitrypanosomal drug-discovery efforts. We are hopeful that this new version will be a useful tool for the computational- and medicinal-chemist community. PMID:25400521

  6. Rigorous approaches to tether dynamics in deployment and retrieval

    NASA Technical Reports Server (NTRS)

    Antona, Ettore

    1987-01-01

    Dynamics of tethers in a linearized analysis can be considered as the superposition of propagating waves. This approach permits a new way for the analysis of tether behavior during deployment and retrieval, where a tether is composed by a part at rest and a part subjected to propagation phenomena, with the separating section depending on time. The dependence on time of the separating section requires the analysis of the reflection of the waves travelling toward the part at rest. Such a reflection generates a reflected wave, whose characteristics are determined. The propagation phenomena of major interest in a tether are transverse waves and longitudinal waves, all mathematically modelled by the vibrating chord equations, if the tension is considered constant along the tether. An interesting problem also considered is concerned with the dependence of the tether tension from the longitudinal position, due to microgravity, and the influence of this dependence on the propagation waves.

  7. Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.

  8. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    NASA Technical Reports Server (NTRS)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  9. Obtaining a Pragmatic Representation of Fire Disturbance in Dynamic Vegetation Models by Assimilating Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Kantzas, Euripides; Quegan, Shaun

    2015-04-01

    Fire constitutes a violent and unpredictable pathway of carbon from the terrestrial biosphere into the atmosphere. Despite fire emissions being in many biomes of similar magnitude to that of Net Ecosystem Exchange, even the most complex Dynamic Vegetation Models (DVMs) embedded in IPCC General Circulation Models poorly represent fire behavior and dynamics, a fact which still remains understated. As DVMs operate on a deterministic, grid cell-by-grid cell basis they are unable to describe a host of important fire characteristics such as its propagation, magnitude of area burned and stochastic nature. Here we address these issues by describing a model-independent methodology which assimilates Earth Observation (EO) data by employing image analysis techniques and algorithms to offer a realistic fire disturbance regime in a DVM. This novel approach, with minimum model restructuring, manages to retain the Fire Return Interval produced by the model whilst assigning pragmatic characteristics to its fire outputs thus allowing realistic simulations of fire-related processes such as carbon injection into the atmosphere and permafrost degradation. We focus our simulations in the Arctic and specifically Canada and Russia and we offer a snippet of how this approach permits models to engage in post-fire dynamics hitherto absent from any other model regardless of complexity.

  10. Molecular dynamics: deciphering the data.

    PubMed

    Dauber-Osguthorpe, P; Maunder, C M; Osguthorpe, D J

    1996-06-01

    The dynamic behaviour of molecules is important in determining their activity. Molecular dynamics (MD) simulations give a detailed description of motion, from small fluctuations to conformational transitions, and can include solvent effects. However, extracting useful information about conformational motion from a trajectory is not trivial. We have used digital signal-processing techniques to characterise the motion in MD simulations, including: calculating the frequency distribution, applying filtering functions, and extraction of vectors defining the characteristic motion for each frequency in an MD simulation. We describe here some typical results obtained for peptides and proteins. The nature of the low-frequency modes of motion, as obtained from MD and normal mode (NM) analysis, of Ace-(Ala)31-Nma and of a proline mutant is discussed. Low-frequency modes extracted from the MD trajectories of Rop protein and phospholipase A2 reveal characteristic motions of secondary structure elements, as well as concerned motions that are of significance to the protein's biological activity. MD simulations are also used frequently as a tool for conformational searches and for investigating protein folding/unfolding. We have developed a novel method that uses time-domain filtering to channel energy into conformational motion and thus enhance conformational transitions. The selectively enhanced molecular dynamics method is tested on the small molecule hexane.

