Science.gov

Sample records for dynamic combinatorial libraries

  1. DNA-Encoded Dynamic Combinatorial Chemical Libraries.

    PubMed

    Reddavide, Francesco V; Lin, Weilin; Lehnert, Sarah; Zhang, Yixin

    2015-06-26

    Dynamic combinatorial chemistry (DCC) explores the thermodynamic equilibrium of reversible reactions. Its application in the discovery of protein binders is largely limited by difficulties in the analysis of complex reaction mixtures. DNA-encoded chemical library (DECL) technology allows the selection of binders from a mixture of up to billions of different compounds; however, experimental results often show low a signal-to-noise ratio and poor correlation between enrichment factor and binding affinity. Herein we describe the design and application of DNA-encoded dynamic combinatorial chemical libraries (EDCCLs). Our experiments have shown that the EDCCL approach can be used not only to convert monovalent binders into high-affinity bivalent binders, but also to cause remarkably enhanced enrichment of potent bivalent binders by driving their in situ synthesis. We also demonstrate the application of EDCCLs in DNA-templated chemical reactions.

  2. Dynamic combinatorial libraries of artificial repeat proteins.

    PubMed

    Eisenberg, Margarita; Shumacher, Inbal; Cohen-Luria, Rivka; Ashkenasy, Gonen

    2013-06-15

    Repeat proteins are found in almost all cellular systems, where they are involved in diverse molecular recognition processes. Recent studies have suggested that de novo designed repeat proteins may serve as universal binders, and might potentially be used as practical alternative to antibodies. We describe here a novel chemical methodology for producing small libraries of repeat proteins, and screening in parallel the ligand binding of library members. The first stage of this research involved the total synthesis of a consensus-based three-repeat tetratricopeptide (TPR) protein (~14 kDa), via sequential attachment of the respective peptides. Despite the effectiveness of the synthesis and ligation steps, this method was found to be too demanding for the production of proteins containing variable number of repeats. Additionally, the analysis of binding of the individual proteins was time consuming. Therefore, we designed and prepared novel dynamic combinatorial libraries (DCLs), and show that their equilibration can facilitate the formation of TPR proteins containing up to eight repeating units. Interestingly, equilibration of the library building blocks in the presence of the biologically relevant ligands, Hsp90 and Hsp70, induced their oligomerization into forming more of the proteins with large recognition surfaces. We suggest that this work presents a novel simple and rapid tool for the simultaneous screening of protein mixtures with variable binding surfaces, and for identifying new binders for ligands of interest.

  3. Estimating equilibrium constants for aggregation from the product distribution of a dynamic combinatorial library.

    PubMed

    Hunt, Rosemary A R; Ludlow, R Frederick; Otto, Sijbren

    2009-11-19

    Multicomponent chemical systems that exhibit a network of covalent and intermolecular interactions may produce interesting and often unexpected chemical or physical behavior. The formation of aggregates is a well-recognized example and presents a particular analytical challenge. We now report the development of a numerical fitting method capable of estimating equilibrium constants for the formation of aggregates from the product distribution of a dynamic combinatorial library containing self-recognizing library members.

  4. Carbonic anhydrase II-induced selection of inhibitors from a dynamic combinatorial library of Schiff's bases.

    PubMed

    Nasr, Gihane; Petit, Eddy; Supuran, Claudiu T; Winum, Jean-Yves; Barboiu, Mihail

    2009-11-01

    A dynamic combinatorial library (DCL) has been generated under thermodynamic control by using the aminocarbonyl/imine interconversion as reversible chemistry, combined with non-covalent binding within the active site of the metalloenzyme human carbonic anhydrase II (hCA II, EC 4.2.1.1). The high affinity of hCA II isozyme towards some sulfonamide inhibitors obtained here was used to select from the dynamic library specific inhibitors of this isoform. These results point out to the possibility of identifying sulfonamide amplified compounds presenting potent inhibition and high yield of formation in the presence of the isoform(s) towards which the inhibitors were designed.

  5. Salt-induced adaptation of a dynamic combinatorial library of pseudopeptidic macrocycles: unraveling the electrostatic effects in mixed aqueous media.

    PubMed

    Atcher, Joan; Moure, Alejandra; Bujons, Jordi; Alfonso, Ignacio

    2015-04-27

    Dynamic combinatorial libraries are powerful systems for studying adaptive behaviors and relationships, as models of more complex molecular networks. With this aim, we set up a chemically diverse dynamic library of pseudopeptidic macrocycles containing amino-acid side chains with differently charged residues (negative, positive, and neutral). The responsive ability of this complex library upon the increase of the ionic strength has been thoroughly studied. The families of the macrocyclic members concentrating charges of the same sign showed a large increase in its proportion as the ionic strength increases, whereas those with residues of opposite charges showed the reverse behavior. This observation suggested an electrostatic shielding effect of the salt within the library of macrocycles. The top-down deconvolution of the library allowed us to obtain the fundamental thermodynamic information connecting the library members (exchange equilibrium constants), as well as to parameterize the adaptation to the external stimulus. We also visualized the physicochemical driving forces for the process by structural analysis using NMR spectroscopy and molecular modeling. This knowledge permitted the full understanding of the whole dynamic library and also the de novo design of dynamic chemical systems with tailored co-adaptive relationships, containing competing or cooperating species. This study highlights the utility of dynamic combinatorial libraries in the emerging field of systems chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Generation of a Multicomponent Library of Disulfide Donor-Acceptor Architectures Using Dynamic Combinatorial Chemistry

    PubMed Central

    Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R.

    2015-01-01

    We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines. PMID:26193265

  7. Dynamic mixtures and combinatorial libraries: imines as probes for molecular evolution at the interface between chemistry and biology.

    PubMed

    Herrmann, Andreas

    2009-08-21

    In analogy to evolution in biological processes, "molecular evolution", based on the reversible formation of imines, has successfully been explored for drug discovery, receptor design and as a controlled-release vehicle. Multicomponent systems composed of amines and carbonyl compounds generate structural diversity by reversible reaction of the different components to form equilibrated dynamic mixtures or combinatorial libraries (DCLs). Under thermodynamic control and in the presence of an external factor which influences the equilibrium, these systems evolve by selective adaptation to the changing external conditions. This concept allows the casting of biologically or catalytically active substrates and the molding of receptors from DCLs which are composed of smaller non-active amine and carbonyl moieties. Similarly, if the amine or carbonyl compounds are the biologically active compounds of interest, the corresponding dynamic mixtures are found to be efficient delivery systems, allowing their controlled release over time.

  8. Methods for combinatorial and parallel library design.

    PubMed

    Schnur, Dora M; Beno, Brett R; Tebben, Andrew J; Cavallaro, Cullen

    2011-01-01

    Diversity has historically played a critical role in design of combinatorial libraries, screening sets and corporate collections for lead discovery. Large library design dominated the field in the 1990s with methods ranging anywhere from purely arbitrary through property based reagent selection to product based approaches. In recent years, however, there has been a downward trend in library size. This was due to increased information about the desirable targets gleaned from the genomics revolution and to the ever growing availability of target protein structures from crystallography and homology modeling. Creation of libraries directed toward families of receptors such as GPCRs, kinases, nuclear hormone receptors, proteases, etc., replaced the generation of libraries based primarily on diversity while single target focused library design has remained an important objective. Concurrently, computing grids and cpu clusters have facilitated the development of structure based tools that screen hundreds of thousands of molecules. Smaller "smarter" combinatorial and focused parallel libraries replaced those early un-focused large libraries in the twenty-first century drug design paradigm. While diversity still plays a role in lead discovery, the focus of current library design methods has shifted to receptor based methods, scaffold hopping/bio-isostere searching, and a much needed emphasis on synthetic feasibility. Methods such as "privileged substructures based design" and pharmacophore based design still are important methods for parallel and small combinatorial library design. This chapter discusses some of the possible design methods and presents examples where they are available.

  9. Fabrication of combinatorial polymer scaffold libraries.

    PubMed

    Simon, Carl G; Stephens, Jean S; Dorsey, Shauna M; Becker, Matthew L

    2007-07-01

    We have designed a novel combinatorial research platform to help accelerate tissue engineering research. Combinatorial methods combine many samples into a single specimen to enable accelerated experimentation and discovery. The platform for fabricating combinatorial polymer scaffold libraries can be used to rapidly identify scaffold formulations that maximize tissue formation. Many approaches for screening cell-biomaterial interactions utilize a two-dimensional format such as a film or surface to present test substrates to cells. However, cells in vivo exist in a three-dimensional milieu of extracellular matrix and cells in vitro behave more naturally when cultured in a three-dimensional environment than when cultured on a two-dimensional surface. Thus, we have designed a method for fabricating combinatorial biomaterial libraries where the materials are presented to cells in the form of three-dimensional, porous, salt-leached, polymer scaffolds. Many scaffold variations and compositions can be screened in a single experiment so that optimal scaffold formulations for tissue formation can be rapidly identified. In summary, we have developed a platform technology for fabricating combinatorial polymer scaffold libraries that can be used to screen cell response to materials in a three-dimensional, scaffold format.

  10. Fabrication of combinatorial polymer scaffold libraries

    NASA Astrophysics Data System (ADS)

    Simon, Carl G.; Stephens, Jean S.; Dorsey, Shauna M.; Becker, Matthew L.

    2007-07-01

    We have designed a novel combinatorial research platform to help accelerate tissue engineering research. Combinatorial methods combine many samples into a single specimen to enable accelerated experimentation and discovery. The platform for fabricating combinatorial polymer scaffold libraries can be used to rapidly identify scaffold formulations that maximize tissue formation. Many approaches for screening cell-biomaterial interactions utilize a two-dimensional format such as a film or surface to present test substrates to cells. However, cells in vivo exist in a three-dimensional milieu of extracellular matrix and cells in vitro behave more naturally when cultured in a three-dimensional environment than when cultured on a two-dimensional surface. Thus, we have designed a method for fabricating combinatorial biomaterial libraries where the materials are presented to cells in the form of three-dimensional, porous, salt-leached, polymer scaffolds. Many scaffold variations and compositions can be screened in a single experiment so that optimal scaffold formulations for tissue formation can be rapidly identified. In summary, we have developed a platform technology for fabricating combinatorial polymer scaffold libraries that can be used to screen cell response to materials in a three-dimensional, scaffold format.

  11. Dynamic combinatorial self-replicating systems.

    PubMed

    Moulin, Emilie; Giuseppone, Nicolas

    2012-01-01

    Thanks to their intrinsic network topologies, dynamic combinatorial libraries (DCLs) represent new tools for investigating fundamental aspects related to self-organization and adaptation processes. Very recently the first examples integrating self-replication features within DCLs have pushed even further the idea of implementing dynamic combinatorial chemistry (DCC) towards minimal systems capable of self-construction and/or evolution. Indeed, feedback loop processes - in particular in the form of autocatalytic reactions - are keystones to build dynamic supersystems which could possibly approach the roots of "Darwinian" evolvability at mesoscale. This topic of current interest also shows significant potentialities beyond its fundamental character, because truly smart and autonomous materials for the future will have to respond to changes of their environment by selecting and by exponentially amplifying their fittest constituents.

  12. A scalable approach to combinatorial library design.

    PubMed

    Sharma, Puneet; Salapaka, Srinivasa; Beck, Carolyn

    2011-01-01

    In this chapter, we describe an algorithm for the design of lead-generation libraries required in combinatorial drug discovery. This algorithm addresses simultaneously the two key criteria of diversity and representativeness of compounds in the resulting library and is computationally efficient when applied to a large class of lead-generation design problems. At the same time, additional constraints on experimental resources are also incorporated in the framework presented in this chapter. A computationally efficient scalable algorithm is developed, where the ability of the deterministic annealing algorithm to identify clusters is exploited to truncate computations over the entire dataset to computations over individual clusters. An analysis of this algorithm quantifies the trade-off between the error due to truncation and computational effort. Results applied on test datasets corroborate the analysis and show improvement by factors as large as ten or more depending on the datasets.

  13. Self-encoding resin beads of combinatorial library screening

    NASA Astrophysics Data System (ADS)

    Lei, Du; Zhao, Yuandi; Cheng, Tongsheng; Zeng, Shaoqun; Luo, Qingming

    2003-07-01

    The latest self-encoding resin bead is a novel technology for solid phase synthesis combinatorial library screening. A new encode-positional deconvolution strategy which was based on that technology been illustrated compared with positional scanning and iterative strategies. The self-encoding resin beads technology provides an efficient method for improving the high-throughput screening of combinatorial library.

  14. Introducing Dynamic Combinatorial Chemistry: Probing the Substrate Selectivity of Acetylcholinesterase

    ERIC Educational Resources Information Center

    Angelin, Marcus; Larsson, Rikard; Vongvilai, Pornrapee; Ramstrom, Olof

    2010-01-01

    In this laboratory experiment, college students are introduced to dynamic combinatorial chemistry (DCC) and apply it to determine the substrate selectivity of acetylcholinesterase (AChE). Initially, the students construct a chemical library of dynamically interchanging thioesters and thiols. Then, AChE is added and allowed to select and hydrolyze…

  15. Combinatorial Libraries of Bis-Heterocyclic Compounds with Skeletal Diversity

    PubMed Central

    Soural, Miroslav; Bouillon, Isabelle; Krchňák, Viktor

    2009-01-01

    Combinatorial solid-phase synthesis of bis-heterocyclic compounds, characterized by the presence of two heterocyclic cores connected by a spacer of variable length/structure, provided structurally heterogeneous libraries with skeletal diversity. Both heterocyclic rings were assembled on resin in a combinatorial fashion. PMID:18811208

  16. Combinatorial library-based design with Basis Products

    NASA Astrophysics Data System (ADS)

    Zhou, Joe Zhongxiang; Shi, Shenghua; Na, Jim; Peng, Zhengwei; Thacher, Tom

    2009-10-01

    Uncovering useful lead compounds from a vast virtual library of synthesizable compounds continues to be of tremendous interest to pharmaceutical researchers. Here we present the concept of Basis Products (BPs), a new and broadly applicable method for achieving efficient selections from a combinatorial library. By definition, Basis Products are a strategically selected subset of compounds from a potentially very large combinatorial library, and any compound in a combinatorial library can represented by its BPs. In this article we will show how to use BP docking scores to find the top compounds of a combinatorial library. Compared with the brute-force docking of an entire virtual library, docking with BPs are much more efficient because of the substantial size reduction, saving both time and resources. We will also demonstrate how BPs can be used for property-based combinatorial library designs. Furthermore, BPs can also be considered as fragments carrying chemistry knowledge, hence they can potentially be used in combination with any fragment-based design method. Therefore, BPs can be used to integrate combinatorial design with structure-based design and/or fragment-based design. Other potential applications of BPs include lead hopping and consensus core building, which we will describe briefly as well in this report.

  17. UNC Center for Dynamic Combinatorial Chemistry

    DTIC Science & Technology

    2014-04-09

    Waters). 9) “Developing small molecules for anion binding using dynamic combinatorial chemistry”, Oct. 26, 2010, group meeting (J. Beaver /Waters...combinatorial chemistry-update”, Jan. 10, 2011, group meeting (J. Beaver /Waters). 12) “Developmen of DCC assay for protein-protein interaction inhibitors...dynamic combinatorial chemistry-update”, Aug. 4, 2011, DCC intergroup meeting (J. Beaver /Gagné/Waters). 15) “Development various peptides for G

  18. Structure-based design of combinatorial mutagenesis libraries

    PubMed Central

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-01-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189

  19. Structure-based design of combinatorial mutagenesis libraries.

    PubMed

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-05-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states.

  20. Were arachnids the first to use combinatorial peptide libraries?

    PubMed

    Sollod, Brianna L; Wilson, David; Zhaxybayeva, Olga; Gogarten, J Peter; Drinkwater, Roger; King, Glenn F

    2005-01-01

    Spiders, scorpions, and cone snails are remarkable for the extent and diversity of gene-encoded peptide neurotoxins that are expressed in their venom glands. These toxins are produced in the form of structurally constrained combinatorial peptide libraries in which there is hypermutation of essentially all residues in the mature-toxin sequence with the exception of a handful of strictly conserved cysteines that direct the three-dimensional fold of the toxin. This gene-based combinatorial peptide library strategy appears to have been first implemented by arachnids almost 400 million years ago, long before cone snails evolved a similar mechanism for generating peptide diversity.

  1. Probing the dynamic reversibility and generation of dynamic combinatorial libraries in the presence of bacterial model oligopeptides as templating guests of tetra-carbohydrazide macrocycles using electrospray mass spectrometry.

    PubMed

    Nour, Hany F; Islam, Tuhidul; Fernández-Lahore, Marcelo; Kuhnert, Nikolai

    2012-12-30

    Over the past few decades, bacterial resistance to antibiotics has emerged as a real threat to human health. Accordingly, there is an urgent demand for the development of innovative strategies for discovering new antibiotics. We present the first use of tetra-carbohydrazide cyclophane macrocycles in dynamic combinatorial chemistry (DCC) and molecular recognition as chiral hosts binding oligopeptides, which mimic bacterial cell wall. This study introduces an innovative application of electrospray ionisation time-of-flight mass spectrometry (ESI-TOF MS) to oligopeptides recognition using DCC. A small dynamic library composed of eight functionalised macrocycles has been generated in solution and all members were characterised by ESI-TOF MS. We also probed the dynamic reversibility and mechanism of formation of tetra-carbohydrazide cyclophanes in real-time using ESI-TOF MS. Dynamic reversibility of tetra-carbohydrazide cyclophanes is favored under thermodynamic control. The mechanism of formation of tetra-carbohydrazide cyclophanes involves key dialdehyde intermediates, which have been detected and assigned according to their high-resolution m/z values. Three members of the dynamic library bind efficiently in the gas phase to a selection of oligopeptides, unique to bacteria, allowing observation of host/guest complex ions in the gas phase. We probed the mechanism of the [2+2]-cyclocondensation reaction forming library members, proved dynamic reversibility of tetra-carbohydrazide cyclophanes and showed that complex ions formed between library members and hosts can be observed in the gas phase, allowing the solution of an important problem of biological interest. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Combinatorial antibody libraries: new advances, new immunological insights.

    PubMed

    Lerner, Richard A

    2016-08-01

    Immunochemists have become quite proficient in engineering existing antibody molecules to control their pharmacological properties. However, in terms of generating new antibodies, the combinatorial antibody library has become a central feature of modern immunochemistry. These libraries are essentially an immune system in a test tube and enable the selection of antibodies without the constraints of whole animal or cell-based systems. This Review provides an overview of how antibody libraries are constructed and discusses what can be learnt from these synthetic systems. In particular, the Review focuses on new biological insights from antibody libraries - such as the concept of 'SOS antibodies' - and the growing use of intracellular antibodies to perturb cellular functions.

  3. In situ etch rate measurements of thin film combinatorial libraries

    SciTech Connect

    Perkins, J. D.; van Hest, M. F. A. M.; Teplin, C. W.; Dabney, M. S.; Ginley, D. S.

    2007-11-01

    We demonstrate the use of optical reflection mapping as an in situ characterization tool to evaluate the corrosion rate of compositionally graded thin film combinatorial libraries coated with a commercial glass etching paste. A multi-channel fiber-optically coupled CCD-array-based spectrometer was used to collect a series of reflectance maps from 300 to 1000 nm versus time. The thin film interference oscillations in the measured reflection spectra have been fitted to determine the film thickness as a function of time and thereby the etch rate. Application of this technique to an In–Mo–O composition spread library is presented as an example.

  4. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort

    PubMed Central

    Jeschek, Markus; Gerngross, Daniel; Panke, Sven

    2016-01-01

    Rational flux design in metabolic engineering approaches remains difficult since important pathway information is frequently not available. Therefore empirical methods are applied that randomly change absolute and relative pathway enzyme levels and subsequently screen for variants with improved performance. However, screening is often limited on the analytical side, generating a strong incentive to construct small but smart libraries. Here we introduce RedLibs (Reduced Libraries), an algorithm that allows for the rational design of smart combinatorial libraries for pathway optimization thereby minimizing the use of experimental resources. We demonstrate the utility of RedLibs for the design of ribosome-binding site libraries by in silico and in vivo screening with fluorescent proteins and perform a simple two-step optimization of the product selectivity in the branched multistep pathway for violacein biosynthesis, indicating a general applicability for the algorithm and the proposed heuristics. We expect that RedLibs will substantially simplify the refactoring of synthetic metabolic pathways. PMID:27029461

  5. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort.

    PubMed

    Jeschek, Markus; Gerngross, Daniel; Panke, Sven

    2016-03-31

    Rational flux design in metabolic engineering approaches remains difficult since important pathway information is frequently not available. Therefore empirical methods are applied that randomly change absolute and relative pathway enzyme levels and subsequently screen for variants with improved performance. However, screening is often limited on the analytical side, generating a strong incentive to construct small but smart libraries. Here we introduce RedLibs (Reduced Libraries), an algorithm that allows for the rational design of smart combinatorial libraries for pathway optimization thereby minimizing the use of experimental resources. We demonstrate the utility of RedLibs for the design of ribosome-binding site libraries by in silico and in vivo screening with fluorescent proteins and perform a simple two-step optimization of the product selectivity in the branched multistep pathway for violacein biosynthesis, indicating a general applicability for the algorithm and the proposed heuristics. We expect that RedLibs will substantially simplify the refactoring of synthetic metabolic pathways.

  6. ProSAR: a new methodology for combinatorial library design.

    PubMed

    Chen, Hongming; Börjesson, Ulf; Engkvist, Ola; Kogej, Thierry; Svensson, Mats A; Blomberg, Niklas; Weigelt, Dirk; Burrows, Jeremy N; Lange, Tim

    2009-03-01

    A method is introduced for performing reagent selection for chemical library design based on topological (2D) pharmacophore fingerprints. Optimal reagent selection is achieved by optimizing the Shannon entropy of the 2D pharmacophore distribution for the reagent set. The method, termed ProSAR, is therefore expected to enumerate compounds that could serve as a good starting point for deriving a structure activity relationship (SAR) in combinatorial library design. This methodology is exemplified by library design examples where the active compounds were already known. The results show that most of the pharmacophores on the substituents for the active compounds are covered by the designed library. This strategy is further expanded to include product property profiles for aqueous solubility, hERG risk assessment, etc. in the optimization process so that the reagent pharmacophore diversity and the product property profile are optimized simultaneously via a genetic algorithm. This strategy is applied to a two-dimensional library design example and compared with libraries designed by a diversity based strategy which minimizes the average ensemble Tanimoto similarity. Our results show that by using the PSAR methodology, libraries can be designed with simultaneously good pharmacophore coverage and product property profile.

  7. Asymmetric Proteome Equalization of the Skeletal Muscle Proteome Using a Combinatorial Hexapeptide Library

    PubMed Central

    Rivers, Jenny; Hughes, Chris; McKenna, Thérèse; Woolerton, Yvonne; Vissers, Johannes P. C.; Langridge, James I.; Beynon, Robert J.

    2011-01-01

    Immobilized combinatorial peptide libraries have been advocated as a strategy for equalization of the dynamic range of a typical proteome. The technology has been applied predominantly to blood plasma and other biological fluids such as urine, but has not been used extensively to address the issue of dynamic range in tissue samples. Here, we have applied the combinatorial library approach to the equalization of a tissue where there is also a dramatic asymmetry in the range of abundances of proteins; namely, the soluble fraction of skeletal muscle. We have applied QconCAT and label-free methodology to the quantification of the proteins that bind to the beads as the loading is progressively increased. Although some equalization is achieved, and the most abundant proteins no longer dominate the proteome analysis, at high protein loadings a new asymmetry of protein expression is reached, consistent with the formation of complex assembles of heat shock proteins, cytoskeletal elements and other proteins on the beads. Loading at different ionic strength values leads to capture of different subpopulations of proteins, but does not completely eliminate the bias in protein accumulation. These assemblies may impair the broader utility of combinatorial library approaches to the equalization of tissue proteomes. However, the asymmetry in equalization is manifest at either low and high ionic strength values but manipulation of the solvent conditions may extend the capacity of the method. PMID:22205978

  8. Development of a large peptoid–DOTA combinatorial library

    PubMed Central

    Singh, Jaspal; Lopes, Daniel

    2016-01-01

    Abstract Conventional one‐bead one‐compound (OBOC) library synthesis is typically used to identify molecules with therapeutic value. The design and synthesis of OBOC libraries that contain molecules with imaging or even potentially therapeutic and diagnostic capacities (e.g. theranostic agents) has been overlooked. The development of a therapeutically active molecule with a built‐in imaging component for a certain target is a daunting task, and structure‐based rational design might not be the best approach. We hypothesize to develop a combinatorial library with potentially therapeutic and imaging components fused together in each molecule. Such molecules in the library can be used to screen, identify, and validate as direct theranostic candidates against targets of interest. As the first step in achieving that aim, we developed an on‐bead library of 153,600 Peptoid–DOTA compounds in which the peptoids are the target‐recognizing and potentially therapeutic components and the DOTA is the imaging component. We attached the DOTA scaffold to TentaGel beads using one of the four arms of DOTA, and we built a diversified 6‐mer peptoid library on the remaining three arms. We evaluated both the synthesis and the mass spectrometric sequencing capacities of the test compounds and of the final library. The compounds displayed unique ionization patterns including direct breakages of the DOTA scaffold into two units, allowing clear decoding of the sequences. Our approach provides a facile synthesis method for the complete on‐bead development of large peptidomimetic–DOTA libraries for screening against biological targets for the identification of potential theranostic agents in the future. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 673–684, 2016. PMID:27257968

  9. Mixture-based combinatorial libraries from small individual peptide libraries: a case study on α1-antitrypsin deficiency.

    PubMed

    Chang, Yi-Pin; Chu, Yen-Ho

    2014-05-16

    The design, synthesis and screening of diversity-oriented peptide libraries using a "libraries from libraries" strategy for the development of inhibitors of α1-antitrypsin deficiency are described. The major buttress of the biochemical approach presented here is the use of well-established solid-phase split-and-mix method for the generation of mixture-based libraries. The combinatorial technique iterative deconvolution was employed for library screening. While molecular diversity is the general consideration of combinatorial libraries, exquisite design through systematic screening of small individual libraries is a prerequisite for effective library screening and can avoid potential problems in some cases. This review will also illustrate how large peptide libraries were designed, as well as how a conformation-sensitive assay was developed based on the mechanism of the conformational disease. Finally, the combinatorially selected peptide inhibitor capable of blocking abnormal protein aggregation will be characterized by biophysical, cellular and computational methods.

  10. Device for preparing combinatorial libraries in powder metallurgy.

    PubMed

    Yang, Shoufeng; Evans, Julian R G

    2004-01-01

    This paper describes a powder-metering, -mixing, and -dispensing mechanism that can be used as a method for producing large numbers of samples for metallurgical evaluation or electrical or mechanical testing from multicomponent metal and cermet powder systems. It is designed to make use of the same commercial powders that are used in powder metallurgy and, therefore, to produce samples that are faithful to the microstructure of finished products. The particle assemblies produced by the device could be consolidated by die pressing, isostatic pressing, laser sintering, or direct melting. The powder metering valve provides both on/off and flow rate control of dry powders in open capillaries using acoustic vibration. The valve is simple and involves no relative movement, avoiding seizure with fine powders. An orchestra of such valves can be arranged on a building platform to prepare multicomponent combinatorial libraries. As with many combinatorial devices, identification and evaluation of sources of mixing error as a function of sample size is mandatory. Such an analysis is presented.

  11. Protein-Directed Dynamic Combinatorial Chemistry: A Guide to Protein Ligand and Inhibitor Discovery.

    PubMed

    Huang, Renjie; Leung, Ivanhoe K H

    2016-07-16

    Protein-directed dynamic combinatorial chemistry is an emerging technique for efficient discovery of novel chemical structures for binding to a target protein. Typically, this method relies on a library of small molecules that react reversibly with each other to generate a combinatorial library. The components in the combinatorial library are at equilibrium with each other under thermodynamic control. When a protein is added to the equilibrium mixture, and if the protein interacts with any components of the combinatorial library, the position of the equilibrium will shift and those components that interact with the protein will be amplified, which can then be identified by a suitable biophysical technique. Such information is useful as a starting point to guide further organic synthesis of novel protein ligands and enzyme inhibitors. This review uses literature examples to discuss the practicalities of applying this method to inhibitor discovery, in particular, the set-up of the combinatorial library, the reversible reactions that may be employed, and the choice of detection methods to screen protein ligands from a mixture of reversibly forming molecules.

