Dynamic Clamp in Cardiac and Neuronal Systems Using RTXI
Ortega, Francis A.; Butera, Robert J.; Christini, David J.; White, John A.; Dorval, Alan D.
2016-01-01
The injection of computer-simulated conductances through the dynamic clamp technique has allowed researchers to probe the intercellular and intracellular dynamics of cardiac and neuronal systems with great precision. By coupling computational models to biological systems, dynamic clamp has become a proven tool in electrophysiology with many applications, such as generating hybrid networks in neurons or simulating channelopathies in cardiomyocytes. While its applications are broad, the approach is straightforward: synthesizing traditional patch clamp, computational modeling, and closed-loop feedback control to simulate a cellular conductance. Here, we present two example applications: artificial blocking of the inward rectifier potassium current in a cardiomyocyte and coupling of a biological neuron to a virtual neuron through a virtual synapse. The design and implementation of the necessary software to administer these dynamic clamp experiments can be difficult. In this chapter, we provide an overview of designing and implementing a dynamic clamp experiment using the Real-Time eXperiment Interface (RTXI), an open- source software system tailored for real-time biological experiments. We present two ways to achieve this using RTXI’s modular format, through the creation of a custom user-made module and through existing modules found in RTXI’s online library. PMID:25023319
Dynamic analysis of clamp band joint system subjected to axial vibration
NASA Astrophysics Data System (ADS)
Qin, Z. Y.; Yan, S. Z.; Chu, F. L.
2010-10-01
Clamp band joints are commonly used for connecting circular components together in industry. Some of the systems jointed by clamp band are subjected to dynamic load. However, very little research on the dynamic characteristics for this kind of joint can be found in the literature. In this paper, a dynamic model for clamp band joint system is developed. Contact and frictional slip between the components are accommodated in this model. Nonlinear finite element analysis is conducted to identify the model parameters. Then static experiments are carried out on a scaled model of the clamp band joint to validate the joint model. Finally, the model is adopted to study the dynamic characteristics of the clamp band joint system subjected to axial harmonic excitation and the effects of the wedge angle of the clamp band joint and the preload on the response. The model proposed in this paper can represent the nonlinearity of the clamp band joint and be used conveniently to investigate the effects of the structural and loading parameters on the dynamic characteristics of this type of joint system.
MATLAB implementation of a dynamic clamp with bandwidth >125 KHz capable of generating INa at 37°C
Clausen, Chris; Valiunas, Virginijus; Brink, Peter R.; Cohen, Ira S.
2012-01-01
We describe the construction of a dynamic clamp with bandwidth >125 KHz that utilizes a high performance, yet low cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology, optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level matlab language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na+ current (INa) in real time, and test its accuracy and stability using rate constants appropriate for 37°C. We then construct a program capable of supplying three currents to a cell preparation: INa, the hyperpolarizing-activated inward pacemaker current (If), and an inward-rectifier K+ current (IK1). The program corrects for the IR drop due to electrode current flow, and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na+ spikes in otherwise passive cells. PMID:23224681
Command-line cellular electrophysiology for conventional and real-time closed-loop experiments.
Linaro, Daniele; Couto, João; Giugliano, Michele
2014-06-15
Current software tools for electrophysiological experiments are limited in flexibility and rarely offer adequate support for advanced techniques such as dynamic clamp and hybrid experiments, which are therefore limited to laboratories with a significant expertise in neuroinformatics. We have developed lcg, a software suite based on a command-line interface (CLI) that allows performing both standard and advanced electrophysiological experiments. Stimulation protocols for classical voltage and current clamp experiments are defined by a concise and flexible meta description that allows representing complex waveforms as a piece-wise parametric decomposition of elementary sub-waveforms, abstracting the stimulation hardware. To perform complex experiments lcg provides a set of elementary building blocks that can be interconnected to yield a large variety of experimental paradigms. We present various cellular electrophysiological experiments in which lcg has been employed, ranging from the automated application of current clamp protocols for characterizing basic electrophysiological properties of neurons, to dynamic clamp, response clamp, and hybrid experiments. We finally show how the scripting capabilities behind a CLI are suited for integrating experimental trials into complex workflows, where actual experiment, online data analysis and computational modeling seamlessly integrate. We compare lcg with two open source toolboxes, RTXI and RELACS. We believe that lcg will greatly contribute to the standardization and reproducibility of both simple and complex experiments. Additionally, on the long run the increased efficiency due to a CLI will prove a great benefit for the experimental community. Copyright © 2014 Elsevier B.V. All rights reserved.
2017-01-01
Abstract The dynamic clamp should be a standard part of every cellular electrophysiologist’s toolbox. That it is not, even 25 years after its introduction, comes down to three issues: money, the disruption that adding dynamic clamp to an existing electrophysiology rig entails, and the technical prowess required of experimenters. These have been valid and limiting issues in the past, but no longer. Technological advances associated with the so-called maker movement render them moot. We demonstrate this by implementing a fast (∼100 kHz) dynamic clamp system using an inexpensive microcontroller (Teensy 3.6). The overall cost of the system is less than USD$100, and assembling it requires no prior electronics experience. Modifying it—for example, to add Hodgkin–Huxley-style conductances—requires no prior programming experience. The system works together with existing electrophysiology data acquisition systems (for Macintosh, Windows, and Linux); it does not attempt to supplant them. Moreover, the process of assembling, modifying, and using the system constitutes a useful pedagogical exercise for students and researchers with no background but an interest in electronics and programming. We demonstrate the system’s utility by implementing conductances as fast as a transient sodium conductance and as complex as the Ornstein–Uhlenbeck conductances of the “point conductance” model of synaptic background activity. PMID:29085905
Gómez-González, J F; Destexhe, A; Bal, T
2014-10-01
Electrophysiological recordings of single neurons in brain tissues are very common in neuroscience. Glass microelectrodes filled with an electrolyte are used to impale the cell membrane in order to record the membrane potential or to inject current. Their high resistance induces a high voltage drop when passing current and it is essential to correct the voltage measurements. In particular, for voltage clamping, the traditional alternatives are two-electrode voltage-clamp technique or discontinuous single electrode voltage-clamp (dSEVC). Nevertheless, it is generally difficult to impale two electrodes in a same neuron and the switching frequency is limited to low frequencies in the case of dSEVC. We present a novel fully computer-implemented alternative to perform continuous voltage-clamp recordings with a single sharp-electrode. To reach such voltage-clamp recordings, we combine an active electrode compensation algorithm (AEC) with a digital controller (AECVC). We applied two types of control-systems: a linear controller (proportional plus integrative controller) and a model-based controller (optimal control). We compared the performance of the two methods to dSEVC using a dynamic model cell and experiments in brain slices. The AECVC method provides an entirely digital method to perform continuous recording and smooth switching between voltage-clamp, current clamp or dynamic-clamp configurations without introducing artifacts.
Electrostatic Interactions at the Dimer Interface Stabilize the E. coli β Sliding Clamp.
Purohit, Anirban; England, Jennifer K; Douma, Lauren G; Tondnevis, Farzaneh; Bloom, Linda B; Levitus, Marcia
2017-08-22
Sliding clamps are ring-shaped oligomeric proteins that encircle DNA and associate with DNA polymerases for processive DNA replication. The dimeric Escherichia coli β-clamp is closed in solution but must adopt an open conformation to be assembled onto DNA by a clamp loader. To determine what factors contribute to the stability of the dimer interfaces in the closed conformation and how clamp dynamics contribute to formation of the open conformation, we identified conditions that destabilized the dimer and measured the effects of these conditions on clamp dynamics. We characterized the role of electrostatic interactions in stabilizing the β-clamp interface. Increasing salt concentration results in decreased dimer stability and faster subunit dissociation kinetics. The equilibrium dissociation constant of the dimeric clamp varies with salt concentration as predicted by simple charge-screening models, indicating that charged amino acids contribute to the remarkable stability of the interface at physiological salt concentrations. Mutation of a charged residue at the interface (Arg-103) weakens the interface significantly, whereas effects are negligible when a hydrophilic (Ser-109) or a hydrophobic (Ile-305) amino acid is mutated instead. It has been suggested that clamp opening by the clamp loader takes advantage of spontaneous opening-closing fluctuations at the clamp's interface, but our time-resolved fluorescence and fluorescence correlation experiments rule out conformational fluctuations that lead to a significant fraction of open states. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Effects of Imperfect Dynamic Clamp: Computational and Experimental Results
Bettencourt, Jonathan C.; Lillis, Kyle P.; White, John A.
2008-01-01
In the dynamic clamp technique, a typically nonlinear feedback system delivers electrical current to an excitable cell that represents the actions of “virtual” ion channels (e.g., channels that are gated by local membrane potential or by electrical activity in neighboring biological or virtual neurons). Since the conception of this technique, there have been a number of different implementations of dynamic clamp systems, each with differing levels of flexibility and performance. Embedded hardware-based systems typically offer feedback that is very fast and precisely timed, but these systems are often expensive and sometimes inflexible. PC-based systems, on the other hand, allow the user to write software that defines an arbitrarily complex feedback system, but real-time performance in PC-based systems can be deteriorated by imperfect real-time performance. Here we systematically evaluate the performance requirements for artificial dynamic clamp knock-in of transient sodium and delayed rectifier potassium conductances. Specifically we examine the effects of controller time step duration, differential equation integration method, jitter (variability in time step), and latency (the time lag from reading inputs to updating outputs). Each of these control system flaws is artificially introduced in both simulated and real dynamic clamp experiments. We demonstrate that each of these errors affect dynamic clamp accuracy in a way that depends on the time constants and stiffness of the differential equations being solved. In simulations, time steps above 0.2 ms lead to catastrophic alteration of spike shape, but the frequency-vs.-current relationship is much more robust. Latency (the part of the time step that occurs between measuring membrane potential and injecting re-calculated membrane current) is a crucial factor as well. Experimental data are substantially more sensitive to inaccuracies than simulated data. PMID:18076999
Numerical Study of Effects of Fluid-Structure Interaction on Dynamic Responses of Composite Plates
2009-09-01
FORCE LOAD AND CLAMPED BOUNDARY.................73 APPENDIX F: ADDITIONAL FIGURES FOR COMPOSITE DE NSITY EFFECTS WITH CONCE NTRATED FORCE LOAD AND...Structure Strain and Kine tic Energy Comparison for Elastic Modulus Variations with Concentrated Force and Clamped Boundary .........................31...48 Figure 49. Experiment Strain Gage La yout on Underside of Composite Plate
Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3).
Lin, Wei; Das, Kalyan; Degen, David; Mazumder, Abhishek; Duchi, Diego; Wang, Dongye; Ebright, Yon W; Ebright, Richard Y; Sineva, Elena; Gigliotti, Matthew; Srivastava, Aashish; Mandal, Sukhendu; Jiang, Yi; Liu, Yu; Yin, Ruiheng; Zhang, Zhening; Eng, Edward T; Thomas, Dennis; Donadio, Stefano; Zhang, Haibo; Zhang, Changsheng; Kapanidis, Achillefs N; Ebright, Richard H
2018-04-05
Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives. Copyright © 2018 Elsevier Inc. All rights reserved.
Lin, Risa J; Jaeger, Dieter
2011-05-01
In previous studies we used the technique of dynamic clamp to study how temporal modulation of inhibitory and excitatory inputs control the frequency and precise timing of spikes in neurons of the deep cerebellar nuclei (DCN). Although this technique is now widely used, it is limited to interpreting conductance inputs as being location independent; i.e., all inputs that are biologically distributed across the dendritic tree are applied to the soma. We used computer simulations of a morphologically realistic model of DCN neurons to compare the effects of purely somatic vs. distributed dendritic inputs in this cell type. We applied the same conductance stimuli used in our published experiments to the model. To simulate variability in neuronal responses to repeated stimuli, we added a somatic white current noise to reproduce subthreshold fluctuations in the membrane potential. We were able to replicate our dynamic clamp results with respect to spike rates and spike precision for different patterns of background synaptic activity. We found only minor differences in the spike pattern generation between focal or distributed input in this cell type even when strong inhibitory or excitatory bursts were applied. However, the location dependence of dynamic clamp stimuli is likely to be different for each cell type examined, and the simulation approach developed in the present study will allow a careful assessment of location dependence in all cell types.
Direct Observation of Markovian Behavior of the Mechanical Unfolding of Individual Proteins
Cao, Yi; Kuske, Rachel; Li, Hongbin
2008-01-01
Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics of a computationally designed fast-folding mutant of the small protein GB1, which shares a similar β-grasp fold as ubiquitin. By treating the mechanical unfolding of polyproteins as the superposition of multiple identical Poisson processes, we developed a simple stochastic analysis approach to analyze the dwell time distribution of individual unfolding events in polyprotein unfolding trajectories. Our results unambiguously demonstrate that the mechanical unfolding of NuG2 fulfills all criteria of a memoryless Markovian process. This result, in contrast with the complex mechanical unfolding behaviors observed for ubiquitin, serves as a direct experimental demonstration of the Markovian behavior for the mechanical unfolding of a protein and reveals the complexity of the unfolding dynamics among structurally similar proteins. Furthermore, we extended our method into a robust and efficient pseudo-dwell-time analysis method, which allows one to make full use of all the unfolding events obtained in force-clamp experiments without categorizing the unfolding events. This method enabled us to measure the key parameters characterizing the mechanical unfolding energy landscape of NuG2 with improved precision. We anticipate that the methods demonstrated here will find broad applications in single-molecule force-clamp spectroscopy studies for a wide range of proteins. PMID:18375518
Fang, Jing; Nevin, Philip; Kairys, Visvaldas; Venclovas, Česlovas; Engen, John R; Beuning, Penny J
2014-04-08
The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Duchi, Diego; Mazumder, Abhishek; Malinen, Anssi M; Ebright, Richard H; Kapanidis, Achillefs N
2018-06-06
RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.
2015-01-01
The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities. PMID:26569608
Kostrubiec, Viviane; Dumas, Guillaume; Zanone, Pier-Giorgio; Kelso, J A Scott
2015-01-01
The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities.
Yamada-Hanff, Jason
2015-01-01
We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current—which amplifies EPSPs—was most effectively recruited by rapid voltage changes, while Ih—which blunts EPSPs—was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons. PMID:26289465
Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S
2012-04-13
The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.
On artifacts in single-molecule force spectroscopy
Cossio, Pilar; Hummer, Gerhard; Szabo, Attila
2015-01-01
In typical force spectroscopy experiments, a small biomolecule is attached to a soft polymer linker that is pulled with a relatively large bead or cantilever. At constant force, the total extension stochastically changes between two (or more) values, indicating that the biomolecule undergoes transitions between two (or several) conformational states. In this paper, we consider the influence of the dynamics of the linker and mesoscopic pulling device on the force-dependent rate of the conformational transition extracted from the time dependence of the total extension, and the distribution of rupture forces in force-clamp and force-ramp experiments, respectively. For these different experiments, we derive analytic expressions for the observables that account for the mechanical response and dynamics of the pulling device and linker. Possible artifacts arise when the characteristic times of the pulling device and linker become comparable to, or slower than, the lifetimes of the metastable conformational states, and when the highly anharmonic regime of stretched linkers is probed at high forces. We also revisit the problem of relating force-clamp and force-ramp experiments, and identify a linker and loading rate-dependent correction to the rates extracted from the latter. The theory provides a framework for both the design and the quantitative analysis of force spectroscopy experiments by highlighting, and correcting for, factors that complicate their interpretation. PMID:26540730
NASA Technical Reports Server (NTRS)
Bayer, Janice I.; Varadan, V. V.; Varadan, V. K.
1991-01-01
This paper describes research into the use of discrete piezoelectric sensors and actuators for active modal control of flexible two-dimensional structures such as might be used as components for spacecraft. A dynamic coupling term is defined between the sensor/actuator and the structure in terms of structural model shapes, location and piezoelectric behavior. The relative size of the coupling term determines sensor/actuator placement. Results are shown for a clamped square plate and for a large antenna. An experiment was performed on a thin foot-square plate clamped on all sides. Sizable vibration control was achieved for first, second/third (degenerate) and fourth modes.
Real-Time Kinetic Modeling of Voltage-Gated Ion Channels Using Dynamic Clamp
Milescu, Lorin S.; Yamanishi, Tadashi; Ptak, Krzysztof; Mogri, Murtaza Z.; Smith, Jeffrey C.
2008-01-01
We propose what to our knowledge is a new technique for modeling the kinetics of voltage-gated ion channels in a functional context, in neurons or other excitable cells. The principle is to pharmacologically block the studied channel type, and to functionally replace it with dynamic clamp, on the basis of a computational model. Then, the parameters of the model are modified in real time (manually or automatically), with the objective of matching the dynamical behavior of the cell (e.g., action potential shape and spiking frequency), but also the transient and steady-state properties of the model (e.g., those derived from voltage-clamp recordings). Through this approach, one may find a model and parameter values that explain both the observed cellular dynamics and the biophysical properties of the channel. We extensively tested the method, focusing on Nav models. Complex Markov models (10–12 states or more) could be accurately integrated in real time at >50 kHz using the transition probability matrix, but not the explicit Euler method. The practicality of the technique was tested with experiments in raphe pacemaker neurons. Through automated real-time fitting, a Hodgkin-Huxley model could be found that reproduced well the action potential shape and the spiking frequency. Adding a virtual axonal compartment with a high density of Nav channels further improved the action potential shape. The computational procedure was implemented in the free QuB software, running under Microsoft Windows and featuring a friendly graphical user interface. PMID:18375511
Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT.
Kullmann, Paul H M; Wheeler, Diek W; Beacom, Joshua; Horn, John P
2004-01-01
The dynamic-clamp method provides a powerful electrophysiological tool for creating virtual ionic conductances in living cells and studying their influence on membrane potential. Here we describe G-clamp, a new way to implement a dynamic clamp using the real-time version of the Lab-VIEW programming environment together with a Windows host, an embedded microprocessor that runs a real-time operating system and a multifunction data-acquisition board. The software includes descriptions of a fast voltage-dependent sodium conductance, delayed rectifier, M-type and A-type potassium conductances, and a leak conductance. The system can also read synaptic conductance waveforms from preassembled data files. These virtual conductances can be reliably implemented at speeds < or =43 kHz while simultaneously saving two channels of data with 16-bit precision. G-clamp also includes utilities for measuring current-voltage relations, synaptic strength, and synaptic gain. Taking an approach built on a commercially available software/hardware platform has resulted in a system that is easy to assemble and upgrade. In addition, the graphical programming structure of LabVIEW should make it relatively easy for others to adapt G-clamp for new experimental applications.
Veerman, Christiaan C.; Zegers, Jan G.; Mengarelli, Isabella; Bezzina, Connie R.
2017-01-01
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for studying inherited cardiac arrhythmias and developing drug therapies to treat such arrhythmias. Unfortunately, until now, action potential (AP) measurements in hiPSC-CMs have been hampered by the virtual absence of the inward rectifier potassium current (IK1) in hiPSC-CMs, resulting in spontaneous activity and altered function of various depolarising and repolarising membrane currents. We assessed whether AP measurements in “ventricular-like” and “atrial-like” hiPSC-CMs could be improved through a simple, highly reproducible dynamic clamp approach to provide these cells with a substantial IK1 (computed in real time according to the actual membrane potential and injected through the patch-clamp pipette). APs were measured at 1 Hz using perforated patch-clamp methodology, both in control cells and in cells treated with all-trans retinoic acid (RA) during the differentiation process to increase the number of cells with atrial-like APs. RA-treated hiPSC-CMs displayed shorter APs than control hiPSC-CMs and this phenotype became more prominent upon addition of synthetic IK1 through dynamic clamp. Furthermore, the variability of several AP parameters decreased upon IK1 injection. Computer simulations with models of ventricular-like and atrial-like hiPSC-CMs demonstrated the importance of selecting an appropriate synthetic IK1. In conclusion, the dynamic clamp-based approach of IK1 injection has broad applicability for detailed AP measurements in hiPSC-CMs. PMID:28867785
Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A
2017-04-01
Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
NASA Astrophysics Data System (ADS)
Xue, Peng; Fu, Guicui
2017-03-01
The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.
NASA Astrophysics Data System (ADS)
Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping
2018-05-01
Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.
Analysis of real-time numerical integration methods applied to dynamic clamp experiments.
Butera, Robert J; McCarthy, Maeve L
2004-12-01
Real-time systems are frequently used as an experimental tool, whereby simulated models interact in real time with neurophysiological experiments. The most demanding of these techniques is known as the dynamic clamp, where simulated ion channel conductances are artificially injected into a neuron via intracellular electrodes for measurement and stimulation. Methodologies for implementing the numerical integration of the gating variables in real time typically employ first-order numerical methods, either Euler or exponential Euler (EE). EE is often used for rapidly integrating ion channel gating variables. We find via simulation studies that for small time steps, both methods are comparable, but at larger time steps, EE performs worse than Euler. We derive error bounds for both methods, and find that the error can be characterized in terms of two ratios: time step over time constant, and voltage measurement error over the slope factor of the steady-state activation curve of the voltage-dependent gating variable. These ratios reliably bound the simulation error and yield results consistent with the simulation analysis. Our bounds quantitatively illustrate how measurement error restricts the accuracy that can be obtained by using smaller step sizes. Finally, we demonstrate that Euler can be computed with identical computational efficiency as EE.
Mechanism of opening a sliding clamp
Douma, Lauren G.; Yu, Kevin K.; England, Jennifer K.
2017-01-01
Abstract Clamp loaders load ring-shaped sliding clamps onto DNA where the clamps serve as processivity factors for DNA polymerases. In the first stage of clamp loading, clamp loaders bind and stabilize clamps in an open conformation, and in the second stage, clamp loaders place the open clamps around DNA so that the clamps encircle DNA. Here, the mechanism of the initial clamp opening stage is investigated. Mutations were introduced into the Escherichia coli β-sliding clamp that destabilize the dimer interface to determine whether the formation of an open clamp loader–clamp complex is dependent on spontaneous clamp opening events. In other work, we showed that mutation of a positively charged Arg residue at the β-dimer interface and high NaCl concentrations destabilize the clamp, but neither facilitates the formation of an open clamp loader–clamp complex in experiments presented here. Clamp opening reactions could be fit to a minimal three-step ‘bind-open-lock’ model in which the clamp loader binds a closed clamp, the clamp opens, and subsequent conformational rearrangements ‘lock’ the clamp loader–clamp complex in a stable open conformation. Our results support a model in which the E. coli clamp loader actively opens the β-sliding clamp. PMID:28973453
NASA Astrophysics Data System (ADS)
Helm, P. Johannes; Reppen, Trond; Heggelund, Paul
2009-02-01
Multi Photon Laser Scanning Microscopy (MPLSM) appears today as one of the most powerful experimental tools in cellular neurophysiology, notably in studies of the functional dynamics of signal processing in single neurons. Simultaneous recording of fluorescence signals at high spatial and temporal resolution and electric signals by means of multi electrode patch clamp techniques have provided new paths for the systematic investigation of neuronal mechanisms. In particular, this approach has opened for direct studies of dendritic signal processing in neurons. We report about a setup optimized for simultaneous electrophysiological multi electrode patch clamp and multi photon laser scanning fluorescence microscopic experiments on brain slices. The microscopic system is based on a modified commercially available confocal scanning laser microscope (CLSM). From a technical and operational point of view, two developments are important: Firstly, in order to reduce the workload for the experimentalist, who in general is forced to concentrate on controlling the electrophysiological parameters during the recordings, a system of shutters has been installed together with dedicated electronic modules protecting the photo detectors against destructive light levels caused by erroneous opening or closing of microscopic light paths by the experimentalist. Secondly, the standard detection unit has been improved by installing the photomultiplier tubes (PMT) in a Peltier cooled thermal box shielding the detector from both room temperature and distortions caused by external electromagnetic fields. The electrophysiological system is based on an industrial standard multi patch clamp unit ergonomically arranged around the microscope stage. The electrophysiological and scanning processes can be time coordinated by standard trigger electronics.
Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.
2013-01-01
Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047
Characterization of active hair-bundle motility by a mechanical-load clamp
NASA Astrophysics Data System (ADS)
Salvi, Joshua D.; Maoiléidigh, Dáibhid Ó.; Fabella, Brian A.; Tobin, Mélanie; Hudspeth, A. J.
2015-12-01
Active hair-bundle motility endows hair cells with several traits that augment auditory stimuli. The activity of a hair bundle might be controlled by adjusting its mechanical properties. Indeed, the mechanical properties of bundles vary between different organisms and along the tonotopic axis of a single auditory organ. Motivated by these biological differences and a dynamical model of hair-bundle motility, we explore how adjusting the mass, drag, stiffness, and offset force applied to a bundle control its dynamics and response to external perturbations. Utilizing a mechanical-load clamp, we systematically mapped the two-dimensional state diagram of a hair bundle. The clamp system used a real-time processor to tightly control each of the virtual mechanical elements. Increasing the stiffness of a hair bundle advances its operating point from a spontaneously oscillating regime into a quiescent regime. As predicted by a dynamical model of hair-bundle mechanics, this boundary constitutes a Hopf bifurcation.
Sasmal, Dibyendu Kumar; Yadav, Rajeev; Lu, H Peter
2016-07-20
N-methyl-d-aspartate (NMDA) receptor ion channel is activated by the binding of two pairs of glycine and glutamate along with the application of action potential. Binding and unbinding of ligands changes its conformation that plays a critical role in the open-close activities of NMDA receptor. Conformation states and their dynamics due to ligand binding are extremely difficult to characterize either by conventional ensemble experiments or single-channel electrophysiology method. Here we report the development of a new correlated technical approach, single-molecule patch-clamp FRET anisotropy imaging and demonstrate by probing the dynamics of NMDA receptor ion channel and kinetics of glycine binding with its ligand binding domain. Experimentally determined kinetics of ligand binding with receptor is further verified by computational modeling. Single-channel patch-clamp and four-channel fluorescence measurement are recorded simultaneously to get correlation among electrical on and off states, optically determined conformational open and closed states by FRET, and binding-unbinding states of the glycine ligand by anisotropy measurement at the ligand binding domain of GluN1 subunit. This method has the ability to detect the intermediate states in addition to electrical on and off states. Based on our experimental results, we have proposed that NMDA receptor gating goes through at least one electrically intermediate off state, a desensitized state, when ligands remain bound at the ligand binding domain with the conformation similar to the fully open state.
Piezoresistive cantilever force-clamp system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L.
2011-04-15
We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to amore » sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.« less
Combination Space Station Handrail Clamp and Pointing Device
NASA Technical Reports Server (NTRS)
Hughes, Stephen J. (Inventor)
1999-01-01
A device for attaching an experiment carrier to a space station handrail is provided. The device has two major components, a clamping mechanism for attachment to a space station handrail, and a pointing carrier on which an experiment package can be mounted and oriented. The handrail clamp uses an overcenter mechanism and the carrier mechanism uses an adjustable preload ball and socket for carrier positioning. The handrail clamp uses a stack of disk springs to provide a spring loaded button. This configuration provides consistent clamping force over a range of possible handrail thicknesses. Three load points are incorporated in the clamping mechanism thereby spreading the clamping load onto three separate points on the handrail. A four bar linkage is used to provide for a single actuation lever for all three load points. For additional safety, a secondary lock consisting of a capture plate and push lock keeps the clamp attached to the handrail in the event of main clamp failure. For the carrier positioning mechanism, a ball in a spring loaded socket uses friction to provide locking torque; however. the ball and socket are torque limited so that the ball ran slip under kick loads (125 pounds or greater). A lead screw attached to disk spring stacks is used to provide an adjustable spring force on the socket. A locking knob is attached to the lead screw to allow for hand manipulation of the lead screw.
2015-08-01
10 minutes. After this, the furnace was opened and the clamps were tightened to 6 in-lb of torque . At the end of the tests, we examined the specimens...to use a different procedure for tightening the clamps in the frequency sweep tests -- this is explained in the next section...procedure to tighten the clamps. This is described next. First, the test applies different frequencies at a large range of temperatures – from -110 C to 70
Real-time Experiment Interface for Biological Control Applications
Lin, Risa J.; Bettencourt, Jonathan; White, John A.; Christini, David J.; Butera, Robert J.
2013-01-01
The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org). PMID:21096883
Dorval, A D; Christini, D J; White, J A
2001-10-01
We describe a system for real-time control of biological and other experiments. This device, based around the Real-Time Linux operating system, was tested specifically in the context of dynamic clamping, a demanding real-time task in which a computational system mimics the effects of nonlinear membrane conductances in living cells. The system is fast enough to represent dozens of nonlinear conductances in real time at clock rates well above 10 kHz. Conductances can be represented in deterministic form, or more accurately as discrete collections of stochastically gating ion channels. Tests were performed using a variety of complex models of nonlinear membrane mechanisms in excitable cells, including simulations of spatially extended excitable structures, and multiple interacting cells. Only in extreme cases does the computational load interfere with high-speed "hard" real-time processing (i.e., real-time processing that never falters). Freely available on the worldwide web, this experimental control system combines good performance. immense flexibility, low cost, and reasonable ease of use. It is easily adapted to any task involving real-time control, and excels in particular for applications requiring complex control algorithms that must operate at speeds over 1 kHz.
Butera, R J; Wilson, C G; Delnegro, C A; Smith, J C
2001-12-01
We present a novel approach to implementing the dynamic-clamp protocol (Sharp et al., 1993), commonly used in neurophysiology and cardiac electrophysiology experiments. Our approach is based on real-time extensions to the Linux operating system. Conventional PC-based approaches have typically utilized single-cycle computational rates of 10 kHz or slower. In thispaper, we demonstrate reliable cycle-to-cycle rates as fast as 50 kHz. Our system, which we call model reference current injection (MRCI); pronounced merci is also capable of episodic logging of internal state variables and interactive manipulation of model parameters. The limiting factor in achieving high speeds was not processor speed or model complexity, but cycle jitter inherent in the CPU/motherboard performance. We demonstrate these high speeds and flexibility with two examples: 1) adding action-potential ionic currents to a mammalian neuron under whole-cell patch-clamp and 2) altering a cell's intrinsic dynamics via MRCI while simultaneously coupling it via artificial synapses to an internal computational model cell. These higher rates greatly extend the applicability of this technique to the study of fast electrophysiological currents such fast a currents and fast excitatory/inhibitory synapses.
Structural basis of human PCNA sliding on DNA
NASA Astrophysics Data System (ADS)
de March, Matteo; Merino, Nekane; Barrera-Vilarmau, Susana; Crehuet, Ramon; Onesti, Silvia; Blanco, Francisco J.; de Biasio, Alfredo
2017-01-01
Sliding clamps encircle DNA and tether polymerases and other factors to the genomic template. However, the molecular mechanism of clamp sliding on DNA is unknown. Using crystallography, NMR and molecular dynamics simulations, here we show that the human clamp PCNA recognizes DNA through a double patch of basic residues within the ring channel, arranged in a right-hand spiral that matches the pitch of B-DNA. We propose that PCNA slides by tracking the DNA backbone via a `cogwheel' mechanism based on short-lived polar interactions, which keep the orientation of the clamp invariant relative to DNA. Mutation of residues at the PCNA-DNA interface has been shown to impair the initiation of DNA synthesis by polymerase δ (pol δ). Therefore, our findings suggest that a clamp correctly oriented on DNA is necessary for the assembly of a replication-competent PCNA-pol δ holoenzyme.
Anderson, William W.; Fitzjohn, Stephen M.; Collingridge, Graham L.
2012-01-01
WinLTP is a data acquisition program for studying long-term potentiation (LTP) and other aspects of synaptic function. Earlier versions of WinLTP (J. Neurosci. Methods, 162:346–356, 2007) provided automated electrical stimulation and data acquisition capable of running nearly an entire synaptic plasticity experiment, with the primary exception that perfusion solutions had to be changed manually. This automated stimulation and acquisition was done by using ‘Sweep’, ‘Loop’ and ‘Delay’ events to build scripts using the ‘Protocol Builder’. However, this did not allow automatic changing of many solutions while running multiple slice experiments, or solution changing when this had to be performed rapidly and with accurate timing during patch-clamp experiments. We report here the addition of automated perfusion control to WinLTP. First, perfusion change between sweeps is enabled by adding the ‘Perfuse’ event to Protocol Builder scripting and is used in slice experiments. Second, fast perfusion changes during as well as between sweeps is enabled by using the Perfuse event in the protocol scripts to control changes between sweeps, and also by changing digital or analog output during a sweep and is used for single cell single-line perfusion patch-clamp experiments. The addition of stepper control of tube placement allows dual- or triple-line perfusion patch-clamp experiments for up to 48 solutions. The ability to automate perfusion changes and fully integrate them with the already automated stimulation and data acquisition goes a long way toward complete automation of multi-slice extracellularly recorded and single cell patch-clamp experiments. PMID:22524994
Dynamic assembly of Hda and the sliding clamp in the regulation of replication licensing.
Kim, Jin S; Nanfara, Michael T; Chodavarapu, Sundari; Jin, Kyeong S; Babu, Vignesh M P; Ghazy, Mohamed A; Chung, Scisung; Kaguni, Jon M; Sutton, Mark D; Cho, Yunje
2017-04-20
Regulatory inactivation of DnaA (RIDA) is one of the major regulatory mechanisms of prokaryotic replication licensing. In RIDA, the Hda-sliding clamp complex loaded onto DNA directly interacts with adenosine triphosphate (ATP)-bound DnaA and stimulates the hydrolysis of ATP to inactivate DnaA. A prediction is that the activity of Hda is tightly controlled to ensure that replication initiation occurs only once per cell cycle. Here, we determined the crystal structure of the Hda-β clamp complex. This complex contains two pairs of Hda dimers sandwiched between two β clamp rings to form an octamer that is stabilized by three discrete interfaces. Two separate surfaces of Hda make contact with the β clamp, which is essential for Hda function in RIDA. The third interface between Hda monomers occludes the active site arginine finger, blocking its access to DnaA. Taken together, our structural and mutational analyses of the Hda-β clamp complex indicate that the interaction of the β clamp with Hda controls the ability of Hda to interact with DnaA. In the octameric Hda-β clamp complex, the inability of Hda to interact with DnaA is a novel mechanism that may regulate Hda function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Dynamic assembly of Hda and the sliding clamp in the regulation of replication licensing
Kim, Jin S.; Nanfara, Michael T.; Chodavarapu, Sundari; Jin, Kyeong S.; Babu, Vignesh M. P.; Ghazy, Mohamed A.; Chung, Scisung
2017-01-01
Abstract Regulatory inactivation of DnaA (RIDA) is one of the major regulatory mechanisms of prokaryotic replication licensing. In RIDA, the Hda–sliding clamp complex loaded onto DNA directly interacts with adenosine triphosphate (ATP)-bound DnaA and stimulates the hydrolysis of ATP to inactivate DnaA. A prediction is that the activity of Hda is tightly controlled to ensure that replication initiation occurs only once per cell cycle. Here, we determined the crystal structure of the Hda–β clamp complex. This complex contains two pairs of Hda dimers sandwiched between two β clamp rings to form an octamer that is stabilized by three discrete interfaces. Two separate surfaces of Hda make contact with the β clamp, which is essential for Hda function in RIDA. The third interface between Hda monomers occludes the active site arginine finger, blocking its access to DnaA. Taken together, our structural and mutational analyses of the Hda–β clamp complex indicate that the interaction of the β clamp with Hda controls the ability of Hda to interact with DnaA. In the octameric Hda–β clamp complex, the inability of Hda to interact with DnaA is a novel mechanism that may regulate Hda function. PMID:28168278
Force generation by titin folding.
Mártonfalvi, Zsolt; Bianco, Pasquale; Naftz, Katalin; Ferenczy, György G; Kellermayer, Miklós
2017-07-01
Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (<10 pN), extension fluctuated without resolvable discrete events. In position-clamp experiments, the time-dependent force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles. © 2017 The Protein Society.
Piezoresistive cantilever force-clamp system
Park, Sung-Jin; Petzold, Bryan C.; Goodman, Miriam B.; Pruitt, Beth L.
2011-01-01
We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode. PMID:21529009
NASA Astrophysics Data System (ADS)
Demianenko, A. M.; Golovnev, I. F.; Golovneva, E. I.
2017-10-01
The behavior of the fracture processes of a metal nanostructure under deformation in the temperature range 0-550 K was investigated by the molecular dynamics method. An ideal copper crystal was used as a sample in the form of a rectangular parallelepiped with the number of crystalline cells nx = 50, ny = nz = 5 along the corresponding axes. The deformation was carried out by uniaxial stretching of the sample between two clamps (movable and fixed) with a constant speed. The stretching rate varied from 50 to 500 m/s. To describe the interatomic interaction, the Voter many-body EAM potential was used. The effect of temperature on macro characteristics of fracture (the fracture place, the number of fragments formed, the stress on the clamps), and also on the kinetic characteristics (fracture rate, time of formation of maximum stress values on the clamps, mass transfer phenomena and formation of the fracture neck) were revealed.
Dynamics of static friction between steel and silicon
Yang, Zhiping; Zhang, H. P.; Marder, M.
2008-01-01
We conducted experiments in which steel and silicon or quartz are clamped together. Even with the smallest tangential forces we could apply, we always found reproducible sliding motions on the nanometer scale. The velocities we study are thousands of times smaller than in previous investigations. The samples first slide and then lock up even when external forces hold steady. One might call the result “slip-stick” friction. We account for the results with a phenomenological theory that results from considering the rate and state theory of dynamic friction at low velocities. Our measurements lead us to set the instantaneous coefficient of static friction that normally enters rate and state theories to zero. PMID:18768792
Linear ultrasonic motor for absolute gravimeter.
Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V
2017-05-01
Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.
Attitude control of an orbiting space vehicle.
NASA Technical Reports Server (NTRS)
Sutherlin, D. W.; Boland, J. S. , III; Borelli, M. T.
1971-01-01
Study of the normal and clamped modes of operation and dynamic response characteristics of the gimbaled control moment gyro (CMG) designed to fulfill the stringent pointing requirements of the Skylab telescope mount when the spacecraft is under the influence of both external and internal torques. The results indicate that the clamped mode of operation provides a feasible approach for significantly improving the system characteristics.
QPatch: the past, present and future of automated patch clamp.
Mathes, Chris
2006-04-01
The QPatch 16 significantly increases throughput for gigaseal patch clamp experiments, making direct measurements in ion channel drug discovery and safety testing feasible. Released to the market in the Autumn of 2004 by Sophion Bioscience, the QPatch originated from work done at NeuroSearch (Denmark) in the early days of automated patch clamp. Today, the QPatch provides many unique features. For example, only the QPatch includes an automated cell preparation station making several hours of unattended operation possible. The 16-channel electrode array, called the QPlate, includes glass-coated microfluidic channels for less compound absorption and, hence, more accurate IC(50) values. The microfluidic pathways also allow for very small amounts of compound used for each experiment ( approximately 5 microl per addition). Only the QPatch has four independent pipetting heads for more efficient liquid handling (especially for ligand-gated ion channel experiments). Patch clamp recordings with the QPatch match the high quality of conventional patch clamp and in some cases the results are even better. For example, only the QPatch includes 100% series resistance compensation for the elimination of false positives due to voltage errors. Finally, the modular QPatch 16 was designed with more channels in mind. The upgrade pathway to 48-channels (the QPatch HT) will be discussed.
Spectral infrared hemispherical reflectance measurements for LDEF tray clamps
NASA Technical Reports Server (NTRS)
Wood, Bobby E.; Cromwell, Brian K.; Pender, Charles W.; Shepherd, Seth D.
1992-01-01
This paper describes infrared hemispherical reflectance measurements (2-15 microns) that were made on 58 chromic acid anodized tray clamps retrieved from the LDEF spacecraft. These clamps were used for maintaining the experiments in place and were located at various locations about the spacecraft. Changes in reflectance of the tray clamps at these locations were compared with atomic oxygen fluxes at the same locations. A decrease in absorption band depth was seen for the surfaces exposed to space indicating that there was some surface layer erosion. In all of the surfaces measured, little evidence of contamination was observed and none of the samples showed evidence of the brown nicotine stain that was so prominent in other experiments. Total emissivity values were calculated for both exposed and unexposed tray clamp surfaces. Only small differences, usually less than 1 percent, were observed. The spectral reflectances were measured using a hemi-ellipsoidal mirror reflectometer matched with an interferometer spectrometer. The rapid scanning capability of the interferometer allowed the reflectance measurements to be made in a timely fashion. The ellipsoidal mirror has its two foci separated by 2 inches and located on the major axis. A blackbody source was located at one focus while the tray clamp samples were located at the conjugate focus. The blackbody radiation was modulated and then focused by the ellipsoid onto the tray clamps. Radiation reflected from the tray clamp was sampled by the interferometer by viewing through a hole in the ellipsoid. A gold mirror (reflectance approximately 98 percent) was used as the reference surface.
Wilson, John; Docherty, Paul; Stubbs, Richard; Chase, J Geoffrey; Krebs, Jeremy
2018-06-11
To compare the dynamic insulin secretion and sensitivity test (DISST) with the euglycaemic clamp in individuals undergoing open Roux-en-Y gastric bypass (RYGB) surgery prior-to and one month after surgery. Insulin sensitivity in individuals with obesity undergoing RYGB was studied with DISST and a euglycaemic hyperinsulinaemic clamp. Eleven participants, including nine females, mean(SD) age 51.2(12.1)yrs, with a preoperative BMI of 48.7(9.5)kg/m 2 were studied. Weight reduced from a mean(SD) of 133.8(29.8)kg to 123.8(28.9)kg post-surgery (p<0.001). The mean(SD) insulin sensitivity index (ISI-DISST) was 3.07×10 -4 (2.18)L.pmol -1 .min -1 preoperatively and 2.36 ×10 -4 (0.78)L.pmol -1 .min -1 postoperatively (p=0.37). The mean(SD) clamp ISI was 2.14 ×10 -2 (1.80)mg.L.kg -1 .min -1 .pmol -1 and 2.00×10 -2 .(0.76)mg.L.kg -1 .min -1 .pmol -1 postoperatively (p=0.86). Correlation between ISI-DISST and ISI-Clamp preoperatively was r=0.81(95%CI 0.37-0.95) and post-operatively r=0.47(95%CI 0-0.88). Bland-Altman analysis demonstrates systematic bias between the two tests, where DISST underestimated insulin sensitivity compared with the clamp by 0.96×10 -2 .mg.L.kg -1 .min -1 .pmol -1 (95%CI -2.24 to 0.32). There was a strong correlation between DISST and the clamp preoperatively and DISST can be used to estimate insulin sensitivity in individuals with morbid obesity. After RYGB surgery, DISST had a weaker correlation with the clamp suggesting the fundamental physiological determinants of insulin sensitivity being measured by each method change in different ways with changes in glucose homeostasis following RYGB surgery. © Georg Thieme Verlag KG Stuttgart · New York.
Gadkari, Varun V; Harvey, Sophie R; Raper, Austin T; Chu, Wen-Ting; Wang, Jin; Wysocki, Vicki H; Suo, Zucai
2018-01-01
Abstract Proliferating cell nuclear antigen (PCNA) is a trimeric ring-shaped clamp protein that encircles DNA and interacts with many proteins involved in DNA replication and repair. Despite extensive structural work to characterize the monomeric, dimeric, and trimeric forms of PCNA alone and in complex with interacting proteins, no structure of PCNA in a ring-open conformation has been published. Here, we use a multidisciplinary approach, including single-molecule Förster resonance energy transfer (smFRET), native ion mobility-mass spectrometry (IM-MS), and structure-based computational modeling, to explore the conformational dynamics of a model PCNA from Sulfolobus solfataricus (Sso), an archaeon. We found that Sso PCNA samples ring-open and ring-closed conformations even in the absence of its clamp loader complex, replication factor C, and transition to the ring-open conformation is modulated by the ionic strength of the solution. The IM-MS results corroborate the smFRET findings suggesting that PCNA dynamics are maintained in the gas phase and further establishing IM-MS as a reliable strategy to investigate macromolecular motions. Our molecular dynamic simulations agree with the experimental data and reveal that ring-open PCNA often adopts an out-of-plane left-hand geometry. Collectively, these results implore future studies to define the roles of PCNA dynamics in DNA loading and other PCNA-mediated interactions. PMID:29529283
Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition
Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A.
2016-01-01
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. PMID:26209846
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Wang, Yun
1994-01-01
Based on a distributed parameter model for vibrations, an approximate finite dimensional dynamic compensator is designed to suppress vibrations (multiple modes with a broad band of frequencies) of a circular plate with Kelvin-Voigt damping and clamped boundary conditions. The control is realized via piezoceramic patches bonded to the plate and is calculated from information available from several pointwise observed state variables. Examples from computational studies as well as use in laboratory experiments are presented to demonstrate the effectiveness of this design.
Gain and losses in THz quantum cascade laser with metal-metal waveguide.
Martl, Michael; Darmo, Juraj; Deutsch, Christoph; Brandstetter, Martin; Andrews, Aaron Maxwell; Klang, Pavel; Strasser, Gottfried; Unterrainer, Karl
2011-01-17
Coupling of broadband terahertz pulses into metal-metal terahertz quantum cascade lasers is presented. Mode matched terahertz transients are generated on the quantum cascade laser facet of subwavelength dimension. This method provides a full overlap of optical mode and active laser medium. A longitudinal optical-phonon depletion based active region design is investigated in a coupled cavity configuration. Modulation experiments reveal spectral gain and (broadband) losses. The observed gain shows high dynamic behavior when switching from loss to gain around threshold and is clamped at total laser losses.
Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid
2015-04-01
A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.
Gas loading apparatus for the Paris-Edinburgh press
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bocian, A.; Kamenev, K. V.; Bull, C. L.
2010-09-15
We describe the design and operation of an apparatus for loading gases into the sample volume of the Paris-Edinburgh press at room temperature and high pressure. The system can be used for studies of samples loaded as pure or mixed gases as well as for loading gases as pressure-transmitting media in neutron-scattering experiments. The apparatus consists of a high-pressure vessel and an anvil holder with a clamp mechanism. The vessel, designed to operate at gas pressures of up to 150 MPa, is used for applying the load onto the anvils located inside the clamp. This initial load is sufficient formore » sealing the pressurized gas inside the sample containing gasket. The clamp containing the anvils and the sample is then transferred into the Paris-Edinburgh press by which further load can be applied to the sample. The clamp has apertures for scattered neutron beams and remains in the press for the duration of the experiment. The performance of the gas loading system is illustrated with the results of neutron-diffraction experiments on compressed nitrogen.« less
Planar patch clamp: advances in electrophysiology.
Brüggemann, Andrea; Farre, Cecilia; Haarmann, Claudia; Haythornthwaite, Ali; Kreir, Mohamed; Stoelzle, Sonja; George, Michael; Fertig, Niels
2008-01-01
Ion channels have gained increased interest as therapeutic targets over recent years, since a growing number of human and animal diseases have been attributed to defects in ion channel function. Potassium channels are the largest and most diverse family of ion channels. Pharmaceutical agents such as Glibenclamide, an inhibitor of K(ATP) channel activity which promotes insulin release, have been successfully sold on the market for many years. So far, only a small group of the known ion channels have been addressed as potential drug targets. The functional testing of drugs on these ion channels has always been the bottleneck in the development of these types of pharmaceutical compounds.New generations of automated patch clamp screening platforms allow a higher throughput for drug testing and widen this bottleneck. Due to their planar chip design not only is a higher throughput achieved, but new applications have also become possible. One of the advantages of planar patch clamp is the possibility of perfusing the intracellular side of the membrane during a patch clamp experiment in the whole-cell configuration. Furthermore, the extracellular membrane remains accessible for compound application during the experiment.Internal perfusion can be used not only for patch clamp experiments with cell membranes, but also for those with artificial lipid bilayers. In this chapter we describe how internal perfusion can be applied to potassium channels expressed in Jurkat cells, and to Gramicidin channels reconstituted in a lipid bilayer.
All-optical gain-clamped wideband serial EDFA with ring-shaped laser
NASA Astrophysics Data System (ADS)
Lu, Yung-Hsin; Chi, Sien
2004-01-01
We experimentally investigate the static and dynamic properties of all-optical gain-clamped wideband (1530-1600 nm) serial erbium-doped fiber amplifier with a single ring-shaped laser, which consists of a circulator and a fiber Bragg grating at the output end. The lasing light passing through the second stage is intentionally blocked at the output end by a C/L-band wavelength division multiplexer owning the huge insertion loss, and thus, the copropagating ring-laser light is formed by the first stage. This design can simultaneously clamp the gains of 1547 and 1584 nm probes near 14 dB and shows the same dynamic range of input power up to -4 dBm for conventional band and long-wavelength band. Furthermore, the transient responses of 1551 and 1596 nm surviving channels exhibit small power excursions (<0.54 dB) as the total saturating tone with -2 dBm is modulated on and off at 270 Hz.
Planar patch clamp for neuronal networks--considerations and future perspectives.
Bosca, Alessandro; Martina, Marzia; Py, Christophe
2014-01-01
The patch-clamp technique is generally accepted as the gold standard for studying ion channel activity allowing investigators to either "clamp" membrane voltage and directly measure transmembrane currents through ion channels, or to passively monitor spontaneously occurring intracellular voltage oscillations. However, this resulting high information content comes at a price. The technique is labor-intensive and requires highly trained personnel and expensive equipment. This seriously limits its application as an interrogation tool for drug development. Patch-clamp chips have been developed in the last decade to overcome the tedious manipulations associated with the use of glass pipettes in conventional patch-clamp experiments. In this chapter, we describe some of the main materials and fabrication protocols that have been developed to date for the production of patch-clamp chips. We also present the concept of a patch-clamp chip array providing high resolution patch-clamp recordings from individual cells at multiple sites in a network of communicating neurons. On this chip, the neurons are aligned with the aperture-probes using chemical patterning. In the discussion we review the potential use of this technology for pharmaceutical assays, neuronal physiology and synaptic plasticity studies.
Zhao, Hongwei; Fu, Lu; Ren, Luquan; Huang, Hu; Fan, Zunqiang; Li, Jianping; Qu, Han
2013-01-01
In this paper, a novel piezo-driven rotary actuator with the changeable clamping radius is developed based on the inchworm principle. This actuator mainly utilizes three piezoelectric actuators, a flexible gripper, a clamping block, and a rotor to achieve large stroke rotation with high resolution. The design process of the flexible gripper consisting of the driving unit and the clamping unit is described. Lever-type mechanisms were used to amplify the micro clamping displacements. The amplifying factor and parasitic displacement of the lever-type mechanism in the clamping unit was analyzed theoretically and experimentally. In order to investigate the rotation characteristics of the actuator, a series of experiments was carried out. Experimental results indicate that the actuator can rotate at a speed of 77,488 μrad/s with a driving frequency of 167 Hz. The rotation resolution and maximum load torque of the actuator are 0.25 μrad and 37 N mm, respectively. The gripper is movable along the z direction based on an elevating platform, and the clamping radius can change from 10.6 mm to 25 mm. Experimental results confirm that the actuator can achieve different rotation speeds by changing the clamping radius.
Lishko, Polina; Clapham, David E.; Navarro, Betsy; Kirichok, Yuriy
2014-01-01
Sperm intracellular pH and calcium concentration ([Ca2+]i) are two central factors that control sperm activity within the female reproductive tract. As such, the ion channels of the sperm plasma membrane that alter intracellular sperm [Ca2+] and pH play important roles in sperm physiology and the process of fertilization. Indeed, sperm ion channels regulate sperm motility, control sperm chemotaxis toward the egg in some species, and may trigger the acrosome reaction. Until recently, our understanding of these important molecules was rudimentary due to the inability to patch-clamp spermatozoa and directly record the activity of these ion channels under voltage clamp. Recently, we overcame this technical barrier and developed a method for reproducible application of the patch-clamp technique to mouse and human spermatozoa. This chapter covers important aspects of application of the patch-clamp technique to spermatozoa, such as selection of the electrophysiological equipment, isolation of spermatozoa for patch-clamp experiments, formation of the gigaohm seal with spermatozoa, and transition into the whole-cell mode of recording. We also discuss potential pitfalls in application of the patch-clamp technique to flagellar ion channels. PMID:23522465
Dynamics of internal pore opening in KV channels probed by a fluorescent unnatural amino acid
Kalstrup, Tanja; Blunck, Rikard
2013-01-01
Atomic-scale models on the gating mechanism of voltage-gated potassium channels (Kv) are based on linear interpolations between static structures of their initial and final state derived from crystallography and molecular dynamics simulations, and, thus, lack dynamic structural information. The lack of information on dynamics and intermediate states makes it difficult to associate the structural with the dynamic functional data obtained with electrophysiology. Although voltage-clamp fluorometry fills this gap, it is limited to sites extracellularly accessible, when the key region for gating is located at the cytosolic side of the channels. Here, we solved this problem by performing voltage-clamp fluorometry with a fluorescent unnatural amino acid. By using an orthogonal tRNA-synthetase pair, the fluorescent unnatural amino acid was incorporated in the Shaker voltage-gated potassium channel at key regions that were previously inaccessible. Thus, we defined which parts act independently and which parts act cooperatively and found pore opening to occur in two sequential transitions. PMID:23630265
NASA Astrophysics Data System (ADS)
He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong
2018-05-01
A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.
NASA Astrophysics Data System (ADS)
Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Iordǎnescu, Raluca; Marinescu, Andrei
2015-02-01
The current paper describes an optoelectronic method for direct monitoring of the axial clamping forces both in static and in dynamic duty. As advantages of this method we can state that it can be applied both to new and refurbished transformers without performing constructive changes or affecting in any way the transformer safety in operation. For monitoring the axial clamping forces for high-voltage (HV) power transformers, we use an optical fiber that we integrate into the laser cavity of a passively mode-locked fiber laser (PMFL). To each axial clamp corresponds a solitonic optical spectrum that is changed at the periodical passing of the fundamental soliton pulse through the sensitive fiber inside the transformer. Moreover, as a specific characteristic, the laser stability is unique for each set of axial clamping forces. Other important advantages of using an optical fiber as compared to the classical approach in which electronic sensors are used consist in the good reliability and insulator properties of the optical fiber, avoiding any risk of fire or damage of the transformer.
Lewis, Jacob S.; Spenkelink, Lisanne M.; Schauer, Grant D.; Hill, Flynn R.; Georgescu, Roxanna E.; O’Donnell, Michael E.; van Oijen, Antoine M.
2017-01-01
The replisome, the multiprotein system responsible for genome duplication, is a highly dynamic complex displaying a large number of different enzyme activities. Recently, the Saccharomyces cerevisiae minimal replication reaction has been successfully reconstituted in vitro. This provided an opportunity to uncover the enzymatic activities of many of the components in a eukaryotic system. Their dynamic behavior and interactions in the context of the replisome, however, remain unclear. We use a tethered-bead assay to provide real-time visualization of leading-strand synthesis by the S. cerevisiae replisome at the single-molecule level. The minimal reconstituted leading-strand replisome requires 24 proteins, forming the CMG helicase, the Pol ε DNA polymerase, the RFC clamp loader, the PCNA sliding clamp, and the RPA single-stranded DNA binding protein. We observe rates and product lengths similar to those obtained from ensemble biochemical experiments. At the single-molecule level, we probe the behavior of two components of the replication progression complex and characterize their interaction with active leading-strand replisomes. The Minichromosome maintenance protein 10 (Mcm10), an important player in CMG activation, increases the number of productive replication events in our assay. Furthermore, we show that the fork protection complex Mrc1–Tof1–Csm3 (MTC) enhances the rate of the leading-strand replisome threefold. The introduction of periods of fast replication by MTC leads to an average rate enhancement of a factor of 2, similar to observations in cellular studies. We observe that the MTC complex acts in a dynamic fashion with the moving replisome, leading to alternating phases of slow and fast replication. PMID:28923950
Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.
Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A
2016-08-01
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Vibration isolation using extreme geometric nonlinearity
NASA Astrophysics Data System (ADS)
Virgin, L. N.; Santillan, S. T.; Plaut, R. H.
2008-08-01
A highly deformed, slender beam (or strip), attached to a vertically oscillating base, is used in a vibration isolation application to reduce the motion of a supported mass. The isolator is a thin strip that is bent so that the two ends are clamped together, forming a loop. The clamped ends are attached to an excitation source and the supported system is attached at the loop midpoint directly above the base. The strip is modeled as an elastica, and the resulting nonlinear boundary value problem is solved numerically using a shooting method. First the equilibrium shapes of the loop with varying static loads and lengths are studied. The analysis reveals a large degree of stiffness tunability; the stiffness is dependent on the geometric configuration, which itself is determined by the supported mass, loop length, and loop self-weight. Free vibration frequencies and mode shapes are also found. Finally, the case of forced vibration is studied, and the displacement transmissibility over a large range of forcing frequencies is determined for varying parameter values. Experiments using polycarbonate strips are conducted to verify equilibrium and dynamic behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, Greg M., E-mail: greg.kowalski@deakin.edu.au; De Souza, David P.; Risis, Steve
Rationale: Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective: To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results: Studies were conducted to determine themore » evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-{sup 13}C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic–hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions: Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism. - Highlights: • Insulin clamp was used to determine the evolution of cardiac insulin resistance. • Clamp measures were compared to a dynamic metabolomics approach. • The clamp revealed the presence of cardiac insulin resistance after 3 weeks of HFD. • Cardiac glucose metabolism was not affected by HFD during an oral glucose challenge.« less
Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J.; Ode, Katie Larson; Philipson, Louis H.; Engelhardt, John F.; Norris, Andrew W.