  11. Dynamic Characteristics of Micro-Beams Considering the Effect of Flexible Supports

    PubMed Central

    Zhong, Zuo-Yang; Zhang, Wen-Ming; Meng, Guang

    2013-01-01

    Normally, the boundaries are assumed to allow small deflections and moments for MEMS beams with flexible supports. The non-ideal boundary conditions have a significant effect on the qualitative dynamical behavior. In this paper, by employing the principle of energy equivalence, rigorous theoretical solutions of the tangential and rotational equivalent stiffness are derived based on the Boussinesq's and Cerruti's displacement equations. The non-dimensional differential partial equation of the motion, as well as coupled boundary conditions, are solved analytically using the method of multiple time scales. The closed-form solution provides a direct insight into the relationship between the boundary conditions and vibration characteristics of the dynamic system, in which resonance frequencies increase with the nonlinear mechanical spring effect but decrease with the effect of flexible supports. The obtained results of frequencies and mode shapes are compared with the cases of ideal boundary conditions, and the differences between them are contrasted on frequency response curves. The influences of the support material property on the equivalent stiffness and resonance frequency shift are also discussed. It is demonstrated that the proposed model with the flexible supports boundary conditions has significant effect on the rigorous quantitative dynamical analysis of the MEMS beams. Moreover, the proposed analytical solutions are in good agreement with those obtained from finite element analyses.

  12. Molecular dynamics: Deciphering the data

    NASA Astrophysics Data System (ADS)

    Dauber-Osguthorpe, Pnina; Maunder, Colette M.; Osguthorpe, David J.

    1996-06-01

    The dynamic behaviour of molecules is important in determining their activity. Molecular dynamics (MD) simulations give a detailed description of motion, from small fluctuations to conformational transitions, and can include solvent effects. However, extracting useful information about conformational motion from a trajectory is not trivial. We have used digital signal-processing techniques to characterise the motion in MD simulations, including: calculating the frequency distribution, applying filtering functions, and extraction of vectors defining the characteristic motion for each frequency in an MD simulation. We describe here some typical results obtained for peptides and proteins. The nature of the low-frequency modes of motion, as obtained from MD and normal mode (NM) analysis, of Ace-(Ala)31-Nma and of a proline mutant is discussed. Low-frequency modes extracted from the MD trajectories of Rop protein and phospholipase A2 reveal characteristic motions of secondary structure elements, as well as concerted motions that are of significance to the protein's biological activity. MD simulations are also used frequently as a tool for conformational searches and for investigating protein folding/unfolding. We have developed a novel method that uses time-domain filtering to channel energy into conformational motion and thus enhance conformational transitions. The selectively enhanced molecular dynamics method is tested on the small molecule hexane.

  13. Development of monofilar rotor hub vibration absorber

    NASA Technical Reports Server (NTRS)

    Duh, J.; Miao, W.

    1983-01-01

    A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.

  14. Remote sensing of the biological dynamics of large-scale salt evaporation ponds

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Bachoon, Dave; Ingram-Willey, Vebbra; Chow, Colin C.; Weinstock, Kenneth

    1992-01-01

    Optical properties of salt evaporation ponds associated with Exportadora de Sal, a salt production company in Baja California Sur, Mexico, were analyzed using a combination of spectroradiometer and extracted pigment data, and Landsat-5 Thematic Mapper imagery. The optical characteristics of each pond are determined by the biota, which consists of dense populations of algae and photosynthetic bacteria containing a wide variety of photosynthetic and photoprotective pigments. Analysis has shown that spectral and image data can differentiate between taxonomic groups of the microbiota, detect changes in population distributions, and reveal large-scale seasonal dynamics.

  15. The growing skull. Part III. Dynamics of growth of the neurocranium.

    PubMed

    Gefferth, C M

    1984-01-01

    The growth characteristic of the neurocranium and the dynamics of its development were studied in 1036 children, 540 boys and 496 girls, from birth to the age of 16 years. Analysis of the individual distances showed differences in the velocity, tendency and extent of growth, maturation, and sex peculiarities. An attempt was made to estimate postpubertal development. Comparison with other authors results revealed some remarkable racial features and environmental effects. By the aid of new constructed lines it was possible to interpret the peculiar growth of the occipital region and of the posterior fossa.

  16. Development and application of an empirical probability distribution for the prediction error of re-entry body maximum dynamic pressure

    NASA Technical Reports Server (NTRS)

    Lanzi, R. James; Vincent, Brett T.

    1993-01-01

    The relationship between actual and predicted re-entry maximum dynamic pressure is characterized using a probability density function and a cumulative distribution function derived from sounding rocket flight data. This paper explores the properties of this distribution and demonstrates applications of this data with observed sounding rocket re-entry body damage characteristics to assess probabilities of sustaining various levels of heating damage. The results from this paper effectively bridge the gap existing in sounding rocket reentry analysis between the known damage level/flight environment relationships and the predicted flight environment.