  12. Selecting agonists from single cells infected with combinatorial antibody libraries.

    PubMed

    Zhang, Hongkai; Yea, Kyungmoo; Xie, Jia; Ruiz, Diana; Wilson, Ian A; Lerner, Richard A

    2013-05-23

    We describe a system for direct selection of antibodies that are receptor agonists. Combinatorial antibody libraries in lentiviruses are used to infect eukaryotic cells that contain a fluorescent reporter system coupled to the receptor for which receptor agonist antibodies are sought. In this embodiment of the method, very large numbers of candidate antibodies expressing lentivirus and eukaryotic reporter cells are packaged together in a format where each is capable of replication, thereby forging a direct link between genotype and phenotype. Following infection, cells that fluoresce are sorted and the integrated genes encoding the agonist antibodies recovered. We validated the system by illustrating its ability to generate rapidly potent antibody agonists that are complete thrombopoietin phenocopies. The system should be generalizable to any pathway where its activation can be linked to production of a selectable phenotype.

  13. Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries.

    PubMed

    Blanchard, Joel W; Xie, Jia; El-Mecharrafie, Nadja; Gross, Simon; Lee, Sohyon; Lerner, Richard A; Baldwin, Kristin K

    2017-09-11

    The reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) is usually achieved by exogenous induction of transcription by factors acting in the nucleus. In contrast, during development, signaling pathways initiated at the membrane induce differentiation. The central idea of this study is to identify antibodies that can catalyze cellular de-differentiation and nuclear reprogramming by acting at the cell surface. We screen a lentiviral library encoding ∼100 million secreted and membrane-bound single-chain antibodies and identify antibodies that can replace either Sox2 and Myc (c-Myc) or Oct4 during reprogramming of mouse embryonic fibroblasts into iPSCs. We show that one Sox2-replacing antibody antagonizes the membrane-associated protein Basp1, thereby de-repressing nuclear factors WT1, Esrrb and Lin28a (Lin28) independent of Sox2. By manipulating this pathway, we identify three methods to generate iPSCs. Our results establish unbiased selection from autocrine combinatorial antibody libraries as a robust method to discover new biologics and uncover membrane-to-nucleus signaling pathways that regulate pluripotency and cell fate.

  14. Identification of inhibitors for vascular endothelial growth factor receptor by using dynamic combinatorial chemistry.

    PubMed

    Yang, Zhao; Fang, Zheng; He, Wei; Wang, Zhixiang; Gan, Haifeng; Tian, Qitao; Guo, Kai

    2016-04-01

    The novel analysis method consisting of size-exclusion chromatography (SEC) and HRMS analysis was firstly applied in the discovery of potential inhibitors towards cancer drug targets. With vascular endothelial growth factor receptor (VEGFR-2) as a target, dynamic combinatorial libraries (DCLs) were prepared by reacting aldehydes with amines. Four sensitive binders targeted VEGFR-2 were directly isolated from the library. Antitumor activity test in vitro and inhibition experiments toward angiogenesis were also carried out.

  15. Intrinsic information carriers in combinatorial dynamical systems

    NASA Astrophysics Data System (ADS)

    Harmer, Russ; Danos, Vincent; Feret, Jérôme; Krivine, Jean; Fontana, Walter

    2010-09-01

    Many proteins are composed of structural and chemical features—"sites" for short—characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations—unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are

  16. Combinatorial chemistry: polymer supported synthesis of peptide and non-peptide libraries.

    PubMed

    Kundu, B; Khare, S K; Rastogi, S K

    1999-01-01

    In recent years, combinatorial chemistry has emerged as a powerful tool for accelerating drug discovery. While industry is rapidly embracing the technology, researchers continue to develop novel library methods including resins, linkers, tagging and deconvolution techniques. Newer strategies involving computer-customized combinatorial libraries offer enormous potential for the design of more "focused" and "smart" chemical libraries with maximal diversity. In addition, miniaturized systems for synthesizing chemical libraries are also being developed, which has made it possible to carry out reactions at submicroliter volumes.

  17. Amino acid-derived heterocycles as combinatorial library targets: spirocyclic ketal lactones.

    PubMed

    Trump, Ryan P; Bartlett, Paul A

    2003-01-01

    The spirocyclic ketal-lactone frameworks of 3 and 4 were designed as novel structures amenable to combinatorial synthesis. The synthesis of representative analogues was developed in solution and on solid support, the scope of effective input materials was determined, and the stability and stereochemistry of the products was evaluated. The spirocycles are obtained in modest overall yields (5-36%) and excellent purities (>72%) and offer a promising motif for combinatorial prospecting libraries.

  18. Evaluating the Effect of Peptoid Lipophilicity on Antimicrobial Potency, Cytotoxicity, and Combinatorial Library Design.

    PubMed

    Turkett, Jeremy A; Bicker, Kevin L

    2017-04-10

    Growing prevalence of antibiotic resistant bacterial infections necessitates novel antimicrobials, which could be rapidly identified from combinatorial libraries. We report the use of the peptoid library agar diffusion (PLAD) assay to screen peptoid libraries against the ESKAPE pathogens, including the optimization of assay conditions for each pathogen. Work presented here focuses on the tailoring of combinatorial peptoid library design through a detailed study of how peptoid lipophilicity relates to antibacterial potency and mammalian cell toxicity. The information gleaned from this optimization was then applied using the aforementioned screening method to examine the relative potency of peptoid libraries against Staphylococcus aureus, Acinetobacter baumannii, and Enterococcus faecalis prior to and following functionalization with long alkyl tails. The data indicate that overall peptoid hydrophobicity and not simply alkyl tail length is strongly correlated with mammalian cell toxicity. Furthermore, this work demonstrates the utility of the PLAD assay in rapidly evaluating the effect of molecular property changes in similar libraries.

  19. From Dynamic Combinatorial Chemistry to in Vivo Evaluation of Reversible and Irreversible Myeloperoxidase Inhibitors.

    PubMed

    Soubhye, Jalal; Gelbcke, Michel; Van Antwerpen, Pierre; Dufrasne, François; Boufadi, Mokhtaria Yasmina; Nève, Jean; Furtmüller, Paul G; Obinger, Christian; Zouaoui Boudjeltia, Karim; Meyer, Franck

    2017-02-09

    The implementation of dynamic combinatorial libraries allowed the determination of highly active reversible and irreversible inhibitors of myeloperoxidase (MPO) at the nanomolar level. Docking experiments highlighted the interaction between the most active ligands and MPO, and further kinetic studies defined the mode of inhibition of these compounds. Finally, in vivo evaluation showed that one dose of irreversible inhibitors is able to suppress the activity of MPO after inducing inflammation.

  20. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.

    PubMed

    Li, Yizhou; Gabriele, Elena; Samain, Florent; Favalli, Nicholas; Sladojevich, Filippo; Scheuermann, Jörg; Neri, Dario

    2016-08-08

    DNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested. These reaction conditions were efficient with a variety of primary and secondary amines, as well as with various types of amino-modified oligonucleotides. The reaction conditions, which also worked efficiently over a broad range of DNA concentrations and reaction scales, should facilitate the synthesis of novel DNA-encoded combinatorial libraries.

  1. Combinatorial peptide libraries in drug design: lessons from venomous cone snails.

    PubMed

    Olivera, B M; Hillyard, D R; Marsh, M; Yoshikami, D

    1995-10-01

    Many present-day drugs are derived from compounds that are natural products, a traditional source of which is fermentation broths of microorganisms. The venoms of cone snails are a new natural resource of peptides that may have a pharmaceutical potential equivalent to those from traditional sources, particularly for developing drugs that target cell-surface receptors or ion channels. In effect, cone snails have used a combinatorial library strategy to evolve their small, highly bioactive venom peptides. The methods by which the snails have generated thousands of peptides with remarkable specificity and high affinity for their targets may provide important lessons in designing combinatorial libraries for drug development.

  2. Construction of a scFv Library with Synthetic, Non-combinatorial CDR Diversity.

    PubMed

    Bai, Xuelian; Shim, Hyunbo

    2017-01-01

    Many large synthetic antibody libraries have been designed, constructed, and successfully generated high-quality antibodies suitable for various demanding applications. While synthetic antibody libraries have many advantages such as optimized framework sequences and a broader sequence landscape than natural antibodies, their sequence diversities typically are generated by random combinatorial synthetic processes which cause the incorporation of many undesired CDR sequences. Here, we describe the construction of a synthetic scFv library using oligonucleotide mixtures that contain predefined, non-combinatorially synthesized CDR sequences. Each CDR is first inserted to a master scFv framework sequence and the resulting single-CDR libraries are subjected to a round of proofread panning. The proofread CDR sequences are assembled to produce the final scFv library with six diversified CDRs.

  3. Combinatorial Library Screening Coupled to Mass Spectrometry to Identify Valuable Cyclic Peptides.

    PubMed

    Camperi, Silvia A; Giudicessi, Silvana L; Martínez-Ceron, María C; Gurevich-Messina, Juan M; Saavedra, Soledad L; Acosta, Gerardo; Cascone, Osvaldo; Erra-Balsells, Rosa; Albericio, Fernando

    2016-06-02

    Combinatorial library screening coupled to mass spectrometry (MS) analysis is a practical approach to identify useful peptides. Cyclic peptides can have high biological activity, selectivity, and affinity for target proteins, and high stability against proteolytic degradation. Here we describe two strategies to prepare combinatorial libraries suitable for MS analysis to accelerate the discovery of cyclic peptide structures. Both approaches use ChemMatrix resin and the linker 4-hydroxymethylbenzoic acid. One strategy involves the synthesis of a one-bead-two-peptides library in which each bead contains both the cyclic peptide and its linear counterpart to facilitate MS analysis. The other protocol is based on the synthesis of a cyclic depsipeptide library in which a glycolamidic ester group is incorporated by adding glycolic acid. After library screening, the ring is opened and the peptide is released simultaneously for subsequent MS analysis. © 2016 by John Wiley & Sons, Inc.

  4. A Novel Human scFv Library with Non-Combinatorial Synthetic CDR Diversity.

    PubMed

    Bai, Xuelian; Kim, Jihye; Kang, Seungmin; Kim, Wankyu; Shim, Hyunbo

    2015-01-01

    The present work describes the construction and validation of a human scFv library with a novel design approach to synthetic complementarity determining region (CDR) diversification. The advantage of synthetic antibody libraries includes the possibility of exerting fine control over factors like framework sequences, amino acid and codon usage, and CDR diversity. However, random combinatorial synthesis of oligonucleotides for CDR sequence diversity also produces many clones with unnatural sequences and/or undesirable modification motifs. To alleviate these issues, we designed and constructed a novel semi-synthetic human scFv library with non-combinatorial, pre-designed CDR diversity and a single native human framework each for heavy, kappa, and lambda chain variable domains. Next-generation sequencing analysis indicated that the library consists of antibody clones with highly nature-like CDR sequences and the occurrence of the post-translational modification motifs is minimized. Multiple unique clones with nanomolar affinity could be isolated from the library against a number of target antigens, validating the library design strategy. The results demonstrate that it is possible to construct a functional antibody library using low, non-combinatorial synthetic CDR diversity, and provides a new strategy for the design of antibody libraries suitable for demanding applications.

  5. Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate.

    PubMed

    Pullar, Robert C

    2012-07-09

    Bulk ceramic combinatorial libraries were produced via a novel, high-throughput (HT) process, in the form of polycrystalline strips with a gradient composition along the length of the library. Step gradient ceramic composite libraries with 10 mol % steps of SrFe12O19-BaTiO3 (SrM-BT) were made and characterized using HT methods, as a proof of principle of the combinatorial bulk ceramic process, and sintered via HT thermal processing. It was found that the SrM-BT libraries sintered at 1175 °C had the optimum morphology and density. The compositional, electrical and magnetic properties of this library were analyzed, and it was found that the SrM and BT phases did not react and remained discrete. The combinatorial synthesis method produced a relatively linear variation in composition. The magnetization of the library followed the measured compositions very well, as did the low frequency permittivity values of most compositions in the library. However, with high SrM content of ≥80 mol %, the samples became increasingly conductive, and no reliable dielectric measurements could be made. Such conductivity would also greatly inhibit any ferroelectricity and magnetoelectric coupling with these composites with high levels of the SrM hexagonal ferrite.

  6. High-quality combinatorial protein libraries using the binary patterning approach.

    PubMed

    Bradley, Luke H

    2014-01-01

    Protein combinatorial libraries have become a platform technology for exploring protein sequence space for novel molecules for use in research, synthetic biology, biotechnology, and medicine. To expedite the isolation of proteins with novel/desired functions using screens and selections, high-quality approaches that generate protein libraries rich in folded and soluble structures are desirable for this goal. The binary patterning approach is a protein library design method that incorporates elements of both rational design and combinatorial diversity to specify the arrangement of polar and nonpolar amino acid residues in the context of a desired, folded tertiary structure template. An overview of the considerations necessary to design and construct binary patterned libraries of de novo and natural proteins is presented.

  7. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries.

    PubMed

    Wang, Xueshun; Huang, Boshi; Liu, Xinyong; Zhan, Peng

    2016-01-01

    The rapid assembly and in situ screening of focused combinatorial fragment libraries using CuAAC click chemistry is a highly robust and efficient strategy for establishing SAR and for discovering bioactive molecules. This review outlines the current status of this methodology in drug discovery application. The inherent limitations, challenges and prospects are critically discussed.

  8. Combinatorial approach for ferroelectric material libraries prepared by liquid source misted chemical deposition method

    PubMed Central

    Kim, Ki Woong; Jeon, Min Ku; Oh, Kwang Seok; Kim, Tai Suk; Kim, Yun Seok; Woo, Seong Ihl

    2007-01-01

    Combinatorial approach for discovering novel functional materials in the huge diversity of chemical composition and processing conditions has become more important for breakthrough in thin film electronic and energy-conversion devices. The efficiency of combinatorial method depends on the preparation of a reliable high-density composition thin-film library. The physico-chemical properties of each sample on the library should be similar to those of the corresponding samples prepared by one-by-one conventional methods. We successfully developed the combinatorial liquid source misted chemical deposition (LSMCD) method and demonstrated its validity in screening the chemical composition of Bi3.75LaxCe0.25-xTi3O12 (BLCT) for high remanent polarization (Pr). LSMCD is a cheap promising combinatorial screening tool. It can control the composition up to ppm level and produce homogeneous multicomponent library. LSMCD method allows us to prepare BLCT thin-film library at the variation of 0.4 mol% of La. Maximum 2Pr is 35 μC/cm−2 at x = 0.21. The intensity of (117) XRD peak is quantitatively related to 2Pr. Newly developed scanning piezoelectric deformation measurement for nano-sized samples using scanning probe microscope (SPM) is also found out to be reliable for determining the relative ranking of Pr value rapidly. PMID:17218453

  9. Dithioacetal Exchange: A New Reversible Reaction for Dynamic Combinatorial Chemistry.

    PubMed

    Orrillo, A Gastón; Escalante, Andrea M; Furlan, Ricardo L E

    2016-05-10

    Reversibility of dithioacetal bond formation is reported under acidic mild conditions. Its utility for dynamic combinatorial chemistry was explored by combining it with orthogonal disulfide exchange. In such a setup, thiols are positioned at the intersection of both chemistries, constituting a connecting node between temporally separated networks.

  10. Combinatorial Synthesis of and high-throughput protein release from polymer film and nanoparticle libraries.

    PubMed

    Petersen, Latrisha K; Chavez-Santoscoy, Ana V; Narasimhan, Balaji

    2012-09-06

    Polyanhydrides are a class of biomaterials with excellent biocompatibility and drug delivery capabilities. While they have been studied extensively with conventional one-sample-at-a-time synthesis techniques, a more recent high-throughput approach has been developed enabling the synthesis and testing of large libraries of polyanhydrides(1). This will facilitate more efficient optimization and design process of these biomaterials for drug and vaccine delivery applications. The method in this work describes the combinatorial synthesis of biodegradable polyanhydride film and nanoparticle libraries and the high-throughput detection of protein release from these libraries. In this robotically operated method (Figure 1), linear actuators and syringe pumps are controlled by LabVIEW, which enables a hands-free automated protocol, eliminating user error. Furthermore, this method enables the rapid fabrication of micro-scale polymer libraries, reducing the batch size while resulting in the creation of multivariant polymer systems. This combinatorial approach to polymer synthesis facilitates the synthesis of up to 15 different polymers in an equivalent amount of time it would take to synthesize one polymer conventionally. In addition, the combinatorial polymer library can be fabricated into blank or protein-loaded geometries including films or nanoparticles upon dissolution of the polymer library in a solvent and precipitation into a non-solvent (for nanoparticles) or by vacuum drying (for films). Upon loading a fluorochrome-conjugated protein into the polymer libraries, protein release kinetics can be assessed at high-throughput using a fluorescence-based detection method (Figures 2 and 3) as described previously(1). This combinatorial platform has been validated with conventional methods(2) and the polyanhydride film and nanoparticle libraries have been characterized with (1)H NMR and FTIR. The libraries have been screened for protein release kinetics, stability and

  11. A Rapid Python-Based Methodology for Target-Focused Combinatorial Library Design.

    PubMed

    Li, Shiliang; Song, Yuwei; Liu, Xiaofeng; Li, Honglin

    2016-01-01

    The chemical space is so vast that only a small portion of it has been examined. As a complementary approach to systematically probe the chemical space, virtual combinatorial library design has extended enormous impacts on generating novel and diverse structures for drug discovery. Despite the favorable contributions, high attrition rates in drug development that mainly resulted from lack of efficacy and side effects make it increasingly challenging to discover good chemical starting points. In most cases, focused libraries, which are restricted to particular regions of the chemical space, are deftly exploited to maximize hit rate and improve efficiency at the beginning of the drug discovery and drug development pipeline. This paper presented a valid methodology for fast target-focused combinatorial library design in both reaction-based and production-based ways with the library creating rates of approximately 70,000 molecules per second. Simple, quick and convenient operating procedures are the specific features of the method. SHAFTS, a hybrid 3D similarity calculation software, was embedded to help refine the size of the libraries and improve hit rates. Two target-focused (p38-focused and COX2-focused) libraries were constructed efficiently in this study. This rapid library enumeration method is portable and applicable to any other targets for good chemical starting points identification collaborated with either structure-based or ligand-based virtual screening.

  12. Combinatorial Libraries of Transition Metal Oxides Using an Ab Initio High Throughput Approach

    NASA Astrophysics Data System (ADS)

    Li, Guo; Yan, Qimin; Newhouse, Paul; Zhou, Lan; Gregoire, John; Neaton, Jeffrey

    2015-03-01

    Using the results of first-principles calculations and data from the Materials Project (materialsproject.org), we have developed a simple but efficient scheme to theoretically simulate phase coexistence in experimental combinatorial libraries as a function of composition and temperature. In our approach, each experimental sample in a combinatorial library at a fixed composition is considered as a mixture of all the known compounds; and the compound concentrations are determined from calculations of their compositions and relevant thermodynamic potentials. Consequently, multiple compounds can be identified in every sample. To test our approach, we studied the pseudobinary library MnxV(1-x)Oy, and found that, together with those stable compounds predicted in a phase diagram, some of the above-convex-hull compounds, which are viewed unstable, also play a significant role in the combinatorial library. We validated our approach via comparison of calculated X-ray diffraction spectra for multiple phases and recent measurements. This work supported by DOE (the JCAP under Award number DE-SC000499 and the Molecular Foundry of LBNL), and computational resources provided by NERSC.

  13. Price-Focused Analysis of Commercially Available Building Blocks for Combinatorial Library Synthesis.

    PubMed

    Kalliokoski, Tuomo

    2015-10-12

    Combinatorial libraries are synthesized by combining smaller reagents (building blocks), the price of which is an important component of the total costs associated with the synthetic exercise. A significant portion of commercially available reagents are too expensive for large scale work. In this study, 13 commonly used reagent classes in combinatorial library synthesis (primary and secondary amines, carboxylic acids, alcohols, ketones, aldehydes, boronic acids, acyl halides, sulfonyl chlorides, isocyanates, isothiocyanates, azides and chloroformates) were analyzed with respect to the cost, physicochemical properties (molecular weight and calculated logP), chemical diversity, and 3D-likeness using a large data set. The results define the chemical space accessible under a constraint of limited financial resources.

  14. A mass speoctrometric solution to the address problem of combinatorial libraries

    SciTech Connect

    Brummel, C.L., Lee, I.N.W.; Zhou, Ying, Benkovic, S.J.; Winograd, N. )

    1994-04-15

    The molecular weights of femtomole quantities of small peptides attached to polystyrene beads have been determined with imaging time-of-flight secondary ion mass spectrometry. The analysis is made possible by the selective clipping of the bond linking the peptide to a bead with trifluoroacetic acid vapor before the secondary ion mass spectrometry assay. The approach can be applied to large numbers of 30- to 60-micrometer polystyrene beads for the direct characterization of massive combinatorial libraries.

  15. Quantified MS analysis applied to combinatorial heterogeneous catalyst libraries.

    PubMed

    Wang, Hua; Liu, Zhongmin; Shen, Jianghan

    2003-01-01

    A high-throughput screening system for secondary catalyst libraries has been developed by incorporation of an 80-pass reactor and a quantified multistream mass spectrometer screening (MSMSS) technique. With a low-melting alloy as the heating medium, a uniform reaction temperature could be obtained in the multistream reactor (maximum temperature differences are less than 1 K at 673 K). Quantification of the results was realized by combination of a gas chromatogram with the MSMSS, which could provide the product selectivities of each catalyst in a heterogeneous catalyst library. Because the catalyst loading of each reaction tube is comparable to that of the conventional microreaction system and because the parallel reactions could be operated under identical conditions (homogeneous temperature, same pressure and WHSV), the reaction results of a promising catalyst selected from the library could be reasonably applied to the further scale-up of the system. The aldol condensation of acetone, with obvious differences in the product distribution over different kind of catalysts, was selected as a model reaction to validate the screening system.

  16. Selective Chromium(VI) Ligands Identified Using Combinatorial Peptoid Libraries

    PubMed Central

    Knight, Abigail S.; Zhou, Effie Y.; Pelton, Jeffrey G.; Francis, Matthew B.

    2013-01-01

    Hexavalent chromium (Cr(VI)) is a world-wide water contaminant that is currently without cost-effective and efficient remediation strategies. This is in part due to a lack of ligands that can bind it amid an excess of innocuous ions in aqueous solution. We present herein the design and application of a peptoid-based library of ligand candidates for toxic metal ions. A selective screening process was used to identify members of the library that can bind to Cr(VI) species at neutral pH and in the presence of a large excess of spectator ions. Eleven sequences were identified, and their affinities were compared using titrations monitored with UV-Vis spectroscopy. To identify the interactions involved in coordination and specificity, we evaluated the effects of sequence substitutions and backbone variation in the highest affinity structure. Additional characterization of the complex formed between this sequence and Cr(VI) was performed using NMR spectroscopy. To evaluate the ability of the developed sequences to remediate contaminated solutions, the structures were synthesized on a solid-phase resin and incubated with environmental water samples that contained simulated levels of chromium contamination. The synthetic structures demonstrated the ability to reduce the amount of toxic chromium to levels within the range of the EPA contamination guidelines. In addition to providing some of the first selective ligands for Cr(VI), these studies highlight the promise of peptoid sequences as easily-prepared components of environmental remediation materials. PMID:24195610

  17. Imaging combinatorial libraries by mass spectrometry: from peptide to organic-supported syntheses.

    PubMed

    Enjalbal, Christine; Maux, Delphine; Combarieu, Robert; Martinez, Jean; Aubagnac, Jean-Louis

    2003-01-01

    Supported peptide and drug-like organic molecule libraries were profiled in single nondestructive imaging static secondary ion mass spectrometric experiments. The selective rupture of the bond linking the compound and the insoluble polymeric support (resin) produced ions that were characteristic of the anchored molecules, thus allowing unambiguous resin bead assignment. Very high sensitivity and specificity were obtained with such a direct analytical method, which avoids the chemical release of the molecules from the support. Libraries issued from either mix-and-split or parallel solid-phase organic syntheses were profiled, demonstrating the usefulness of such a technique for characterization and optimization during combinatorial library development. Moreover, the fact that the control was effected at the bead level whatever the structure and quantity of the anchored molecules allows the sole identification of active beads selected from on-bead screening. Under such circumstances, the time-consuming whole-library characterization could thus be suppressed, enhancing the throughput of the analytical process.

  18. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  19. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis.

    PubMed

    Kille, Sabrina; Acevedo-Rocha, Carlos G; Parra, Loreto P; Zhang, Zhi-Gang; Opperman, Diederik J; Reetz, Manfred T; Acevedo, Juan Pablo

    2013-02-15

    Saturation mutagenesis probes define sections of the vast protein sequence space. However, even if randomization is limited this way, the combinatorial numbers problem is severe. Because diversity is created at the codon level, codon redundancy is a crucial factor determining the necessary effort for library screening. Additionally, due to the probabilistic nature of the sampling process, oversampling is required to ensure library completeness as well as a high probability to encounter all unique variants. Our trick employs a special mixture of three primers, creating a degeneracy of 22 unique codons coding for the 20 canonical amino acids. Therefore, codon redundancy and subsequent screening effort is significantly reduced, and a balanced distribution of codon per amino acid is achieved, as demonstrated exemplarily for a library of cyclohexanone monooxygenase. We show that this strategy is suitable for any saturation mutagenesis methodology to generate less-redundant libraries.

  20. Construction of a virtual combinatorial library using SMILES strings to discover potential structure-diverse PPAR modulators.

    PubMed

    Liao, Chenzhong; Liu, Bing; Shi, Leming; Zhou, Jiaju; Lu, Xian-Ping

    2005-07-01

    Based on the structural characters of PPAR modulators, a virtual combinatorial library containing 1226,625 compounds was constructed using SMILES strings. Selected ADME filters were employed to compel compounds having poor drug-like properties from this library. This library was converted to sdf and mol2 files by CONCORD 4.0, and was then docked to PPARgamma by DOCK 4.0 to identify new chemical entities that may be potential drug leads against type 2 diabetes and other metabolic diseases. The method to construct virtual combinatorial library using SMILES strings was further visualized by Visual Basic.net that can facilitate the needs of generating other type virtual combinatorial libraries.

  1. Design, synthesis, and application of OB2C combinatorial peptide and peptidomimetic libraries.

    PubMed

    Liu, Ruiwu; Shih, Tsung-Chieh; Deng, Xiaojun; Anwar, Lara; Ahadi, Sara; Kumaresan, Pappanaicken; Lam, Kit S

    2015-01-01

    The "one-bead two-compound" (OB2C) combinatorial library is constructed on topologically segregated trifunctional bilayer beads such that each bead has a fixed cell-capturing ligand and a random library compound co-displayed on its surface and a chemical coding tag (bar code) inside the bead. An OB2C library containing thousands to millions of compounds can be synthesized and screened concurrently within a short period of time. When live cells are incubated with such OB2C libraries, every bead will be coated with a monolayer of cells. The cell membranes of the captured cells facing the bead surface are exposed to the library compounds tethered to each bead. A specific biochemical or cellular response can be detected with an appropriate reporter system. The OB2C method enables investigators to rapidly discover synthetic molecules that not only interact with cell-surface receptors but can also stimulate or inhibit downstream cell signaling. To demonstrate this powerful method, one OB2C peptide library and two OB2C peptidomimetic libraries were synthesized and screened against Molt-4 lymphoma cells to discover "death ligands." Apoptosis of the bead-bound cells was detected with immunocytochemistry using horseradish peroxidase (HRP)-conjugated anti-cleaved caspase-3 antibody and 3,3'-diaminobenzidine as a substrate. Two novel synthetic "death ligands" against Molt-4 cells were discovered using this OB2C library approach.

  2. Affinity-based screening of combinatorial libraries using automated, serial-column chromatography

    SciTech Connect

    Evans, D.M.; Williams, K.P.; McGuinness, B.

    1996-04-01

    The authors have developed an automated serial chromatographic technique for screening a library of compounds based upon their relative affinity for a target molecule. A {open_quotes}target{close_quotes} column containing the immobilized target molecule is set in tandem with a reversed-phase column. A combinatorial peptide library is injected onto the target column. The target-bound peptides are eluted from the first column and transferred automatically to the reversed-phase column. The target-specific peptide peaks from the reversed-phase column are identified and sequenced. Using a monoclonal antibody (3E-7) against {beta}-endorphin as a target, we selected a single peptide with sequence YGGFL from approximately 5800 peptides present in a combinatorial library. We demonstrated the applicability of the technology towards selection of peptides with predetermined affinity for bacterial lipopolysaccharide (LPS, endotoxin). We expect that this technology will have broad applications for high throughput screening of chemical libraries or natural product extracts. 21 refs., 4 figs.