2014-01-01
Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5–6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes. PMID:24594704
Yajuan, Xiao; Xin, Liang; Zhiyuan, Li
2012-01-01
The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269
Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J; Ode, Katie Larson; Philipson, Louis H; Engelhardt, John F; Norris, Andrew W
2014-01-01
Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5-6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes.
The human dynamic clamp as a paradigm for social interaction.
Dumas, Guillaume; de Guzman, Gonzalo C; Tognoli, Emmanuelle; Kelso, J A Scott
2014-09-02
Social neuroscience has called for new experimental paradigms aimed toward real-time interactions. A distinctive feature of interactions is mutual information exchange: One member of a pair changes in response to the other while simultaneously producing actions that alter the other. Combining mathematical and neurophysiological methods, we introduce a paradigm called the human dynamic clamp (HDC), to directly manipulate the interaction or coupling between a human and a surrogate constructed to behave like a human. Inspired by the dynamic clamp used so productively in cellular neuroscience, the HDC allows a person to interact in real time with a virtual partner itself driven by well-established models of coordination dynamics. People coordinate hand movements with the visually observed movements of a virtual hand, the parameters of which depend on input from the subject's own movements. We demonstrate that HDC can be extended to cover a broad repertoire of human behavior, including rhythmic and discrete movements, adaptation to changes of pacing, and behavioral skill learning as specified by a virtual "teacher." We propose HDC as a general paradigm, best implemented when empirically verified theoretical or mathematical models have been developed in a particular scientific field. The HDC paradigm is powerful because it provides an opportunity to explore parameter ranges and perturbations that are not easily accessible in ordinary human interactions. The HDC not only enables to test the veracity of theoretical models, it also illuminates features that are not always apparent in real-time human social interactions and the brain correlates thereof.
NASA Technical Reports Server (NTRS)
Bernhard, Ronald P.; Zolensky, Michael E.
1994-01-01
The Long Duration Exposure Facility (LDEF) was placed in low-Earth orbit (LEO) in 1984 and recovered 5.7 years later. The LDEF was host to several individual experiments specifically designed to characterize critical aspects of meteoroid and debris environment in LEO. However, it was realized from the beginning that the most efficient use of the satellite would be to examine the entire surface for impact features. In this regard, particular interest centered on common exposed materials that faced in all LDEF pointing directions. Among the most important of these materials was the tray clamps. Therefore, in an effort to better understand the nature of particulates in LEO and their effects on spacecraft hardware, residues found in impact features on LDEF tray clamp surfaces are being analyzed. This catalog presents all data from clamps from Bay B of the LDEF. NASA Technical Memorandum 104759 has cataloged impacts that occurred on Bay B (published March 1993). Subsequent catalogs will include clamps from succeeding bays of the satellite.
Dynamic Uniaxial Tensile Loading of Vector Polymers
2011-11-01
to apply the loading velocity to the strip at x = 0 after impact by a steel slug projectile. The flange has two sets of grooves. One set, denoted as...travels down the barrel . The strip is clamped to the outside of the barrel at x = L. A Photron SA1 high-speed video camera with a framing rate of...nominal stress. Equation 1 is expressed in terms of particle displacement to obtain the wave equation Flange Gun Barrel Rubber Strip Clamp x = 0
2016-01-01
The central terminals of primary afferent fibers experience depolarization upon activation of GABAA receptors (GABAAR) because their intracellular chloride concentration is maintained above electrochemical equilibrium. Primary afferent depolarization (PAD) normally mediates inhibition via sodium channel inactivation and shunting but can evoke spikes under certain conditions. Antidromic (centrifugal) conduction of these spikes may contribute to neurogenic inflammation while orthodromic (centripetal) conduction could contribute to pain in the case of nociceptive fibers. PAD-induced spiking is assumed to override presynaptic inhibition. Using computer simulations and dynamic clamp experiments, we sought to identify which biophysical changes are required to enable PAD-induced spiking and whether those changes necessarily compromise PAD-mediated inhibition. According to computational modeling, a depolarizing shift in GABA reversal potential (EGABA) and increased intrinsic excitability (manifest as altered spike initiation properties) were necessary for PAD-induced spiking, whereas increased GABAAR conductance density (ḡGABA) had mixed effects. We tested our predictions experimentally by using dynamic clamp to insert virtual GABAAR conductances with different EGABA and kinetics into acutely dissociated dorsal root ganglion (DRG) neuron somata. Comparable experiments in central axon terminals are prohibitively difficult but the biophysical requirements for PAD-induced spiking are arguably similar in soma and axon. Neurons from naïve (i.e. uninjured) rats were compared before and after pharmacological manipulation of intrinsic excitability, and against neurons from nerve-injured rats. Experimental data confirmed that, in most neurons, both predicted changes were necessary to yield PAD-induced spiking. Importantly, such changes did not prevent PAD from inhibiting other spiking or from blocking spike propagation. In fact, since the high value of ḡGABA required for PAD-induced spiking still mediates strong inhibition, we conclude that PAD-induced spiking does not represent failure of presynaptic inhibition. Instead, diminished PAD caused by reduction of ḡGABA poses a greater risk to presynaptic inhibition and the sensory processing that relies upon it. PMID:27835641
Frändberg, Sofia; Waldner, Berit; Konar, Jan; Rydberg, Lennart; Fasth, Anders; Holgersson, Jan
2016-09-01
The National Swedish Cord Blood Bank (NS-CBB) is altruistic and publicly funded. Herein we describe the status of the bank and the impact of delayed versus early clamping on cell number and volume. Cord Blood Units (CBUs) were collected at two University Hospitals in Sweden. Collected volume and nucleated cell content (TNC) were investigated in 146 consecutive Cord Blood (CB) collections sampled during the first quarter of 2012 and in 162 consecutive CB collections done in the first quarter of 2013, before and after clamping practices were changed from immediate to late (60 s) clamping. NS-CBB now holds close to 5000 units whereof 30 % are from non-Caucasian or mixed origins. Delayed clamping had no major effect on collection efficiency. The volume collected was slightly reduced (mean difference, 8.1 ml; 95 % CI, 1.3-15.0 ml; p = 0.02), while cell recovery was not (p = 0.1). The proportion of CBUs that met initial total TNC banking criteria was 60 % using a TNC threshold of 12.5 × 10(8), and 47 % using a threshold of 15 × 10(8) for the early clamping group and 52 and 37 % in the late clamping group. Following implementation of delayed clamping practices at NS-CBB; close to 40 % of the collections in the late clamping group still met the high TNC banking threshold and were eligible for banking, implicating that that cord blood banking is feasible with delayed clamping practices.
NASA Technical Reports Server (NTRS)
Eastman, G. Yale; Dussinger, Peter M.; Hartenstine, John R.
1994-01-01
Three modular heat-transfer components designed for use together or separately. Simple mechanical connections facilitate assembly of these and related heat-transfer components into cooling systems of various configurations, such as to cool laboratory equipment rearranged for different experiments. Components are clamp-on cold plate, cold plate attached to flexible heat pipe, and thermal-bus receptacle. Clamp-on cold plate moved to any convenient location for attachment of equipment cooled by it, then clamped onto thermal bus. Heat from equipment conducted through plate and into coolant. Thermal-bus receptacle integral with thermal bus. Includes part of thermal bus to which clamp-on cold plate attached, plus tapered socket into which condenser end of flexible heat pipe plugged. Thermal-bus receptacle includes heat-pipe wick structure using coolant in bus to enhance transfer of heat from cold plate.
Lotus birth, a holistic approach on physiological cord clamping.
Zinsser, Laura A
2018-04-01
The positive effects of delayed cord clamping (DCC) has been extensively researched. DCC means: waiting at least one minute after birth before clamping and cutting the cord or till the pulsation has stopped. With physiological clamping and cutting (PCC) the clamping and cutting can happen at the earliest after the pulsation has stopped. With a Lotus birth, no clamping and cutting of the cord is done. A woman called Clair Lotus Day imitated the holistic approach of PCC from an anthropoid ape in 1974. The chimpanzee did not separate the placenta from the newborn. The aim of this case report is to discuss and learn a different approach in the third stage of labour. Three cases of Lotus birth by human beings were observed. All three women gave birth in an out-of-hospital setting and had ambulant postnatal care. The placenta was washed, salted and herbs were put on 2-3h post partum. The placenta was wrapped in something that absorbs the moisture. The salting was repeated with a degreasing frequency depending on moistness of the placenta. On life day six all three Lotus babies experiences a natural separation of the cord. All three Lotus birth cases were unproblematic, no special incidence occurred. One should differentiate between early cord clamping (ECC), delayed cord clamping (DCC) and physiological cord clamping (PCC). Lotus birth might lead to an optimisation of the bonding and attachment. Research is needed in the areas of both PCC and Lotus birth. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
Veering and nonlinear interactions of a clamped beam in bending and torsion
NASA Astrophysics Data System (ADS)
Ehrhardt, David A.; Hill, Thomas L.; Neild, Simon A.; Cooper, Jonathan E.
2018-03-01
Understanding the linear and nonlinear dynamic behaviour of beams is critical for the design of many engineering structures such as spacecraft antennae, aircraft wings, and turbine blades. When the eigenvalues of such structures are closely-spaced, nonlinearity may lead to interactions between the underlying linear normal modes (LNMs). This work considers a clamped-clamped beam which exhibits nonlinear behaviour due to axial tension from large amplitudes of deformation. An additional cross-beam, mounted transversely and with a movable mass at each tip, allows tuning of the primary torsion LNM such that it is close to the primary bending LNM. Perturbing the location of one mass relative to that of the other leads to veering between the eigenvalues of the bending and torsion LNMs. For a number of selected geometries in the region of veering, a nonlinear reduced order model (NLROM) is created and the nonlinear normal modes (NNMs) are used to describe the underlying nonlinear behaviour of the structure. The relationship between the 'closeness' of the eigenvalues and the nonlinear dynamic behaviour is demonstrated in the NNM backbone curves, and veering-like behaviour is observed. Finally, the forced and damped dynamics of the structure are predicted using several analytical and numerical tools and are compared to experimental measurements. As well as showing a good agreement between the predicted and measured responses, phenomena such as a 1:1 internal resonance and quasi-periodic behaviour are identified.
Experimental and numerical analysis of clamped joints in front motorbike suspensions
NASA Astrophysics Data System (ADS)
Croccolo, D.; de Agostinis, M.; Vincenzi, N.
2010-06-01
Clamped joints are shaft-hub connections used, as an instance, in front motorbike suspensions to lock the steering plates with the legs and the legs with the wheel pin, by means of one or two bolts. The preloading force, produced during the tightening process, should be evaluated accurately, since it must lock safely the shaft, without overcoming the yielding point of the hub. Firstly, friction coefficients have been evaluated on “ad-hoc designed” specimens, by applying the Design of Experiment approach: the applied tightening torque has been precisely related to the imposed preloading force. Then, the tensile state of clamps have been evaluated both via FEM and by leveraging some design formulae proposed by the Authors as function of the preloading force and of the clamp geometry. Finally, the results have been compared to those given by some strain gauges applied on the tested clamps: the discrepancies between numerical analyses, the design formulae and the experimental results remains under a threshold of 10%.
Synthetic polymers as substrates for a DNA-sliding clamp protein.
van Dongen, S F M; Clerx, J; van den Boomen, O I; Pervaiz, M; Trakselis, M A; Ritschel, T; Schoonen, L; Schoenmakers, D C; Nolte, R J M
2018-04-26
The clamp protein (gp45) of the DNA polymerase III of the bacteriophage T4 is known to bind to DNA and stay attached to it in order to facilitate the process of DNA copying by the polymerase. As part of a project aimed at developing new biomimetic data-encoding systems we have investigated the binding of gp45 to synthetic polymers, that is, rigid, helical polyisocyanopeptides. Molecular modelling studies suggest that the clamp protein may interact with the latter polymers. Experiments aimed at verifying these interactions are presented and discussed. © 2018 The Authors Biopolymers Published by Wiley Periodicals, Inc.
The human dynamic clamp as a paradigm for social interaction
Dumas, Guillaume; de Guzman, Gonzalo C.; Tognoli, Emmanuelle; Kelso, J. A. Scott
2014-01-01
Social neuroscience has called for new experimental paradigms aimed toward real-time interactions. A distinctive feature of interactions is mutual information exchange: One member of a pair changes in response to the other while simultaneously producing actions that alter the other. Combining mathematical and neurophysiological methods, we introduce a paradigm called the human dynamic clamp (HDC), to directly manipulate the interaction or coupling between a human and a surrogate constructed to behave like a human. Inspired by the dynamic clamp used so productively in cellular neuroscience, the HDC allows a person to interact in real time with a virtual partner itself driven by well-established models of coordination dynamics. People coordinate hand movements with the visually observed movements of a virtual hand, the parameters of which depend on input from the subject’s own movements. We demonstrate that HDC can be extended to cover a broad repertoire of human behavior, including rhythmic and discrete movements, adaptation to changes of pacing, and behavioral skill learning as specified by a virtual “teacher.” We propose HDC as a general paradigm, best implemented when empirically verified theoretical or mathematical models have been developed in a particular scientific field. The HDC paradigm is powerful because it provides an opportunity to explore parameter ranges and perturbations that are not easily accessible in ordinary human interactions. The HDC not only enables to test the veracity of theoretical models, it also illuminates features that are not always apparent in real-time human social interactions and the brain correlates thereof. PMID:25114256
New force replica exchange method and protein folding pathways probed by force-clamp technique.
Kouza, Maksim; Hu, Chin-Kun; Li, Mai Suan
2008-01-28
We have developed a new extended replica exchange method to study thermodynamics of a system in the presence of external force. Our idea is based on the exchange between different force replicas to accelerate the equilibrium process. This new approach was applied to obtain the force-temperature phase diagram and other thermodynamical quantities of the three-domain ubiquitin. Using the C(alpha)-Go model and the Langevin dynamics, we have shown that the refolding pathways of single ubiquitin depend on which terminus is fixed. If the N end is fixed then the folding pathways are different compared to the case when both termini are free, but fixing the C terminal does not change them. Surprisingly, we have found that the anchoring terminal does not affect the pathways of individual secondary structures of three-domain ubiquitin, indicating the important role of the multidomain construction. Therefore, force-clamp experiments, in which one end of a protein is kept fixed, can probe the refolding pathways of a single free-end ubiquitin if one uses either the polyubiquitin or a single domain with the C terminus anchored. However, it is shown that anchoring one end does not affect refolding pathways of the titin domain I27, and the force-clamp spectroscopy is always capable to predict folding sequencing of this protein. We have obtained the reasonable estimate for unfolding barrier of ubiquitin, using the microscopic theory for the dependence of unfolding time on the external force. The linkage between residue Lys48 and the C terminal of ubiquitin is found to have the dramatic effect on the location of the transition state along the end-to-end distance reaction coordinate, but the multidomain construction leaves the transition state almost unchanged. We have found that the maximum force in the force-extension profile from constant velocity force pulling simulations depends on temperature nonlinearly. However, for some narrow temperature interval this dependence becomes linear, as have been observed in recent experiments.
Trägårdh, Malene; Møller, Niels; Sørensen, Michael
2015-09-01
PET with the glucose analog (18)F-FDG is used to measure regional tissue metabolism of glucose. However, (18)F-FDG may have affinities different from those of glucose for plasma membrane transporters and intracellular enzymes; the lumped constant (LC) can be used to correct these differences kinetically. The aims of this study were to investigate the feasibility of measuring human hepatic glucose metabolism with dynamic (18)F-FDG PET/CT and to determine an operational LC for (18)F-FDG by comparison with (3)H-glucose measurements. Eight healthy human subjects were included. In all studies, (18)F-FDG and (3)H-glucose were mixed in saline and coadministered. A 60-min dynamic PET recording of the liver was performed for 180 min with blood sampling from catheters in a hepatic vein and a radial artery (concentrations of (18)F-FDG and (3)H-glucose in blood). Hepatic blood flow was determined by indocyanine green infusion. First, 3 subjects underwent studies comparing bolus administration and constant-infusion administration of tracers during hyperinsulinemic-euglycemic clamping. Next, 5 subjects underwent studies comparing fasting and hyperinsulinemic-euglycemic clamping with tracer infusions. Splanchnic extraction fractions of (18)F-FDG (E*) and (3)H-glucose (E) were calculated from concentrations in blood, and the LC was calculated as ln(1 - E*)/ln(1 - E). Volumes of interest were drawn in the liver tissue, and hepatic metabolic clearance of (18)F-FDG (mL of blood/100 mL of liver tissue/min) was estimated. For bolus versus infusion, E* values were always negative when (18)F-FDG was administered as a bolus and were always positive when it was administered as an infusion. For fasting versus clamping, E* values were positive in 4 of 5 studies during fasting and were always positive during clamping. Negative extraction fractions were ascribed to the tracer distribution in the large volume of distribution in the prehepatic splanchnic bed. The LC ranged from 0.43 to 2.53, with no significant difference between fasting and clamping. The large volume of distribution of (18)F-FDG in the prehepatic splanchnic bed may complicate the analysis of dynamic PET data because it represents the mixed tracer input to the liver via the portal vein. Therefore, dynamic (18)F-FDG data for human hepatic glucose metabolism should be interpreted with caution, but constant tracer infusion seems to yield more robust results than bolus injection. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Tang, Yuye; Chen, Xi; Yoo, Jejoong; Yethiraj, Arun; Cui, Qiang
2010-01-01
A hierarchical simulation framework that integrates information from all-atom simulations into a finite element model at the continuum level is established to study the mechanical response of a mechanosensitive channel of large conductance (MscL) in bacteria Escherichia Coli (E.coli) embedded in a vesicle formed by the dipalmitoylphosphatidycholine (DPPC) lipid bilayer. Sufficient structural details of the protein are built into the continuum model, with key parameters and material properties derived from molecular mechanics simulations. The multi-scale framework is used to analyze the gating of MscL when the lipid vesicle is subjective to nanoindentation and patch clamp experiments, and the detailed structural transitions of the protein are obtained explicitly as a function of external load; it is currently impossible to derive such information based solely on all-atom simulations. The gating pathways of E.coli-MscL qualitatively agree with results from previous patch clamp experiments. The gating mechanisms under complex indentation-induced deformation are also predicted. This versatile hierarchical multi-scale framework may be further extended to study the mechanical behaviors of cells and biomolecules, as well as to guide and stimulate biomechanics experiments. PMID:21874098
NASA Technical Reports Server (NTRS)
Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)
2002-01-01
Protein crystals are grown in microgravity experiments inside the Space Shuttle during orbit. Such crystals are basically grown in a five-component system containing a salt, buffer, polymer, organic and water. During these experiments, a number of different polymeric containment materials must be compatible with up to hundreds of different PCG solutions in various concentrations for durations up to 180 days. When such compatibility experiments are performed at NASA/MSFC (Marshall Space Flight Center) simultaneously on containment material samples immersed in various solutions in vials, the samples are rather small out of necessity. DMA4 modulus was often used as the primary screening parameter for such small samples as a pass/fail criterion for incompatibility issues. In particular, the TA Instruments DMA 2980 film tension clamp was used to test rubber O-rings as small in I.D. as 0.091 in. by cutting through the cross-section at one place, then clamping the stretched linear cord stock at each end. The film tension clamp was also used to successfully test short length samples of medical/surgical grade tubing with an O.D. of 0.125 in.
The Role of Binding Site on the Mechanical Unfolding Mechanism of Ubiquitin
NASA Astrophysics Data System (ADS)
Cao, Penghui; Yoon, Gwonchan; Tao, Weiwei; Eom, Kilho; Park, Harold S.
2015-03-01
We apply novel atomistic simulations based on potential energy surface exploration to investigate the constant force-induced unfolding of ubiquitin. At the experimentally-studied force clamping level of 100 pN, we find a new unfolding mechanism starting with the detachment between β5 and β3 involving the binding site of ubiquitin, the Ile44 residue. This new unfolding pathway leads to the discovery of new intermediate configurations, which correspond to the end-to-end extensions previously seen experimentally. More importantly, it demonstrates the novel finding that the binding site of ubiquitin can be responsible not only for its biological functions, but also its unfolding dynamics. We also report in contrast to previous single molecule constant force experiments that when the clamping force becomes smaller than about 300 pN, the number of intermediate configurations increases dramatically, where almost all unfolding events at 100 pN involve an intermediate configuration. By directly calculating the life times of the intermediate configurations from the height of the barriers that were crossed on the potential energy surface, we demonstrate that these intermediate states were likely not observed experimentally due to their lifetimes typically being about two orders of magnitude smaller than the experimental temporal resolution.
Dement'eva, I I; Morozov, Iu A; Charnaia, M A
2013-01-01
125 patients after cardiac surgery operated on with the use of artificial blood circulation (ABC) were followed-up. Blood levels of cardiac protein, binding aliphatic acids and troponin 1 and 3 days after the operation were registered. The study showed that aorta clamping more then 90 minutes and hypothermic perfusion regimen influence cardiomyocites negatively. The state of "surgical trauma" and reperfusional myocardium damage was approximately the same during aortic surgery, myocardium revascularization with the use of aortic clamping and cardioplegia, and correction of the acquired heart disease, according to the dynamics of the studied proteins in blood. The minimal blood level of cardiac protein, binding aliphatic acids after coronary by-pass surgery on the working heart witnesses about negative influence of crystalloid hypothermic cardioplegia on coronary microcirculation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... tighten to an July 28, 2010 (the initial torque of effective date of 40 in. lbs. Tap the this AD... installation than by a change in clamp design. Their experience shows proper installation, torque techniques, and pre-torque alignments of components go a long way in preventing clamp failures down the road. We...
Robotic partial nephrectomy with selective parenchymal compression (Simon clamp).
Castillo, O A; Rodriguez-Carlin, A; Lopez-Fontana, G; Aleman, E
2013-01-01
To present our initial experience using selective renal parenchymal ischemia, without hilar clamping, in robotic-assisted partial nephrectomy. In four patients with T1a renal tumor we performed robotic-assisted partial nephrectomy, using the Simon's clamp (Aesculap). It provides selective parenchymal compression without the need of vascular clamping. All patients had exofitic renal tumors in polar location. Renal parenchymal reconstruction was done as the standard technique. The median age was 49.6 years (42-59), 3 male and 1 female patient. Median operative time was 71,6 minutes (40-120). Mean stimated bleeding was 250 ml (50-400). Average tumor size was 3,25 cm (1,5-5,3). There were no complications and the average hospital stay was 3,5 days (1-7). The pathology was informed as renal cell carcinoma in three patients and one hemorrhagic cyst. The surgical margins were negative. Our preliminary results shows that selective renal parenchymal compression, with the Simon's clamp, provides an alternative to vascular control in selected patients with polar renal tumors. Copyright © 2012 AEU. Published by Elsevier Espana. All rights reserved.
LabPatch, an acquisition and analysis program for patch-clamp electrophysiology.
Robinson, T; Thomsen, L; Huizinga, J D
2000-05-01
An acquisition and analysis program, "LabPatch," has been developed for use in patch-clamp research. LabPatch controls any patch-clamp amplifier, acquires and records data, runs voltage protocols, plots and analyzes data, and connects to spreadsheet and database programs. Controls within LabPatch are grouped by function on one screen, much like an oscilloscope front panel. The software is mouse driven, so that the user need only point and click. Finally, the ability to copy data to other programs running in Windows 95/98, and the ability to keep track of experiments using a database, make LabPatch extremely versatile. The system requirements include Windows 95/98, at least a 100-MHz processor and 16 MB RAM, a data acquisition card, digital-to-analog converter, and a patch-clamp amplifier. LabPatch is available free of charge at http://www.fhs.mcmaster.ca/huizinga/.
Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation.
Sharma, V; Stebe, K; Murphy, J C; Tung, L
1996-01-01
The effect of a nontoxic, nonionic block co-polymeric surface active agent, poloxamer 188, on electroporation of artificial lipid membranes made of azolectin, was investigated. Two different experimental protocols were used in our study: charge pulse and voltage clamp. For the charge pulse protocol, membranes were pulsed with a 10-micronsecond rectangular voltage waveform, after which membrane voltage decay was observed through an external 1-M omega resistance. For the voltage clamp protocol the membranes were pulsed with a waveform that consisted of an initial 10-microsecond rectangular phase, followed by a negative sloped ramp that decayed to zero in the subsequent 500 microseconds. Several parameters characterizing the electroporation process were measured and compared for the control membranes and membranes treated with 1.0 mM poloxamer 188. For both the charge pulse and voltage clamp experiments, the threshold voltage (amplitude of initial rectangular phase) and latency time (time elapsed between the end of rectangular phase and the onset of membrane electroporation) were measured. Membrane conductance (measured 200 microseconds after the initial rectangular phase) and rise time (tr; the time required for the porated membrane to reach a certain conductance value) were also determined for the voltage clamp experiments, and postelectroporation time constant (PE tau; the time constant for transmembrane voltage decay after onset of electroporation) for the charge pulse experiments. The charge pulse experiments were performed on 23 membranes with 10 control and 13 poloxamer-treated membranes, and voltage pulse experiments on 49 membranes with 26 control and 23 poloxamer-treated membranes. For both charge pulse and voltage clamp experiments, poloxamer 188-treated membranes exhibited a statistically higher threshold voltage (p = 0.1 and p = 0.06, respectively), and longer latency time (p = 0.04 and p = 0.05, respectively). Also, poloxamer 188-treated membranes were found to have a relatively lower conductance (p = 0.001), longer time required for the porated membrane to reach a certain conductance value (p = 0.05), and longer postelectroporation time constant (p = 0.005). Furthermore, addition of poloxamer 188 was found to reduce the membrane capacitance by approximately 4-8% in 5 min. These findings suggest that poloxamer 188 adsorbs into the lipid bilayers, thereby decreasing their susceptibility to electroporation. Images FIGURE 1 PMID:8968593
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
2013-07-01
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.
Zhuang, Zhihao; Yoder, Bonita L; Burgers, Peter M J; Benkovic, Stephen J
2006-02-21
Numerous proteins that function in DNA metabolic pathways are known to interact with the proliferating cell nuclear antigen (PCNA). The important function of PCNA in stimulating various cellular activities requires its topological linkage with DNA. Loading of the circular PCNA onto duplex DNA requires the activity of a clamp-loader [replication factor C (RFC)] complex and the energy derived from ATP hydrolysis. The mechanistic and structural details regarding PCNA loading by the RFC complex are still developing. In particular, the positive identification of a long-hypothesized structure of an open clamp-RFC complex as an intermediate in loading has remained elusive. In this study, we capture an open yeast PCNA clamp in a complex with RFC through fluorescence energy transfer experiments. We also follow the topological transitions of PCNA in the various steps of the clamp-loading pathway through both steady-state and stopped-flow fluorescence studies. We find that ATP effectively drives the clamp-loading process to completion with the formation of the closed PCNA bound to DNA, whereas ATPgammaS cannot. The information derived from this work complements that obtained from previous structural and mechanistic studies and provides a more complete picture of a eukaryotic clamp-loading pathway using yeast as a paradigm.
NASA Astrophysics Data System (ADS)
Yang, Shuangming; Deng, Bin; Wang, Jiang; Li, Huiyan; Liu, Chen; Fietkiewicz, Chris; Loparo, Kenneth A.
2017-01-01
Real-time estimation of dynamical characteristics of thalamocortical cells, such as dynamics of ion channels and membrane potentials, is useful and essential in the study of the thalamus in Parkinsonian state. However, measuring the dynamical properties of ion channels is extremely challenging experimentally and even impossible in clinical applications. This paper presents and evaluates a real-time estimation system for thalamocortical hidden properties. For the sake of efficiency, we use a field programmable gate array for strictly hardware-based computation and algorithm optimization. In the proposed system, the FPGA-based unscented Kalman filter is implemented into a conductance-based TC neuron model. Since the complexity of TC neuron model restrains its hardware implementation in parallel structure, a cost efficient model is proposed to reduce the resource cost while retaining the relevant ionic dynamics. Experimental results demonstrate the real-time capability to estimate thalamocortical hidden properties with high precision under both normal and Parkinsonian states. While it is applied to estimate the hidden properties of the thalamus and explore the mechanism of the Parkinsonian state, the proposed method can be useful in the dynamic clamp technique of the electrophysiological experiments, the neural control engineering and brain-machine interface studies.
Dendrimer-assisted patch-clamp sizing of nuclear pores
Bustamante, J.O.; Michelette, E.R.F.; Geibel, J.P.; Hanover, J.A.; McDonnell, T.J.; Dean, D.A.
2015-01-01
Macromolecular translocation (MMT) across the nuclear envelope (NE) occurs exclusively through the nuclear pore complex (NPC). Therefore, the diameter of the NPC aqueous/electrolytic channel (NPCC) is important for cellular structure and function. The NPCC diameter was previously determined to be ≅10 nm with electron microscopy (EM) using the translocation of colloidal gold particles. Here we present patch-clamp and fluorescence microscopy data from adult cardiomyocyte nuclei that demonstrate the use of patch-clamp for assessing NPCC diameter. Fluorescence microscopy with B-phycoerythrin (BPE, 240 kDa) conjugated to a nuclear localization signal (NLS) demonstrated that these nuclei were competent for NPC-mediated MMT (NPC-MMT). Furthermore, when exposed to an appropriate cell lysate, the nuclei expressed enhanced green fluorescence protein (EGFP) after 5–10 h of incubation with the plasmid for this protein (pEGFP, 3.1 MDa). Nucleus-attached patch-clamp showed that colloidal gold particles were not useful probes; they modified NPCC gating. As a result of this finding, we searched for an inert class of particles that could be used without irreversibly affecting NPCC gating and found that fluorescently labeled Star-burst dendrimers, a distinct class of polymers, were useful. Our patch-clamp and fluorescence microscopy data with calibrated dendrimers indicate that the cardiomyocyte NPCC diameter varies between 8 and 9 nm. These studies open a new direction in the investigation of live, continuous NPC dynamics under physiological conditions. PMID:10784359
Li, Yanmin; Liu, Hao; Hao, Siwen; Li, Hongyi; Han, Jianda; Yang, Yunsheng
2017-03-01
Robot-assisted manipulation is promising for solving problems such as understaffing and the risk of infection in gastro-intestinal endoscopy. However, the commonly used friction rollers in few existing systems have a potential risk of deforming flexible endoscopes for non-uniform clamping. This paper presents a robotic system for a standard flexible endoscope and focuses on a novel gastroscope intervention mechanism (GIM), which provides circumferentially uniform clamping with an airbag. The GIM works with a relay-on mechanism in a way similar to manual operation. The shear stiffness of airbag and the critical slipping force (CSF) were analysed to determine the parameters of the airbag. A fuzzy PID controller was employed to realize a fast response and high accuracy of pneumatic actuation. Experiments were performed to evaluate the accuracy, stiffness and CSF. In vitro and in vivo animal experiments were also carried out. The GIM realized an accuracy of 0.025 ± 0.2 mm and -0.03 ± 0.25° for push-pull and rotation without delivery resistance. Under < 10 N delivery resistance, the error caused by the airbag stiffness was < 0.24 mm. A quadratic polynomial could be used to describe the relationship between the CSF and pneumatic pressure. The novel GIM could effectively deliver gastroscopes. The pneumatic-driven clamping method proposed could protect the gastroscope by circumferentially uniform clamping force and the CSF could be properly controlled to guarantee operating safety. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Machaba, Kgothatso E; Cele, Favorite N; Mhlongo, Ndumiso N; Soliman, Mahmoud E S
2016-12-01
Tuberculosis, caused by Mycobacterium tuberculosis, is one of the most common causes of death in the world. Mycobacterium tuberculosis -sliding clamp is a protein essential for many important DNA transactions including replication and DNA repair proteins, thus, a potential drug target for tuberculosis. Further investigation is needed in understanding DNA polymerase sliding clamp structure, especially from a computational perspective. In this study, we employ a wide-range of comparative molecular dynamic analyses on two systems: Mycobacterium tuberculosis - sliding clamp enzyme in its apo and bound form. The results reported in this study shows apo conformation to be less stable, as compared to bound conformation with an average radius of gyration of 25.812 and 25.459 Å, respectively. This was further supported by root mean square fluctuation, where an apo enzyme showed a higher degree of flexibility. However, the presence of the ligand lowers radius of gyration and root mean square fluctuation and also leads to an existence of negative correlated motions. Principal component analysis further justifies the same findings, whereby the apo enzyme exhibits a higher fluctuation compared to the bound complex. In addition, a stable 3 10 helix located at the binding site appears to be unstable in the presence of the ligand. Hence, it is possible that the binding of the ligand may have caused a rearrangement of the structure, leading to a change in the unwinding of 3 10 helix. Findings reported in this study further enhance the understanding of Mycobacterium tuberculosis -DnaN and also give a lead to the development of potent tuberculosis drugs.
Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C
2015-08-20
An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Basedmore » on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.« less
Xu, Baojian; Ye, WeiWei; Zhang, Yu; Shi, JingYu; Chan, ChunYu; Yao, XiaoQiang; Yang, Mo
2014-03-15
This paper presents a microfluidic planar patch clamp system based on a hydrophilic polymer poly(ethylene glycol) diacrylate (PEGDA) for whole cell current recording. The whole chip is fabricated by UV-assisted molding method for both microfluidic channel structure and planar electrode partition. This hydrophilic patch clamp chip has demonstrated a relatively high gigaseal success rate of 44% without surface modification compared with PDMS based patch clamp devices. This chip also shows a capability of rapid intracellular and extracellular solution exchange with high stability of gigaseals. The capillary flow kinetic experiments demonstrate that the flow rates of PEGDA microfluidic channels are around two orders of magnitude greater than those for PDMS-glass channels with the same channel dimensions. This hydrophilic polymer based patch clamp chips have significant advantages over current PDMS elastomer based systems such as no need for surface modification, much higher success rate of cell gigaseals and rapid solution exchange with stable cell gigaseals. Our results indicate the potential of these devices to serve as useful tools for pharmaceutical screening and biosensing tasks. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, K.; Abdul Khudus, M. I. M.; Alam, S. U.; Bhattacharya, S.; Venkitesh, D.; Brambilla, G.
2018-01-01
Relative performance and detection limit of conventional, amplified, and gain-clamped cavity ring-down techniques (CRDT) in all-fiber configurations are compared experimentally for the first time. Refractive index measurement using evanescent field in tapered fibers is used as a benchmark for the comparison. The systematic optimization of a nested-loop configuration in gain-clamped CRDT is also discussed, which is crucial for achieving a constant gain in a CRDT experiment. It is found that even though conventional CRDT has the lowest standard error in ring-down time (Δτ), the value of ring-down time (τ) is very small, thus leading to poor detection limit. Amplified CRDT provides an improvement in τ, albeit with two orders of magnitude higher Δτ due to amplifier noise. The nested-loop configuration in gain-clamped CRDT helps in reducing Δτ by an order of magnitude as compared to amplified CRDT whilst retaining the improvement in τ. A detection limit of 1 . 03 × 10-4 RIU at refractive index of 1.322 with a 3 mm long and 4.5 μm diameter tapered fiber is demonstrated with the gain-clamped CRDT.
Cell-Detection Technique for Automated Patch Clamping
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2008-01-01
A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image data are analyzed by software that implements the present machine-vision technique. This analysis results in the identification of cells that are "good" candidates for patch clamping (see figure). Once a "good" cell is identified, a patch clamp can be effected by an automated patchclamping apparatus or by a human operator. This technique has been shown to enable reliable identification of "good" and "bad" candidate cells for patch clamping. The ultimate goal in further development of this technique is to combine artificial-intelligence processing with instrumentation and controls in order to produce a complete "turnkey" automated patch-clamping system capable of accurately and reliably patch clamping cells with a minimum intervention by a human operator. Moreover, this technique can be adapted to virtually any cellular-analysis procedure that includes repetitive operation of microscope hardware by a human.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, E.T.; Cooper, M.; Chen, C.T.
1990-02-01
We used positron emission tomography (PET) to study the effects of mild hypoglycemia on cerebral glucose uptake and metabolism. Nine healthy men were studied under basal saline-infusion conditions, and during euglycemic and hypoglycemic clamp studies. Insulin was infused at the same rate (1 mU.kg-1.min-1) in both clamp studies. In euglycemic clamp studies, glucose was infused at a rate sufficient to maintain the basal plasma glucose concentration, whereas in hypoglycemic clamp studies, the glucose infusion rate was reduced to maintain the plasma glucose at 3.1 mM. Each study lasted 3 h and included a 30-min baseline period and a subsequent 150-minmore » period in which insulin or glucose was administered. Blood samples for measurement of insulin, glucose, cortisol, growth hormone, and glucagon were obtained at 20- to 30-min intervals. A bolus injection of 5-10 mCi (18F)-2-deoxy-2-fluoro-D-glucose (2-DFG) was administered 120 min after initiation of the study, and plasma radioactivity and dynamic PET scans were obtained at frequent intervals for the remaining 40-60 min of the study. Cerebral regions of interest were defined, and concentrations of radioactivity were calculated and used in the three-compartment model of 2-DFG distribution described by Sokoloff. Glucose levels were similar during saline-infusion (4.9 +/- 0.1 mM) and euglycemic clamp (4.8 +/- 0.1 mM) studies, whereas the desired degree of mild hypoglycemia was achieved during the hypoglycemic clamp study (3.1 +/- 0.1 mM, P less than 0.05). The insulin level during saline infusion was 41 +/- 7 pM.« less
Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex.
Su'etsugu, Masayuki; Shimuta, Toh-Ru; Ishida, Takuma; Kawakami, Hironori; Katayama, Tsutomu
2005-02-25
In Escherichia coli, the activity of ATP-bound DnaA protein in initiating chromosomal replication is negatively controlled in a replication-coordinated manner. The RIDA (regulatory inactivation of DnaA) system promotes DnaA-ATP hydrolysis to produce the inactivated form DnaA-ADP in a manner depending on the Hda protein and the DNA-loaded form of the beta-sliding clamp, a subunit of the replicase holoenzyme. A highly functional form of Hda was purified and shown to form a homodimer in solution, and two Hda dimers were found to associate with a single clamp molecule. Purified mutant Hda proteins were used in a staged in vitro RIDA system followed by a pull-down assay to show that Hda-clamp binding is a prerequisite for DnaA-ATP hydrolysis and that binding is mediated by an Hda N-terminal motif. Arg(168) in the AAA(+) Box VII motif of Hda plays a role in stable homodimer formation and in DnaA-ATP hydrolysis, but not in clamp binding. Furthermore, the DnaA N-terminal domain is required for the functional interaction of DnaA with the Hda-clamp complex. Single cells contain approximately 50 Hda dimers, consistent with the results of in vitro experiments. These findings and the features of AAA(+) proteins, including DnaA, suggest the following model. DnaA-ATP is hydrolyzed at a binding interface between the AAA(+) domains of DnaA and Hda; the DnaA N-terminal domain supports this interaction; and the interaction of DnaA-ATP with the Hda-clamp complex occurs in a catalytic mode.
Effects of local vibrations on the dynamics of space truss structures
NASA Technical Reports Server (NTRS)
Warnaar, Dirk B.; Mcgowan, Paul E.
1987-01-01
The paper discusses the influence of local member vibrations on the dynamics of repetitive space truss structures. Several focus problems wherein local member vibration modes are in the frequency range of the global truss modes are discussed. Special attention is given to defining methods that can be used to identify the global modes of a truss structure amidst many local modes. Significant interactions between the motions of local member vibrations and the global behavior are shown to occur in truss structures when: (1) the natural frequencies of the individual members for clamped-clamped boundary conditions are in the vicinity of the global truss frequency; and (2) the total mass of the individual members represents a large portion of the mass of the whole structure. The analysis is carried out with a structural analysis code which uses exact member theory. The modeling detail required using conventional finite element codes to adequately represent such a class of problems is examined. The paper concludes with some practical considerations for the design and dynamic testing of structures which might exhibit such behavior.
NASA Astrophysics Data System (ADS)
Cusumano, J. P.; Moon, F. C.
1995-01-01
In this two-part paper, the results of an investigation into the non-linear dynamics of a flexible cantilevered rod (the elastica) with a thin rectangular cross-section are presented. An experimental examination of the dynamics of the elastica over a broad parameter range forms the core of Part I. In Part II, the experimental work is related to a theoretical study of the mechanics of the elastica, and the study of a two-degree-of-freedom model obtained by modal projection. The experimental system used in this investigation is a rod with clamped-free boundary conditions, forced by sinusoidally displacing the clamped end. Planar periodic motions of the driven elastica are shown to lose stability at distinct resonant wedges, and the resulting motions are shown in general to be non-planar, chaotic, bending-torsion oscillations. Non-planar motions in all resonances exhibit energy cascading and dynamic two-well phenomena, and a family of asymmetric, bending-torsion non-linear modes is discovered. Correlation dimension calculations are used to estimate the number of active degrees of freedom in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M; Randerson, Jim; Thornton, Peter E
2009-01-01
The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) providesmore » a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the Community Land Model version 3 (CLM3) in the Community Climate System Model version 3 (CCSM3): The CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons against Ameriflus site measurements, MODIS satellite observations, NOAA flask records, TRANSCOM inversions, and Free Air CO{sub 2} Enrichment (FACE) site measurements, and other datasets have been performed and are described in Randerson et al. (2009). The C-LAMP diagnostics package was used to validate improvements to CASA and CN for use in the next generation model, CLM4. It is hoped that this effort will serve as a prototype for an international carbon-cycle model benchmarking activity for models being used for the Inter-governmental Panel on Climate Change (IPCC) Fifth Assessment Report. More information about C-LAMP, the experimental protocol, performance metrics, output standards, and model-data comparisons from the CLM3-CASA and CLM3-CN models are available at http://www.climatemodeling.org/c-lamp.« less
A novel way to go whole-cell in patch-clamp experiments.
Inayat, Samsoon; Zhao, Yan; Cantrell, Donal R; Dikin, Dmitryi; Pinto, Lawrence H; Troy, John B
2010-11-01
With a conventional patch-clamp electrode, an Ag/AgCl wire sits stationary inside the pipette. To move from the gigaseal cell-attached configuration to whole-cell recording, suction is applied inside the pipette. We have designed and developed a novel Pushpen patch-clamp electrode, in which a W wire insulated and wound with Ag/AgCl wire can move linearly inside the pipette. The W wire has a conical tip, which can protrude from the pipette tip like a push pen, a procedure we call the Pushpen Operation. We use the Pushpen operation to impale the cell membrane in cell-attached configuration to go whole-cell without disruption of the gigaseal. We successfully recorded whole-cell currents from chinese hamster ovarian cells expressing influenza A virus protein A/M2, after obtaining whole-cell configuration with the Pushpen operation. This novel method of achieving whole-cell configuration may have a higher success rate than is the case with the conventional patch clamp technique.
Nonlinear dynamics of a circular piezoelectric plate for vibratory energy harvesting
NASA Astrophysics Data System (ADS)
Yuan, Tian-Chen; Yang, Jian; Chen, Li-Qun
2018-06-01
Nonlinear behaviors are investigated for a vibration-based energy harvester. The harvester consists of a circular composite plate with the clamped boundary, a proof mass and two steel rings. The lumped parameter model of the harvester is established and the parameters are identified from the experiment. The measured nonlinear behaviors can be approximately described by the lumped model. Both the experimental and the numerical results demonstrate that the circular plate harvester has soft characteristics under low excitation and both hard characteristics and soft characteristics under high excitation. The experimental results show that the output voltage can achieve over 35 V (about 50 mW) and more than 14 Hz of bandwidth with 25 kΩ load resistance.
NASA Technical Reports Server (NTRS)
Vanvalkenburgh, C. N.
1984-01-01
Underwater simulations of EVA contingency operations such as manual jettison, payload disconnect, and payload clamp actuation were used to define crew aid needs and mockup pecularities and characteristics to verify the validity of simulation using the trainer. A set of mockup instrument pointing system tests was conducted and minor modifications and refinements were made. Flight configuration struts were tested and verified to be operable by the flight crew. Tasks involved in developing the following end items are described: IPS gimbal system, payload, and payload clamp assembly; the igloos (volumetric); spacelab pallets, experiments, and hardware; experiment, and hardware; experiment 7; and EVA hand tools, support hardware (handrails and foot restraints). The test plan preparation and test support are also covered.
A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology
Biró, István; Giugliano, Michele
2015-01-01
Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world. PMID:26157385
`Relativistic' corrections to the mass of a plucked guitar string
NASA Astrophysics Data System (ADS)
Kolodrubetz, Michael; Polkovnikov, Anatoli
Quantum systems respond non-adiabaticity when parameters controlling them are ramped at a finite rate. If the parameters themselves are dynamical - for instance the position of a box that defines the boundary of a quantum field - the feedback of these excitations gives rise to effective Newtonian equations of motion for the parameter. For the age old problem of photons in a box, this correction gives rise to a mass proportional to the energy of the photons. We show that a similar correction arises for a classical guitar string plucked with energy E; moving clamps at the ends of the string requires inertial mass m = 2 E /cs2 , where cs is the speed of sound. This quasi-relativistic effect should be observable in freshman physics level experiments. We then comment on how these simple methods have been readily extended to treat problems such as ramps and quenches of strongly-interacting superconductors and dynamical trapping near a quantum critical point.
Anatomic partial nephrectomy: technique evolution.
Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S
2015-03-01
Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.
Behavior of fiber reinforced metal laminates at high strain rate
NASA Astrophysics Data System (ADS)
Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo
2018-05-01
Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.
Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor-Electrolyte Interface.
Abdullaeva, Oliya S; Schulz, Matthias; Balzer, Frank; Parisi, Jürgen; Lützen, Arne; Dedek, Karin; Schiek, Manuela
2016-08-23
As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor-electrolyte interface. Our photoactive layer consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor-electrolyte layer is able to trigger a passive response of the neuronal cells under physiological conditions via a capacitive coupling mechanism. We study the dynamics of the capacitive transmembrane currents by patch-clamp recordings and compare them to the dynamics of the photocurrent signal and its spectral responsivity. Furthermore, we characterize the morphology of the semiconductor-electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions.
Shobair, Mahmoud; Dagliyan, Onur; Kota, Pradeep; Dang, Yan L.; He, Hong; Stutts, M. Jackson; Dokholyan, Nikolay V.
2016-01-01
Sodium absorption in epithelial cells is rate-limited by the epithelial sodium channel (ENaC) activity in lung, kidney, and the distal colon. Pathophysiological conditions, such as cystic fibrosis and Liddle syndrome, result from water-electrolyte imbalance partly due to malfunction of ENaC regulation. Because the quaternary structure of ENaC is yet undetermined, the bases of pathologically linked mutations in ENaC subunits α, β, and γ are largely unknown. Here, we present a structural model of heterotetrameric ENaC α1βα2γ that is consistent with previous cross-linking results and site-directed mutagenesis experiments. By using this model, we show that the disease-causing mutation αW493R rewires structural dynamics of the intersubunit interfaces α1β and α2γ. Changes in dynamics can allosterically propagate to the channel gate. We demonstrate that cleavage of the γ-subunit, which is critical for full channel activation, does not mediate activation of ENaC by αW493R. Our molecular dynamics simulations led us to identify a channel-activating electrostatic interaction between α2Arg-493 and γGlu-348 at the α2γ interface. By neutralizing a sodium-binding acidic patch at the α1β interface, we reduced ENaC activation of αW493R by more than 2-fold. By combining homology modeling, molecular dynamics, cysteine cross-linking, and voltage clamp experiments, we propose a dynamics-driven model for the gain-of-function in ENaC by αW493R. Our integrated computational and experimental approach advances our understanding of structure, dynamics, and function of ENaC in its disease-causing state. PMID:26668308
Bramley, Helen; Turner, Neil C; Turner, David W; Tyerman, Stephen D
2007-07-01
Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in Lp(r) from different methods of measurement have implications for the models describing water transport through roots and the potential role of aquaporins.
An equivalent circuit for small atrial trabeculae of frog.
Jakobsson, E; Barr, L; Connor, J A
1975-01-01
An equivalent electrical circuit has been constructed for small atrial trabecula of frog in a double sucrose gap voltage clamp apparatus. The basic strategy in constructing the circuit was to derive the distribution of membrane capacitance and extracellular resistance from the preparation's response to small voltage displacements near the resting condition, when the membrane conductance is presumably quite low. Then standard Hodgkin-Huxley channels were placed in parallel with the capacitance and the results of voltage clamp experiments were simulated. The results suggest that the membranes of the preparation cannot in fact be clamped near the control voltage nor can the ionic currents be measured directly with reasonable accuracy by axon standards. It may or may not be a realizable goal in the future to define the preparation's electrical behavior well enough to permit the ultimate quantitative description of the membrane's specific ion conductances. The result of this paper suggest that if this goal is achieved using the double sucrose gap voltage clamp, it will be by a detailed quantitative accounting for substantial irreducible errors in voltage control, rather than by experimental achievement of good voltage control. PMID:1203441
An easy to assemble microfluidic perfusion device with a magnetic clamp
Tkachenko, Eugene; Gutierrez, Edgar; Ginsberg, Mark H.; Groisman, Alex
2009-01-01
We have built and characterized a magnetic clamp for reversible sealing of PDMS microfluidic chips against cover glasses with cell cultures and a microfluidic chip for experiments on shear stress response of endothelial cells. The magnetic clamp exerts a reproducible uniform pressure on the microfluidic chip, achieving fast and reliable sealing for liquid pressures up to 40 kPa inside the chip with <10% deformations of microchannels and minimal variations of the substrate shear stress in perfusion flow. The microfluidic chip has 8 test regions with the substrate shear stress varying by a factor of 2 between each region, thus covering a 128-fold range from low venous to arterial. The perfusion is driven by differential pressure, which makes it possible to create pulsatile flows mimicking pulsing in the vasculature. The setup is tested by 15 – 40 hours perfusions over endothelial monolayers with shear stress in the range of 0.07 - 9 dyn/cm2. Excellent cell viability at all shear stresses and alignment of cells along the flow at high shear stresses are repeatedly observed. A scratch wound healing assay under a shear flow is demonstrated and cell migration velocities are measured. Transfection of cells with a fluorescent protein is performed, and migrating fluorescent cells are imaged at a high resolution under shear flow in real time. The magnetic clamp can be closed with minimal mechanical perturbation to cells on the substrate and used with a variety of microfluidic chips for experiments with adherent and non-adherent cells. PMID:19350090
Is early cord clamping, delayed cord clamping or cord milking best?
Vatansever, Binay; Demirel, Gamze; Ciler Eren, Elif; Erel, Ozcan; Neselioglu, Salim; Karavar, Hande Nur; Gundogdu, Semra; Ulfer, Gozde; Bahadir, Selcen; Tastekin, Ayhan
2018-04-01
To compare the antioxidant status of three cord clamping procedures (early clamping, delayed clamping and milking) by analyzing the thiol-disulfide balance. This randomized controlled study enrolled 189 term infants who were divided into three groups according to the cord clamping procedure: early clamping, delayed clamping and milking. Blood samples were collected from the umbilical arteries immediately after clamping, and the thiol/disulfide homeostasis was analyzed. The native and total thiol levels were significantly (p < .05) lower in the early cord clamping group compared with the other two groups. The disulfide/total thiol ratio was significantly (p = .026) lower in the delayed cord clamping and milking groups compared with the early clamping groups. Early cord clamping causes the production of more disulfide bonds and lower thiol levels, indicating that oxidation reactions are increased in the early cord clamping procedure compared with the delayed cord clamping and milking procedures. The oxidant capacity is greater with early cord clamping than with delayed clamping or cord milking. Delayed cord clamping or milking are beneficial in neonatal care, and we suggest that they be performed routinely in all deliveries.
Yuan, Nina Y.; Poe, Michael M.; Witzigmann, Christopher; Cook, James M.; Stafford, Douglas; Arnold, Leggy A.
2016-01-01
Introduction Automated patch clamp is a recent but widely used technology to assess pre-clinical drug safety. With the availability of human neurons derived from pluripotent stem cells, this technology can be extended to determine CNS effects of drug candidates, especially those acting on the GABAA receptor. Methods iCell Neurons (Cellular Dynamics International, A Fujifilm Company) were cultured for ten days and analyzed by patch clamp in the presence of agonist GABA or in combination with positive allosteric GABAA receptor modulators. Both efficacy and affinity were determined. In addition, mRNA of GABAA receptor subunits were quantified by qRT-PCR. Results We have shown that iCell Neurons are compatible with the IonFlux microfluidic system of the automated patch clamp instrument. Resistance ranging from 15-25 MΩ was achieved for each trap channel of patch clamped cells in a 96-well plate format. GABA induced a robust change of current with an EC50 of 0.43 μM. Positive GABAA receptor modulators diazepam, HZ166, and CW-04-020 exhibited EC50 values of 0.42 μM, 1.56 μM, and 0.23 μM, respectively. The α2/α3/α5 selective compound HZ166-induced the highest potentiation (efficacy) of 810% of the current induced by 100 nM GABA. Quantification of GABAA receptor mRNA in iCell Neurons revealed high levels of α5 and β3 subunits and low levels of α1, which is similar to the configuration in human neonatal brain. Discussion iCell Neurons represent a new cellular model to characterize GABAergic compounds using automated patch clamp. These cells have excellent representation of cellular GABAA receptor distribution that enable determination of total small molecule efficacy and affinity as measured by cell membrane current change. PMID:27544543
Hardy, Matthew E L; Pervolaraki, Eleftheria; Bernus, Olivier; White, Ed
2018-01-01
We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9 Hz. Action potential waveforms recorded at 1 Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7 Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na + -channel blocker (5 μM) ranolazine or the intracellular Ca 2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller in MCT myocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus, our study links electrical restitution remodeling to a defining mechanical characteristic of heart failure, the reduced ability to respond to an increase in demand.
Dynamic actuation of single-crystal diamond nanobeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, Young-Ik; Burek, Michael J.; Lončar, Marko, E-mail: loncar@seas.harvard.edu
2015-12-14
We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied.
Research on the tool holder mode in high speed machining
NASA Astrophysics Data System (ADS)
Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao
2018-03-01
High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.
An automated two-dimensional optical force clamp for single molecule studies.
Lang, Matthew J; Asbury, Charles L; Shaevitz, Joshua W; Block, Steven M
2002-01-01
We constructed a next-generation optical trapping instrument to study the motility of single motor proteins, such as kinesin moving along a microtubule. The instrument can be operated as a two-dimensional force clamp, applying loads of fixed magnitude and direction to motor-coated microscopic beads moving in vitro. Flexibility and automation in experimental design are achieved by computer control of both the trap position, via acousto-optic deflectors, and the sample position, using a three-dimensional piezo stage. Each measurement is preceded by an initialization sequence, which includes adjustment of bead height relative to the coverslip using a variant of optical force microscopy (to +/-4 nm), a two-dimensional raster scan to calibrate position detector response, and adjustment of bead lateral position relative to the microtubule substrate (to +/-3 nm). During motor-driven movement, both the trap and stage are moved dynamically to apply constant force while keeping the trapped bead within the calibrated range of the detector. We present details of force clamp operation and preliminary data showing kinesin motor movement subject to diagonal and forward loads. PMID:12080136
Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D.
2015-01-01
Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Nav1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Nav1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Nav1.8 channels. We also show that native human DRG neurons recapitulate these properties of Nav1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Nav1.8, which contribute to the firing properties of human DRG neurons. PMID:25787950
Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D; Waxman, Stephen G
2015-05-01
Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Na(v)1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Na(v)1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Na(v)1.8 channels. We also show that native human DRG neurons recapitulate these properties of Na(v)1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Na(v)1.8, which contribute to the firing properties of human DRG neurons.