  17. Working Performance Analysis of Rolling Bearings Used in Mining Electric Excavator Crowd Reducer

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Hou, G.; Chen, G.; Liang, J. F.; Zheng, Y. M.

    2017-12-01

    Refer to the statistical load data of digging process, on the basis of simulation analysis of crowd reducer system dynamics, the working performance simulation analysis of rolling bearings used in crowd reducer of large mining electric excavator is completed. The contents of simulation analysis include analysis of internal load distribution, rolling elements contact stresses and rolling bearing fatigue life. The internal load characteristics of rolling elements in cylindrical roller bearings are obtained. The results of this study identified that all rolling bearings satisfy the requirements of contact strength and fatigue life. The rationality of bearings selection and arrangement is also verified.

  18. Using fluorescence spectroscopy coupled with chemometric analysis to investigate the origin, composition, and dynamics of dissolved organic matter in leachate-polluted groundwater.

    PubMed

    He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Wang, Lei; Ma, Yan; Cui, Dong-Yu; Tan, Wen-Bing

    2015-06-01

    Groundwater was collected in 2011 and 2012, and fluorescence spectroscopy coupled with chemometric analysis was employed to investigate the composition, origin, and dynamics of dissolved organic matter (DOM) in the groundwater. The results showed that the groundwater DOM comprised protein-, fulvic-, and humic-like substances, and the protein-like component originated predominantly from microbial production. The groundwater pollution by landfill leachate enhanced microbial activity and thereby increased microbial by-product-like material such as protein-like component in the groundwater. Excitation-emission matrix fluorescence spectra combined with parallel factor analysis showed that the protein-like matter content increased from 2011 to 2012 in the groundwater, whereas the fulvic- and humic-like matter concentration exhibited no significant changes. In addition, synchronous-scan fluorescence spectra coupled with two-dimensional correlation analysis showed that the change of the fulvic- and humic-like matter was faster than that of the protein-like substances, as the groundwater flowed from upstream to downstream in 2011, but slower than that of the protein-like substance in 2012 due to the enhancement of microbial activity. Fluorescence spectroscopy combined with chemometric analysis can investigate groundwater pollution characteristics and monitor DOM dynamics in groundwater.

  19. Invasion complexity at large spatial scales is an emergent property of interactions among landscape characteristics and invader traits

    PubMed Central

    Jordan, Nicholas R.; Forester, James D.

    2018-01-01

    Invasion potential should be part of the evaluation of candidate species for any species introduction. However, estimating invasion risks remains a challenging problem, particularly in complex landscapes. Certain plant traits are generally considered to increase invasive potential and there is an understanding that landscapes influence invasions dynamics, but little research has been done to explore how those drivers of invasions interact. We evaluate the relative roles of, and potential interactions between, plant invasiveness traits and landscape characteristics on invasions with a case study using a model parameterized for the potentially invasive biomass crop, Miscanthus × giganteus. Using that model we simulate invasions on 1000 real landscapes to evaluate how landscape characteristics, including both composition and spatial structure, affect invasion outcomes. We conducted replicate simulations with differing strengths of plant invasiveness traits (dispersal ability, establishment ability, population growth rate, and the ability to utilize dispersal corridors) to evaluate how the importance of landscape characteristics for predicting invasion patterns changes depending on the invader details. Analysis of simulations showed that the presence of highly suitable habitat (e.g., grasslands) is generally the strongest determinant of invasion dynamics but that there are also more subtle interactions between landscapes and invader traits. These effects can also vary between different aspects of invasion dynamics (short vs. long time scales and population size vs. spatial extent). These results illustrate that invasions are complex emergent processes with multiple drivers and effective management needs to reflect the ecology of the species of interest and the particular goals or risks for which efforts need to be optimized. PMID:29771923

  20. Research on the energy and ecological efficiency of mechanical equipment remanufacturing systems

    NASA Astrophysics Data System (ADS)

    Shi, Junli; Cheng, Jinshi; Ma, Qinyi; Wang, Yajun

    2017-08-01

    According to the characteristics of mechanical equipment remanufacturing system, the dynamic performance of energy consumption and emission is explored, the equipment energy efficiency and emission analysis model is established firstly, and then energy and ecological efficiency analysis method of the remanufacturing system is put forward, at last, the energy and ecological efficiency of WD615.87 automotive diesel engine remanufacturing system as an example is analyzed, the way of energy efficiency improvementnt and environmental friendly mechanism of remanufacturing process is put forward.