  3. Template-based combinatorial enumeration of virtual compound libraries for lipids.

    PubMed

    Sud, Manish; Fahy, Eoin; Subramaniam, Shankar

    2012-09-25

    A variety of software packages are available for the combinatorial enumeration of virtual libraries for small molecules, starting from specifications of core scaffolds with attachments points and lists of R-groups as SMILES or SD files. Although SD files include atomic coordinates for core scaffolds and R-groups, it is not possible to control 2-dimensional (2D) layout of the enumerated structures generated for virtual compound libraries because different packages generate different 2D representations for the same structure. We have developed a software package called LipidMapsTools for the template-based combinatorial enumeration of virtual compound libraries for lipids. Virtual libraries are enumerated for the specified lipid abbreviations using matching lists of pre-defined templates and chain abbreviations, instead of core scaffolds and lists of R-groups provided by the user. 2D structures of the enumerated lipids are drawn in a specific and consistent fashion adhering to the framework for representing lipid structures proposed by the LIPID MAPS consortium. LipidMapsTools is lightweight, relatively fast and contains no external dependencies. It is an open source package and freely available under the terms of the modified BSD license.

  4. Identification of osteoconductive and biodegradable polymers from a combinatorial polymer library.

    PubMed

    Brey, Darren M; Chung, Cindy; Hankenson, Kurt D; Garino, Jonathon P; Burdick, Jason A

    2010-05-01

    Combinatorial polymer syntheses are now being utilized to create libraries of materials with potential utility for a wide variety of biomedical applications. We recently developed a library of photopolymerizable and biodegradable poly(beta-amino ester)s (PBAEs) that possess a range of tunable properties. In this study, the PBAE library was assessed for candidate materials that met design criteria (e.g., physical properties such as degradation and mechanical strength and in vitro cell viability and osteoconductive behavior) for scaffolding in mineralized tissue repair. The most promising candidate, A6, was then processed into three-dimensional porous scaffolds and implanted subcutaneously and only presented a mild inflammatory response. The scaffolds were then implanted intramuscularly and into a critical-sized cranial defect either alone or loaded with bone morphogenetic protein-2 (BMP-2). The samples in both locations displayed mineralized tissue formation in the presence of BMP-2, as evident through radiographs, micro-computed tomography, and histology, whereas samples without BMP-2 showed minimal or no mineralized tissue. These results illustrate a process to identify a candidate scaffolding material from a combinatorial polymer library, and specifically for the identification of an osteoconductive scaffold with osteoinductive properties via the inclusion of a growth factor.

  5. Determination of the sequence specificity of XIAP BIR domains by screening a combinatorial peptide library.

    PubMed

    Sweeney, Michael C; Wang, Xianxi; Park, Junguk; Liu, Yusen; Pei, Dehua

    2006-12-12

    Inhibitor of apoptosis (IAP) proteins regulate programmed cell death by inhibiting members of the caspase family of proteases. The X-chromosome-linked IAP (XIAP) contains three baculovirus IAP repeat (BIR) domains, which bind directly to the N-termini of target proteins including those of caspases-3, -7, and -9. In the present study, we defined the consensus sequences of the motifs that interact with the three BIR domains in an unbiased manner. A combinatorial peptide library containing four random residues at the N-terminus was constructed and screened using BIR domains as probes. We found that the BIR3 domain binds a highly specific motif containing an alanine or valine at the N-terminus (P1 position), an arginine or proline at the P3 position, and a hydrophobic residue (Phe, Ile, and Tyr) at the P4 position. The BIR2-binding motif is less stringent. Although it still requires an N-terminal alanine, it tolerates a wide variety of amino acids at P2-P4 positions. The BIR1 failed to bind to any peptides in the library. SPR analysis of individually synthesized peptides confirmed the library screening results. Database searches with the BIR2- and BIR3-binding consensus sequences revealed a large number of potential target proteins. The combinatorial library method should be readily applicable to other BIR domains or other types of protein modular domains.

  6. Advances in encoding of colloids for combinatorial libraries: applications in genomics, proteomics and drug discovery.

    PubMed

    Lawrie, Gwendolyn A; Battersby, Bronwyn J; Grøndahl, Lisbeth; Trau, Matt

    2003-12-01

    The creation of enormous libraries of chemicals and their subsequent screening for bioactivity has been accelerated through recent developments in encoding solid supports. The ability to accurately identify the structure of a biomolecule that has exhibited activity is invaluable and is closer to realisation in the advent of smart nanoscience. In this review the evolution of encoding solid supports as platforms for combinatorial synthesis is traced. Current approaches to encoding solid supports are reviewed and their potential for use as supports for the high-throughput screening of split and mix libraries explored. Finally, a brief consideration of the status of the application of encoded libraries is provided including creative chemical and colloidal encoding.

  7. Decoding Split and Pool Combinatorial Libraries with Electron Transfer Dissociation Tandem Mass Spectrometry

    PubMed Central

    Sarkar, Mohosin; Pascal, Bruce D.; Steckler, Caitlin; Aquino, Claudio; Micalizio, Glenn C.; Kodadek, Thomas; Chalmers, Michael J.

    2015-01-01

    Screening of bead-based split and pool combinatorial chemistry libraries is a powerful approach to aid the discovery of new chemical compounds able to interact with, and modulate the activities of, protein targets of interest. Split and pool synthesis provides for large and well diversified chemical libraries, in this case comprised of oligomers generated from a well-defined starting set. At the end of the synthesis, each bead in the library displays many copies of a unique oligomer sequence. Because the sequence of the oligomer is not known at the time of screening, methods for decoding of the sequence of each screening “hit” are essential. Here we describe an electron transfer dissociation (ETD) based tandem mass spectrometry approach for the decoding of mass-encoded split and pool libraries. We demonstrate that the newly described “chiral oligomers of pentenoic amides (COPAs)” yield non-sequence-specific product ions upon collisional activated dissociation; however, complete sequence information can be obtained with ETD. To aid in the decoding of libraries from MS and MS/MS data, we have incorporated 79Br/81Br isotope “tags” to differentiate N- and C-terminal product ions. In addition, we have created “Hit-Find,” a software program that allows users to generate libraries in silico. The user can then search all possible members of the chemical library for those that fall within a user-defined mass error. PMID:23636859

  8. Automating gene library synthesis by structure-based combinatorial protein engineering: examples from plant sesquiterpene synthases.

    PubMed

    Dokarry, Melissa; Laurendon, Caroline; O'Maille, Paul E

    2012-01-01

    Structure-based combinatorial protein engineering (SCOPE) is a homology-independent recombination method to create multiple crossover gene libraries by assembling defined combinations of structural elements ranging from single mutations to domains of protein structure. SCOPE was originally inspired by DNA shuffling, which mimics recombination during meiosis, where mutations from parental genes are "shuffled" to create novel combinations in the resulting progeny. DNA shuffling utilizes sequence identity between parental genes to mediate template-switching events (the annealing and extension of one parental gene fragment on another) in PCR reassembly reactions to generate crossovers and hence recombination between parental genes. In light of the conservation of protein structure and degeneracy of sequence, SCOPE was developed to enable the "shuffling" of distantly related genes with no requirement for sequence identity. The central principle involves the use of oligonucleotides to encode for crossover regions to choreograph template-switching events during PCR assembly of gene fragments to create chimeric genes. This approach was initially developed to create libraries of hybrid DNA polymerases from distantly related parents, and later developed to create a combinatorial mutant library of sesquiterpene synthases to explore the catalytic landscapes underlying the functional divergence of related enzymes. This chapter presents a simplified protocol of SCOPE that can be integrated with different mutagenesis techniques and is suitable for automation by liquid-handling robots. Two examples are presented to illustrate the application of SCOPE to create gene libraries using plant sesquiterpene synthases as the model system. In the first example, we outline how to create an active-site library as a series of complex mixtures of diverse mutants. In the second example, we outline how to create a focused library as an array of individual clones to distil minimal combinations of

  9. Engineering of Immunoglobulin Fc Heterodimers Using Yeast Surface-Displayed Combinatorial Fc Library Screening.

    PubMed

    Choi, Hye-Ji; Kim, Ye-Jin; Choi, Dong-Ki; Kim, Yong-Sung

    2015-01-01

    Immunoglobulin Fc heterodimers, which are useful scaffolds for the generation of bispecific antibodies, have been mostly generated through structure-based rational design methods that introduce asymmetric mutations into the CH3 homodimeric interface to favor heterodimeric Fc formation. Here, we report an approach to generate heterodimeric Fc variants through directed evolution combined with yeast surface display. We developed a combinatorial heterodimeric Fc library display system by mating two haploid yeast cell lines, one haploid cell line displayed an Fc chain library (displayed FcCH3A) with mutations in one CH3 domain (CH3A) on the yeast cell surface, and the other cell line secreted an Fc chain library (secreted FcCH3B) with mutations in the other CH3 domain (CH3B). In the mated cells, secreted FcCH3B is displayed on the cell surface through heterodimerization with the displayed FcCH3A, the detection of which enabled us to screen the library for heterodimeric Fc variants. We constructed combinatorial heterodimeric Fc libraries with simultaneous mutations in the homodimer-favoring electrostatic interaction pairs K370-E357/S364 or D399-K392/K409 at the CH3 domain interface. High-throughput screening of the libraries using flow cytometry yielded heterodimeric Fc variants with heterodimer-favoring CH3 domain interface mutation pairs, some of them showed high heterodimerization yields (~80-90%) with previously unidentified CH3 domain interface mutation pairs, such as hydrogen bonds and cation-π interactions. Our study provides a new approach for engineering Fc heterodimers that could be used to engineer other heterodimeric protein-protein interactions through directed evolution combined with yeast surface display.

  10. Reagent Selector: using Synthon Analysis to visualize reagent properties and assist in combinatorial library design.

    PubMed

    Mosley, Ralph T; Culberson, J Christopher; Kraker, Bryan; Feuston, Bradley P; Sheridan, Robert P; Conway, John F; Forbes, Joseph K; Chakravorty, Subhas J; Kearsley, Simon K

    2005-01-01

    Reagent Selector is an intranet-based tool that aids in the selection of reagents for use in combinatorial library construction. The user selects an appropriate reagent group as a query, for example, primary amines, and further refines it on the basis of various physicochemical properties, resulting in a list of potential reagents. The results of this selection process are, in turn, converted into synthons: the fragments or R-groups that are to be incorporated into the combinatorial library. The Synthon Analysis interface graphically depicts the chemical properties for each synthon as a function of the topological bond distance from the scaffold attachment point. Displayed in this fashion, the user is able to visualize the property space for the universe of synthons as well as that of the synthons selected. Ultimately, the reagent list that embodies the selected synthons is made available to the user for reagent procurement. Application of the approach to a sample reagent list for a G-protein coupled receptor targeted library is described.

  11. Biodegradable Fibrous Scaffolds with Diverse Properties by Electrospinning Candidates from a Combinatorial Macromer Library

    PubMed Central

    Metter, Robert B.; Ifkovits, Jamie L.; Hou, Kevin; Vincent, Ludovic; Hsu, Benjamin; Wang, Louis; Mauck, Robert L.; Burdick, Jason A.

    2009-01-01

    The properties of electrospun fibrous scaffolds, including degradation, mechanics and cellular interactions, are important for their use in tissue engineering applications. Although some diversity has been obtained previously in fibrous scaffolds, optimization of scaffold properties relies on iterative techniques in both polymer synthesis and processing. Here, we electrospun candidates from a combinatorial library of biodegradable and photopolymerizable poly(β-amino ester)s (PBAEs) to show that the diversity in properties found in this library is retained when processed into fibrous scaffolds. Specifically, three PBAE macromers were electrospun into scaffolds and possessed similar initial mechanical properties, but exhibited mass loss ranging from rapid (complete degradation within ∼2 weeks) to moderate (complete degradation within ∼ 3 months) to slow (only partial degradation after 3 months). These trends in mechanics and degradation mimicked what was previously observed in the bulk polymers. Although cellular adhesion was dependent on the polymer composition in films, adhesion to scaffolds that were electrospun with gelatin was similar on all formulations and controls. To further illustrate the diverse properties that are attainable in these systems, the fastest and slowest degrading polymers were electrospun together into one scaffold, but as distinct fiber populations. This dual-polymer scaffold exhibited behavior in mass loss and mechanics with time that fell between the single-polymer scaffolds. In general, this work indicates that combinatorial libraries may be an important source of information and specific polymer compositions for the fabrication of electrospun fibrous scaffolds with tunable properties. PMID:19853066

  12. Poisson Statistics of Combinatorial Library Sampling Predict False Discovery Rates of Screening.

    PubMed

    MacConnell, Andrew B; Paegel, Brian M

    2017-08-14

    Microfluidic droplet-based screening of DNA-encoded one-bead-one-compound combinatorial libraries is a miniaturized, potentially widely distributable approach to small molecule discovery. In these screens, a microfluidic circuit distributes library beads into droplets of activity assay reagent, photochemically cleaves the compound from the bead, then incubates and sorts the droplets based on assay result for subsequent DNA sequencing-based hit compound structure elucidation. Pilot experimental studies revealed that Poisson statistics describe nearly all aspects of such screens, prompting the development of simulations to understand system behavior. Monte Carlo screening simulation data showed that increasing mean library sampling (ε), mean droplet occupancy, or library hit rate all increase the false discovery rate (FDR). Compounds identified as hits on k > 1 beads (the replicate k class) were much more likely to be authentic hits than singletons (k = 1), in agreement with previous findings. Here, we explain this observation by deriving an equation for authenticity, which reduces to the product of a library sampling bias term (exponential in k) and a sampling saturation term (exponential in ε) setting a threshold that the k-dependent bias must overcome. The equation thus quantitatively describes why each hit structure's FDR is based on its k class, and further predicts the feasibility of intentionally populating droplets with multiple library beads, assaying the micromixtures for function, and identifying the active members by statistical deconvolution.

  13. Comparative molecular surface analysis (CoMSA) for virtual combinatorial library screening of styrylquinoline HIV-1 blocking agents.

    PubMed

    Niedbala, Halina; Polanski, Jaroslaw; Gieleciak, Rafal; Musiol, Robert; Tabak, Dominik; Podeszwa, Barbara; Bak, Andrzej; Palka, Anna; Mouscadet, Jean-Francois; Gasteiger, Johann; Le Bret, Marc

    2006-12-01

    We used comparative molecular surface analysis to design molecules for the synthesis as part of the search for new HIV-1 integrase inhibitors. We analyzed the virtual combinatorial library (VCL) constituted from various moieties of styrylquinoline and styrylquinazoline inhibitors. Since imines can be applied in a strategy of dynamic combinatorial chemistry (DCC), we also tested similar compounds in which the -C=N- or -N=C- linker connected the heteroaromatic and aromatic moieties. We then used principal component analysis (PCA) or self-organizing maps (SOM), namely, the Kohonen neural networks to obtain a clustering plot analyzing the diversity of the VCL formed. Previously synthesized compounds of known activity, used as molecular probes, were projected onto this plot, which provided a set of promising virtual drugs. Moreover, we further modified the above mentioned VCL to include the single bond linker -C-N- or -N-C-. This allowed increasing compound stability but expanded also the diversity between the available molecular probes and virtual targets. The application of the CoMSA with SOM indicated important differences between such compounds and active molecular probes. We synthesized such compounds to verify the computational predictions.

  14. Investigations on bactericidal properties of molybdenum-tungsten oxides combinatorial thin film material libraries.

    PubMed

    Mardare, Cezarina Cela; Hassel, Achim Walter

    2014-11-10

    A combinatorial thin film material library from the molybdenum-tungsten refractory metals oxides system was prepared by thermal coevaporation, and its structural and morphological properties were investigated after a multiple step heat treatment. A mixture of crystalline and amorphous oxides and suboxides was obtained, as well as surface structuring caused by the enrichment of molybdenum oxides in large grains. It was found that the oxide phases and the surface morphology change as a function of the compositional gradient. Tests of the library antimicrobial activity against E. coli were performed and the antimicrobial activity was proven in some defined compositional ranges. A mechanism for explaining the observed activity is proposed, involving a collective contribution from (i) increased local acidity due to the enrichment in large grains of molybdenum oxides with different stoichiometry and (ii) the release of free radicals from the W18O49 phase under visible light.

  15. Aminodeoxychorismate synthase inhibitors from one-bead one-compound combinatorial libraries: "staged" inhibitor design.

    PubMed

    Dixon, Seth; Ziebart, Kristin T; He, Ze; Jeddeloh, Melissa; Yoo, Choong Leol; Wang, Xiaobing; Lehman, Alan; Lam, Kit S; Toney, Michael D; Kurth, Mark J

    2006-12-14

    4-Amino-4-deoxychorismate synthase (ADCS) catalyzes the first step in the conversion of chorismate into p-aminobenzoate, which is incorporated into folic acid. We aim to discover compounds that inhibit ADCS and serve as leads for a new class of antimicrobial compounds. This report presents (1) synthesis of a mass-tag encoded library based on a "staged" design, (2) massively parallel fluorescence-based on-bead screening, (3) rapid structural identification of hits, and (4) full kinetic analysis of ADCS. All inhibitors are competitive against chorismate and Mg(2+). The most potent ADCS inhibitor identified has a K(i) of 360 microM. We show that the combinatorial diversity elements add substantial binding affinity by interacting with residues outside of but proximal to the active site. The methods presented here constitute a paradigm for inhibitor discovery through active site targeting, enabled by rapid library synthesis, facile massively parallel screening, and straightforward hit identification.

  16. Combinatorial × computational × cheminformatics (C3) approach to characterization of congeneric libraries of organic pollutants.

    PubMed

    Haranczyk, Maciej; Urbaszek, Piotr; Ng, Esmond G; Puzyn, Tomasz

    2012-11-26

    Congeners are molecules based on the same carbon skeleton but are different by the number of substituents and/or a substitution pattern. Examples are 1-chloronaphthalene, 1,4-dichloronaphthalene, and 1,3,8-trichloronaphthalene. Various persistent organic pollutants (POPs) exist in the environment as families of congeners. Very large numbers of possible congeners make their experimental characterization and risk assessment unfeasible. Computational high-throughput and quantitative structure-property relationship (QSPR) modeling has been limited by the lack of tools and approaches facilitating analysis of such POP families. We present a comprehensive approach that enables modeling of extremely large congeneric libraries. The approach involves three steps: (1) combinatorial generation of a library of congeners, (2) quantum chemical characterization of each structure at the PM6 semiempirical level to obtain molecular descriptors, and (3) analysis of the information generated in step 2. In steps 1-3, we employ combinatorial, computational, and cheminformatics techniques, respectively. Therefore, this hybrid approach is named "Combinatorial × Computational × Cheminformatics", or just abbreviated as C(3) (or C-cubed) approach. We demonstrate the usefulness of this approach by generating and characterizing Br- and Cl-substituted congeneric families of 23 typical POPs. The analysis of the resulting set of 1 840 951 congeners that includes Cl-, Br-, and mixed Br/Cl-substituted species, proves that, based on structural similarities defined by the molecular descriptors' values, the existing QSPR models developed originally for Cl- and Br-substituted congeners can be applied also to mixed Br/Cl-substituted ones. Thus, the C(3) approach may serve as a tool for exploring structural applicability domains of the existing QSPR models for congeneric sets.

  17. Target-directed Dynamic Combinatorial Chemistry: A Study on Potentials and Pitfalls as Exemplified on a Bacterial Target.

    PubMed

    Frei, Priska; Pang, Lijuan; Silbermann, Marleen; Eriş, Deniz; Mühlethaler, Tobias; Schwardt, Oliver; Ernst, Beat

    2017-08-25

    Target-directed dynamic combinatorial chemistry (DCC) is an emerging technique for the efficient identification of inhibitors of pharmacologically relevant targets. In this contribution, we present an application for a bacterial target, the lectin FimH, a crucial virulence factor of uropathogenic E. coli being the main cause of urinary tract infections. A small dynamic library of acylhydrazones was formed from aldehydes and hydrazides and equilibrated at neutral pH in presence of aniline as nucleophilic catalyst. The major success factors turned out to be an accordingly adjusted ratio of scaffolds and fragments, an adequate sample preparation prior to HPLC analysis, and the data processing. Only then did the ranking of the dynamic library constituents correlate well with affinity data. Furthermore, as a support of DCC applications especially to larger libraries, a new protocol for improved hit identification was established. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Combinatorial Peptide Ligand Library and two dimensional electrophoresis: new frontiers in the study of peritoneal dialysis effluent in pediatric patients.

    PubMed

    Bruschi, Maurizio; Candiano, Giovanni; Santucci, Laura; D'Ambrosio, Chiara; Scaloni, Andrea; Bonsano, Marco; Ghiggeri, Gian Marco; Verrina, Enrico

    2015-02-26

    Peritoneal dialysis effluent (PDE) is a fluid resulting from the close contact of peritoneal dialysis (PD) solutions with the peritoneal membrane (PM) and represents a readily available material for the search of biomarkers of PM function or damage. Our laboratory has developed a method for the in-depth proteomic characterization of PDE, which involves Combinatorial Peptides Ligand Library (CPLL) to reduce the dynamic range of protein concentration in PDE, followed by two-dimensional electrophoresis (2-DE). In this study we applied this method to the analysis of PDE proteome obtained from 19 pediatric patients on automated peritoneal dialysis (APD) with glucose-based PD solutions. The combined use of this proteomic approach highlighted a mean of 700 new proteins. Differences in PDE proteome profile were observed in relation with the duration of APD treatment. In particular, in patients on long-term APD, we observed an increase of intelectin-1, and a decrease of gelsolin. These changes were also observed by in vitro treatment of mesothelial cells with oxidative or pro-fibrotic stimulus which supported the biological role of these proteins' changes. In order to clarify the biological meaning of the observed differences, further step of our study will consist of the longitudinal evaluation of PDE proteome. The in-depth proteomic characterization of peritoneal dialysis effluent (PDE) in pediatric patients by the combined use of Combinatorial Peptide Ligand Library (CPLL) and two dimensional electrophoresis allowed to detect 1788 spots, a relevant part (724) of which were previously undetected in sample untreated with CPLL. In patients on long-term automated peritoneal dialysis, this proteomic approach allowed to identify 29 potential biomarkers that could be of help to identify patients with subclinical inflammation and/or developing peritoneal membrane fibrosis, thus adapting dialysis treatment accordingly. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Computational Fluid Dynamics Library

    SciTech Connect

    Kashiwa, B. A.; Padial, N. T.; Rauenzahn, R. M.; VanderHeyden, & W.B.

    2005-03-04

    CFDLib05 is the Los Alamos Computational Fluid Dynamics LIBrary. This is a collection of hydrocodes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conservation laws is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary.

  20. Expression, purification, and characterization of proteins from high-quality combinatorial libraries of the mammalian calmodulin central linker.

    PubMed

    Bradley, Luke H; Bricken, Michael L; Randle, Charlotte

    2011-02-01

    Combinatorial libraries offer an attractive approach towards exploring protein sequence, structure and function. Although several strategies introduce sequence diversity, the likelihood of identifying proteins with novel functions is increased when the library of genes encodes for folded and soluble structures. Here we present the first application of the binary patterning approach of combinatorial protein library design to the unique central linker region of the highly-conserved protein, calmodulin (CaM). We show that this high-quality approach translates very well to the CaM protein scaffold: all library members over-express and are functionally diverse, having a range of conformations in the presence and absence of calcium as determined by circular dichroism spectroscopy. Collectively, these data support that the binary patterning approach, when applied to the highly-conserved protein fold, can yield large collections of folded, soluble and highly-expressible proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules

    PubMed Central

    Popova, Blagovesta; Schubert, Steffen; Bulla, Ingo; Buchwald, Daniela; Kramer, Wilfried

    2015-01-01

    A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis. PMID:26355961

  2. A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules.

    PubMed

    Popova, Blagovesta; Schubert, Steffen; Bulla, Ingo; Buchwald, Daniela; Kramer, Wilfried

    2015-01-01

    A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis.

  3. A hybrid approach using chaotic dynamics and global search algorithms for combinatorial optimization problems

    NASA Astrophysics Data System (ADS)

    Igeta, Hideki; Hasegawa, Mikio

    Chaotic dynamics have been effectively applied to improve various heuristic algorithms for combinatorial optimization problems in many studies. Currently, the most used chaotic optimization scheme is to drive heuristic solution search algorithms applicable to large-scale problems by chaotic neurodynamics including the tabu effect of the tabu search. Alternatively, meta-heuristic algorithms are used for combinatorial optimization by combining a neighboring solution search algorithm, such as tabu, gradient, or other search method, with a global search algorithm, such as genetic algorithms (GA), ant colony optimization (ACO), or others. In these hybrid approaches, the ACO has effectively optimized the solution of many benchmark problems in the quadratic assignment problem library. In this paper, we propose a novel hybrid method that combines the effective chaotic search algorithm that has better performance than the tabu search and global search algorithms such as ACO and GA. Our results show that the proposed chaotic hybrid algorithm has better performance than the conventional chaotic search and conventional hybrid algorithms. In addition, we show that chaotic search algorithm combined with ACO has better performance than when combined with GA.

  4. Molecular diversification in spider venoms: a web of combinatorial peptide libraries.

    PubMed

    Escoubas, Pierre

    2006-11-01

    Spider venoms are a rich source of novel pharmacologically and agrochemically interesting compounds that have received increased attention from pharmacologists and biochemists in recent years. The application of technologies derived from genomics and proteomics have led to the discovery of the enormous molecular diversity of those venoms, which consist mainly of peptides and proteins. The molecular diversity of spider peptides has been revealed by mass spectrometry and appears to be based on a limited set of structural scaffolds. Genetic analysis has led to a further understanding of the molecular evolution mechanisms presiding over the generation of these combinatorial peptide libraries. Gene duplication and focal hypermutation, which has been described in cone snails, appear to be common mechanisms to venomous mollusks and spiders. Post-translational modifications, fine structural variations and new molecular scaffolds are other potential mechanisms of toxin diversification, leading to the pharmacologically complex cocktails used for predation and defense.

  5. The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralization.

    PubMed

    Lovmand, Jette; Justesen, Jeannette; Foss, Morten; Lauridsen, Rune Hoff; Lovmand, Michael; Modin, Charlotte; Besenbacher, Flemming; Pedersen, Finn Skou; Duch, Mogens

    2009-04-01

    Nano- and microstructured surfaces are known to impact on the binding and differentiation of cells, but the detailed basic understanding of the underlying regulatory mechanisms is still scarce, which impedes the rational design of smart biomaterials. Towards a comprehensive analysis of the interplay between topographical parameters such as feature design and lateral and vertical dimensions we here report on a combinatorial screening approach, BioSurface Structure Array (BSSA) of test squares each with a distinct topography. Using such BSSA libraries of 504 topographically distinct surface structures, we have identified combinations of size, gap and height of structures which enhance mineralization as well as the expression of osteogenic markers of a preosteoblastic murine cell line. This generic BSSA screening platform is a versatile technology for the systematic identification of surfaces with specific biological properties, and it may for example be useful for optimizing the design of biomaterials for regulating cellular behaviour.

  6. Application of visual basic in high-throughput mass spectrometry-directed purification of combinatorial libraries.

    PubMed

    Li, B; Chan, E C Y

    2003-01-01

    We present an approach to customize the sample submission process for high-throughput purification (HTP) of combinatorial parallel libraries using preparative liquid chromatography electrospray ionization mass spectrometry. In this study, Visual Basic and Visual Basic for Applications programs were developed using Microsoft Visual Basic 6 and Microsoft Excel 2000, respectively. These programs are subsequently applied for the seamless electronic submission and handling of data for HTP. Functions were incorporated into these programs where medicinal chemists can perform on-line verification of the purification status and on-line retrieval of postpurification data. The application of these user friendly and cost effective programs in our HTP technology has greatly increased our work efficiency by reducing paper work and manual manipulation of data.

  7. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates

    PubMed Central

    Vegas, Arturo J; Veiseh, Omid; Doloff, Joshua C; Ma, Minglin; Tam, Hok Hei; Bratlie, Kaitlin; Li, Jie; Bader, Andrew R; Langan, Erin; Olejnik, Karsten; Fenton, Patrick; Kang, Jeon Woong; Hollister-Locke, Jennifer; Bochenek, Matthew A; Chiu, Alan; Siebert, Sean; Tang, Katherine; Jhunjhunwala, Siddharth; Aresta-Dasilva, Stephanie; Dholakia, Nimit; Thakrar, Raj; Vietti, Thema; Chen, Michael; Cohen, Josh; Siniakowicz, Karolina; Qi, Meirigeng; McGarrigle, James; Graham, Adam C; Lyle, Stephen; Harlan, David M; Greiner, Dale L; Oberholzer, Jose; Weir, Gordon C; Langer, Robert; Anderson, Daniel G

    2016-01-01

    The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient1–6. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response. PMID:26807527

  8. Synthesis of a combinatorial library of amides and its evaluation against the fall armyworm, Spodoptera frugiperda.

    PubMed

    Castral, Thais C; Matos, Andreia P; Monteiro, Julia L; Araujo, Fernanda M; Bondancia, Tatiani M; Batista-Pereira, Luciane G; Fernandes, João B; Vieira, Paulo C; da Silva, M Fatima G F; Corrêa, Arlene G

    2011-05-11

    The fall armyworm Spodoptera frugiperda is a polyphagous pest that causes important damage in different regions of America and mainly affects corn crops in both tropical and subtropical areas. Currently, control relies on both transgenic plants and/or chemical pesticides. In this work we describe the preparation of an indexed combinatorial library of amides and its toxic effect by contact against S. frugiperda . (E)-1-(1-Piperidinyl)-3-[4-(trifluoromethoxy)phenyl]-2-propen-1-one was the most active compound with an LD(50) = 0.793 μg mg(-1) of larva. This amide was also evaluated by ingestion and at the lowest concentration (1 mg kg(-1)) achieved 83.3% mortality.