Davis, S N; Shavers, C; Costa, F; Mosqueda-Garcia, R
1996-01-01
The aim of this study was to determine the role of increased plasma cortisol levels in the pathogenesis of hypoglycemia-associated autonomic failure. Experiments were carried out on 16 lean, healthy, overnight fasted male subjects. One group (n = 8) underwent two separate, 2-d randomized experiments separated by at least 2 mo. On day 1 insulin was infused at a rate of 1.5 mU/kg per min and 2 h clamped hypoglycemia (53 +/- 2 mg/dl) or euglycemia (93 +/- 3 mg/dl) was obtained during morning and afternoon. The next morning subjects underwent a 2-h hyperinsulinemic (1.5 mU/kg per min) hypoglycemic (53 +/- 2 mg/dl) clamp study. In the other group (n = 8), day 1 consisted of morning and afternoon 2-h clamped hyperinsulinemic euglycemia with cortisol infused to stimulate levels of plasma cortisol occurring during clamped hypoglycemia (53 mg/dl). The next morning (day 2) subjects underwent a 2-h hyperinsulinemic hypoglycemic clamp identical to the first group. Despite equivalent day 2 plasma glucose and insulin levels, steady state epinephrine, norepinephrine, pancreatic polypeptide, glucagon, ACTH and muscle sympathetic nerve activity (MSNA) values were significantly (R < 0.01) blunted after day 1 cortisol infusion compared to antecedent euglycemia. Compared to day 1 cortisol, antecedent hypoglycemia produced similar blunted day 2 responses of epinephrine, norepinephrine, pancreatic polypeptide and MSNA compared to day 1 cortisol. Antecedent hypoglycemia, however, produced a more pronounced blunting of plasma glucagon, ACTH, and hepatic glucose production compared to day 1 cortisol. We conclude that in healthy overnight fasted men (a) antecedent physiologic increases of plasma cortisol can significantly blunt epinephrine, norepinephrine, glucagon, and MSNA responses to subsequent hypoglycemia and (b) these data suggest that increased plasma cortisol is the mechanism responsible for antecedent hypoglycemia causing hypoglycemia associated autonomic failure. PMID:8698859
Calcium dependent current recordings in Xenopus laevis oocytes in microgravity
NASA Astrophysics Data System (ADS)
Wuest, Simon L.; Roesch, Christian; Ille, Fabian; Egli, Marcel
2017-12-01
Mechanical unloading by microgravity (or weightlessness) conditions triggers profound adaptation processes at the cellular and organ levels. Among other mechanisms, mechanosensitive ion channels are thought to play a key role in allowing cells to transduce mechanical forces. Previous experiments performed under microgravity have shown that gravity affects the gating properties of ion channels. Here, a method is described to record a calcium-dependent current in native Xenopus laevis oocytes under microgravity conditions during a parabolic flight. A 3-voltage-step protocol was applied to provoke a calcium-dependent current. This current increased with extracellular calcium concentration and could be reduced by applying extracellular gadolinium. The custom-made ;OoClamp; hardware was validated by comparing the results of the 3-voltage-step protocol to results obtained with a well-established two-electrode voltage clamp (TEVC). In the context of the 2nd Swiss Parabolic Flight Campaign, we tested the OoClamp and the method. The setup and experiment protocol worked well in parabolic flight. A tendency that the calcium-dependent current was smaller under microgravity than under 1 g condition could be observed. However, a conclusive statement was not possible due to the small size of the data base that could be gathered.
Jo, Chang Hwa; Kim, Junsoo; Han, Ah-reum; Park, Sam Yong; Hwang, Kwang Yeon; Nam, Ki Hyun
2016-03-01
Site-specific Xer recombination plays a pivotal role in reshuffling genetic information. Here, we report the 2.5 Å crystal structure of XerA from the archaean Thermoplasma acidophilum. Crystallographic data reveal a uniquely open conformational state, resulting in a C-shaped clamp with an angle of ~ 48° and a distance of 57 Å between the core-binding and the catalytic domains. The catalytic nucleophile, Tyr264, is positioned in cis-cleavage mode by XerA's C-term tail that interacts with the CAT domain of a neighboring monomer without DNA substrate. Structural comparisons of tyrosine recombinases elucidate the dynamics of Xer recombinase. © 2016 Federation of European Biochemical Societies.
Singh, Manika Indrajit; Jain, Vikas
2016-01-26
Sliding clamp proteins are circular dimers or trimers that encircle DNA and serve as processivity factors during DNA replication. Their presence in all the three domains of life and in bacteriophages clearly indicates their high level of significance. T4 gp45, besides functioning as the DNA polymerase processivity factor, also moonlights as the late promoter transcription determinant. Here we report a detailed biophysical analysis of gp45. The chemical denaturation of gp45 probed by circular dichroism spectroscopy, tryptophan fluorescence anisotropy, and blue-native polyacrylamide gel electrophoresis suggests that the protein follows a three-state denaturation profile and displays an intermediate molten globule-like state. The three-state transition was found to be the result of the sequential unfolding of the two domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), of gp45. The experiments involving Trp fluorescence quenching by acrylamide demonstrate that the CTD undergoes substantial changes in conformation during formation of the intermediate state. Further biophysical dissection of the individual domain reveals contrasting properties of the two domains. The NTD unfolds at low urea concentrations and is also susceptible to protease cleavage, whereas the CTD resists urea-mediated denaturation and is not amenable to protease digestion even at higher urea concentrations. These experiments allow us to conclude that the two domains of gp45 differ in their dynamics. While the CTD shows stability and rigidity, we find that the NTD is unstable and flexible. We believe that the asymmetric characteristics of the two domains and the interface they form hold significance in gp45 structure and function.
Dynamics of T-Junction Solution Switching Aimed at Patch Clamp Experiments
Auzmendi, Jerónimo A.; Smoler, Mariano; Moffatt, Luciano
2015-01-01
Solutions exchange systems are responsible for the timing of drug application on patch clamp experiments. There are two basic strategies for generating a solution exchange. When slow exchanges are bearable, it is easier to perform the exchange inside the tubing system upstream of the exit port. On the other hand, fast, reproducible, exchanges are usually performed downstream of the exit port. As both strategies are combinable, increasing the performance of upstream exchanges is desirable. We designed a simple method for manufacturing T-junctions (300 μm I.D.) and we measured the time profile of exchange of two saline solutions using a patch pipette with an open tip. Three factors were found to determine the timing of the solution switching: pressure, travelled distance and off-center distance. A linear relationship between the time delay and the travelled distance was found for each tested pressure, showing its dependence to the fluid velocity, which increased with pressure. The exchange time was found to increase quadratically with the delay, although a sizeable variability remains unexplained by this relationship. The delay and exchange times increased as the recording pipette moved away from the center of the stream. Those increases became dramatic as the pipette was moved close to the stream borders. Mass transport along the travelled distance between the slow fluid at the border and the fast fluid at the center seems to contribute to the time course of the solution exchange. This effect would be present in all tubing based devices. Present results might be of fundamental importance for the adequate design of serial compound exchangers which would be instrumental in the discovery of drugs that modulate the action of the physiological agonists of ion channels with the purpose of fine tuning their physiology. PMID:26177538
Collection and review of metals data obtained from LDEF experiment specimens and support hardware
NASA Technical Reports Server (NTRS)
Bourassa, Roger; Pippin, H. Gary
1995-01-01
LDEF greatly extended the range of data available for metals exposed to the low-Earth-orbital environment. The effects of low-Earth-orbital exposure on metals include meteoroid and debris impacts, solar ultraviolet radiation, thermal cycling, cosmic rays, solar particles, and surface oxidation and contamination. This paper is limited to changes in surface composition and texture caused by oxidation and contamination. Surface property changes afford a means to study the environments (oxidation and contamination) as well as in-space stability of metal surfaces. We compare thermal-optical properties for bare aluminum and anodized aluminum clamps flown on LDEF. We also show that the silicon observed on the LDEF tray clamps and tray clamp bolt heads is not necessarily evidence of silicon contamination of LDEF from the shuttle. The paper concludes with a listing of LDEF reports that have been published thus far that contain significant findings concerning metals.
Triple bar, high efficiency mechanical sealer
Pak, Donald J.; Hawkins, Samantha A.; Young, John E.
2013-03-19
A clamp with a bottom clamp bar that has a planar upper surface is provided. The clamp may also include a top clamp bar connected to the bottom clamp bar, and a pressure distribution bar between the top clamp bar and the bottom clamp bar. The pressure distribution bar may have a planar lower surface in facing relation to the upper surface of the bottom clamp bar. An object is capable of being disposed in a clamping region between the upper surface and the lower surface. The width of the planar lower surface may be less than the width of the upper surface within the clamping region. Also, the pressure distribution bar may be capable of being urged away from the top clamp bar and towards the bottom clamp bar.
Processing Optimization of Deformed Plain Woven Thermoplastic Composites
NASA Astrophysics Data System (ADS)
Smith, John R.; Vaidya, Uday K.
2013-12-01
This research addresses the processing optimization of post-manufactured, plain weave architecture composite panels consisted of four glass layers and thermoplastic polyurethane (TPU) when formed with only localized heating. Often times, during the production of deep drawn composite parts, a fabric preform experiences various defects, including non-isothermal heating and thickness variations. Minimizing these defects is of utmost importance for mass produceability in a practical manufacturing process. The broad objective of this research was to implement a design of experiments approach to minimize through-thickness composite panel variation during manufacturing by varying the heating time, the temperature of heated components and the clamping pressure. It was concluded that the heated tooling with least area contact was most influential, followed by the length of heating time and the amount of clamping pressure.
NASA Technical Reports Server (NTRS)
Bert, C. W.; Clary, R. R.
1974-01-01
Various methods potentially usable for determining dynamic stiffness and damping of composite materials are reviewed. Of these, the following most widely used techniques are singled out for more detailed discussion: free vibration, pulse propagation, and forced vibration response. To illustrate the usefulness and validity of dynamic property data, their application in dynamic analyses and comparison with measured structural response are described for the following composite-material structures: free-free sandwich beam with glass-epoxy facings, clamped-edge sandwich plate with similar facings, free-end sandwich conical shell with similar facings, and boron-epoxy free plate with layers arranged at various orientations.
Bavi, Omid; Cox, Charles D.; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef; Martinac, Boris
2016-01-01
Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels. PMID:26861405
Zero ischemia robotic-assisted partial nephrectomy in Alberta: Initial results of a novel approach.
Forbes, Ellen; Cheung, Douglas; Kinnaird, Adam; Martin, Blair St
2015-01-01
Partial nephrectomy remains the standard of care in early stage, organ-confined renal tumours. Recent evidence suggests that minimally invasive surgery can proceed without segmental vessel clamping. In this study, we review our experience at a Canadian centre with zero ischemia robotic-assisted partial nephrectomy (RAPN). A retrospective chart review of zero ischemia RAPN was performed. All surgeries were consecutive partial nephrectomies performed by the same surgeon at a tertiary care centre in Northern Alberta. The mean follow-up period was 28 months. These outcomes were compared against the current standards for zero ischemia (as outlined by the University of Southern California Institute of Urology [USC]). We included 21 patients who underwent zero ischemia RAPN between January 2012 and June 2013. Baseline data were similar to contemporary studies. Twelve (57.1%) required no vascular clamping, 7 (33.3%) required clamping of a single segmental artery, and 2 (9.5%) required clamping of two segmental arteries. We achieved an average estimated blood loss of 158 cc, with a 9.2% average increase in creatinine postoperatively. Operating time and duration of hospital stay were short at 153 minutes and 2.2 days, respectively. Zero ischemia partial nephrectomy was a viable option at our institution with favourable results in terms of intra-operative blood loss and postoperative creatinine change compared to results from contemporary standard zero ischemia studies (USC). To our knowledge, this is the first study to review an initial experience with the zero ischemia protocol in robotic-assisted partial nephrectomies at a Canadian hospital.
Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps
NASA Technical Reports Server (NTRS)
Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.
1992-01-01
To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.
NASA Technical Reports Server (NTRS)
Ramsey, John K. (Inventor); Meyn, Erwin H. (Inventor)
1990-01-01
A pair of spaced collars are mounted at right angles on a clamp body by retaining rings which enable the collars to rotate with respect to the clamp body. Mounting posts extend through aligned holes in the collars and clamp body. Each collar can be clamped onto the inserted post while the clamp body remains free to rotate about the post and collar. The clamp body is selectively clamped onto each post.
Nonlinear dynamic characteristics of dielectric elastomer membranes
NASA Astrophysics Data System (ADS)
Fox, Jason W.; Goulbourne, Nakhiah C.
2008-03-01
The dynamic response of dielectric elastomer membranes subject to time-varying voltage inputs for various initial inflation states is investigated. These results provide new insight into the differences observed between quasi-static and dynamic actuation and presents a new challenge to modeling efforts. Dielectric elastomer membranes are a potentially enabling technology for soft robotics and biomedical devices such as implants and surgical tools. In this work, two key system parameters are varied: the chamber volume and the voltage signal offset. The chamber volume experiments reveal that increasing the size of the chamber onto which the membrane is clamped will increase the deformations as well as cause the membrane's resonance peaks to shift and change in number. For prestretched dielectric elastomer membranes at the smallest chamber volume, the maximum actuation displacement is 81 microns; while at the largest chamber volume, the maximum actuation displacement is 1431 microns. This corresponds to a 1767% increase in maximum pole displacement. In addition, actuating the membrane at the resonance frequencies provides hundreds of percent increase in strain compared to the quasi-static strain. Adding a voltage offset to the time-varying input signal causes the membrane to oscillate at two distinct frequencies rather than one and also presents a unique opportunity to increase the output displacement without electrically overloading the membrane. Experiments to capture the entire motion of the membrane reveal that classical membrane mode shapes are electrically generated although all points of the membrane do not pass through equilibrium at the same moments in time.
Nocturnal Boundary-Layer Phenomena Observed at a Complex Site During the Perdigão Experiment
NASA Astrophysics Data System (ADS)
Bell, T.; Klein, P. M.; Smith, E.; Gebauer, J.; Turner, D. D.
2017-12-01
The Perdigão Field Experiment set out to study atmospheric flows in complex terrain and to collect a high-quality dataset for the validation of meso- and micro-scale models. An Intensive Observation Period (IOP) was conducted from May 1, 2017 through June 15, 2017 where a multitude of instruments were deployed in and around two nearly parallel ridges. The Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS) was deployed and operated in the valley between the ridges. The CLAMPS facility, which was developed as a joint effort between the School of Meteorology at OU and NOAA's National Severe Storms Laboratory (NSSL), takes advantage of a microwave radiometer (MWR), an atmospheric emitted radiance interferometer (AERI), and a scanning doppler Lidar to profile the boundary layer with a high temporal and spatial resolution. Optimized Lidar scanning strategies and joint retrievals for the MWR and ARI data provide detailed information about the wind, turbulence and thermodynamic structure from the surface up to 1000 m AGL on most nights; sometimes the max height is even higher. Over the course of the IOP, CLAMPS observed many different phenomena. During some nights, when stronger background prevailed and was directed perpendicular to the valley, waves were observed at the ridges and in the valley. At the same time, radiational cooling led to drainage flows in the valley, particularly during nights when the mesoscale forcing was weak. At first, CLAMPS profile observations and data collected with radiosondes released at a near-by site are compared to assess the data quality. The radiosonde observations are also being used to document and classify the upper-level flow during the IOP. Additionally, CLAMPS data from a few selected nights will be presented and analyzed in terms of turbulence and its impact on mixing inside and above the valley. June 1-2 represents a good base-state case. Winds at ridge height were generally less than 5ms-1 after 0Z and valley flows were observed by CLAMPS. On May 15-16, a narrow 10ms-1 jet was present near ridge height and a wave formed in the valley overnight. On May 21-22, another 10ms-1 jet was observed, though flow in the valley was very different. Finally, the impacts of the different flow phenomena on the turbulence structure and atmospheric stability throughout the night will be discussed.
Hartveit, Espen; Veruki, Margaret Lin
2010-03-15
Accurate measurement of the junctional conductance (G(j)) between electrically coupled cells can provide important information about the functional properties of coupling. With the development of tight-seal, whole-cell recording, it became possible to use dual, single-electrode voltage-clamp recording from pairs of small cells to measure G(j). Experiments that require reduced perturbation of the intracellular environment can be performed with high-resistance pipettes or the perforated-patch technique, but an accompanying increase in series resistance (R(s)) compromises voltage-clamp control and reduces the accuracy of G(j) measurements. Here, we present a detailed analysis of methodologies available for accurate determination of steady-state G(j) and related parameters under conditions of high R(s), using continuous or discontinuous single-electrode voltage-clamp (CSEVC or DSEVC) amplifiers to quantify the parameters of different equivalent electrical circuit model cells. Both types of amplifiers can provide accurate measurements of G(j), with errors less than 5% for a wide range of R(s) and G(j) values. However, CSEVC amplifiers need to be combined with R(s)-compensation or mathematical correction for the effects of nonzero R(s) and finite membrane resistance (R(m)). R(s)-compensation is difficult for higher values of R(s) and leads to instability that can damage the recorded cells. Mathematical correction for R(s) and R(m) yields highly accurate results, but depends on accurate estimates of R(s) throughout an experiment. DSEVC amplifiers display very accurate measurements over a larger range of R(s) values than CSEVC amplifiers and have the advantage that knowledge of R(s) is unnecessary, suggesting that they are preferable for long-duration experiments and/or recordings with high R(s). Copyright (c) 2009 Elsevier B.V. All rights reserved.
Pfeiffer, Keram; French, Andrew S.
2015-01-01
Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate. PMID:26578975
Abdullah, Newaj; Rahbar, Haider; Barod, Ravi; Dalela, Deepansh; Larson, Jeff; Johnson, Michael; Mass, Alon; Zargar, Homayoun; Kaouk, Jihad; Allaf, Mohamad; Bhayani, Sam; Stifelman, Michael; Rogers, Craig
2017-03-01
A Satinsky clamp may be a backup option for hilar clamping during robotic partial nephrectomy (RPN) if there are challenges with application of bulldog clamps, but there are potential safety concerns. We evaluate outcomes of RPN using Satinsky vs. bulldog clamps, and provide tips for safe use of the Satinsky as a backup option. Using a multi-center database, we identified 1073 patients who underwent RPN between 2006 and 2013, and had information available about method of hilar clamping (bulldog clamp vs. Satinsky clamp). Patient baseline characteristics, tumor features, and perioperative outcomes were compared between the Satinsky and bulldog clamp groups. A Satinsky clamp was used for hilar clamping in 94 (8.8 %) RPN cases, and bulldog clamps were used in 979 (91.2 %) cases. The use of a Satinsky clamp was associated with greater operative time (198 vs. 175 min, p < 0.001), estimated blood loss (EBL, 200 vs. 100 ml, p < 0.001), warm ischemia time (WIT, 20 vs. 19 min, p = 0.036), transfusion rate (12.8 vs. 4.8 %, p = 0.001), and hospital stay (3 vs. 2 days, p < 0.001). Tumor characteristics and number of renal vessels were similar between groups. There were six intraoperative complications in the Satinsky clamp group, but none were directly related to the Satinsky clamp. On multivariable analysis, the use of the Satinsky clamp was not associated with increase in intraoperative or Clavien ≥3 postoperative complications, positive surgical margin rate or percentage change in estimated glomerular filtration rate. A Satinsky clamp can be a backup option for hilar clamping during challenging RPN cases, but requires careful technique, and was rarely necessary.
NASA Astrophysics Data System (ADS)
Lossouarn, B.; Deü, J.-F.; Aucejo, M.; Cunefare, K. A.
2016-11-01
Multimodal damping can be achieved by coupling a mechanical structure to an electrical network exhibiting similar modal properties. Focusing on a plate, a new topology for such an electrical analogue is found from a finite difference approximation of the Kirchhoff-Love theory and the use of the direct electromechanical analogy. Discrete models based on element dynamic stiffness matrices are proposed to simulate square plate unit cells coupled to their electrical analogues through two-dimensional piezoelectric transducers. A setup made of a clamped plate covered with an array of piezoelectric patches is built in order to validate the control strategy and the numerical models. The analogous electrical network is implemented with passive components as inductors, transformers and the inherent capacitance of the piezoelectric patches. The effect of the piezoelectric coupling on the dynamics of the clamped plate is significant as it creates the equivalent of a multimodal tuned mass damping. An adequate tuning of the network then yields a broadband vibration reduction. In the end, the use of an analogous electrical network appears as an efficient solution for the multimodal control of a plate.
Effect of sterilization on stiffness and dimensional stability of rubber-dam clamps.
Giebink, D L; Mathieu, G P; Hondrum, S O
1996-01-01
Simulated clinical conditions were used to test the effect of sterilization on rubber-dam clamp stiffness and dimension. Sixty Hygienic and Ivory W7 clamps were either steam or dry heat sterilized and compared to controls. Stiffness and dimensional change between Ivory clamp groups was significant (p<.0001); the sterilized clamps showed less change than the controls. Hygienic groups showed a significant different between the control and dry heat groups (p<.05); the sterilized clamps showed less change than the controls. The change in stiffness and interjaw width for all Ivory clamps compared to all Hygienic clamps was significant (p<.0001). The Hygienic clamps changes less than the Ivory clamps. The results indicate that steam and dry heat sterilization do not affect retention of rubber-dam clamps.
2015-09-23
Round Robin Propellant Testing for Development of AOP-4717 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 0 Air Force Dynamic Mechanical Analysis of NATO Round Robin ...the clamps are tight at the coldest temperature. • Long tests such as the frequency sweep sequences prescribed in this round robin may be
Integration of autopatching with automated pipette and cell detection in vitro
Wu (吴秋雨), Qiuyu; Kolb, Ilya; Callahan, Brendan M.; Su, Zhaolun; Stoy, William; Kodandaramaiah, Suhasa B.; Neve, Rachael; Zeng, Hongkui; Boyden, Edward S.; Forest, Craig R.
2016-01-01
Patch clamp is the main technique for measuring electrical properties of individual cells. Since its discovery in 1976 by Neher and Sakmann, patch clamp has been instrumental in broadening our understanding of the fundamental properties of ion channels and synapses in neurons. The conventional patch-clamp method requires manual, precise positioning of a glass micropipette against the cell membrane of a visually identified target neuron. Subsequently, a tight “gigaseal” connection between the pipette and the cell membrane is established, and suction is applied to establish the whole cell patch configuration to perform electrophysiological recordings. This procedure is repeated manually for each individual cell, making it labor intensive and time consuming. In this article we describe the development of a new automatic patch-clamp system for brain slices, which integrates all steps of the patch-clamp process: image acquisition through a microscope, computer vision-based identification of a patch pipette and fluorescently labeled neurons, micromanipulator control, and automated patching. We validated our system in brain slices from wild-type and transgenic mice expressing channelrhodopsin 2 under the Thy1 promoter (line 18) or injected with a herpes simplex virus-expressing archaerhodopsin, ArchT. Our computer vision-based algorithm makes the fluorescent cell detection and targeting user independent. Compared with manual patching, our system is superior in both success rate and average trial duration. It provides more reliable trial-to-trial control of the patching process and improves reproducibility of experiments. PMID:27385800
Biological cell controllable patch-clamp microchip
NASA Astrophysics Data System (ADS)
Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long
2010-12-01
A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.
Hydrodynamics of a flexible plate between pitching rigid plates
NASA Astrophysics Data System (ADS)
Kim, Junyoung; Kim, Daegyoum
2017-11-01
The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.
Clamping characteristics study on different types of clamping unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zhiwei; Liu, Haichao; Xie, Pengcheng
2015-05-22
Plastic products are becoming more and more widely used in aerospace, IT, digital electronics and many other fields. With the development of technology, the requirement of product precision is getting higher and higher. However, type and working performance of clamping unit play a decisive role in product precision. Clamping characteristics of different types of clamping unit are discussed in this article, which use finite element numerical analysis method through the software ABAQUS to study the clamping uniformity, and detect the clamping force repeatability precision. The result shows that compared with toggled three-platen clamping unit, clamping characteristics of internal circulation two-platenmore » clamping unit are better, for instance, its mold cavity deformation and force that bars and mold parting surface suffered are more uniform, and its clamping uniformity and repeatability precision is also better.« less
Estacion, Mark
2017-01-01
The Nav1.7 sodium channel is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function mutations that cause the painful disorder inherited erythromelalgia (IEM) shift channel activation in a hyperpolarizing direction. When expressed within DRG neurons, these mutations produce a depolarization of resting membrane potential (RMP). The biophysical basis for the depolarized RMP has to date not been established. To explore the effect on RMP of the shift in activation associated with a prototypical IEM mutation (L858H), we used dynamic-clamp models that represent graded shifts that fractionate the effect of the mutation on activation voltage dependence. Dynamic-clamp recording from DRG neurons using a before-and-after protocol for each cell made it possible, even in the presence of cell-to-cell variation in starting RMP, to assess the effects of these graded mutant models. Our results demonstrate a nonlinear, progressively larger effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. The observed differences in RMP were predicted by the “late” current of each mutant model. Since the depolarization of RMP imposed by IEM mutant channels is known, in itself, to produce hyperexcitability of DRG neurons, the development of pharmacological agents that normalize or partially normalize activation voltage dependence of IEM mutant channels merits further study. NEW & NOTEWORTHY Inherited erythromelalgia (IEM), the first human pain disorder linked to a sodium channel, is widely regarded as a genetic model of neuropathic pain. IEM is produced by Nav1.7 mutations that hyperpolarize activation. These mutations produce a depolarization of resting membrane potential (RMP) in dorsal root ganglion neurons. Using dynamic clamp to explore the effect on RMP of the shift in activation, we demonstrate a nonlinear effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. PMID:28148645
NASA Astrophysics Data System (ADS)
Ni, Qiao; Luo, Yangyang; Li, Mingwu; Yan, Hao
2017-09-01
Structural model for a slender and uniform pipe conveying fluid, with axially moving supports on both ends, immersed in an incompressible fluid, is formulated. Free vibration and stability of the system are studied through numerical calculation. First, the equations of motion of the system are derived in an absolute coordinate system. An "axial added mass coefficient" is adopted to amend the forces caused by the external fluid. Boundary conditions are fixed by using coordinated conversion. Then, numerical results of the natural frequency are obtained via the Galerkin method, both for pinned-pinned and clamped-clamped supports. The critical speeds of supports and several instability types are discussed. Last, the effects of the system parameters on the dynamics and instability of the system are investigated.
Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers
NASA Astrophysics Data System (ADS)
Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.
2017-10-01
Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.
Campbell, K B; Shroff, S G; Kirkpatrick, R D
1991-06-01
Based on the premise that short-time-scale, small-amplitude pressure/volume/outflow behavior of the left ventricular chamber was dominated by dynamic processes originating in cardiac myofilaments, a prototype model was built to predict pressure responses to volume perturbations. In the model, chamber pressure was taken to be the product of the number of generators in a pressure-bearing state and their average volumetric distortion, as in the muscle theory of A.F. Huxley, in which force was equal to the number of attached crossbridges and their average lineal distortion. Further, as in the muscle theory, pressure generators were assumed to cycle between two states, the pressure-bearing state and the non-pressure-bearing state. Experiments were performed in the isolated ferret heart, where variable volume decrements (0.01-0.12 ml) were removed at two commanded flow rates (flow clamps, -7 and -14 ml/sec). Pressure responses to volume removals were analyzed. Although the prototype model accounted for most features of the pressure responses, subtle but systematic discrepancies were observed. The presence or absence of flow and the magnitude of flow affected estimates of model parameters. However, estimates of parameters did not differ when the model was fitted to flow clamps with similar magnitudes of flows but different volume changes. Thus, prototype model inadequacies were attributed to misrepresentations of flow-related effects but not of volume-related effects. Based on these discrepancies, an improved model was built that added to the simple two-state cycling scheme, a pathway to a third state. This path was followed only in response to volume change. The improved model eliminated the deficiencies of the prototype model and was adequate in accounting for all observations. Since the template for the improved model was taken from the cycling crossbridge theory of muscle contraction, it was concluded that, in spite of the complexities of geometry, architecture, and regional heterogeneity of function and structure, crossbridge mechanisms dominated the short-time-scale dynamics of left ventricular chamber behavior.
Spontaneous activity of isolated dopaminergic periglomerular cells of the main olfactory bulb.
Puopolo, Michelino; Bean, Bruce P; Raviola, Elio
2005-11-01
We examined the electrophysiological properties of a population of identified dopaminergic periglomerular cells of the main olfactory bulb using transgenic mice in which catecholaminergic neurons expressed human placental alkaline phosphatase (PLAP) on the outer surface of the plasma membrane. After acute dissociation, living dopaminergic periglomerular cells were identified by a fluorescently labeled monoclonal antibody to PLAP. In current-clamp mode, dopaminergic periglomerular cells spontaneously generated action potentials in a rhythmic fashion with an average frequency of 8 Hz. The hyperpolarization-activated cation current (Ih) did not seem important for pacemaking because blocking the current with ZD 7288 or Cs+ had little effect on spontaneous firing. To investigate what ionic currents do drive pacemaking, we performed action-potential-clamp experiments using records of pacemaking as voltage command in voltage-clamp experiments. We found that substantial TTX-sensitive Na+ current flows during the interspike depolarization. In addition, substantial Ca2+ current flowed during the interspike interval, and blocking Ca2+ current hyperpolarized the neurons and stopped spontaneous firing. These results show that dopaminergic periglomerular cells have intrinsic pacemaking activity, supporting the possibility that they can maintain a tonic release of dopamine to modulate the sensitivity of the olfactory system during odor detection. Calcium entry into these neurons provides electrical drive for pacemaking as well as triggering transmitter release.
Grosmaitre, Xavier; Vassalli, Anne; Mombaerts, Peter; Shepherd, Gordon M.; Ma, Minghong
2006-01-01
A glomerulus in the mammalian olfactory bulb receives axonal inputs from olfactory sensory neurons (OSNs) that express the same odorant receptor (OR). Glomeruli are generally thought to represent functional units of olfactory coding, but there are no data on the electrophysiological properties of OSNs that express the same endogenous OR. Here, using patch clamp recordings in an intact epithelial preparation, we directly measured the transduction currents and receptor potentials from the dendritic knobs of mouse OSNs that express the odorant receptor MOR23 along with the green fluorescent protein. All of the 53 cells examined responded to lyral, a known ligand for MOR23. There were profound differences in response kinetics, particularly in the deactivation phase. The cells were very sensitive to lyral, with some cells responding to as little as 10 nM. The dynamic range was unexpectedly broad, with threshold and saturation in individual cells often covering three log units of lyral concentration. The potential causes and biological significance of this cellular heterogeneity are discussed. Patch clamp recording from OSNs that express a defined OR provides a powerful approach to investigate the sensory inputs to individual glomeruli. PMID:16446455
Grosmaitre, Xavier; Vassalli, Anne; Mombaerts, Peter; Shepherd, Gordon M; Ma, Minghong
2006-02-07
A glomerulus in the mammalian olfactory bulb receives axonal inputs from olfactory sensory neurons (OSNs) that express the same odorant receptor (OR). Glomeruli are generally thought to represent functional units of olfactory coding, but there are no data on the electrophysiological properties of OSNs that express the same endogenous OR. Here, using patch clamp recordings in an intact epithelial preparation, we directly measured the transduction currents and receptor potentials from the dendritic knobs of mouse OSNs that express the odorant receptor MOR23 along with the green fluorescent protein. All of the 53 cells examined responded to lyral, a known ligand for MOR23. There were profound differences in response kinetics, particularly in the deactivation phase. The cells were very sensitive to lyral, with some cells responding to as little as 10 nM. The dynamic range was unexpectedly broad, with threshold and saturation in individual cells often covering three log units of lyral concentration. The potential causes and biological significance of this cellular heterogeneity are discussed. Patch clamp recording from OSNs that express a defined OR provides a powerful approach to investigate the sensory inputs to individual glomeruli.
Economo, Michael N.; White, John A.
2012-01-01
Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the 30–80 Hz gamma rhythm in which network oscillations arise through ‘stochastic synchrony’ capture the variability observed in the spike output of single cells while preserving network-level organization. We extend upon these results by constructing model networks constrained by experimental measurements and using them to probe the effect of biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory and inhibitory currents controls network stability and sensitivity to external inputs. PMID:22275859
Contribution of Rho-kinase to membrane excitability of murine colonic smooth muscle.
Bayguinov, O; Dwyer, L; Kim, H; Marklew, A; Sanders, K M; Koh, S D
2011-06-01
The Rho-kinase pathway regulates agonist-induced contractions in several smooth muscles, including the intestine, urinary bladder and uterus, via dynamic changes in the Ca(2+) sensitivity of the contractile apparatus. However, there is evidence that Rho-kinase also modulates other cellular effectors such as ion channels. We examined the regulation of colonic smooth muscle excitability by Rho-kinase using conventional microelectrode recording, isometric force measurements and patch-clamp techniques. The Rho-kinase inhibitors, Y-27632 and H-1152, decreased nerve-evoked on- and off-contractions elicited at a range of frequencies and durations. The Rho-kinase inhibitors decreased the spontaneous contractions and the responses to carbachol and substance P independently of neuronal inputs, suggesting Y-27632 acts directly on smooth muscle. The Rho-kinase inhibitors significantly reduced the depolarization in response to carbachol, an effect that cannot be due to regulation of Ca(2+) sensitization. Patch-clamp experiments showed that Rho-kinase inhibitors reduce GTPγS-activated non-selective cation currents. The Rho-kinase inhibitors decreased contractions evoked by nerve stimulation, carbachol and substance P. These effects were not solely due to inhibition of the Ca(2+) sensitization pathway, as the Rho-kinase inhibitors also inhibited the non-selective cation conductances activated by excitatory transmitters. Thus, Rho-kinase may regulate smooth muscle excitability mechanisms by regulating non-selective cation channels as well as changing the Ca(2+) sensitivity of the contractile apparatus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons
Dagostin, André A.; Lovell, Peter V.; Hilscher, Markus M.; Mello, Claudio V.; Leão, Ricardo M.
2015-01-01
Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830
Ohira, Suguru; Doi, Kiyoshi; Numata, Satoshi; Yamazaki, Sachiko; Itatani, Keiichi; Kawajiri, Hidetake; Morimoto, Kazuki; Yaku, Hitoshi
2017-10-01
To investigate the results of off-pump coronary artery grafting (OPCAB) with the proximal suture device (PSD) regarding postoperative stroke and graft patency. The PSD was used in 376 patients (32.0%), aorta-no-touch OPCAB was performed in 523 patients (45.2%), on-pump beating coronary artery bypass surgery (CABG) (on-beat group) in 125 patients (10.6%) including 51 conversions (conversion rate: 5.4%), and CABG with aortic clamp use (clamp group) in 152 patients. In the PSD group, Enclose II was used in 267 patients (71.0%). The hospital mortality rate was 1.95%. There was no early stroke in the OPCAB group, whereas the early-stroke rate was 0.8% in the on-beat group and 2.6% in the clamp group. The incidences of stroke at one month were: PSD group, 1.6%; no-touch group, 1.1%; on-beat group, 1.6%; and clamp group, 4.6% (p=0.014). The rates of complete revascularisation were higher in the PSD and clamp groups (94.7 and 94.0%, respectively) compared with the no-touch and on-beat groups (81.5 and 84.9%, respectively; p<0.001). The vein graft patency rates were comparable between the PSD and clamp groups. In multiple logistic regression analysis, OPCAB using the PSD did not increase the risk of stroke compared with the no-touch group (adjusted odds ratio [AOR]: 1.40; p=0.594) or on-beat group (AOR: 0.99; p=0.206), but reduced the risk of stroke compared with the clamp group (AOR: 0.19; p=0.005). Off-pump coronary artery grafting using the PSD was a safe and effective procedure. It led to lower incidences of postoperative stroke and excellent rates of graft patency and complete revascularisation compared with conventional CABG. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Pelucchi, Bruna; Grimaldi, Annalisa; Moriondo, Andrea
2008-01-01
In salamander rods, Ca(2+)-activated K(+) current (I(KCa)) provides an effective "clamp" of the dark membrane potential to its normal resting level. By a combination of electrophysiological, pharmacological, and immunohistochemical approaches, we show that salamander rods functionally express large-conductance Ca(2+)- and voltage-dependent potassium (BK) channel and intermediate-conductance Ca(2+)-dependent potassium (IK) channel, but not small-conductance Ca(2+)-dependent potassium channel (SK) subtypes. Application of 100 nM iberiotoxin and 100 nM clotrimazole reduced net I(KCa) to 36% and 63%, respectively, whereas the current was unaffected by application of 1 microM apamin. Consistently, anti- SK1, -SK2, and -SK3 antibodies were unable to stain rod photoreceptors, whereas both anti-BK and -SK4/ IK1 antibodies heavily stained the ellipsoid region of the inner segments of the rods. Moreover, by using current-clamp experiments, it was clearly seen that the strong clamping effect of the total I(KCa) was lost when IbTx, but not CLTZ, was applied to the bath. This behavior strongly suggests that of BK and IK channels, only the former are responsible for the clamping effect on the photoreceptor membrane potential.
A novel measuring method of clamping force for electrostatic chuck in semiconductor devices
NASA Astrophysics Data System (ADS)
Kesheng, Wang; Jia, Cheng; Yin, Zhong; Linhong, Ji
2016-04-01
Electrostatic chucks are one of the core components of semiconductor devices. As a key index of electrostatic chucks, the clamping force must be controlled within a reasonable range. Therefore, it is essential to accurately measure the clamping force. To reduce the negative factors influencing measurement precision and repeatability, this article presents a novel method to measure the clamping force and we elaborate both the principle and the key procedure. A micro-force probe component is introduced to monitor, adjust, and eliminate the gap between the wafer and the electrostatic chuck. The contact force between the ruby probe and the wafer is selected as an important parameter to characterize de-chucking, and we have found that the moment of de-chucking can be exactly judged. Moreover, this article derives the formula calibrating equivalent action area of backside gas pressure under real working conditions, which can effectively connect the backside gas pressure at the moment of de-chucking and the clamping force. The experiments were then performed on a self-designed measuring platform. The de-chucking mechanism is discussed in light of our analysis of the experimental data. Determination criteria for de-chucking point are summed up. It is found that the relationship between de-chucking pressure and applied voltage conforms well to quadratic equation. Meanwhile, the result reveals that actual de-chucking behavior is much more complicated than the description given in the classical empirical formula. Project supported by No. 02 National Science and Technology Major Project of China (No. 2011ZX02403-004).
A nitric oxide concentration clamp.
Zhelyaskov, V R; Godwin, D W
1999-10-01
We report a new method of generating nitric oxide (NO) that possesses several advantages for experimental use. This method consists of a photolysis chamber where NO is released by illuminating photolabile NO donors with light from a xenon lamp, in conjunction with feedback control. Control of the photolysis light was achieved by selectively gating light projected through a shutter before the light was launched into a light guide that conveyed the light to the photolysis chamber. By gating the light in proportion to a sensor that reported nearly instantaneous concentration from the photolysis chamber, a criterion NO concentration could be achieved, which could be easily adjusted to higher or lower criterion levels. To denote the similarity of this process with the electrophysiological process of voltage clamp, we term this process a concentration "clamp." This development enhances the use of the fiber-optic-based system for NO delivery and should enable the execution of experiments where the in situ concentration of NO is particularly critical, such as in biological preparations. Copyright 1999 Academic Press.
NASA Astrophysics Data System (ADS)
Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team
2015-06-01
Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).
MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard
The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that amore » portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast nuts at a constant input torque and resulting clamp loads were recorded continuously. The clamp load data was used to determine the range of clamp loads to be expected. The bolts were driven to failure. The clamp load corresponding to the target input of 18.5 Nm was recorded for each fastener. In a like fashion, a second set of experiments were run with cast magnesium nuts and ALtracs thread forming fasteners, (a widely used thread forming fastener suitable for magnesium applications). Again all clamp loads were recorded and analyzed similarly to the Taptites in aluminum cast nuts. Results from previous work performed on the same test cell for a Battelle project using standard M8 bolts into standard M8 nuts were included as a comparator for a standard bolt and nut application. The results for the thread forming fasteners in aluminum cast holes were well within industry expectations of +/- 30% for out of the box and robustness range testing. The results for the dry and lubed extreme conditions were only slightly higher than industry expectations at +/- 35.6%. However, when compared to the actual Battelle results (+/- 40%) for a standard bolt and nut the tread forming fasteners performed slightly better. The results for the thread forming fasteners in magnesium cast holes were all well within industry expectations of +/- 30% for all three conditions. The robustness range (.05mm larger and smaller holes than the expected wear pattern of a die casting die at full life cycle) results also fell within the industry expectations for standard threaded fasteners. These results were very encouraging. It was concluded that this work showed that clamp load variation with thread forming fasteners is consistent with industry expectations for standard steel bolts and nuts at +/- 30%. There does not appear to be any significant increase in clamp load variation due to the application of thread forming fasteners in as-cast holes of aluminum or magnesium over the effective life of a die casting mold. The fully implemented potential benefit of thread forming fasteners in as-cast holes of aluminum and magnesium is estimated to be 6 trillion Btu per year for North America. Economic benefit is estimated to be nearly $800 million per year. Environmental benefits and quality improvements will also result from full implementation of this technology.« less
Elastohydrodynamics of microfilament under distributed body actuation
NASA Astrophysics Data System (ADS)
Singh, T. Sonamani; Yadava, R. D. S.
2018-05-01
The dynamics of an active filament in low Reynolds (Re) number regime is analyzed under distributed body actuation represented by the sliding filament model. The governing elastohydrodynamic equations are formulated by assuming the resistive force theory (RFT). The effect of geometric nonlinearity in bending stiffness on the propulsive thrust has been analyzed where the former is introduced by cross-sectional tapering. Two types of boundary conditions (clamped-free and hinged-free) are analyzed. A comparison with the uniform filament dynamics reveals that the tapering enhances the thrust under both types of boundary conditions.
Collisions of Ir Oxide Nanoparticles with Carbon Nanopipettes: Experiments with One Nanoparticle.
Zhou, Min; Yu, Yun; Hu, Keke; Xin, Huolin L; Mirkin, Michael V
2017-03-07
Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrO x NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. High-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.
Collisions of Ir oxide nanoparticles with carbon nanopipettes: Experiments with one nanoparticle
Zhou, Min; Yu, Yun; Hu, Keke; ...
2017-02-03
Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrOxmore » NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. Lastly, high-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.« less
Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels.
John, Victoria H; Dale, Tim J; Hollands, Emma C; Chen, Mao Xiang; Partington, Leanne; Downie, David L; Meadows, Helen J; Trezise, Derek J
2007-02-01
Planar array electrophysiology techniques were applied to assays for modulators of recombinant hIK and hSK3 Ca2+-activated K+ channels. In CHO-hIK-expressing cells, under asymmetric K+ gradients, small-molecule channel activators evoked time- and voltage-independent currents characteristic of those previously described by classical patch clamp electrophysiology methods. In single-hole (cell) experiments, the large cell-to-cell heterogeneity in channel expression rendered it difficult to generate activator concentration-response curves. However, in population patch clamp mode, in which signals are averaged from up to 64 cells, well-to-well variation was substantially reduced such that concentration-response curves could be easily constructed. The absolute EC50 values and rank order of potency for a range of activators, including 1-EBIO and DC-EBIO, corresponded well with conventional patch clamp data. Activator responses of hIK and hSK3 channels could be fully and specifically blocked by the selective inhibitors TRAM-34 and apamin, with IC50 values of 0.31 microM and 3 nM, respectively. To demonstrate assay precision and robustness, a test set of 704 compounds was screened in a 384-well format of the hIK assay. All plates had Z' values greater than 0.6, and the statistical cutoff for activity was 8%. Eleven hits (1.6%) were identified from this set, in addition to the randomly spiked wells with known activators. Overall, our findings demonstrate that population patch clamp is a powerful and enabling method for screening Ca2+-activated K+ channels and provides significant advantages over single-cell electrophysiology (IonWorks(HT)) and other previously published approaches. Moreover, this work demonstrates for the 1st time the utility of population patch clamp for ion channel activator assays and for non-voltage-gated ion channels.
The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development.
Inada, K; Morimoto, Y; Arima, T; Murata, Y; Kamada, T
2001-01-01
Sexual development in the mushroom Coprinus cinereus is under the control of the A and B mating-type loci, both of which must be different for a compatible, dikaryotic mycelium to form between two parents. The A genes, encoding proteins with homeodomain motifs, regulate conjugate division of the two nuclei from each mating partner and promote the formation of clamp connections. The latter are hyphal configurations required for the maintenance of the nuclear status in the dikaryotic phase of basidiomycetes. The B genes encode pheromones and pheromone receptors. They regulate the cellular fusions that complete clamp connections during growth, as well as the nuclear migration required for dikaryosis. The AmutBmut strain (326) of C. cinereus, in which both A- and B-regulated pathways are constitutively activated by mutations, produces, without mating, dikaryon-like, fertile hyphae with clamp connections. In this study we isolated and characterized clampless1-1 (clp1-1), a mutation that blocks clamp formation, an essential step in A-regulated sexual development, in the AmutBmut background. A genomic DNA fragment that rescues the clp1-1 mutation was identified by transformations. Sequencing of the genomic DNA, together with RACE experiments, identified an ORF interrupted by one intron, encoding a novel protein of 365 amino acids. The clp1-1 mutant allele carries a deletion of four nucleotides, which is predicted to cause elimination of codon 128 and frameshifts thereafter. The clp1 transcript was normally detected only in the presence of the A protein heterodimer formed when homokaryons with compatible A genes were mated. Forced expression of clp1 by promoter replacements induced clamp development without the need for a compatible A gene combination. These results indicate that expression of clp1 is necessary and sufficient for induction of the A-regulated pathway that leads to clamp development. PMID:11139497
Kwag, Jeehyun; Paulsen, Ole
2009-08-26
Precisely controlled spike times relative to theta-frequency network oscillations play an important role in hippocampal memory processing. Here we study how inhibitory synaptic input during theta oscillation contributes to the control of spike timing. Using whole-cell patch-clamp recordings from CA1 pyramidal cells in vitro with dynamic clamp to simulate theta-frequency oscillation (5 Hz), we show that gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) can not only delay but also advance the postsynaptic spike depending on the timing of the inhibition relative to the oscillation. Spike time advancement with IPSP was abolished by the h-channel blocker ZD7288 (10 microM), suggesting that IPSPs can interact with intrinsic membrane conductances to yield bidirectional control of spike timing.
On the Nonlinear Dynamics of a Tunable Shock Micro-switch
NASA Astrophysics Data System (ADS)
Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa
2016-12-01
A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.
Cacciamani, Giovanni E; Medina, Luis G; Gill, Tania S; Mendelsohn, Alec; Husain, Fatima; Bhardwaj, Lokesh; Artibani, Walter; Sotelo, Renè; Gill, Inderbir S
2018-02-05
During robotic partial nephrectomy (RPN), various techniques of hilar control have been described, including on-clamp, early unclamping, selective/super-selective clamping, and completely-unclamped RPN. To evaluate the impact of various hilar control techniques on perioperative, functional, and oncological outcomes of RPN for tumors. We conducted a systematic literature review and meta-analysis of all comparative studies on various hilar control techniques during RPN using PubMed, Scopus, and Web of Science according to the Preferred Reporting Items for Systematic Review and Meta-analysis statement, and Methods and Guide for Effectiveness and Comparative Effectiveness Review of the Agency for Healthcare Research and Quality. Cumulative meta-analysis of comparative studies was conducted using Review Manager 5.3. Of 987 RPN publications in the literature, 19 qualified for this analysis. Comparison of off-clamp versus on-clamp RPN (n=9), selective clamping versus on-clamp RPN (n=3), super selective clamping versus on-clamp RPN (n=5), and early unclamped versus on-clamp (n=3) were reported. Patients undergoing RPN using off-clamp, selective/super selective, or early unclamp techniques had higher estimated blood loss compared with on-clamp RPN (weight mean difference [WMD]: 47.83, p=0.000, WMD: 41.06, p=0.02, and WMD: 37.50, p=0.47); however, this did not seem clinically relevant, since transfusion rates were similar (odds ratio [OR]: 0.98, p=0.95, OR: 0.72, p=0.7, and OR: 1.36, p=0.33, respectively). All groups appeared similar with regards to hospital stay, transfusions, overall and major complications, and positive cancer margin rates. Short- and long-term renal functional outcomes appeared superior in the off-clamp and super selective clamp groups compared with the on-clamp RPN cohort. Off-clamp, selective/super selective clamp, and early unclamp hilar control techniques are safe and feasible approaches for RPN surgery, with similar perioperative and oncological outcomes compared with on-clamp RPN. Minimizing global renal ischemia may provide superior renal function preservation. However, higher quality data are necessary for definitive conclusions in this regard. The objective of partial nephrectomy is to treat the cancer while maximizing renal function preservation. Clamping the main vessels is done primarily to reduce the blood loss during partial nephrectomy; however, vascular clamping can compromise kidney function. In order to avoid clamping, various techniques have been described. Our analysis showed that techniques that avoid main renal artery clamping during RPN are associated with better renal function preservation, yet deliver non-inferior perioperative and oncological outcomes as compared with robotic partial nephrectomy procedures that clamp the main vessels. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Pemp, Berthold; Polska, Elzbieta; Garhofer, Gerhard; Bayerle-Eder, Michaela; Kautzky-Willer, Alexandra; Schmetterer, Leopold
2010-09-01
To compare total retinal blood flow in diabetic patients with no or mild nonproliferative diabetic retinopathy and healthy control subjects and to investigate in patients whether there is a difference between retinal blood flow before morning insulin and under normoglycemic conditions using a glucose clamp. Twenty patients with type 1 diabetes with no or mild diabetic retinopathy were included in this open parallel-group study, and 20 healthy age- and sex-matched subjects were included as control subjects. Retinal blood flow was assessed by combining velocity measurements using laser Doppler velocimetry and diameter measurements using a commercially available dynamic vessel analyzer. Measurements were performed before and during a euglycemic clamp. Total retinal blood flow was higher in diabetic patients (53 +/- 16 microl/min) than in healthy subjects (43 +/- 16 microl/min; P = 0.034 between groups). When plasma glucose in diabetic patients was reduced from 9.3 +/- 1.7 to 5.3 +/- 0.5 mmol/l (P < 0.001) retinal blood flow decreased to 49 +/- 15 microl/min (P = 0.0003 vs. baseline). Total retinal blood flow during the glucose clamp was not significantly different from blood flow in normal control subjects (P = 0.161). Type 1 diabetic patients with no or only mild diabetic retinopathy have increased retinal blood flow before their morning insulin dosage. Blood flow is reduced toward normal during euglycemic conditions. Retinal blood flow may fluctuate significantly with fluctuating plasma glucose levels, which may contribute to the microvascular changes seen in diabetic retinopathy.
Brennan, Kristen M; Graugnard, Daniel E; Spry, Malinda L; Brewster-Barnes, Tammy; Smith, Allison C; Schaeffer, Rachel E; Urschel, Kristine L
2015-10-01
To determine effects of a microalgae nutritional product on insulin sensitivity in horses. 8 healthy mature horses. PROCEDURES :Horses (n = 4/group) received a basal diet without (control diet) or with docosahexaenoic acid-rich microalgae meal (150 g/d) for 49 days (day 0 = first day of diet). On day 28, an isoglycemic hyperinsulinemic clamp procedure was performed. Horses then received dexamethasone (0.04 mg/kg/d) for 21 days. On day 49, the clamp procedure was repeated. After a 60-day washout, horses received the alternate diet, and procedures were repeated. Plasma fatty acid, glucose, and insulin concentrations and glucose and insulin dynamics during the clamp procedure were measured on days 28 and 49. Two estimates of insulin sensitivity (reciprocal of the square root of the insulin concentration and the modified insulin-to-glucose ratio for ponies) were calculated. Baseline glucose and insulin concentrations or measures of insulin sensitivity on day 28 did not differ between horses when fed the control diet or the basal diet plus microalgae meal. On day 49 (ie, after dexamethasone administration), the microalgae meal was associated with lower baseline insulin and glucose concentrations and an improved modified insulin-to-glucose ratio for ponies, compared with results for the control diet. Although the microalgae meal had no effect on clamp variables following dexamethasone treatment, it was associated with improved plasma glucose and insulin concentrations and insulin sensitivity estimates. A role for microalgae in the nutritional management of insulin-resistant horses warrants investigation.
Woody, Michael S; Capitanio, Marco; Ostap, E Michael; Goldman, Yale E
2018-04-30
We characterized experimental artifacts arising from the non-linear response of acousto-optical deflectors (AODs) in an ultra-fast force-clamp optical trap and have shown that using electro-optical deflectors (EODs) instead eliminates these artifacts. We give an example of the effects of these artifacts in our ultra-fast force clamp studies of the interaction of myosin with actin filaments. The experimental setup, based on the concept of Capitanio et al. [Nat. Methods 9, 1013-1019 (2012)] utilizes a bead-actin-bead dumbbell held in two force-clamped optical traps which apply a load to the dumbbell to move it at a constant velocity. When myosin binds to actin, the filament motion stops quickly as the total force from the optical traps is transferred to the actomyosin attachment. We found that in our setup, AODs were unsuitable for beam steering due to non-linear variations in beam intensity and deflection angle as a function of driving frequency, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artifactual jumps in the trap position. We demonstrate that beam steering with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-focal-plane interferometry, and dual high-speed FPGA-based feedback loops, we apply precise and constant loads to study the dynamics of interactions between actin and myosin. The same concept applies to studies of other biomolecular interactions.
Clamp usable as jig and lifting clamp
Tsuyama, Yoshizo
1976-01-01
There is provided a clamp which is well suited for use as a lifting clamp for lifting and moving materials of assembly in a shipyard, etc. and as a pulling jig in welding and other operations. The clamp comprises a clamp body including a shackle for engagement with a pulling device and a slot for receiving an article, and a pair of jaws provided on the leg portions of the clamp body on the opposite sides of the slot to grip the article in the slot, one of said jaws consisting of a screw rod and the other jaw consisting of a swivel jaw with a spherical surface, whereby when the article clamped in the slot by the pair of jaws tends to slide in any direction with respect to the clamp body, the article is more positively gripped by the pair of jaws.
Cable clamp bolt fixture facilitates assembly in close quarters
NASA Technical Reports Server (NTRS)
Sunderland, G. H.
1967-01-01
Cable clamp bolt holding fixture facilitates forming of electrical cable runs in limited equipment space. The fixture engages the threads of the short clamp bolt through the clamp and maintains tension against clamp tendency to open while the operator installs the nut without difficulty.
Split-tapered joint clamping device
Olsen, Max J.; Schwartz, Jr., John F.
1988-01-01
This invention relates to a clamping device for removably attaching a tool element to a bracket element wherein a bracket element is disposed in a groove in the tool and a clamping member is disposed in said groove and in engagement with a clamping face of the bracket and a wall of the groove and with the clamping member having pivot means engaging the bracket and about which the clamping member rotates.
NASA Technical Reports Server (NTRS)
Pippin, Gary
1997-01-01
This pictorial presentation reviews the post-flight analysis results from two type of hardware (tray clamp bolt heads and uhcre flight experiment tray walls) from the Long Duration Exposure Facility (LDEF). It will also discuss flight hardware for one upcoming (Effects of the Space Environment on Materials (ESEM) flight experiment), and two current flight experiments evaluating the performance of materials in space (Passive Optical Sample Assembly (POSA) 1&2 flight experiments. These flight experiments also are concerned with contamination effects which will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, Michael; Camilloni, Carlo; Armstrong, Geoffrey S.
2015-05-26
Thermophilic proteins have found extensive use in research and industrial applications due to their high stability and functionality at elevated temperatures while simultaneously providing valuable insight into our understanding of protein folding, stability, dynamics, and function. Cyclophilins, a ubiquitously expressed family of peptidyl-prolyl isomerases with a range of biological functions and disease associations, have been utilized both for conferring stress tolerances and in exploring the link between conformational dynamics and enzymatic function. To date, however, no active thermophilic cyclophilin has been fully biophysically characterized. Here, we determine the structure of a thermophilic cyclophilin (GeoCyp) from Geobacillus kaustophilus, characterize its dynamicmore » motions over several timescales using an array of methodologies that include chemical shift-based methods and relaxation experiments over a range of temperatures, and measure catalytic activity over a range of temperatures in order to compare structure, dynamics, and function to a mesophilic counterpart, human Cyclophilin A (CypA). Unlike most thermophile/mesophile pairs, GeoCyp catalysis is not substantially impaired at low temperatures as compared to CypA, retaining ~70% of the activity of its mesophilic counterpart. Examination of substrate-bound ensembles reveals a mechanism by which the two cyclophilins may have adapted to their environments through altering dynamic loop motions and a critical residue that acts as a clamp to regulate substrate binding differentially in CypA and GeoCyp. Despite subtle differences in conformational movements, dynamics over fast (ps-ns) and slow (μs) timescales are largely conserved between the two proteins.« less
Umul, M; Cal, A C; Turna, B; Oktem, G; Aydın, H H
2016-01-01
To evaluate the effect of temporary complete hilar versus only renal artery clamping with different duration of warm ischemia on renal functions, and possibly identify a "safe" clamping type and duration of renal ischemia. Fifty male rabbits have been incorporated to study. Rabbits were subjected to ischemia/reperfusion injury by temporary vascular clamping. Reagents were randomized to 3 experimental groups (only renal artery clamping, complete hilar clamping, sham surgery) and sub-groups were determined according to different clamping times (30 and 60 minutes). Median laparotomy and left renal hilus dissection were performed to sham group. Only artery or complete hilar clamping was performed for 30 or 60 minutes by microvascular bulldog clamps to other reagents. Rabbits were sacrificed 10 days after primary surgery and left nephrectomy performed. Nephrectomy materials were evaluated for the level of nitric-oxide synthase (NOS) immunoreactivity, malondialdehyde (MDA) level and superoxide dismutase (SOD) activity and an electron microscopic examination was performed. NOS immunoreactivity was correlated with the temporary clamping time. We also observed that complete hilar vascular clamping entails an increase on NOS immunoreactivity. MDA levels were similar for all experimental surgery groups (p = 0.42). The SOD activity was decreased among all subgroups compared with sham surgery. But the significant decrease occurred in 30 minutes only artery and 30 minutes complete hilar clamping groups in proportion to sham surgery (p = 0.026 and p = 0.019, respectively). This current study suggested that only renal artery clamping under 30 minutes is more appropriate during renal surgical procedures requiring temporary vascular clamping.
An operating principle of the turtle utricle to detect wide dynamic range.