  1. Thermal management of closed computer modules utilizing high density circuitry. [in Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1990-01-01

    This paper presents data on a preliminary analysis of the thermal dynamic characteristics of the Airborne Information Management System (AIMS), which is a continuing design project at NASA Dryden. The analysis established the methods which will be applied to the actual AIMS boards as they become available. The paper also describes the AIMS liquid cooling system design and presents a thermodynamic computer model of the AIMS cooling system, together with an experimental validation of this model.

  2. Systems analysis of the vestibulo-ocular system. [mathematical model of vestibularly driven head and eye movements

    NASA Technical Reports Server (NTRS)

    Schmid, R. M.

    1973-01-01

    The vestibulo-ocular system is examined from the standpoint of system theory. The evolution of a mathematical model of the vestibulo-ocular system in an attempt to match more and more experimental data is followed step by step. The final model explains many characteristics of the eye movement in vestibularly induced nystagmus. The analysis of the dynamic behavior of the model at the different stages of its development is illustrated in time domain, mainly in a qualitative way.

  3. Modeling and Analysis of Composite Wing Sections for Improved Aeroelastic and Vibration Characteristics Using Smart Materials

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1996-01-01

    The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.

  4. Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Shi, Peng; Karimi, Hamid Reza; Zhang, Hui

    2016-02-01

    The main objective of this paper is to investigate the sensitivity analysis and optimal design of a proportional solenoid valve (PSV) operated pressure reducing valve (PRV) for heavy-duty automatic transmission clutch actuators. The nonlinear electro-hydraulic valve model is developed based on fluid dynamics. In order to implement the sensitivity analysis and optimization for the PRV, the PSV model is validated by comparing the results with data obtained from a real test-bench. The sensitivity of the PSV pressure response with regard to the structural parameters is investigated by using Sobol's method. Finally, simulations and experimental investigations are performed on the optimized prototype and the results reveal that the dynamical characteristics of the valve have been improved in comparison with the original valve.

  5. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    NASA Astrophysics Data System (ADS)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  6. Solid-state NMR characterization of cross-linking in EPDM/PP blends from 1H-13C polarization transfer dynamics.

    PubMed

    Aluas, Mihaela; Filip, Claudiu

    2005-05-01

    A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.

  7. Coupled Leidenfrost states as a monodisperse granular clock

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing

    2016-08-01

    Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.

  8. Experimental analysis and constitutive modelling of steel of A-IIIN strength class

    NASA Astrophysics Data System (ADS)

    Kruszka, Leopold; Janiszewski, Jacek

    2015-09-01

    Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.

  9. Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Lu, Yu-hui; Ling, Ai-min

    2017-07-01

    In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.

  10. Model and Dynamic Behavior of Malware Propagation over Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Song, Yurong; Jiang, Guo-Ping

    Based on the inherent characteristics of wireless sensor networks (WSN), the dynamic behavior of malware propagation in flat WSN is analyzed and investigated. A new model is proposed using 2-D cellular automata (CA), which extends the traditional definition of CA and establishes whole transition rules for malware propagation in WSN. Meanwhile, the validations of the model are proved through theoretical analysis and simulations. The theoretical analysis yields closed-form expressions which show good agreement with the simulation results of the proposed model. It is shown that the malware propaga-tion in WSN unfolds neighborhood saturation, which dominates the effects of increasing infectivity and limits the spread of the malware. MAC mechanism of wireless sensor networks greatly slows down the speed of malware propagation and reduces the risk of large-scale malware prevalence in these networks. The proposed model can describe accurately the dynamic behavior of malware propagation over WSN, which can be applied in developing robust and efficient defense system on WSN.