  9. Construction of Human Immunoglobulin Combinatorial Library and Screening of Phage Antibodies to Hepatitis B Surface Antigen.

    PubMed

    Wang, Xue; Wang, Hai-Tao; Chen, Wan-Rong; Xu, Jing

    1997-01-01

    Human immunoglobulin combinatorial library was generated by using phage surface-display expression system, and phage antibodies (Fab fragments) to hepatitis B surface antigen (HbsAg) were screened from it. The products by half-nested PCR using signal peptide sequences as primers were superior in quality and quantity to those by PCR with conserved sequences in the 5'-end variable regions as primers. After three round of selections by biopanning, the ratio of positive clone was 69%. The inhibition assay showed the phage antibodies to be specifically anti-HbsAg. The V(H) genes were derived from V(H) I and V(H) III, while V(L)s belonged to V(lambda) II and V(lambda) I as shown by DNA sequencing.

  10. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening

    PubMed Central

    2017-01-01

    DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing. PMID:28199790

  11. Utility of Redundant Combinatorial Libraries in Distinguishing High and Low Quality Screening Hits

    PubMed Central

    2014-01-01

    Large one-bead one-compound (OBOC) combinatorial libraries can be constructed relatively easily by solid-phase split and pool synthesis. The use of resins with hydrophilic surfaces, such as TentaGel, allows the beads to be used directly in screens for compounds that bind selectively to labeled proteins, nucleic acids, or other biomolecules. However, we have found that this method, while useful, has a high false positive rate. In other words, beads that are scored as hits often display compounds that prove to be poor ligands for the target of interest when they are resynthesized and carried through validation trials. This results in a significant waste of time and resources in cases where putative hits cannot be validated without resynthesis. Here, we report that this problem can be largely eliminated through the use of redundant OBOC libraries, where more than one bead displaying the same compound is present in the screen. We show that compounds isolated more than once are likely to be high quality ligands for the target of interest, whereas compounds isolated only once have a much higher likelihood of being poor ligands. While the use of redundant libraries does limit the number of unique compounds that can be screened at one time in this format, the overall savings in time, effort, and materials makes this a more efficient route to the isolation of useful ligands for biomolecules. PMID:24749624

  12. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening.

    PubMed

    MacConnell, Andrew B; Price, Alexander K; Paegel, Brian M

    2017-03-13

    DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing.

  13. Optimizing nucleotide sequence ensembles for combinatorial protein libraries using a genetic algorithm.

    PubMed

    Craig, Roger A; Lu, Jin; Luo, Jinquan; Shi, Lei; Liao, Li

    2010-01-01

    Protein libraries are essential to the field of protein engineering. Increasingly, probabilistic protein design is being used to synthesize combinatorial protein libraries, which allow the protein engineer to explore a vast space of amino acid sequences, while at the same time placing restrictions on the amino acid distributions. To this end, if site-specific amino acid probabilities are input as the target, then the codon nucleotide distributions that match this target distribution can be used to generate a partially randomized gene library. However, it turns out to be a highly nontrivial computational task to find the codon nucleotide distributions that exactly matches a given target distribution of amino acids. We first showed that for any given target distribution an exact solution may not exist at all. Formulated as a constrained optimization problem, we then developed a genetic algorithm-based approach to find codon nucleotide distributions that match as closely as possible to the target amino acid distribution. As compared with the previous gradient descent method on various objective functions, the new method consistently gave more optimized distributions as measured by the relative entropy between the calculated and the target distributions. To simulate the actual lab solutions, new objective functions were designed to allow for two separate sets of codons in seeking a better match to the target amino acid distribution.

  14. Ligand-Based Peptide Design and Combinatorial Peptide Libraries to Target G Protein-Coupled Receptors

    PubMed Central

    Gruber, Christian W.; Muttenthaler, Markus; Freissmuth, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30–50%). Closer scrutiny, however, shows that only a modest fraction of (~60) GPCRs are, in fact, exploited as drug targets, only ~20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the “orthosteric site”). These additional sites include (i) binding sites for ligands (referred to as “allosteric ligands”) that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points. PMID:20687879

  15. The pharmacological properties of a novel MCH1 receptor antagonist isolated from combinatorial libraries

    PubMed Central

    Nagasaki, Hiroshi; Chung, Shinjae; Dooley, Colette T.; Wang, Zhiwei; Li, Chunying; Saito, Yumiko; Clark, Stewart D; Houghten, Richard A.; Civelli, Olivier

    2009-01-01

    Melanin-concentrating hormone (MCH) is a neuropeptide that exhibits potent orexigenic activity. In rodents, it exerts its actions by interacting with one receptor, MCH1 receptor which is expressed in many parts of the central nervous system (CNS). To study the physiological implications of the MCH system, we need to be able to block it locally and acutely. This necessitates the use of MCH1 receptor antagonists. While MCH1 receptor antagonists have been previously reported, they are mainly not accessible to academic research. We apply here a strategy that leads to the isolation of a high affinity and selective MCH1 receptor antagonist amenable to in vivo analyses without further chemical modifications. This antagonist, TPI 1361-17, was identified through the screening of multiple non-peptide positional scanning synthetic combinatorial libraries (PS-SCL) totaling more than eight hundred thousand compounds in conditions that allow for the identification of only high-affinity compounds. TPI 1361-17 exhibited an IC50 value of 6.1 nM for inhibition of 1 nM MCH-induced Ca2+ mobilization and completely displaced the binding of [125I] MCH to rat MCH1 receptor. TPI 1361-17 was found specific, having no affinity for a variety of other G-protein coupled receptors and channels. TPI 1361-17 was found active in vivo since it blocked MCH-induced food intake by 75 %. Our results indicate that TPI 1361-17 is a novel and selective MCH1 receptor antagonist and is an effective tool to study the physiological functions of the MCH system. These results also illustrate the successful application of combinatorial library screening to identify specific surrogate antagonists in an academic setting. PMID:19041642

  16. Identification of SNARE complex modulators that inhibit exocytosis from an alpha-helix-constrained combinatorial library.

    PubMed Central

    Blanes-Mira, Clara; Pastor, Maria T; Valera, Elvira; Fernández-Ballester, Gregorio; Merino, Jaime M; Gutierrez, Luis M; Perez-Payá, Enrique; Ferrer-Montiel, Antonio

    2003-01-01

    Synthetic peptides patterned after the proteins involved in vesicle fusion [the so-called SNARE (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor) proteins] are potent inhibitors of SNARE complex assembly and neuronal exocytosis. It is noteworthy that the identification of peptide sequences not related to the SNARE proteins has not been accomplished yet; this is due, in part, to the structural constraints and the specificity of the protein interactions that govern the formation of the SNARE complex. Here we have addressed this question and used a combinatorial approach to identify peptides that modulate the assembly of the SNARE core complex and inhibit neuronal exocytosis. An alpha-helix-constrained, mixture-based, 17-mer combinatorial peptide library composed of 137180 sequences was synthesized in a positional scanning format. Peptide mixtures were assayed for their ability to prevent the formation of the in vitro -reconstituted SDS-resistant SNARE core complex. Library deconvolution identified eight peptides that inhibited the assembly of the SNARE core complex. Notably, the most potent 17-mer peptide (acetyl-SAAEAFAKLYAEAFAKG-NH2) abolished both Ca2+-evoked catecholamine secretion from detergent-permeabilized chromaffin cells and L-glutamate release from intact hippocampal primary cultures. Collectively, these findings indicate that amino acid sequences that prevent SNARE complex formation are not restricted to those that mimic domains of SNARE proteins, thus expanding the diversity of molecules that target neuronal exocytosis. Because of the implication of neurosecretion in the aetiology of several human neurological disorders, these newly identified peptides may be considered hits for the development of novel anti-spasmodic drugs. PMID:12852787

  17. High-throughput measurements of thermochromic behavior in V(1-x)Nb(x)O(2) combinatorial thin film libraries.

    PubMed

    Barron, S C; Gorham, J M; Patel, M P; Green, M L

    2014-10-13

    We describe a high-throughput characterization of near-infrared thermochromism in V1-xNbxO2 combinatorial thin film libraries. The oxide thin film library was prepared with a VO2 crystal structure and a continuous gradient in composition with Nb concentrations in the range of less than 1% to 45%. The thermochromic phase transition from monoclinic to tetragonal was characterized by the accompanying change in near-infrared reflectance. With increasing Nb substitution, the transition temperature was depressed from 65 to 35 °C, as desirable for smart window applications. However, the magnitude of the reflectance change across the thermochromic transition was also reduced with increasing Nb film content. Data collection, handling, and analysis supporting thermochromic characterization were fully automated to achieve high throughput. Using this system, in 14 h, temperature-dependent infrared reflectances were measured at 165 arbitrary locations on a thin film combinatorial library; these measurements were analyzed for thermochromic transitions in minutes.

  18. A method for the generation of combinatorial antibody libraries using pIX phage display.

    PubMed

    Gao, Changshou; Mao, Shenlan; Kaufmann, Gunnar; Wirsching, Peter; Lerner, Richard A; Janda, Kim D

    2002-10-01

    For more than a decade, phage displayed combinatorial antibody libraries have been used to generate and select a wide variety of antibodies. We previously reported that the phage coat proteins pVII and pIX could be used to display the heterodimeric structure of the antibody Fv region. Herein, aspects of this technology were invoked and extended to construct a large, human single-chain Fv (scFv) library of 4.5 x 10(9) members displayed on pIX of filamentous bacteriophage. Furthermore, the diversity, quality, and utility of the library were demonstrated by the selection of scFv clones against six different protein antigens. Notably, more than 90% of the selected clones showed positive binding for their respective antigens after as few as three rounds of panning. Analyzed scFvs were also found to be of high affinity. For example, kinetic analysis (BIAcore) revealed that scFvs against staphylococcal enterotoxin B and cholera toxin B subunit had a nanomolar and subnanomolar dissociation constant, respectively, affording affinities comparable to, or exceeding that, of mAbs obtained from immunization. High specificity was also attained, not only between very distinct proteins, but also in the case of the Ricinus communis ("ricin") agglutinins (RCA(60) and RCA(120)), despite >80% sequence homology between the two. The results suggested that the performance of pIX-display libraries can potentially exceed that of the pIII-display format and make it ideally suited for panning a wide variety of target antigens.

  19. Synthetic molecular evolution of pore-forming peptides by iterative combinatorial library screening.

    PubMed

    Krauson, Aram J; He, Jing; Wimley, Andrew W; Hoffmann, Andrew R; Wimley, William C

    2013-04-19

    We previously reported the de novo design of a combinatorial peptide library that was subjected to high-throughput screening to identify membrane-permeabilizing antimicrobial peptides that have β-sheet-like secondary structure. Those peptides do not form discrete pores in membranes but instead partition into membrane interfaces and cause transient permeabilization by membrane disruption, but only when present at high concentration. In this work, we used a consensus sequence from that initial screen as a template to design an iterative, second generation library. In the 24-26-residue, 16,200-member second generation library we varied six residues. Two diad repeat motifs of alternating polar and nonpolar amino acids were preserved to maintain a propensity for non-helical secondary structure. We used a new high-throughput assay to identify members that self-assemble into equilibrium pores in synthetic lipid bilayers. This screen was done at a very stringent peptide to lipid ratio of 1:1000 where most known membrane-permeabilizing peptides, including the template peptide, are not active. In a screen of 10,000 library members we identified 16 (~0.2%) that are equilibrium pore-formers at this high stringency. These rare and highly active peptides, which share a common sequence motif, are as potent as the most active pore-forming peptides known. Furthermore, they are not α-helical, which makes them unusual, as most of the highly potent pore-forming peptides are amphipathic α-helices. Here we demonstrate that this synthetic molecular evolution-based approach, taken together with the new high-throughput tools we have developed, enables the identification, refinement, and optimization of unique membrane active peptides.

  20. Design of combinatorial libraries for the exploration of virtual hits from fragment space searches with LoFT.

    PubMed

    Lessel, Uta; Wellenzohn, Bernd; Fischer, J Robert; Rarey, Matthias

    2012-02-27

    A case study is presented illustrating the design of a focused CDK2 library. The scaffold of the library was detected by a feature trees search in a fragment space based on reactions from combinatorial chemistry. For the design the software LoFT (Library optimizer using Feature Trees) was used. The special feature called FTMatch was applied to restrict the parts of the queries where the reagents are permitted to match. This way a 3D scoring function could be simulated. Results were compared with alternative designs by GOLD docking and ROCS 3D alignments.

  1. Inhibition of multidrug resistant Listeria monocytogenes by peptides isolated from combinatorial phage display libraries.

    PubMed

    Flachbartova, Z; Pulzova, L; Bencurova, E; Potocnakova, L; Comor, L; Bednarikova, Z; Bhide, M

    2016-01-01

    The aim of the study was to isolate and characterize novel antimicrobial peptides from peptide phage library with antimicrobial activity against multidrug resistant Listeria monocytogenes. Combinatorial phage-display library was used to affinity select peptides binding to the cell surface of multidrug resistant L. monocytogenes. After several rounds of affinity selection followed by sequencing, three peptides were revealed as the most promising candidates. Peptide L2 exhibited features common to antimicrobial peptides (AMPs), and was rich in Asp, His and Lys residues. Peptide L3 (NSWIQAPDTKSI), like peptide L2, inhibited bacterial growth in vitro, without any hemolytic or cytotoxic effects on eukaryotic cells. L1 peptide showed no inhibitory effect on Listeria. Structurally, peptides L2 and L3 formed random coils composed of α-helix and β-sheet units. Peptides L2 and L3 exhibited antimicrobial activity against multidrug resistant isolates of L. monocytogenes with no haemolytic or toxic effects. Both peptides identified in this study have the potential to be beneficial in human and veterinary medicine.

  2. Combinatorial Library Screening with Liposomes for Discovery of Membrane Active Peptides.

    PubMed

    Carney, Randy P; Thillier, Yann; Kiss, Zsofia; Sahabi, Amir; Heleno Campos, Jean Carlos; Knudson, Alisha; Liu, Ruiwu; Olivos, David; Saunders, Mary; Tian, Lin; Lam, Kit S

    2017-04-05

    Membrane active peptides (MAPs) represent a class of short biomolecules that have shown great promise in facilitating intracellular delivery without disrupting cellular plasma membranes. Yet their clinical application has been stalled by numerous factors: off-target delivery, a requirement for high local concentration near cells of interest, degradation en route to the target site, and, in the case of cell-penetrating peptides, eventual entrapment in endolysosomal compartments. The current method of deriving MAPs from naturally occurring proteins has restricted the discovery of new peptides that may overcome these limitations. Here we describe a new branch of assays featuring high-throughput functional screening capable of discovering new peptides with tailored cell uptake and endosomal escape capabilities. The one-bead-one-compound (OBOC) combinatorial method is used to screen libraries containing millions of potential MAPs for binding to synthetic liposomes, which can be adapted to mimic various aspects of limiting membranes. By incorporating unnatural and D-amino acids in the library, in addition to varying buffer conditions and liposome compositions, we have identified several new highly potent MAPs that improve on current standards and introduce motifs that were previously unknown or considered unsuitable. Since small variations in pH and lipid composition can be controlled during screening, peptides discovered using this methodology could aid researchers building drug delivery platforms with unique requirements, such as targeted intracellular localization.

  3. In-depth exploration of cow's whey proteome via combinatorial peptide ligand libraries.

    PubMed

    D'Amato, Alfonsina; Bachi, Angela; Fasoli, Elisa; Boschetti, Egisto; Peltre, Gabriel; Sénéchal, Helène; Righetti, Pier Giorgio

    2009-08-01

    The use of combinatorial peptide ligand libraries, containing hexapeptides terminating with a primary amine, or modified with a terminal carboxyl group, allowed discovering and identifying a large number of previously unreported proteins in cow's whey. Whereas comprehensive whey protein lists progressively increased in the last 6 years from 17 unique gene products to more than 100, our findings have considerably expanded this list to a total of 149 unique protein species, of which 100 were not described in previous proteomics studies. As an additional interesting result, a polymorphic alkaline protein was observed with a strong positive signal when blotted from an isoelectric focusing separation in gel and tested with sera of allergic patients. This polymorphic protein, found only after treatment with the peptide library, was identified as an immunoglobulin (Ig), a minor allergen that had been largely amplified. The list of cow's whey components here reported is by far the most comprehensive at present and could serve as a starting point for the functional characterization of low-abundance proteins possibly having novel pharmaceutical, diagnostic, and biomedical applications.

  4. Antiviral Drug Discovery Strategy Using Combinatorial Libraries of Structurally Constrained Peptides

    PubMed Central

    Real, Eléonore; Rain, Jean-Christophe; Battaglia, Véronique; Jallet, Corinne; Perrin, Pierre; Tordo, Noël; Chrisment, Peggy; D'Alayer, Jacques; Legrain, Pierre; Jacob, Yves

    2004-01-01

    We have developed a new strategy for antiviral peptide discovery by using lyssaviruses (rabies virus and rabies-related viruses) as models. Based on the mimicry of natural bioactive peptides, two genetically encoded combinatorial peptide libraries composed of intrinsically constrained peptides (coactamers) were designed. Proteomic knowledge concerning the functional network of interactions in the lyssavirus transcription-replication complex highlights the phosphoprotein (P) as a prime target for inhibitors of viral replication. We present an integrated, sequential drug discovery process for selection of peptides with antiviral activity directed against the P. Our approach combines (i) an exhaustive two-hybrid selection of peptides binding two phylogenetically divergent lyssavirus P's, (ii) a functional analysis of protein interaction inhibition in a viral reverse genetic assay, coupled with a physical analysis of viral nucleoprotein-P complex by protein chip mass spectrometry, and (iii) an assay for inhibition of lyssavirus infection in mammalian cells. The validity of this strategy was demonstrated by the identification of four peptides exhibiting an efficient antiviral activity. Our work highlights the importance of P as a target in anti-rabies virus drug discovery. Furthermore, the screening strategy and the coactamer libraries presented in this report could be considered, respectively, a general target validation strategy and a potential source of biologically active peptides which could also help to design pharmacologically active peptide-mimicking molecules. The strategy described here is easily applicable to other pathogens. PMID:15220414

  5. Double Dutch: A Tool for Designing Combinatorial Libraries of Biological Systems.

    PubMed

    Roehner, Nicholas; Young, Eric M; Voigt, Christopher A; Gordon, D Benjamin; Densmore, Douglas

    2016-06-17

    Recently, semirational approaches that rely on combinatorial assembly of characterized DNA components have been used to engineer biosynthetic pathways. In practice, however, it is not practical to assemble and test millions of pathway variants in order to elucidate how different DNA components affect the behavior of a pathway. To address this challenge, we apply a rigorous mathematical approach known as design of experiments (DOE) that can be used to construct empirical models of system behavior without testing all variants. To support this approach, we have developed a tool named Double Dutch, which uses a formal grammar and heuristic algorithms to automate the process of DOE library design. Compared to designing by hand, Double Dutch enables users to more efficiently and scalably design libraries of pathway variants that can be used in a DOE framework and uniquely provides a means to flexibly balance design considerations of statistical analysis, construction cost, and risk of homologous recombination, thereby demonstrating the utility of automating decision making when faced with complex design trade-offs.

  6. Identification of plum and peach seed proteins by nLC-MS/MS via combinatorial peptide ligand libraries.

    PubMed

    González-García, Estefanía; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio; Fasoli, Elisa

    2016-10-04

    Plum (Prunus domestica L.) and peach (Prunus persica (L.) Batsch) seed proteins are a source of bioactive peptides. These seeds, though, are usual residues produced during canning and beverage preparation that, in most cases, are irreversibly lost. The recovery and identification of these proteins might be of importance in human nutrition. This work employs the combinatorial peptide ligand libraries (CPLLs) technology as a tool to reduce the proteins dynamic concentration range. The most suitable extraction and CPLL capture conditions have been obtained and applied for the comprehensive identification of seed proteins. The analysis of recovered species by nLC-MS/MS has allowed the identification of 141 and 97 unique gene products from plum and peach seeds, respectively. It was possible to identify 16 proteins belonging to the Prunus genus. Moreover, a high number of histones and seed storage proteins were identified. Additionally, 21 and 14 bioactive peptides previously identified were found within protein sequences in plum and peach seeds, respectively. Plums and peaches seeds are cheap sources of proteins that are irretrievably lost after canning and beverage production. Although this kind of residues has been used in animal feed or production of biofuel, they are usually incinerated or sent to landfills, wasting their huge potential. In order to exploit this, it is important to comprehensively study proteins present in plum and peach seeds. Nevertheless, since proteomics analysis is in most cases handicapped by the presence of high-abundance proteins masking the detection of the low-abundance ones, it is important to overcome this challenge. In this sense, combinatorial peptide ligand libraries (CPLLs) have been used in this work to reduce the dynamic protein concentration range to enable the identification of a higher amount of proteins than employing conventional methods. In this work, the better extracting conditions have been optimized and up to 141 and 97

  7. A combinatorial histidine scanning library approach to engineer highly pH-dependent protein switches.

    PubMed

    Murtaugh, Megan L; Fanning, Sean W; Sharma, Tressa M; Terry, Alexandra M; Horn, James R

    2011-09-01

    There is growing interest in the development of protein switches, which are proteins whose function, such as binding a target molecule, can be modulated through environmental triggers. Efforts to engineer highly pH sensitive protein-protein interactions typically rely on the rational introduction of ionizable groups in the protein interface. Such experiments are typically time intensive and often sacrifice the protein's affinity at the permissive pH. The underlying thermodynamics of proton-linkage dictate that the presence of multiple ionizable groups, which undergo a pK(a) change on protein binding, are necessary to result in highly pH-dependent binding. To test this hypothesis, a novel combinatorial histidine library was developed where every possible combination of histidine and wild-type residue is sampled throughout the interface of a model anti-RNase A single domain VHH antibody. Antibodies were coselected for high-affinity binding and pH-sensitivity using an in vitro, dual-function selection strategy. The resulting antibodies retained near wild-type affinity yet became highly sensitive to small decreases in pH, drastically decreasing their binding affinity, due to the incorporation of multiple histidine groups. Several trends were observed, such as histidine "hot-spots," which will help enhance the development of pH switch proteins as well as increase our understanding of the role of ionizable residues in protein interfaces. Overall, the combinatorial approach is rapid, general, and robust and should be capable of producing highly pH-sensitive protein affinity reagents for a number of different applications. Copyright © 2011 The Protein Society.

  8. A combinatorial histidine scanning library approach to engineer highly pH-dependent protein switches

    SciTech Connect

    Murtaugh, Megan L.; Fanning, Sean W.; Sharma, Tressa M.; Terry, Alexandra M.; Horn, James R.

    2012-09-05

    There is growing interest in the development of protein switches, which are proteins whose function, such as binding a target molecule, can be modulated through environmental triggers. Efforts to engineer highly pH sensitive protein-protein interactions typically rely on the rational introduction of ionizable groups in the protein interface. Such experiments are typically time intensive and often sacrifice the protein's affinity at the permissive pH. The underlying thermodynamics of proton-linkage dictate that the presence of multiple ionizable groups, which undergo a pK{sub a} change on protein binding, are necessary to result in highly pH-dependent binding. To test this hypothesis, a novel combinatorial histidine library was developed where every possible combination of histidine and wild-type residue is sampled throughout the interface of a model anti-RNase A single domain VHH antibody. Antibodies were coselected for high-affinity binding and pH-sensitivity using an in vitro, dual-function selection strategy. The resulting antibodies retained near wild-type affinity yet became highly sensitive to small decreases in pH, drastically decreasing their binding affinity, due to the incorporation of multiple histidine groups. Several trends were observed, such as histidine 'hot-spots,' which will help enhance the development of pH switch proteins as well as increase our understanding of the role of ionizable residues in protein interfaces. Overall, the combinatorial approach is rapid, general, and robust and should be capable of producing highly pH-sensitive protein affinity reagents for a number of different applications.

  9. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries

    PubMed Central

    Sidney, John; Assarsson, Erika; Moore, Carrie; Ngo, Sandy; Pinilla, Clemencia; Sette, Alessandro; Peters, Bjoern

    2008-01-01

    Background It has been previously shown that combinatorial peptide libraries are a useful tool to characterize the binding specificity of class I MHC molecules. Compared to other methodologies, such as pool sequencing or measuring the affinities of individual peptides, utilizing positional scanning combinatorial libraries provides a baseline characterization of MHC molecular specificity that is cost effective, quantitative and unbiased. Results Here, we present a large-scale application of this technology to 19 different human and mouse class I alleles. These include very well characterized alleles (e.g. HLA A*0201), alleles with little previous data available (e.g. HLA A*3201), and alleles with conflicting previous reports on specificity (e.g. HLA A*3001). For all alleles, the positional scanning combinatorial libraries were able to elucidate distinct binding patterns defined with a uniform approach, which we make available here. We introduce a heuristic method to translate this data into classical definitions of main and secondary anchor positions and their preferred residues. Finally, we validate that these matrices can be used to identify candidate MHC binding peptides and T cell epitopes in the vaccinia virus and influenza virus systems, respectively. Conclusion These data confirm, on a large scale, including 15 human and 4 mouse class I alleles, the efficacy of the positional scanning combinatorial library approach for describing MHC class I binding specificity and identifying high affinity binding peptides. These libraries were shown to be useful for identifying specific primary and secondary anchor positions, and thereby simpler motifs, analogous to those described by other approaches. The present study also provides matrices useful for predicting high affinity binders for several alleles for which detailed quantitative descriptions of binding specificity were previously unavailable, including A*3001, A*3201, B*0801, B*1501 and B*1503. PMID:18221540

  10. The Mathematics of a Successful Deconvolution: A Quantitative Assessment of Mixture-Based Combinatorial Libraries Screened Against Two Formylpeptide Receptors

    PubMed Central

    Santos, Radleigh G.; Appel, Jon R.; Giulianotti, Marc A.; Edwards, Bruce S.; Sklar, Larry A.; Houghten, Richard A.; Pinilla, Clemencia

    2014-01-01

    In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays. PMID:23722730

  11. The mathematics of a successful deconvolution: a quantitative assessment of mixture-based combinatorial libraries screened against two formylpeptide receptors.

    PubMed

    Santos, Radleigh G; Appel, Jon R; Giulianotti, Marc A; Edwards, Bruce S; Sklar, Larry A; Houghten, Richard A; Pinilla, Clemencia

    2013-05-30

    In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays.

  12. Identification of avocado (Persea americana) pulp proteins by nano-LC-MS/MS via combinatorial peptide ligand libraries.

    PubMed

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2012-09-01

    Avocado (Persea americana) proteins have been scarcely studied despite their importance, especially in food related allergies. The proteome of avocado pulp was explored in depth by extracting proteins with capture by combinatorial peptide ligand libraries at pH 7.4 and under conditions mimicking reverse-phase capture at pH 2.2. The total number of unique gene products identified amounts to 1012 proteins, of which 174 are in common with the control, untreated sample, 190 are present only in the control and 648 represent the new species detected via combinatorial peptide ligand libraries of all combined eluates and likely represent low-abundance proteins. Among the 1012 proteins, it was possible to identify the already known avocado allergen Pers a 1 and different proteins susceptible to be allergens such as a profilin, a polygalacturonase, a thaumatin-like protein, a glucanase, and an isoflavone reductase like protein.

  13. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  14. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  15. Dynamic peptide libraries for the discovery of supramolecular nanomaterials.

    PubMed

    Pappas, Charalampos G; Shafi, Ramim; Sasselli, Ivan R; Siccardi, Henry; Wang, Tong; Narang, Vishal; Abzalimov, Rinat; Wijerathne, Nadeesha; Ulijn, Rein V

    2016-11-01

    Sequence-specific polymers, such as oligonucleotides and peptides, can be used as building blocks for functional supramolecular nanomaterials. The design and selection of suitable self-assembling sequences is, however, challenging because of the vast combinatorial space available. Here we report a methodology that allows the peptide sequence space to be searched for self-assembling structures. In this approach, unprotected homo- and heterodipeptides (including aromatic, aliphatic, polar and charged amino acids) are subjected to continuous enzymatic condensation, hydrolysis and sequence exchange to create a dynamic combinatorial peptide library. The free-energy change associated with the assembly process itself gives rise to selective amplification of self-assembling candidates. By changing the environmental conditions during the selection process, different sequences and consequent nanoscale morphologies are selected.