Nam, Jong-Hoon
2018-03-01
The utricle encodes both static information such as head orientation, and dynamic information such as vibrations. It is not well understood how the utricle can encode both static and dynamic information for a wide dynamic range (from <0.05 to >2 times the gravitational acceleration; from DC to > 1000 Hz vibrations). Using computational models of the hair cells in the turtle utricle, this study presents an explanation on how the turtle utricle encodes stimulations over such a wide dynamic range. Two hair bundles were modeled using the finite element method-one representing the striolar hair cell (Cell S), and the other representing the medial extrastriolar hair cell (Cell E). A mechano-transduction (MET) channel model was incorporated to compute MET current (i MET ) due to hair bundle deflection. A macro-mechanical model of the utricle was used to compute otoconial motions from head accelerations (a Head ). According to known anatomical data, Cell E has a long kinocilium that is embedded into the stiff otoconial layer. Unlike Cell E, the hair bundle of Cell S falls short of the otoconial layer. Considering such difference in the mechanical connectivity between the hair cell bundle and the otoconial layer, three cases were simulated: Cell E displacement-clamped, Cell S viscously-coupled, and Cell S displacement-clamped. Head accelerations at different amplitude levels and different frequencies were simulated for the three cases. When a realistic head motion was simulated, Cell E was responsive to head orientation, while the viscously-coupled Cell S was responsive to fast head motion imitating the feeding strike of a turtle. Copyright © 2017 Elsevier B.V. All rights reserved.
Lifting clamp positively grips structural shapes
NASA Technical Reports Server (NTRS)
Reinhardt, E. C.
1966-01-01
Welded steel clamps securely grip structural shapes of various sizes for crane operations. The clamp has adjustable clamping jaws and screw-operated internal v-jaws and provides greater safety than hoisting slings presently used. The structural member can be rotated in any manner, angle, or direction without being released by the clamp.
Ting, Jonathan T; Lee, Brian R; Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed
2018-02-26
This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation.
Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method
Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed
2018-01-01
This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation. PMID:29553547
NASA Technical Reports Server (NTRS)
Collins, J. Scott; Johnson, Eric R.
1989-01-01
Experiments were conducted to measure the three-dimensional static and free vibrational response of two graphite-epoxy, thin-walled, open section frames. The frames are semi-circular with a radius of three feet, and one specimen has an I cross section and the other has a channel cross section. The flexibility influence coefficients were measured in static tests for loads applied at midspan with the ends of the specimens clamped. Natural frequencies and modes were determined from vibrational tests for free and clamped end conditions. The experimental data is used to evaluate a new finite element which was developed specifically for the analysis of curved, thin-walled structures. The formulation of the element is based on a Vlasov-type, thin-walled, curved beam theory. The predictions from the finite element program generally correlated well with the experimental data for the symmetric I-specimen. Discrepancies in some of the data were found to be due to flexibility in the clamped end conditions. With respect to the data for the channel specimen, the correlation was less satisfactory. The finite element analysis predicted the out-of-plane response of the channel specimen reasonably well, but large discrepancies occurred between the predicted in-plane response and the experimental data. The analysis predicted a much more compliant in-plane response than was observed in the experiments.
Selective Arterial Clamping Versus Hilar Clamping for Minimally Invasive Partial Nephrectomy.
Yezdani, Mona; Yu, Sue-Jean; Lee, David I
2016-05-01
Partial nephrectomy has become an accepted treatment of cT1 renal masses as it provides improved long-term renal function compared to radical nephrectomy (Campbell et al. J Urol. 182:1271-9, 2009). Hilar clamping is utilized to help reduce bleeding and improve visibility during tumor resection. However, concern over risk of kidney injury with hilar clamping has led to new techniques to reduce length of warm ischemia time (WIT) during partial nephrectomy. These techniques have progressed over the years starting with early hilar unclamping, controlled hypotension during tumor resection, selective arterial clamping, minimal margin techniques, and off-clamp procedures. Selective arterial clamping has progressed significantly over the years. The main question is what are the exact short- and long-term renal effects from increasing clamp time. Moreover, does it make sense to perform these more time-consuming or more complex procedures if there is no long-term preservation of kidney function? More recent studies have shown no difference in renal function 6 months from surgery when selective arterial clamping or even hilar clamping is employed, although there is short-term improved decline in estimated glomerular filtration rate (eGFR) with selective clamping and off-clamp techniques (Komninos et al. BJU Int. 115:921-8, 2015; Shah et al. 117:293-9, 2015; Kallingal et al. BJU Int. doi: 10.1111/bju.13192, 2015). This paper reviews the progression of total hilar clamping to selective arterial clamping (SAC) and the possible difference its use makes on long-term renal function. SAC may be attempted based on surgeon's decision-making, but may be best used for more complex, larger, more central or hilar tumors and in patients who have renal insufficiency at baseline or a solitary kidney.
Upadhye, Kalpesh V.; Candiello, Joseph E.; Davidson, Lance A.; Lin, Hai
2011-01-01
Patch clamp is a powerful tool for studying the properties of ion-channels and cellular membrane. In recent years, planar patch clamp chips have been fabricated from various materials including glass, quartz, silicon, silicon nitride, polydimethyl-siloxane (PDMS), and silicon dioxide. Planar patch clamps have made automation of patch clamp recordings possible. However, most planar patch clamp chips have limitations when used in combination with other techniques. Furthermore, the fabrication methods used are often expensive and require specialized equipments. An improved design as well as fabrication and characterization of a silicon-based planar patch clamp chip are described in this report. Fabrication involves true batch fabrication processes that can be performed in most common microfabrication facilities using well established MEMS techniques. Our planar patch clamp chips can form giga-ohm seals with the cell plasma membrane with success rate comparable to existing patch clamp techniques. The chip permits whole-cell voltage clamp recordings on variety of cell types including Chinese Hamster Ovary (CHO) cells and pheochromocytoma (PC12) cells, for times longer than most available patch clamp chips. When combined with a custom microfluidics chamber, we demonstrate that it is possible to perfuse the extra-cellular as well as intra-cellular buffers. The chamber design allows integration of planar patch clamp with atomic force microscope (AFM). Using our planar patch clamp chip and microfluidics chamber, we have recorded whole-cell mechanosensitive (MS) currents produced by directly stimulating human keratinocyte (HaCaT) cells using an AFM cantilever. Our results reveal the spatial distribution of MS ion channels and temporal details of the responses from MS channels. The results show that planar patch clamp chips have great potential for multi-parametric high throughput studies of ion channel proteins. PMID:22174731
Harty, Niall J; Laskey, Daniel H; Moinzadeh, Alireza; Flacke, Sebastian; Benn, James A; Villani, Rosanna; Kalra, Aarti; Libertino, John A; Madras, Peter N
2012-09-01
What's known on the subject? and What does the study add? Lumagel™ is a reverse thermosensitive polymer (RTP) that has previously been described in the literature as providing temporary vascular occlusion to allow for bloodless partial nephrectomy (PN) while maintaining blood flow to the untargeted portion of the kidney. At body temperature, Lumagel™ has the consistency of a viscous gel but upon cooling rapidly converts to a liquid state and does not reconstitute thereafter. This property has allowed for it to be used in situations requiring temporary vascular occlusion. Previous experience with similar RTPs in coronary arteries proved successful, with no detectable adverse events. We have previously described our technique for temporary vascular occlusion of the main renal artery, as well as segmental and sub-segmental renal branches, to allow for bloodless PN in either an open or minimally invasive approach. These experiments were performed in the acute setting. This study is a two-armed survival trial to assess whether this RTP is as safe as hilar clamping for bloodless PN. Surviving animals showed normal growth after using the RTP, absence of toxicity, no organ dysfunction, and no pathological changes attributable to the RTP. We conclude that Lumagel™ is as safe as conventional PN with hilar clamping, while adding the advantage of uninterrupted perfusion during renal resection. To examine whether randomly selected regions of the kidney could undergo temporary flow interruption with a reverse thermosensitive polymer (RTP), Lumagel™ (Pluromed, Inc., Woburn, MA, USA), followed by partial nephrectomy (PN), without adding risks beyond those encountered in the same procedure with the use of hilar clamping. A two-armed (RTP vs hilar clamp), 6-week swine survival study was performed. Four swine underwent PN using hilar clamps, while six underwent PN with flow interruption using the RTP. The RTP, administered angiographically, was used for intraluminal occlusion of segmental or subsegmental arteries and was compared with main renal artery clamping with hilar clamps. The resection site was randomized for each swine. Laboratory studies were performed preoperatively, and at weeks 1, 3 and 6. Before killing the swine, repeat angiography was performed with emphasis on the site of previous flow interruption. Gross and microscopic examination of kidney, liver, lung, heart, skeletal muscle was later performed, and the vessel that had supported the previous plug was examined. All animals survived. No abnormal chemistry or haematology results were encountered over the 6 weeks. There were no surgical complications in either group. Using angiography we found 100% patency of vessels that had been occluded with the polymer 6 weeks previously for PN. The only gross or microscopic abnormalities were related to the renal resection and scar formation, and were similar in the two groups. Targeted flow interruption with the RTP added no additional risk to PN while allowing bloodless resection and uninterrupted flow to untargeted renal tissue. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.
USDA-ARS?s Scientific Manuscript database
To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...
21 CFR 882.4460 - Neurosurgical head holder (skull clamp).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures. (b...
Lepora, Nathan F; Blomeley, Craig P; Hoyland, Darren; Bracci, Enrico; Overton, Paul G; Gurney, Kevin
2011-11-01
The study of active and passive neuronal dynamics usually relies on a sophisticated array of electrophysiological, staining and pharmacological techniques. We describe here a simple complementary method that recovers many findings of these more complex methods but relies only on a basic patch-clamp recording approach. Somatic short and long current pulses were applied in vitro to striatal medium spiny (MS) and fast spiking (FS) neurons from juvenile rats. The passive dynamics were quantified by fitting two-compartment models to the short current pulse data. Lumped conductances for the active dynamics were then found by compensating this fitted passive dynamics within the current-voltage relationship from the long current pulse data. These estimated passive and active properties were consistent with previous more complex estimations of the neuron properties, supporting the approach. Relationships within the MS and FS neuron types were also evident, including a graduation of MS neuron properties consistent with recent findings about D1 and D2 dopamine receptor expression. Application of the method to simulated neuron data supported the hypothesis that it gives reasonable estimates of membrane properties and gross morphology. Therefore detailed information about the biophysics can be gained from this simple approach, which is useful for both classification of neuron type and biophysical modelling. Furthermore, because these methods rely upon no manipulations to the cell other than patch clamping, they are ideally suited to in vivo electrophysiology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Zhu, Jundong; Jiang, Fan; Li, Pu; Shao, Pengfei; Liang, Chao; Xu, Aiming; Miao, Chenkui; Qin, Chao; Wang, Zengjun; Yin, Changjun
2017-09-11
To explore the feasibility and safety of retroperitoneal laparoscopic partial nephrectomy with sequential segmental renal artery clamping for the patients with multiple renal tumor of who have solitary kidney or contralateral kidney insufficiency. Nine patients who have undergone retroperitoneal laparoscopic partial nephrectomy with sequential segmental renal artery clamping between October 2010 and January 2017 were retrospectively analyzed. Clinical materials and parameters during and after the operation were summarized. Nineteen tumors were resected in nine patients and the operations were all successful. The operation time ranged from 100 to 180 min (125 min); clamping time of segmental renal artery was 10 ~ 30 min (23 min); the amount of blood loss during the operation was 120 ~ 330 ml (190 ml); hospital stay after the operation is 3 ~ 6d (5d). There was no complication during the perioperative period, and the pathology diagnosis after the surgery showed that there were 13 renal clear cell carcinomas, two papillary carcinoma and four perivascular epithelioid cell tumors with negative margins from the 19 tumors. All patients were followed up for 3 ~ 60 months, and no local recurrence or metastasis was detected. At 3-month post-operation follow-up, the mean serum creatinine was 148.6 ± 28.1 μmol/L (p = 0.107), an increase of 3.0 μmol/L from preoperative baseline. For the patients with multiple renal tumors and solitary kidney or contralateral kidney insufficiency, retroperitoneal laparoscopic partial nephrectomy with sequential segmental renal artery clamping was feasible and safe, which minimized the warm ischemia injury to the kidney and preserved the renal function effectively.
Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording
Kolb, Ilya; Kodandaramaiah, Suhasa B.; Chubykin, Alexander A.; Yang, Aimei; Bear, Mark F.; Boyden, Edward S.; Forest, Craig R.
2014-01-01
Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. PMID:25429119
Noninvasive glucose sensing by transcutaneous Raman spectroscopy
NASA Astrophysics Data System (ADS)
Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.
2015-05-01
We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.
Noninvasive glucose sensing by transcutaneous Raman spectroscopy.
Shih, Wei-Chuan; Bechtel, Kate L; Rebec, Mihailo V
2015-05-01
We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ~1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.
Mittan, Margaret Birmingham [Oakland, CA; Miros, Robert H. J. [Fairfax, CA; Brown, Malcolm P [San Francisco, CA; Stancel, Robert [Loss Altos Hills, CA
2012-06-05
A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.
Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert
2013-03-19
A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.
Sternick, Marcelo Back; Dallacosta, Darlan; Bento, Daniela Águida; do Reis, Marcelo Lemos
2015-01-01
Objective: To analyze the rigidity of a platform-type external fixator assembly, according to different numbers of pins on each clamp. Methods: Computer simulation on a large-sized Cromus dynamic external fixator (Baumer SA) was performed using a finite element method, in accordance with the standard ASTM F1541. The models were generated with approximately 450,000 quadratic tetrahedral elements. Assemblies with two, three and four Schanz pins of 5.5 mm in diameter in each clamp were compared. Every model was subjected to a maximum force of 200 N, divided into 10 sub-steps. For the components, the behavior of the material was assumed to be linear, elastic, isotropic and homogeneous. For each model, the rigidity of the assembly and the Von Mises stress distribution were evaluated. Results: The rigidity of the system was 307.6 N/mm for two pins, 369.0 N/mm for three and 437.9 N/mm for four. Conclusion: The results showed that four Schanz pins in each clamp promoted rigidity that was 19% greater than in the configuration with three pins and 42% greater than with two pins. Higher tension occurred in configurations with fewer pins. In the models analyzed, the maximum tension occurred on the surface of the pin, close to the fixation area. PMID:27047879
Dynamic SERS nanosensor for neurotransmitter sensing near neurons.
Lussier, Félix; Brulé, Thibault; Bourque, Marie-Josée; Ducrot, Charles; Trudeau, Louis-Éric; Masson, Jean-François
2017-12-04
Current electrophysiology and electrochemistry techniques have provided unprecedented understanding of neuronal activity. However, these techniques are suited to a small, albeit important, panel of neurotransmitters such as glutamate, GABA and dopamine, and these constitute only a subset of the broader range of neurotransmitters involved in brain chemistry. Surface-enhanced Raman scattering (SERS) provides a unique opportunity to detect a broader range of neurotransmitters in close proximity to neurons. Dynamic SERS (D-SERS) nanosensors based on patch-clamp-like nanopipettes decorated with gold nanoraspberries can be located accurately under a microscope using techniques analogous to those used in current electrophysiology or electrochemistry experiments. In this manuscript, we demonstrate that D-SERS can measure in a single experiment ATP, glutamate (glu), acetylcholine (ACh), GABA and dopamine (DA), among other neurotransmitters, with the potential for detecting a greater number of neurotransmitters. The SERS spectra of these neurotransmitters were identified with a barcoding data processing method and time series of the neurotransmitter levels were constructed. The D-SERS nanosensor was then located near cultured mouse dopaminergic neurons. The detection of neurotransmitters was performed in response to a series of K + depolarisations, and allowed the detection of elevated levels of both ATP and dopamine. Control experiments were also performed near glial cells, showing only very low basal detection neurotransmitter events. This paper demonstrates the potential of D-SERS to detect neurotransmitter secretion events near living neurons, but also constitutes a strong proof-of-concept for the broad application of SERS to the detection of secretion events by neurons or other cell types in order to study normal or pathological cell functions.
Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M
2017-04-01
[Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or junctional cleft space, is not required to maximize [Ca 2+ ] i -dependent I Ks activation during normal Ca 2+ transients. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Bartos, Daniel C.; Morotti, Stefano; Ginsburg, Kenneth S.; Grandi, Eleonora
2017-01-01
Key points [Ca2+]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (I Ks) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol.Rabbit ventricular rapidly activating delayed rectifier K+ current (I Kr) amplitude and voltage dependence were unaffected by high [Ca2+]i.When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca2+ transient or when [Ca2+]i was buffered to 500 nm. Abstract The slowly activating delayed rectifier K+ current (I Ks) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+]i) and β‐adrenergic receptor (β‐AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca2+]i dependence of I Ks in steady‐state conditions and with dynamically changing membrane potential and [Ca2+]i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole‐cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+]i, we found that raising [Ca2+]i from 100 to 600 nm produced similar increases in I Ks as did β‐AR activation, and the effects appeared additive. Both β‐AR activation and high [Ca2+]i increased maximally activated tail I Ks, negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well‐established mathematical model of the rabbit myocyte. In both AP‐clamp experiments and simulations, I Ks recorded during a normal physiological Ca2+ transient was similar to I Ks measured with [Ca2+]i clamped at 500–600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+]i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+]i, in the submembrane or junctional cleft space, is not required to maximize [Ca2+]i‐dependent I Ks activation during normal Ca2+ transients. PMID:28008618
Investigation of chaos and its control in a Duffing-type nano beam model
NASA Astrophysics Data System (ADS)
Jha, Abhishek Kumar; Dasgupta, Sovan Sundar
2018-04-01
The prediction of chaos of a nano beam with harmonic excitation is investigated. Using the Galerkin method the nonlinear lumped model of a clamped-clamped nano beam with nonlinear cubic stiffness is obtained. This is a Duffing system with hardening type of nonlinearity. Based on the energy function and the phase portrait of the system, the resonator dynamics is categorized into four situations in which Using Malnikov function, an analytical criterion for homoclinic intersection in the form of inequality is written in terms of the system parameters. A numerical study including largest lyapunov exponent, Poincare diagram and phase portrait confirm the analytical prediction of chaos and effect of forcing amplitude. Subsequently, a linear velocity feedback controller is introduced into the system to successfully control the chaotic motion of the system at a faster rate at larger value of gain parameter.
NASA Astrophysics Data System (ADS)
Crane, Nicole J.; Huffman, Scott W.; Alemozaffar, Mehrdad; Gage, Frederick A.; Levin, Ira W.; Elster, Eric A.
2013-03-01
Renal ischemia that occurs intraoperatively during procedures requiring clamping of the renal artery (such as renal procurement for transplantation and partial nephrectomy for renal cancer) is known to have a significant impact on the viability of that kidney. To better understand the dynamics of intraoperative renal ischemia and recovery of renal oxygenation during reperfusion, a visible reflectance imaging system (VRIS) was developed to measure renal oxygenation during renal artery clamping in both cooled and warm porcine kidneys. For all kidneys, normothermic and hypothermic, visible reflectance imaging demonstrated a spatially distinct decrease in the relative oxy-hemoglobin concentration (%HbO2) of the superior pole of the kidney compared to the middle or inferior pole. Mean relative oxy-hemoglobin concentrations decrease more significantly during ischemia for normothermic kidneys compared to hypothermic kidneys. VRIS may be broadly applicable to provide an indicator of organ ischemia during open and laparoscopic procedures.
Thermal stiffening of clamped elastic ribbons
NASA Astrophysics Data System (ADS)
Wan, Duanduan; Nelson, David R.; Bowick, Mark J.
2017-07-01
We use molecular dynamics to study the vibrations of a thermally fluctuating two-dimensional elastic membrane clamped at both ends. We directly extract the eigenmodes from resonant peaks in the frequency domain of the time-dependent height and measure the dependence of the corresponding eigenfrequencies on the microscopic bending rigidity of the membrane, taking care also of the subtle role of thermal contraction in generating a tension when the projected area is fixed. At finite temperatures we show that the effective (macroscopic) bending rigidity tends to a constant as the bare bending rigidity vanishes, consistent with theoretical arguments that the large-scale bending rigidity of the membrane arises from a strong thermal renormalization of the microscopic bending rigidity. Experimental realizations include covalently bonded two-dimensional atomically thin membranes such as graphene and molybdenum disulfide or soft matter systems such as the spectrin skeleton of red blood cells or diblock copolymers.
Lee, Dong-Jin; Lee, Sun-Kyu
2015-01-01
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.
2D and 3D assessment of sustentaculum tali screw fixation with or without Screw Targeting Clamp.
De Boer, A Siebe; Van Lieshout, Esther M M; Vellekoop, Leonie; Knops, Simon P; Kleinrensink, Gert-Jan; Verhofstad, Michael H J
2017-12-01
Precise placement of sustentaculum tali screw(s) is essential for restoring anatomy and biomechanical stability of the calcaneus. This can be challenging due to the small target area and presence of neurovascular structures on the medial side. The aim was to evaluate the precision of positioning of the subchondral posterior facet screw and processus anterior calcanei screw with or without a Screw Targeting Clamp. The secondary aim was to evaluate the added value of peroperative 3D imaging over 2D radiographs alone. Twenty Anubifix™ embalmed, human anatomic lower limb specimens were used. A subchondral posterior facet screw and a processus anterior calcanei screw were placed using an extended lateral approach. A senior orthopedic trauma surgeon experienced in calcaneal fracture surgery and a senior resident with limited experience in calcaneal surgery performed screw fixation in five specimens with and in five specimens without the clamp. 2D lateral and axial radiographs and a 3D recording were obtained postoperatively. Anatomical dissection was performed postoperatively as a diagnostic golden standard in order to obtain the factual screw positions. Blinded assessment of quality of fixation was performed by two surgeons. In 2D, eight screws were considered malpositioned when placed with the targeting device versus nine placed freehand. In 3D recordings, two additional screws were malpositioned in each group as compared to the golden standard. As opposed to the senior surgeon, the senior resident seemed to get the best results using the Screw Targeting Clamp (number of malpositioned screws using freehand was eight, and using the targeting clamp five). In nine out of 20 specimens 3D images provided additional information concerning target area and intra-articular placement. Based on the 3D assessment, five additional screws would have required repositioning. Except for one, all screw positions were rated equally after dissection when compared with 3D examinations. This study does not show a substantial benefit between the Screw Targeting Clamp and the freehand technique as well between experienced and inexperienced surgeons. Data suggest that the clamp might help positioning sustentaculum tali screws, especially for inexperienced surgeons. Perioperative 3D recordings facilitate identification of malpositioned screws. Copyright © 2017 Elsevier Ltd. All rights reserved.
New triangular and quadrilateral plate-bending finite elements
NASA Technical Reports Server (NTRS)
Narayanaswami, R.
1974-01-01
A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.
Structural Crashworthiness and Failure
1993-04-16
body motion occurs. This rigid -plastic idealization for dynamically loaded structures is based upon the fact that the plastic deformation of a...in general, for any tensor variable x, i represents the convective derivative. It should be noted that the rigid body rotation is included in the...clamped, impulsively loaded, rigid - plastic beam.’ (a) First phase of motion with stationary transverse plastic hinges at A and E and stationary plastic
NASA Technical Reports Server (NTRS)
Berning, D.
1981-01-01
Circuits are described that permit measurement of fast events occurring in power semiconductors. These circuits were developed for the dynamic characterization of transistors used in inductive-load switching applications. Fast voltage clamping using vacuum diodes is discussed, and reference is made to a unique circuit that was built for performing nondestructive, reverse-bias, second-breakdown tests on transistors.
NASA Technical Reports Server (NTRS)
Belrose, Charles R. (Inventor)
1994-01-01
A saddle clamp assembly is presented. The assembly is comprised of a hollow cylindrical body centered about a longitudinal axis and being diametrically split into semicircular top and bottom sections. Each section has a pair of connection flanges, at opposite ends, that project radially outward. A pair of bolts are retained on the top section flanges and are threadable into nuts retained on the bottom section flanges. A base member is anchored to a central underside portion of the bottom clamp body section and has a pair of connection tabs positioned beneath the bottom clamp body section connection flanges on opposite sides of the clamp axis. A pair of bolts are retained on the base member connection tabs and are threadable into a pair of nuts retainable on a support structure. The connection tab and connection flanges on each side of the clamp body are axially offset in a manner permitting downward installation/removable tool access to the lower bolts past the connection flanges. An elongated retention tether is used to connect the top clamp body section to the balance of the clamp assembly. This prevents loss of the top clamp body section when it is removed from the bottom clamp body section.
Waldschmidt, Lara; Junkereit, Vera; Bähring, Robert
2017-01-01
The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating. PMID:28141821
Waldschmidt, Lara; Junkereit, Vera; Bähring, Robert
2017-01-01
The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating.
Harnett, Mark T.; Magee, Jeffrey C.
2015-01-01
The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. PMID:25609619
Boethig, D; Minami, K; Lueth, J-U; El-Banayosy, A; Breymann, T; Koerfer, R
2004-06-01
The ideal myocardial protection during isolated CABG is still a matter of debate. Cardioplegia versus intermittent aortic cross-clamping (IACC) are the main opponents; the following article shows that IACC can be safe, efficient and might be cheaper than cardioplegia. Demographics and co-morbidities of 15307 CABG only patients consecutively operated on between January 1993 and October 2001 in the Heart Center in Bad Oeynhausen were assessed by the German Quality Assurance data set and risk-stratified using the EuroSCORE. Outcome (30-day or in-hospital mortality) was compared to the expected EuroSCORE estimation. Expected mortality was 3.25 %, observed mortality was 1.3 %, being significantly lower in the low, medium as well as high risk patients subgroup. Complication rates increased steadily with expected mortality rates. Stroke and myocardial infarction rates for patients with peripheral vessel disease were not higher than in comparable studies. More than 1000000 EUR were saved by lower cardioplegia bills. Myocardial protection with intermittent aortic cross-clamping for isolated CABG can be safe, effective, and economically advantageous when compared to cardioplegic solutions.
46 CFR 128.420 - Keel cooler installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-metallic hose-clamps may be used at machinery connections if— (1) The clamps are of a corrosion-resistant material; (2) The clamps do not depend on spring tension for their holding power; and (3) Two of the clamps...
High throughput ion-channel pharmacology: planar-array-based voltage clamp.
Kiss, Laszlo; Bennett, Paul B; Uebele, Victor N; Koblan, Kenneth S; Kane, Stefanie A; Neagle, Brad; Schroeder, Kirk
2003-02-01
Technological advances often drive major breakthroughs in biology. Examples include PCR, automated DNA sequencing, confocal/single photon microscopy, AFM, and voltage/patch-clamp methods. The patch-clamp method, first described nearly 30 years ago, was a major technical achievement that permitted voltage-clamp analysis (membrane potential control) of ion channels in most cells and revealed a role for channels in unimagined areas. Because of the high information content, voltage clamp is the best way to study ion-channel function; however, throughput is too low for drug screening. Here we describe a novel breakthrough planar-array-based HT patch-clamp technology developed by Essen Instruments capable of voltage-clamping thousands of cells per day. This technology provides greater than two orders of magnitude increase in throughput compared with the traditional voltage-clamp techniques. We have applied this method to study the hERG K(+) channel and to determine the pharmacological profile of QT prolonging drugs.
Pemp, Berthold; Polska, Elżbieta; Garhofer, Gerhard; Bayerle-Eder, Michaela; Kautzky-Willer, Alexandra; Schmetterer, Leopold
2010-01-01
OBJECTIVE To compare total retinal blood flow in diabetic patients with no or mild nonproliferative diabetic retinopathy and healthy control subjects and to investigate in patients whether there is a difference between retinal blood flow before morning insulin and under normoglycemic conditions using a glucose clamp. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes with no or mild diabetic retinopathy were included in this open parallel-group study, and 20 healthy age- and sex-matched subjects were included as control subjects. Retinal blood flow was assessed by combining velocity measurements using laser Doppler velocimetry and diameter measurements using a commercially available dynamic vessel analyzer. Measurements were performed before and during a euglycemic clamp. RESULTS Total retinal blood flow was higher in diabetic patients (53 ± 16 μl/min) than in healthy subjects (43 ± 16 μl/min; P = 0.034 between groups). When plasma glucose in diabetic patients was reduced from 9.3 ± 1.7 to 5.3 ± 0.5 mmol/l (P < 0.001) retinal blood flow decreased to 49 ± 15 μl/min (P = 0.0003 vs. baseline). Total retinal blood flow during the glucose clamp was not significantly different from blood flow in normal control subjects (P = 0.161). CONCLUSIONS Type 1 diabetic patients with no or only mild diabetic retinopathy have increased retinal blood flow before their morning insulin dosage. Blood flow is reduced toward normal during euglycemic conditions. Retinal blood flow may fluctuate significantly with fluctuating plasma glucose levels, which may contribute to the microvascular changes seen in diabetic retinopathy. PMID:20585003
Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic Integration
Platkiewicz, Jonathan; Brette, Romain
2011-01-01
Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may modulate the threshold, one strong candidate is Na channel inactivation, because it specifically impacts spike initiation without affecting the membrane potential. We collected voltage-clamp data from the literature and we found, based on a theoretical criterion, that the properties of Na inactivation could indeed cause substantial threshold variability by itself. By analyzing simple neuron models with fast Na inactivation (one channel subtype), we found that the spike threshold is correlated with the mean membrane potential and negatively correlated with the preceding depolarization slope, consistent with experiments. We then analyzed the impact of threshold dynamics on synaptic integration. The difference between the postsynaptic potential (PSP) and the dynamic threshold in response to a presynaptic spike defines an effective PSP. When the neuron is sufficiently depolarized, this effective PSP is briefer than the PSP. This mechanism regulates the temporal window of synaptic integration in an adaptive way. Finally, we discuss the role of other potential mechanisms. Distal spike initiation, channel noise and Na activation dynamics cannot account for the observed negative slope-threshold relationship, while adaptive conductances (e.g. K+) and Na inactivation can. We conclude that Na inactivation is a metabolically efficient mechanism to control the temporal resolution of synaptic integration. PMID:21573200
Detachable clamps for minimal access surgery.
Frank, T; Willetts, G J; Cuschieri, A
1995-01-01
A detachable clamp and applicator have been developed for use in minimal access surgical operations involving hollow visceral transection and anastomosis. The clamp has parallel jaws which ensure uniform distribution of the occlusive force. Following application on the bowel, the clamp is released from the applicator, thus freeing the access port. On completion of the anastomosis, the clamp is docked to the applicator, its jaws opened for release from the bowel and then closed prior to removal. The jaws of the clamp are kept closed by a pseudoelastic nickel-titanium (NiTi) alloy spring which imparts advantageous force characteristics when compared to stainless steel. The excellent holding and atraumatic characteristics of the detachable clamp have been confirmed by use in laparoscopic and thoracoscopic surgery on the gastrointestinal tract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, John; Gilchrist, Phillip Charles
Processes, systems, devices, and articles of manufacture are provided. Each may include adapting micro-inverters initially configured for frame-mounting to mounting on a frameless solar panel. This securement may include using an adaptive clamp or several adaptive clamps secured to a micro-inverter or its components, and using compressive forces applied directly to the solar panel to secure the adaptive clamp and the components to the solar panel. The clamps can also include compressive spacers and safeties for managing the compressive forces exerted on the solar panels. Friction zones may also be used for managing slipping between the clamp and the solarmore » panel during or after installation. Adjustments to the clamps may be carried out through various means and by changing the physical size of the clamps themselves.« less
A novel high performance ESD power clamp circuit with a small area
NASA Astrophysics Data System (ADS)
Zhaonian, Yang; Hongxia, Liu; Li, Li; Qingqing, Zhuo
2012-09-01
A MOSFET-based electrostatic discharge (ESD) power clamp circuit with only a 10 ns RC time constant for a 0.18-μm process is proposed. A diode-connected NMOSFET is used to maintain a long delay time and save area. The special structure overcomes other shortcomings in this clamp circuit. Under fast power-up events, the gate voltage of the clamp MOSFET does not rise as quickly as under ESD events, the special structure can keep the clamp MOSFET thoroughly off. Under a falsely triggered event, the special structure can turn off the clamp MOSFET in a short time. The clamp circuit can also reject the power supply noise effectively. Simulation results show that the clamp circuit avoids fast false triggering events such as a 30 ns/1.8 V power-up, maintains a 1.2 μs delay time and a 2.14 μs turn-off time, and reduces to about 70% of the RC time constant. It is believed that the proposed clamp circuit can be widely used in high-speed integrated circuits.
NASA Technical Reports Server (NTRS)
Yun, Gunjin; Abdullah, A. B. M.; Binienda, Wieslaw; Krause, David L.; Kalluri, Sreeramesh
2014-01-01
A vibration-based testing methodology has been developed that will assess fatigue behavior of the metallic material of construction for the Advanced Stirling Convertor displacer (planar) spring component. To minimize the testing duration, the test setup is designed for base-excitation of a multiplespecimen arrangement, driven in a high-frequency resonant mode; this allows completion of fatigue testing in an accelerated period. A high performance electro-dynamic exciter (shaker) is used to generate harmonic oscillation of cantilever beam specimens, which are clasped on the shaker armature with specially-designed clamp fixtures. The shaker operates in closed-loop control with dynamic specimen response feedback provided by a scanning laser vibrometer. A test coordinator function synchronizes the shaker controller and the laser vibrometer to complete the closed-loop scheme. The test coordinator also monitors structural health of the test specimens throughout the test period, recognizing any change in specimen dynamic behavior. As this may be due to fatigue crack initiation, the test coordinator terminates test progression and then acquires test data in an orderly manner. Design of the specimen and fixture geometry was completed by finite element analysis such that peak stress does not occur at the clamping fixture attachment points. Experimental stress evaluation was conducted to verify the specimen stress predictions. A successful application of the experimental methodology was demonstrated by validation tests with carbon steel specimens subjected to fully-reversed bending stress; high-cycle fatigue failures were induced in such specimens using higher-than-prototypical stresses
Drum ring removal/installation tool
Andrade, William Andrew [Livermore, CA
2006-11-14
A handheld tool, or a pair of such tools, such as for use in removing/installing a bolt-type clamping ring on a container barrel/drum, where the clamping ring has a pair of clamping ends each with a throughbore. Each tool has an elongated handle and an elongated lever arm transversely connected to one end of the handle. The lever arm is capable of being inserted into the throughbore of a selected clamping end and leveraged with the handle to exert a first moment on the selected clamping end. Each tool also has a second lever arm, such as a socket with an open-ended slot, which is suspended alongside the first lever arm. The second lever arm is capable of engaging the selected clamping end and being leveraged with the handle to exert a second moment which is orthogonal to the first moment. In this manner, the first and second moments operate to hold the selected clamping end fixed relative to the tool so that the selected clamping end may be controlled with the handle. The pair of clamping ends may also be simultaneously and independently controlled with the use of two handles/tools so as to contort the geometry of the drum clamping ring and enable its removal/installation.
Kawakami, Hironori; Su'etsugu, Masayuki; Katayama, Tsutomu
2006-10-01
In Escherichia coli, a complex consisting of Hda and the DNA-loaded clamp-subunit of the DNA polymerase III holoenzyme promotes hydrolysis of DnaA-ATP. The resultant ADP-DnaA is inactive for initiation of chromosomal DNA replication, thereby repressing excessive initiations. As the cellular content of the clamp is 10-100 times higher than that of Hda, most Hda molecules might be complexed with the clamp in vivo. Although Hda predominantly forms irregular aggregates when overexpressed, in the present study we found that co-overexpression of the clamp with Hda enhances Hda solubility dramatically and we efficiently isolated the Hda-clamp complex. A single molecule of the complex appears to consist of two Hda molecules and a single clamp. The complex is competent in DnaA-ATP hydrolysis and DNA replication in the presence of DNA and the clamp deficient subassembly of the DNA polymerase III holoenzyme (pol III*). These findings indicate that the clamp contained in the complex is loaded onto DNA through an interaction with the pol III* and that the Hda activity is preserved in these processes. The complex consisting of Hda and the DNA-unloaded clamp may play a specific role in a process proceeding to the DnaA-ATP hydrolysis in vivo.
Bajunaid, Khalid M.; Ajlan, Abdulrazag M.
2015-01-01
Objective: To report the personal experiences of patients undergoing awake craniotomy for brain tumor resection. Methods: We carried out a qualitative descriptive survey of patients’ experiences with awake craniotomies for brain tumor resection. The survey was conducted through a standard questionnaire form after the patient was discharged from the hospital. Results: Of the 9 patients who met the inclusion criteria and underwent awake craniotomy, 3 of those patients reported no recollection of the operation. Five patients had auditory recollections from the operation. Two-thirds (6/9) reported that they did not perceive pain. Five patients remembered the head clamp fixation, and 2 of those patients classified the pain from the clamp as moderate. None of the patients reported that the surgery was more difficult than anticipated. Conclusion: Awake craniotomy for surgical resection of brain tumors was well tolerated by patients. Most patients reported that they do not recall feeling pain during the operation. However, we feel that further work and exploration are needed in order to achieve better control of pain and discomfort during these types of operations. PMID:26166593
Awake craniotomy. A patient`s perspective.
Bajunaid, Khalid M; Ajlan, Abdulrazag M
2015-07-01
To report the personal experiences of patients undergoing awake craniotomy for brain tumor resection. We carried out a qualitative descriptive survey of patients` experiences with awake craniotomies for brain tumor resection. The survey was conducted through a standard questionnaire form after the patient was discharged from the hospital. Of the 9 patients who met the inclusion criteria and underwent awake craniotomy, 3 of those patients reported no recollection of the operation. Five patients had auditory recollections from the operation. Two-thirds (6/9) reported that they did not perceive pain. Five patients remembered the head clamp fixation, and 2 of those patients classified the pain from the clamp as moderate. None of the patients reported that the surgery was more difficult than anticipated. Awake craniotomy for surgical resection of brain tumors was well tolerated by patients. Most patients reported that they do not recall feeling pain during the operation. However, we feel that further work and exploration are needed in order to achieve better control of pain and discomfort during these types of operations.
Welding fixture for joining bar-wound stator conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Souza, Urban J.; Rhoads, Frederick W.; Hanson, Justin
A fixture assembly for welding a plurality of stator wire end pairs may include an anvil, a movable clamp configured to translate between an unclamped state and a clamped state, a first grounding electrode, and a second grounding electrode. The movable clamp may be configured to urge the plurality of stator wire ends against the anvil when in the clamped state. The moveable clamp includes a separator feature that generally extends toward the anvil. Each of the first grounding electrode and second grounding electrodes may be configured to translate between a clamped state and an unclamped state. When in themore » clamped state, each of the first and second grounding electrodes is configured to urge a pair of the plurality of stator wire end pairs against the separator feature.« less
Tryon, David; Myklak, Kristene; Alsyouf, Muhannad; Conceicao, Carol; Peplinski, Brandon; Arenas, Javier L; Faaborg, Daniel; Ruckle, Herbert C; Baldwin, D Duane
2016-03-01
Previous benchtop studies have shown that robotic bulldog clamps provide incomplete vascular control of a Penrose drain. We determined the efficacy of robotic and laparoscopic bulldog clamps to ensure hemostasis on the human renal artery. The effect of clamp position on vascular control was also examined. Fresh human cadaveric renal arteries were used to determine the leak point pressure of 7 bulldog clamps from a total of 3 manufacturers. Five trials were performed per clamp at 4 locations, including the fulcrum, proximal, middle and distal positions. Comparison was done using the Kruskal-Wallis test with p <0.05 considered significant. None of the bulldog clamps leaked at a pressure less than 215 mm Hg when applied at the proximal, middle or distal position. In general leak point pressure decreased as the artery was positioned more distal along the clamp. The exception was when the vessel was placed at the fulcrum position. At that position 80% to 100% of trials with the Klein laparoscopic, 100% with the Klein robotic (Klein Robotic, San Antonio, Texas) and 60% to 80% with the Scanlan robotic (Scanlan International, Saint Paul, Minnesota) clamp leaked at pressure below 215 mm Hg. Each vascular clamp adequately occluded flow at physiological pressure when placed at the proximal, middle or distal position. Furthermore, these results demonstrate that there is leakage at physiological pressure when the artery is placed at the fulcrum of certain clamp types. These results suggest that applying a bulldog clamp at the fulcrum could potentially lead to inadequate vessel occlusion and intraoperative bleeding. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Saad, M F; Anderson, R L; Laws, A; Watanabe, R M; Kades, W W; Chen, Y D; Sands, R E; Pei, D; Savage, P J; Bergman, R N
1994-09-01
An insulin-modified frequently sampled intravenous glucose tolerance test (FSIGTT) with minimal model analysis was compared with the glucose clamp in 11 subjects with normal glucose tolerance (NGT), 20 with impaired glucose tolerance (IGT), and 24 with non-insulin-dependent diabetes mellitus (NIDDM). The insulin sensitivity index (SI) was calculated from FSIGTT using 22- and 12-sample protocols (SI(22) and SI(12), respectively). Insulin sensitivity from the clamp was expressed as SI(clamp) and SIP(clamp). Minimal model parameters were similar when calculated with SI(22) and SI(12). SI could not be distinguished from 0 in approximately 50% of diabetic patients with either protocol. SI(22) correlated significantly with SI(clamp) in the whole group (r = 0.62), and in the NGT (r = 0.53), IGT (r = 0.48), and NIDDM (r = 0.41) groups (P < 0.05 for each). SI(12) correlated significantly with SI(clamp) in the whole group (r = 0.55, P < 0.001) and in the NGT (r = 0.53, P = 0.046) and IGT (r = 0.58, P = 0.008) but not NIDDM (r = 0.30, P = 0.085) groups. When SI(22), SI(clamp), and SIP(clamp) were expressed in the same units, SI(22) was 66 +/- 5% (mean +/- SE) and 50 +/- 8% lower than SI(clamp) and SIP(clamp), respectively. Thus, minimal model analysis of the insulin-modified FSIGTT provides estimates of insulin sensitivity that correlate significantly with those from the glucose clamp. The correlation was weaker, however, in NIDDM. The insulin-modified FSIGTT can be used as a simple test for assessment of insulin sensitivity in population studies involving nondiabetic subjects. Additional studies are needed before using this test routinely in patients with NIDDM.
Arterial waves in humans during peripheral vascular surgery.
Khir, A W; Henein, M Y; Koh, T; Das, S K; Parker, K H; Gibson, D G
2001-12-01
The purpose of this study was to investigate the effect of aortic clamping on arterial waves during peripheral vascular surgery. We measured pressure and velocity simultaneously in the ascending aorta, in ten patients (70+/-5 years) with aortic-iliac disease intra-operatively. Pressure was measured using a catheter tip manometer, and velocity was measured using Doppler ultrasound. Data were collected before aortic clamping, during aortic clamping and after unclamping. Hydraulic work in the aortic root was calculated from the measured data, the reflected waves were determined by wave-intensity analysis and wave speed was determined by the PU-loop (pressure-velocity-loop) method; a new technique based on the 'water-hammer' equation. The wave speed is approx. 32% (P<0.05) higher during clamping than before clamping. Although the peak intensity of the reflected wave does not alter with clamping, it arrives 30 ms (P<0.05) earlier and its duration is 25% (P<0.05) longer than before clamping. During clamping, left ventricule (LV) hydraulic systolic work and the energy carried by the reflected wave increased by 27% (P<0.05) and 20% (P<0.05) respectively, compared with before clamping. The higher wave speed during clamping explains the earlier arrival of the reflected waves suggesting an increase in the afterload, since the LV has to overcome earlier reflected compression waves. The longer duration of the reflected wave during clamping is associated with an increase in the total energy carried by the wave, which causes an increase in hydraulic work. Increased hydraulic work during clamping may increase LV oxygen consumption, provoke myocardial ischaemia and hence contribute to the intra-operative impairment of LV function known in patients with peripheral vascular disease.
NASA Technical Reports Server (NTRS)
Clark, K. H. (Inventor)
1983-01-01
A clamp-mount device is disclosed for mounting equipment to an associated I-beam and the like structural member of the type having oppositely extending flanges wherein the device comprises a base and a pair of oppositely facing clamping members carried diagonally on the base clamping flanges therebetween and having flange receiving openings facing one another. Lock means are carried diagonally by the base opposite the clamping members locking the flanges in the clamping members. A resilient hub is carried centrally of the base engaging and biasing a back side of the flanges maintaining tightly clamped and facilitating use on vertical as well as horizontal members. The base turns about the hub to receive the flanges within the clamping members. Equipment may be secured to the base by any suitable means such as bolts in openings. Slidable gate latches secure the hinged locks in an upright locking position. The resilient hub includes a recess opening formed in the base and a rubber-like pad carried in this opening being depressably and rotatably carried therein.
Structural analysis of a eukaryotic sliding DNA clamp-clamp loadercomplex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Gregory D.; O'Donnell, Mike; Kuriyan, John
2006-06-17
Sliding clamps are ring-shaped proteins that encircle DNA and confer high processivity on DNA polymerases. Here we report the crystal structure of the five-protein clamp loader complex (replication factor-C, RFC) of the yeast Saccharomyces cerevisiae, bound to the sliding clamp (proliferating cell nuclear antigen, PCNA). Tight interfacial coordination of the ATP analogue ATP-?-S by RFC results in a spiral arrangement of the ATPase domains of the clamp loader above the PCNA ring. Placement of a model for primed DNA within the central hole of PCNA reveals a striking correspondence between the RFC spiral and the grooves of the DNA doublemore » helix. This model, in which the clamp loader complex locks onto primed DNA in a screw-cap-like arrangement, provides a simple explanation for the process by which the engagement of primer-template junctions by the RFC:PCNA complex results in ATP hydrolysis and release of the sliding clamp on DNA.« less
An operational amplifier B1404UD1A-1 in the patch-clamp current-to-voltage converter.
Korzun, A M; Rozinov, S V; Abashin, G I
1997-01-01
The applicability of the home-made operational amplifier B1404UD1A-1 in a patch-clamp current-to-voltage converter was analyzed. Its parameters (background noise, input bias current, and gain-bandwidth product) were estimated. Schematic solutions and practical recommendations for the use of this amplifier in a current-to-voltage converter were given. Based on the background noise and frequency parameters of the converter, we found that this device can be used for measuring ion channel currents with a high sensitivity and within a broad frequency range (0.055 pA, to 1 kHz; 0.4 pA, to 10 kHz). An example of the converter application in experiments is given.
NASA Astrophysics Data System (ADS)
Tesfa, B.; Horler, G.; Thobiani, F. Al; Gu, F.; Ball, A. D.
2012-05-01
Many industrial structures associated with railway infrastructures rely on a large number of bolted joint connections to ensure safe and reliable operation of the track and trackside furniture. Significant sums of money are spent annually to repair the damage caused by bolt failures and to maintain the integrity of bolted structures. In the UK, Network Rail (the organization responsible for rail network maintenance and safety) conducts corrective and preventive maintenance manually on 26,000 sets of points (each having approximately 30 bolted joints per set), in order to ensure operational success and safety for the travelling public. Such manual maintenance is costly, disruptive, unreliable and prone to human error. The aim of this work is to provide a means of automatically measuring the clamping force of each individual bolted joint, by means of an instrumented washer. This paper describes the development of a sensor means to be used in the washer, which satisfies the following criteria. Sense changes in the clamping force of the joint and report this fact. Provide compatibility with the large dynamic range of clamping force. Satisfy the limitations in terms of physical size. Provide the means to electronically interface with the washer. Provide a means of powering the washer in situ. Provide a solution at an acceptable cost. Specifically the paper focuses on requirements 1, 2 and 3 and presents the results that support further development of the proposed design and the realization of a pre-prototype system. In the paper, various options for the force sensing element (strain gage, capacitor, piezo-resistive) have been compared, using design optimization techniques. As a result of the evaluation, piezo-resistive sensors in concert with a proprietary force attenuation method, have been found to offer the best performance and cost trade-off The performance of the novel clamping force sensor has been evaluated experimentally and the results show that a smart washer can be developed to monitor the condition of bolted joints as found on railway track and points.
Spinal Cord Injury-Induced Dysautonomia via Plasticity in Paravertebral Sympathetic Postganglionic
2015-10-01
for future study Data analysis and publications Major Task 3: Data analysis and publications months % completion/ Completion dates Subtask 1...Data analysis 6-36 25% Subtask 2: Manuscript writing and submission 24-36 10% Milestone(s) Achieved: Dissemination of scientific results. b. What...ganglia by computational simulation and dynamic-clamp analysis . Journal of neurophysiology 92, 2659- 2671, doi:10.1152/jn.00470.2004 (2004). 14 Llewellyn
Force Generation in Single Conventional Actomyosin Complexes under High Dynamic Load
Takagi, Yasuharu; Homsher, Earl E.; Goldman, Yale E.; Shuman, Henry
2006-01-01
The mechanical load borne by a molecular motor affects its force, sliding distance, and its rate of energy transduction. The control of ATPase activity by the mechanical load on a muscle tunes its efficiency to the immediate task, increasing ATP hydrolysis as the power output increases at forces less than isometric (the Fenn effect) and suppressing ATP hydrolysis when the force is greater than isometric. In this work, we used a novel ‘isometric’ optical clamp to study the mechanics of myosin II molecules to detect the reaction steps that depend on the dynamic properties of the load. An actin filament suspended between two beads and held in separate optical traps is brought close to a surface that is sparsely coated with motor proteins on pedestals of silica beads. A feedback system increases the effective stiffness of the actin by clamping the force on one of the beads and moving the other bead electrooptically. Forces measured during actomyosin interactions are increased at higher effective stiffness. The results indicate that single myosin molecules transduce energy nearly as efficiently as whole muscle and that the mechanical control of the ATP hydrolysis rate is in part exerted by reversal of the force-generating actomyosin transition under high load without net utilization of ATP. PMID:16326899
NASA Astrophysics Data System (ADS)
Snow, Michael G.; Bajaj, Anil K.
2015-08-01
This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.
Liu, Lilly Y; Feinglass, Joe M; Khan, Janine Y; Gerber, Susan E; Grobman, William A; Yee, Lynn M
2017-05-01
To evaluate adherence to a delayed cord clamping protocol for preterm births in the first 2 years after its introduction, perform a quality improvement assessment, and determine neonatal outcomes associated with protocol implementation and adherence. This is a retrospective cohort study of women delivering singleton neonates at 23-32 weeks of gestation in the 2 years before (preprotocol) and 2 years after (postprotocol) introduction of a 30-second delayed cord clamping protocol at a large-volume academic center. This policy was communicated to obstetric and pediatric health care providers and nurses and reinforced with intermittent educational reviews. Barriers to receiving delayed cord clamping were assessed using χ tests and multivariable logistic regression. Neonatal outcomes then were compared between all neonates in the preprotocol period and all neonates in the postprotocol period and between all neonates in the preprotocol period and neonates receiving delayed cord clamping in the postprotocol period using multivariable linear and logistic regression analyses. Of the 427 eligible neonates, 187 were born postprotocol. Of these, 53.5% (n=100) neonates received delayed cord clamping according to the protocol. The rate of delayed cord clamping preprotocol was 0%. Protocol uptake and frequency of delayed cord clamping increased over the 2 years after its introduction. In the postprotocol period, cesarean delivery was the only factor independently associated with failing to receive delayed cord clamping (adjusted odds ratio [OR] 0.49, 95% confidence interval [CI] 0.25-0.96). In comparison with the preprotocol period, those who received delayed cord clamping in the postprotocol period had significantly higher birth hematocrit (β=2.46, P=.007) and fewer blood transfusions in the first week of life (adjusted OR 0.49, 95% CI 0.25-0.96). After introduction of an institutional delayed cord clamping protocol followed by continued health care provider education and quality feedback, the frequency of delayed cord clamping progressively increased. Compared with historical controls, performing delayed cord clamping in eligible preterm neonates was associated with improved neonatal hematologic indices, demonstrating the effectiveness of delayed cord clamping in a large-volume maternity unit.
Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P
2013-03-01
Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.
Laparoscopic partial nephrectomy for renal tumor: Nagoya experience.
Yoshikawa, Yoko; Ono, Yoshinari; Hattori, Ryohei; Gotoh, Momokazu; Yoshino, Yasushi; Katsuno, Satoshi; Katoh, Masashi; Ohshima, Shinichi
2004-08-01
To clarify the indication for a vascular clamp during laparoscopic partial nephrectomy, the clinical results of 17 patients who underwent the procedure for small renal tumors were reviewed. Seventeen patients with renal tumors were enrolled in our laparoscopic partial nephrectomy program between October 1999 and November 2003. During laparoscopy, a vascular clamp was used to remove the tumor mass and suture the incised renal parenchyma and urinary collecting system in 8 patients who had less-than-1-cm-thick renal parenchyma between the mass and the renal sinus or calices. In the remaining 9 patients, who had 1-cm-or-more-thick renal parenchyma between the mass and sinus or calices, renal bleeding was controlled using ultrasonic scissors, gauze tampon, argon beam coagulator, and fibrin glue. Sixteen patients were successfully treated with laparoscopy; one required conversion to open surgery because of uncontrollable bleeding. The average operative time was 4.5 hours, and average estimated bleeding volume was 301 mL. In the 8 patients requiring vascular clamping by forceps, the average ischemic time was 25 minutes. In all patients, the tumor mass was completely removed with negative surgical margins, and renal function was preserved. Three patients had prolonged urinary leakage for a mean of 21 days. Laparoscopic partial nephrectomy offers many advantages, including surgery that is both nephron sparing and minimally invasive. A vascular clamp was indicated for patients with less-than-1-cm-thick renal parenchyma between the tumor mass and renal sinus or calices.
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
A clamped rectangular plate containing a crack
NASA Technical Reports Server (NTRS)
Tang, R.; Erdogan, F.
1985-01-01
The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.
NASA Technical Reports Server (NTRS)
Nunnelee, Mark (Inventor)
2004-01-01
A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.
Dynamic piezoresistive response of hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Gbaguidi, Audrey; Anees, Muhammad; Namilae, Sirish; Kim, Daewon
2017-04-01
Hybrid nanocomposites with carbon nanotubes and graphitic platelets as fillers are known to exhibit remarkable electrical and mechanical properties with many potential strain and damage sensing applications. In this work, we fabricate hybrid nanocomposites with carbon nanotube sheet and coarse graphite platelets as fillers with epoxy matrix. We then examine the electromechanical behavior of these nanocomposites under dynamic loading. The electrical resistivity responses of the nanocomposites are measured in frequency range of 1 Hz to 50 Hz with different levels of induced strains. Axial cycling loading is applied using a uniaxial electrodynamic shaker, and transverse loading is applied on end-clamped specimen using modified speakers. In addition, a dynamic mechanical analysis of nanocomposite specimen is performed to characterize the thermal and dynamic behavior of the nanocomposite. Our results indicate that these hybrid nanocomposites exhibit a distinct piezoresistive response under a wide range of dynamic loading conditions, which can be beneficial for potential sensing applications.
Allan, David S; Scrivens, Nicholas; Lawless, Tiffany; Mostert, Karen; Oppenheimer, Lawrence; Walker, Mark; Petraszko, Tanya; Elmoazzen, Heidi
2016-03-01
Public banking of umbilical cord blood units (CBUs) containing higher numbers of cells ensures timely engraftment after transplantation for increasing numbers of patients. Delayed clamping of the umbilical cord after birth may benefit some infants by preventing iron deficiency. Implications of delayed cord clamping for public cord blood banking remains unclear. CBUs collected by Canadian Blood Services at one collection site between November 1, 2014, and March 17, 2015, were analyzed. The delay in cord clamping after birth was timed and classified as "no delay," 20 to 60 seconds, more than 60 seconds, or more than 120 seconds. Of 367 collections, 100 reported no delay in clamping while clamping was delayed by 20 to 60 seconds (n = 69), more than 60 seconds (n = 98), or more than 120 seconds (n = 100) in the remaining cases. The mean volume and total nucleated cells (TNCs) in units with no delay in clamping were significantly greater than mean volumes for all categories of delayed clamping (Tukey's test, p < 0.05 for each comparison). The proportion of units with more than 1.5 × 10(9) TNCs was significantly reduced when clamping was delayed (p = 5.5 × 10(-8) ). The difference was most marked for cords that were clamped more than 120 seconds after delivery (6.2% compared with 39%). Delayed cord clamping greatly diminishes the volume and TNC count of units collected for a public cord blood bank. Creating an inventory of CBUs with high TNC content may take more time than expected. © 2015 AABB.
30 CFR 75.605 - Clamping of trailing cables to equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clamping of trailing cables to equipment. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.605 Clamping of trailing cables to equipment. [Statutory Provisions] Trailing cables shall be clamped to...
NASA Astrophysics Data System (ADS)
Korman, Murray S.; Bond, Emilia
2005-09-01
Current nonlinear experiments involving the detection of plastic landmines using acoustic-to-seismic coupling have been developed from Sabatier's (linear) and Donskoy's (nonlinear) earlier methods. A laboratory apparatus called the soil-plate oscillator has been developed at the National Center for Physical Acoustics, and later at the U.S. Naval Academy, to model acoustic mine detection. The apparatus consists of a thick-walled cylinder filled with sifted homogeneous soil resting on a thin elastic plate that is clamped to the bottom of the column. It represents a good simplified physical model for VS 1.6 and VS 2.2 inert anti-tank plastic buried landmines. Using a loudspeaker (located over the soil) that is driven by a swept sinusoid, tuning curve experiments are performed. The vibration amplitude versus frequency is measured on a swept spectrum analyzer using an accelerometer located on the soil-air interface or under the plate. The backbone curve shows a linear decrease in peak frequency versus increasing amplitude. A two-tone test experiment is performed using two loudspeakers generating acoustic frequencies (closely spaced on either side of resonance, typically ~100 Hz). A rich vibration spectrum of combination frequency tones (along with the primaries) is observed which is characteristic of actual nonlinear detection schemes.