  11. Method and apparatus for creating time-optimal commands for linear systems

    NASA Technical Reports Server (NTRS)

    Seering, Warren P. (Inventor); Tuttle, Timothy D. (Inventor)

    2004-01-01

    A system for and method of determining an input command profile for substantially any dynamic system that can be modeled as a linear system, the input command profile for transitioning an output of the dynamic system from one state to another state. The present invention involves identifying characteristics of the dynamic system, selecting a command profile which defines an input to the dynamic system based on the identified characteristics, wherein the command profile comprises one or more pulses which rise and fall at switch times, imposing a plurality of constraints on the dynamic system, at least one of the constraints being defined in terms of the switch times, and determining the switch times for the input to the dynamic system based on the command profile and the plurality of constraints. The characteristics may be related to poles and zeros of the dynamic system, and the plurality of constraints may include a dynamics cancellation constraint which specifies that the input moves the dynamic system from a first state to a second state such that the dynamic system remains substantially at the second state.

  12. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription.

    PubMed

    Arch, Elisa S; Stanhope, Steven J; Higginson, Jill S

    2016-10-01

    Passive-dynamic ankle-foot orthosis characteristics, including bending stiffness, should be customized for individuals. However, while conventions for customizing passive-dynamic ankle-foot orthosis characteristics are often described and implemented in clinical practice, there is little evidence to explain their biomechanical rationale. To develop and combine a model of a customized passive-dynamic ankle-foot orthosis with a healthy musculoskeletal model and use simulation tools to explore the influence of passive-dynamic ankle-foot orthosis bending stiffness on plantar flexor function during gait. Dual case study. The customized passive-dynamic ankle-foot orthosis characteristics were integrated into a healthy musculoskeletal model available in OpenSim. Quasi-static forward dynamic simulations tracked experimental gait data under several passive-dynamic ankle-foot orthosis conditions. Predicted muscle activations were calculated through a computed muscle control optimization scheme. Simulations predicted that the passive-dynamic ankle-foot orthoses substituted for soleus but not gastrocnemius function. Induced acceleration analyses revealed the passive-dynamic ankle-foot orthosis acts like a uniarticular plantar flexor by inducing knee extension accelerations, which are counterproductive to natural knee kinematics in early midstance. These passive-dynamic ankle-foot orthoses can provide plantar flexion moments during mid and late stance to supplement insufficient plantar flexor strength. However, the passive-dynamic ankle-foot orthoses negatively influenced knee kinematics in early midstance. Identifying the role of passive-dynamic ankle-foot orthosis stiffness during gait provides biomechanical rationale for how to customize passive-dynamic ankle-foot orthoses for patients. Furthermore, these findings can be used in the future as the basis for developing objective prescription models to help drive the customization of passive-dynamic ankle-foot orthosis characteristics. © The International Society for Prosthetics and Orthotics 2015.

  13. Brain Gliomas: Multicenter Standardized Assessment of Dynamic Contrast-enhanced and Dynamic Susceptibility Contrast MR Images.

    PubMed

    Anzalone, Nicoletta; Castellano, Antonella; Cadioli, Marcello; Conte, Gian Marco; Cuccarini, Valeria; Bizzi, Alberto; Grimaldi, Marco; Costa, Antonella; Grillea, Giovanni; Vitali, Paolo; Aquino, Domenico; Terreni, Maria Rosa; Torri, Valter; Erickson, Bradley J; Caulo, Massimo

    2018-06-01

    Purpose To evaluate the feasibility of a standardized protocol for acquisition and analysis of dynamic contrast material-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance (MR) imaging in a multicenter clinical setting and to verify its accuracy in predicting glioma grade according to the new World Health Organization 2016 classification. Materials and Methods The local research ethics committees of all centers approved the study, and informed consent was obtained from patients. One hundred patients with glioma were prospectively examined at 3.0 T in seven centers that performed the same preoperative MR imaging protocol, including DCE and DSC sequences. Two independent readers identified the perfusion hotspots on maps of volume transfer constant (K trans ), plasma (v p ) and extravascular-extracellular space (v e ) volumes, initial area under the concentration curve, and relative cerebral blood volume (rCBV). Differences in parameters between grades and molecular subtypes were assessed by using Kruskal-Wallis and Mann-Whitney U tests. Diagnostic accuracy was evaluated by using receiver operating characteristic curve analysis. Results The whole protocol was tolerated in all patients. Perfusion maps were successfully obtained in 94 patients. An excellent interreader reproducibility of DSC- and DCE-derived measures was found. Among DCE-derived parameters, v p and v e had the highest accuracy (are under the receiver operating characteristic curve [A z ] = 0.847 and 0.853) for glioma grading. DSC-derived rCBV had the highest accuracy (A z = 0.894), but the difference was not statistically significant (P > .05). Among lower-grade gliomas, a moderate increase in both v p and rCBV was evident in isocitrate dehydrogenase wild-type tumors, although this was not significant (P > .05). Conclusion A standardized multicenter acquisition and analysis protocol of DCE and DSC MR imaging is feasible and highly reproducible. Both techniques showed a comparable, high diagnostic accuracy for grading gliomas. © RSNA, 2018 Online supplemental material is available for this article.