  16. Dynamic peptide libraries for the discovery of supramolecular nanomaterials

    NASA Astrophysics Data System (ADS)

    Pappas, Charalampos G.; Shafi, Ramim; Sasselli, Ivan R.; Siccardi, Henry; Wang, Tong; Narang, Vishal; Abzalimov, Rinat; Wijerathne, Nadeesha; Ulijn, Rein V.

    2016-11-01

    Sequence-specific polymers, such as oligonucleotides and peptides, can be used as building blocks for functional supramolecular nanomaterials. The design and selection of suitable self-assembling sequences is, however, challenging because of the vast combinatorial space available. Here we report a methodology that allows the peptide sequence space to be searched for self-assembling structures. In this approach, unprotected homo- and heterodipeptides (including aromatic, aliphatic, polar and charged amino acids) are subjected to continuous enzymatic condensation, hydrolysis and sequence exchange to create a dynamic combinatorial peptide library. The free-energy change associated with the assembly process itself gives rise to selective amplification of self-assembling candidates. By changing the environmental conditions during the selection process, different sequences and consequent nanoscale morphologies are selected.

  17. An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts.

    PubMed

    Rus, Eric D; Wang, Hongsen; Legard, Anna E; Ritzert, Nicole L; Van Dover, Robert Bruce; Abruña, Héctor D

    2013-02-01

    A combined scanning differential electrochemical mass spectrometer (SDEMS)-scanning electrochemical microscope (SECM) apparatus is described. The SDEMS is used to detect and spatially resolve volatile electrochemically generated species at the surface of a substrate electrode. The SECM can electrochemically probe the reactivity of the surface and also offers a convenient means of leveling the sample. It is possible to switch between these two different scanning tips and techniques without moving the sample and while maintaining potential control of the substrate electrode. A procedure for calibration of the SDEMS tip-substrate separation, based upon the transit time of electrogenerated species from the substrate to the tip is also described. This instrument can be used in the characterization of combinatorial libraries of direct alcohol fuel cell anode catalysts. The apparatus was used to analyze the products of methanol oxidation at a Pt substrate, with the SDEMS detecting carbon dioxide and methyl formate, and a PtPb-modified Pt SECM tip used for the selective detection of formic acid. As an example system, the electrocatalytic methanol oxidation activity of a sputter-deposited binary PtRu composition spread in acidic media was analyzed using the SDEMS. These results are compared with those obtained from a pH-sensitive fluorescence assay.

  18. Alpha-amylase inhibitors selected from a combinatorial library of a cellulose binding domain scaffold.

    PubMed

    Lehtiö, J; Teeri, T T; Nygren, P A

    2000-11-15

    A disulfide bridge-constrained cellulose binding domain (CBD(WT)) derived from the cellobiohydrolase Cel7A from Trichoderma reesei has been investigated for use in scaffold engineering to obtain novel binding proteins. The gene encoding the wild-type 36 aa CBD(WT) domain was first inserted into a phagemid vector and shown to be functionally displayed on M13 filamentous phage as a protein III fusion protein with retained cellulose binding activity. A combinatorial library comprising 46 million variants of the CBD domain was constructed through randomization of 11 positions located at the domain surface and distributed over three separate beta-sheets of the domain. Using the enzyme porcine alpha-amylase (PPA) as target in biopannings, two CBD variants showing selective binding to the enzyme were characterized. Reduction and iodoacetamide blocking of cysteine residues in selected CBD variants resulted in a loss of binding activity, indicating a conformation dependent binding. Interestingly, further studies showed that the selected CBD variants were capable of competing with the binding of the amylase inhibitor acarbose to the enzyme. In addition, the enzyme activity could be partially inhibited by addition of soluble protein, suggesting that the selected CBD variants bind to the active site of the enzyme.

  19. An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts

    NASA Astrophysics Data System (ADS)

    Rus, Eric D.; Wang, Hongsen; Legard, Anna E.; Ritzert, Nicole L.; Bruce Van Dover, Robert; Abruña, Héctor D.

    2013-02-01

    A combined scanning differential electrochemical mass spectrometer (SDEMS)-scanning electrochemical microscope (SECM) apparatus is described. The SDEMS is used to detect and spatially resolve volatile electrochemically generated species at the surface of a substrate electrode. The SECM can electrochemically probe the reactivity of the surface and also offers a convenient means of leveling the sample. It is possible to switch between these two different scanning tips and techniques without moving the sample and while maintaining potential control of the substrate electrode. A procedure for calibration of the SDEMS tip-substrate separation, based upon the transit time of electrogenerated species from the substrate to the tip is also described. This instrument can be used in the characterization of combinatorial libraries of direct alcohol fuel cell anode catalysts. The apparatus was used to analyze the products of methanol oxidation at a Pt substrate, with the SDEMS detecting carbon dioxide and methyl formate, and a PtPb-modified Pt SECM tip used for the selective detection of formic acid. As an example system, the electrocatalytic methanol oxidation activity of a sputter-deposited binary PtRu composition spread in acidic media was analyzed using the SDEMS. These results are compared with those obtained from a pH-sensitive fluorescence assay.

  20. In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries.

    PubMed

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2013-01-01

    Musa ssp. is among the world's leading fruit crops. Although a strong interest on banana biochemistry exists in the scientific community, focused on metabolite composition, proteins have been scarcely investigated even if they play an important role in food allergy and stability, are a source of biologically active peptides, and can provide information about nutritional aspects of this fruit. In this work we have employed the combinatorial peptide ligand libraries after different types of protein extractions, for searching the very low-abundance proteins in banana. The use of advanced MS techniques and Musa ssp. mRNAs database in combination with the Uniprot_viridiplantae database allowed us to identify 1131 proteins. Among this huge amount of proteins we found several already known allergens such as Mus a 1, pectinesterase, superoxide dismutase, and potentially new allergens. Additionally several enzymes involved in degradation of starch granules and strictly correlated to ripening stage were identified. This is the first in-depth exploration of the banana fruit proteome and one of the largest descriptions of the proteome of any vegetable system.

  1. Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library.

    PubMed

    Choi, Jaehyuk; Moon, Eunpyo

    2009-08-01

    Antimicrobial peptides (AMPs) are considered to be a promising alternative to conventional antibiotics for future generations. We identified four novel hexapeptides with antimicrobial activity: KCM11 (TWWRWW-NH(2)), KCM12 (KWRWIW-NH(2)), KCM21 (KWWWRW-NH(2)), and KRS22 (WRWFIH-NH(2)), through positional scanning of a synthetic peptide combinatorial library (PS-SCL). The ability of these peptides to inhibit the growth of a variety of bacteria and unicellular fungi was evaluated. KCM11 and KRS22 preferentially inhibited the normal growth of fungal strains, whereas KCM12 and KCM21 were more active against bacterial strains. Bactericidal activity was addressed in a clear zone assay against phytopathogenic bacteria, including Pectobacterium spp., Xanthomonas spp., Pseudomonas spp., etc. KCM21 showed the highest activity and was effective against a wide range of target organisms. Application of KCM21 with inoculation of Pectobacterium carotovorum subsp. carotovorum on detached cabbage leaves resulted in an immune phenotype or a significant reduction in symptom development, depending on the peptide concentration. Cytotoxicity of the four hexapeptides was evaluated in mouse and human epithelial cell lines using an MTT test. The results revealed a lack of cytotoxic effects.

  2. Combinatorial peptide library-based identification of peptide ligands for tumor-reactive cytolytic T lymphocytes of unknown specificity.

    PubMed

    Rubio-Godoy, Verena; Ayyoub, Maha; Dutoit, Valerie; Servis, Catherine; Schink, Amy; Rimoldi, Donata; Romero, Pedro; Cerottini, Jean-Charles; Simon, Richard; Zhao, Yindong; Houghten, Richard A; Pinilla, Clemencia; Valmori, Danila

    2002-08-01

    A novel approach for the identification of tumor antigen-derived sequences recognized by CD8(+) cytolytic T lymphocytes (CTL) consists in using synthetic combinatorial peptide libraries. Here we have screened a library composed of 3.1 x 10(11) nonapeptides arranged in a positional scanning format, in a cytotoxicity assay, to search the antigen recognized by melanoma-reactive CTL of unknown specificity. The results of this analysis enabled the identification of several optimal peptide ligands, as most of the individual nonapeptides deduced from the primary screening were efficiently recognized by the CTL. The results of the library screening were also analyzed with a mathematical approach based on a model of independent and additive contribution of individual amino acids to antigen recognition. This biometrical data analysis enabled the retrieval, in public databases, of the native antigenic peptide SSX-2(41-49), whose sequence is highly homologous to the ones deduced from the library screening, among the ones with the highest stimulatory score. These results underline the high predictive value of positional scanning synthetic combinatorial peptide library analysis and encourage its use for the identification of CTL ligands.

  3. Applications of dynamic combinatorial chemistry for the determination of effective molarity.

    PubMed

    Ciaccia, Maria; Tosi, Irene; Baldini, Laura; Cacciapaglia, Roberta; Mandolini, Luigi; Di Stefano, Stefano; Hunter, Christopher A

    2015-01-01

    A new strategy for determining thermodynamic effective molarities (EM) for macrocylisation reactions using dynamic combinatorial chemistry under dilute conditions is presented. At low concentrations, below the critical value, Dynamic Libraries (DLs) of bifunctional building blocks contain only cyclic species, so it is not possible to quantify the equilibria between linear and cyclic species. However, addition of a monofunctional chain stopper can be used to promote the formation of linear oligomers allowing measurement of EM for all cyclic species present in the DL. The effectiveness of this approach was demonstrated for DLs generated from mixtures of 1,3-diimine calix[4]arenes, linear diaminoalkanes and monoaminoalkanes. For macrocycles deriving from one bifunctional calixarene and one diamine, there is an alternating pattern of EM values with the number of methylene units in the diamine: odd numbers give significantly higher EMs than even numbers. For odd numbers of methylene units, the alkyl chain can adopt an extended all anti conformation, whereas for even numbers of methylene units, gauche conformations are required for cyclisation, and the associated strain reduces EM. The value of EM for the five-carbon linker indicates that this macrocycle is a strainless ring.

  4. Discovery of potent inhibitors of soluble epoxide hydrolase by combinatorial library design and structure-based virtual screening.

    PubMed

    Xing, Li; McDonald, Joseph J; Kolodziej, Steve A; Kurumbail, Ravi G; Williams, Jennifer M; Warren, Chad J; O'Neal, Janet M; Skepner, Jill E; Roberds, Steven L

    2011-03-10

    Structure-based virtual screening was applied to design combinatorial libraries to discover novel and potent soluble epoxide hydrolase (sEH) inhibitors. X-ray crystal structures revealed unique interactions for a benzoxazole template in addition to the conserved hydrogen bonds with the catalytic machinery of sEH. By exploitation of the favorable binding elements, two iterations of library design based on amide coupling were employed, guided principally by the docking results of the enumerated virtual products. Biological screening of the libraries demonstrated as high as 90% hit rate, of which over two dozen compounds were single digit nanomolar sEH inhibitors by IC(50) determination. In total the library design and synthesis produced more than 300 submicromolar sEH inhibitors. In cellular systems consistent activities were demonstrated with biochemical measurements. The SAR understanding of the benzoxazole template provides valuable insights into discovery of novel sEH inhibitors as therapeutic agents.

  5. OptiDock: virtual HTS of combinatorial libraries by efficient sampling of binding modes in product space.

    PubMed

    Sprous, Dennis G; Lowis, David R; Leonard, Joseph M; Heritage, Trevor; Burkett, Steven N; Baker, David S; Clark, Robert D

    2004-01-01

    Products from combinatorial libraries generally share a common core structure that can be exploited to improve the efficiency of virtual high-throughput screening (vHTS). In general, it is more efficient to find a method that scales with the total number of reagents (Sigma growth) rather with the number of products (Pi growth). The OptiDock methodology described herein entails selecting a diverse but representative subset of compounds that span the structural space encompassed by the full library. These compounds are docked individually using the FlexX program (Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. J. Mol. Biol. 1995, 251, 470-489) to define distinct docking modes in terms of reference placements for combinatorial core atoms. Thereafter, substituents in R-cores (consisting of the core structure substituted at a single variation site) are docked, keeping the core atoms fixed at the coordinates dictated by each reference placement. Interaction energies are calculated for each docked R-core with respect to the target protein, and energies for whole compounds are calculated by finding the reference core placement for which the sum of corresponding R-core energies is most negative. The use of diverse whole compounds to define binding modes is a key advantage of the protocol over other combinatorial docking programs. As a result, OptiDock returns better-scoring conformers than does serially applied FlexX. OptiDock is also better able to find a viable docked pose for each library member than are other combinatorial approaches.

  6. [Directed evolution of antibody molecules in phage-displayed combinatorial libraries].

    PubMed

    Fujii, Ikuo

    2007-01-01

    Advances in methods for conformational prediction, structural analysis and site-directed mutagenesis of proteins and peptides have contributed to the understanding of their structure and function. However, with the exception of a few successes, the generation of practical functional molecules solely by rational design remains a difficult challenge. The aim of our study is to investigate molecular design relying on evolutionary processes, called as "directed evolution", to generate a novel class of biofunctional molecules. This evolutionary approach consists of three steps; 1) constructions of protein/peptide libraries based on structural information, 2) expressions of the libraries on phage particles, and 3) selections with investigator-imposed selective pressures. In this work, we study on directed evolution with antibody libraries. We have succeeded in generating highly active catalytic antibodies in phage-displayed antibody (Fab) libraries. To evolve catalytic antibodies toward higher catalytic activity, we have mimicked an enzyme-evolutional process, in which an enzyme has evolved their ability to use binding energies for catalysis by increasing the affinity for the transition state of a reaction and decreasing the affinity for the ground state. Thus, phage-displayed libraries derived from an original catalytic antibody were selected against a newly-devised TSA, which was programmed to optimize the differential affinity for the transition state relative to the ground state, to provide variants with improved reaction rates (k(cat)). The in vitro evolution has great potential for generating novel catalysts as well as for providing opportunities to examine the evolutionary dynamics of enzymes.

  7. Combinatorially-generated library of 6-fluoroquinolone analogs as potential novel antitubercular agents: a chemometric and molecular modeling assessment.

    PubMed

    Minovski, Nikola; Perdih, Andrej; Solmajer, Tom

    2012-05-01

    The virtual combinatorial chemistry approach as a methodology for generating chemical libraries of structurally-similar analogs in a virtual environment was employed for building a general mixed virtual combinatorial library with a total of 53.871 6-FQ structural analogs, introducing the real synthetic pathways of three well known 6-FQ inhibitors. The druggability properties of the generated combinatorial 6-FQs were assessed using an in-house developed drug-likeness filter integrating the Lipinski/Veber rule-sets. The compounds recognized as drug-like were used as an external set for prediction of the biological activity values using a neural-networks (NN) model based on an experimentally-determined set of active 6-FQs. Furthermore, a subset of compounds was extracted from the pool of drug-like 6-FQs, with predicted biological activity, and subsequently used in virtual screening (VS) campaign combining pharmacophore modeling and molecular docking studies. This complex scheme, a powerful combination of chemometric and molecular modeling approaches provided novel QSAR guidelines that could aid in the further lead development of 6-FQs agents.

  8. Identification of Novel Hexapeptides Bioactive against Phytopathogenic Fungi through Screening of a Synthetic Peptide Combinatorial Library

    PubMed Central

    López-García, Belén; Pérez-Payá, Enrique; Marcos, Jose F.

    2002-01-01

    The purpose of the present study was to improve the antifungal activity against selected phytopathogenic fungi of the previously identified hexapeptide PAF19. We describe some properties of a set of novel synthetic hexapeptides whose d-amino acid sequences were obtained through screening of a synthetic peptide combinatorial library in a positional scanning format. As a result of the screening, 12 putative bioactive peptides were identified, synthesized, and assayed. The peptides PAF26 (Ac-rkkwfw-NH2), PAF32 (Ac-rkwhfw-NH2), and PAF34 (Ac-rkwlfw-NH2) showed stronger activity than PAF19 against isolates of Penicillium digitatum, Penicillium italicum, and Botrytis cinerea. PAF26 and PAF32, but not PAF34, were also active against Fusarium oxysporum. Penicillium expansum was less susceptible to all four PAF peptides, and only PAF34 showed weak activity against it. Assays were also conducted on nontarget organisms, and PAF26 and PAF32 showed much-reduced toxicity to Escherichia coli and Saccharomyces cerevisiae, demonstrating selectivity towards certain filamentous fungi. Thus, the data showed distinct activity profiles for peptides differentiated by just one or two residue substitutions. Our conclusion from this observation is that a specificity factor is involved in the activity of these short peptides. Furthermore, PAF26 and PAF32 displayed activities against P. digitatum, P. italicum, and B. cinerea similar to that of the hemolytic 26-amino acid melittin, but they did not show the high toxicity of melittin towards bacteria and yeasts. The four peptides acted additively, with no synergistic interactions among them, and PAF26 was shown to have improved activity over PAF19 in in vivo orange fruit decay experiments. PMID:11976121

  9. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    PubMed

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  10. Anti-tubercular drug designing by structure based screening of combinatorial libraries.

    PubMed

    Ghosh, Payel; Bagchi, Manish C

    2011-07-01

    In the current study, the applicability and scope of descriptor based QSAR models to complement virtual screening using molecular docking approach have been applied to identify potential virtual screening hits targeting DNA gyrase A from Mycobacterium tuberculosis, an effective and validated anti-mycobacterial target. Initially QSAR models were developed against M. fortuitum and M. smegmatis using a series of structurally related fluoroquinolone derivatives as DNA gyrase inhibitors. Both the QSAR models yielded significant cross validated Q² values of 0.6715 and 0.6944 and R² values of 0.7250 and 0.7420, respectively. The statistically significant models were validated by a test set of 22 compounds with predictive R² value of 0.7562 and 0.7087 for M. fortuitum and M. smegmatis respectively. To aid the creation of novel antituberculosis compounds, combinatorial library was developed on fluoroquinolone template to derive a data set of 5280 compounds whose activity values have been measured by the above models. Highly active compounds predicted from the models were subjected to molecular docking study to investigate the mechanism of drug binding with the DNA gyrase A protein of M. tuberculosis and the compounds showing similar type of binding patterns with that of the existing drug molecules, like sparfloxacin, were finally reported. It is seen that hydrophobic characteristics of molecular structure together with few hydrogen bond interactions are playing an essential role in antimicrobial activity for the fluoroquinolone derivatives. A representative set of seven compounds with high predicted MIC values were sorted out in the present study.

  11. Effects of phytoestrogens and synthetic combinatorial libraries on aromatase, estrogen biosynthesis, and metabolism.

    PubMed

    Brueggemeier, R W; Gu, X; Mobley, J A; Joomprabutra, S; Bhat, A S; Whetstone, J L

    2001-12-01

    -tissue aromatase by exogenous agents such as drugs and environmental agents is being investigated. The benzopyranone-ring system is a molecular scaffold of considerable interest, and this scaffold is found in flavonoid natural products that have weak aromatase inhibitory activity. Medicinal chemistry efforts focus on diversifying the benzopyranone scaffold and utilizing combinatorial chemistry approaches to construct small benzopyranone libraries as potential aro- matase inhibitors. Several compounds in the initial libraries have demonstrated moderate aromatase inhibitory activity in screening assays.

  12. Solid-phase synthesis and screening of N-acylated polyamine (NAPA) combinatorial libraries for protein binding.

    PubMed

    Iera, Jaclyn A; Jenkins, Lisa M Miller; Kajiyama, Hiroshi; Kopp, Jeffrey B; Appella, Daniel H

    2010-11-15

    Inhibitors for protein-protein interactions are challenging to design, in part due to the unique and complex architectures of each protein's interaction domain. Most approaches to develop inhibitors for these interactions rely on rational design, which requires prior structural knowledge of the target and its ligands. In the absence of structural information, a combinatorial approach may be the best alternative to finding inhibitors of a protein-protein interaction. Current chemical libraries, however, consist mostly of molecules designed to inhibit enzymes. In this manuscript, we report the synthesis and screening of a library based on an N-acylated polyamine (NAPA) scaffold that we designed to have specific molecular features necessary to inhibit protein-protein interactions. Screens of the library identified a member with favorable binding properties to the HIV viral protein R (Vpr), a regulatory protein from HIV, that is involved in numerous interactions with other proteins critical for viral replication.

  13. Laser direct writing of combinatorial libraries of idealized cellular constructs: Biomedical applications

    NASA Astrophysics Data System (ADS)

    Schiele, Nathan R.; Koppes, Ryan A.; Corr, David T.; Ellison, Karen S.; Thompson, Deanna M.; Ligon, Lee A.; Lippert, Thomas K. M.; Chrisey, Douglas B.

    2009-03-01

    The ability to control cell placement and to produce idealized cellular constructs is essential for understanding and controlling intercellular processes and ultimately for producing engineered tissue replacements. We have utilized a novel intra-cavity variable aperture excimer laser operated at 193 nm to reproducibly direct write mammalian cells with micrometer resolution to form a combinatorial array of idealized cellular constructs. We deposited patterns of human dermal fibroblasts, mouse myoblasts, rat neural stem cells, human breast cancer cells, and bovine pulmonary artery endothelial cells to study aspects of collagen network formation, breast cancer progression, and neural stem cell proliferation, respectively. Mammalian cells were deposited by matrix assisted pulsed laser evaporation direct write from ribbons comprised of a UV transparent quartz coated with either a thin layer of extracellular matrix or triazene as a dynamic release layer using CAD/CAM control. We demonstrate that through optical imaging and incorporation of a machine vision algorithm, specific cells on the ribbon can be laser deposited in spatial coherence with respect to geometrical arrays and existing cells on the receiving substrate. Having the ability to direct write cells into idealized cellular constructs can help to answer many biomedical questions and advance tissue engineering and cancer research.

  14. Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization.

    PubMed

    Podlewska, Sabina; Czarnecki, Wojciech M; Kafel, Rafał; Bojarski, Andrzej J

    2017-02-27

    The growing computational abilities of various tools that are applied in the broadly understood field of computer-aided drug design have led to the extreme popularity of virtual screening in the search for new biologically active compounds. Most often, the source of such molecules consists of commercially available compound databases, but they can also be searched for within the libraries of structures generated in silico from existing ligands. Various computational combinatorial approaches are based solely on the chemical structure of compounds, using different types of substitutions for new molecules formation. In this study, the starting point for combinatorial library generation was the fingerprint referring to the optimal substructural composition in terms of the activity toward a considered target, which was obtained using a machine learning-based optimization procedure. The systematic enumeration of all possible connections between preferred substructures resulted in the formation of target-focused libraries of new potential ligands. The compounds were initially assessed by machine learning methods using a hashed fingerprint to represent molecules; the distribution of their physicochemical properties was also investigated, as well as their synthetic accessibility. The examination of various fingerprints and machine learning algorithms indicated that the Klekota-Roth fingerprint and support vector machine were an optimal combination for such experiments. This study was performed for 8 protein targets, and the obtained compound sets and their characterization are publically available at http://skandal.if-pan.krakow.pl/comb_lib/ .

  15. Combinatorial synthesis and high-throughput characterization of structural and photoelectrochemical properties of Fe:WO3 nanostructured libraries

    NASA Astrophysics Data System (ADS)

    Khare, Chinmay; Sliozberg, Kirill; Stepanovich, Aliaksandr; Schuhmann, Wolfgang; Ludwig, Alfred

    2017-05-01

    Porous and photoelectrochemically active Fe-doped WO3 nanostructures were obtained by a combinatorial dealloying method. Two types of precursor materials libraries, exhibiting dense and nano-columnar morphology were fabricated by using two distinct magnetron sputter deposition geometries. Both libraries were subjected to combinatorial dealloying enabling preparation and screening of a large quantity of compositions having different nanostructures. This approach allows identifying materials with interesting photoelectrochemical characteristics. The dealloying process selectively dissolved Fe from the composition gradient precursor W-Fe materials library, resulting in formation of monoclinic single crystalline nanoblade-like structures over the entire surface. Photoelectrochemical properties of nanostructured Fe:WO3 films were found to be composition-dependent. The measurement region doped with ˜1.7 at % Fe and a film thickness of ˜ 900-1100 nm displayed highly porous WO3 nanostructures and exhibited the highest photocurrent density of ˜ 72 μA cm-2. This enhanced photocurrent density is attributed to the decreased bandgap values, suppressed recombination of electron-hole pairs, improved light absorption as well as efficient charge transport in the highly porous Fe-doped film with single crystalline WO3 nanoblades.

  16. Combinatorial Libraries As a Tool for the Discovery of Novel, Broad-Spectrum Antibacterial Agents Targeting the ESKAPE Pathogens.

    PubMed

    Fleeman, Renee; LaVoi, Travis M; Santos, Radleigh G; Morales, Angela; Nefzi, Adel; Welmaker, Gregory S; Medina-Franco, José L; Giulianotti, Marc A; Houghten, Richard A; Shaw, Lindsey N

    2015-04-23

    Mixture based synthetic combinatorial libraries offer a tremendous enhancement for the rate of drug discovery, allowing the activity of millions of compounds to be assessed through the testing of exponentially fewer samples. In this study, we used a scaffold-ranking library to screen 37 different libraries for antibacterial activity against the ESKAPE pathogens. Each library contained between 10000 and 750000 structural analogues for a total of >6 million compounds. From this, we identified a bis-cyclic guanidine library that displayed strong antibacterial activity. A positional scanning library for these compounds was developed and used to identify the most effective functional groups at each variant position. Individual compounds were synthesized that were broadly active against all ESKAPE organisms at concentrations <2 μM. In addition, these compounds were bactericidal, had antibiofilm effects, showed limited potential for the development of resistance, and displayed almost no toxicity when tested against human lung cells and erythrocytes. Using a murine model of peritonitis, we also demonstrate that these agents are highly efficacious in vivo.

  17. Heuristic Implementation of Dynamic Programming for Matrix Permutation Problems in Combinatorial Data Analysis

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie

    2008-01-01

    Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…

  18. Heuristic Implementation of Dynamic Programming for Matrix Permutation Problems in Combinatorial Data Analysis

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie

    2008-01-01

    Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…

  19. Computational redesign of bacterial biotin carboxylase inhibitors using structure-based virtual screening of combinatorial libraries.

    PubMed

    Brylinski, Michal; Waldrop, Grover L

    2014-04-02

    As the spread of antibiotic resistant bacteria steadily increases, there is an urgent need for new antibacterial agents. Because fatty acid synthesis is only used for membrane biogenesis in bacteria, the enzymes in this pathway are attractive targets for antibacterial agent development. Acetyl-CoA carboxylase catalyzes the committed and regulated step in fatty acid synthesis. In bacteria, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. Fragment-based screening revealed that amino-oxazole inhibits biotin carboxylase activity and also exhibits antibacterial activity against Gram-negative organisms. In this report, we redesigned previously identified lead inhibitors to expand the spectrum of bacteria sensitive to the amino-oxazole derivatives by including Gram-positive species. Using 9,411 small organic building blocks, we constructed a diverse combinatorial library of 1.2×10⁸ amino-oxazole derivatives. A subset of 9×10⁶ of these compounds were subjected to structure-based virtual screening against seven biotin carboxylase isoforms using similarity-based docking by eSimDock. Potentially broad-spectrum antibiotic candidates were selected based on the consensus ranking by several scoring functions including non-linear statistical models implemented in eSimDock and traditional molecular mechanics force fields. The analysis of binding poses of the top-ranked compounds docked to biotin carboxylase isoforms suggests that: (1) binding of the amino-oxazole anchor is stabilized by a network of hydrogen bonds to residues 201, 202 and 204; (2) halogenated aromatic moieties attached to the amino-oxazole scaffold enhance interactions with a hydrophobic pocket formed by residues 157, 169, 171 and 203; and (3) larger substituents reach deeper into the binding pocket to form additional hydrogen bonds with the side chains of residues 209 and 233. These structural insights into drug

  20. Quantum mechanical energy-based screening of combinatorially generated library of tautomers. TauTGen: a tautomer generator program.

    PubMed

    Harańczyk, Maciej; Gutowski, Maciej

    2007-01-01

    We describe a procedure of finding low-energy tautomers of a molecule. The procedure consists of (i) combinatorial generation of a library of tautomers, (ii) screening based on the results of geometry optimization of initial structures performed at the density functional level of theory, and (iii) final refinement of geometry for the top hits at the second-order Möller-Plesset level of theory followed by single-point energy calculations at the coupled cluster level of theory with single, double, and perturbative triple excitations. The library of initial structures of various tautomers is generated with TauTGen, a tautomer generator program. The procedure proved to be successful for these molecular systems for which common chemical knowledge had not been sufficient to predict the most stable structures.

  1. Combinatorial peptide libraries as an alternative approach to the identification of ligands for tumor-reactive cytolytic T lymphocytes.