Mechanical support of a ceramic gas turbine vane ring
Shi, Jun; Green, Kevin E.; Mosher, Daniel A.; Holowczak, John E.; Reinhardt, Gregory E.
2010-07-27
An assembly for mounting a ceramic turbine vane ring onto a turbine support casing comprises a first metal clamping ring and a second metal clamping ring. The first metal clamping ring is configured to engage with a first side of a tab member of the ceramic turbine vane ring. The second metal clamping ring is configured to engage with a second side of the tab member such that the tab member is disposed between the first and second metal clamping rings.
Active energy recovery clamping circuit to improve the performance of power converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, Bret; Barkley, Adam
2017-05-09
A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.
NASA Technical Reports Server (NTRS)
Young, Ken (Inventor); Hindle, Timothy (Inventor)
2014-01-01
A payload launch lock mechanism includes a base, a preload clamp, a fastener, and a shape memory alloy (SMA) actuator. The preload clamp is configured to releasibly restrain a payload. The fastener extends, along an axis, through the preload clamp and into the base, and supplies a force to the preload clamp sufficient to restrain the payload. The SMA actuator is disposed between the base and the clamp. The SMA actuator is adapted to receive electrical current and is configured, upon receipt of the electrical current, to supply a force that causes the fastener to elongate without fracturing. The preload clamp, in response to the fastener elongation, either rotates or pivots to thereby release the payload.
21 CFR 876.5160 - Urological clamp for males.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urological clamp for males. 876.5160 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5160 Urological clamp for males. (a) Identification. A urological clamp for males is a device used to close the urethra of a male to...
Experimental Modal Analysis of Rectangular and Circular Beams
ERIC Educational Resources Information Center
Emory, Benjamin H.; Zhu, Wei Dong
2006-01-01
Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…
Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems.
Major, G
1993-07-01
Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods.
Parametric Symmetry Breaking in a Nonlinear Resonator
NASA Astrophysics Data System (ADS)
Leuch, Anina; Papariello, Luca; Zilberberg, Oded; Degen, Christian L.; Chitra, R.; Eichler, Alexander
2016-11-01
Much of the physical world around us can be described in terms of harmonic oscillators in thermodynamic equilibrium. At the same time, the far-from-equilibrium behavior of oscillators is important in many aspects of modern physics. Here, we investigate a resonating system subject to a fundamental interplay between intrinsic nonlinearities and a combination of several driving forces. We have constructed a controllable and robust realization of such a system using a macroscopic doubly clamped string. We experimentally observe a hitherto unseen double hysteresis in both the amplitude and the phase of the resonator's response function and present a theoretical model that is in excellent agreement with the experiment. Our work unveils that the double hysteresis is a manifestation of an out-of-equilibrium symmetry breaking between parametric phase states. Such a fundamental phenomenon, in the most ubiquitous building block of nature, paves the way for the investigation of new dynamical phases of matter in parametrically driven many-body systems and motivates applications ranging from ultrasensitive force detection to low-energy computing memory units.
Senning, Eric N.; Aman, Teresa K.
2016-01-01
Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane. PMID:26755772
Reconstruction and Simulation of Neocortical Microcircuitry.
Markram, Henry; Muller, Eilif; Ramaswamy, Srikanth; Reimann, Michael W; Abdellah, Marwan; Sanchez, Carlos Aguado; Ailamaki, Anastasia; Alonso-Nanclares, Lidia; Antille, Nicolas; Arsever, Selim; Kahou, Guy Antoine Atenekeng; Berger, Thomas K; Bilgili, Ahmet; Buncic, Nenad; Chalimourda, Athanassia; Chindemi, Giuseppe; Courcol, Jean-Denis; Delalondre, Fabien; Delattre, Vincent; Druckmann, Shaul; Dumusc, Raphael; Dynes, James; Eilemann, Stefan; Gal, Eyal; Gevaert, Michael Emiel; Ghobril, Jean-Pierre; Gidon, Albert; Graham, Joe W; Gupta, Anirudh; Haenel, Valentin; Hay, Etay; Heinis, Thomas; Hernando, Juan B; Hines, Michael; Kanari, Lida; Keller, Daniel; Kenyon, John; Khazen, Georges; Kim, Yihwa; King, James G; Kisvarday, Zoltan; Kumbhar, Pramod; Lasserre, Sébastien; Le Bé, Jean-Vincent; Magalhães, Bruno R C; Merchán-Pérez, Angel; Meystre, Julie; Morrice, Benjamin Roy; Muller, Jeffrey; Muñoz-Céspedes, Alberto; Muralidhar, Shruti; Muthurasa, Keerthan; Nachbaur, Daniel; Newton, Taylor H; Nolte, Max; Ovcharenko, Aleksandr; Palacios, Juan; Pastor, Luis; Perin, Rodrigo; Ranjan, Rajnish; Riachi, Imad; Rodríguez, José-Rodrigo; Riquelme, Juan Luis; Rössert, Christian; Sfyrakis, Konstantinos; Shi, Ying; Shillcock, Julian C; Silberberg, Gilad; Silva, Ricardo; Tauheed, Farhan; Telefont, Martin; Toledo-Rodriguez, Maria; Tränkler, Thomas; Van Geit, Werner; Díaz, Jafet Villafranca; Walker, Richard; Wang, Yun; Zaninetta, Stefano M; DeFelipe, Javier; Hill, Sean L; Segev, Idan; Schürmann, Felix
2015-10-08
We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.
The force-dependent mechanism of DnaK-mediated mechanical folding
Perales-Calvo, Judit; Giganti, David; Stirnemann, Guillaume; Garcia-Manyes, Sergi
2018-01-01
It is well established that chaperones modulate the protein folding free-energy landscape. However, the molecular determinants underlying chaperone-mediated mechanical folding remain largely elusive, primarily because the force-extended unfolded conformation fundamentally differs from that characterized in biochemistry experiments. We use single-molecule force-clamp spectroscopy, combined with molecular dynamics simulations, to study the effect that the Hsp70 system has on the mechanical folding of three mechanically stiff model proteins. Our results demonstrate that, when working independently, DnaJ (Hsp40) and DnaK (Hsp70) work as holdases, blocking refolding by binding to distinct substrate conformations. Whereas DnaK binds to molten globule–like forms, DnaJ recognizes a cryptic sequence in the extended state in an unanticipated force-dependent manner. By contrast, the synergetic coupling of the Hsp70 system exhibits a marked foldase behavior. Our results offer unprecedented molecular and kinetic insights into the mechanisms by which mechanical force finely regulates chaperone binding, directly affecting protein elasticity. PMID:29487911
Inflatable Launch and Recovery System
2014-07-31
clamping fixture connects the ramp structure to the vessel. A snubber element dampens vibrations and transient tow loads. Unclassified Unclassified...integrated dynamic snubber element to dampen out vibrations and transient tow loads. The main air fill line from the handling system to the inflatable ramp...of the vessel A with standard container cam locks 12a (two of which are shown in phantom in FIG. 1). The system 10 can connect to a vessel power
Fontainhas, Aurora M.; Wang, Minhua; Liang, Katharine J.; Chen, Shan; Mettu, Pradeep; Damani, Mausam; Fariss, Robert N.; Li, Wei; Wong, Wai T.
2011-01-01
Purpose Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior. Methods We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. Results Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. Conclusions Our results demonstrate that neurotransmission plays an endogenous role in regulating the morphology and behavior of “resting” microglia in the retina. These findings illustrate a mode of constitutive signaling between the neural and immune compartments of the CNS through which immune cells may be regulated in concert with levels of neural activity. PMID:21283568
Voltage and Current Clamp Transients with Membrane Dielectric Loss
Fitzhugh, R.; Cole, K. S.
1973-01-01
Transient responses of a space-clamped squid axon membrane to step changes of voltage or current are often approximated by exponential functions of time, corresponding to a series resistance and a membrane capacity of 1.0 μF/cm2. Curtis and Cole (1938, J. Gen. Physiol. 21:757) found, however, that the membrane had a constant phase angle impedance z = z1(jωτ)-α, with a mean α = 0.85. (α = 1.0 for an ideal capacitor; α < 1.0 may represent dielectric loss.) This result is supported by more recently published experimental data. For comparison with experiments, we have computed functions expressing voltage and current transients with constant phase angle capacitance, a parallel leakage conductance, and a series resistance, at nine values of α from 0.5 to 1.0. A series in powers of tα provided a good approximation for short times; one in powers of t-α, for long times; for intermediate times, a rational approximation matching both series for a finite number of terms was used. These computations may help in determining experimental series resistances and parallel leakage conductances from membrane voltage or current clamp data. PMID:4754194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, W.; Dikin, D.A.; Chen, X.
2005-07-01
Many experiments on the mechanics of nanostructures require the creation of rigid clamps at specific locations. In this work, electron-beam-induced deposition (EBID) has been used to deposit carbon films that are similar to those that have recently been used for clamping nanostructures. The film deposition rate was accelerated by placing a paraffin source of hydrocarbon near the area where the EBID deposits were made. High-resolution transmission electron microscopy, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation were used to characterize the chemical composition and the mechanics of the carbonaceous deposits. The typical EBID deposit was found to be hydrogenated amorphousmore » carbon (a-C:H) having more sp{sup 2}- than sp{sup 3}-bonded carbon. Nanoindentation tests revealed a hardness of {approx}4 GPa and an elastic modulus of 30-60 GPa, depending on the accelerating voltage. This reflects a relatively soft film, which is built out of precursor molecular ions impacting the growing surface layer with low energies. The use of such deposits as clamps for tensile tests of poly(acrylonitrile)-based carbon nanofibers loaded between opposing atomic force microscope cantilevers is presented as an example application.« less
Digital force-feedback for protein unfolding experiments using atomic force microscopy
NASA Astrophysics Data System (ADS)
Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.
2007-01-01
Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.
2010-11-08
celiac aortic clamping (n=6), direct vascular control (n=6), and endovascular aortic occlusion n=6). This study presents a large animal model of class...including thoracic aortic clamping, supra- celiac aortic clamping, direct vascular control, and proximal endovascular balloon occlusion. Following vascular...subsequently underwent non-compressible hemorrhage with thoracic aortic clamping (n=6), supra- celiac aortic clamping (n=6), direct vascular control (n=6
Device for remote operation of electrical disconnect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Jody Rustyn; Bobbitt, III, John Thomas
Provided is a device for remote operation of an electrical disconnect. The device can include a handle clamp configured to be secured to an extending member of the electrical disconnect. The device can further include a case clamp configured to be secured to a rigid portion of the electrical disconnect. The device can further include a cable having an exterior sheath coaxially surrounding an inner cable. The inner cable can be coaxially slidable with respect to the exterior sheath. The inner cable can extend through an opening of the case clamp and be secured to the handle clamp. The devicemore » can further include an actuator configured to coaxially slide the inner cable such that the handle clamp is actuated towards the case clamp.« less
NASA Astrophysics Data System (ADS)
Chisholm, Bret J.; Webster, Dean C.; Bennett, James C.; Berry, Missy; Christianson, David; Kim, Jongsoo; Mayo, Bret; Gubbins, Nathan
2007-07-01
An automated, high-throughput adhesion workflow that enables pseudobarnacle adhesion and coating/substrate adhesion to be measured on coating patches arranged in an array format on 4×8in.2 panels was developed. The adhesion workflow consists of the following process steps: (1) application of an adhesive to the coating array; (2) insertion of panels into a clamping device; (3) insertion of aluminum studs into the clamping device and onto coating surfaces, aligned with the adhesive; (4) curing of the adhesive; and (5) automated removal of the aluminum studs. Validation experiments comparing data generated using the automated, high-throughput workflow to data obtained using conventional, manual methods showed that the automated system allows for accurate ranking of relative coating adhesion performance.
Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R
2015-01-21
The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.
Zepeda-Jazo, Isaac; Velarde-Buendía, Ana María; Enríquez-Figueroa, René; Bose, Jayakumar; Shabala, Sergey; Muñiz-Murguía, Jesús; Pottosin, Igor I.
2011-01-01
Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca2+ dynamics by activating a range of nonselective Ca2+-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K+ and Ca2+ fluxes induced by hydroxyl radicals (OH•) in pea (Pisum sativum) roots. OH•, but not hydrogen peroxide, activated a rapid Ca2+ efflux and a more slowly developing net Ca2+ influx concurrent with a net K+ efflux. In isolated protoplasts, OH• evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K+ efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca2+. Active OH•-induced Ca2+ efflux in roots was suppressed by the PM Ca2+ pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH•-induced ionic currents in root protoplasts and K+ efflux and Ca2+ influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH•-induced cation fluxes. The net OH•-induced Ca2+ efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH•-induced net K+ efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca2+ homeostasis by modulating both Ca2+ influx and efflux transport systems at the root cell PM. PMID:21980172
Khaliq, Zayd M; Bean, Bruce P
2008-10-22
We analyzed ionic currents that regulate pacemaking in dopaminergic neurons of the mouse ventral tegmental area by comparing voltage trajectories during spontaneous firing with ramp-evoked currents in voltage clamp. Most recordings were made in brain slice, with key experiments repeated using acutely dissociated neurons, which gave identical results. During spontaneous firing, net ionic current flowing between spikes was calculated from the time derivative of voltage multiplied by cell capacitance, signal-averaged over many firing cycles to enhance resolution. Net inward interspike current had a distinctive nonmonotonic shape, reaching a minimum (generally <1 pA) between -60 and -55 mV. Under voltage clamp, ramps over subthreshold voltages elicited a time- and voltage-dependent outward current that peaked near -55 mV. This current was undetectable with 5 mV/s ramps and increased steeply with depolarization rate over the range (10-50 mV/s) typical of natural pacemaking. Ramp-evoked subthreshold current was resistant to alpha-dendrotoxin, paxilline, apamin, and tetraethylammonium but sensitive to 4-aminopyridine and 0.5 mM Ba2+, consistent with A-type potassium current (I(A)). Same-cell comparison of currents elicited by various ramp speeds with natural spontaneous depolarization showed how the steep dependence of I(A) on depolarization rate results in small net inward currents during pacemaking. These results reveal a mechanism in which subthreshold I(A) is near zero at steady state, but is engaged at depolarization rates >10 mV/s to act as a powerful, supralinear feedback element. This feedback mechanism explains how net ionic current can be constrained to <1-2 pA but reliably inward, thus enabling slow, regular firing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Jin; Lee, Sun-Kyu, E-mail: skyee@gist.ac.kr
2015-01-15
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of amore » nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.« less
Single-molecule visualization of fast polymerase turnover in the bacterial replisome
Lewis, Jacob S; Spenkelink, Lisanne M; Jergic, Slobodan; Wood, Elizabeth A; Monachino, Enrico; Horan, Nicholas P; Duderstadt, Karl E; Cox, Michael M; Robinson, Andrew; Dixon, Nicholas E; van Oijen, Antoine M
2017-01-01
The Escherichia coli DNA replication machinery has been used as a road map to uncover design rules that enable DNA duplication with high efficiency and fidelity. Although the enzymatic activities of the replicative DNA Pol III are well understood, its dynamics within the replisome are not. Here, we test the accepted view that the Pol III holoenzyme remains stably associated within the replisome. We use in vitro single-molecule assays with fluorescently labeled polymerases to demonstrate that the Pol III* complex (holoenzyme lacking the β2 sliding clamp), is rapidly exchanged during processive DNA replication. Nevertheless, the replisome is highly resistant to dilution in the absence of Pol III* in solution. We further show similar exchange in live cells containing labeled clamp loader and polymerase. These observations suggest a concentration-dependent exchange mechanism providing a balance between stability and plasticity, facilitating replacement of replisomal components dependent on their availability in the environment. DOI: http://dx.doi.org/10.7554/eLife.23932.001 PMID:28432790
One-channel Cell-attached Patch-clamp Recording
Maki, Bruce A.; Cummings, Kirstie A.; Paganelli, Meaghan A.; Murthy, Swetha E.; Popescu, Gabriela K.
2014-01-01
Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease. PMID:24961614
Jäckel, David; Bakkum, Douglas J; Russell, Thomas L; Müller, Jan; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas
2017-04-20
We present a novel, all-electric approach to record and to precisely control the activity of tens of individual presynaptic neurons. The method allows for parallel mapping of the efficacy of multiple synapses and of the resulting dynamics of postsynaptic neurons in a cortical culture. For the measurements, we combine an extracellular high-density microelectrode array, featuring 11'000 electrodes for extracellular recording and stimulation, with intracellular patch-clamp recording. We are able to identify the contributions of individual presynaptic neurons - including inhibitory and excitatory synaptic inputs - to postsynaptic potentials, which enables us to study dendritic integration. Since the electrical stimuli can be controlled at microsecond resolution, our method enables to evoke action potentials at tens of presynaptic cells in precisely orchestrated sequences of high reliability and minimum jitter. We demonstrate the potential of this method by evoking short- and long-term synaptic plasticity through manipulation of multiple synaptic inputs to a specific neuron.
Vibration of a spatial elastica constrained inside a straight tube
NASA Astrophysics Data System (ADS)
Chen, Jen-San; Fang, Joyce
2014-04-01
In this paper we study the dynamic behavior of a clamped-clamped spatial elastica under edge thrust constrained inside a straight cylindrical tube. Attention is focused on the calculation of the natural frequencies and mode shapes of the planar and spatial one-point-contact deformations. The main issue in determining the natural frequencies of a constrained rod is the movement of the contact point during vibration. In order to capture the physical essence of the contact-point movement, an Eulerian description of the equations of motion based on director theory is formulated. After proper linearization of the equations of motion, boundary conditions, and contact conditions, the natural frequencies and mode shapes of the elastica can be obtained by solving a system of eighteen first-order differential equations with shooting method. It is concluded that the planar one-point-contact deformation becomes unstable and evolves to a spatial deformation at a bifurcation point in both displacement and force control procedures.
A structural and mechanistic study of π-clamp-mediated cysteine perfluoroarylation.
Dai, Peng; Williams, Jonathan K; Zhang, Chi; Welborn, Matthew; Shepherd, James J; Zhu, Tianyu; Van Voorhis, Troy; Hong, Mei; Pentelute, Bradley L
2017-08-11
Natural enzymes use local environments to tune the reactivity of amino acid side chains. In searching for small peptides with similar properties, we discovered a four-residue π-clamp motif (Phe-Cys-Pro-Phe) for regio- and chemoselective arylation of cysteine in ribosomally produced proteins. Here we report mutational, computational, and structural findings directed toward elucidating the molecular factors that drive π-clamp-mediated arylation. We show the significance of a trans conformation prolyl amide bond for the π-clamp reactivity. The π-clamp cysteine arylation reaction enthalpy of activation (ΔH ‡ ) is significantly lower than a non-π-clamp cysteine. Solid-state NMR chemical shifts indicate the prolyl amide bond in the π-clamp motif adopts a 1:1 ratio of the cis and trans conformation, while in the reaction product Pro3 was exclusively in trans. In two structural models of the perfluoroarylated product, distinct interactions at 4.7 Å between Phe1 side chain and perfluoroaryl electrophile moiety are observed. Further, solution 19 F NMR and isothermal titration calorimetry measurements suggest interactions between hydrophobic side chains in a π-clamp mutant and the perfluoroaryl probe. These studies led us to design a π-clamp mutant with an 85-fold rate enhancement. These findings will guide us toward the discovery of small reactive peptides to facilitate abiotic chemistry in water.
Cardiovascular transition at birth: a physiological sequence.
Hooper, Stuart B; Te Pas, Arjan B; Lang, Justin; van Vonderen, Jeroen J; Roehr, Charles Christoph; Kluckow, Martin; Gill, Andrew W; Wallace, Euan M; Polglase, Graeme R
2015-05-01
The transition to newborn life at birth involves major cardiovascular changes that are triggered by lung aeration. These include a large increase in pulmonary blood flow (PBF), which is required for pulmonary gas exchange and to replace umbilical venous return as the source of preload for the left heart. Clamping the umbilical cord before PBF increases reduces venous return and preload for the left heart and thereby reduces cardiac output. Thus, if ventilation onset is delayed following cord clamping, the infant is at risk of superimposing an ischemic insult, due to low cardiac output, on top of an asphyxic insult. Much debate has centered on the timing of cord clamping at birth, focusing mainly on the potential for a time-dependent placental to infant blood transfusion. This has prompted recommendations for delayed cord clamping for a set time after birth in infants not requiring resuscitation. However, recent evidence indicates that ventilation onset before cord clamping mitigates the adverse cardiovascular consequences caused by immediate cord clamping. This indicates that the timing of cord clamping should be based on the infant's physiology rather than an arbitrary period of time and that delayed cord clamping may be of greatest benefit to apneic infants.
Clinical aspects of incorporating cord clamping into stabilisation of preterm infants.
Knol, Ronny; Brouwer, Emma; Vernooij, Alex S N; Klumper, Frans J C M; DeKoninck, Philip; Hooper, Stuart B; Te Pas, Arjan B
2018-04-21
Fetal to neonatal transition is characterised by major pulmonary and haemodynamic changes occurring in a short period of time. In the international neonatal resuscitation guidelines, comprehensive recommendations are available on supporting pulmonary transition and delaying clamping of the cord in preterm infants. Recent experimental studies demonstrated that the pulmonary and haemodynamic transition are intimately linked, could influence each other and that the timing of umbilical cord clamping should be incorporated into the respiratory stabilisation. We reviewed the current knowledge on how to incorporate cord clamping into stabilisation of preterm infants and the physiological-based cord clamping (PBCC) approach, with the infant's transitional status as key determinant of timing of cord clamping. This approach could result in optimal timing of cord clamping and has the potential to reduce major morbidities and mortality in preterm infants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Sound absorption by clamped poroelastic plates.
Aygun, H; Attenborough, K
2008-09-01
Measurements and predictions have been made of the absorption coefficient and the surface acoustic impedance of poroelastic plates clamped in a large impedance tube and separated from the rigid termination by an air gap. The measured and predicted absorption coefficient and surface impedance spectra exhibit low frequency peaks. The peak frequencies observed in the absorption coefficient are close to those predicted and measured in the deflection spectra of the clamped poroelastic plates. The influences of the rigidity of the clamping conditions and the width of the air gap have been investigated. Both influences are found to be important. Increasing the rigidity of clamping reduces the low frequency absorption peaks compared with those measured for simply supported plates or plates in an intermediate clamping condition. Results for a closed cell foam plate and for two open cell foam plates made from recycled materials are presented. For identical clamping conditions and width of air gap, the results for the different materials differ as a consequence mainly of their different elasticity, thickness, and cell structure.
Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps
2011-01-01
Background We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge. PMID:21211044
Ultrasonic measurement and monitoring of loads in bolts used in structural joints
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper is an overview of work by the author in measuring and monitoring loads in bolts using an ultrasonic extensometer. A number of cases of bolted joints are covered. These include, a clamped joint with clearance fit between the bolt and hole, a clamped joint with bolt in an interference fit with the hole, a flanged joint which allows the flange and bolt to bend; and a shear joint in a clevis and tang configuration. These applications were initially developed for measuring and monitoring preload in National Aeronautics and Space Administration (NASA) Space Shuttle Orbiter critical joints but are also applicable for monitoring loads in other critical bolted joints of structures such as transportation bridges and other aerospace structures. The papers cited here explain how to set-up a model to estimate the ultrasonic load factor and accuracy for the ultrasonic preload application in a clamped joint with clearance fit. The ultrasonic preload application for clamped joint with bolt in an interference fit can also be used to measure diametrical interference between the bolt shank and hole, as well as interference pressure on the bolt shank. Results of simulation and experimental data are given to demonstrate use of ultrasonic measurements in a shear joint. A bolt in a flanged joint experiences both tensile and bending loads. This application involves measurement of bending and tensile preload in a bolt. The ultrasonic beam bends due to bending load on the bolt. Results of a numerical technique to compute the trace of ultrasonic ray are presented.
Visnagri, Asjad; Adil, Mohammad; Kandhare, Amit D.; Bodhankar, Subhash L.
2015-01-01
Background: Renal artery occlusion (RAO) induced hypertension is a major health problem associated with structural and functional variations of the renal and cardiac vasculature. Naringin a flavanone glycoside derived possesses metal-chelating, antioxidant and free radical scavenging properties. Objective: The objective of this study was to investigate the antihypertensive activity of naringin in RAO induced hypertension in rats. Material and Methods: Male Wistar rats (180-200 g) were divided into five groups Sham, RAO, naringin (20, 40 and 80 mg/kg). Animals were pretreated with naringin (20, 40 and 80 mg/kg p.o) for 4 weeks. On the last day of the experiment, left renal artery was occluded with renal bulldog clamp for 4 h. After assessment of hemodynamic and left ventricular function various biochemical (superoxide dismutase [SOD], glutathione [GSH] and malondialdehyde [MDA]) and histological parameters were determined in the kidney. Results: RAO group significantly (P < 0.001) increased hemodynamic parameters at 15, 30 and 45 min of clamp removal. Naringin (40 and 80 mg/kg) treated groups showed a significant decrease in hemodynamic parameters at 15 min. after clamp removal that remained sustained for 60 min. Naringin (40 and 80 mg/kg) treated groups showed significant improvement in left ventricular function at 15, 30 and 45 min after clamp removal. Alteration in level of SOD, GSH and MDA was significantly restored by naringin (40 and 80 mg/kg) treatment. It also reduced histological aberration induced in kidney by RAO. Conclusion: It is concluded that the antihypertensive activity of naringin may result through inhibition of oxidative stress. PMID:25883516
Diffusion-convection effects on drug distribution at the cell membrane level in a patch-clamp setup.
Baran, Irina; Iftime, Adrian; Popescu, Anca
2010-01-01
We present a model-based method for estimating the effective concentration of the active drug applied by a pressure pulse to an individual cell in a patch-clamp setup, which could be of practical use in the analysis of ligand-induced whole-cell currents recorded in patch-clamp experiments. Our modelling results outline several important factors which may be involved in the high variability of the electric response of the cells, and indicate that with a pressure pulse duration of 1s and diameter of the perfusion tip of 600 μm, elevated amounts of drug can accumulate locally between the pipette tip and the cell. Hence, the effective agonist concentration at the cell membrane level can be consistently higher than the initial concentration inside the perfusion tubes. We performed finite-difference and finite-element simulations to investigate the diffusion/convection effects on the agonist distribution on the cell membrane. Our model can explain the delay between the commencement of acetylcholine application and the onset of the whole-cell current that we recorded on human rhabdomyosarcoma TE671 cells, and reproduce quantitatively the decrease of signal latency with the concentration of agonist in the pipette. Results also show that not only the geometry of the bath chamber and pipette tip, but also the transport parameters of the diffusive and convective phenomena in the bath solution are determinant for the amplitude and kinetics of the recorded currents and have to be accounted for when analyzing patch-clamp data. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Double arch mirror study. Part 1: Preliminary engineering report
NASA Technical Reports Server (NTRS)
Vukobratovich, D.; Hillman, D.
1983-01-01
In the proposed design, the NASA AMES 20-in double arch mirror is supported by three clamp and flexure assemblies. The mirror clamp consists of a T-shaped Invar-36 member that goes into a similarly shaped socket in the back of the mirror. The mirror socket is made oversize and contacts the clamp only along the conical surface. The clamp is preloaded by a spring washer and pulls the mirror into contact with the flexure. The clamp is then inserted into the mirror socket through a cutout, is rotated 90 deg, and is then pinned in place. Loading conditions considered in socket design are discussed as well as stress in the socket and clamp. Flexure geometry and stress are examined as well as the effects of flexure error and of mirror cell error.
Fabrication and characterization of a piezoelectric energy harvester with clamped-clamped beams
NASA Astrophysics Data System (ADS)
Cui, Yan; Yu, Menglin; Gao, Shiqiao; Kong, Xiangxin; Gu, Wang; Zhang, Ran; Liu, Bowen
2018-05-01
This work presents a piezoelectric energy harvester with clamped-clamped beams, and it is fabricated with MEMS process. When excited by sinusoidal vibration, the energy harvester has a sharp jumping down phenomenon and the measured frequency responses of the clamped-clamped beams structure show a larger bandwidth which is about 56Hz, more efficient than that with cantilever beams. When the exciting acceleration ac is 12m/s2, the energy harvester achieves to a maximum open-circuit voltage of 94mV on one beam. The load voltage is proportional to the load resistance, and it increased with the increase of load resistance. Connected four beams in series, the output power reaches the maximum value of 730 nW and the optimal load is 15KΩ to one beam.
Benavides, G.L.; Burt, J.D.
1994-07-12
The invention relates to a clamp mechanism that can be used to attach or temporarily support objects inside of tubular goods. The clamp mechanism can also be modified so that it grips objects. The clamp has a self-centering feature to accommodate out-of-roundness or other internal defections in tubular objects such as pipe. A plurality of clamping shoes are expanded by a linkage which is preferably powered by a motor to contact the inside of a pipe. The motion can be reversed and jaw elements can be connected to the linkage so as to bring the jaws together to grab an object. 12 figs.
Benavides, Gilbert L.; Burt, Jack D.
1994-01-01
The invention relates to a clamp mechanism that can be used to attach or temporarily support objects inside of tubular goods. The clamp mechanism can also be modified so that it grips objects. The clamp has a self-centering feature to accommodate out-of-roundness or other internal defections in tubular objects such as pipe. A plurality of clamping shoes are expanded by a linkage which is preferably powered by a motor to contact the inside of a pipe. The motion can be reversed and jaw elements can be connected to the linkage so as to bring the jaws together to grab an object.
Advanced motor driven clamped borehole seismic receiver
Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.
1993-01-01
A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.
Smith, Karl H.
2002-01-01
A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.
Wohl, P; Krusinová, E; Klementová, M; Wohl, P; Kratochvílová, S; Pelikánová, T
2008-01-01
The hyperinsulinemic euglycemic clamp (HEC) combined with indirect calorimetry (IC) is used for estimation of insulin-stimulated substrate utilization. Calculations are based on urinary urea nitrogen excretion (UE), which is influenced by correct urine collection. The aims of our study were to improve the timing of urine collection during the clamp and to test the effect of insulin on UE in patients with type 1 diabetes (DM1; n=11) and healthy subjects (C; n=11). Urine samples were collected (a) over 24 h divided into 3-h periods and (b) before and during two-step clamp (1 and 10 mIU.kg(-1).min(-1); period 1 and period 2) combined with IC. The UE during the clamp was corrected for changes in urea pool size (UEc). There were no significant differences in 24-h UE between C and DM1 and no circadian variation in UE in either group. During the clamp, serum urea decreased significantly in both groups (p<0.01). Therefore, UEc was significantly lower as compared to UE not adjusted for changes in urea pool size both in C (p<0.001) and DM1 (p<0.001). While UE did not change during the clamp, UEc decreased significantly in both groups (p<0.01). UEc during the clamp was significantly higher in DM1 compared to C both in period 1 (p<0.05) and period 2 (p<0.01). The UE over 24 h and UEc during the clamp were statistically different in both C and DM1. We conclude that urine collection performed during the clamp with UE adjusted for changes in urea pool size is the most suitable technique for measuring substrate utilization during the clamp both in DM1 and C. Urine collections during the clamp cannot be replaced either by 24-h sampling (periods I-VII) or by a single 24-h urine collection. Attenuated insulin-induced decrease in UEc in DM1 implicates the impaired insulin effect on proteolysis.
Zhang, Yan; Zhang, Jun-Wei; Wang, Bao-Hua
2017-06-01
Perioperative blood loss is still an unsolved problem in total knee arthroplasty (TKA). The efficacy of the preoperative use of tranexamic acid (TXA) plus drain-clamping to reduce blood loss in TKA has been debated. This meta-analysis aimed to illustrate the efficacy of TXA plus drain-clamping to reduce blood loss in patients who underwent a TKA. In February 2017, a systematic computer-based search was conducted in PubMed, EMBASE, Web of Science, the Cochrane Database of Systematic Reviews, and Google Scholar. Data from patients prepared for TKA in studies that compared TXA plus drain-clamping versus TXA alone, drain-clamping alone, or controls were retrieved. The primary endpoint was the need for transfusion. The secondary outcomes were total blood loss, blood loss in drainage, the decrease in hemoglobin, and the occurrence of deep venous thrombosis. After testing for publication bias and heterogeneity between studies, data were aggregated for random-effects models when necessary. Ultimately, 5 clinical studies with 618 patients (TXA plus drain-clamping group = 249, control group = 130, TXA-alone group = 60, and drain-clamping group = 179) were included. TXA plus drain-clamping could decrease the need for transfusion, total blood loss, blood loss in drainage, and the decrease in hemoglobin than could the control group, the TXA-alone group, and the drain-clamping group (P < .05). There was no significant difference between the occurrence of deep venous thrombosis between the included groups (P > .05). TXA plus drain-clamping can achieve the maximum effects of hemostasis in patients prepared for primary TKA. Because the number and the quality of the included studies were limited, more high-quality randomized controlled trials are needed to identify the optimal dose of TXA and the clamping hours in patients prepared for TKA.
Efficacy of tranexamic acid plus drain-clamping to reduce blood loss in total knee arthroplasty
Zhang, Yan; Zhang, Jun-Wei; Wang, Bao-Hua
2017-01-01
Abstract Background: Perioperative blood loss is still an unsolved problem in total knee arthroplasty (TKA). The efficacy of the preoperative use of tranexamic acid (TXA) plus drain-clamping to reduce blood loss in TKA has been debated. This meta-analysis aimed to illustrate the efficacy of TXA plus drain-clamping to reduce blood loss in patients who underwent a TKA. Methods: In February 2017, a systematic computer-based search was conducted in PubMed, EMBASE, Web of Science, the Cochrane Database of Systematic Reviews, and Google Scholar. Data from patients prepared for TKA in studies that compared TXA plus drain-clamping versus TXA alone, drain-clamping alone, or controls were retrieved. The primary endpoint was the need for transfusion. The secondary outcomes were total blood loss, blood loss in drainage, the decrease in hemoglobin, and the occurrence of deep venous thrombosis. After testing for publication bias and heterogeneity between studies, data were aggregated for random-effects models when necessary. Results: Ultimately, 5 clinical studies with 618 patients (TXA plus drain-clamping group = 249, control group = 130, TXA-alone group = 60, and drain-clamping group = 179) were included. TXA plus drain-clamping could decrease the need for transfusion, total blood loss, blood loss in drainage, and the decrease in hemoglobin than could the control group, the TXA-alone group, and the drain-clamping group (P < .05). There was no significant difference between the occurrence of deep venous thrombosis between the included groups (P > .05). Conclusions: TXA plus drain-clamping can achieve the maximum effects of hemostasis in patients prepared for primary TKA. Because the number and the quality of the included studies were limited, more high-quality randomized controlled trials are needed to identify the optimal dose of TXA and the clamping hours in patients prepared for TKA. PMID:28658157
Lithography of Polymer Nanostructures on Glass for Teaching Polymer Chemistry and Physics
ERIC Educational Resources Information Center
Sahar-Halbany, Adi; Vance, Jennifer M.; Drain, Charles Michael
2011-01-01
As nanolithography becomes increasingly important in technology and daily life, a variety of inexpensive and creative methods toward communicating the concepts underpinning these processes in the classroom are necessary. An experiment is described that uses simple CD-Rs, C-clamps, an oven, and a freezer to provide concrete examples and insights…
Pressley, Thomas A; Limson, Melvin; Byse, Miranda; Matyas, Marsha Lakes
2011-09-01
The "Healthy Heart Race" activity provides a hands-on demonstration of cardiovascular function suitable for lay audiences. It was field tested during the United States of America Science and Engineering Festival held in Washington, DC, in October 2010. The basic equipment for the activity consisted of lengths of plastic tubing, a hand pump, collection containers, clamps, and simulated blood prepared by tinting water with red food coloring. Student participants were first asked to experience the effort required to pump through an unaltered tube. A presenter then applied a strong clamp that pinched each tube downstream from the pump, and students were asked to pump against the increased resistance. The students' observations were then used as the basis for discussions of atherosclerosis and coronary heart disease with the presenters. Distribution of informative postcards during the 2 days of the festival indicated that at least 2,500 students completed the Healthy Heart Race activity. Our experiences to date suggest that the Healthy Heart Race activity can be accomplished effectively in the high-volume, high-distraction environment of a science fair or museum.
Gertz, Monica L; Baker, Zachary; Jose, Sharon; Peixoto, Nathalia
2017-05-29
Micro-electrode arrays (MEAs) can be used to investigate drug toxicity, design paradigms for next-generation personalized medicine, and study network dynamics in neuronal cultures. In contrast with more traditional methods, such as patch-clamping, which can only record activity from a single cell, MEAs can record simultaneously from multiple sites in a network, without requiring the arduous task of placing each electrode individually. Moreover, numerous control and stimulation configurations can be easily applied within the same experimental setup, allowing for a broad range of dynamics to be explored. One of the key dynamics of interest in these in vitro studies has been the extent to which cultured networks display properties indicative of learning. Mouse neuronal cells cultured on MEAs display an increase in response following training induced by electrical stimulation. This protocol demonstrates how to culture neuronal cells on MEAs; successfully record from over 95% of the plated dishes; establish a protocol to train the networks to respond to patterns of stimulation; and sort, plot, and interpret the results from such experiments. The use of a proprietary system for stimulating and recording neuronal cultures is demonstrated. Software packages are also used to sort neuronal units. A custom-designed graphical user interface is used to visualize post-stimulus time histograms, inter-burst intervals, and burst duration, as well as to compare the cellular response to stimulation before and after a training protocol. Finally, representative results and future directions of this research effort are discussed.
NASA Astrophysics Data System (ADS)
Zhang, W.; Liu, T.; Xi, A.; Wang, Y. N.
2018-06-01
This paper is focused on the resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the frequency-response curves are obtained. From the numerical results, we find that the hardening-spring-type behaviors and jump phenomena are exhibited. The jump phenomena also occur in the amplitude curves of the temperature parameter excitation. Moreover, it is found that the temperature parameter excitation, the coupling degree of two order modes and the detuning parameters can effect the nonlinear oscillations of this system. The periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.
Kumar, Rajnish; Moche, Martin; Winblad, Bengt; Pavlov, Pavel F
2017-10-27
FK506 binding protein of 51 kDa (FKBP51) is a heat shock protein 90 (Hsp90) co-chaperone involved in the regulation of steroid hormone receptors activity. It is known for its role in various regulatory pathways implicated in mood and stress-related disorders, cancer, obesity, Alzheimer's disease and corticosteroid resistant asthma. It consists of two FKBP12 like active peptidyl prolyl isomerase (PPIase) domains (an active FK1 and inactive FK2 domain) and one tetratricopeptide repeat (TPR) domain that mediates interaction with Hsp90 via its C-terminal MEEVD peptide. Here, we report a combined x-ray crystallography and molecular dynamics study to reveal the binding mechanism of Hsp90 MEEVD peptide to the TPR domain of FKBP51. The results demonstrated that the Hsp90 C-terminal peptide binds to the TPR domain of FKBP51 with the help of di-carboxylate clamp involving Lys272, Glu273, Lys352, Asn322, and Lys329 which are conserved throughout several di-carboxylate clamp TPR proteins. Interestingly, the results from molecular dynamics study are also in agreement to the complex structure where all the contacts between these two partners were consistent throughout the simulation period. In a nutshell, our findings provide new opportunity to engage this important protein-protein interaction target by small molecules designed by structure based drug design strategy.
Schramm, Adrien E; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J
2014-01-01
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe "Touch and Zap", an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the "Touch". By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or "Zap", as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique.
Schramm, Adrien E.; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J.
2014-01-01
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique. PMID:24875855
Modeling and design of a high-performance hybrid actuator
NASA Astrophysics Data System (ADS)
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2016-12-01
This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic responses, passive isolation characteristics and the locations of their peaks and dips. Furthermore, the output actuating force can be improved by increasing the hinge hardness, which is controlled by its dimensions, although increasing the hinge hardness may cause a decrease in the free displacement and passive insulation performance, particularly at low frequencies.
Zhang, Ning; Liang, Hanyu; Farese, Robert V; Li, Ji; Musi, Nicolas; Hussey, Sophie E
2015-01-01
To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo.
Spectral infrared hemispherical reflectance measurements for LDEF tray clamps
NASA Technical Reports Server (NTRS)
Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.
1993-01-01
Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.
Advanced motor driven clamped borehole seismic receiver
Engler, B.P.; Sleefe, G.E.; Striker, R.P.
1993-02-23
A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.
Automatic tracking of cells for video microscopy in patch clamp experiments
2014-01-01
Background Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Methods Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). Results We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. Conclusion The techniques of digital image processing used in this work are an important addition to the set of microscopy tools used in modern electrophysiology, specially in experiments with neuron cultures and brain slices. PMID:24946774
Automatic tracking of cells for video microscopy in patch clamp experiments.
Peixoto, Helton M; Munguba, Hermany; Cruz, Rossana M S; Guerreiro, Ana M G; Leao, Richardson N
2014-06-20
Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. The techniques of digital image processing used in this work are an important addition to the set of microscopy tools used in modern electrophysiology, specially in experiments with neuron cultures and brain slices.
Postnatal Experience Modulates Functional Properties of Mouse Olfactory Sensory Neurons
He, Jiwei; Tian, Huikai; Lee, Anderson C.; Ma, Minghong
2012-01-01
Early experience considerably modulates the organization and function of all sensory systems. In the mammalian olfactory system, deprivation of the sensory inputs via neonatal, unilateral naris closure has been shown to induce structural, molecular, and functional changes from the olfactory epithelium to the olfactory bulb and cortex. However, it remains unknown how early experience shapes functional properties of individual olfactory sensory neurons (OSNs), the primary odor detectors in the nose. To address this question, we examined odorant response properties of mouse OSNs in both the closed and open nostril after four weeks of unilateral naris closure with age-matched untreated animals as control. Using patch-clamp technique on genetically-tagged OSNs with defined odorant receptors (ORs), we found that sensory deprivation increased the sensitivity of MOR23 neurons in the closed side while overexposure caused the opposite effect in the open side. We next analyzed the response properties including rise time, decay time, and adaptation induced by repeated stimulation in MOR23 and M71 neurons. Even though these two types of neurons showed distinct properties in dynamic range and response kinetics, sensory deprivation significantly slowed down the decay phase of odorant-induced transduction events in both types. Using western blotting and antibody staining, we confirmed upregulation of several signaling proteins in the closed side as compared with the open side. This study suggests that early experience modulates functional properties of OSNs, probably via modifying the signal transduction cascade. PMID:22703547
Wave-mixing-induced transparency with zero phase shift in atomic vapors
NASA Astrophysics Data System (ADS)
Zhou, F.; Zhu, C. J.; Li, Y.
2017-12-01
We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.
Quantum turbulence in superfluids with wall-clamped normal component.
Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti
2014-03-25
In Fermi superfluids, such as superfluid (3)He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures.
Quantum turbulence in superfluids with wall-clamped normal component
Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti
2014-01-01
In Fermi superfluids, such as superfluid 3He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures. PMID:24704879
Open-access microfluidic patch-clamp array with raised lateral cell trapping sites.
Lau, Adrian Y; Hung, Paul J; Wu, Angela R; Lee, Luke P
2006-12-01
A novel open-access microfluidic patch-clamp array chip with lateral cell trapping sites raised above the bottom plane of the chip was developed by combining both a microscale soft-lithography and a macroscale polymer fabrication method. This paper demonstrates the capability of using such an open-access fluidic system for patch-clamp measurements. The surface of the open-access patch-clamp sites prepared by the macroscale hole patterning method of soft-state elastic polydimethylsiloxane (PDMS) is examined; the seal resistances are characterized and correlated with the aperture dimensions. Whole cell patch-clamp measurements are carried out with CHO cells expressing Kv2.1 ion channels. Kv2.1 ion channel blocker (TEA) dosage response is characterized and the binding activity is examined. The results demonstrate that the system is capable of performing whole cell measurements and drug profiling in a more efficient manner than the traditional patch-clamp set-up.
RNA polymerase pausing and nascent RNA structure formation are linked through clamp domain movement
Hein, Pyae P.; Kolb, Kellie E.; Windgassen, Tricia; Bellecourt, Michael J.; Darst, Seth A.; Mooney, Rachel A.; Landick, Robert
2014-01-01
The rates of RNA synthesis and nascent RNA folding into biologically active structures are linked via pausing by RNA polymerase (RNAP). Structures that form within the RNA exit channel can increase pausing by interacting with bacterial RNAP or decrease pausing by preventing backtracking. Conversely, pausing is required for proper folding of some RNAs. Opening of the RNAP clamp domain is proposed to mediate some effects of nascent RNA structures. However, the connections among RNA structure formation, clamp movement, and catalytic activity remain uncertain. We assayed exit-channel structure formation in Escherichia coli RNAP together with disulfide crosslinks that favor closed or open clamp conformations and found that clamp position directly influences RNA structure formation and catalytic activity. We report that exit-channel RNA structures slow pause escape by favoring clamp opening and through interactions with the flap that slow translocation. PMID:25108353
Su'etsugu, Masayuki; Takata, Makoto; Kubota, Toshio; Matsuda, Yusaku; Katayama, Tsutomu
2004-06-01
In Escherichia coli, the ATP-DnaA protein initiates chromosomal replication. After the DNA polymerase III holoenzyme is loaded on to DNA, DnaA-bound ATP is hydrolysed in a manner depending on Hda protein and the DNA-loaded form of the DNA polymerase III sliding clamp subunit, which yields ADP-DnaA, an inactivated form for initiation. This regulatory DnaA-inactivation represses extra initiation events. In this study, in vitro replication intermediates and structured DNA mimicking replicational intermediates were first used to identify structural prerequisites in the process of DnaA-ATP hydrolysis. Unlike duplex DNA loaded with sliding clamps, primer RNA-DNA heteroduplexes loaded with clamps were not associated with DnaA-ATP hydrolysis, and duplex DNA provided in trans did not rescue this defect. At least 40-bp duplex DNA is competent for the DnaA-ATP hydrolysis when a single clamp was loaded. The DnaA-ATP hydrolysis was inhibited when ATP-DnaA was tightly bound to a DnaA box-bearing oligonucleotide. These results imply that the DnaA-ATP hydrolysis involves the direct interaction of ATP-DnaA with duplex DNA flanking the sliding clamp. Furthermore, Hda protein formed a stable complex with the sliding clamp. Based on these, we suggest a mechanical basis in the DnaA-inactivation that ATP-DnaA interacts with the Hda-clamp complex with the aid of DNA binding. Copyright Blackwell Publishing Limited
Mechanical coupling for a rotor shaft assembly of dissimilar materials
Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT
2009-05-05
A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.
Dickson, Richard K.
2010-09-07
A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.
Launch Lock Assemblies with Reduced Preload and Spacecraft Isolation Systems Including the Same
NASA Technical Reports Server (NTRS)
Barber, Tim Daniel (Inventor); Young, Ken (Inventor); Hindle, Timothy (Inventor)
2016-01-01
Launch lock assemblies with reduced preload are provided. The launch lock assembly comprises first and second mount pieces, a releasable clamp device, and a pair of retracting assemblies. Each retracting assembly comprises a pair of toothed members having interacting toothed surfaces. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement. When the releasable clamp device is actuated, the first and second mount pieces are released from clamped engagement and one toothed member of each retracting assembly moves in an opposite direction relative to the other one toothed member of the other retracting assembly to define an axial gap on each side of the first mount piece.
Vaughn, Mark R.; Hafenrichter, Everett S.; Chapa, Agapito C.; Harris, Steven M.; Martinez, Marcus J.; Baty, Roy S.
2006-02-28
A system for clamping two tubular members together in an end-to-end relationship uses a split ring with a V-shaped outer rim that can engage a clamping surface on each member. The split ring has a relaxed closed state where the ends of the ring are adjacent and the outside diameter of the split ring is less than the minimum inside diameter of the members at their ends. The members are clamped when the split ring is spread into an elastically stretched position where the ring rim is pressed tightly against the interior surfaces of the members. Mechanisms are provided for removing the spreader so the split ring will return to the relaxed state, releasing the clamped members.
Pollono, Louis P.
1979-01-01
A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.
An analysis of pipe flange connections using epoxy adhesives/anaerobic sealant instead of gaskets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawa, T.; Sasaki, R.; Yoneno, M.
1995-11-01
This paper deals with the strength and the sealing performance of pipe flange connections combining the bonding force of adhesives with the clamping force of bolts. The epoxy adhesives or anaerobic sealants are bonded at the interface partially instead of gaskets in pipe flange connections. The stress distribution in the epoxy adhesives (anaerobic sealant), which governs the sealing performance, and the variations in axial bolt force are analyzed, using an axisymmetrical theory of elasticity, when an internal pressure is applied to a connection in which two pipe flanges are clamped together buy bolts and nuts with an initial clamping forcemore » after being joined by epoxy adhesives or anaerobic sealant. In addition, a method for estimating the strength of the combination connection is demonstrated. Experiments are performed and the analytical results are consistent with the experimental results concerning the variation in axial bolt force and the strength of combination connections. It can be seen that the strength of connections increases with a decrease in the bolt pitch circle diameter. Furthermore, it is seen that the sealing performance of such combination connections in which the interface is bonded partially is improved over that of pipe flange connections with metallic gaskets.« less
Correlation of open cell-attached and excised patch clamp techniques.
Filipovic, D; Hayslett, J P
1995-11-01
The excised patch clamp configuration provides a unique technique for some types of single channel analyses, but maintenance of stable, long-lasting preparations may be confounded by rundown and/or rapid loss of seal. Studies were performed on the amiloride-sensitive Na+ channel, located on the apical surface of A6 cells, to determine whether the nystatin-induced open cell-attached patch could serve as an alternative configuration. Compared to excised inside-out patches, stable preparations were achieved more readily with the open cell-attached patch (9% vs. 56% of attempts). In both preparations, the current voltage (I-V) relation was linear, current amplitudes were equal at opposite equivalent clamped voltages, and Erev was zero in symmetrical Na+ solutions, indicating similar Na+ activities on the cytosolic and external surfaces of the patch. Moreover, there was no evidence that nystatin altered channel activity in the patch because slope conductance (3-4pS) and Erev (75 mV), when the bath was perfused with a high K:low Na solution (ENa = 80 mV), were nearly equal in both patch configurations. Our results therefore indicate that the nystatin-induced open cell-attached patch can serve as an alternative approach to the excised inside-out patch when experiments require modulation of univalent ions in the cytosol.
Colby, Jennifer M.; Krantz, Bryan A.
2015-01-01
Anthrax toxin is a tripartite virulence factor produced by Bacillus anthracis during infection. Under acidic endosomal pH conditions, the toxin's protective antigen (PA) component forms a transmembrane channel in host cells. The PA channel then translocates its two enzyme components, lethal factor (LF) and edema factor (EF), into the host cytosol under the proton motive force (PMF). Protein translocation under a PMF is catalyzed by a series of nonspecific polypeptide binding sites, called clamps. A 10-residue guest/host peptide model system, KKKKKXXSXX, was used to functionally probe polypeptide-clamp interactions within wild-type PA channels. The guest residues were Thr, Ala, Leu, Phe, Tyr, and Trp. In steady-state translocation experiments, the channel blocked most tightly with peptides that had increasing amounts of nonpolar surface area. Cooperative peptide binding was observed in the Trp-containing peptide sequence but not the other tested sequences. Trp substitutions into a flexible, uncharged linker between LF amino-terminal domain and diphtheria toxin A chain expedited translocation. Therefore, peptide clamp sites in translocase channels can sense large steric features (like tryptophan) in peptides; and while these steric interactions may make a peptide translocate poorly, in the context of folded domains they can make the protein translocate more rapidly presumably via a hydrophobic steric ratchet mechanism. PMID:26363343
Free vibration of thermally loaded panels including initial imperfections and post-buckling effects
NASA Technical Reports Server (NTRS)
Murphy, K. D.; Virgin, L. N.; Rizzi, S. A.
1994-01-01
A combined theoretical and experimental approach is developed to consider the small amplitude free vibration characteristics of fully clamped panels under the influence of uniform heating. Included in this study are the effects of higher modes, in-plane boundary elasticity, initial imperfections, and post-buckling. Comparisons between theory and experiment reveal excellent agreement.
Ion channel pharmacology under flow: automation via well-plate microfluidics.
Spencer, C Ian; Li, Nianzhen; Chen, Qin; Johnson, Juliette; Nevill, Tanner; Kammonen, Juha; Ionescu-Zanetti, Cristian
2012-08-01
Automated patch clamping addresses the need for high-throughput screening of chemical entities that alter ion channel function. As a result, there is considerable utility in the pharmaceutical screening arena for novel platforms that can produce relevant data both rapidly and consistently. Here we present results that were obtained with an innovative microfluidic automated patch clamp system utilizing a well-plate that eliminates the necessity of internal robotic liquid handling. Continuous recording from cell ensembles, rapid solution switching, and a bench-top footprint enable a number of assay formats previously inaccessible to automated systems. An electro-pneumatic interface was employed to drive the laminar flow of solutions in a microfluidic network that delivered cells in suspension to ensemble recording sites. Whole-cell voltage clamp was applied to linear arrays of 20 cells in parallel utilizing a 64-channel voltage clamp amplifier. A number of unique assays requiring sequential compound applications separated by a second or less, such as rapid determination of the agonist EC(50) for a ligand-gated ion channel or the kinetics of desensitization recovery, are enabled by the system. In addition, the system was validated via electrophysiological characterizations of both voltage-gated and ligand-gated ion channel targets: hK(V)2.1 and human Ether-à-go-go-related gene potassium channels, hNa(V)1.7 and 1.8 sodium channels, and (α1) hGABA(A) and (α1) human nicotinic acetylcholine receptor receptors. Our results show that the voltage dependence, kinetics, and interactions of these channels with pharmacological agents were matched to reference data. The results from these IonFlux™ experiments demonstrate that the system provides high-throughput automated electrophysiology with enhanced reliability and consistency, in a user-friendly format.
Hyun, Soo-Wang; Kim, Bo-Ram; Hyun, Sung-Ae; Seo, Joung-Wook
2017-09-01
Recently, electrophysiological activity has been effectively measured in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to predict drug-induced arrhythmia. Dimethyl sulfoxide (DMSO) and ethanol have been used as diluting agents in many experiments. However, the maximum DMSO and ethanol concentrations that can be effectively used in the measurement of electrophysiological parameters in hiPSC-CMs-based patch clamp and multi-electrode array (MEA) have not been fully elucidated. We investigated the effects of varying concentrations of DMSO and ethanol used as diluting agents on several electrophysiological parameters in hiPSC-CMs using patch clamp and MEA. Both DMSO and ethanol at concentrations>1% in external solution resulted in osmolality >400mOsmol/kg, but pH was not affected by either agent. Neither DMSO nor ethanol led to cell death at the concentrations examined. However, resting membrane potential, action potential amplitude, action potential duration at 90% and 40%, and corrected field potential duration were decreased significantly at 1% ethanol concentration. DMSO at 1% also significantly decreased the sodium spike amplitude. In addition, the waveform of action potential and field potential was recorded as irregular at 3% concentrations of both DMSO and ethanol. Concentrations of up to 0.3% of either agent did not affect osmolality, pH, cell death, or electrophysiological parameters in hiPSC-CMs. Our findings suggest that 0.3% is the maximum concentration at which DMSO or ethanol should be used for dilution purposes in hiPSC-CMs-based patch clamp and MEA. Copyright © 2017 Elsevier Inc. All rights reserved.
Global Existence and Uniqueness of Weak and Regular Solutions of Shallow Shells with Thermal Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzala, G. Perla, E-mail: perla@lncc.br; Cezaro, F. Travessini De, E-mail: fabianacezaro@furg.br
2016-10-15
We study a dynamical thin shallow shell whose elastic deformations are described by a nonlinear system of Marguerre–Vlasov’s type under the presence of thermal effects. Our main result is the proof of a global existence and uniqueness of a weak solution in the case of clamped boundary conditions. Standard techniques for uniqueness do not work directly in this case. We overcame this difficulty using recent work due to Lasiecka (Appl Anal 4:1376–1422, 1998).
Rigid, Perfectly Plastic Analysis of Ring-Stiffened Shells Under Dynamic Loading
1986-08-01
Elastic-Viscoplastic Response of Clamped Beams Under Uniformly Distributed Impulse, Technical Report AFML-TR-68-396, Jan 1969. 15. Save , M. A. and...Edition, 1959, pp. 466-471 (Chapter 15). A-4. Save , M. A. and Massonnett, C. E., Plastic Analysis and Design of Plates, Shells, and Discs, North-Holland...TYPE TYESHORT (2 ɞ) HIGH LOAnD p > I + CONDITIONS u C 2 (-1) 0 T 1 0 x < MOMENT m Ix, T) 2 +1 OR -RESULTANT Lxo u.=-g- MEMBRANE n,= RESULTANT
Self-aligning fixture used in lathe chuck jaw refacing
NASA Technical Reports Server (NTRS)
Linn, C. C.