  14. Application of holographic interferometry for analysis of the dynamic and modal characteristics of an advanced exotic metal airfoil structure

    NASA Astrophysics Data System (ADS)

    Fein, Howard

    1999-03-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.

  15. Development of Test-Analysis Models (TAM) for correlation of dynamic test and analysis results

    NASA Technical Reports Server (NTRS)

    Angelucci, Filippo; Javeed, Mehzad; Mcgowan, Paul

    1992-01-01

    The primary objective of structural analysis of aerospace applications is to obtain a verified finite element model (FEM). The verified FEM can be used for loads analysis, evaluate structural modifications, or design control systems. Verification of the FEM is generally obtained as the result of correlating test and FEM models. A test analysis model (TAM) is very useful in the correlation process. A TAM is essentially a FEM reduced to the size of the test model, which attempts to preserve the dynamic characteristics of the original FEM in the analysis range of interest. Numerous methods for generating TAMs have been developed in the literature. The major emphasis of this paper is a description of the procedures necessary for creation of the TAM and the correlation of the reduced models with the FEM or the test results. Herein, three methods are discussed, namely Guyan, Improved Reduced System (IRS), and Hybrid. Also included are the procedures for performing these analyses using MSC/NASTRAN. Finally, application of the TAM process is demonstrated with an experimental test configuration of a ten bay cantilevered truss structure.

  16. Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors

    PubMed Central

    Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong

    2016-01-01

    Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728

  17. Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Jong, Jen-Yi

    1986-01-01

    An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.

  18. Uncertainty quantification in operational modal analysis with stochastic subspace identification: Validation and applications

    NASA Astrophysics Data System (ADS)

    Reynders, Edwin; Maes, Kristof; Lombaert, Geert; De Roeck, Guido

    2016-01-01

    Identified modal characteristics are often used as a basis for the calibration and validation of dynamic structural models, for structural control, for structural health monitoring, etc. It is therefore important to know their accuracy. In this article, a method for estimating the (co)variance of modal characteristics that are identified with the stochastic subspace identification method is validated for two civil engineering structures. The first structure is a damaged prestressed concrete bridge for which acceleration and dynamic strain data were measured in 36 different setups. The second structure is a mid-rise building for which acceleration data were measured in 10 different setups. There is a good quantitative agreement between the predicted levels of uncertainty and the observed variability of the eigenfrequencies and damping ratios between the different setups. The method can therefore be used with confidence for quantifying the uncertainty of the identified modal characteristics, also when some or all of them are estimated from a single batch of vibration data. Furthermore, the method is seen to yield valuable insight in the variability of the estimation accuracy from mode to mode and from setup to setup: the more informative a setup is regarding an estimated modal characteristic, the smaller is the estimated variance.

  19. Mathematical modeling of the aerodynamic characteristics in flight dynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.; Schiff, L. B.

    1984-01-01

    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.

  20. The Academic Profession in Russia's Two Capitals: The Impact of 20 Years of Transition

    ERIC Educational Resources Information Center

    Sivak, Elizaveta; Yudkevich, Maria

    2017-01-01

    This paper studies the dynamics of key characteristics of the academic profession in Russia based on the analysis of university faculty in the two largest cities in Russia--Moscow and St. Petersburg. We use data on Russian university faculty from two large-scale comparative studies of the academic profession ("The Carnegie Study" carried…

Top