    PubMed

    Pinilla, C; Rubio-Godoy, V; Dutoit, V; Guillaume, P; Simon, R; Zhao, Y; Houghten, R A; Cerottini, J C; Romero, P; Valmori, D

    2001-07-01

    The recent identification of molecularly defined human tumor antigens recognized by autologous CTLs has opened new opportunities for the development of antigen-specific cancer vaccines. Despite extensive work, however, the number of CTL-defined tumor antigens that are suitable targets for generic vaccination of cancer patients is still limited, mostly because of the painstaking and lengthy nature of the procedures currently used for their identification. A novel approach is based on the combined use of combinatorial peptide libraries in positional scanning format (positional scanning synthetic combinatorial peptide libraries, PS-SCLs) and tumor-reactive CTL clones. To validate this approach, we herein analyzed in detail the recognition of PS-SCLs by Melan-A-specific CTL clones. Our results indicate that, at least for some clones, most of the amino acids composing the native antigenic peptide can be identified through the use of PS-SCLs. Interestingly, this analysis also allowed the identification of peptide analogues with increased antigenic activity as well as agonist peptides containing multiple amino-acid substitutions. In addition, biometrical analysis of the data generated by PS-SCL screening allowed the identification of the native ligand in a public database. Overall, these data demonstrate the successful use of PS-SCLs for the identification and optimization of tumor-associated CTL epitopes.

  2. Synthesis of aromatic glycoconjugates. Building blocks for the construction of combinatorial glycopeptide libraries

    PubMed Central

    Nörrlinger, Markus

    2014-01-01

    Summary New aromatic glycoconjugate building blocks based on the trifunctional 3-aminomethyl-5-aminobenzoic acid backbone and sugars linked to the backbone by a malonyl moiety were prepared via peptide coupling. The orthogonally protected glycoconjugates, bearing an acetyl-protected glycoside, were converted into their corresponding acids which are suitable building blocks for combinatorial glycopeptide synthesis. PMID:25383116

  3. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.

    PubMed

    Calvete, Juan J; Fasoli, Elisa; Sanz, Libia; Boschetti, Egisto; Righetti, Pier Giorgio

    2009-06-01

    We report the proteomic characterization of the venom of the medically important North American western diamondback rattlesnake, Crotalus atrox, using two complementary approaches: snake venomics (to gain an insight of the overall venom proteome), and two solid-phase combinatorial peptide ligand libraries (CPLL), followed by 2D electrophoresis and mass spectrometric characterization of in-gel digested protein bands (to capture and "amplify" low-abundance proteins). The venomics approach revealed approximately 24 distinct proteins belonging to 2 major protein families (snake venom metalloproteinases, SVMP, and serine proteinases), which represent 69.5% of the total venom proteins, 4 medium abundance families (medium-size disintegrin, PLA(2), cysteine-rich secretory protein, and l-amino acid oxidase) amounting to 25.8% of the venom proteins, and 3 minor protein families (vasoactive peptides, endogenous inhibitor of SVMP, and C-type lectin-like). This toxin profile potentially explains the cytotoxic, myotoxic, hemotoxic, and hemorrhagic effects evoked by C. atrox envenomation. Further, our results showing that C. atrox exhibits a similar level of venom variation as Sistrurus miliarius points to a "diversity gain" scenario in the lineage leading to the Sistrurus catenatus taxa. On the other hand, the two combinatorial hexapeptide libraries captured distinct sets of proteins. Although the CPLL-treated samples did not retain a representative venom proteome, protein spots barely, or not at all, detectable in the whole venom were enriched in the two CPLL-treated samples. The amplified low copy number C. atrox venom proteins comprised a C-type lectin-like protein, several PLA(2) molecules, PIII-SVMP isoforms, glutaminyl cyclase isoforms, and a 2-cys peroxiredoxin highly conserved across the animal kingdom. Peroxiredoxin and glutaminyl cyclase may participate, respectively, in redox processes leading to the structural/functional diversification of toxins, and in the N

  4. Dynamic Digital Libraries for Children.

    ERIC Educational Resources Information Center

    Theng, Yin Leng; Mohd-Nasir, Norliza; Buchanan, George; Fields, Bob; Thimbleby, Harold; Cassidy, Noel

    The design of systems, including digital libraries, is often inspired by what technology makes possible. In user-centered design, design emphasizes users, their tasks and needs. The majority of current digital libraries are not designed for children. For digital libraries to be popular with children, they need to be fun and easy-to-use. This paper…

  5. Going nuts for nuts? The trace proteome of a Cola drink, as detected via combinatorial peptide ligand libraries.

    PubMed

    D'Amato, Alfonsina; Fasoli, Elisa; Kravchuk, Alexander V; Righetti, Pier Giorgio

    2011-05-06

    The "invisible" proteome of a Cola drink, stated to be produced with a kola nut extract, has been investigated via capture with combinatorial peptide ligand libraries (CPLL). Indeed, a few proteins in the M(r) 15-20 kDa range could be identified by treating large beverage volumes (1 L) and performing the capture with CPLLs at very acidic pH values (pH 2.2) under conditions mimicking reverse-phase adsorption. Ascertaining the presence of proteins deriving from plant extracts has confirmed the genuineness of such beverage and suggests the possibility of certifying whether soft drinks present on the market are indeed made with vegetable extracts or only with artificial chemical flavoring.

  6. Development of a system to evaluate compound identity, purity, and concentration in a single experiment and its application in quality assessment of combinatorial libraries and screening hits.

    PubMed

    Yurek, David A; Branch, Derek L; Kuo, Ming-Shang

    2002-01-01

    The development and use of a new assay system for the simultaneous determination of identity, purity, and concentration of sample components from combinatorial libraries produced by parallel synthesis are described. The system makes use of high-performance liquid chromatography with UV/vis photodiode array (PDA), evaporative light scattering (ELSD), chemiluminescent nitrogen (CLND), and time-of-flight mass spectrometer (TOFMS) detectors (HPLC-PDA-ELSD-CLND-TOFMS). Although these detectors have previously been utilized separately for the analysis of combinatorial chemistry libraries, the use of TOFMS along with CLND provides a synergistic combination enabling target and side-product structures to be identified and their concentrations and purities determined in a single experiment from a solution containing microgram levels of material. The CLND was found to give a linear response based on the number of moles of nitrogen present. Therefore, if the number of nitrogens per molecule is known, the concentration of each nitrogen-containing sample component may be determined utilizing an unrelated co-injected standard. A molecular formula for an impurity may often be calculated from the exact mass determined by the TOFMS and knowledge of the chemistry involved. Thus, if the sample components contain nitrogen, the concentration of every identified HPLC peak may be determined even in the absence of primary standards. This combination of detectors enabled the characterization of both target compounds and byproducts in combinatorial libraries, allowing the optimization of library synthetic procedures. This system was also used to survey the quality of libraries, enabling the selection of the best libraries for screening. This method also facilitated the characterization of samples from combinatorial libraries found as hits in high-throughput screening to establish the potency of the leads based on their actual concentration. In addition, concentrations and potencies of

  7. Combinatorial genetic transformation of cereals and the creation of metabolic libraries for the carotenoid pathway.

    PubMed

    Farre, Gemma; Naqvi, Shaista; Sanahuja, Georgina; Bai, Chao; Zorrilla-López, Uxue; Rivera, Sol M; Canela, Ramon; Sandman, Gerhard; Twyman, Richard M; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2012-01-01

    Combinatorial nuclear transformation is used to generate populations of transgenic plants containing random selections from a collection of input transgenes. This is a useful approach because it provides the means to test different combinations of genes without the need for separate transformation experiments, allowing the comprehensive analysis of metabolic pathways and other genetic systems requiring the coordinated expression of multiple genes. The principle of combinatorial nuclear transformation is demonstrated in this chapter through protocols developed in our laboratory that allow combinations of genes encoding enzymes in the carotenoid biosynthesis pathway to be introduced into rice and a white-endosperm variety of corn. These allow the accumulation of carotenoids to be screened initially by the colour of the endosperm, which ranges from white through various shades of yellow and orange depending on the types and quantities of carotenoids present. The protocols cover the preparation of DNA-coated metal particles, the transformation of corn and rice plants by particle bombardment, the regeneration of transgenic plants, the extraction of carotenoids from plant tissues, and their analysis by high-performance liquid chromatography.

  8. Microstructural and dielectric properties of Ba0.6Sr0.4Ti1-xZrxO3 based combinatorial thin film capacitors library

    NASA Astrophysics Data System (ADS)

    Liu, Guozhen; Wolfman, Jérôme; Autret-Lambert, Cécile; Sakai, Joe; Roger, Sylvain; Gervais, Monique; Gervais, François

    2010-12-01

    Epitaxial growth of Ba0.6Sr0.4Ti1-xZrxO3 (0≤x≤0.3) composition spread thin film library on SrRuO3/SrTiO3 layer by combinatorial pulsed laser deposition (PLD) is reported. X-ray diffraction and energy dispersive x-ray spectroscopy studies showed an accurate control of the film phase and composition by combinatorial PLD. A complex evolution of the microstructure and morphology with composition of the library is described, resulting from the interplay between epitaxial stress, increased chemical pressure, and reduced elastic energy upon Zr doping. Statistical and temperature-related capacitive measurements across the library showed unexpected variations in the dielectric properties. Doping windows with enhanced permittivity and tunability are identified, and correlated to microstructural properties.

  9. An apparatus for spatially resolved, temperature dependent reflectance measurements for identifying thermochromism in combinatorial thin film libraries.

    PubMed

    Barron, S C; Patel, M P; Nguyen, Nam; Nguyen, N V; Green, M L

    2015-11-01

    A metrology and data analysis protocol is described for high throughput determination of thermochromic metal-insulator phase diagrams for lightly substituted VO2 thin films. The technique exploits the abrupt change in near infrared optical properties, measured in reflection, as an indicator of the temperature- or impurity-driven metal-insulator transition. Transition metal impurities were introduced in a complementary combinatorial synthesis process for producing thin film libraries with the general composition space V(1-x-y)M(x)M'(y)O2, with M and M' being transition metals and x and y varying continuously across the library. The measurement apparatus acquires reflectance spectra in the visible or near infrared at arbitrarily many library locations, each with a unique film composition, at temperatures of 1 °C-85 °C. Data collection is rapid and automated; the measurement protocol is computer controlled to automate the collection of thousands of reflectance spectra, representing hundreds of film compositions at tens of different temperatures. A straightforward analysis algorithm is implemented to extract key information from the thousands of spectra such as near infrared thermochromic transition temperatures and regions of no thermochromic transition; similarly, reflectance to the visible spectrum generates key information for materials selection of smart window materials. The thermochromic transition for 160 unique compositions on a thin film library with the general formula V(1-x-y)M(x)M'(y)O2 can be measured and described in a single 20 h experiment. The resulting impurity composition-temperature phase diagrams will contribute to the understanding of metal-insulator transitions in doped VO2 systems and to the development of thermochromic smart windows.

  10. An apparatus for spatially resolved, temperature dependent reflectance measurements for identifying thermochromism in combinatorial thin film libraries

    NASA Astrophysics Data System (ADS)

    Barron, S. C.; Patel, M. P.; Nguyen, Nam; Nguyen, N. V.; Green, M. L.

    2015-11-01

    A metrology and data analysis protocol is described for high throughput determination of thermochromic metal-insulator phase diagrams for lightly substituted VO2 thin films. The technique exploits the abrupt change in near infrared optical properties, measured in reflection, as an indicator of the temperature- or impurity-driven metal-insulator transition. Transition metal impurities were introduced in a complementary combinatorial synthesis process for producing thin film libraries with the general composition space V 1-x-yMxM'yO2, with M and M' being transition metals and x and y varying continuously across the library. The measurement apparatus acquires reflectance spectra in the visible or near infrared at arbitrarily many library locations, each with a unique film composition, at temperatures of 1 °C-85 °C. Data collection is rapid and automated; the measurement protocol is computer controlled to automate the collection of thousands of reflectance spectra, representing hundreds of film compositions at tens of different temperatures. A straightforward analysis algorithm is implemented to extract key information from the thousands of spectra such as near infrared thermochromic transition temperatures and regions of no thermochromic transition; similarly, reflectance to the visible spectrum generates key information for materials selection of smart window materials. The thermochromic transition for 160 unique compositions on a thin film library with the general formula V 1-x-yMxM'yO2 can be measured and described in a single 20 h experiment. The resulting impurity composition-temperature phase diagrams will contribute to the understanding of metal-insulator transitions in doped VO2 systems and to the development of thermochromic smart windows.

  11. Spatially addressed combinatorial protein libraries for recombinant antibody discovery and optimization.

    PubMed

    Mao, Hongyuan; Graziano, James J; Chase, Tyson M A; Bentley, Cornelia A; Bazirgan, Omar A; Reddy, Neil P; Song, Byeong Doo; Smider, Vaughn V

    2010-11-01

    Antibody discovery typically uses hybridoma- or display-based selection approaches, which lack the advantages of directly screening spatially addressed compound libraries as in small-molecule discovery. Here we apply the latter strategy to antibody discovery, using a library of ∼10,000 human germline antibody Fabs created by de novo DNA synthesis and automated protein expression and purification. In multiplexed screening assays, we obtained specific hits against seven of nine antigens. Using sequence-activity relationships and iterative mutagenesis, we optimized the binding affinities of two hits to the low nanomolar range. The matured Fabs showed full and partial antagonism activities in cell-based assays. Thus, protein drug leads can be discovered using surprisingly small libraries of proteins with known sequences, questioning the requirement for billions of members in an antibody discovery library. This methodology also provides sequence, expression and specificity information at the first step of the discovery process, and could enable novel antibody discovery in functional screens.

  12. Discovery of a Direct Ras Inhibitor by Screening a Combinatorial Library of Cell-Permeable Bicyclic Peptides

    PubMed Central

    2015-01-01

    Cyclic peptides have great potential as therapeutic agents and research tools. However, their applications against intracellular targets have been limited, because cyclic peptides are generally impermeable to the cell membrane. It was previously shown that fusion of cyclic peptides with a cyclic cell-penetrating peptide resulted in cell-permeable bicyclic peptides that are proteolytically stable and biologically active in cellular assays. In this work, we tested the generality of the bicyclic approach by synthesizing a combinatorial library of 5.7 × 106 bicyclic peptides featuring a degenerate sequence in the first ring and an invariant cell-penetrating peptide in the second ring. Screening of the library against oncoprotein K-Ras G12V followed by hit optimization produced a moderately potent and cell-permeable K-Ras inhibitor, which physically blocks the Ras-effector interactions in vitro, inhibits the signaling events downstream of Ras in cancer cells, and induces apoptosis of the cancer cells. Our approach should be generally applicable to developing cell-permeable bicyclic peptide inhibitors against other intracellular proteins. PMID:26645887

  13. A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display.

    PubMed

    Schröter, Christian; Günther, Ralf; Rhiel, Laura; Becker, Stefan; Toleikis, Lars; Doerner, Achim; Becker, Janine; Schönemann, Andreas; Nasu, Daichi; Neuteboom, Berend; Kolmar, Harald; Hock, Björn

    2015-01-01

    There is growing interest in the fast and robust engineering of protein pH-sensitivity that aims to reduce binding at acidic pH, compared to neutral pH. Here, we describe a novel strategy for the incorporation of pH-sensitive antigen binding functions into antibody variable domains using combinatorial histidine scanning libraries and yeast surface display. The strategy allows simultaneous screening for both, high affinity binding at pH 7.4 and pH-sensitivity, and excludes conventional negative selection steps. As proof of concept, we applied this strategy to incorporate pH-dependent antigen binding into the complementary-determining regions of adalimumab. After 3 consecutive rounds of separate heavy and light chain library screening, pH-sensitive variants could be isolated. Heavy and light chain mutations were combined, resulting in 3 full-length antibody variants that revealed sharp, reversible pH-dependent binding profiles. Dissociation rate constants at pH 6.0 increased 230- to 780-fold, while high affinity binding at pH 7.4 in the sub-nanomolar range was retained. Furthermore, binding to huFcRn and thermal stability were not affected by histidine substitutions. Overall, this study emphasizes a generalizable strategy for engineering pH-switch functions potentially applicable to a variety of antibodies and further proteins-based therapeutics.

  14. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    PubMed

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  15. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks

    PubMed Central

    Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Li, Baoqing; Yuan, Xiaobing

    2017-01-01

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum–minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms. PMID:28753962

  16. Combinatorial optimization using dynamical phase transitions in driven-dissipative systems.

    PubMed

    Leleu, Timothée; Yamamoto, Yoshihisa; Utsunomiya, Shoko; Aihara, Kazuyuki

    2017-02-01

    The dynamics of driven-dissipative systems is shown to be well-fitted for achieving efficient combinatorial optimization. The proposed method can be applied to solve any combinatorial optimization problem that is equivalent to minimizing an Ising Hamiltonian. Moreover, the dynamics considered can be implemented using various physical systems as it is based on generic dynamics-the normal form of the supercritical pitchfork bifurcation. The computational principle of the proposed method relies on an hybrid analog-digital representation of the binary Ising spins by considering the gradient descent of a Lyapunov function that is the sum of an analog Ising Hamiltonian and archetypal single or double-well potentials. By gradually changing the shape of the latter potentials from a single to double well shape, it can be shown that the first nonzero steady states to become stable are associated with global minima of the Ising Hamiltonian, under the approximation that all analog spins have the same amplitude. In the more general case, the heterogeneity in amplitude between analog spins induces the stabilization of local minima, which reduces the quality of solutions to combinatorial optimization problems. However, we show that the heterogeneity in amplitude can be reduced by setting the parameters of the driving signal near a regime, called the dynamic phase transition, where the analog spins' DC components map more accurately the global minima of the Ising Hamiltonian which, in turn, increases the quality of solutions found. Last, we discuss the possibility of a physical implementation of the proposed method using networks of degenerate optical parametric oscillators.

  17. Combinatorial chemistry: libraries from libraries, the art of the diversity-oriented transformation of resin-bound peptides and chiral polyamides to low molecular weight acyclic and heterocyclic compounds.

    PubMed

    Nefzi, Adel; Ostresh, John M; Yu, Yongping; Yu, Jongping; Houghten, Richard A

    2004-05-28

    Combinatorial chemistry has deeply impacted the drug discovery process by accelerating the synthesis and screening of large numbers of compounds having therapeutic and/or diagnostic potential. These techniques offer unique enhancement in the potential identification of new and/or therapeutic candidates. Our efforts over the past 10 years in the design and diversity-oriented synthesis of low molecular weight acyclic and heterocyclic combinatorial libraries derived from amino acids, peptides, and/or peptidomimetics are described. Employing a "toolbox" of various chemical transformations, including alkylation, oxidation, reduction, acylation, and the use of a variety of multifunctional reagents, the "libraries from libraries" concept has enabled the continued development of an ever-expanding, structurally varied series of organic chemical libraries.

  18. Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library.

    PubMed

    Bakhshinejad, Babak; Zade, Hesam Motaleb; Shekarabi, Hosna Sadat Zahed; Neman, Sara

    2016-12-01

    Phage display is known as a powerful methodology for the identification of targeting ligands that specifically bind to a variety of targets. The high-throughput screening of phage display combinatorial peptide libraries is performed through the affinity selection method of biopanning. Although phage display selection has proven very successful in the discovery of numerous high-affinity target-binding peptides with potential application in drug discovery and delivery, the enrichment of false-positive target-unrelated peptides (TUPs) without any actual affinity towards the target remains a major problem of library screening. Selection-related TUPs may emerge because of binding to the components of the screening system rather than the target. Propagation-related TUPs may arise as a result of faster growth rate of some phage clones enabling them to outcompete slow-propagating clones. Amplification of the library between rounds of biopanning makes a significant contribution to the selection of phage clones with propagation advantage. Distinguishing nonspecific TUPs from true target binders is of particular importance for the translation of biopanning findings from basic research to clinical applications. Different experimental and in silico approaches are applied to assess the specificity of phage display-derived peptides towards the target. Bioinformatic tools are playing a rapidly growing role in the analysis of biopanning data and identification of target-irrelevant TUPs. Recent progress in the introduction of efficient strategies for TUP detection holds enormous promise for the discovery of clinically relevant cell- and tissue-homing peptides and paves the way for the development of novel targeted diagnostic and therapeutic platforms in pharmaceutical areas.

  19. Phenotypic alteration and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells.

    PubMed

    Park, Kyung-Soon; Jang, Young-Soon; Lee, Horim; Kim, Jin-Soo

    2005-08-01

    We have developed a method with prokaryotic organisms that uses randomized libraries of zinc finger-containing artificial transcription factors to induce phenotypic variations and to identify genes involved in the generation of a specific phenotype of interest. Combining chromatin immunoprecipitation experiments and in silico prediction of target DNA binding sequences for the artificial transcription factors, we identified ubiX, whose down-regulation correlates with the thermotolerance phenotype in Escherichia coli. Our results show that randomized libraries of artificial transcription factors are powerful tools for functional genomic studies.

  20. Combinatorial optimization using dynamical phase transitions in driven-dissipative systems

    NASA Astrophysics Data System (ADS)

    Leleu, Timothée; Yamamoto, Yoshihisa; Utsunomiya, Shoko; Aihara, Kazuyuki

    2017-02-01

    The dynamics of driven-dissipative systems is shown to be well-fitted for achieving efficient combinatorial optimization. The proposed method can be applied to solve any combinatorial optimization problem that is equivalent to minimizing an Ising Hamiltonian. Moreover, the dynamics considered can be implemented using various physical systems as it is based on generic dynamics—the normal form of the supercritical pitchfork bifurcation. The computational principle of the proposed method relies on an hybrid analog-digital representation of the binary Ising spins by considering the gradient descent of a Lyapunov function that is the sum of an analog Ising Hamiltonian and archetypal single or double-well potentials. By gradually changing the shape of the latter potentials from a single to double well shape, it can be shown that the first nonzero steady states to become stable are associated with global minima of the Ising Hamiltonian, under the approximation that all analog spins have the same amplitude. In the more general case, the heterogeneity in amplitude between analog spins induces the stabilization of local minima, which reduces the quality of solutions to combinatorial optimization problems. However, we show that the heterogeneity in amplitude can be reduced by setting the parameters of the driving signal near a regime, called the dynamic phase transition, where the analog spins' DC components map more accurately the global minima of the Ising Hamiltonian which, in turn, increases the quality of solutions found. Last, we discuss the possibility of a physical implementation of the proposed method using networks of degenerate optical parametric oscillators.

  1. Cell Penetrating Peptoids (CPPos): Synthesis of a Small Combinatorial Library by Using IRORI MiniKans

    PubMed Central

    Kölmel, Dominik K.; Fürniss, Daniel; Susanto, Steven; Lauer, Andrea; Grabher, Clemens; Bräse, Stefan; Schepers, Ute

    2012-01-01

    Cell penetrating peptoids (CPPos) are potent mimics of the corresponding cell penetrating peptides (CPPs). The synthesis of diverse oligomeric libraries that display a variety of backbone scaffolds and side-chain appendages are a very promising source of novel CPPos, which can be used to either target different cellular organelles or even different tissues and organs. In this study we established the submonomer-based solid phase synthesis of a “proof of principle” peptoid library in IRORI MiniKans to expand the amount for phenotypic high throughput screens of CPPos. The library consisting of tetrameric peptoids [oligo(N-alkylglycines)] was established on Rink amide resin in a split and mix approach with hydrophilic and hydrophobic peptoid side chains. All CPPos of the presented library were labeled with rhodamine B to allow for the monitoring of cellular uptake by fluorescent confocal microscopy. Eventually, all the purified peptoids were subjected to live cell imaging to screen for CPPos with organelle specificity. While highly charged CPPos enter the cells by endocytosis with subsequent endosomal release, critical levels of lipophilicity allow other CPPos to specifically localize to mitochondria once a certain lipophilicity threshold is reached. PMID:24281336

  2. Discovery of novel antinociceptive α-conotoxin analogues from the direct in vivo screening of a synthetic mixture-based combinatorial library.

    PubMed

    Armishaw, Christopher J; Banerjee, Jayati; Ganno, Michelle L; Reilley, Kate J; Eans, Shainnel O; Mizrachi, Elisa; Gyanda, Reena; Hoot, Michelle R; Houghten, Richard A; McLaughlin, Jay P

    2013-03-11

    Marine cone snail venoms consist of large, naturally occurring combinatorial libraries of disulfide-constrained peptide neurotoxins known as conotoxins, which have profound potential in the development of analgesics. In this study, we report a synthetic combinatorial strategy that probes the hypervariable regions of conotoxin frameworks to discover novel analgesic agents by utilizing high diversity mixture-based positional-scanning synthetic combinatorial libraries (PS-SCLs). We hypothesized that the direct in vivo testing of these mixture-based combinatorial library samples during the discovery phase would facilitate the identification of novel individual compounds with desirable antinociceptive profiles while simultaneously eliminating many compounds with poor activity or liabilities of locomotion and respiration. A PS-SCL was designed based on the α-conotoxin RgIA-ΔR n-loop region and consisted of 10,648 compounds systematically arranged into 66 mixture samples. Mixtures were directly screened in vivo using the mouse 55 °C warm-water tail-withdrawal assay, which allowed deconvolution of amino acid residues at each position that confer antinociceptive activity. A second generation library of 36 individual α-conotoxin analogues was synthesized using systematic combinations of amino acids identified from PS-SCL deconvolution and further screened for antinociceptive activity. Six individual analogues exhibited comparable antinociceptive activity to that of the recognized analgesic α-conotoxin RgIA-ΔR, and were selected for further examination of antinociceptive, respiratory, and locomotor effects. Three lead compounds were identified that produced dose-dependent antinociception without significant respiratory depression or decreased locomotor activity. Our results represent a unique approach for rapidly developing novel lead α-conotoxin analogues as low-liability analgesics with promising therapeutic potential.

  3. Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts.

    PubMed

    Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S

    2013-09-23

    A wide variety of cyclic molecular architectures are built of modular subunits and can be formed combinatorially. The mathematics for enumeration of such objects is well-developed yet lacks key features of importance in chemistry, such as specifying (i) the structures of individual members among a set of isomers, (ii) the distribution (i.e., relative amounts) of products, and (iii) the effect of nonequal ratios of reacting monomers on the product distribution. Here, a software program (Cyclaplex) has been developed to determine the number, identity (including isomers), and relative amounts of linear and cyclic architectures from a given number and ratio of reacting monomers. The program includes both mathematical formulas and generative algorithms for enumeration; the latter go beyond the former to provide desired molecular-relevant information and data-mining features. The program is equipped to enumerate four types of architectures: (i) linear architectures with directionality (macroscopic equivalent = electrical extension cords), (ii) linear architectures without directionality (batons), (iii) cyclic architectures with directionality (necklaces), and (iv) cyclic architectures without directionality (bracelets). The program can be applied to cyclic peptides, cycloveratrylenes, cyclens, calixarenes, cyclodextrins, crown ethers, cucurbiturils, annulenes, expanded meso-substituted porphyrin(ogen)s, and diverse supramolecular (e.g., protein) assemblies. The size of accessible architectures encompasses up to 12 modular subunits derived from 12 reacting monomers or larger architectures (e.g. 13-17 subunits) from fewer types of monomers (e.g. 2-4). A particular application concerns understanding the possible heterogeneity of (natural or biohybrid) photosynthetic light-harvesting oligomers (cyclic, linear) formed from distinct peptide subunits.

  4. Proteomic Analysis of Lonicera japonica Thunb. Immature Flower Buds Using Combinatorial Peptide Ligand Libraries and Polyethylene Glycol Fractionation.

    PubMed

    Zhu, Wei; Xu, Xiaobao; Tian, Jingkui; Zhang, Lin; Komatsu, Setsuko

    2016-01-04

    Lonicera japonica Thunb. flower is a well-known medicinal plant that has been widely used for the treatment of human disease. To explore the molecular mechanisms underlying the biological activities of L. japonica immature flower buds, a gel-free/label-free proteomic technique was used in combination with combinatorial peptide ligand libraries (CPLL) and polyethylene glycol (PEG) fractionation for the enrichment of low-abundance proteins and removal of high-abundance proteins, respectively. A total of 177, 614, and 529 proteins were identified in crude protein extraction, CPLL fractions, and PEG fractions, respectively. Among the identified proteins, 283 and 239 proteins were specifically identified by the CPLL and PEG methods, respectively. In particular, proteins related to the oxidative pentose phosphate pathway, signaling, hormone metabolism, and transport were highly enriched by CPLL and PEG fractionation compared to crude protein extraction. A total of 28 secondary metabolism-related proteins and 25 metabolites were identified in L. japonica immature flower buds. To determine the specificity of the identified proteins and metabolites for L. japonica immature flower buds, Cerasus flower buds were used, which resulted in the abundance of hydroxymethylbutenyl 4-diphosphate synthase in L. japonica immature flower buds being 10-fold higher than that in Cerasus flower buds. These results suggest that proteins related to secondary metabolism might be responsible for the biological activities of L. japonica immature flower buds.

  5. Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC-MS/MS.