1965-01-01
Self-aligning tool positions and rigidly holds lathe chuck jaws for refacing and truing of the clamping surface. The jaws clamp the fixture in the manner of clamping a workpiece. The fixture can be modified to accommodate four-jawed checks.
NASA Astrophysics Data System (ADS)
Ehrhardt, David A.; Allen, Matthew S.
2016-08-01
Nonlinear Normal Modes (NNMs) offer tremendous insight into the dynamic behavior of a nonlinear system, extending many concepts that are familiar in linear modal analysis. Hence there is interest in developing methods to experimentally and numerically determine a system's NNMs for model updating or simply to characterize its dynamic response. Previous experimental work has shown that a mono-harmonic excitation can be used to isolate a system's dynamic response in the neighborhood of a NNM along the main backbones of a system. This work shows that a multi-harmonic excitation is needed to isolate a NNM when well separated linear modes of a structure couple to produce an internal resonance. It is shown that one can tune the multiple harmonics of the input excitation using a plot of the input force versus the response velocity until the area enclosed by the force-velocity curve is minimized. Once an appropriated NNM is measured, one can increase the force level and retune the frequency to obtain a NNM at a higher amplitude or remove the excitation and measure the structure's decay down a NNM backbone. This work explores both methods using simulations and measurements of a nominally-flat clamped-clamped beam excited at a single point with a magnetic force. Numerical simulations are used to validate the method in a well defined environment and to provide comparison with the experimentally measured NNMs. The experimental results seem to produce a good estimate of two NNMs along their backbone and part of an internal resonance branch. Full-field measurements are then used to further explore the couplings between the underlying linear modes along the identified NNMs.
Lack of insulinotropic effect of endogenous and exogenous cholecystokinin in man.
Reimers, J; Nauck, M; Creutzfeldt, W; Strietzel, J; Ebert, R; Cantor, P; Hoffmann, G
1988-05-01
Intraduodenal phenylalanine administration (333 mg/min over 60 min) released endogenous cholecystokinin in healthy young subjects as demonstrated radioimmunologically and by intraduodenal bilirubin and pancreatic enzyme output. Concomitantly, there was only a small increase over basal in circulating immunoreactive-insulin and immunoreactive-C-peptide concentrations. In healthy volunteers intraduodenal infusions of saline (10 ml/min), glucose (333 mg/min) or phenylalanine (333 mg/min) were performed for 60 min when plasma glucose was clamped at approximately 8 mmol/l. Phenylalanine enhanced immunoreactive-insulin and immunoreactive-C-peptide responses three-fold more than did the same amount of glucose. Immuno-reactive gastric inhibitory polypeptide responses were small and not different after glucose and phenylalanine administration. Immunoreactive cholecystokinin was significantly stimulated to 9.4 +/- 1.4 pmol/l only by intraduodenal phenylalanine. Plasma phenylalanine concentrations increased into the supraphysiological range (approximately 1.5 mmol/l). Intravenous infusions of phenylalanine achieving plasma concentrations of 1.2 mmol/l stimulated insulin secretion at elevated plasma glucose concentrations (approximately 8 mmol/l clamp experiments), but had no effect at basal plasma glucose concentrations. A small increase in cholecystokinin also was observed. Intravenous infusions of synthetic sulphated cholecystokinin-8 leading to plasma concentrations in the upper postprandial range (8-12 pmol/l) did not augment the immunoreactive-insulin or immunoreactive-C-peptide levels during hyperglycaemic clamp experiments, in the absence or presence of elevated plasma phenylalanine concentrations. It is concluded that the augmentation of the glucose-induced insulin release by intraduodenal administration of phenylalanine cannot be related to cholecystokinin release, but rather is explained by the combined effects of elevated glucose and phenylalanine concentrations. In man, cholecystokinin does not augment insulin secretion caused by moderate hyperglycaemia, elevations of phenylalanine concentrations, or combinations thereof.
Acosta-García, Ma Cristina; Morales-Reyes, Israel; Jiménez-Anguiano, Anabel; Batina, Nikola; Castellanos, N P; Godínez-Fernández, R
2018-02-01
This paper shows the simultaneous recording of electrical activity and the underlying ionic currents by using a gold substrate to culture NG108-15 cells. Cells grown on two different substrates (plastic Petri dishes and gold substrates) were characterized quantitatively through scanning electron microscopy (SEM) as well as qualitatively by optical and atomic force microscopy (AFM). No significant differences were observed between the surface area of cells cultured on gold substrates and Petri dishes, as indicated by measurements performed on SEM images. We also evaluated the electrophysiological compatibility of the cells through standard patch-clamp experiments by analyzing features such as the resting potential, membrane resistance, ionic currents, etc. Cells grown on both substrates showed no significant differences in their dependency on voltage, as well as in the magnitude of the Na+ and K+ current density; however, cells cultured on the gold substrate showed a lower membrane capacitance when compared to those grown on Petri dishes. By using two separate patch-clamp amplifiers, we were able to record the membrane current with the conventional patch-clamp technique and through the gold substrate simultaneously. Furthermore, the proposed technique allowed us to obtain simultaneous recordings of the electrical activity (such as action potentials firing) and the underlying membrane ionic currents. The excellent conductivity of gold makes it possible to overcome important difficulties found in conventional electrophysiological experiments such as those presented by the resistance of the electrolytic bath solution. We conclude that the technique here presented constitutes a solution to the problem of the simultaneous recording of electrical activity and the underlying ionic currents, which for decades, had been solved only partially.
Park, Joo Hyun; Choi, Sung Wook; Shin, Eun Ho; Park, Myung Hoon; Kim, Myung Ku
2017-01-01
Although intraarticular tranexamic acid (IA-TXA) administration or drainage clamping are popular methods used to reduce blood loss after total knee replacement (TKR), the protocol remains controversial. We aimed (1) to establish new protocols through investigating whether two methods, that is, low-dose (500 mg) IA-TXA plus 30-min drain clamping and drainage clamping for the first 3 h without IA-TXA, can reduce blood loss and blood transfusion after unilateral TKR and (2) to make recommendations related to clinical application. This study, conducted from September 2014 to June 2016 related to enrolled 95 patients with primary osteoarthritis who were to have a unilateral cemented TKR, was nonrandomized and retrospective. In group A, the drain was released following tourniquet deflation. In group B, 500-mg TXA was injected into the knee joint via a drain tube after fascia closure and the drain was clamped for the first 30 min to prevent leakage. In group C, the drain was clamped for the first 3-h postoperation. Demographic characteristics and clinical data were collected, including the levels of hematocrit (Hct), the total blood loss (TBL), drained blood volume (BV), the amount of blood transfused, and any complications that developed. We found a significantly lower postoperative TBL, drained BV, decreasing Hct level, and less transfused BV in the IA-TXA injection group (group B) and the 3-h drainage clamping group (group C) compared to the conventional negative drainage group (group A; p < 0.001). There was no significant difference between groups B and C ( p = 0.99). The drainage clamping method can be safer than IA-TXA administration in patients with risk factor of venous thromboembolic complication. Furthermore, the IA-TXA administration can be more optimal than drainage clamping in patients with high bleeding tendency or lateral retinacular release during TKR, who would be concerned about postoperative wound complication.
Yadav, Yad Ram; Parihar, Vijay; Agarwal, Moneet; Bhatele, Pushp Raj
2012-01-01
The management of intraoperative bleeding during removal of a large hyper vascular meningioma is crucial for safe and efficient surgery. Preoperative embolization of meningioma is the best way to reduce vascularity of meningiomas but this technique is not readily available, costly and has its own limitations. The study is aimed to evaluate the use of temporary clamping of external carotid artery to reduce blood loss and operating time during excision of large convexity, parasagittal or temporal base meningiomas. A prospective study of 115 consecutively operated meningiomas of size 5 cms or more were operated from January 2002 to December2010. Temporary clamping of external carotid artery was done in 61 while 51 cases were managed without clamping. There was significant reduction of blood loss, operative time and blood transfusion given in the temporary clipping group compared to non clipping group. There was stitch abscess in two patients each in clamping, and non clamping group. There was no scalp necrosis or mortality in any of the group. Temporary clamping of external carotid artery is a safe, simple and cost-effective alternative to embolization for the surgery of large meningiomas. This can be practiced at all the centers.
Qin, Qingquan; Xu, Feng; Cao, Yongqing; Ro, Paul I; Zhu, Yong
2012-08-20
The effect of clamping on resonance frequency and thus measured Young's modulus of nanowires (NWs) is systematically investigated via a combined experimental and simulation approach. ZnO NWs are used in this work as an example. The resonance tests are performed in situ inside a scanning electron microscope and the NWs are cantilevered on a tungsten probe by electron-beam-induced deposition (EBID) of hydrocarbon. EBID is repeated several times to deposit more hydrocarbons at the same location. The resonance frequency increases with the increasing clamp size until approaching that under the "fixed" boundary condition. The critical clamp size is identified as a function of NW diameter and NW Young's modulus. This work: 1) exemplifies the importance of considering the effect of clamping in measurements of Young's modulus using the resonance method, and 2) demonstrates that the true Young's modulus can be measured if the critical clamp size is reached. Design guidelines on the critical clamp size are provided. Such design guidelines can be extended to other one-dimensional nanostructures such as carbon nanotubes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Force-controlled patch clamp of beating cardiac cells.
Ossola, Dario; Amarouch, Mohamed-Yassine; Behr, Pascal; Vörös, János; Abriel, Hugues; Zambelli, Tomaso
2015-03-11
From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.
Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes
Das, Debasis; Krantz, Bryan A.
2016-01-01
Anthrax toxin is an intracellularly acting toxin in which sufficient information is available regarding the structure of its transmembrane channel, allowing for detailed investigation of models of translocation. Anthrax toxin, comprising three proteins—protective antigen (PA), lethal factor (LF), and edema factor—translocates large proteins across membranes. Here we show that the PA translocase channel has a transport function in which its catalytic active sites operate allosterically. We find that the phenylalanine clamp (ϕ-clamp), the known conductance bottleneck in the PA translocase, gates as either a more closed state or a more dilated state. Thermodynamically, the two channel states have >300-fold different binding affinities for an LF-derived peptide. The change in clamp thermodynamics requires distant α-clamp and ϕ-clamp sites. Clamp allostery and translocation are more optimal for LF peptides with uniform stereochemistry, where the least allosteric and least efficiently translocated peptide had a mixed stereochemistry. Overall, the kinetic results are in less agreement with an extended-chain Brownian ratchet model but, instead, are more consistent with an allosteric helix-compression model that is dependent also on substrate peptide coil-to-helix/helix-to-coil cooperativity. PMID:27506790
Plasma Chamber Restraints in Ignitor and Relevant Disruption Analysis
NASA Astrophysics Data System (ADS)
Gasparotto, M.; Cucchiaro, A.; Capriccioli, A.; Celentano, G.; Rita, C.; Roccella, M.; Macco, B.; Micheli, I.; Ferrari, G.; Orlandi, S.; Coppi, B.
2000-10-01
The plasmas chamber (PC) of Ignitor is made of 12 D-shaped toroidal sectors of Inconel 625 welded together by automatic remote equipment. The thickness of the inboard wall is 17 mm while the middle and outboard walls are 26 mm thick. The PC is supported through the ports by the C-Clamp structure of the toroidal magnet. The main function of the PC supports is to resist the vertical and radial electromagnetic loads and to allow for free movement under thermal loads while providing electrical insulation from the C-Clamps and cryostat. The largest estimated loads are due to a Vertical Displacement Event (VDE) disruption that is followed by a thermal quench and then by the current quench. The vertical supports involve a connection of each radial port to the C-Clamp structure by a link system that withstands the calculated loads. The radial supports resist, with high stiffness, the centripetal and centrifugal forces. The end flange of each radial port is connected to the C-Clamp structure by a clamping sleeve device. The clamping sleeves are hydraulically operated to provide locking during discharge. The clamping sleeves of the radial support system have been validated by an appropriate series of tests.
NASA Technical Reports Server (NTRS)
Calco, Frank S. (Inventor)
1991-01-01
A quick release toggle clamp that utilizes a spring that requires a deliberate positive action for disengagement is presented. The clamp has a sliding bolt that provides a latching mechanism. The bolt is moved by a handle that tends to remain in an engaged position while under tension.
Cutburth, Ronald W.; Smauley, David A.
1987-01-01
A clamp or dog is disclosed which preferably comprises a slotted stepped cylindrical body which is inserted into a hole in a workpiece and then fastened to a base or fixture using a screw which is inserted through the slot. The stepped configuration provides an annular clamping surface which securely clamps the workpiece against the base or fixture. The slotted cylindrical configuration permits adjustment of the workpiece and retaining clamp in any direction, i.e., over 360.degree., relative to the mounting position of the screw in the base or fixture.
SiC-Based Miniature High-Temperature Cantilever Anemometer
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Fralick, Gustave; Saad, George J.
2004-01-01
The figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate. The top clamping plate is brought into contact with the bottom plate so that the narrow section of the metal strips on the top clamp plate aligns with the metal contact pads on the cantilever. When the parts are clamped together, the metal strips provide electrical connections between the Wheatstone-bridge contact points and the sides the trenches that constitute the socket for the multipin electrical plug. Hence, to connect the Wheatstone bridge to external circuitry for processing of the anemometer readout, one need only insert the plug in the socket. In operation, the cantilever end of the stainless-steel housing is mounted flush with an engine wall and the unclamped portion of the cantilever is exposed into the flow. The cantilever is deflected in direct proportion to the force induced by component of flow parallel to the engine wall and perpendicular to the broad exposed face of the cantilever. The maximum strain on the cantilever occurs at the clamped edge and is measured by the piezoresistors, which are located there. The corresponding changes in resistance manifest themselves in the output of the Wheatstone bridge.
Sodium efflux from voltage clamped squid giant axons.
Landowne, D
1977-01-01
1. The efflux of radioactive sodium was measured from squid axons during simultaneous voltage clamp experiments such that it was possible to determine the efflux of sodium associated with a measured voltage clamp current. 2. The extra efflux of sodium associated with voltage clamp pulses increased linearly with the magnitude of the depolarization above 40 mV. A 100 mV pulse of sufficient duration to produce all of the sodium current increased the rate constant of efflux by about 10(-6). 3. Application of 100 nM tetrodotoxin eliminated the sodium current and the extra efflux of radioactive sodium. 4. Cooling the axon increased the extra efflux/voltage clamp pulse slightly with a Q10 of 1/1-1. On the same axons cooling increased the integral of the sodium current with a Q10 of 1/1-4. 5. Replacing external sodium with Tris, dextrose or Mg-mannitol reduced the extra efflux of sodium by about 50%. The inward sodium current was replaced with an outward current as expected. 6. Replacing external sodium with lithium also reduced the extra efflux by about 50% but the currents seen in lithium were slightly larger than those in sodium. 7. The effect of replacing external sodium was not voltage dependent. Cooling reduced the effect so that there was less reduction of efflux on switching to Tris ASW in the cold than in the warm. 8. The extra efflux of sodium into sodium-free ASW is approximately the same as the integral of the sodium current. Adding external sodium produces a deviation from the independence principle such that there is more exchange of sodium than predicted. Such a deviation from prediction was noted by Hodgkin & Huxley (1952c). 9. Using the equations of Hodgkin & Huxley (1952c) modified to include the deviation from independence reported in this paper and its temperature dependence, one can predict the temperature dependence of the sodium efflux associated with action potentials and obtain much better agreement than is possibly without these phenomena. 10. This deviation from independence in the sodium fluxes is the type expected from some kind of mixing and binding of sodium within the membrane phase. PMID:856999
Mechanics of wafer bonding: Effect of clamping
NASA Astrophysics Data System (ADS)
Turner, K. T.; Thouless, M. D.; Spearing, S. M.
2004-01-01
A mechanics-based model is developed to examine the effects of clamping during wafer bonding processes. The model provides closed-form expressions that relate the initial geometry and elastic properties of the wafers to the final shape of the bonded pair and the strain energy release rate at the interface for two different clamping configurations. The results demonstrate that the curvature of bonded pairs may be controlled through the use of specific clamping arrangements during the bonding process. Furthermore, it is demonstrated that the strain energy release rate depends on the clamping configuration and that using applied loads usually leads to an undesirable increase in the strain energy release rate. The results are discussed in detail and implications for process development and bonding tool design are highlighted.
Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects
NASA Astrophysics Data System (ADS)
Zhao, Hai-Sheng; Zhang, Yao; Lie, Seng-Tjhen
2018-02-01
Considerations of nonlocal elasticity and surface effects in micro- and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged-hinged, clamped-clamped and clamped-hinged ends. For a hinged-hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped-clamped and clamped-hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short, explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.
Non-invasive method and apparatus for measuring pressure within a pliable vessel
NASA Technical Reports Server (NTRS)
Shimizu, M. (Inventor)
1983-01-01
A non-invasive method and apparatus is disclosed for measuring pressure within a pliable vessel such as a blood vessel. The blood vessel is clamped by means of a clamping structure having a first portion housing a pressure sensor and a second portion extending over the remote side of the blood vessel for pressing the blood vessel into engagement with the pressure sensing device. The pressure sensing device includes a flat deflectable diaphragm portion arranged to engage a portion of the blood vessel flattened against the diaphragm by means of the clamp structure. In one embodiment, the clamp structure includes first and second semicylindrical members held together by retaining rings. In a second embodiment the clamp structure is of one piece construction having a solid semicylindrical portion and a hollow semicylindrical portion with a longitudinal slot in the follow semicylindrical portion through which a slip the blood vessel. In a third embodiment, an elastic strap is employed for clamping the blood vessel against the pressure sensing device.
Term babies with delayed cord clamping: an approach in preventing anemia (.).
Ertekin, Arif Aktug; Nihan Ozdemir, Nilufer; Sahinoglu, Zeki; Gursoy, Tugba; Erbil, Nazan; Kaya, Erdal
2016-09-01
We investigated the effects of delayed and early clamping of the cord on the hematologic status of the baby at birth and at the end of second month. Umbilical cord of 74 babies were clamped in the first 30 s (Group 1) and 76 were clamped at 90-120 s (Group 2). Levels of hemoglobin, hematocrit, iron and ferritin were analyzed from the umbilical cord blood at birth and from the venous samples at the end of second month. Hemoglobin, hematocrit, iron and ferritin levels of cord blood were similar in both groups. However, their levels other than ferritin were higher in Group 2 at the end of second month. Two babies had respiratory distress and twelve neonates received phototherapy in Group 2 whereas only five neonates received phototherapy in Group 1. Term babies to whom delayed cord clamping was performed had improved hematological parameters at the end of second month. Therefore, delaying cord clamping in these babies may be a favorible approach in preventing anemia.
Vibration mode analysis of the proton exchange membrane fuel cell stack
NASA Astrophysics Data System (ADS)
Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.
2016-11-01
Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.
NASA Technical Reports Server (NTRS)
Vest, Thomas W. (Inventor); Carden, James R. (Inventor); Norton, William E. (Inventor); Belcher, Jewell G. (Inventor)
1992-01-01
A prosthetic device for below-the-elbow amputees, having a C-shaped clamping mechanism for grasping cylindrical objects, is described. The clamping mechanism is pivotally mounted to a cuff that fits on the amputee's lower arm. The present invention is utilized by placing an arm that has been amputated below the elbow into the cuff. The clamping mechanism then serves as a hand whenever it becomes necessary for the amputee to grasp a cylindrical object such as a handle, a bar, a rod, etc. To grasp the cylindrical object, the object is jammed against the opening in the C-shaped spring, causing the spring to open, the object to pass to the center of the spring, and the spring to snap shut behind the object. Various sizes of clamping mechanisms can be provided and easily interchanged to accommodate a variety of diameters. With the extension that pivots and rotates, the clamping mechanism can be used in a variety of orientations. Thus, this invention provides the amputee with a clamping mechanism that can be used to perform a number of tasks.
Tensil Film Clamps And Mounting Block For Viscoelastometers
NASA Technical Reports Server (NTRS)
Stoakley, Diane M.; St. Clair, Anne K.; Little, Bruce D.
1989-01-01
Set of clamps and mounting block developed for use in determining tensile moduli and damping properties of films in manually operated or automated commercial viscoelastometer. These clamps and block provide uniformity of sample gripping and alignment in instrument. Dependence on operator and variability of data greatly reduced.
Lee, Kang M; Driever, Steven M; Heuvelink, Ep; Rüger, Simon; Zimmermann, Ulrich; de Gelder, Arie; Marcelis, Leo F M
2012-12-01
Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. LPCP changes, a measure for relative changes in cell turgor, were monitored at three different heights of transpiring and non-transpiring leaves of tomato plants on sunny and cloudy days simultaneously with whole plant water uptake. Clear diel patterns were observed for relative changes of cell turgor of both transpiring and non-transpiring leaves, which were stronger on sunny days than on cloudy days. A clear effect of canopy height was also observed. Non-transpiring leaves showed relative changes in cell turgor that closely followed plant water uptake throughout the day. However, in the afternoon the relative changes of cell turgor of the transpiring leaves displayed a delayed response in comparison to plant water uptake. Subsequent recovery of cell turgor loss of transpiring leaves during the following night appeared insufficient, as the pre-dawn turgescent state similar to the previous night was not attained. Copyright © Physiologia Plantarum 2012.
Magnetic field response of doubly clamped magnetoelectric microelectromechanical AlN-FeCo resonators
NASA Astrophysics Data System (ADS)
Bennett, S. P.; Baldwin, J. W.; Staruch, M.; Matis, B. R.; LaComb, J.; van't Erve, O. M. J.; Bussmann, K.; Metzler, M.; Gottron, N.; Zappone, W.; LaComb, R.; Finkel, P.
2017-12-01
Magnetoelectric (ME) cantilever resonators have been successfully employed as magnetic sensors to measure low magnetic fields; however, high relative resolution enabling magnetometry in high magnetic fields is lacking. Here, we present on-chip silicon based ME microelectromechanical (MEMS) doubly clamped resonators which can be utilized as high sensitivity, low power magnetic sensors. The resonator is a fully suspended thin film ME heterostructure composed of an active magnetoelastic layer (Fe0.3Co0.7), which is strain coupled to a piezoelectric signal/excitation layer (AlN). By controlling uniaxial stress arising from the large magnetoelastic properties of magnetostrictive FeCo, a magnetically driven shift of the resonance frequency of the first fundamental flexural mode is observed. The theoretical intrinsic magnetic noise floor of such sensors reaches a minimum value of 35 p T /√{H z }. This approach shows a magnetic field sensitivity of ˜5 Hz/mT in a bias magnetic field of up to 120 mT. Such sensors have the potential in applications required for enhanced dynamic sensitivity in high-field magnetometry.
Zeng, Ping; Sun, Shujie; Li, Li'an; Xu, Feng; Cheng, Guangming
2014-03-01
In this paper, an asymmetrical inertial impact driving principle is first proposed, and accordingly a novel piezoelectrically actuated linear micro-motor is developed. It is driven by the inertial impact force generated by piezoelectric smart cantilever (PSC) with asymmetrical clamping locations during a driving cycle. When the PSC is excited by typical harmonic voltage signals, different equivalent stiffness will be induced due to its asymmetrical clamping locations when it is vibrating back and forth, leading to a tiny displacement difference on the two opposite directions in a cycle, and then the accumulation of tiny displacement difference will allow directional movements. A prototype of the proposed motor has been developed and investigated by means of experimental tests. The motion and dynamics characteristics of the prototype are well studied. The experimental results demonstrate that the resolution of the micro-motor is 0.02 μm, the maximum velocity is 16.87 mm/s, and the maximum loading capacity can reach up to 1 kg with a voltage of 100 V and 35 Hz.
Mathematical modeling of electrical activity of uterine muscle cells.
Rihana, Sandy; Terrien, Jeremy; Germain, Guy; Marque, Catherine
2009-06-01
The uterine electrical activity is an efficient parameter to study the uterine contractility. In order to understand the ionic mechanisms responsible for its generation, we aimed at building a mathematical model of the uterine cell electrical activity based upon the physiological mechanisms. First, based on the voltage clamp experiments found in the literature, we focus on the principal ionic channels and their cognate currents involved in the generation of this electrical activity. Second, we provide the methodology of formulations of uterine ionic currents derived from a wide range of electrophysiological data. The model is validated step by step by comparing simulated voltage-clamp results with the experimental ones. The model reproduces successfully the generation of single spikes or trains of action potentials that fit with the experimental data. It allows analyzing ionic channels implications. Likewise, the calcium-dependent conductance influences significantly the cellular oscillatory behavior.
Coexistence of CLCN1 and SCN4A mutations in one family suffering from myotonia.
Maggi, Lorenzo; Ravaglia, Sabrina; Farinato, Alessandro; Brugnoni, Raffaella; Altamura, Concetta; Imbrici, Paola; Camerino, Diana Conte; Padovani, Alessandro; Mantegazza, Renato; Bernasconi, Pia; Desaphy, Jean-François; Filosto, Massimiliano
2017-12-01
Non-dystrophic myotonias are characterized by clinical overlap making it challenging to establish genotype-phenotype correlations. We report clinical and electrophysiological findings in a girl and her father concomitantly harbouring single heterozygous mutations in SCN4A and CLCN1 genes. Functional characterization of N1297S hNav1.4 mutant was performed by patch clamp. The patients displayed a mild phenotype, mostly resembling a sodium channel myotonia. The CLCN1 c.501C>G (p.F167L) mutation has been already described in recessive pedigrees, whereas the SCN4A c.3890A>G (p.N1297S) variation is novel. Patch clamp experiments showed impairment of fast and slow inactivation of the mutated Nav1.4 sodium channel. The present findings suggest that analysis of both SCN4A and CLCN1 genes should be considered in myotonic patients with atypical clinical and neurophysiological features.
NASA Astrophysics Data System (ADS)
Liu, Haiyun; Wang, Lei
2018-01-01
In this paper, a test structure for simultaneously determining thermal conductivity and the coefficient of thermal expansion (CTE) of polysilicon thin film is proposed. The test structure consists of two double-clamped beams with different lengths. A theoretical model for extracting thermal conductivity and CTE based on electrothermal analysis and resonance frequency approach is developed. Both flat and buckled beams are considered in the theoretical model. The model is confirmed by finite element software ANSYS. The test structures are fabricated by surface micromachined fabrication process. Experiments are carried out in our atmosphere. Thermal conductivity and CTE of polysilicon thin film are obtained to be (29.96 ± 0.92) W · m · K-1 and (2.65 ± 0.03) × 10-6 K-1, respectively, with temperature ranging from 300-400 K.
Tietze, Sabrina; Singer, Ferdinand; Lasota, Sandra; Ebert, Sandra; Landskron, Johannes; Schwuchow, Katrin; Drese, Klaus Stefan; Lindner, Gerhard
2018-02-09
The monitoring of liquid-filled tubes with respect to the formation of soft deposition layers such as biofilms on the inner walls calls for non-invasive and long-term stable sensors, which can be attached to existing pipe structures. For this task a method is developed, which uses an ultrasonic clamp-on device. This method is based on the impact of such deposition layers on the propagation of circumferential guided waves on the pipe wall. Such waves are partly converted into longitudinal compressional waves in the liquid, which are back-converted to guided waves in a circular cross section of the pipe. Validating this approach, laboratory experiments with gelatin deposition layers on steel tubes exhibited a distinguishable sensitivity of both wave branches with respect to the thickness of such layers. This allows the monitoring of the layer growth.
Panek, Wojciech; Lewandowski, Jaroslaw; Tuchendler, Tomasz; Urbańczyk, Grzegorz; Litarski, Adam; Apoznański, Wojciech
2013-01-01
The aim of the study was to describe simultaneous laparoscopic adrenalectomy and laparoscopic nephron-sparing surgery, to discuss the details of a convenient laparoscopic approach and the way of port placement, as well as to present a review of the literature concerning combined laparoscopic procedures. A 72-year-old woman was admitted to our department because of a tumor of the right adrenal gland and a small tumor of the right kidney. The patient underwent simultaneous laparoscopic adrenalectomy and laparoscopic nephron-sparing surgery. The postoperative period was uncomplicated. The patient was discharged from the hospital on the 4th postoperative day. We believe that the proposed way of trocar placement would help to avoid a ‘rollover’ problem between the laparoscope and a Satinsky clamp or a ‘crossing swords’ problem between a Satinsky clamp and manipulators. PMID:24501608
Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.
Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R
2018-03-24
Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to further protocols: a series of traditional square step voltage clamps, and also a novel voltage clamp comprising a collection of physiologically relevant action potentials. We demonstrate that we can make predictive cell-specific models that outperform the use of averaged data from a number of different cells, and thereby examine which changes in gating are responsible for cell-cell variability in current kinetics. Our technique allows rapid collection of consistent and high quality data, from single cells, and produces more predictive mathematical ion channel models than traditional approaches. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Zhang, Ning; Liang, Hanyu; Farese, Robert V.; Li, Ji
2015-01-01
Aims To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. Materials and Methods For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Results Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Conclusions Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo. PMID:26196892
30 CFR 77.603 - Clamping of trailing cables to equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clamping of trailing cables to equipment. 77.603 Section 77.603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Trailing Cables § 77.603 Clamping of trailing cables to equipment. Trailing cables...
Code of Federal Regulations, 2014 CFR
2014-10-01
... (2) Nonmetallic flexible hose is acceptable but must— (i) Not be used in lengths of more than 30... reinforced with wire braid. (iv) Be fitted with suitable, corrosion resistant, compression fittings; and (v) Be installed with two clamps at each end of the hose, if designed for use with clamps. Clamps must...
Code of Federal Regulations, 2010 CFR
2010-10-01
... (2) Nonmetallic flexible hose is acceptable but must— (i) Not be used in lengths of more than 30... reinforced with wire braid. (iv) Be fitted with suitable, corrosion resistant, compression fittings; and (v) Be installed with two clamps at each end of the hose, if designed for use with clamps. Clamps must...
Code of Federal Regulations, 2012 CFR
2012-10-01
... (2) Nonmetallic flexible hose is acceptable but must— (i) Not be used in lengths of more than 30... reinforced with wire braid. (iv) Be fitted with suitable, corrosion resistant, compression fittings; and (v) Be installed with two clamps at each end of the hose, if designed for use with clamps. Clamps must...
Code of Federal Regulations, 2013 CFR
2013-10-01
... (2) Nonmetallic flexible hose is acceptable but must— (i) Not be used in lengths of more than 30... reinforced with wire braid. (iv) Be fitted with suitable, corrosion resistant, compression fittings; and (v) Be installed with two clamps at each end of the hose, if designed for use with clamps. Clamps must...
An ideal clamping analysis for a cross-ply laminate
NASA Technical Reports Server (NTRS)
Valisetty, R. R.; Murthy, P. L. N.; Rehfield, L. W.
1988-01-01
Different elementary clamping models are discussed for a three layer crossply laminate to study the sensitivity of clamping to the definition of cross-sectional rotation. All of these models leave a considerable residual warping at the edges. Using a complimentary energy principle and principle of superposition, an analysis is conducted to reduce this residual warping. This led to the identification of exact interior solution corresponding to the ideal clamping. This study also suggests a presence of stress singularities at the corners and between different layers near the fixed edge.
Clamp force and alignment checking device
Spicer, John Patrick; Cai, Wayne W.; Chakraborty, Debejyo; Mink, Keith
2017-04-11
A check fixture measures a total clamp force applied by a welder device. The welder device includes a welding horn having a plurality of weld pads and welding anvil having a plurality of weld pads. The check fixture includes a base member operatively supporting a plurality of force sensors. The base member and the force sensors are received between the weld pads of the welding horn and the anvil pads of the welding anvil. Each force sensor is configured to measure an individual clamp force applied thereto by corresponding weld and anvil pads when the base member is received between the welding horn and the welding anvil and the welder device is in the clamped position. The individual clamp forces are used to determine whether the weld and/or anvil pads are worn or misaligned.
Acoustic plane waves incident on an oblique clamped panel in a rectangular duct
NASA Technical Reports Server (NTRS)
Unz, H.; Roskam, J.
1980-01-01
The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.
NASA Astrophysics Data System (ADS)
Frohn, Peter; Engel, Bernd; Groth, Sebastian
2018-05-01
Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.
Double-stator electromagnetic pump having alignment ring and spine assembly
Fanning, Alan Wayne; Olich, Eugene Ellsworth; Dahl, Leslie Roy; Patel, Mahadeo Ratilal
1997-01-01
A support structure for clamping the inner coils and inner lamination rings of an inner stator column of an electromagnetic induction pump to prevent damaging vibration. A spine assembly, including a base plate, a center post and a plurality of ribs, serves as the structural frame for the inner stator. Stacked alignment rings provide structure to the lamination rings and locate them concentrically around the spine assembly central axis. The alignment rings are made of a material having a high thermal expansion coefficient to compensate for the lower expansion of the lamination rings and, overall, provide an approximate match to the expansion of the inner flow duct. The net result is that the radial clamping provided by the duct around the stator iron is maintained (approximately) over a range of temperatures and operating conditions. Axial clamping of the inner stator structure is achieved via tie rods which run through grooves in the ribs and engage the base plate at the bottom of the inner stator and engage a clamping plate at the top. Slender tie rods and a flexible clamping plate are used to provide compliance in the axial clamping system to accommodate differential thermal growth (axially) between the tie rods and lamination ring elements without losing clamping force.
Double-stator electromagnetic pump having alignment ring and spine assembly
Fanning, A.W.; Olich, E.E.; Dahl, L.R.; Patel, M.R.
1997-06-24
A support structure for clamping the inner coils and inner lamination rings of an inner stator column of an electromagnetic induction pump to prevent damaging vibration is disclosed. A spine assembly, including a base plate, a center post and a plurality of ribs, serves as the structural frame for the inner stator. Stacked alignment rings provide structure to the lamination rings and locate them concentrically around the spine assembly central axis. The alignment rings are made of a material having a high thermal expansion coefficient to compensate for the lower expansion of the lamination rings and, overall, provide an approximate match to the expansion of the inner flow duct. The net result is that the radial clamping provided by the duct around the stator iron is maintained (approximately) over a range of temperatures and operating conditions. Axial clamping of the inner stator structure is achieved via tie rods which run through grooves in the ribs and engage the base plate at the bottom of the inner stator and engage a clamping plate at the top. Slender tie rods and a flexible clamping plate are used to provide compliance in the axial clamping system to accommodate differential thermal growth (axially) between the tie rods and lamination ring elements without losing clamping force. 12 figs.
[Analysis of brain hemometabolism behavior during carotid endarterectomy with temporary clamping.].
Duval Neto, Gastão Fernandes; Niencheski, Augusto H
2004-04-01
Carotid endarterectomy with temporary clamping changes cerebral blood flow and cerebral metabolic oxygen demand ratio with consequent oligemic hypoxia or hemometabolic uncoupling. This study aimed at identifying changes in brain hemometabolism, evaluated through changes in oxyhemoglobin saturation in internal jugular vein bulb (SvjO2) during carotid endarterectomy with clamping, and at correlating these changes with potentially interfering factors, mainly end tidal CO2 pressure (P ET CO2) and cerebral perfusion pressure (CPP). Sixteen patients with unilateral carotid stenotic disease scheduled to carotid endarterectomy with carotid arterial clamping were enrolled in this study. Parameters including internal jugular bulb oxyhemoglobin saturation, stump pressure and end tidal CO2 pressure were measured at the following moments: M1 - pre-clamping; M2 - 3 minutes after clamping; M3 - pre-unclamping; M4 - post-unclamping). The comparison among SvjO2 (%, mean +/- SD) in all studied periods has shown differences between those recorded in moments M1 (52.25 +/- 7.87) and M2 (47.43 +/- 9.19). This initial decrease stabilized during temporary clamping, showing decrease in the comparison between M2 and M3 (46.56 +/- 9.25), without statistical significance (p = ns). At post-unclamping, M4 (47.68 +/- 9.12), SvjO2 was increased as compared to M2 and M3 clamping stages, however it was still lower than that of pre-clamping stage M1.(M4 x M1 - p < 0.04) This SvjO2 decrease was followed by significant cerebral perfusion pressure (stump pressure) decrease. Factors influencing this brain hemometabolic uncoupling trend were correlated to P ET CO2. The comparison between CPP and SvjO2 showed weak correlation devoid of statistical significance. In the conditions of our study, SvjO2 measurement is a fast and effective way of clinically monitoring changes in CBF/CMRO2 ratio. Temporary carotid clamping implies in a trend towards brain hemometabolic uncoupling and, as a consequence, to oligemic ischemia; cerebral perfusion pressure does not assesses brain hemometabolic status (CBF and CMRO2 ratio); hypocapnia, may lead to brain hemometabolic uncoupling; P ET CO2 monitoring is an innocuous and efficient way to indirectly monitor PaCO2 preventing inadvertent hypocapnia and its deleterious effects on CBF/CMRO2 ratio during temporary carotid clamping.
Non-exponential kinetics of unfolding under a constant force.
Bell, Samuel; Terentjev, Eugene M
2016-11-14
We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic "core" inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with hydrophobic or hydrogen-bonded cores. We find that the introduction of super-hydrophobic units leads to a stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This leads to the average non-exponential population dynamics, which is consistent with a variety of experimental data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin of non-exponential relaxation laws.
Non-exponential kinetics of unfolding under a constant force
NASA Astrophysics Data System (ADS)
Bell, Samuel; Terentjev, Eugene M.
2016-11-01
We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic "core" inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with hydrophobic or hydrogen-bonded cores. We find that the introduction of super-hydrophobic units leads to a stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This leads to the average non-exponential population dynamics, which is consistent with a variety of experimental data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin of non-exponential relaxation laws.
Dynamic properties of unbonded, multi-strand beams subjected to flexural loading
NASA Astrophysics Data System (ADS)
Asker, Haval K.; Rongong, Jem A.; Lord, Charles E.
2018-02-01
Beam-like structures, constructed from many long strands that are constrained rather than bonded together, can provide appreciable levels of structural damping through friction between individual strands. This paper describes experimental and numerical studies, carried out on square-section metal beams, which are aimed at improving understanding of the relationship between construction and performance. A beam is formed from a pack of square-section strands that is held together at various compression loads with pre-calibrated clamps. Flexural deformation of the assembled beam is simulated using standard finite element analysis employing simple Coulomb friction at the interfaces. The validity of the assumptions used in the models is confirmed by comparison with three point bend tests on a regular nine strand construction at several different clamp loads. Dynamic loss factors for this beam are obtained by conducting forced vibration tests, which show that the damping is insensitive to frequency. Subsequent numerical studies are used to investigate the effects of increasing the number of strands whilst maintaining the overall cross-section geometry of the beam. It is found that the system stiffness drops and loss factor increases when more strands are used for a maintained beam cross-section. Interestingly, the energy dissipated by each beam construction is almost the same. These results provide a vital and necessary insight into the physics for stranded structures and materials that are largely prevalent in mechanical (e.g. cables) and electrical (e.g. wires) elements.
Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai
2016-01-01
Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats—while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. PMID:27193420
Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai
2016-08-01
Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats-while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. © The Author 2016. Published by Oxford University Press.
COMPENSATION FOR VARIABLE INTRINSIC NEURONAL EXCITABILITY BY CIRCUIT-SYNAPTIC INTERACTIONS
Grashow, Rachel; Brookings, Ted; Marder, Eve
2010-01-01
Recent theoretical and experimental work indicates that neurons tune themselves to maintain target levels of excitation by modulating ion channel expression and synaptic strengths. As a result, functionally equivalent circuits can produce similar activity despite disparate underlying network and cellular properties. To experimentally test the extent to which synaptic and intrinsic conductances can produce target activity in the presence of variability in neuronal intrinsic properties, we used the dynamic clamp to create hybrid two-cell circuits built from four types of stomatogastric (STG) neurons coupled to the same model Morris-Lecar neuron by reciprocal inhibition. We measured six intrinsic properties (input resistance, minimum membrane potential, firing rate in response to +1nA of injected current, slope of the FI curve, spike height and spike voltage threshold) of Dorsal Gastric (DG), Gastric Mill (GM), Lateral Pyloric (LP) and Pyloric Dilator (PD) neurons from male crabs, Cancer borealis. The intrinsic properties varied two to seven-fold in each cell type. We coupled each biological neuron to the Morris-Lecar model with seven different values of inhibitory synaptic conductance, and also used the dynamic clamp to add seven different values of an artificial h-conductance, thus creating 49 different circuits for each biological neuron. Despite the variability in intrinsic excitability, networks formed from each neuron produced similar circuit performance at some values of synaptic and h-conductances. This work experimentally confirms results from previous modeling studies; tuning synaptic and intrinsic conductances can yield similar circuit output from neurons with variable intrinsic excitability. PMID:20610748
Bowers, Cyril Y.
2011-01-01
Although stimulatory (feedforward) and inhibitory (feedback) dynamics jointly control neurohormone secretion, the factors that supervise feedback restraint are poorly understood. To parse the regulation of growth hormone (GH) escape from negative feedback, 25 healthy men and women were studied eight times each during an experimental GH feedback clamp. The clamp comprised combined bolus infusion of GH or saline and continuous stimulation by saline GH-releasing hormone (GHRH), GHRP-2, or both peptides after randomly ordered supplementation with placebo (both sexes) vs. E2 (estrogen; women) and T (testosterone; men). Endpoints were GH pulsatility and entropy (a model-free measure of feedback quenching). Gender determined recovery of pulsatile GH secretion from negative feedback in all four secretagog regimens (0.003 ≤ P ≤ 0.017 for women>men). Peptidyl secretagog controlled the mass, number, and duration of feedback-inhibited GH secretory bursts (each, P < 0.001). E2/T administration potentiated both pulsatile (P = 0.006) and entropic (P < 0.001) modes of GH recovery. IGF-I positively predicted the escape of GH secretory burst number and mode (P = 0.022), whereas body mass index negatively forecast GH secretory burst number and mass (P = 0.005). The composite of gender, body mass index, E2, IGF-I, and peptidyl secretagog strongly regulates the escape of pulsatile and entropic GH secretion from autonegative feedback. The ensemble factors identified in this preclinical investigation enlarge the dynamic model of GH control in humans. PMID:21795635
ERIC Educational Resources Information Center
Digilov, Rafael M.
2008-01-01
We describe a simple and very inexpensive undergraduate laboratory experiment for fast determination of Young's modulus at moderate temperatures with the aid of a force sensor. A strip-shaped specimen rigidly bolted to the force sensor forms a clamped-free cantilever beam. Placed in a furnace, it is subjected to free-bending vibrations followed by…
Kan, Hideko; Kataoka-Shirasugi, Naoko; Amakawa, Taisaku
2011-09-01
Multiple pathways from three types of multiple receptor sites to three types of metabotropic signal transduction pathways were investigated in the whole cell-clamp experiments using isolated labellar sugar receptor neurons (cells) of the adult blowfly, Phormia regina. First, the concentration-response curves of three types of sweet taste components specialized to multiple receptor sites were obtained: sucrose for the pyranose sites (P-sites), fructose for the furanose sites (F-sites), and l-valine for the alkyl sites (R-sites). Next, the effects of inhibitors such as 2', 5'-dideoxyadenosine on adenylyl cyclase in the cAMP pathway, LY 83583 on guanylyl cyclase in the cGMP pathway, and U-73122 on phospholipase C in the IP₃ pathway were examined. The results showed that all of the inhibitors affected each specific target in the second-messenger transduction pathways. The obtained results verified that the P-site corresponded to the cAMP, the F-site to the cGMP, and the R-site to the IP₃ transduction pathway, and that these three signal pathways did not have crossing points. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Weibin; Dai, Yifan; Zhou, Lin; Xu, Mingjin
2016-09-01
Material removal accuracy has a direct impact on the machining precision and efficiency of ion beam figuring. By analyzing the factors suppressing the improvement of material removal accuracy, we conclude that correcting the removal function deviation and reducing the removal material amount during each iterative process could help to improve material removal accuracy. Removal function correcting principle can effectively compensate removal function deviation between actual figuring and simulated processes, while experiments indicate that material removal accuracy decreases with a long machining time, so a small amount of removal material in each iterative process is suggested. However, more clamping and measuring steps will be introduced in this way, which will also generate machining errors and suppress the improvement of material removal accuracy. On this account, a free-measurement iterative process method is put forward to improve material removal accuracy and figuring efficiency by using less measuring and clamping steps. Finally, an experiment on a φ 100-mm Zerodur planar is preformed, which shows that, in similar figuring time, three free-measurement iterative processes could improve the material removal accuracy and the surface error convergence rate by 62.5% and 17.6%, respectively, compared with a single iterative process.
Taheri, Asghar; Zhalebaghi, Mohammad Hadi
2017-11-01
This paper presents a new control strategy based on finite-control-set model-predictive control (FCS-MPC) for Neutral-point-clamped (NPC) three-level converters. Containing some advantages like fast dynamic response, easy inclusion of constraints and simple control loop, makes the FCS-MPC method attractive to use as a switching strategy for converters. However, the large amount of required calculations is a problem in the widespread of this method. In this way, to resolve this problem this paper presents a modified method that effectively reduces the computation load compare with conventional FCS-MPC method and at the same time does not affect on control performance. The proposed method can be used for exchanging power between electrical grid and DC resources by providing active and reactive power compensations. Experiments on three-level converter for three Power Factor Correction (PFC), inductive and capacitive compensation modes verify the good and comparable performance. The results have been simulated using MATLAB/SIMULINK software. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morales-Reyes, I.; Seseña-Rubfiaro, A.; Acosta-García, M. C.; Batina, N.; Godínez-Fernández, R.
2016-08-01
It is well known that, in excitable cells, the dynamics of the ion currents (I i) is extremely important to determine both the magnitude and time course of an action potential (A p). To observe these two processes simultaneously, we cultured NG108-15 cells over a multi-walled carbon nanotubes electrode (MWCNTe) surface and arranged a two independent Patch Clamp system configuration (Bi-Patch Clamp). The first system was used in the voltage or current clamp mode, using a glass micropipette as an electrode. The second system was modified to connect the MWCNTe to virtual ground. While the A p was recorded through the micropipette electrode, the MWCNTe was used to measure the underlying whole-cell current. This configuration allowed us to record both the membrane voltage (V m) and the current changes simultaneously. Images acquired by atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that cultured cells developed a complex network of neurites, which served to establish the necessary close contact and strong adhesion to the MWCNTe surface. These features were a key factor to obtain the recording of the whole-cell I i with a high signal to noise ratio (SNR). The experimental results were satisfactorily reproduced by a theoretical model developed to simulate the proposed system. Besides the contribution to a better understanding of the fundamental mechanisms involved in cell communication, the developed method could be useful in cell physiology studies, pharmacology and diseases diagnosis.
Holness, M J; Greenwood, G K; Smith, N D; Sugden, M C
2005-11-01
Hyperthyroidism modifies lipid dynamics (increased oxidation), impairs insulin action and can suppress insulin secretion. We therefore examined the impact of hyperthyroidism on the relationship between glucose-stimulated insulin secretion (GSIS) and insulin action, using late pregnancy as a model of physiological insulin resistance that is associated with compensatory insulin hypersecretion to maintain glucose tolerance. Our aim was to examine whether hyperthyroidism compromises the regulation of insulin secretion and the ability of insulin to modulate circulating lipid concentrations in late pregnancy. Hyperthyroidism was induced by tri-iodothyronine (T(3)) administration from day 17 to 19 of pregnancy. GSIS was assessed during an IVGTT and during hyperglycaemic clamps in vivo and in vitro, using step-up and -down islet perifusions. Hyperthyroidism in pregnancy elevated the glucose threshold for GSIS and impaired GSIS at low and high glucose concentrations in islet perifusions. In the intact animal, insulin secretion (after bolus glucose) was more rapidly curtailed following removal of the glucose stimulus to secretion. In contrast, GSIS was maintained during protracted hyperglycaemia (hyperglycaemic clamps) in the hyperthyroid pregnant state in vivo. Hyperthyroidism in vivo during late pregnancy blunts GSIS in subsequently isolated and perifused islets at low and high glucose concentrations. It also adversely affects GSIS under conditions of an acute glucose challenge in vivo. In contrast, GSIS is maintained during sustained hyperglycaemia in vivo, suggesting that in vivo factors can rescue GSIS. The ability of insulin to suppress systemic lipid levels during hyperglycaemic clamps was impaired. We therefore suggest that higher circulating lipids may preserve GSIS under conditions of sustained hyperglycaemia in the hyperthyroid pregnancy.
Dynamical model of long-term synaptic plasticity
Abarbanel, Henry D. I.; Huerta, R.; Rabinovich, M. I.
2002-01-01
Long-term synaptic plasticity leading to enhancement in synaptic efficacy (long-term potentiation, LTP) or decrease in synaptic efficacy (long-term depression, LTD) is widely regarded as underlying learning and memory in nervous systems. LTP and LTD at excitatory neuronal synapses are observed to be induced by precise timing of pre- and postsynaptic events. Modification of synaptic transmission in long-term plasticity is a complex process involving many pathways; for example, it is also known that both forms of synaptic plasticity can be induced by various time courses of Ca2+ introduction into the postsynaptic cell. We present a phenomenological description of a two-component process for synaptic plasticity. Our dynamical model reproduces the spike time-dependent plasticity of excitatory synapses as a function of relative timing between pre- and postsynaptic events, as observed in recent experiments. The model accounts for LTP and LTD when the postsynaptic cell is voltage clamped and depolarized (LTP) or hyperpolarized (LTD) and no postsynaptic action potentials are evoked. We are also able to connect our model with the Bienenstock, Cooper, and Munro rule. We give model predictions for changes in synaptic strength when periodic spike trains of varying frequency and Poisson distributed spike trains with varying average frequency are presented pre- and postsynaptically. When the frequency of spike presentation exceeds ≈30–40 Hz, only LTP is induced. PMID:12114531
NASA Astrophysics Data System (ADS)
Rezaei Kivi, Araz; Azizi, Saber; Norouzi, Peyman
2017-12-01
In this paper, the nonlinear size-dependent static and dynamic behavior of an electrostatically actuated nano-beam is investigated. A fully clamped nano-beam is considered for the modeling of the deformable electrode of the NEMS. The governing differential equation of the motion is derived using Hamiltonian principle based on couple stress theory; a non-classical theory for considering length scale effects. The nonlinear partial differential equation of the motion is discretized to a nonlinear Duffing type ODE's using Galerkin method. Static and dynamic pull-in instabilities obtained by both classical theory and MCST are compared. At the second stage of analysis, shooting technique is utilized to obtain the frequency response curve, and to capture the periodic solutions of the motion; the stability of the periodic solutions are gained by Floquet theory. The nonlinear dynamic behavior of the deformable electrode due to the AC harmonic accompanied with size dependency is investigated.
NASA Astrophysics Data System (ADS)
Nuriya, Mutsuo; Yasui, Masato
2010-03-01
The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.
Cerebral hemodynamic changes and electroencephalography during carotid endarterectomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algotsson, L.; Messeter, K.; Rehncrona, S.
Some patients undergoing endarterectomy for occlusive carotid artery disease run a risk of brain ischemia during cross-clamping of the artery. The present study of 15 patients was undertaken to evaluate changes in cerebral blood flow (CBF), as measured with an intravenous (IV) tracer (133Xenon) technique, and to relate CBF changes to changes in the electroencephalogram (EEG). CBF was measured before and after induction of anesthesia, during cross-clamping of the carotid artery, after release of the clamps, and at 24 hours after the operation. All the patients were anesthetized with methohexitone, fentanyl, and nitrous oxide and oxygen. EEG was continuously recordedmore » during the operation. Carotid artery shunts were not used. In 8 patients, cross-clamping of the carotid artery did not influence the EEG. In this group of patients, induction of anesthesia caused a 38% decrease in CBF, which presumably reflects the normal reaction to the anesthetic agent given. There were no further changes in CBF during cross-clamping. In 7 patients, the EEG showed signs of deterioration during the intraoperative vascular occlusion. In these patients, anesthesia did not cause any CBF change, whereas cross-clamping the artery induced a 33% decrease in CBF. In individual patients, the severity of EEG changes correlated with the decrease in CBF. The absence of a change in CBF by anesthesia and a decrease due to cross-clamping of the carotid artery may be explained by the presence of a more advanced cerebrovascular disease and an insufficiency to maintain CBF during cross-clamping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M; Randerson, James T; Thornton, Peter E
2009-12-01
The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Projectmore » (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons of the CLM3 offline results against observational datasets have been performed and are described in Randerson et al. (2009). CLM version 4 has been evaluated using C-LAMP, showing improvement in many of the metrics. Efforts are now underway to initiate a Nitrogen-Land Model Intercomparison Project (N-LAMP) to better constrain the effects of the nitrogen cycle in biosphere models. Presented will be new results from C-LAMP for CLM4, initial N-LAMP developments, and the proposed land-biosphere model benchmarking activity.« less
Design and Construction of a Small Whole Body Inhalation Chamber
2010-07-30
by 12 7/8 inch high) were solvent welded onto this base using Weldon 4 (Ridout Plastics, San Diego CA). On the inside of each side wall a 2 inch...together using one inch spring clamps (Just Clamps, model 616,Atlanta Ga) on their respective flanges. These clamps were spaced evenly around the
Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells.
Klemic, Kathryn G; Klemic, James F; Reed, Mark A; Sigworth, Fred J
2002-06-01
The patch clamp method measures membrane currents at very high resolution when a high-resistance 'gigaseal' is established between the glass microelectrode and the cell membrane (Pflugers Arch. 391 (1981) 85; Neuron 8 (1992) 605). Here we describe the first use of the silicone elastomer, poly(dimethylsiloxane) (PDMS), for patch clamp electrodes. PDMS is an attractive material for patch clamp recordings. It has low dielectric loss and can be micromolded (Annu. Rev. Mat. Sci. 28 (1998) 153) into a shape that mimics the tip of the glass micropipette. Also, the surface chemistry of PDMS may be altered to mimic the hydrophilic nature of glass (J. Appl. Polym. Sci. 14 (1970) 2499; Annu. Rev. Mat. Sci. 28 (1998) 153), thereby allowing a high-resistance seal to a cell membrane. We present a planar electrode geometry consisting of a PDMS partition with a small aperture sealed between electrode and bath chambers. We demonstrate that a planar PDMS patch electrode, after oxidation of the elastomeric surface, permits patch clamp recording on Xenopus oocytes. Our results indicate the potential for high-throughput patch clamp recording with a planar array of PDMS electrodes.
Galetin, Thomas; Tevoufouet, Etienne E; Sandmeyer, Jakob; Matthes, Jan; Nguemo, Filomain; Hescheler, Jürgen; Weiergräber, Marco; Schneider, Toni
2013-07-01
Voltage-gated Ca(2+) channels regulate cardiac automaticity, rhythmicity and excitation-contraction coupling. Whereas L-type (Cav 1·2, Cav 1·3) and T-type (Cav 3·1, Cav 3·2) channels are widely accepted for their functional relevance in the heart, the role of Cav 2·3 Ca(2+) channels expressing R-type currents remains to be elucidated. We have investigated heart rate dynamics in control and Cav 2·3-deficient mice using implantable electrocardiogram radiotelemetry and pharmacological injection experiments. Autonomic block revealed that the intrinsic heart rate does not differ between both genotypes. Systemic administration of isoproterenol resulted in a significant reduction in interbeat interval in both genotypes. It remained unaffected after administering propranolol in Cav 2·3(-|-) mice. Heart rate from isolated hearts as well as atrioventricular conduction for both genotypes differed significantly. Additionally, we identified and analysed the developmental expression of two splice variants, i.e. Cav 2·3c and Cav 2·3e. Using patch clamp technology, R-type currents could be detected in isolated prenatal cardiomyocytes and be related to R-type Ca(2+) channels. Our results indicate that on the systemic level, the pharmacologically inducible heart rate range and heart rate reserve are impaired in Cav 2·3 (-|-) mice. In addition, experiments on Langendorff perfused hearts elucidate differences in basic properties between both genotypes. Thus, Cav 2·3 does not only contribute to the cardiac autonomous nervous system but also to intrinsic rhythm propagation. Copyright © 2012 John Wiley & Sons, Ltd.
Yan, Shi; Wang, Xing; Wang, Yaqi; Lv, Chao; Wang, Yuzhao; Wang, Jia; Yang, Yue; Wu, Nan
2017-12-01
Postoperative pleural drainage markedly influences the length of hospital stay and the financial costs of medical care. The safety of chest tube clamping before removal has been documented. This study aims to determine if intermittent chest tube clamping shortens the duration of chest tube drainage and hospital stay after lung cancer surgery. We retrospectively analyzed 285 consecutive patients with operable lung cancer treated using lobectomy and systematic mediastinal lymphadenectomy. The chest tube management protocol in our institution was changed in January 2014, and thus, 222 patients (clamping group) were managed with intermittent chest tube clamping, while 63 patients (control group) were managed with a traditional protocol. Propensity score matching at a 1:1 ratio was applied to balance variables potentially affecting the duration of chest tube drainage. Analyses were performed to compare drainage duration and postoperative hospital stay between the two groups in the matched cohort. Multivariate logistic regression analyses were performed to predict the factors associated with chest tube drainage duration. The rates of thoracocentesis after chest tube removal were similar between the clamping and control groups in the whole cohort (0.5% vs. 1.6%, P=0.386). The rates of pyrexia were also comparable in the two groups (2.3% vs. 3.2%, P=0.685). After propensity score matching, 61 cases remained in each group. Both chest tube drainage duration (3.9 vs. 4.8 days, P=0.001) and postoperative stay (5.7 vs. 6.4 days, P=0.025) were significantly shorter in the clamping group than in the control group. Factors significantly associated with shorter chest tube drainage duration were female sex, chest tube clamping, left lobectomy, and video-assisted thoracoscopic surgery (VATS) (P<0.05). Intermittent postoperative chest tube clamping may decrease the duration of chest tube drainage and postoperative hospital stay while maintaining patient safety.
Colby, Jennifer M; Krantz, Bryan A
2015-11-06
Anthrax toxin is a tripartite virulence factor produced by Bacillus anthracis during infection. Under acidic endosomal pH conditions, the toxin's protective antigen (PA) component forms a transmembrane channel in host cells. The PA channel then translocates its two enzyme components, lethal factor and edema factor, into the host cytosol under the proton motive force. Protein translocation under a proton motive force is catalyzed by a series of nonspecific polypeptide binding sites, called clamps. A 10-residue guest/host peptide model system, KKKKKXXSXX, was used to functionally probe polypeptide-clamp interactions within wild-type PA channels. The guest residues were Thr, Ala, Leu, Phe, Tyr, and Trp. In steady-state translocation experiments, the channel blocked most tightly with peptides that had increasing amounts of nonpolar surface area. Cooperative peptide binding was observed in the Trp-containing peptide sequence but not the other tested sequences. Trp substitutions into a flexible, uncharged linker between the lethal factor amino-terminal domain and diphtheria toxin A chain expedited translocation. Therefore, peptide-clamp sites in translocase channels can sense large steric features (like tryptophan) in peptides, and while these steric interactions may make a peptide translocate poorly, in the context of folded domains, they can make the protein translocate more rapidly presumably via a hydrophobic steric ratchet mechanism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Greenberg, Michael R
2009-09-01
Public and political opposition have made finding locations for new nuclear power plants, waste management, and nuclear research and development facilities a challenge for the U.S. government and the nuclear industry. U.S. government-owned properties that already have nuclear-related activities and commercial nuclear power generating stations are logical locations. Several studies and utility applications to the Nuclear Regulatory Commission suggest that concentrating locations at major plants (CLAMP) has become an implicit siting policy. We surveyed 2,101 people who lived within 50 miles of 11 existing major nuclear sites and 600 who lived elsewhere in the United States. Thirty-four percent favored CLAMP for new nuclear power plants, 52% for waste management facilities, and 50% for new nuclear laboratories. College educated, relatively affluent male whites were the strongest CLAMP supporters. They disproportionately trusted those responsible for the facilities and were not worried about existing nuclear facilities or other local environmental issues. Notably, they were concerned about continuing coal use. Not surprisingly, CLAMP proponents tended to be familiar with their existing local nuclear site. In short, likely CLAMP sites have a large and politically powerful core group to support a CLAMP policy. The challenge to proponents of nuclear technologies will be to sustain this support and expand the base among those who clearly are less connected and receptive to new nearby sites.
NASA Astrophysics Data System (ADS)
Trachsel, Maria A.; Lobsiger, Simon; Schär, Tobias; Blancafort, Lluís; Leutwyler, Samuel
2017-06-01
We measure the S0 → S1 spectrum and time-resolved S1 state nonradiative dynamics of the "clamped" cytosine derivative 5,6-trimethylenecytosine (TMCyt) in a supersonic jet, using two-color resonant two-photon ionization (R2PI), UV/UV holeburning, and ns time-resolved pump/delayed ionization. The experiments are complemented with spin-component scaled second-order approximate coupled cluster (SCS-CC2), time-dependent density functional theory, and multi-state second-order perturbation-theory (MS-CASPT2) ab initio calculations. While the R2PI spectrum of cytosine breaks off ˜500 cm-1 above its 000 band, that of TMCyt extends up to +4400 cm-1 higher, with over a hundred resolved vibronic bands. Thus, clamping the cytosine C5-C6 bond allows us to explore the S1 state vibrations and S0 → S1 geometry changes in detail. The TMCyt S1 state out-of-plane vibrations ν1', ν3', and ν5' lie below 420 cm-1, and the in-plane ν11', ν12', and ν23' vibrational fundamentals appear at 450, 470, and 944 cm-1. S0 → S1 vibronic simulations based on SCS-CC2 calculations agree well with experiment if the calculated ν1', ν3', and ν5' frequencies are reduced by a factor of 2-3. MS-CASPT2 calculations predict that the ethylene-type S1 ⇝ S0 conical intersection (CI) increases from +366 cm-1 in cytosine to >6000 cm-1 in TMCyt, explaining the long lifetime and extended S0 → S1 spectrum. The lowest-energy S1 ⇝ S0 CI of TMCyt is the "amino out-of-plane" (OPX) intersection, calculated at +4190 cm-1. The experimental S1 ⇝ S0 internal conversion rate constant at the S1(v'=0 ) level is kI C=0.98 -2.2 ṡ1 08 s-1, which is ˜10 times smaller than in 1-methylcytosine and cytosine. The S1(v'=0 ) level relaxes into the T1(3π π *) state by intersystem crossing with kI S C=0.41 -1.6 ṡ1 08 s-1. The T1 state energy is measured to lie 24 580 ±560 cm-1 above the S0 state. The S1(v'=0 ) lifetime is τ =2.9 ns, resulting in an estimated fluorescence quantum yield of Φf l=24 %. Intense two-color R2PI spectra of the TMCyt amino-enol tautomers appear above 36 000 cm-1. A sharp S1 ionization threshold is observed for amino-keto TMCyt, yielding an adiabatic ionization energy of 8.114 ±0.002 eV.
NASA Astrophysics Data System (ADS)
Shen, Jyi-Lai; Wei, Shui-Ken; Lin, Chin-Yuan; Iong Li, Ssu; Huang, Chih-Chuan
2010-04-01
The configuration of a simple improved high efficiency automatic-power-controlled and gain-clamped EDFA (APC-GC-EDFA) for broadband passive optical networking systems (BPON) is presented here. In order to compensate the phase and amplitude variation due to the different distance between the optical line terminal (OLT) and optical network units (ONU), the APC-GC-EDFA need to be employed. A single 980 nm laser module is employed as the primary pump. To extend the bandwidth, all C-band ASE is recycled as the secondary pump to enhance the gain efficiency. An electrical feedback circuit is used as a multi-wavelength channel transmitter monitor for the automatic power control to improve the gain-flattened flatness for stable amplification. The experimental results prove that the EDFA system can provide flatter clamped gain in both C-band and L-band configurations. The gain flatness wavelength ranging from 1530 to 1610 nm is within 32.83 ± 0.64 dB, i.e. below 1.95 %. The gains are clamped at 33.85 ± 0.65 dB for the input signal power of -40 dBm to -10 dBm. The range of noise figure is between 6.37 and 6.56, which is slightly lower compared to that of unclamped amplifiers. This will be very useful for measuring the gain flatness of APC-GC-EDFA. Finally, we have also demonstrated the records of the overall simultaneous dynamics measurements for the new system stabilization. The carrier to noise ratio (CNR) is 49.5 to 50.8 dBc which is above the National Television System Committee (NTSC) standard of 43 dBc, and both composite second order (CSO) 69.2 to 71.5 dBc and composite triple beat (CTB) of 69.8 to 72.2 dBc are above 53 dBc. The recorded corresponding rise-time of 1.087 ms indicates that the system does not exhibit any overshoot of gain or ASE variation due to the signal at the beginning of the pulse.
Tensile film clamps and mounting block for the rheovibron and autovibron viscoelastometer
NASA Technical Reports Server (NTRS)
Stoakley, Diane M. (Inventor); St.clair, Anne K. (Inventor); Little, Bruce D. (Inventor)
1989-01-01
A set of film clamps and a mounting block for use in the determination of tensile modulus and damping properties of films in a manually operated or automated Rheovibron is diagrammed. These clamps and mounting block provide uniformity of sample gripping and alignment in the instrument. Operator dependence and data variability are greatly reduced.
Plastic Clamp Retains Clevis Pin
NASA Technical Reports Server (NTRS)
Cortes, R. G.
1983-01-01
Plastic clamp requires no special installation or removal tools. Clamp slips easily over end of pin. Once engaged in groove, holds pin securely. Installed and removed easily without special tools - screwdriver or putty knife adequate for prying out of groove. Used to retain bearings, rollers pulleys, other parts that rotate. Applications include slowly and intermittently rotating parts in appliances.
Cacho, J; Sevillano, J; de Castro, J; Herrera, E; Ramos, M P
2008-11-01
Insulin resistance plays a role in the pathogenesis of diabetes, including gestational diabetes. The glucose clamp is considered the gold standard for determining in vivo insulin sensitivity, both in human and in animal models. However, the clamp is laborious, time consuming and, in animals, requires anesthesia and collection of multiple blood samples. In human studies, a number of simple indexes, derived from fasting glucose and insulin levels, have been obtained and validated against the glucose clamp. However, these indexes have not been validated in rats and their accuracy in predicting altered insulin sensitivity remains to be established. In the present study, we have evaluated whether indirect estimates based on fasting glucose and insulin levels are valid predictors of insulin sensitivity in nonpregnant and 20-day-pregnant Wistar and Sprague-Dawley rats. We have analyzed the homeostasis model assessment of insulin resistance (HOMA-IR), the quantitative insulin sensitivity check index (QUICKI), and the fasting glucose-to-insulin ratio (FGIR) by comparing them with the insulin sensitivity (SI(Clamp)) values obtained during the hyperinsulinemic-isoglycemic clamp. We have performed a calibration analysis to evaluate the ability of these indexes to accurately predict insulin sensitivity as determined by the reference glucose clamp. Finally, to assess the reliability of these indexes for the identification of animals with impaired insulin sensitivity, performance of the indexes was analyzed by receiver operating characteristic (ROC) curves in Wistar and Sprague-Dawley rats. We found that HOMA-IR, QUICKI, and FGIR correlated significantly with SI(Clamp), exhibited good sensitivity and specificity, accurately predicted SI(Clamp), and yielded lower insulin sensitivity in pregnant than in nonpregnant rats. Together, our data demonstrate that these indexes provide an easy and accurate measure of insulin sensitivity during pregnancy in the rat.
Different methods of hilar clamping during partial nephrectomy: Impact on renal function.
Lee, Jeong Woo; Kim, Hwanik; Choo, Minsoo; Park, Yong Hyun; Ku, Ja Hyeon; Kim, Hyeon Hoe; Kwak, Cheol
2014-03-01
To evaluate the impact of different hilar clamping methods on changes in renal function after partial nephrectomy. We analyzed the clinical data of 369 patients who underwent partial nephrectomy for a single renal tumor of size ≤4.0 cm and a normal contralateral kidney. Patients were separated into three groups depending on hilar clamping method: non-clamping, cold ischemia and warm ischemia. Estimated glomerular filtration rate was examined at preoperative, nadir and 1 year postoperatively. Percent change in estimated glomerular filtration rate was used as the parameter to assess the renal functional outcome. Percent change in nadir estimated glomerular filtration rate in the non-clamping group was significantly less compared with the cold ischemia and warm ischemia groups (P < 0.001). However, no significant differences among the groups were noted in percent change of estimated glomerular filtration rate at 1 year (P = 0.348). The cold ischemia group had a similar serial change of postoperative renal function compared with the warm ischemia group. Percent change in 1-year estimated glomerular filtration rate increased with increasing ischemia time in the cold ischemia (P for trend = 0.073) and warm ischemia groups (P for trend = 0.010). On multivariate analysis, hilar clamping (both warm ischemia and cold ischemia) were significantly associated with percent change in nadir estimated glomerular filtration rate, but not in 1-year estimated glomerular filtration rate. Non-clamping partial nephrectomy results in a lower percent change in nadir estimated glomerular filtration rate, whereas it carries an estimated glomerular filtration rate change at 1 year that is similar to partial nephrectomy with cold ischemia and warm ischemia. Cold ischemia and warm ischemia provide a similar effect on renal function. Therefore, when hilar clamping is required, minimization of ischemia time is necessary. © 2013 The Japanese Urological Association.
Yi, Ruirong; Mukaiyama, Hiroyuki; Tachikawa, Takashi; Shimomura, Norihiro; Aimi, Tadanori
2010-01-01
In the bipolar basidiomycete Pholiota microspora, a pair of homeodomain protein genes located at the A-mating-type locus regulates mating compatibility. In the present study, we used a DNA-mediated transformation system in P. microspora to investigate the homeodomain proteins that control the clamp formation. When a single homeodomain protein gene (A3-hox1 or A3-hox2) from the A3 monokaryon strain was transformed into the A4 monokaryon strain, the transformants produced many pseudoclamps but very few clamps. When two homeodomain protein genes (A3-hox1 and A3-hox2) were transformed either separately or together into the A4 monokaryon, the ratio of clamps to the clamplike cells in the transformants was significantly increased to ca. 50%. We therefore concluded that the gene dosage of homeodomain protein genes is important for clamp formation. When the sip promoter was connected to the coding region of A3-hox1 and A3-hox2 and the fused fragments were introduced into NGW19-6 (A4), the transformants achieved more than 85% clamp formation and exhibited two nuclei per cell, similar to the dikaryon (NGW12-163 × NGW19-6). The results of real-time reverse transcription-PCR confirmed that sip promoter activity is greater than that of the native promoter of homeodomain protein genes in P. microspora. Thus, we concluded that nearly 100% clamp formation requires high expression levels of homeodomain protein genes and that altered expression of the A-mating-type genes alone is sufficient to drive true clamp formation. PMID:20453073
Niiranen, Laila; Lian, Kjersti; Johnson, Kenneth A; Moe, Elin
2015-02-27
Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution. The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution. The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.
Safety evaluation of large external fixation clamps and frames in a magnetic resonance environment.
Luechinger, Roger; Boesiger, Peter; Disegi, John A
2007-07-01
Large orthopedic external fixation clamps and related components were evaluated for force, torque, and heating response when subjected to the strong electromagnetic fields of magnetic-resonance (MR) imaging devices. Forces induced by a 3-Tesla (T) MR scanner were compiled for newly designed nonmagnetic clamps and older clamps that contained ferromagnetic components. Heating trials were performed in a 1.5 and in a 3 T MR scanner with two assembled external fixation frames. Forces of the newly designed clamps were more than a factor 2 lower as the gravitational force on the device whereas, magnetic forces on the older devices showed over 10 times the force induced by earth acceleration of gravity. No torque effects could be found for the newly designed clamps. Temperature measurements at the tips of Schanz screws in the 1.5 T MR scanner showed a rise of 0.7 degrees C for a pelvic frame and of 2.1 degrees C for a diamond knee bridge frame when normalized to a specific absorption rate (SAR) of 2 W/kg. The normalized temperature increases in the 3 T MR scanner were 0.9 degrees C for the pelvic frame and 1.1 degrees C for the knee bridge frame. Large external fixation frames assembled with the newly designed clamps (390 Series Clamps), carbon fiber reinforced rods, and implant quality 316L stainless steel Schanz screws met prevailing force and torque limits when tested in a 3-T field, and demonstrated temperature increase that met IEC-60601 guidelines for extremities. The influence of frame-induced eddy currents on the risk of peripheral nerve stimulation was not investigated. Copyright 2006 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)
2014-01-01
Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.
Management of umbilical cord clamping.
Webbon, Lucy
2013-02-01
The Royal College of Midwives (RCM) has updated its third stage of labour guidelines (RCM 2012) to be clearly supportive of a delay in umbilical cord clamping, although specific guidance on timing is yet to be announced. It is therefore imperative that both midwives and student midwives understand and are able to integrate delaying into their practice, as well as communicating to women the benefits; only in this way can we give women fully informed choices on this aspect of care. The main benefit of delayed cord clamping is the protection it can provide in reducing childhood anaemia, which is a major issue, especially in poorer countries. A review of the evidence found no risks linked to delayed clamping, and no evidence that it cannot be used in combination with the administration of uterotonic drugs. Delayed cord clamping can be especially beneficial for pre term and compromised babies.
NASA Astrophysics Data System (ADS)
Jia, Xin-Hong
2006-12-01
The theoretical model on gain-clamped semiconductor optical amplifiers (GC-SOAs) based on compensating light has been constructed. Using this model, the effects of insertion position and peak reflectivity of the fiber Bragg grating (FBG) on the gain clamping and noise figure (NF) characteristics of GC-SOA are analyzed. The results show that the effect of the FBG insertion position on gain clamping is slight, but the lower NF can be obtained for input FBG-type GC-SOA; when the FBG peak wavelength is designed to close the signal wavelength, the gain clamping and NF characteristics that can be reached are better. Further study shows that, with the increased peak reflectivity of the FBG, the critical input power is broadened and the gain tends to be varied slowly; the larger bias current is helpful to raise gain and decrease the noise figure but is harmful to a gain flatness characteristic.
Stanley, Molly; Macauley, Shannon L.; Caesar, Emily E.; Koscal, Lauren J.; Moritz, Will; Robinson, Grace O.; Roh, Joseph; Keyser, Jennifer; Jiang, Hong
2016-01-01
Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APPswe/PS1dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aβ, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aβ. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment. PMID:27852778
The Nano-Patch-Clamp Array: Microfabricated Glass Chips for High-Throughput Electrophysiology
NASA Astrophysics Data System (ADS)
Fertig, Niels
2003-03-01
Electrophysiology (i.e. patch clamping) remains the gold standard for pharmacological testing of putative ion channel active drugs (ICADs), but suffers from low throughput. A new ion channel screening technology based on microfabricated glass chip devices will be presented. The glass chips contain very fine apertures, which are used for whole-cell voltage clamp recordings as well as single channel recordings from mammalian cell lines. Chips containing multiple patch clamp wells will be used in a first bench-top device, which will allow perfusion and electrical readout of each well. This scalable technology will allow for automated, rapid and parallel screening on ion channel drug targets.
Surface characterization of selected LDEF tray clamps
NASA Technical Reports Server (NTRS)
Cromer, T. F.; Grammer, H. L.; Wightman, J. P.; Young, Philip R.; Slemp, Wayne S.
1993-01-01
The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected.
Bistability induces episodic spike communication by inhibitory neurons in neuronal networks.
Kazantsev, V B; Asatryan, S Yu
2011-09-01
Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.
The Importance of Engine External's Health
NASA Technical Reports Server (NTRS)
Stoner, Barry L.
2006-01-01
Engine external components include all the fluid carrying, electron carrying, and support devices that are needed to operate the propulsion system. These components are varied and include: pumps, valves, actuators, solenoids, sensors, switches, heat exchangers, electrical generators, electrical harnesses, tubes, ducts, clamps and brackets. The failure of any component to perform its intended function will result in a maintenance action, a dispatch delay, or an engine in flight shutdown. The life of each component, in addition to its basic functional design, is closely tied to its thermal and dynamic environment .Therefore, to reach a mature design life, the component's thermal and dynamic environment must be understood and controlled, which can only be accomplished by attention to design analysis and testing. The purpose of this paper is to review analysis and test techniques toward achieving good component health.
Probing Mechanics of Crumpled Two-Dimensional Membranes and Cantilevers
NASA Astrophysics Data System (ADS)
Nicholl, Ryan; Conley, Hiram; Lavrik, Nickolay; Vlassiouk, Ivan; Puzyrev, Yevgeniy; Sreenivas, Vijayashree Parsi; Pantelides, Sokrates; Bolotin, Kirill
Two-dimensional materials (2DMs) are inevitably crumpled in the out-of-plane direction due to both static wrinkling associated with uneven stresses and dynamic wrinkling resulting from flexural phonons. Here, we investigate the effect of this crumpling on mechanical properties of 2DMs - in-plane stiffness and bending rigidity. To carry out these measurements, we developed techniques to fabricate graphene membranes and singly clamped graphene cantilevers that are stable in vacuum and air. The measurements are performed by actuating these devices electrostatically and monitoring their displacement via sensitive interferometric profilometry both at room and low temperatures. We find that crumpling lowers the in-plane stiffness and strongly increases the bending rigidity of 2DMs. Furthermore, we unravel the relative contribution of static and dynamic wrinkling to observed renormalization of the effective mechanical constants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Burghoff, David; Reno, John
Frequency combs based on quantum cascade laser (QCL) are finding promising applications in highspeed broadband spectroscopy in the terahertz regime, where many molecules have their "fingerprints". To form stable combs in QCLs, an effective control of group velocity dispersion plays a critical role. The dispersion of the QCL cavity has two main parts: a static part from the material and a dynamic part from the intersubband transitions. Unlike the gain, which is clamped to a fixed value above the lasing threshold, dispersion associated with the intersubband transitions changes with bias even above the threshold, and this reduces the dynamic rangemore » of comb formation. Here, by incorporating tunability into the dispersion compensator, we demonstrate a QCL device exhibiting comb operation from I th to I max, which greatly expands the operation range of the frequency combs.« less
Hyperinsulinism and polycystic ovary syndrome (PCOS): role of insulin clearance.
Amato, M C; Vesco, R; Vigneri, E; Ciresi, A; Giordano, C
2015-12-01
Insulin resistance and compensatory hyperinsulinism are the predominant metabolic defects in polycystic ovary syndrome (PCOS). However, hyperinsulinism, as well as being compensatory, can also express a condition of reduced insulin clearance. Our aim was to evaluate the differences in insulin action and metabolism between women with PCOS (with normal glucose tolerance) and age- and BMI-matched women with prediabetes (without hyperandrogenism and ovulatory disorders). 22 women with PCOS and 21 age/BMI-matched women with prediabetes were subjected to a Hyperinsulinemic-euglycemic clamp and an Oral Glucose tolerance Test (OGTT). Insulin sensitivity was assessed by the glucose infusion rate during clamp (M value); insulin secretion by Insulinogenic index, Oral Disposition Index (DIo) and AUC(2h-insulin) during OGTT; and insulin clearance by the metabolic clearance rate of insulin (MCRI) during clamp. Women with PCOS showed significantly higher levels of AUC(2h-insulin) (p < 0.011), Insulinogenic Index (p < 0.001), DIo (p = 0.002) and significantly lower levels of AUC(2h-glucos)e (p = 0.001). No difference was found between the two groups regarding insulin sensitivity (M value). Lower levels of MCRI were found in women with PCOS [420 (IQR 227-588) vs. 743 (IQR 597-888) ml m(-2) min(-1): p < 0.001]. Furthermore, in the PCOS group, a strong independent inverse correlation was only observed between MCRI and AUC(2h-insulin) (PCOS: β:-0.878; p < 0.001; Prediabetes: β:-0.501; p = 0.019). Our study suggests that in normoglycemic women with PCOS there is peripheral insulin sensitivity similar to that of women with prediabetes. What sets PCOS apart is the hyperinsulinism, today still simplistically defined "compensatory"; actually this is mainly related to decreased insulin clearance whose specific causes and dynamics have yet to be clarified.
Fulton, Colleen; Stoll, Kathrin; Thordarson, Dana
2016-03-01
level 1 evidence supports the practice of delayed cord clamping, and many doctors and midwives consider it routine care when delivering vigorous, term neonates. However, scarce research exists regarding the risks or benefits of delayed cord clamping for infants needing resuscitation with positive pressure ventilation. Nonetheless, some midwives in British Columbia already practice intact cord resuscitation (ICR) at planned home births and in the hospital in order to facilitate delayed cord clamping for infants who need resuscitation. we distributed an online survey to all registered midwives in British Columbia through the Midwives Association of BC between October 22nd and November 13th, 2014. This survey examined how midwives balance a commitment to delayed cord clamping with the need for resuscitation in home and hospital settings. a total of 82 midwives responded to the survey (response rate=35%). Many have practiced ICR (56, 69%). However, the majority (42, 78%) of respondents had only performed this type of resuscitation at planned home births and not in the hospital setting. In both settings, midwives found the ergonomics of resuscitation with an intact cord challenging, but cited a smoother physiologic transition for neonates as their primary reasons for this practice, despite the obstacles. Midwives reported a greater ability to use their delivery equipment to provide stable thermoregulation at the bedside at planned home births during a resuscitation compared with the set up of hospital delivery rooms. although the majority of participants practice ICR at planned home births, very few use this practice in the hospital setting. In the home, ergonomics is the primary obstacle for easily practicing ICR; hospital culture, protocols and lack of training are additional barriers to this practice in the hospital setting. Ergonomics and lack of appropriate set up in the delivery room were also primary obstacles. Midwives expressed a desire to find ways to incorporate ICR into the hospital setting. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regnault, Timothy RH; Oddy, Hutton V; Nancarrow, Colin; Sriskandarajah, Nadarajah; Scaramuzzi, Rex J
2004-01-01
Background Elevated non-esterified fatty acids (NEFA) concentrations in non-pregnant animals have been reported to decrease pancreatic responsiveness. As ovine gestation advances, maternal insulin concentrations fall and NEFA concentrations increase. Experiments were designed to examine if the pregnancy-associated rise in NEFA concentration is associated with a reduced pancreatic sensitivity to glucose in vivo. We investigated the possible relationship of NEFA concentrations in regulating maternal insulin concentrations during ovine pregnancy at three physiological states, non-pregnant, non-lactating (NPNL), 105 and 135 days gestational age (dGA, term 147+/- 3 days). Methods The plasma concentrations of insulin, growth hormone (GH) and ovine placental lactogen (oPL) were determined by double antibody radioimmunoassay. Insulin responsiveness to glucose was measured using bolus injection and hyperglycaemic clamp techniques in 15 non-pregnant, non-lactating ewes and in nine pregnant ewes at 105 dGA and near term at 135 dGA. Plasma samples were also collected for hormone determination. In addition to bolus injection glucose and insulin Area Under Curve calculations, the Mean Plasma Glucose Increment, Glucose Infusion Rate and Mean Plasma Insulin Increment and Area Under Curve were determined for the hyperglycaemic clamp procedures. Statistical analysis of data was conducted with Students t-tests, repeated measures ANOVA and 2-way ANOVA. Results Maternal growth hormone, placental lactogen and NEFA concentrations increased, while basal glucose and insulin concentrations declined with advancing gestation. At 135 dGA following bolus glucose injections, peak insulin concentrations and insulin area under curve (AUC) profiles were significantly reduced in pregnant ewes compared with NPNL control ewes (p < 0.001 and P < 0.001, respectively). In hyperglycaemic clamp studies, while maintaining glucose levels not different from NPNL ewes, pregnant ewes displayed significantly reduced insulin responses and a maintained depressed insulin secretion. In NPNL ewes, 105 and 135 dGA ewes, the Glucose Infusion Rate (GIR) was constant at approximately 5.8 mg glucose/kg/min during the last 40 minutes of the hyperglycaemic clamp and the Mean Plasma Insulin Increment (MPII) was only significantly (p < 0.001) greater in NPNL ewes. Following the clamp, NEFA concentrations were reduced by approximately 60% of pre-clamp levels in all groups, though a blunted and suppressed insulin response was maintained in 105 and 135 dGA ewes. Conclusions Results suggest that despite an acute suppression of circulating NEFA concentrations during pregnancy, the associated steroids and hormones of pregnancy and possibly NEFA metabolism, may act to maintain a reduced insulin output, thereby sparing glucose for non-insulin dependent placental uptake and ultimately, fetal requirements. PMID:15352999
Horst, E A; Kvidera, S K; Mayorga, E J; Shouse, C S; Al-Qaisi, M; Dickson, M J; Ydstie, J; Ramirez Ramirez, H A; Keating, A F; Dickson, D J; Griswold, K E; Baumgard, L H
2018-06-01
Activated immune cells are insulin sensitive and utilize copious amounts of glucose. Because chromium (Cr) increases insulin sensitivity and may be immunomodulatory, our objective was to evaluate the effect of supplemental Cr (KemTrace Cr propionate, 20 g/d; Kemin Industries Inc., Des Moines, IA) on immune system glucose utilization and immune system dynamics following an intravenous endotoxin challenge in lactating Holstein cows. Twenty cows (320 ± 18 d in milk) were randomly assigned to 1 of 4 treatments: (1) pair-fed (PF) control (PF-CON; 5 mL of saline; n = 5), (2) PF and Cr supplemented (PF-Cr; 5 mL of saline; n = 5), (3) lipopolysaccharide (LPS)-euglycemic clamp and control supplemented (LPS-CON; 0.375 µg/kg of body weight LPS; n = 5), and (4) LPS-euglycemic clamp and Cr supplemented (LPS-Cr; 0.375 µg/kg of body weight LPS; n = 5). The experiment was conducted serially in 3 periods (P). During P1 (3 d), cows received their respective dietary treatments and baseline values were obtained. At the initiation of P2 (2 d), either a 12-h LPS-euglycemic clamp was conducted or cows were PF to their respective dietary counterparts. During P3 (3 d), cows consumed feed ad libitum and continued to receive their respective dietary treatment. During P2, LPS administration decreased dry matter intake (DMI; 40%) similarly among diets, and by experimental design the pattern and magnitude of reduced DMI were similar in the PF cohorts. During P3, LPS-Cr cows tended to have decreased DMI (6%) relative to LPS-CON cows. Relative to controls, milk yield from LPS-challenged cows decreased (58%) during P2 and LPS-Cr cows produced less (16%) milk than LPS-CON cows. During P3, milk yield progressively increased similarly in LPS-administered cows, but overall milk yield remained decreased (24%) compared with PF controls. There were no dietary treatment differences in milk yield during P3. Circulating insulin increased 9- and 15-fold in LPS-administered cows at 6 and 12 h postbolus, respectively, compared with PF controls. Compared with LPS-CON cows, circulating insulin in LPS-Cr cows was decreased (48%) at 6 h postbolus. Relative to PF cows, circulating LPS binding protein and serum amyloid A from LPS-administered cows increased 2- and 5-fold, respectively. Compared with PF cows, blood neutrophil counts in LPS-infused cows initially decreased, then gradually increased 163%. Between 18 and 48 h postbolus, the number of neutrophils was increased (12%) in LPS-Cr versus LPS-CON cows. The 12-h total glucose deficit was 220 and 1,777 g for the PF and LPS treatments, respectively, but glucose utilization following immune activation was not influenced by Cr. In summary, supplemental Cr reduced the insulin response and increased circulating neutrophils following an LPS challenge but did not appear to alter the immune system's glucose requirement following acute and intense activation. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats.
Tanahashi, Masayuki; Karicheti, Venkateswarlu; Thor, Karl B; Marson, Lesley
2012-10-01
The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats (n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts did not significantly alter any parameter. Transection of all three nerves eliminated BSM activation completely. In conclusion, penile clamping occlusion recruits penile and urethral primary afferent fibers that are necessary for an ELR. Urethral distension without significant penile afferent activation recruits urethral primary afferent fibers carried in either the pelvic or pudendal nerve that are necessary for the single-burst UBS reflex.
Structure and Dynamics of the Liver Receptor Homolog 1-PGC1α Complex.
Mays, Suzanne G; Okafor, C Denise; Tuntland, Micheal L; Whitby, Richard J; Dharmarajan, Venkatasubramanian; Stec, Józef; Griffin, Patrick R; Ortlund, Eric A
2017-07-01
Peroxisome proliferator-activated gamma coactivator 1- α (PGC1 α ) regulates energy metabolism by directly interacting with transcription factors to modulate gene expression. Among the PGC1 α binding partners is liver receptor homolog 1 (LRH-1; NR5A2), an orphan nuclear hormone receptor that controls lipid and glucose homeostasis. Although PGC1 α is known to bind and activate LRH-1, mechanisms through which PGC1 α changes LRH-1 conformation to drive transcription are unknown. Here, we used biochemical and structural methods to interrogate the LRH-1-PGC1 α complex. Purified, full-length LRH-1, as well as isolated ligand binding domain, bound to PGC1 α with higher affinity than to the coactivator, nuclear receptor coactivator-2 (Tif2), in coregulator peptide recruitment assays. We present the first crystal structure of the LRH-1-PGC1 α complex, which depicts several hydrophobic contacts and a strong charge clamp at the interface between these partners. In molecular dynamics simulations, PGC1 α induced correlated atomic motion throughout the entire LRH-1 activation function surface, which was dependent on charge-clamp formation. In contrast, Tif2 induced weaker signaling at the activation function surface than PGC1 α but promoted allosteric signaling from the helix 6/ β -sheet region of LRH-1 to the activation function surface. These studies are the first to probe mechanisms underlying the LRH-1-PGC1 α interaction and may illuminate strategies for selective therapeutic targeting of PGC1 α -dependent LRH-1 signaling pathways. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
NASA Astrophysics Data System (ADS)
Way, Yusoff
2018-01-01
The main aim of this research is to develop a new prototype and to conduct cost analysis of the existing roller clamp which is one of parts attached to Intravenous (I.V) Tubing used in Intravenous therapy medical device. Before proceed with the process to manufacture the final product using Fused Deposition Modeling (FDM) Technology, the data collected from survey were analyzed using Product Design Specifications approach. Selected concept has been proven to have better quality, functions and criteria compared to the existing roller clamp and the cost analysis of fabricating the roller clamp prototype was calculated.
Serotonin inhibits low-threshold spike interneurons in the striatum
Cains, Sarah; Blomeley, Craig P; Bracci, Enrico
2012-01-01
Low-threshold spike interneurons (LTSIs) are important elements of the striatal architecture and the only known source of nitric oxide in this nucleus, but their rarity has so far prevented systematic studies. Here, we used transgenic mice in which green fluorescent protein is expressed under control of the neuropeptide Y (NPY) promoter and striatal NPY-expressing LTSIs can be easily identified, to investigate the effects of serotonin on these neurons. In sharp contrast with its excitatory action on other striatal interneurons, serotonin (30 μm) strongly inhibited LTSIs, reducing or abolishing their spontaneous firing activity and causing membrane hyperpolarisations. These hyperpolarisations persisted in the presence of tetrodotoxin, were mimicked by 5-HT2C receptor agonists and reversed by 5-HT2C antagonists. Voltage-clamp slow-ramp experiments showed that serotonin caused a strong increase in an outward current activated by depolarisations that was blocked by the specific M current blocker XE 991. In current-clamp experiments, XE 991 per se caused membrane depolarisations in LTSIs and subsequent application of serotonin (in the presence of XE 991) failed to affect these neurons. We concluded that serotonin strongly inhibits striatal LTSIs acting through postsynaptic 5-HT2C receptors and increasing an M type current. PMID:22495583
Liu, Pin W.
2014-01-01
Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716
Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface
NASA Astrophysics Data System (ADS)
Menchon, Grégory; Bombarde, Oriane; Trivedi, Mansi; Négrel, Aurélie; Inard, Cyril; Giudetti, Brigitte; Baltas, Michel; Milon, Alain; Modesti, Mauro; Czaplicki, Georges; Calsou, Patrick
2016-03-01
The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference - NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.
Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition
Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael
2015-01-01
Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880
Enhanced strain effect of aged acceptor-doped BaTiO3 ceramics with clamping domain structures
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhou, Zhiyong; Zhao, Xiaobo; Liu, Zhen; Liang, Ruihong; Dong, Xianlin
2017-03-01
A clamping domain structure is proposed to improve the amount of non-180° domain switching in BaTiO3 based piezoelectric ceramics. Experimental results show a large unipolar strain of 0.23% at 5 kV/mm in aged 0.5 mol. % Mn doped BaTiO3 ceramics with clamping domain structures, and the normalized strain (d33*= Smax/Emax) reaches 600 pm/V at low electric fields of 2 or 3 kV/mm. In contrast, pure BaTiO3 ceramics with clamping domain structures exhibit no clear polarization constriction or strain enhancement at 3 kV/mm. Electron paramagnetic resonance spectra verify the existence of titanium vacancies, Mn2+ and Mn4+, in 0.5 mol. % Mn doped BaTiO3 ceramics. These results indicate that the enhanced strain effect can be attributed to the combined effect of the clamping domain structure and stabilization of defect dipoles. This method provides a general way to obtain large strain in ferroelectrics.
Service equipment for use in hostile environments
NASA Technical Reports Server (NTRS)
Dolce, James L. (Inventor); Gordon, Andrew L. (Inventor)
1994-01-01
Service equipment for use in hostile environments includes a detachable service unit secured to a stationary service unit. The detachable service unit includes a housing with an exterior plate, a power control interface for connection to an exterior power source, locating pins located in said exterior plate, an electrical connector in the exterior plate electrically coupled to said power control interface, and a pair of clamping receptacles formed in the exterior plate and located on adjacent opposite edges of the exterior plate. The stationary unit includes an electrical connector for connection to the electrical connector of the detachable service unit, a clamping apparatus for clamping and unclamping the detachable service unit from the stationary unit, a base clamp assembly for mounting the clamping apparatus onto the stationary unit, and locating pin holes for receiving the locating pins and aligning the detachable service unit onto the stationary unit. The detachable service unit and stationary unit have mating scalloped faces which aid in alignment and provide a mechanism for heat dissipation.
Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.
Annecchino, Luca A; Morris, Alexander R; Copeland, Caroline S; Agabi, Oshiorenoya E; Chadderton, Paul; Schultz, Simon R
2017-08-30
Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed "blind," meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Polonchuk, Liudmila
2014-01-01
Patch-clamping is a powerful technique for investigating the ion channel function and regulation. However, its low throughput hampered profiling of large compound series in early drug development. Fortunately, automation has revolutionized the area of experimental electrophysiology over the past decade. Whereas the first automated patch-clamp instruments using the planar patch-clamp technology demonstrated rather a moderate throughput, few second-generation automated platforms recently launched by various companies have significantly increased ability to form a high number of high-resistance seals. Among them is SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich, Germany), a fully automated giga-seal patch-clamp system with the highest throughput on the market. By recording from up to 96 cells simultaneously, the SyncroPatch(®) 96 allows to substantially increase throughput without compromising data quality. This chapter describes features of the innovative automated electrophysiology system and protocols used for a successful transfer of the established hERG assay to this high-throughput automated platform.
Patch-clamp amplifiers on a chip
Weerakoon, Pujitha; Culurciello, Eugenio; Yang, Youshan; Santos-Sacchi, Joseph; Kindlmann, Peter J.; Sigworth, Fred J.
2010-01-01
We present the first, fully-integrated, two-channel implementation of a patch-clamp measurement system. With this “PatchChip” two simultaneous whole-cell recordings can be obtained with rms noise of 8 pA in a 10 kHz bandwidth. The capacitance and series-resistance of the electrode can be compensated up to 10 pF and 100 MΩ respectively under computer control. Recordings of hERG and Nav 1.7 currents demonstrate the system's capabilities, which are on par with large, commercial patch-clamp instrumentation. By reducing patch-clamp amplifiers to a millimeter size micro-chip, this work paves the way to the realization of massively-parallel, high-throughput patch-clamp systems for drug screening and ion-channel research. The PatchChip is implemented in a 0.5 μm silicon-on-sapphire process; its size is 3 × 3 mm2 and the power consumption is 5 mW per channel with a 3.3 V power supply. PMID:20637803
Influence of clamp-up force on the strength of bolted composite joints
NASA Astrophysics Data System (ADS)
Horn, Walter J.; Schmitt, Ron R.
1994-03-01
Composite materials offer the potential for a reduction in the number of individual parts and joints in a structure because large one-piece components can replace multipart assemblies. Nevertheless, there are many situations where composite parts must be joined and often mechanical fasteners provide the only practical method of joining those parts. The long-term strength of mechanically fastened joints of composite members can be directly affected by the clamp-up force of the fastener and thus perhaps by the relaxation of this force due to the viscoelastic character of the composite materials of the joint. Methods for predicting the effect of bolt clamp-up force relaxation on the strength of mechanically fastened joints of thermoplastic composite materials were investigated during the present study. A test program, using two thermoplastic composite materials, was conducted to determine the influence of clamp-up force on joint strength, to measure the relaxation of the joint clamp-up force with time, and to measure the change of joint strength as a function of time.
Sanford, J P
1993-01-01
Candiduria has emerged as a common, vexing diagnostic and therapeutic problem over the past 40 years. Treatment by means of bladder irrigation with a solution of amphotericin B has become widely used in clinical practice. However, the specifics of the procedure--concentration of amphotericin B, use of continuous washing vs. instillation with cross-clamping to allow "dwell-times," and duration of treatment--are based entirely on anecdotal experiences. The published reports and evolution of recommendations are reviewed. A prospective randomized double-blind study is needed to provide answers. In the meantime, administration of 200-300 mL of amphotericin B solution by triple-lumen urethral catheter with cross-clamping for 60-90 minutes seems most appropriate. Irrigation for no longer than 2 days should suffice if the procedure is to be effective. The optimal concentration of amphotericin B has not been defined; however, 5-10 mg/L appears adequate.
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Lake, Melinda A.; Hoelzle, David J.
2017-09-01
There is a need for the development of large displacement (O (10-6) m) and force (O (10-6) N) electrostatic actuators with low actuation voltages (< ±8 V) for underwater bio-MEMS applications. In this paper, we present the design, fabrication, and characterization of a curved electrode electrostatic actuator in a clamped-clamped beam configuration meant to operate in an underwater environment. Our curved electrode actuator is unique in that it operates in a stable manner past the pull-in instability. Models based on the Rayleigh-Ritz method accurately predict the onset of static instability and the displacement versus voltage function, as validated by quasistatic experiments. We demonstrate that the actuator is capable of achieving a large peak-to-peak displacement of 19.5 µm and force of 43 µN for a low actuation voltage of less than ±8 V and is thus appropriate for underwater bio-MEMS applications.
NASA Astrophysics Data System (ADS)
Ennevor, Sean J.; Castro, Dan J.; Girardi, Gino; Lufkin, Robert B.; Farahani, Keyvan; Cho, Richard C.; Soudant, Jacques
1993-07-01
Interstitial tumor therapy guided by imaging techniques is minimally invasive and a promising surgical approach which will become clinically practical only when effective, simple, and safe modalities for tumor excision and control of tumor vascular supply are available. In a novel experiment utilizing a 1.5 T magnetic resonance (MR) scanner, the carotid artery of a New Zealand white rabbit was identified and then clamped using the Premium Surgicliptm 9.0' disposable automatic clip applier. The magnetic resonance imager equipped with an angiography package was used to locate vasculature in the carotid triangle of the rabbit via fast scan techniques. The artery was then clamped with titanium clips, and repeat magnetic resonance angiography (MRA) clearly demonstrated the cessation of blood flow within the chosen vessel. The experimental results are promising, since the angiography package not only provided the visualization of the arterial vessel, but was also used to guide an MR compatible surgical instrument to the vessel, with no artifact seen.
Normal Modes of Vibration of the PHALANX Gun
1993-06-01
Clamps Bricks, Thin Shells, Rigid Elements Mid-Barrel Clamps Bricks, Rigid Elements Barrels Beams with tubular cross-section Stub Rotor Bricks, Thin...Shells Rotor Bricks Needle Bearing Bricks, Springs Casing Thin Shells Thrust Bearing Bricks, Springs Recoil Adapters Bricks, Rigid Elements, Springs... rigid elements were used to connect the barrels to the clamps and stub rotor and the recoil adapter springs to 48 the gun body. "End release codes
Single mode variable-sensitivity fiber optic sensors
NASA Technical Reports Server (NTRS)
Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.
1992-01-01
We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.
Hangody, Gy; Pánics, G; Szebényi, G; Kiss, R; Hangody, L; Pap, K
2016-03-01
The goal of the study was to find a proper technique to fix tendon grafts into an INSTRON loading machine. From 8 human cadavers, 40 grafts were collected. We removed the bone-patella tendon-bone grafts, the semitendinosus and gracilis tendons, the quadriceps tendon-bone grafts, the Achilles tendons, and the peroneus longus tendons from each lower extremity. We tested the tendon grafts with five different types of fixation devices: surgical thread (Premicron 3), general mounting clamp, wire mesh, cement fixation, and a modified clamp for an INSTRON loading machine. The mean failure load in case of surgical thread fixation was (381N ± 26N). The results with the general clamp were (527N ± 45N). The wire meshes were more promising (750N ± 21N), but did not reach the outcomes we desired. Easy slippages of the ends of the tendons from the cement encasements were observed (253N ± 18N). We then began to use Shi's clamp that could produce 977N ± 416N peak force. We combined Shi's clamp with freezing of the graft and the rupture of the tendon itself demonstrated an average force of 2198 N ± 773N. We determined that our modified frozen clamp fixed the specimens against high tensile forces.
HTS techniques for patch clamp-based ion channel screening - advances and economy.
Farre, Cecilia; Fertig, Niels
2012-06-01
Ten years ago, the first publication appeared showing patch clamp recordings performed on a planar glass chip instead of using a conventional patch clamp pipette. "Going planar" proved to revolutionize ion channel drug screening as we know it, by allowing high quality measurements of ion channels and their effectors at a higher throughput and at the same time de-skilling the highly laborious technique. Over the years, platforms evolved in response to user requirements regarding experimental features, data handling plus storage, and suitable target diversity. This article gives a snapshot image of patch clamp-based ion channel screening with focus on platforms developed to meet requirements of high-throughput screening environments. The commercially available platforms are described, along with their benefits and drawbacks in ion channel drug screening. Automated patch clamp (APC) platforms allow faster investigation of a larger number of ion channel active compounds or cell clones than previously possible. Since patch clamp is the only method allowing direct, real-time measurements of ion channel activity, APC holds the promise of picking up high quality leads, where they otherwise would have been overseen using indirect methods. In addition, drug candidate safety profiling can be performed earlier in the drug discovery process, avoiding late-phase compound withdrawal due to safety liability issues, which is highly costly and inefficient.
Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology.
Brueggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N
2004-01-01
Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.
Timing of cord clamping in very preterm infants: more evidence is needed.
Tarnow-Mordi, William O; Duley, Lelia; Field, David; Marlow, Neil; Morris, Jonathan; Newnham, John; Paneth, Nigel; Soll, Roger F; Sweet, David
2014-08-01
In December 2012, the American College of Obstetricians and Gynecologists published a Committee Opinion entitled "Timing of umbilical cord clamping after birth." It stated that "evidence exists to support delayed cord clamping in preterm infants, when feasible. The single most important benefit for preterm infants is the possibility for a nearly 50% reduction in IVH." However, the Committee Opinion added that the ideal timing of umbilical cord clamping has yet to be determined and recommended that large clinical trials be conducted in the most preterm infants. Published randomized controlled trials include <200 infants of <30 weeks' gestation, with assessments of neurodevelopmental outcome in less than one-half of the children. This is a major gap in the evidence. Without reliable data from randomized controlled trials that optimally include childhood follow-up evaluations, we will not know whether delayed cord clamping may do more overall harm than good. Ongoing trials of delayed cord clamping plan to report childhood outcomes in >2000 additional very preterm infants. Current recommendations may need to change when these results become available. Greater international collaboration could accelerate resolution of whether this promising intervention will improve disability-free survival in about 1 million infants who will be born very preterm globally each year. Copyright © 2014 Mosby, Inc. All rights reserved.
Glomerular loss after arteriovenous and arterial clamping for renal warm ischemia in a swine model.
Bechara, Gustavo Ruschi; Damasceno-Ferreira, José Aurelino; Abreu, Leonardo Albuquerque Dos Santos; Costa, Waldemar Silva; Sampaio, Francisco José Barcellos; Pereira-Sampaio, Marco Aurélio; Souza, Diogo Benchimol De
2016-11-01
To evaluate the glomerular loss after arteriovenous or arterial warm ischemia in a swine model. Twenty four pigs were divided into Group Sham (submitted to all surgical steps except the renal ischemia), Group AV (submitted to 30 minutes of warm ischemia by arteriovenous clamping of left kidney vessels), and Group A (submitted to 30 minutes of ischemia by arterial clamping). Right kidneys were used as controls. Weigh, volume, cortical volume, glomerular volumetric density (Vv[Glom]), volume-weighted glomerular volume (VWGV), and the total number of glomeruli were measured for each organ. Group AV showed a 24.5% reduction in its left kidney Vv[Glom] and a 25.4% reduction in the VWGV, when compared to the right kidney. Reductions were also observed when compared to kidneys of sham group. There was a reduction of 19.2% in the total number of glomeruli in AV kidneys. No difference was observed in any parameters analyzed on the left kidneys from group A. Renal warm ischemia of 30 minutes by arterial clamping did not caused significant glomerular damage, but arteriovenous clamping caused significant glomerular loss in a swine model. Clamping only the renal artery should be considered to minimize renal injury after partial nephrectomies.
Cerebral watershed infarcts may be induced by hemodynamic changes in blood flow.
Shi, Jingfei; Meng, Ran; Konakondla, Sanjay; Ding, Yuchuan; Duan, Yunxia; Wu, Di; Wang, Bincheng; Luo, Yinghao; Ji, Xunming
2017-06-01
A watershed infarct is defined as an ischemic lesion at the border zones between territories of two major arteries. The pathogenesis of watershed infarcts, specifically whether they are caused by hemodynamic or embolic mechanisms, has long been debated. In this study, we aimed to examine whether watershed infarcts can be induced by altering the hemodynamic conditions in rats. In phase one, to determine the proper clamping duration for a reproducible infarct, 30 rats were equally divided into 5 subgroups and underwent bilateral common carotid artery (CCA) clamping for different durations (0.5, 1.0, 1.5, 2.0, and 3.0 hours). In phase two, to analyze the types of infarcts induced by bilateral CCA clamping, 40 rats were subjected to bilateral CCA clamping for 2 hours. As a control, 8 rats underwent all the operation procedures except bilateral CCA clamping. We performed 7.0T magnetic resonance imaging on the surviving rats on the second day to evaluate the extent of the infarcts. We further identified and examined the infarcts with brain slices stained using 2, 3, 5-triphenyltetrazolium chloride (TTC) on the third day. After 2 hours of bilateral CCA clamping, cerebral infarction occurred in 42% of surviving rats (13/31). The majority of the ischemic lesions were located in watershed regions of the brain, demonstrated by both MRI and TTC staining. Watershed infarcts were induced through changing hemodynamic conditions by bilateral CCA clamping in rats. This method may lead to the development of a reliable rodent model for watershed infarcts.
Danker, Timm; Braun, Franziska; Silbernagl, Nikole; Guenther, Elke
2016-03-01
Manual patch clamp, the gold standard of electrophysiology, represents a powerful and versatile toolbox to stimulate, modulate, and record ion channel activity from membrane fragments and whole cells. The electrophysiological readout can be combined with fluorescent or optogenetic methods and allows for ultrafast solution exchanges using specialized microfluidic tools. A hallmark of manual patch clamp is the intentional selection of individual cells for recording, often an essential prerequisite to generate meaningful data. So far, available automation solutions rely on random cell usage in the closed environment of a chip and thus sacrifice much of this versatility by design. To parallelize and automate the traditional patch clamp technique while perpetuating the full versatility of the method, we developed an approach to automation, which is based on active cell handling and targeted electrode placement rather than on random processes. This is achieved through an automated pipette positioning system, which guides the tips of recording pipettes with micrometer precision to a microfluidic cell handling device. Using a patch pipette array mounted on a conventional micromanipulator, our automated patch clamp process mimics the original manual patch clamp as closely as possible, yet achieving a configuration where recordings are obtained from many patch electrodes in parallel. In addition, our implementation is extensible by design to allow the easy integration of specialized equipment such as ultrafast compound application tools. The resulting system offers fully automated patch clamp on purposely selected cells and combines high-quality gigaseal recordings with solution switching in the millisecond timescale.
Hotta, Tsukasa; Takifuji, Katsunari; Yokoyama, Shozo; Matsuda, Kenji; Yamaue, Hiroki
2012-10-01
A new rectal transaction method was developed using a combination of the curved cutter stapler and endo-Satinsky clamp because of the difficulty in performing rectal transection in the narrow pelvic cavity. The endo-Satinsky clamp is inserted without a flexible trocar cannula by connecting the handle extra-abdominally with a shaft of the endo-Satinsky clamp through the left higher quadrant port via a retrograde course from a midline incision above the pubis symphysis. The endo-Satinsky clamp is used to clamp the rectal wall horizontally at the distal end of the tumor. The wrist of an elastic surgical glove fixed with the shaft of the curved cutter stapler is covered with a midline incision, and consequently, the stapler is inserted into the pelvic cavity. The curved head of the stapler is rotated to the left at the anal side of the endo-Satinsky clamp to insert the rectum between the jaws of the stapler. The stapler is closed and fired, and a rectal transection is thus performed with one firing using a single cartridge. This method was performed in 12 patients with rectal cancer. The median value and range of the tumor distance from the anal verge were 7.0 and 4.5-11.0 cm, respectively. The median duration of the operation was 252 min, and the median blood loss was 15 mL. Only one stapling cartridge was used for rectal transection in all cases, and no major complications were observed. We herein demonstrated a new transection method for rectal cancer.
Permanent installation of fibre-optic DTS cables in boreholes for temperature monitoring
NASA Astrophysics Data System (ADS)
Henninges, J.; Schrötter, J.; Erbas, K.; Böde, S.; Huenges, E.
2003-04-01
Temperature measurements have become an important tool for the monitoring of dynamic processes in the subsurface both in academia and industry. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions during a field experiment, which was carried out within the framework of the Mallik 2002 Production Research Well Program*. Three 40 m spaced, 1200 m deep wells were equipped with permanent fibre-optic sensor cables and the variation of temperature was measured deploying the Distributed Temperature Sensing (DTS) technology. The used DTS system enables the simultaneous online registration of temperature profiles along the three boreholes with a maximum spatial resolution of 0.25 m and a minimum sampling interval of 7 sec. After an individual calibration of the fibre-optic sensor cables a resolution of 0.3 °C of the measured temperature data could be achieved. A special feature of the experiment design is the installation of the sensor cables outside the borehole casing. The fibre-optic cables were attached to the outer side of the casing at every connector within intervals of approx. 12 m with cable clamps. The clamps enable a defined positioning of the cable around the perimeter of the casing and are protecting the cable from mechanical damage during installation. After completion the sensor cables are located in the cement annulus between casing and borehole wall. As an example of the performance of the described temperature logging technology data from the reaming of a 300 m thick cement plug inside the borehole is displayed, offering a unique opportunity to explore thermal processes in the near vicinity of a borehole during drilling. The temperature changes image the progress of the drill bit as well as changes in the mud circulation. Furthermore, local effects can be observed that relate to local thermal properties and technical features of the cable installation. (*) The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group.
Tanagho, Youssef S; Bhayani, Sam B; Sandhu, Gurdarshan S; Vaughn, Nicholas P; Nepple, Kenneth G; Figenshau, R Sherburne
2012-10-01
To evaluate the potential benefit of performing off-clamp robot-assisted partial nephrectomy as it relates to renal functional outcomes, while assessing the safety profile of this unconventional surgical approach. Twenty-nine patients who underwent off-clamp robot-assisted partial nephrectomy for suspected renal cell carcinoma at Washington University between March 2008 and September 2011 (group 1) were matched to 29 patients with identical nephrometry scores and comparable baseline renal function who underwent robot-assisted partial nephrectomy with hilar clamping during the same period (group 2). The matched cohorts' perioperative and renal functional outcomes were compared at a mean 9-month follow-up. Mean estimated blood loss was 146.4 mL in group 1, versus 103.9 mL in group 2 (P = .039). Mean hilar clamp time was 0 minutes in group 1 and 14.7 minutes in group 2. No perioperative complications were encountered in group 1; 1 Clavien-2 complication (3.4%) occurred in group 2 (P = 1.000). At 9-month follow-up, mean estimated glomerular filtration rate in group 1 was 79.9 versus 84.8 mL/min/1.73 m(2) preoperatively (P = .013); mean estimated glomerular filtration rate in group 2 was 74.1 versus 85.8 mL/min/1.73 m(2) preoperatively (P < .001). Hence, estimated glomerular filtration rate declined by a mean of 4.9 mL/min/1.73 m(2) in group 1 versus 11.7 mL/min/1.73 m(2) in group 2 (P = .033). Off-clamp robot-assisted partial nephrectomy is associated with a favorable morbidity profile and relatively greater renal functional preservation compared to clamped robot-assisted partial nephrectomy. Nevertheless, the benefit is small in renal functional terms and may have very limited clinical relevance. Copyright © 2012 Elsevier Inc. All rights reserved.
Timing of umbilical cord-clamping and infant anaemia: the role of maternal anaemia.