    PubMed

    Ghorab, Hamida; Lammi, Carmen; Arnoldi, Anna; Kabouche, Zahia; Aiello, Gilda

    2018-01-15

    An investigation on the proteome of the sweet kernel of apricot, based on equalisation with combinatorial peptide ligand libraries (CPLLs), SDS-PAGE, nLC-ESI-MS/MS, and database search, permitted identifying 175 proteins. Gene ontology analysis indicated that their main molecular functions are in nucleotide binding (20.9%), hydrolase activities (10.6%), kinase activities (7%), and catalytic activity (5.6%). A protein-protein association network analysis using STRING software permitted to build an interactomic map of all detected proteins, characterised by 34 interactions. In order to forecast the potential health benefits deriving from the consumption of these proteins, the two most abundant, i.e. Prunin 1 and 2, were enzymatically digested in silico predicting 10 and 14 peptides, respectively. Searching their sequences in the database BIOPEP, it was possible to suggest a variety of bioactivities, including dipeptidyl peptidase-IV (DPP-IV) and angiotensin converting enzyme I (ACE) inhibition, glucose uptake stimulation and antioxidant properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library.

    PubMed Central

    Puras Lutzke, R A; Eppens, N A; Weber, P A; Houghten, R A; Plasterk, R H

    1995-01-01

    Integration of human immunodeficiency virus (HIV) DNA into the human genome requires the virus-encoded integrase (IN) protein, and therefore the IN protein is a suitable target for antiviral strategies. To find a potent HIV IN inhibitor, we screened a "synthetic peptide combinatorial library." We identified a hexapeptide with the sequence HCKFWW that inhibits IN-mediated 3'-processing and integration with an IC50 of 2 microM. The peptide is active on IN proteins from other retroviruses such as HIV-2, feline immunodeficiency virus, and Moloney murine leukemia virus, supporting the notion that a conserved region of IN is targeted. The hexapeptide was also tested in the disintegration reaction. This phosphoryl-transfer reaction can be carried out by the catalytic core of IN alone, and the peptide HCKFWW was found to inhibit this reaction, suggesting that the hexapeptide acts at or near the catalytic site of IN. Identification of an IN hexapeptide inhibitor provides proof of concept for the approach, and, moreover, this peptide may be useful for structure-function analysis of IN. Images Fig. 4 Fig. 5 PMID:8524782

  7. Comparative proteomic analysis of egg white proteins during the rapid embryonic growth period by combinatorial peptide ligand libraries.

    PubMed

    Liu, Yijun; Qiu, Ning; Ma, Meihu

    2015-10-01

    Egg white proteins provide essential nutrients and antimicrobial protection during embryonic development. Although various biological functions of major egg white proteins have been investigated via embryogenesis, understanding of global changes in low-abundance proteins has been limited. In the current study, a proteomic analysis of low-abundance egg white proteins was conducted using combinatorial peptide ligand libraries (CPLL), two-dimensional gel electrophoresis (2-DE), and matrix-assisted laser desorption/ionization-time-of-flight with two mass analyzers for tandem mass spectrometry (MALDI-TOF MS/MS) during the rapid embryonic growth period. Significant increases in the relative abundance of 88 protein spots (P ≤ 0.05), of which 47 spots were found to correspond to 10 proteins from 8 protein families were identified over 16 d incubation. During this developmental process, the protein concentration increased and the amount of albumin solid material decreased in the residual egg white. Clusterin precursors were observed over a wide range of pH values and the tenp protein increased continuously during embryonic development. Low-abundance proteins were identified in a comparison of optimal incubation conditions to the altered conditions of 2 control groups to better understand the function of these proteins in egg whites. Collectively, these findings provide insight into the supportive role of the egg white during embryonic development, enabling a broader understanding of chick embryogenesis. © 2015 Poultry Science Association Inc.

  8. Rare antibodies from combinatorial libraries suggests an S.O.S. component of the human immunological repertoire.

    PubMed

    Lerner, Richard A

    2011-04-01

    Convergence of observations from different sources is the norm in science. However, when convergence occurs in man for antibodies it is remarkable because the repertoire of possible immunoglobulin products is very large and diverse. Thus, one would not expect to see the same antibody twice from divergent populations unless there is special significance as to why the immune response is constrained. Now, broadly neutralizing antibodies isolated from combinatorial libraries from three separate populations have been shown to all use the same (V(H) 1-69) germ line gene and interact with the influenza virus in very similar ways. Here we discuss the reasons for this convergence in terms of how the immunological repertoire responds to emergency situations where time is short as occurs, for example, in potentially lethal infections. It is suggested that there is a first responder or S.O.S. component of the antibody repertoire that evolved to initiate rapid defense against infectious agents. The discovery of the homologies between these commonly produced antibodies may have significance for the design of novel vaccines. Finally, these convergent results may give much insight into why antibodies encoded by the V(H) 1-69 germ line gene are highly over represented in B-cell lymphomas.

  9. Characterization of small combinatorial chemistry libraries by (1)H NMR. Quantitation with a convenient and novel internal standard.

    PubMed

    Pinciroli, V; Biancardi, R; Colombo, N; Colombo, M; Rizzo, V

    2001-01-01

    A novel silane standard, 1,4-bis(trimethylsilyl)benzene (BTMSB), is introduced for the generic quantitation of small organic molecules in DMSO-d(6) solution by (1)H NMR. This standard is an easily weighable solid and is stable for at least 1 month in DMSO solution, and its (1)H NMR spectrum contains a strong singlet in a region usually free of signals. With a set of certified standards, concentration determination with about 2% precision and accuracy is verified after solution preparation with fully automated procedures, thus making very effective the characterization of small combinatorial chemistry libraries for identity and purity when combined with other physicochemical or biochemical tests. As an example, for a set of about 400 compounds, results of (1)H NMR characterization are compared to the more customary LC-UV-MS method. NMR and MS data agree for identity on the vast majority of cases (84% positive and 5% negative), whereas the remaining cases (11%) are marked as highly impure only after NMR spectra analysis. Most importantly, determination of concentration rather than that of relative purity appears the right choice for a correct evaluation of biochemical potency.

  10. Establishment of hapten-specific monoclonal avian IgY by conversion of antibody fragments obtained from combinatorial libraries.

    PubMed

    Deckers, Susanne; Braren, Ingke; Greunke, Kerstin; Meyer, Nadine; Rühl, Dana; Bredehorst, Reinhard; Spillner, Edzard

    2009-01-01

    Nowadays, recombinant antibody and phage display technology enable the efficient generation of immunotools and a subsequent manipulation for optimized affinity, specificity or overall performance. Such advantages are of particular interest for haptenic target structures, such as TNT (2,4,6-trinitrotoluene). The toxicity of TNT and its breakdown products makes a reliable and fast detection of low levels in aqueous samples highly important. In the present study, we aimed for the generation of scFvs (single-chain antibody fragments) specific for the TNT-surrogate TNP (2,4,6-trinitrophenyl) and their subsequent production as monoclonal avian IgY immunoglobulins providing improved assay performance. Therefore we subjected a human synthetic scFv library to selection following different strategies. TNP-specific human antibody fragments could be identified, characterized for their primary structure and evaluated for production as soluble scFv in Escherichia coli. Additionally, a murine TNP-specific antibody fragment was obtained from the hybridoma 11B3; however, the prokaryotic expression level was found to be limited. To generate and evaluate immunoglobulin formats with superior characteristics, all recombinant antibody fragments then were converted into two different chimaeric bivalent IgY antibody formats. After expression in mammalian cells, the IgY antibodies were assessed for their reactivity towards TNT. The IgY antibodies generated on the basis of the combinatorial library proved to be useful for detection of TNT, thereby emphasizing the high potential of this approach for the development of detection devices for immunoassay-based techniques.

  11. Targeted Mutagenesis and Combinatorial Library Screening Enables Control of Protein Orientation on Surfaces and Increased Activity of Adsorbed Proteins.

    PubMed

    Cruz-Teran, Carlos A; Carlin, Kevin B; Efimenko, Kirill; Genzer, Jan; Rao, Balaji M

    2016-08-30

    While nonspecific adsorption is widely used for immobilizing proteins on solid surfaces, the random nature of protein adsorption may reduce the activity of immobilized proteins due to occlusion of the active site. We hypothesized that the orientation a protein assumes on a given surface can be controlled by systematically introducing mutations into a region distant from its active site, thereby retaining activity of the immobilized protein. To test this hypothesis, we generated a combinatorial protein library by randomizing six targeted residues in a binding protein derived from highly stable, nonimmunoglobulin Sso7d scaffold; mutations were targeted in a region that is distant from the binding site. This library was screened to isolate binders that retain binding to its cognate target (chicken immunoglobulin Y, cIgY) as well as exhibit adsorption on unmodified silica at pH 7.4 and high ionic strength conditions. A single mutant, Sso7d-2B5, was selected for further characterization. Sso7d-2B5 retained binding to cIgY with an apparent dissociation constant similar to that of the parent protein; both mutant and parent proteins saturated the surface of silica with similar densities. Strikingly, however, silica beads coated with Sso7d-2B5 could achieve up to 7-fold higher capture of cIgY than beads coated with the parent protein. These results strongly suggest that mutations introduced in Sso7d-2B5 alter its orientation relative to the parent protein, when adsorbed on silica surfaces. Our approach also provides a generalizable strategy for introducing mutations in proteins so as to improve their activity upon immobilization, and has direct relevance to development of protein-based biosensors and biocatalysts.

  12. Discovery of novel integrin ligands from combinatorial libraries using a multiplex "beads on a bead" approach.

    PubMed

    Cho, Choi-Fong; Amadei, Giulio A; Breadner, Daniel; Luyt, Leonard G; Lewis, John D

    2012-11-14

    The development of screening approaches to identify novel affinity ligands has paved the way for a new generation of molecular targeted nanomedicines. Conventional methods typically bias the display of the target protein to ligands during the screening process. We have developed an unbiased multiplex "beads on a bead" strategy to isolate, characterize, and validate high affinity ligands from OBOC libraries. Novel non-RGD peptides that target α(v)β(3) integrin were discovered that do not affect cancer or endothelial cell biology. The peptides identified here represent novel integrin-targeted agents that can be used to develop targeted nanomedicines without the risk of increased tumor invasion and metastasis.

  13. Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces.

    PubMed

    Epa, V Chandana; Yang, Jing; Mei, Ying; Hook, Andrew L; Langer, Robert; Anderson, Daniel G; Davies, Martyn C; Alexander, Morgan R; Winkler, David A

    2012-09-18

    Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models that link microscopic or molecular properties of polymers or other materials to their biological effects. We illustrate the potential of these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic stem cell embryoid bodies (hEB) to the surfaces of a 496-member polymer micro array library.

  14. Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces

    PubMed Central

    Epa, V. Chandana; Yang, Jing; Mei, Ying; Hook, Andrew L.; Langer, Robert; Anderson, Daniel G.; Davies, Martyn C.; Alexander, Morgan R.; Winkler, David A.

    2013-01-01

    Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models that link microscopic or molecular properties of polymers or other materials to their biological effects. We illustrate the potential of these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic stem cell embryoid bodies (hEB) to the surfaces of a 496-member polymer micro array library. PMID:24092955

  15. Combinatorial chemistry in drug discovery.

    PubMed

    Liu, Ruiwu; Li, Xiaocen; Lam, Kit S

    2017-06-01

    Several combinatorial methods have been developed to create focused or diverse chemical libraries with a wide range of linear or macrocyclic chemical molecules: peptides, non-peptide oligomers, peptidomimetics, small-molecules, and natural product-like organic molecules. Each combinatorial approach has its own unique high-throughput screening and encoding strategy. In this article, we provide a brief overview of combinatorial chemistry in drug discovery with emphasis on recently developed new technologies for design, synthesis, screening and decoding of combinatorial library. Examples of successful application of combinatorial chemistry in hit discovery and lead optimization are given. The limitations and strengths of combinatorial chemistry are also briefly discussed. We are now in a better position to truly leverage the power of combinatorial technologies for the discovery and development of next-generation drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Autocrine-Based Selection of Drugs That Target Ion Channels from Combinatorial Venom Peptide Libraries.

    PubMed

    Zhang, Hongkai; Du, Mingjuan; Xie, Jia; Liu, Xiao; Sun, Jingying; Wang, Wei; Xin, Xiu; Possani, Lourival D; Yea, Kyungmoo; Lerner, Richard A

    2016-08-01

    Animal venoms represent a rich source of pharmacologically active peptides that interact with ion channels. However, a challenge to discovering drugs remains because of the slow pace at which venom peptides are discovered and refined. An efficient autocrine-based high-throughput selection system was developed to discover and refine venom peptides that target ion channels. The utility of this system was demonstrated by the discovery of novel Kv1.3 channel blockers from a natural venom peptide library that was formatted for autocrine-based selection. We also engineered a Kv1.3 blocker peptide (ShK) derived from sea anemone to generate a subtype-selective Kv1.3 blocker with a long half-life in vivo.

  17. Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries.

    PubMed

    Miller, Chad J; Turk, Benjamin E

    2016-01-01

    Eukaryotic protein kinases phosphorylate substrates at serine, threonine, and tyrosine residues that fall within the context of short sequence motifs. Knowing the phosphorylation site motif for a protein kinase facilitates designing substrates for kinase assays and mapping phosphorylation sites in protein substrates. Here, we describe an arrayed peptide library protocol for rapidly determining kinase phosphorylation consensus sequences. This method uses a set of peptide mixtures in which each of the 20 amino acid residues is systematically substituted at nine positions surrounding a central site of phosphorylation. Peptide mixtures are arrayed in multiwell plates and analyzed by radiolabel assay with the kinase of interest. The preferred sequence is determined from the relative rate of phosphorylation of each peptide in the array. Consensus peptides based on these sequences typically serve as efficient and specific kinase substrates for high-throughput screening or incorporation into biosensors.

  18. Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries

    PubMed Central

    2014-01-01

    All-oxide-based photovoltaics (PVs) encompass the potential for extremely low cost solar cells, provided they can obtain an order of magnitude improvement in their power conversion efficiencies. To achieve this goal, we perform a combinatorial materials study of metal oxide based light absorbers, charge transporters, junctions between them, and PV devices. Here we report the development of a combinatorial internal quantum efficiency (IQE) method. IQE measures the efficiency associated with the charge separation and collection processes, and thus is a proxy for PV activity of materials once placed into devices, discarding optical properties that cause uncontrolled light harvesting. The IQE is supported by high-throughput techniques for bandgap fitting, composition analysis, and thickness mapping, which are also crucial parameters for the combinatorial investigation cycle of photovoltaics. As a model system we use a library of 169 solar cells with a varying thickness of sprayed titanium dioxide (TiO2) as the window layer, and covarying thickness and composition of binary compounds of copper oxides (Cu–O) as the light absorber, fabricated by Pulsed Laser Deposition (PLD). The analysis on the combinatorial devices shows the correlation between compositions and bandgap, and their effect on PV activity within several device configurations. The analysis suggests that the presence of Cu4O3 plays a significant role in the PV activity of binary Cu–O compounds. PMID:24410367

  19. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries.

    PubMed

    Yi, Li; Gebhard, Mark C; Li, Qing; Taft, Joseph M; Georgiou, George; Iverson, Brent L

    2013-04-30

    Myriad new applications of proteases would be enabled by an ability to fine-tune substrate specificity and activity. Herein we present a general strategy for engineering protease selectivity and activity by capitalizing on sequestration of the protease to be engineered within the yeast endoplasmic reticulum (ER). A substrate fusion protein composed of yeast adhesion receptor subunit Aga2, selection and counterselection substrate sequences, multiple intervening epitope tag sequences, and a C-terminal ER retention sequence is coexpressed with a protease library. Cleavage of the substrate fusion protein by the protease eliminates the ER retention sequence, facilitating transport to the yeast surface. Yeast cells that display Aga2 fusions in which only the selection substrate is cleaved are isolated by multicolor FACS with fluorescently labeled antiepitope tag antibodies. Using this system, the Tobacco Etch Virus protease (TEV-P), which strongly prefers Gln at P1 of its canonical ENLYFQ↓S substrate, was engineered to recognize selectively Glu or His at P1. Kinetic analysis indicated an overall 5,000-fold and 1,100-fold change in selectivity, respectively, for the Glu- and His-specific TEV variants, both of which retained high catalytic turnover. Human granzyme K and the hepatitis C virus protease were also shown to be amenable to this unique approach. Further, by adjusting the signaling strategy to identify phosphorylated as opposed to cleaved sequences, this unique system was shown to be compatible with the human Abelson tyrosine kinase.

  20. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries

    PubMed Central

    Yi, Li; Gebhard, Mark C.; Li, Qing; Taft, Joseph M.; Georgiou, George; Iverson, Brent L.

    2013-01-01

    Myriad new applications of proteases would be enabled by an ability to fine-tune substrate specificity and activity. Herein we present a general strategy for engineering protease selectivity and activity by capitalizing on sequestration of the protease to be engineered within the yeast endoplasmic reticulum (ER). A substrate fusion protein composed of yeast adhesion receptor subunit Aga2, selection and counterselection substrate sequences, multiple intervening epitope tag sequences, and a C-terminal ER retention sequence is coexpressed with a protease library. Cleavage of the substrate fusion protein by the protease eliminates the ER retention sequence, facilitating transport to the yeast surface. Yeast cells that display Aga2 fusions in which only the selection substrate is cleaved are isolated by multicolor FACS with fluorescently labeled antiepitope tag antibodies. Using this system, the Tobacco Etch Virus protease (TEV-P), which strongly prefers Gln at P1 of its canonical ENLYFQ↓S substrate, was engineered to recognize selectively Glu or His at P1. Kinetic analysis indicated an overall 5,000-fold and 1,100-fold change in selectivity, respectively, for the Glu- and His-specific TEV variants, both of which retained high catalytic turnover. Human granzyme K and the hepatitis C virus protease were also shown to be amenable to this unique approach. Further, by adjusting the signaling strategy to identify phosphorylated as opposed to cleaved sequences, this unique system was shown to be compatible with the human Abelson tyrosine kinase. PMID:23589865

  1. Exploring the hidden honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS.

    PubMed

    Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2014-03-17

    At present, 30 compounds have been described in the venom of the honeybee, and 16 of them were confirmed by mass spectrometry. Previous studies typically combined 2-D PAGE with MALDI-TOF/TOF MS, a technology which now appears to lack sensitivity to detect additional venom compounds. Here, we report an in-depth study of the honeybee venom proteome using a combinatorial peptide ligand library sample pretreatment to enrich for minor components followed by shotgun LC-FT-ICR MS analysis. This strategy revealed an unexpectedly rich venom composition: in total 102 proteins and peptides were found, with 83 of them never described in bee venom samples before. Based on their predicted function and subcellular location, the proteins could be divided into two groups. A group of 33 putative toxins is proposed to contribute to venom activity by exerting toxic functions or by playing a role in social immunity. The other group, considered as venom trace molecules, appears to be secreted for their functions in the extracellular space, or is unintentionally secreted by the venom gland cells due to insufficient protein recycling or co-secretion with other compounds. In conclusion, our approach allowed to explore the hidden honeybee venom proteome and extended the list of potential venom allergens. This study dug deeper into the complex honeybee venom proteome than ever before by applying a highly performing sample pretreatment and mass spectrometric technology. We present putative biological functions for all identified compounds, largely extending our knowledge of the venom toxicity. In addition, this study offers a long list of potential new venom allergens. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Combinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compound libraries.

    PubMed

    Shi, Z; Ma, X H; Qin, C; Jia, J; Jiang, Y Y; Tan, C Y; Chen, Y Z

    2012-02-01

    Selective multi-target serotonin reuptake inhibitors enhance antidepressant efficacy. Their discovery can be facilitated by multiple methods, including in silico ones. In this study, we developed and tested an in silico method, combinatorial support vector machines (COMBI-SVMs), for virtual screening (VS) multi-target serotonin reuptake inhibitors of seven target pairs (serotonin transporter paired with noradrenaline transporter, H(3) receptor, 5-HT(1A) receptor, 5-HT(1B) receptor, 5-HT(2C) receptor, melanocortin 4 receptor and neurokinin 1 receptor respectively) from large compound libraries. COMBI-SVMs trained with 917-1951 individual target inhibitors correctly identified 22-83.3% (majority >31.1%) of the 6-216 dual inhibitors collected from literature as independent testing sets. COMBI-SVMs showed moderate to good target selectivity in misclassifying as dual inhibitors 2.2-29.8% (majority <15.4%) of the individual target inhibitors of the same target pair and 0.58-7.1% of the other 6 targets outside the target pair. COMBI-SVMs showed low dual inhibitor false hit rates (0.006-0.056%, 0.042-0.21%, 0.2-4%) in screening 17 million PubChem compounds, 168,000 MDDR compounds, and 7-8181 MDDR compounds similar to the dual inhibitors. Compared with similarity searching, k-NN and PNN methods, COMBI-SVM produced comparable dual inhibitor yields, similar target selectivity, and lower false hit rate in screening 168,000 MDDR compounds. The annotated classes of many COMBI-SVMs identified MDDR virtual hits correlate with the reported effects of their predicted targets. COMBI-SVM is potentially useful for searching selective multi-target agents without explicit knowledge of these agents.

  3. Combinatorial peptide libraries reveal the ligand-binding mechanism of the oligopeptide receptor OppA of Lactococcus lactis

    PubMed Central

    Detmers, Frank J. M.; Lanfermeijer, Frank C.; Abele, Rupert; Jack, Ralph W.; Tampé, Robert; Konings, Wil N.; Poolman, Bert

    2000-01-01

    The oligopeptide transport system (Opp) of Lactococcus lactis has the unique capacity to mediate the transport of peptides from 4 up to at least 18 residues. The substrate specificity of this binding protein-dependent ATP-binding cassette transporter is determined mainly by the receptor protein OppA. To study the specificity and ligand-binding mechanism of OppA, the following strategy was used: (i) OppA was purified and anchored via the lipid moiety to the surface of liposomes; (ii) the proteoliposomes were used in a rapid filtration-based binding assay with radiolabeled nonameric bradykinin as a reporter peptide; and (iii) combinatorial peptide libraries were used to determine the specificity and selectivity of OppA. The studies show that (i) OppA is able to bind peptides up to at least 35 residues, but there is a clear optimum in affinity for nonameric peptides; (ii) the specificity for nonameric peptides is not equally distributed over the whole peptide, because positions 4, 5, and 6 in the binding site are more selective; and (iii) the differences in affinity for given side chains is relatively small, but overall hydrophobic residues are favored—whereas glycine, proline, and negatively charged residues lower the binding affinity. The data indicate that not only the first six residues (enclosed by the protein) but also the C-terminal three residues interact in a nonopportunistic manner with (the surface of) OppA. This binding mechanism is different from the one generally accepted for receptors of ATP-binding cassette-transporter systems. PMID:11050157

  4. Synthesis and physical characterization of a P1 arginine combinatorial library, and its application to the determination of the substrate specificity of serine peptidases.

    PubMed

    Furlong, Stephen T; Mauger, Russell C; Strimpler, Anne M; Liu, Yi-Ping; Morris, Frank X; Edwards, Philip D

    2002-11-01

    Serine peptidases are a large, well-studied, and medically important class of peptidases. Despite the attention these enzymes have received, details concerning the substrate specificity of even some of the best known enzymes in this class are lacking. One approach to rapidly characterizing substrate specificity for peptidases is the use of positional scanning combinatorial substrate libraries. We recently synthesized such a library for enzymes with a preference for arginine at P1 and demonstrated the use of this library with thrombin (Edwards et al. Bioorg. Med. Chem. Lett. 2000, 10, 2291). In the present work, we extend these studies by demonstrating good agreement between the theroretical and measured content of portions of this library and by showing that the library permits rapid characterization of the substrate specificity of additional SA clan serine peptidases including factor Xa, tryptase, and trypsin. These results were consistent both with cleavage sites in natural substrates and cleavage of commercially available synthetic substrates. We also demonstrate that pH or salt concentration have a quantitative effect on the rate of cleavage of the pooled library substrates but that correct prediction of optimal substrates for the enzymes studied appeared to be independent of these parameters. These studies provide new substrate specificity data on an important class of peptidases and are the first to provide physical characterization of a peptidase substrate library.

  5. Development of hydrogel TentaGel shell-core beads for ultrahigh throughput solution-phase screening of encoded OBOC combinatorial small molecule libraries.

    PubMed

    Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S

    2009-01-01

    The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.

  6. Development of Hydrogel TentaGel Shell-Core Beads for Ultra-high Throughput Solution Phase Screening of Encoded OBOC Combinatorial Small Molecule Libraries

    PubMed Central

    Gee Baek, Hyoung; Liu, Ruiwu; Lam, Kit S.

    2009-01-01

    The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or “lawn” assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel® (TG) bead as an outer shell (5–80 µm thick), via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond, could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded. PMID:19061339

  7. A noisy self-organizing neural network with bifurcation dynamics for combinatorial optimization.

    PubMed

    Kwok, Terence; Smith, Kate A

    2004-01-01

    The self-organizing neural network (SONN) for solving general "0-1" combinatorial optimization problems (COPs) is studied in this paper, with the aim of overcoming existing limitations in convergence and solution quality. This is achieved by incorporating two main features: an efficient weight normalization process exhibiting bifurcation dynamics, and neurons with additive noise. The SONN is studied both theoretically and experimentally by using the N-queen problem as an example to demonstrate and explain the dependence of optimization performance on annealing schedules and other system parameters. An equilibrium model of the SONN with neuronal weight normalization is derived, which explains observed bands of high feasibility in the normalization parameter space in terms of bifurcation dynamics of the normalization process, and provides insights into the roles of different parameters in the optimization process. Under certain conditions, this dynamical systems view of the SONN reveals cascades of period-doubling bifurcations to chaos occurring in multidimensional space with the annealing temperature as the bifurcation parameter. A strange attractor in the two-dimensional (2-D) case is also presented. Furthermore, by adding random noise to the cost potentials of the network nodes, it is demonstrated that unwanted oscillations between symmetrical and "greedy" nodes can be sufficiently reduced, resulting in higher solution quality and feasibility.

  8. [Construction of combinatorial immune library of single chain human antibodies to orthopoxviruses and selection from this library antibodies to recombinant protein prA30L of variola virus].

    PubMed

    Dubrovskaia, V V; Ulitin, A B; Laman, A G; Gileva, I P; Bormotov, N I; Il'ichev, A A; Brovko, F A; Shchelkunov, S N; Belanov, E F; Tikunova, N V

    2007-01-01

    A combinatorial immune library of human single-chain antibody fragments (scFv) was constructed on the base of genes encoding variable domains of heavy and light chains of immunoglobulins cloned from the lymphocytes of four vaccinia virus (VACV) vaccinated donors. The size of the library was 3 x 10(7) independent clones. After the library was enriched with the clones producing scFv against recombinant analogue of variola virus surface protein prA30L, a panel of unique antibodies specific to both prA30L and VACV was selected from the library. A plaque reduction neutralization test was performed for all selected antibodies and two antibodies were shown to be able to neutralize plaque formation of VACV in Vero E6 cells monolayer. Binding specificities of these antibodies were confirmed using ELISA and Western blot analysis. To determine the amino acid sequences of neutralizing antibodies their genes were sequenced.

  9. Combinatorial Spacetimes

    NASA Astrophysics Data System (ADS)

    Hillman, David

    1995-11-01

    Combinatorial spacetimes are a class of dynamical systems in which finite pieces of spacetime contain finite amounts of information. Most of the guiding principles for designing these systems are drawn from general relativity: the systems are deterministic; spacetime may be foliated into Cauchy surfaces; the law of evolution is local (there is a light-cone structure); and the geometry evolves locally (curvature may be present; big bangs are possible). However, the systems differ from general relativity in that spacetime is a combinatorial object, constructed by piecing together copies of finitely many types of allowed neighborhoods in a prescribed manner. Hence at least initially there is no metric, no concept of continuity or diffeomorphism. The role of diffeomorphism, however, is played by something called a "local equivalence map.". Here I attempt to begin to lay the mathematical foundations for the study of these systems. (Examples of such systems already exist in the literature. The most obvious is reversible cellular automata, which are flat combinatorial spacetimes. Other related systems are structurally dynamic cellular automata, L systems and parallel graph grammars.) In the 1+1-dimensional oriented case, sets of spaces may be described equivalently by matrices of nonnegative integers, directed graphs, or symmetric tensors; local equivalences between space sets are generated by simple matrix transformations. These equivalence maps turn out to be closely related to the flow equivalence maps between subshifts of finite type studied in symbolic dynamics. Also, the symmetric tensor algebra generated by equivalence transformations turns out to be isomorphic to the abstract tensor algebra generated by commutative cocommutative bialgebras. In higher dimensions I attempt to follow the same basic model, which is to define the class of n-dimensional space set descriptions and then generate local equivalences between these descriptions using elementary

  10. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering

    PubMed Central

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch. PMID:26989897

  11. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering.