Blouin, Brittany; Penny, Mary E; Maheu-Giroux, Mathieu; Casapía, Martín; Aguilar, Eder; Silva, Hermánn; Creed-Kanashiro, Hilary M; Joseph, Serene A; Gagnon, Anita; Rahme, Elham; Gyorkos, Theresa W
2013-05-01
Evidence from randomized controlled trials has shown that delayed cord-clamping is beneficial to infant iron status. The role of maternal anaemia in this relationship, however, has not been established. To determine the effect of maternal anaemia at delivery on the association between timing of umbilical cord-clamping and infant anaemia at 4 and 8 months of age. A cohort of pregnant women admitted to the labour room of Hospital Iquitos (Iquitos, Peru) and their newborns were recruited into the study during two time periods (18 May to 3 June and 6-20 July 2009). Between the two recruitment periods, the hospital's policy changed from early to delayed umbilical cord-clamping. Maternal haemoglobin levels were measured before delivery, and the time between delivery and cord-clamping was recorded at delivery for the entire cohort. Mother-infant pairs were followed-up at 4 (n = 207) and 8 months (n = 184) post partum. Infant haemoglobin levels were measured at follow-up visits. Data were analysed using logistic regression models. The prevalence of maternal anaemia (Hb <11.0 g/dl) at delivery was 22%. Infant haemoglobin levels at 4 and 8 months of age were 10.4 g/dl and 10.3 g/dl, respectively. Infant haemoglobin levels did not differ significantly between infants born to anaemic mothers and those born to non-anaemic mothers at either 4 or 8 months of age. However, the association between the timing of cord-clamping and infant anaemia was modified by the mother's anaemia status. Significant benefits of delayed cord-clamping in preventing anaemia were found in infants born to anaemic mothers at both 4 months (aOR = 0.59, 95% CI 0.36-0.99) and 8 months (aOR = 0.38, 95% CI 0.19-0.76) of age. The study contributes additional evidence in support of delayed cord-clamping. This intervention is likely to have most public health impact in areas with a high prevalence of anaemia during pregnancy.
Biomechanical evaluation of a new fixation device for the thoracic spine.
Hongo, Michio; Ilharreborde, Brice; Gay, Ralph E; Zhao, Chunfeng; Zhao, Kristin D; Berglund, Lawrence J; Zobitz, Mark; An, Kai-Nan
2009-08-01
The technology used in surgery for spinal deformity has progressed rapidly in recent years. Commonly used fixation techniques may include monofilament wires, sublaminar wires and cables, and pedicle screws. Unfortunately, neurological complications can occur with all of these, compromising the patients' health and quality of life. Recently, an alternative fixation technique using a metal clamp and polyester belt was developed to replace hooks and sublaminar wiring in scoliosis surgery. The goal of this study was to compare the pull-out strength of this new construct with sublaminar wiring, laminar hooks and pedicle screws. Forty thoracic vertebrae from five fresh frozen human thoracic spines (T5-12) were divided into five groups (8 per group), such that BMD values, pedicle diameter, and vertebral levels were equally distributed. They were then potted in polymethylmethacrylate and anchored with metal screws and polyethylene bands. One of five fixation methods was applied to the right side of the vertebra in each group: Pedicle screw, sublaminar belt with clamp, figure-8 belt with clamp, sublaminar wire, or laminar hook. Pull-out strength was then assessed using a custom jig in a servohydraulic tester. The mean failure load of the pedicle screw group was significantly larger than that of the figure-8 clamp (P = 0.001), sublaminar belt (0.0172), and sublaminar wire groups (P = 0.04) with no significant difference in pull-out strength between the latter three constructs. The most common mode of failure was the fracture of the pedicle. BMD was significantly correlated with failure load only in the figure-8 clamp and pedicle screw constructs. Only the pedicle screw had a statistically significant higher failure load than the sublaminar clamp. The sublaminar method of applying the belt and clamp device was superior to the figure-8 method. The sublaminar belt and clamp construct compared favorably to the traditional methods of sublaminar wires and laminar hooks, and should be considered as an alternative fixation device in the thoracic spine.
Biomechanical evaluation of a new fixation device for the thoracic spine
Hongo, Michio; Ilharreborde, Brice; Zhao, Chunfeng; Zhao, Kristin D.; Berglund, Lawrence J.; Zobitz, Mark; An, Kai-Nan
2009-01-01
The technology used in surgery for spinal deformity has progressed rapidly in recent years. Commonly used fixation techniques may include monofilament wires, sublaminar wires and cables, and pedicle screws. Unfortunately, neurological complications can occur with all of these, compromising the patients’ health and quality of life. Recently, an alternative fixation technique using a metal clamp and polyester belt was developed to replace hooks and sublaminar wiring in scoliosis surgery. The goal of this study was to compare the pull-out strength of this new construct with sublaminar wiring, laminar hooks and pedicle screws. Forty thoracic vertebrae from five fresh frozen human thoracic spines (T5–12) were divided into five groups (8 per group), such that BMD values, pedicle diameter, and vertebral levels were equally distributed. They were then potted in polymethylmethacrylate and anchored with metal screws and polyethylene bands. One of five fixation methods was applied to the right side of the vertebra in each group: Pedicle screw, sublaminar belt with clamp, figure-8 belt with clamp, sublaminar wire, or laminar hook. Pull-out strength was then assessed using a custom jig in a servohydraulic tester. The mean failure load of the pedicle screw group was significantly larger than that of the figure-8 clamp (P = 0.001), sublaminar belt (0.0172), and sublaminar wire groups (P = 0.04) with no significant difference in pull-out strength between the latter three constructs. The most common mode of failure was the fracture of the pedicle. BMD was significantly correlated with failure load only in the figure-8 clamp and pedicle screw constructs. Only the pedicle screw had a statistically significant higher failure load than the sublaminar clamp. The sublaminar method of applying the belt and clamp device was superior to the figure-8 method. The sublaminar belt and clamp construct compared favorably to the traditional methods of sublaminar wires and laminar hooks, and should be considered as an alternative fixation device in the thoracic spine. PMID:19404687
Equilibrium potential for the postsynaptic response in the squid giant synapse.
Llinás, R; Joyner, R W; Nicholson, C
1974-11-01
The reversal potential for the EPSP in the squid giant synapse has been studied by means of an intracellular, double oil gap technique. This method allows the electrical isolation of a portion of the axon from the rest of the fiber and generates a quasi-isopotential segment. In order to make the input resistance of this nerve segment as constant as possible, the electroresponsive properties of the nerve membrane were blocked by intracellular injection of tetraethylammonium (TEA) and local extracellular application of tetrodotoxin (TTX). Thus, EPSP's could be evoked in the isolated segment with a minimal amount of electroresponsive properties. The reversal potential for the EPSP (EEPSP) was measured by recording the synaptic potential or the synaptic current during voltage clamping. The results indicate that EEPSP may vary from +15 to +25 mV, which is more positive than would be expected for a 1:1 conductance change for Na(+) and K(+) (approximately -15 mV) and too negative for a pure Na(+) conductance ((+)40 mV). This latter value (E(Na)) was directly determined in the voltage clamp experiments. The results suggest that the synaptic potential is probably produced by a permeability change to Na(+) to K(+) in a 4:1 ratio. No change in time-course was observed in the synaptic current at clamp levels of -100 and +90 mV. The implications of a variable ratio for Na(+)-K(+) permeability in subsynaptic-postsynaptic membranes are discussed.
Lactate overrides central nervous but not beta-cell glucose sensing in humans.
Schmid, Sebastian M; Jauch-Chara, Kamila; Hallschmid, Manfred; Oltmanns, Kerstin M; Peters, Achim; Born, Jan; Schultes, Bernd
2008-12-01
Lactate has been shown to serve as an alternative energy substrate in the central nervous system and to interact with hypothalamic glucose sensors. On the background of marked similarities between central nervous and beta-cell glucose sensing, we examined whether lactate also interacts with pancreatic glucose-sensing mechanisms in vivo. The effects of intravenously infused lactate vs placebo (saline) on central nervous and pancreatic glucose sensing were assessed during euglycemic and hypoglycemic clamp experiments in 10 healthy men. The release of neuroendocrine counterregulatory hormones during hypoglycemia was considered to reflect central nervous glucose sensing, whereas endogenous insulin secretion as assessed by serum C-peptide levels served as an indicator of pancreatic beta-cell glucose sensing. Lactate infusion blunted the counterregulatory hormonal responses to hypoglycemia, in particular, the release of epinephrine (P = .007) and growth hormone (P = .004), so that higher glucose infusion rates (P = .012) were required to maintain the target blood glucose levels. In contrast, the decrease in C-peptide concentrations during the hypoglycemic clamp remained completely unaffected by lactate (P = .60). During euglycemic clamp conditions, lactate infusion did not affect the concentrations of C-peptide and of counterregulatory hormones, with the exception of norepinephrine levels that were lower during lactate than saline infusion (P = .049) independently of the glycemic condition. Data indicate that glucose sensing of beta-cells is specific to glucose, whereas glucose sensing at the central nervous level can be overridden by lactate, reflecting the brain's ability to rely on lactate as an alternative major energy source.
Water's role in the force-induced unfolding of ubiquitin.
Li, Jingyuan; Fernandez, Julio M; Berne, B J
2010-11-09
In atomic force spectroscopic studies of the elastomeric protein ubiquitin, the β-strands 1-5 serve as the force clamp. Simulations show how the rupture force in the force-induced unfolding depends on the kinetics of water molecule insertion into positions where they can eventually form hydrogen bonding bridges with the backbone hydrogen bonds in the force-clamp region. The intrusion of water into this region is slowed down by the hydrophobic shielding effect of carbonaceous groups on the surface residues of β-strands 1-5, which thereby regulates water insertion prior to hydrogen bond breakage. The experiments show that the unfolding of the mechanically stressed protein is nonexponential due to static disorder. Our simulations show that different numbers and/or locations of bridging water molecules give rise to a long-lived distribution of transition states and static disorder. We find that slowing down the translational (not rotational) motions of the water molecules by increasing the mass of their oxygen atoms, which leaves the force field and thereby the equilibrium structure of the solvent unchanged, increases the average rupture force; however, the early stages of the force versus time behavior are very similar for our "normal" and fictitious "heavy" water models. Finally, we construct six mutant systems to regulate the hydrophobic shielding effect of the surface residues in the force-clamp region. The mutations in the two termini of β-sheets 1-5 are found to determine a preference for different unfolding pathways and change mutant's average rupture force.
Collective Behavior of Hair, and Ponytail Shape and Dynamics
NASA Astrophysics Data System (ADS)
Ball, Robin
I will discuss how we can build a mathematical model of the behaviour of a bundle of hair, comparing the results with experimental studies of the shape and dynamics of human ponytails. We treat the individual fibers as elastic filaments with random intrinsic curvature, in which the balance of bending elasticity, gravity, orientational disorder and inertia is recast as a differential equation for the envelope of the fibre bundle. The static elements of this work were first reported in R.E. Goldstein, P.B. Warren and R.C. Ball, Physical Review Letters 108, 078101 (2012). The compressibility of the bundle enters through an ``equation of state'' whose empirical form is shown to arise from a Confined Helix Model, in which the constraint of the surrounding hair is on a given fibre is represented as a confining cylinder. Using this model we find the ponytail shape is well fit with only one adjustable parameter, which is the degree to which the confining cylinders over fill space. The dynamics of driven vertical ponytail motion is well reproduced provided we introduce some damping, and we find the level of damping required is consistent with that arising from viscous drag of the lateral motion of the hair fibres through the interstitial air. Most of our match with experiment is achieved by approximating the fibre density of the ponytail to to be uniform across its cross-section, and to vary only length-wise. However we show that detail near the exit from a confining clamp (aka hairband) is only captured by computing the full cross-sectional variation. The work reported is joint with RE Goldstein (Cambridge UK) and PB Warren (Unilever Research).
NASA Astrophysics Data System (ADS)
Cai, Xiuhong; Li, Xiang; Qi, Hong; Wei, Fang; Chen, Jianyong; Shuai, Jianwei
2016-10-01
The gating properties of the inositol 1, 4, 5-trisphosphate (IP3) receptor (IP3R) are determined by the binding and unbinding capability of Ca2+ ions and IP3 messengers. With the patch clamp experiments, the stationary properties have been discussed for Xenopus oocyte type-1 IP3R (Oo-IP3R1), type-3 IP3R (Oo-IP3R3) and Spodoptera frugiperda IP3R (Sf-IP3R). In this paper, in order to provide insights about the relation between the observed gating characteristics and the gating parameters in different IP3Rs, we apply the immune algorithm to fit the parameters of a modified DeYoung-Keizer model. By comparing the fitting parameter distributions of three IP3Rs, we suggest that the three types of IP3Rs have the similar open sensitivity in responding to IP3. The Oo-IP3R3 channel is easy to open in responding to low Ca2+ concentration, while Sf-IP3R channel is easily inhibited in responding to high Ca2+ concentration. We also show that the IP3 binding rate is not a sensitive parameter for stationary gating dynamics for three IP3Rs, but the inhibitory Ca2+ binding/unbinding rates are sensitive parameters for gating dynamics for both Oo-IP3R1 and Oo-IP3R3 channels. Such differences may be important in generating the spatially and temporally complex Ca2+ oscillations in cells. Our study also demonstrates that the immune algorithm can be applied for model parameter searching in biological systems.
Lithography of Polymer Nanostructures on Glass for Teaching Polymer Chemistry and Physics.
Sahar-Halbany, Adi; Vance, Jennifer M; Drain, Charles Michael
2011-05-01
As nanolithography becomes increasingly important in technology and daily life, a variety of inexpensive and creative methods toward communicating the concepts underpinning these processes in the classroom are necessary. An experiment is described that uses simple CD-Rs, C-clamps, an oven, and a freezer to provide concrete examples and insights into the chemistry and principles of nanolithography. The experiment also has flexibility, making it suitable for a range of classroom levels from high school to more advanced labs in college. Because CD-Rs are composed of grooves of polycarbonate, the experiment provides a basis for discussions and exploration into the chemistry and physics of polymers on the nanoscale.
Barykina, Natalia V.; Subach, Oksana M.; Doronin, Danila A.; Sotskov, Vladimir P.; Roshchina, Marina A.; Kunitsyna, Tatiana A.; Malyshev, Aleksey Y.; Smirnov, Ivan V.; Azieva, Asya M.; Sokolov, Ilya S.; Piatkevich, Kiryl D.; Burtsev, Mikhail S.; Varizhuk, Anna M.; Pozmogova, Galina E.; Anokhin, Konstantin V.; Subach, Fedor V.; Enikolopov, Grigori N.
2016-01-01
Genetically encoded calcium indicators (GECIs) are mainly represented by two- or one-fluorophore-based sensors. One type of two-fluorophore-based sensor, carrying Opsanus troponin C (TnC) as the Ca2+-binding moiety, has two binding sites for calcium ions, providing a linear response to calcium ions. One-fluorophore-based sensors have four Ca2+-binding sites but are better suited for in vivo experiments. Herein, we describe a novel design for a one-fluorophore-based GECI with two Ca2+-binding sites. The engineered sensor, called NTnC, uses TnC as the Ca2+-binding moiety, inserted in the mNeonGreen fluorescent protein. Monomeric NTnC has higher brightness and pH-stability in vitro compared with the standard GECI GCaMP6s. In addition, NTnC shows an inverted fluorescence response to Ca2+. Using NTnC, we have visualized Ca2+ dynamics during spontaneous activity of neuronal cultures as confirmed by control NTnC and its mutant, in which the affinity to Ca2+ is eliminated. Using whole-cell patch clamp, we have demonstrated that NTnC dynamics in neurons are similar to those of GCaMP6s and allow robust detection of single action potentials. Finally, we have used NTnC to visualize Ca2+ neuronal activity in vivo in the V1 cortical area in awake and freely moving mice using two-photon microscopy or an nVista miniaturized microscope. PMID:27677952
A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates.
Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N
2008-01-15
Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Ca(i)) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ventricular action potential model, we modified the L-type calcium (Ca) current (I(Ca,L)) and Ca(i) cycling formulations based on new experimental patch-clamp data obtained in isolated rabbit ventricular myocytes, using the perforated patch configuration at 35-37 degrees C. Incorporating a minimal seven-state Markovian model of I(Ca,L) that reproduced Ca- and voltage-dependent kinetics in combination with our previously published dynamic Ca(i) cycling model, the new model replicates experimentally observed action potential duration and Ca(i) transient alternans at rapid heart rates, and accurately reproduces experimental action potential duration restitution curves obtained by either dynamic or S1S2 pacing.
A Component-Based FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations
Mak, Terrence S. T.; Rachmuth, Guy; Lam, Kai-Pui; Poon, Chi-Sang
2008-01-01
Neuron-machine interfaces such as dynamic clamp and brain-implantable neuroprosthetic devices require real-time simulations of neuronal ion channel dynamics. Field Programmable Gate Array (FPGA) has emerged as a high-speed digital platform ideal for such application-specific computations. We propose an efficient and flexible component-based FPGA design framework for neuronal ion channel dynamics simulations, which overcomes certain limitations of the recently proposed memory-based approach. A parallel processing strategy is used to minimize computational delay, and a hardware-efficient factoring approach for calculating exponential and division functions in neuronal ion channel models is used to conserve resource consumption. Performances of the various FPGA design approaches are compared theoretically and experimentally in corresponding implementations of the AMPA and NMDA synaptic ion channel models. Our results suggest that the component-based design framework provides a more memory economic solution as well as more efficient logic utilization for large word lengths, whereas the memory-based approach may be suitable for time-critical applications where a higher throughput rate is desired. PMID:17190033
Neural dynamics in reconfigurable silicon.
Basu, A; Ramakrishnan, S; Petre, C; Koziol, S; Brink, S; Hasler, P E
2010-10-01
A neuromorphic analog chip is presented that is capable of implementing massively parallel neural computations while retaining the programmability of digital systems. We show measurements from neurons with Hopf bifurcations and integrate and fire neurons, excitatory and inhibitory synapses, passive dendrite cables, coupled spiking neurons, and central pattern generators implemented on the chip. This chip provides a platform for not only simulating detailed neuron dynamics but also uses the same to interface with actual cells in applications such as a dynamic clamp. There are 28 computational analog blocks (CAB), each consisting of ion channels with tunable parameters, synapses, winner-take-all elements, current sources, transconductance amplifiers, and capacitors. There are four other CABs which have programmable bias generators. The programmability is achieved using floating gate transistors with on-chip programming control. The switch matrix for interconnecting the components in CABs also consists of floating-gate transistors. Emphasis is placed on replicating the detailed dynamics of computational neural models. Massive computational area efficiency is obtained by using the reconfigurable interconnect as synaptic weights, resulting in more than 50 000 possible 9-b accurate synapses in 9 mm(2).
The study on dynamic properties of monolithic ball end mills with various slenderness
NASA Astrophysics Data System (ADS)
Wojciechowski, Szymon; Tabaszewski, Maciej; Krolczyk, Grzegorz M.; Maruda, Radosław W.
2017-10-01
The reliable determination of modal mass, damping and stiffness coefficient (modal parameters) for the particular machine-toolholder-tool system is essential for the accurate estimation of vibrations, stability and thus the machined surface finish formed during the milling process. Therefore, this paper focuses on the analysis of ball end mill's dynamical properties. The tools investigated during this study are monolithic ball end mills with different slenderness values, made of coated cemented carbide. These kinds of tools are very often applied during the precise milling of curvilinear surfaces. The research program included the impulse test carried out for the investigated tools clamped in the hydraulic toolholder. The obtained modal parameters were further applied in the developed tool's instantaneous deflection model, in order to estimate the tool's working part vibrations during precise milling. The application of the proposed dynamics model involved also the determination of instantaneous cutting forces on the basis of the mechanistic approach. The research revealed that ball end mill's slenderness can be considered as an important milling dynamics and machined surface quality indicator.
Fiber optic to integrated optical chip coupler
NASA Technical Reports Server (NTRS)
Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)
1987-01-01
Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.
The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies
NASA Astrophysics Data System (ADS)
Ye, Qing; Heck, Gerard L.; Desimone, John A.
1991-11-01
Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.
A roadmap to computational social neuroscience.
Tognoli, Emmanuelle; Dumas, Guillaume; Kelso, J A Scott
2018-02-01
To complement experimental efforts toward understanding human social interactions at both neural and behavioral levels, two computational approaches are presented: (1) a fully parameterizable mathematical model of a social partner, the Human Dynamic Clamp which, by virtue of experimentally controlled interactions between Virtual Partners and real people, allows for emergent behaviors to be studied; and (2) a multiscale neurocomputational model of social coordination that enables exploration of social self-organization at all levels-from neuronal patterns to people interacting with each other. These complementary frameworks and the cross product of their analysis aim at understanding the fundamental principles governing social behavior.
Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.
Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M
2000-01-01
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).
Development of test methodology for dynamic mechanical analysis instrumentation
NASA Technical Reports Server (NTRS)
Allen, V. R.
1982-01-01
Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.
Shimer, D.W.; Lange, A.C.
1995-05-23
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.
Shimer, Daniel W.; Lange, Arnold C.
1995-01-01
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.
Achieving comb formation over the entire lasing range of quantum cascade lasers.
Yang, Yang; Burghoff, David; Reno, John; Hu, Qing
2017-10-01
Frequency combs based on quantum cascade lasers (QCLs) are finding promising applications in high-speed broadband spectroscopy in the terahertz regime, where many molecules have their "fingerprints." To form stable combs in QCLs, an effective control of group velocity dispersion plays a critical role. The dispersion of the QCL cavity has two main parts: a static part from the material and a dynamic part from the intersubband transitions. Unlike the gain, which is clamped to a fixed value above the lasing threshold, dispersion associated with the intersubband transitions changes with bias, even above the threshold, and this reduces the dynamic range of comb formation. Here, by incorporating tunability into the dispersion compensator, we demonstrate a QCL device exhibiting comb operation from I th to I max , which greatly expands the operation range of the frequency combs.
Cobbs, W H; Pugh, E N
1987-01-01
1. Membrane currents initiated by intense, 20 microseconds flashes (photocurrents) were recorded from isolated salamander rods by combined extracellular suction electrodes and intracellular tight-seal electrodes either in current or voltage clamp mode. The magnitudes (mean +/- 2 S.E.M.) of the maximal photoresponses recorded by the suction and by the intracellular electrode respectively were 40 +/- 5 pA (n = 18) and 35 +/- 7 mV (n = 8) for current clamp at zero current; 43 +/- 9 pA and 66 +/- 13 (n = 11) pA for voltage clamp at the zero-current holding potential, -24 +/- 3 mV. 2. Photocurrents initiated by flashes isomerizing 0.1% or more of the outer segment's rhodopsin achieved a saturated velocity and were 95% complete in less than 50 ms. The effect of incrementing flash intensity above 0.1% isomerization can be described as a translation of the photocurrent along the time axis towards the origin. Within the interval 0-50 ms the latter two-thirds of the velocity-saturated photocurrent is well described as a single-exponential decay. The decay was much faster in voltage clamp (2.8 +/- 1.2 ms, n = 11) than in current clamp mode (17 +/- 5 ms, n = 17). 3. The initial third of the velocity-saturated photocurrent, occurring over the interval from the flash to the onset of exponential decay, followed about the same time course in current and voltage clamp. The time interval occupied by this initial 'latent' phase decreased with increasing flash intensity and attained an apparent minimum of about 7 ms in response to flashes isomerizing 10% or more of the rhodopsin at ca. 22 degrees C. 4. The hypothesis that the decay of outer segment light-sensitive membrane current is the same in current and voltage clamp was supported by an analysis of the difference between outer segment currents measured successively in the two recording modes. First, the tail of the difference current decayed exponentially with a time constant approximately equal to R x C, where R and C are independently estimated slope resistance and capacitance of the rod. Secondly, the integral of the difference current, when divided by outer segment capacitance, closely approximated the hyperpolarizing light response measured under current clamp. Thus, displacement current accounted for the difference between photocurrents measured in current and voltage clamp.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2832596
DeSilva, Kristin; Sorice, Gian Pio; Muscogiuri, Giovanna; Jimenez, Fabio; Ahuja, Seema; Barnes, Jefferey L.; Choudhury, Goutam Ghosh; Musi, Nicolas; DeFronzo, Ralph; Kasinath, Balakuntalam S.
2013-01-01
Increase in matrix protein content in the kidney is a cardinal feature of diabetic kidney disease. While renal matrix protein content is increased by chronic hyperglycemia, whether it is regulated by acute elevation of glucose and insulin has not been addressed. In this study, we aimed to evaluate whether short duration of combined hyperglycemia and hyperinsulinemia, mimicking the metabolic environment of prediabetes and early type 2 diabetes, induces kidney injury. Normal rats were subjected to either saline infusion (control, n = 4) or 7 h of combined hyperglycemic-hyperinsulinemic clamp (HG+HI clamp; n = 6). During the clamp, plasma glucose and plasma insulin were maintained at about 350 mg/dl and 16 ng/ml, respectively. HG+HI clamp increased the expression of renal cortical transforming growth factor-β (TGF-β) and renal matrix proteins, laminin and fibronectin. This was associated with the activation of SMAD3, Akt, mammalian target of rapamycin (mTOR) complexes, and ERK signaling pathways and their downstream target events in the initiation and elongation phases of mRNA translation, an important step in protein synthesis. Additionally, HG+HI clamp provoked renal inflammation as shown by the activation of Toll-like receptor 4 (TLR4) and infiltration of CD68-positive monocytes. Urinary F2t isoprostane excretion, an index of renal oxidant stress, was increased in the HG+HI clamp rats. We conclude that even a short duration of hyperglycemia and hyperinsulinemia contributes to activation of pathways that regulate matrix protein synthesis, inflammation, and oxidative stress in the kidney. This finding could have implications for the control of short-term rises in blood glucose in diabetic individuals at risk of developing kidney disease. PMID:24108867
Mariappan, Meenalakshmi M; DeSilva, Kristin; Sorice, Gian Pio; Muscogiuri, Giovanna; Jimenez, Fabio; Ahuja, Seema; Barnes, Jefferey L; Choudhury, Goutam Ghosh; Musi, Nicolas; DeFronzo, Ralph; Kasinath, Balakuntalam S
2014-02-01
Increase in matrix protein content in the kidney is a cardinal feature of diabetic kidney disease. While renal matrix protein content is increased by chronic hyperglycemia, whether it is regulated by acute elevation of glucose and insulin has not been addressed. In this study, we aimed to evaluate whether short duration of combined hyperglycemia and hyperinsulinemia, mimicking the metabolic environment of prediabetes and early type 2 diabetes, induces kidney injury. Normal rats were subjected to either saline infusion (control, n = 4) or 7 h of combined hyperglycemic-hyperinsulinemic clamp (HG+HI clamp; n = 6). During the clamp, plasma glucose and plasma insulin were maintained at about 350 mg/dl and 16 ng/ml, respectively. HG+HI clamp increased the expression of renal cortical transforming growth factor-β (TGF-β) and renal matrix proteins, laminin and fibronectin. This was associated with the activation of SMAD3, Akt, mammalian target of rapamycin (mTOR) complexes, and ERK signaling pathways and their downstream target events in the initiation and elongation phases of mRNA translation, an important step in protein synthesis. Additionally, HG+HI clamp provoked renal inflammation as shown by the activation of Toll-like receptor 4 (TLR4) and infiltration of CD68-positive monocytes. Urinary F2t isoprostane excretion, an index of renal oxidant stress, was increased in the HG+HI clamp rats. We conclude that even a short duration of hyperglycemia and hyperinsulinemia contributes to activation of pathways that regulate matrix protein synthesis, inflammation, and oxidative stress in the kidney. This finding could have implications for the control of short-term rises in blood glucose in diabetic individuals at risk of developing kidney disease.
Jorge, G D L; Tártaro, R R; Escanhoela, C A F; Boin, I D F S F
2016-09-01
Biliary complications are important causes of morbidity and mortality in patients undergoing hepatic surgery. The aim of the study was to evaluate late liver alterations after a long period of choledochal clamping in Wistar rats. Ten male Wistar rats, weighing 304 grams, anesthetized with sodium thiopental (25 mg/kg) and xylazine (10 mg/kg) intravenously, were distributed into 2 groups: the choledochal clamping group (CCG) and the operation sham group (OSG), with 5 animals each submitted to an abdominal incision. In the CCG, the choledochal was isolated, dissected, and clamped with a microvascular clamp for 40 minutes. After this occlusion time, the clamp was removed and the incision was closed. In the OSG the animals, under normal conditions, were submitted only to anesthesia and laparotomy for choledochal manipulation. In all animals, after the 31st day, a hepatic biopsy was carried out for histology and blood biochemical tests: total bilirubin, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase. The animals were euthanized under anesthesia. This research was approved by the Ethics Committee on Animal Use (CEUA, Unicamp, No. 2511-1). In the CCG, 100% of the animals showed bile duct dilatation, ductular proliferation, and portal inflammatory infiltrate; 60% showed regenerative nodule formation; and 80% had porta-porta septa and foci of necrosis, all of which were not found in the OSG. All CCG group biochemical tests had significant increases (P < .05) compared with OSG. Long-time choledochal clamping in Wistar rats caused hepatic dysfunction and biochemical and histological injuries with degrees of distortion to the hepatic architecture. Copyright © 2016 Elsevier Inc. All rights reserved.
Can robots patch-clamp as well as humans? Characterization of a novel sodium channel mutation
Estacion, M; Choi, J S; Eastman, E M; Lin, Z; Li, Y; Tyrrell, L; Yang, Y; Dib-Hajj, S D; Waxman, S G
2010-01-01
Ion channel missense mutations cause disorders of excitability by changing channel biophysical properties. As an increasing number of new naturally occurring mutations have been identified, and the number of other mutations produced by molecular approaches such as in situ mutagenesis has increased, the need for functional analysis by patch-clamp has become rate limiting. Here we compare a patch-clamp robot using planar-chip technology with human patch-clamp in a functional assessment of a previously undescribed Nav1.7 sodium channel mutation, S211P, which causes erythromelalgia. This robotic patch-clamp device can increase throughput (the number of cells analysed per day) by 3- to 10-fold. Both modes of analysis show that the mutation hyperpolarizes activation voltage dependence (−8 mV by manual profiling, −11 mV by robotic profiling), alters steady-state fast inactivation so that it requires an additional Boltzmann function for a second fraction of total current (∼20% manual, ∼40% robotic), and enhances slow inactivation (hyperpolarizing shift −15 mV by human, −13 mV robotic). Manual patch-clamping demonstrated slower deactivation and enhanced (∼2-fold) ramp response for the mutant channel while robotic recording did not, possibly due to increased temperature and reduced signal-to-noise ratio on the robotic platform. If robotic profiling is used to screen ion channel mutations, we recommend that each measurement or protocol be validated by initial comparison to manual recording. With this caveat, we suggest that, if results are interpreted cautiously, robotic patch-clamp can be used with supervision and subsequent confirmation from human physiologists to facilitate the initial profiling of a variety of electrophysiological parameters of ion channel mutations. PMID:20123784
2014-01-01
Background We aimed to evaluate the predictive utility of common fasting insulin sensitivity indices, and non-laboratory surrogates [BMI, waist circumference (WC) and waist-to-height ratio (WHtR)] in sub-Saharan Africans without diabetes. Methods We measured fasting glucose and insulin, and glucose uptake during 80/mU/m2/min euglycemic clamp in 87 Cameroonians (51 men) aged (SD) 34.6 (11.4) years. We derived insulin sensitivity indices including HOMA-IR, quantitative insulin sensitivity check index (QUICKI), fasting insulin resistance index (FIRI) and glucose-to-insulin ratio (GIR). Indices and clinical predictors were compared to clamp using correlation tests, robust linear regressions and agreement of classification by sex-specific thirds. Results The mean insulin sensitivity was M = 10.5 ± 3.2 mg/kg/min. Classification across thirds of insulin sensitivity by clamp matched with non-laboratory surrogates in 30-48% of participants, and with fasting indices in 27-51%, with kappa statistics ranging from −0.10 to 0.26. Fasting indices correlated significantly with clamp (/r/=0.23-0.30), with GIR performing less well than fasting insulin and HOMA-IR (both p < 0.02). BMI, WC and WHtR were equal or superior to fasting indices (/r/=0.38-0.43). Combinations of fasting indices and clinical predictors explained 25-27% of variation in clamp values. Conclusion Fasting insulin sensitivity indices are modest predictors of insulin sensitivity measured by euglycemic clamp, and do not perform better than clinical surrogates in this population. PMID:25106496
Randomized clinical trial of stapler versus clamp-crushing transection in elective liver resection.
Rahbari, N N; Elbers, H; Koch, M; Vogler, P; Striebel, F; Bruckner, T; Mehrabi, A; Schemmer, P; Büchler, M W; Weitz, J
2014-02-01
Various devices have been developed to facilitate liver transection and reduce blood loss in liver resections. None of these has proven superiority compared with the classical clamp-crushing technique. This randomized clinical trial compared the effectiveness and safety of stapler transection with that of clamp-crushing during open liver resection. Patients admitted for elective open liver resection between January 2010 and October 2011 were assigned randomly to stapler transection or the clamp-crushing technique. The primary endpoint was the total amount of intraoperative blood loss. Secondary endpoints included transection time, duration of operation, complication rates and resection margins. A total of 130 patients were enrolled, 65 to clamp-crushing and 65 to stapler transection. There was no difference between groups in total intraoperative blood loss: median (i.q.r.) 1050 (525-1650) versus 925 (450-1425) ml respectively (P = 0·279). The difference in total intraoperative blood loss normalized to the transection surface area was not statistically significant (P = 0·092). Blood loss during parenchymal transection was significantly lower in the stapler transection group (P = 0·002), as were the parenchymal transection time (mean(s.d.) 30(21) versus 9(7) min for clamp-crushing and stapler transection groups respectively; P < 0·001) and total duration of operation (mean(s.d.) 221(86) versus 190(85) min; P = 0·047). There were no significant differences in postoperative morbidity (P = 0·863) or mortality (P = 0·684) between groups. Stapler transection is a safe technique but does not reduce intraoperative blood loss in elective liver resection compared with the clamp-crushing technique. NCT01049607 (http://www.clinicaltrials.gov). © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.
Pandey, Preeti; Verma, Vijay; Dhar, Suman Kumar; Gourinath, Samudrala
2018-01-11
The characteristic of interaction with various enzymes and processivity-promoting nature during DNA replication makes β-clamp an important drug target. Helicobacter pylori ( H. pylori ) have several unique features in DNA replication machinery that makes it different from other microorganisms. To find out whether difference in DNA replication proteins behavior accounts for any difference in drug response when compared to E. coli , in the present study, we have tested E. coli β-clamp inhibitor molecules against H. pylori β-clamp. Various approaches were used to test the binding of inhibitors to H. pylori β-clamp including docking, surface competition assay, complex structure determination, as well as antimicrobial assay. Out of five shortlisted inhibitor molecules on the basis of docking score, three molecules, 5-chloroisatin, carprofen, and 3,4-difluorobenzamide were co-crystallized with H. pylori β-clamp and the structures show that they bind at the protein-protein interaction site as expected. In vivo studies showed only two molecules, 5-chloroisatin, and 3,4-difluorobenzamide inhibited the growth of the pylori with MIC values in micro molar range, which is better than the inhibitory effect of the same drugs on E. coli . Therefore, the evaluation of such drugs against H. pylori may explore the possibility to use to generate species-specific pharmacophore for development of new drugs against H. pylori .
An Ultrasonic Clamp for Bloodless Partial Nephrectomy
NASA Astrophysics Data System (ADS)
Lafon, Cyril; Bouchoux, Guillaume; Murat, François Joseph; Birer, Alain; Theillère, Yves; Chapelon, Jean Yves; Cathignol, Dominique
2007-05-01
Maximum conservation of the kidney is preferable through partial nephrectomy for patients at risk of disease recurrence of renal cancers. Haemostatic tools are needed in order to achieve bloodless surgery and reduce post surgery morbidity. Two piezo-ceramic transducers operating at a frequency of 4 MHz were mounted on each arm of a clamp. When used for coagulation purposes, two transducers situated on opposite arms of the clamp were driven simultaneously. Heat delivery was optimized as each transducers mirrored back to targeted tissues the wave generated by the opposite transducer. Real-time treatment monitoring with an echo-based technique was also envisaged with this clamp. Therapy was periodically interrupted so one transducer could generate a pulse. The echo returning from the opposite transducer was treated. Coagulation necroses were obtained in vitro on substantial thicknesses (23-38mm) of pig liver over exposure durations ranging from 30s to 130s, and with acoustic intensities of less than 15W/cm2 per transducer. Both kidneys of two pigs were treated in vivo with the clamp (14.5W/cm2 for 90s), and the partial nephrectomies performed proved to be bloodless. In vitro and in vivo, wide transfixing lesions corresponded to an echo energy decrease superior to -10dB and parabolic form of the time of flight versus treatment time. In conclusion, this ultrasound clamp has proven to be an excellent mean for achieving monitored haemostasis in kidney.
Actuation of Piezoelectric Layered Beams With and Coupling.
Nguyen, Cuong H; Hanke, Ulrik; Halvorsen, Einar
2018-05-01
In this paper, we derive and compare the linear static bending of piezoelectric actuators with transversal ( ) and longitudinal ( ) coupling. The transducers are, respectively, structures utilizing top and bottom electrodes (TBEs) and interdigitated electrodes (IDEs). While the theory is well developed for the TBE beam, governing equations for the bending of the piezoelectric beams with IDEs are far less developed. We improve on this by deriving the governing equation for the IDE beam with an arbitrary number of layers and with coupling consistently included. In addition, we introduce a phenomenological quadratic form for the nonuniform field that lets us derive a deflection formula with nontrivial effects of the field accounted for. The theory is applied to derive deflection formulas for both cantilever and clamped-clamped beams. All analytic results are validated with numerical simulations. From the analytic models, two different figures of merit (FOMs) are derived. We show that these FOMs are the same for cantilevers and doubly clamped beams. The analysis indicates the optimal transducer length for clamped-clamped beams and gives a criterion that can be used to determine which design concept ( or ) gives the largest deflection.
Flange joint system for SRF cavities utilizing high force spring clamps for low particle generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A flange joint system for SRF cavities. The flange joint system includes a set of high force spring clamps that produce high force on the simple flanges of Superconducting Radio Frequency (SRF) cavities to squeeze conventional metallic seals. The system establishes the required vacuum and RF-tight seal with minimum particle contamination to the inside of the cavity assembly. The spring clamps are designed to stay within their elastic range while being forced open enough to mount over the flange pair. Upon release, the clamps have enough force to plastically deform metallic seal surfaces and continue to a new equilibrium sprungmore » dimension where the flanges remain held against one another with enough preload such that normal handling will not break the seal.« less
The computational structural mechanics testbed architecture. Volume 1: The language
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.
1988-01-01
This is the first set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP, and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 1 presents the basic elements of the CLAMP language and is intended for all users.
A novel test rig to investigate under-platform damper dynamics
NASA Astrophysics Data System (ADS)
Botto, Daniele; Umer, Muhammad
2018-02-01
In the field of turbomachinery, vibration amplitude is often reduced by dissipating the kinetic energy of the blades with devices that utilize dry friction. Under-platform dampers, for example, are often placed in the underside of two consecutive turbine blades. Dampers are kept in contact with the under-platform of the respective blades by means of the centrifugal force. If the damper is well designed, vibration of blades instigate a relative motion between the under-platform and the damper. A friction force, that is a non-conservative force, arises in the contact and partly dissipates the vibration energy. Several contact models are available in the literature to simulate the contact between the damper and the under-platform. However, the actual dynamics of the blade-damper interaction have not fully understood yet. Several test rigs have been previously developed to experimentally investigate the performance of under-platform dampers. The majority of these experimental setups aim to evaluate the overall damper efficiency in terms of reduction in response amplitude of the blade for a given exciting force that simulates the aerodynamic loads. Unfortunately, the experimental data acquired on the blade dynamics do not provide enough information to understand the damper dynamics. Therefore, the uncertainty on the damper behavior remains a big issue. In this work, a novel experimental test rig has been developed to extensively investigate the damper dynamic behavior. A single replaceable blade is clamped in the rig with a specific clamping device. With this device the blade root is pressed against a groove machined in the test rig. The pushing force is controllable and measurable, to better simulate the actual centrifugal load acting on the blade. Two dampers, one on each side of the blade, are in contact with the blade under-platforms and with platforms on force measuring supports. These supports have been specifically designed to measure the contact forces on the damper. The contact forces on the blade are computed by post processing the measured forces and assuming the static equilibrium of the damper. The damper kinematics is rebuilt by using the relative displacement, measured with a differential laser, between the damper and the blade under-platform. This article describes the main concepts behind this new approach and explains the design and working of this novel test rig. Moreover, the influence of the damper contact forces on the dynamic behavior of the blade is discussed in the result section.
Dynamics of elastic nonlinear rotating composite beams with embedded actuators
NASA Astrophysics Data System (ADS)
Ghorashi, Mehrdaad
2009-08-01
A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.
Rivet, M; Cognard, C; Raymond, G
1989-01-01
The slow inward calcium current and the contractile response were simultaneously recorded in voltage clamped (whole cell patch clamp recording) rat myoballs in primary culture. The shape of the contraction(T)/potential(V) relationship and the application of the inorganic calcium channel blocker cadmium (1.5 mM), which suppresses a part of the contractile activity, demonstrate the existence of two components of contraction. One of them is related to the slow calcium current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heltzel, J.; Scouten Ponticelli, S; Sanders, L
2009-01-01
Sliding clamp proteins topologically encircle DNA and play vital roles in coordinating the actions of various DNA replication, repair, and damage tolerance proteins. At least three distinct surfaces of the Escherichia coli {beta} clamp interact physically with the DNA that it topologically encircles. We utilized mutant {beta} clamp proteins bearing G66E and G174A substitutions ({beta}159), affecting the single-stranded DNA-binding region, or poly-Ala substitutions in place of residues 148-HQDVR-152 ({beta}148-152), affecting the double-stranded DNA binding region, to determine the biological relevance of clamp-DNA interactions. As part of this work, we solved the X-ray crystal structure of {beta}148-152, which verified that themore » poly-Ala substitutions failed to significantly alter the tertiary structure of the clamp. Based on functional assays, both {beta}159 and {beta}148-152 were impaired for loading and retention on a linear primed DNA in vitro. In the case of {beta}148-152, this defect was not due to altered interactions with the DnaX clamp loader, but rather was the result of impaired {beta}148-152-DNA interactions. Once loaded, {beta}148-152 was proficient for DNA polymerase III (Pol III) replication in vitro. In contrast, {beta}148-152 was severely impaired for Pol II and Pol IV replication and was similarly impaired for direct physical interactions with these Pols. Despite its ability to support Pol III replication in vitro, {beta}148-152 was unable to support viability of E. coli. Nevertheless, physiological levels of {beta}148-152 expressed from a plasmid efficiently complemented the temperature-sensitive growth phenotype of a strain expressing {beta}159 (dnaN159), provided that Pol II and Pol IV were inactivated. Although this strain was impaired for Pol V-dependent mutagenesis, inactivation of Pol II and Pol IV restored the Pol V mutator phenotype. Taken together, these results support a model in which a sophisticated combination of competitive clamp-DNA, clamp-partner, and partner-DNA interactions serve to manage the actions of the different E. coli Pols in vivo.« less
Kc, Ashish; Målqvist, Mats; Rana, Nisha; Ranneberg, Linda Jarawka; Andersson, Ola
2016-03-10
Delayed cord clamping at birth has shown to benefit neonates with increased placental transfusion leading to higher haemoglobin concentrations, additional iron stores and less anaemia later in infancy, higher red blood cell flow to vital organs and better cardiopulmonary adaptation. As iron deficiency in infants even without anaemia has been associated with impaired development, delayed cord clamping seems to benefit full term infants also in regions with a relatively low prevalence of iron deficiency anaemia. In Nepal, there is a high anaemia prevalence among children between 6 and 17 months (72-78 %). The objective of the proposed study is to evaluate the effects of delayed and early cord clamping on anaemia (and haemoglobin level) at 8 and 12 months, ferritin at 8 and 12 months, bilirubin at 2-3 days, admission to Neonatal Intensive Care Unit (NICU) or special care nursery, and development at 12 and 18-24 months of age. A randomized, controlled trial comparing delayed and early cord clamping will be implemented at Paropakar Maternity and Women's Hospital in Kathmandu, Nepal. Pregnant woman of gestational age 34-41 weeks who deliver vaginally will be included in the study. The interventions will consist of delayed clamping of the umbilical cord (≥180 s after delivery) or early clamping of the umbilical cord (≤60 s). At 8 and 12 months of age, infant's iron status and developmental milestones will be measured. This trial is important to perform because, although strong indications for the beneficial effect of delayed cord clamping on anaemia at 8 to 12 months of age exist, it has not yet been evaluated by a randomized trial in this setting. The proposed study will analyse both outcome as well as safety effects. Additionally, the results may not only contribute to practice in Nepal, but also to the global community, in particular to other low-income countries with a high prevalence of iron deficiency anaemia. Clinical trial.gov NCT02222805 . Registered August 19 2014.
Ye, Q; Heck, G L; DeSimone, J A
1993-07-01
1. Voltage-clamp and current-clamp data were obtained from a circumscribed region of the anterior rat lingual epithelium while simultaneously monitoring the afferent, stimulus-evoked, neural response from the same receptive field. 2. Chorda tympani (CT) responses at constant Na(+)-salt concentration were enhanced by submucosa negative voltage clamp and suppressed by positive voltage clamp. The complete CT response profile, including the time course of adaptation, was not uniquely determined by NaCl concentration alone. The response could be reproduced at different NaCl concentrations by applying a compensating voltage. 3. The form of the concentration and voltage dependence of the CT response indicates that the complete stimulus energy is the Na+ electrochemical potential difference across receptor cell apical membranes, and not Na+ concentration alone. This is the underlying principal behind the equivalence of chemical and electric taste for Na+ salts. 4. CT responses to sodium gluconate (25 and 200 mM) and 25 mM NaCl produced amiloride-insensitive components (AIC) of low magnitude. NaCl at 200 mM produced a significantly larger AIC. The AIC was voltage-clamp independent. The relative magnitude of the AIC was positively correlated with the transepithelial conductance of each salt. This suggests that the large AIC for 200 mM NaCl results from its relatively high permeability through the paracellular pathway. 5. Analysis of the CT response under voltage clamp revealed two anion effects on Na(+)-salt taste, both of which act through the paracellular shunt. 1) Anions modify the transepithelial potential (TP) across tight junctions and thereby modulate the cell receptor potential. This anion effect can be eliminated by voltage clamping the TP. 2) Sufficiently mobile anions facilitate electroneutral diffusion of Na+ salts through tight junctions. This effect is observed especially when Cl- is the anion and when the stimulus concentration favors NaCl influx, allowing Na+ to stimulate receptor cells from the submucosal side. Because the submucosal intercellular spaces are nearly isopotential regions, this effect is insensitive to voltage clamp of the TP. The large AIC associated with this anion effect is due to the low permeability of amiloride.
Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators
NASA Astrophysics Data System (ADS)
Hasan, Mohammad H.; Alsaleem, Fadi M.; Ouakad, Hassen M.
2018-06-01
Triggering an alarm in a car for low air-pressure in the tire or tripping an HVAC compressor if the refrigerant pressure is lower than a threshold value are examples for applications where measuring the amount of pressure is not as important as determining if the pressure has exceeded a threshold value for an action to occur. Unfortunately, current technology still relies on analog pressure sensors to perform this functionality by adding a complex interface (extra circuitry, controllers, and/or decision units). In this paper, we demonstrate two new smart tunable-threshold pressure switch concepts that can reduce the complexity of a threshold pressure sensor. The first concept is based on the nonlinear subharmonic resonance of a straight double cantilever microbeam with a proof mass and the other concept is based on the snap-through bi-stability of a clamped-clamped MEMS shallow arch. In both designs, the sensor operation concept is simple. Any actuation performed at a certain pressure lower than a threshold value will activate a nonlinear dynamic behavior (subharmonic resonance or snap-through bi-stability) yielding a large output that would be interpreted as a logic value of ONE, or ON. Once the pressure exceeds the threshold value, the nonlinear response ceases to exist, yielding a small output that would be interpreted as a logic value of ZERO, or OFF. A lumped, single degree of freedom model for the double cantilever beam, that is validated using experimental data, and a continuous beam model for the arch beam, are used to simulate the operation range of the proposed sensors by identifying the relationship between the excitation signal and the critical cut-off pressure.
Sakurai, Akira; Katz, Paul S
2016-10-01
The nudibranch mollusc, Dendronotus iris, swims by rhythmically flexing its body from left to right. We identified a bilaterally represented interneuron, Si3, that provides strong excitatory drive to the previously identified Si2, forming a half-center oscillator, which functions as the central pattern generator (CPG) underlying swimming. As with Si2, Si3 inhibited its contralateral counterpart and exhibited rhythmic bursts in left-right alternation during the swim motor pattern. Si3 burst almost synchronously with the contralateral Si2 and was coactive with the efferent impulse activity in the contralateral body wall nerve. Perturbation of bursting in either Si3 or Si2 by current injection halted or phase-shifted the swim motor pattern, suggesting that they are both critical CPG members. Neither Si2 nor Si3 exhibited endogenous bursting properties when activated alone; activation of all four neurons was necessary to initiate and maintain the swim motor pattern. Si3 made a strong excitatory synapse onto the contralateral Si2 to which it is also electrically coupled. When Si3 was firing tonically but not exhibiting bursting, artificial enhancement of the Si3-to-Si2 synapse using dynamic clamp caused all four neurons to burst. In contrast, negation of the Si3-to-Si2 synapse by dynamic clamp blocked ongoing swim motor patterns. Together, these results suggest that the Dendronotus swim CPG is organized as a "twisted" half-center oscillator in which each "half" is composed of two excitatory-coupled neurons from both sides of the brain, each of which inhibits its contralateral counterpart. Consisting of only four neurons, this is perhaps the simplest known network oscillator for locomotion. Copyright © 2016 the American Physiological Society.
Outcomes of robot-assisted simple enucleation of renal masses: A single European center experience.
Matei, Deliu Victor; Vartolomei, Mihai Dorin; Musi, Gennaro; Renne, Giuseppe; Tringali, Valeria Maria Lucia; Mistretta, Francesco Alessandro; Delor, Maurizio; Russo, Andrea; Cioffi, Antonio; Bianchi, Roberto; Cozzi, Gabriele; Di Trapani, Ettore; Bottero, Danilo; Cordima, Giovanni; Lucarelli, Giuseppe; Ferro, Matteo; de Cobelli, Ottavio
2017-05-01
The aim of this study was to assess the ability of pre-and intraoperative parameters, to predict the risk of perioperative complications after robot-assisted laparoscopic simple enucleation (RASE) of renal masses, and to evaluate the rate of trifecta achievement of this approach stratifying the cohort according to the use of ischemia during the enucleation.From April 2009 to June 2016, 129 patients underwent RASE at our Institution. We stratified the procedures in 2 groups: clamping and clamp-less RASE. After RASE, all specimens were retrospectively reviewed to assess the surface-intermediate-base (SIB) scoring system. Patients were followed-up according to the European Association of Urology guidelines recommendations. All pre-, intra-, and postoperative outcomes were prospectively collected in a customized database and retrospectively analyzed.A total of 112 (86.8%) patients underwent a pure RASE and 17 (13.2%) had a hybrid according to SIB classification system. The mean age was 61.17 years. In 21 patients (16.3%), complications occurred, 13 (61.9%) were Clavien 1 and 2, while 8 were Clavien 3a and b complications. Statistical significant association with complications was found in patients with American Society of Anestesiology (ASA) score 3 (44.5%, P = .04), longer mean operative time (OT) 195 versus 161.36 minutes (P =.03), mean postoperative hemoglobin (Hb) 10.1 versus 11.8 (P <.001), and mean ΔHb 3.59 versus 2.18 (P <.001). In multivariate logistic regression, only longer OT and ΔHb were statistical significant predictive factors for complications. In sub-group analysis, clamp-less RASE was safe in terms of complications (14.1%), positive surgical margins (1.3%), and mid-term local recurrence (1.3%). Although in this approach there is higher EBL (P = .01), this had no impact on ΔHb (P = .28). A clamp-less approach was associated with a higher rate of SIB 0 (71.8% vs 51%, P = .02), higher trifecta achievement (84.6% vs 62.7%, P = .004), and better impact on serum creatinine (mean 0.83 vs 0.91, P = .01).RASE of renal tumors is a safe technique with very good postoperative outcomes. Complication rate is low and associated with ASA score >3, longer OT, and ΔHb. RASE is suitable for the clamp-less approach, which allows to perform easier the pure enucleation (SIB 0) and to obtain higher rates of trifecta outcomes.
46 CFR 128.420 - Keel cooler installations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENGINEERING: EQUIPMENT AND SYSTEMS Design Requirements for Specific Systems § 128.420 Keel cooler...-metallic hose-clamps may be used at machinery connections if— (1) The clamps are of a corrosion-resistant...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, B.P.
1997-02-01
The application of Electrolytic In-Process Dressing (ELID) for highly efficient and stable grinding of ceramic parts is discussed. This research was performed at the Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan, June 1995 through August 1995. Experiments were conducted using a vertical machining center. The silicon nitride work material, of Japanese manufacture and supplied in the form of a rectangular block, was clamped to a vice which was firmly fixed on the base of a strain gage dynamometer. The dynamometer was clamped on the machining center table. Reciprocating grinding was performed with a flat-faced diamond grinding wheel. Themore » output from the dynamometer was recorded with a data acquisition system and the normal component of the force was monitored. Experiments were carried out under various cutting conditions, different ELID conditions, and various grinding wheel bonds types. Rough grinding wheels of grit sizes {number_sign}170 and {number_sign}140 were used in the experiments. Compared to conventional grinding, there was a significant reduction in grinding force with ELID grinding. Therefore, ELID grinding can be recommended for high material removal rate grinding, low rigidity machines, and low rigidity workpieces. Compared to normal grinding, a reduction in grinding ratio was observed when ELID grinding was performed. A negative aspect of the process, this reduced G-ratio derives from bond erosion and can be improved somewhat by adjustments in the ELID current. The results of this investigation are discussed in detail in this report.« less
Shuttle Hitchhiker Experiment Launcher System (SHELS)
NASA Technical Reports Server (NTRS)
Daelemans, Gerry
1999-01-01
NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.
Millimeter-Wave Gyroklystron Amplifier Experiment Using a Relativistic Electron Beam
1990-03-08
Qint to 400 for the TE1 l1 mode, while assisting in suppressing other competing modes [7]. The length of these slots is three times the nominal cavity...frequency by tranverse compression by means of separate clamps. However, cavity deformation affects both the center frequency and the value 5 of Q...amplifier operation was limited by the excitation of parasitic oscillation of the competing TE1 12 mode, as predicted by theory [7]. Despite this
Adiabatic Compression Sensitivity of AF-M315E
2015-07-01
the current work is to expand the knowledge base from previous experiments completed at AFRL for AF-M315E in stainless steel U-tubes at room...addressed, to some degree, with the use of clamps and a large stainless steel plate to dissipate any major vibrations. A large preheated bath of 50:50 v/v...autocatalytic chain decomposition in the propellant. This exothermic decomposition decreases the fume -off initiation temperature of the propellant and its
21 CFR 876.5160 - Urological clamp for males.
Code of Federal Regulations, 2010 CFR
2010-04-01
... temporarily. It is an external clamp. (b) Classification. Class I (general controls). Except when intended for internal use or use on females, the device is exempt from the premarket notification procedures in subpart...
NASA Technical Reports Server (NTRS)
Naumann, E. C.; Catherines, D. S.; Walton, W. C., Jr.
1971-01-01
Experimental and analytical investigations of the vibratory behavior of ring-stiffened truncated-cone shells are described. Vibration tests were conducted on 60 deg conical shells having up to four ring stiffeners and for free-free and clamped-free edge constraints and 9 deg conical shells, for two thicknesses, each with two angle rings and for free-free, free-clamped, and clamped-clamped edge constraints. The analytical method is based on linear thin shell theory, employing the Rayleigh-Ritz method. Discrete rings are represented as composed of one or more segments, each of which is a short truncated-cone shell of uniform thickness. Equations of constraint are used to join a ring and shell along a circumferential line connection. Excellent agreement was obtained for comparisons of experimental and calculated frequencies.
[Focus on placental transfusion for preterm neonates: Delayed cord clamping and/or milking?
Sorin, G; Tosello, B
2016-11-01
Anemia of prematurity remains a common complication despite recent advances in perinatal and neonatal medicine. The delayed cord clamping (at least 30seconds as recommended) has several benefits: increased hemoglobin and hematocrit levels at birth, improved initial hemodynamic, decreased incidence of transfusions and intraventricular hemorrhages. When the birth transition is difficult, wait 30seconds before clamping can be impossible. So as not to interfere with the neonatal resuscitation, the "milking" has been proposed as an alternative method to the delayed cord clamping. This is a safe and easy method, which can be done either by an obstetrician or pediatrician with comparable results for the child on his hemodynamic, hematological and neurological status. It still lacks technical information on this method and neurodevelopmental outcomes of these preterm infants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Seal assembly for materials with different coefficients of thermal expansion
Minford, Eric [Laurys Station, PA
2009-09-01
Seal assembly comprising (a) two or more seal elements, each element having having a coefficient of thermal expansion; and (b) a clamping element having a first segment, a second segment, and a connecting segment between and attached to the first and second segments, wherein the two or more seal elements are disposed between the first and second segments of the clamping element. The connecting segment has a central portion extending between the first segment of the clamping element and the second segment of the clamping element, and the connecting segment is made of a material having a coefficient of thermal expansion. The coefficient of thermal expansion of the material of the connecting segment is intermediate the largest and smallest of the coefficients of thermal expansion of the materials of the two or more seal elements.