    PubMed

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration-culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.

  12. Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models.

    PubMed

    Pencovich, Niv; Jaschek, Ram; Tanay, Amos; Groner, Yoram

    2011-01-06

    Specific interactions of transcription factors (TFs) with their targets are crucial for specifying gene expression programs during cell differentiation. How specificity is maintained despite limited selectivity of individual TF-DNA interactions is not fully understood. RUNX1 TF is among the most frequently mutated genes in human leukemia and an important regulator of megakaryopoiesis. We used megakaryocytic cell lines to characterize the network of RUNX1 targets and cooperating TFs in differentiating megakaryocytes and demonstrated how dynamic partnerships between RUNX1 and cooperating TFs facilitated regulatory plasticity and specificity during this process. After differentiation onset, RUNX1 directly activated a large number of genes through interaction with preexisting and de novo binding sites. Recruitment of RUNX1 to de novo occupied sites occurred at H3K4me1-marked preprogrammed enhancers. A significant number of these de novo bound sites lacked RUNX motif but were occupied by AP-1 TFs. Reciprocally, AP-1 TFs were up-regulated by RUNX1 after 12-O-tetradecanoylphorbol-13-acetate induction and recruited to RUNX1-occupied sites lacking AP-1 motifs. At other differentiation stages, additional combinatorial interactions occurred between RUNX1 and its coregulators, GATA1 and ETS. The findings suggest that in differentiating megakaryocytic cell lines, RUNX1 cooperates with GATA1, AP-1, and ETS to orchestrate cell-specific transcription programs through dynamic TF partnerships.

  13. Combinatorial synthesis in micro reactors.

    PubMed

    Watts, P; Haswell, S J

    2004-08-01

    This article reviews the current and future applications of micro reactors in the field of combinatorial chemistry and drug discovery. Liquid phase reactions have been used to illustrate the advantages of performing chemical reactions in micro reactors which illustrate that reactions can be performed very rapidly in high yield to enable the preparation of combinatorial libraries of structurally related compounds.

  14. Successful identification of novel agents to control infectious diseases from screening mixture-based peptide combinatorial libraries in complex cell-based bioassays.

    PubMed

    Boggiano, César; Reixach, Natàlia; Pinilla, Clemencia; Blondelle, Sylvie E

    2003-01-01

    Mixture-based peptide synthetic combinatorial libraries (SCLs) represent a valuable source for the development of novel agents to control infectious diseases. Indeed, a number of studies have now proven the ability of identifying active peptides from libraries composed of thousands to millions of peptides in cell-based biosystems of varying complexity. Furthermore, progressing knowledge on the importance of endogenous peptides in various immune responses lead to a regain in importance for peptides as potential therapeutic agents. This article is aimed at providing recent studies in our laboratory for the development of antimicrobial or antiviral peptides derived from mixture-based SCLs using cell-based assays, as well as a short review of the importance of such peptides in the control of infectious diseases. Furthermore, the use of positional scanning (PS) SCL-based biometrical analyses for the identification of native optimal epitopes specific to HIV-1 proteins is also presented.

  15. A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems.

    PubMed

    Sabar, Nasser R; Ayob, Masri; Kendall, Graham; Qu, Rong

    2015-02-01

    Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite.

  16. Quantum combinatorial model of gene expression

    PubMed Central

    Grover, Monendra; Grover, Ritu; Singh, Rakesh; Kumar, Rajesh; Kumar, Sundeep

    2013-01-01

    We propose that the DNA within the chromatin behaves as a dynamic combinatorial library capable of forming novel structures by reversible processes. We also hypothesize that states within the library may be linked via quantum tunneling. RNA polymerase then could scan these states and the system decoheres to the “appropriate” state. Two ways of sustaining quantum coherence at relevant time scales could be possible, first, screening: the quantum system can be kept isolated from its decohering environment, second, the existence of decoherence free subspaces .We discuss the role of superconductivity in context of avoiding decoherence in context of our hypothesis. PMID:23422839

  17. Surface characteristics and protein adsorption on combinatorial binary Ti-M (Cr, Al, Ni) and Al-M (Ta, Zr) library films.

    PubMed

    Bai, Zhijun; Filiaggi, M J; Sanderson, R J; Lohstreter, L B; McArthur, M A; Dahn, J R

    2010-02-01

    Systematic studies of protein adsorption onto metallic biomaterial surfaces are generally lacking. Here, combinatorial binary library films with compositional gradients of Ti(1-x)Cr(x), Ti(1-x)Al(x), Ti(1-x)Ni(x) and Al(1-x)Ta(x), (0 library and an amorphous zone dominating along the gradient. These mirror-like films were generally found by atomic force microscopy to have a roughness of less than 8 nm, with any relative increases in roughness consistent with the development of crystalline phases. Surface chemistry by quantitative high-resolution X-ray photoelectron spectroscopy differed significantly from bulk film composition as measured by electron microprobe, with TiO(2) and Al(2)O(3) preferentially forming on the binary film surfaces. Correspondingly, protein adsorption onto these films closely correlated with their surface oxide fractions. Aluminum deposited as either a constant-composition film or as part of a binary library consistently adsorbed the least amount of albumin and fibrinogen, with alumina-enrichment of the surface oxide correlating with this adsorption. Overall, this combinatorial materials approach coupled with high-throughput surface analytical methods provides an efficient method of screening potential metallic biomaterials that may enable as well systematic studies of surface properties driving protein adsorption on these metal / metal oxide systems.

  18. Discovery of a potent and selective α3β4 nicotinic acetylcholine receptor antagonist from an α-conotoxin synthetic combinatorial library.

    PubMed

    Chang, Yi-Pin; Banerjee, Jayati; Dowell, Cheryl; Wu, Jinhua; Gyanda, Reena; Houghten, Richard A; Toll, Lawrence; McIntosh, J Michael; Armishaw, Christopher J

    2014-04-24

    α-Conotoxins are disulfide-rich peptide neurotoxins that selectively inhibit neuronal nicotinic acetylcholine receptors (nAChRs). The α3β4 nAChR subtype has been identified as a novel target for managing nicotine addiction. Using a mixture-based positional-scanning synthetic combinatorial library (PS-SCL) with the α4/4-conotoxin BuIA framework, we discovered a highly potent and selective α3β4 nAChR antagonist. The initial PS-SCL consisted of a total of 113 379 904 sequences that were screened for α3β4 nAChR inhibition, which facilitated the design and synthesis of a second generation library of 64 individual α-conotoxin derivatives. Eleven analogues were identified as α3β4 nAChR antagonists, with TP-2212-59 exhibiting the most potent antagonistic activity and selectivity over the α3β2 and α4β2 nAChR subtypes. Final electrophysiological characterization demonstrated that TP-2212-59 inhibited acetylcholine evoked currents in α3β4 nAChRs heterogeneously expressed in Xenopus laevis oocytes with a calculated IC50 of 2.3 nM and exhibited more than 1000-fold selectivity over the α3β2 and α7 nAChR subtypes. As such, TP-2212-59 is among the most potent α3β4 nAChRs antagonists identified to date and further demonstrates the utility of mixture-based combinatorial libraries in the discovery of novel α-conotoxin derivatives with refined pharmacological activity.

  19. Evolving nanomaterials using enzyme-driven dynamic peptide libraries (eDPL).

    PubMed

    Das, Apurba K; Hirsth, Andrew R; Ulijn, Rein V

    2009-01-01

    This paper describes the application of dynamic combinatorial libraries (DCL) towards the discovery of self-assembling nanostructures based on aromatic peptide derivatives and the continuous enzymatic exchange of amino acid sequences. Ultimately, the most thermodynamically stable self-assembling structures will dominate the system. In this respect, a library of precursor components, based on N-fluorenyl-9-methoxycarbonyl (Fmoc)-amino acids (serine, S and threonine, T) and nucleophiles (leucine, L-; phenylalanine, F-; tyrosine, Y-; valine, V-; glycine, G-; alanine, A-OMe amino-acid esters) were investigated to produce Fmoc-dipeptide esters, denoted Fmoc-XY-OMe. Upon exposure to a protease (thermolysin), which catalyses peptide bond formation and hydrolysis under aqueous conditions at pH 8, dynamic libraries of self-assembling gelator species were generated. Depending on the molecular composition of the precursors present in the library different behaviours were observed. Single components, Fmoc-SF-OMe and Fmoc-TF-OMe, dominated over time in Fmoc-S/(L+F+Y+V+G+A)-OMe and Fmoc-T/ (L+F+Y+V+G+A)-OMe libraries. This represented > 80% of all peptide formed suggesting that a single component molecular structure dominates in these systems. In a competition experiment between Fmoc-(S+T)/F-OMe, conversions to each peptide corresponded directly with ratios of starting materials, implying that a bi-component nanostructure, where Fmoc-TF-OMe and Fmoc-SF-OMe are incorporated equally favourably, was formed. Several techniques including HPLC, LCMS and fluorescence spectroscopy were used to characterize library composition and molecular interactions within the self-selecting libraries. Fluorescence spectroscopy analysis suggests that the most stable peptide nanostructures show significant pi-pi intermolecular electronic communication. Overall, the paper demonstrates a novel evolution-based approach with self-selection and amplification of supramolecular peptide nanostructures from a

  20. Inkjet Printing of zinc(II) bis-2,2':6',2"-terpyridine metallopolymers: printability and film-forming studies by a combinatorial thin-film library approach.

    PubMed

    Friebe, Christian; Wild, Andreas; Perelaer, Jolke; Schubert, Ulrich S

    2012-04-13

    For the first time, thin-film libraries of zinc(II) bis-2,2':6',2"-terpyridine metallopolymers are prepared by inkjet printing to study structure-property relationships and their possible usage for organic photovoltaic (OPV) or polymer light-emitting diode (PLED) applications. By using a combinatorial approach, various important parameters, including solvent system, dot spacing, and substrate temperature, as well as UV-vis absorption and emission properties, are screened in a materials efficient and reproducible manner. Homogeneous films with a thickness of 150 -200 nm were obtained when printed at 40 -50 °C and from a solvent mixture of N,N-dimethylformamide and acetophenone in a ratio of 90/10. In applications such as OPV and PLEDs the control over film thickness and homogeneity are central to obtain good device properties.

  1. Solution-phase synthesis of a combinatorial library of 3-[4-(coumarin-3-yl)-1,3-thiazol-2-ylcarbamoyl]propanoic acid amides.

    PubMed

    Zhuravel, Irina O; Kovalenko, Sergiy M; Vlasov, Sergiy V; Chernykh, Valentin P

    2005-02-28

    The parallel solution-phase synthesis of a new combinatorial library of 3-[4-(R1-coumarin-3-yl)-1,3-thiazol-2-ylcarbamoyl]propanoic acid amides 9 has been developed. The synthesis involves two steps: 1) the synthesis of core building blocks - 3- [4-(coumarin-3-yl)-1,3-thiazol-2-ylcarbamoyl]propanoic acids, 6 - by the reaction of 3-(omega-bromacetyl)coumarins 1 with 3-amino(thioxo)methylcarbamoylpropanoic acid (5); 2) the synthesis of the corresponding 3-[4-(coumarin-3-yl)-1,3-thiazol-2-yl- carbamoyl]propanoic acids amides 9 using 1,1'-carbonyldimidazole as a coupling reagent. The advantages of the method compared to existing ones are discussed.

  2. Ribosome display of combinatorial antibody libraries derived from mice immunized with heat-killed Xylella fastidiosa and the selection of MopB-specific single-chain antibodies.

    PubMed

    Azizi, Armaghan; Arora, Arinder; Markiv, Anatoliy; Lampe, David J; Miller, Thomas A; Kang, Angray S

    2012-04-01

    Pierce's disease is a devastating lethal disease of Vitus vinifera grapevines caused by the bacterium Xylella fastidiosa. There is no cure for Pierce's disease, and control is achieved predominantly by suppressing transmission of the glassy-winged sharpshooter insect vector. We present a simple robust approach for the generation of panels of recombinant single-chain antibodies against the surface-exposed elements of X. fastidiosa that may have potential use in diagnosis and/or disease transmission blocking studies. In vitro combinatorial antibody ribosome display libraries were assembled from immunoglobulin transcripts rescued from the spleens of mice immunized with heat-killed X. fastidiosa. The libraries were used in a single round of selection against an outer membrane protein, MopB, resulting in the isolation of a panel of recombinant antibodies. The potential use of selected anti-MopB antibodies was demonstrated by the successful application of the 4XfMopB3 antibody in an enzyme-linked immunosorbent assay (ELISA), a Western blot assay, and an immunofluorescence assay (IFA). These immortalized in vitro recombinant single-chain antibody libraries generated against heat-killed X. fastidiosa are a resource for the Pierce's disease research community that may be readily accessed for the isolation of antibodies against a plethora of X. fastidiosa surface-exposed antigenic molecules.

  3. Identification of synthetic by-products in combinatorial libraries using high performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Aubagnac, J L; Amblard, M; Enjalbal, C; Subra, G; Martinez, J; Durand, P; Renaut, P

    1999-10-01

    High performance liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI) and high performance liquid chromatography coupled to mass spectrometry (LC-MS) were used to analyze randomly chosen samples from parallel syntheses carried out on derivatized polypropylene crowns compatible with a Multipin solid support system. Side-reactions and by-products were clearly identified, and the yields of the expected molecules were unexpectedly low for most samples. LC-MS was superior to HPLC with absorbance detection or electrospray mass spectrometry alone for determining the identity and purity of each desired combinatorial compounds.

  4. Proposals for a Dynamic Library. Technical Report.

    ERIC Educational Resources Information Center

    Salton, Gerard

    The current library environment is first examined, and an attempt is made to explain why the standard approaches to the library problem have been less productive than had been anticipated. A new design is then introduced for modern library operations based on a two-fold strategy: on the input side, the widest possible utilization should be made of…

  5. Dynamic expression of combinatorial replication-dependent histone variant genes during mouse spermatogenesis.

    PubMed

    Sun, Rongfang; Qi, Huayu

    2014-01-01

    Nucleosomes are basic chromatin structural units that are formed by DNA sequences wrapping around histones. Global chromatin states in different cell types are specified by combinatorial effects of post-translational modifications of histones and the expression of histone variants. During mouse spermatogenesis, spermatogonial stem cells (SSCs) self-renew while undergo differentiation, events that occur in the company of constant re-modeling of chromatin structures. Previous studies have shown that testes contain highly expressed or specific histone variants to facilitate these epigenetic modifications. However, mechanisms of regulating the epigenetic changes and the specific histone compositions of spermatogenic cells are not fully understood. Using real time quantitative RT-PCR, we examined the dynamic expression of replication-dependent histone genes in post-natal mouse testes. It was found that distinct sets of histone genes are expressed in various spermatogenic cells at different stages during spermatogenesis. While gonocyte-enriched testes from mice at 2-dpp (days post partum) express pre-dominantly thirteen histone variant genes, SSC-stage testes at 9-dpp highly express a different set of eight histone genes. During differentiation stage when testes are occupied mostly by spermatocytes and spermatids, another twenty-two histone genes are expressed much higher than the rest, including previously known testis-specific hist1h1t, hist1h2ba and hist1h4c. In addition, histone genes that are pre-dominantly expressed in gonocytes and SSCs are also highly expressed in embryonic stem cells. Several of them were changed when embryoid bodies were formed from ES cells, suggesting their roles in regulating pluripotency of the cells. Further more, differentially expressed histone genes are specifically localized in either SSCs or spermatocytes and spermatids, as demonstrated by in situ hybridization using gene specific probes. Taken together, results presented here

  6. Combinatorial solar cell libraries for the investigation of different metal back contacts for TiO2-Cu2O hetero-junction solar cells.

    PubMed

    Rühle, S; Barad, H N; Bouhadana, Y; Keller, D A; Ginsburg, A; Shimanovich, K; Majhi, K; Lovrincic, R; Anderson, A Y; Zaban, A

    2014-04-21

    Here we present a comprehensive investigation of TiO2-Cu2O hetero-junction solar cells with different back contacts (Au, ITO, Cu or Ag). Combinatorial hetero-junction libraries consisting of a linear TiO2 thickness gradient produced by spray pyrolysis and a bell shaped Cu2O profile synthesized by pulsed laser deposition were chosen to investigate the impact of the two metal oxide layer thicknesses. The back contacts were deposited as round patches onto a grid of 13 × 13 points, 169 contacts for each contact material, forming a library containing 4 × 13 × 13 = 676 back contacts. Each back contact represented a solar cell with an individual TiO2 and Cu2O thickness. I-V measurements show that all four materials provide an ohmic contact and that the open circuit voltage of ∼300 mV is rather independent of both layer thicknesses and contact material. The size of the Cu2O crystals drastically decreases with distance from the center of deposition, which leads to a drastic increase of series resistance when the crystal size is <50 nm.

  7. Mass spectrometry in combinatorial chemistry.

    PubMed

    Enjalbal, C; Martinez, J; Aubagnac, J L

    2000-01-01

    In the fast expanding field of combinatorial chemistry, profiling libraries has always been a matter of concern--as illustrated by the buoyant literature over the past seven years. Spectroscopic methods, including especially mass spectrometry and to a lesser extent IR and NMR, have been applied at different levels of combinatorial library synthesis: in the rehearsal phase to optimize the chemistry prior to library generation, to confirm library composition, and to characterize after screening each structure that exhibits positive response. Most of the efforts have been concentrated on library composition assessment. The difficulties of such analyses have evolved from the infancy of the combinatorial concept, where large mixtures were prepared, to the recent parallel syntheses of collections of discrete compounds. Whereas the complexity of the analyses has diminished, an increased degree of automation was simultaneously required to achieve efficient library component identification and quantification. In this respect, mass spectrometry has been found to be the method of choice, providing rapid, sensitive, and informative analyses, especially when coupled to chromatographic separation. Fully automated workstations able to cope with several hundreds of compounds per day have been designed. After a brief introduction to describe the combinatorial approach, library characterization will be discussed in detail, considering first the solution-based methodologies and secondly the support-bound material analyses.

  8. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures.

    PubMed

    Herrmann, Andreas

    2014-03-21

    Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.

  9. Living Books and Dynamic Electronic Libraries.

    ERIC Educational Resources Information Center

    Barker, Philip

    1996-01-01

    Discusses changes that have taken place within library systems as a consequence of the emergence of new computer-based technologies. Highlights include using electronic documents; electronic libraries; digital projects; educational applications; and a case study of OASIS (Open Access Student Information Service), a document handling system in the…

  10. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire

    PubMed Central

    Glanville, Jacob; Zhai, Wenwu; Berka, Jan; Telman, Dilduz; Huerta, Gabriella; Mehta, Gautam R.; Ni, Irene; Mei, Li; Sundar, Purnima D.; Day, Giles M. R.; Cox, David; Rajpal, Arvind; Pons, Jaume

    2009-01-01

    Antibody repertoire diversity, potentially as high as 1011 unique molecules in a single individual, confounds characterization by conventional sequence analyses. In this study, we present a general method for assessing human antibody sequence diversity displayed on phage using massively parallel pyrosequencing, a novel application of Kabat column-labeled profile Hidden Markov Models, and translated complementarity determining region (CDR) capture-recapture analysis. Pyrosequencing of domain amplicon and RCA PCR products generated 1.5 × 106 reads, including more than 1.9 × 105 high quality, full-length sequences of antibody variable fragment (Fv) variable domains. Novel methods for germline and CDR classification and fine characterization of sequence diversity in the 6 CDRs are presented. Diverse germline contributions to the repertoire with random heavy and light chain pairing are observed. All germline families were found to be represented in 1.7 × 104 sequences obtained from repeated panning of the library. While the most variable CDR (CDR-H3) presents significant length and sequence variability, we find a substantial contribution to total diversity from somatically mutated germline encoded CDRs 1 and 2. Using a capture-recapture method, the total diversity of the antibody library obtained from a human donor Immunoglobulin M (IgM) pool was determined to be at least 3.5 × 1010. The results provide insights into the role of IgM diversification, display library construction, and productive germline usages in antibody libraries and the humoral repertoire. PMID:19875695

  11. A combinatorial approach toward smart libraries of discontinuous epitopes of HIV gp120 on a TAC synthetic scaffold.

    PubMed

    Mulder, Gwenn E; Kruijtzer, John A W; Liskamp, Rob M J

    2012-10-14

    We describe rapid and convenient access to smart libraries of protein surface discontinuous epitope mimics. Up to three different cyclic peptides, representing discontinuous epitopes in HIV-gp120, were conjugated to a triazacyclophane scaffold molecule via CuAAC. In this way protein mimics for use as synthetic vaccines and beyond will become available.

  12. Laser ablation of a Cu-Al-Ni combinatorial thin film library: analysis of crater morphology and geometry

    NASA Astrophysics Data System (ADS)

    Rebegea, Simina Aurelia; Thomas, Keith; Chawla, Vipin; Michler, Johann; Kong, Ming Chu

    2016-12-01

    The conventional approach to studying laser-workpiece interaction in the ablation regime is to vary beam parameters used on a specimen of uniform chemical composition. The current work instead utilises a pulsed laser beam of constant parameters to ablate a ternary alloy thin film where the chemical composition of the sample varies continuously; this will enhance the understanding of pulsed laser ablation by means of a combinatorial approach. The analysis of the studied workpiece (a Cu-Al-Ni thin film deposited by magnetron sputtering) revealed the presence of both compositional and morphological gradients. Variation in the surface morphology was correlated with aluminium content. Single-pulse laser ablation (Nd:YAG, 1064 nm, 30 ns, 4.54 J/cm2) of the surface resulted in different crater features, geometry and volume. Two characteristic regions separated by a transition zone were identified based on the craters' geometrical and morphological characteristics. The ablated volume increases with the atomic percentage of aluminium up to a threshold value of roughly 30 at.% after which the ablation volume slowly declines. This phenomenon may be attributed to plasma absorption and heat dissipation in the thin film.

  13. Host Amplification in a Dithioacetal-Based Dynamic Covalent Library.

    PubMed

    Orrillo, A Gastón; Escalante, Andrea M; Furlan, Ricardo L E

    2017-03-06

    Molecular amplification in a dithioacetal-based dynamic library is described for the first time. The homatropine induced selection, amplification, and isolation of one cyclophane host demonstrates the utility of dithioacetal exchange for preparing responsive dynamic libraries. Nuclear magnetic resonance and isothermal titration calorimetry analysis suggest that the amplified macrocycle forms a 1:1 complex with the template. This is the first report about a host/guest system involving a dithioacetal cyclophane.

  14. scFv antibodies against infectious bursal disease virus isolated from a combinatorial antibody library by flow cytometry.

    PubMed

    Xu, Li-Ming; Li, Tian-He; Zhou, Bing; Guo, Mo; Liu, Miao; Zhao, Jing-Zhuang; Cao, Hong-Wei; Li, De-Shan

    2014-05-01

    Infectious bursal disease is an economically important disease that affects chickens worldwide. Here, a recombinant single chain variable fragment (scFv) antibody library derived from chickens immunized with VP2 protein of infectious bursal disease virus (IBDV) was constructed. The library was subjected to three rounds of screening by flow cytometry against VP2 protein through a bacteria display technology, resulting in the enrichment of scFv. Three scFv clones with different fluorescence intensity were obtained by random colony pick up. The isolated scFv antibodies were expressed and purified. Relative affinity assay showed the three clones had different sensitivity to VP2, in accordance with fluorescence activity cell sorting analysis. The potential use of the selected IBDV-specific scFv antibodies was demonstrated by the successful application of the isolated antibodies in western blotting assay and ELISA.

  15. Process automation toward ultra-high-throughput screening of combinatorial one-bead-one-compound (OBOC) peptide libraries.

    PubMed

    Cha, Junhoe; Lim, Jaehong; Zheng, Yiran; Tan, Sylvia; Ang, Yi Li; Oon, Jessica; Ang, Mei Wei; Ling, Jingjing; Bode, Marcus; Lee, Su Seong

    2012-06-01

    With an aim to develop peptide-based protein capture agents that can replace antibodies for in vitro diagnosis, an ultra-high-throughput screening strategy has been investigated by automating labor-intensive, time-consuming processes that are the construction of peptide libraries, sorting of positive beads, and peptide sequencing through analysis of tandem mass spectrometry data. Although instruments for automation, such as peptide synthesizers and automatic bead sorters, have been used in some groups, the overall process has not been well optimized to minimize time, cost, and efforts, as well as to maximize product quality and performance. Herein we suggest and explore several solutions to the existing problems with the automation of the key processes. The overall process optimization has been done successfully in orchestration with the technologies such as rapid cleavage of peptides from beads and semiautomatic peptide sequencing that we have developed previously. This optimization allowed one-round screening, from peptide library construction to peptide sequencing, to be completed within 4 to 5 days. We also successfully identified a 6-mer ligand for carcinoembryonic antigen-cell adhesion molecule 5 (CEACAM 5) through three-round screenings, including one-round screening of a focused library.

  16. Dynamic Cyclic Thiodepsipeptide Libraries from Thiol-Thioester Exchange

    DTIC Science & Technology

    2010-04-01

    use in a variety of dynamic combinatorial chemistry assays. The kinetic determinants of macrocycle formation and the role of amino acid structure on...were then made in AA1, AA3, and AA4 (Table 1); by design, AA2-AA3-AA4 forms the macrocycle, and AA1 remains exocyclic. Charged amino acids (Lys, Arg...was initially included in AA3 as a turn residue that favors macrocycles. 9 Various amino acids were incorporated into AA4 to study their effect on

  17. Synthesis and NMR studies of malonyl-linked glycoconjugates of N-(2-aminoethyl)glycine. Building blocks for the construction of combinatorial glycopeptide libraries

    PubMed Central

    Nörrlinger, Markus; Hafner, Sven

    2016-01-01

    Summary Four glycoconjugate building blocks for the construction of combinatorial PNA like glycopeptide libraries were prepared in 75–79% yield by condensing tert-butyl N-[2-(N-9-fluorenylmethoxycarbonylamino)ethyl]glycinate (AEG) 5 with 3-oxo-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylamino)- (6a), 3-oxo-3-(β-D-galactopyranosylamino)- (6b), 3-oxo-3-(2-acetamido-2-deoxy-3,4,6-tetra-O-acetyl-β-D-glucopyranosylamino)- (6c) and 3-oxo-3-(2-acetamido-2-deoxy-3,4,6-tetra-O-acetyl-β-D-galactopyranosylamino)propanoic acid (6d), respectively. The resulting AEG glycoconjugates 1a–d were converted into the corresponding free acids 2a–d in 97–98% yield by treatment with aqueous formic acid. The Fmoc group of compound 1c was removed and the intermediate amine 9 was condensed with 2a to afford the corresponding glycosylated AEG dipeptide 4 in 58% yield. All glycoconjugate building blocks showed the presence of cis and trans rotamers. Compounds 1a, 1b and 4 were subjected to temperature dependent 1H NMR spectroscopy in order to determine the coalescence temperature which resulted in calculated rotation barriers of 17.9–18.3 kcal/mol for the rotamers. PMID:27829900

  18. Combinatorial peptide ligand libraries for the analysis of low-expression proteins: Validation for normal urine and definition of a first protein MAP.

    PubMed

    Santucci, Laura; Candiano, Giovanni; Bruschi, Maurizio; D'Ambrosio, Chiara; Petretto, Andrea; Scaloni, Andrea; Urbani, Andrea; Righetti, Pier G; Ghiggeri, Gian M

    2012-02-01

    In this review, we report the evolution on experimental conditions for the analysis of normal urine based on combinatorial peptide ligand library (CPLL) treatment and successive 2-DE and 2-DE/MS analysis. The main topics are (i) definition of the urine sample requirements, (ii) optimization of the urine/ligand ratio, (iii) essay conditions, (iv) en bloc elution. Overall, normal urine protein composition as studied by 2-DE includes over 2600 spots. Relevant data on inter and intraessay reproducibility obtained by the analysis of different normal urines repeated several times are also here presented. We found a 73% reproducibility upon analysis of the same sample and 68% correspondence of protein composition among different normal urine samples. Based on the above results, we are completing the characterization with LC-MS of 249 spots. The composition of normal urine proteins after CPLLs is finally shown with the indication of those spots which are currently under identification. This map will be completed in a near future; in the meantime this would represent the basic reference sample for newly developed studies on human diseases.

  19. The synthesis and evaluation of a solution phase indexed combinatorial library of non-natural polyenes for reversal of P-glycoprotein mediated multidrug resistance.

    PubMed

    Andrus, M B; Turner, T M; Sauna, Z E; Ambudkar, S V

    2000-08-11

    A combinatorial library of polyenes, based on (-)-stipiamide, has been constructed and evaluated for the discovery of new multidrug resistance reversal agents. A palladium coupling was used to react each individual vinyl iodide with a mixture of the seven acetylenes at near 1:1 stoichiometry. The coupling was also used to react each individual acetylene with the mixture of six vinyl iodides to create 13 pools indexed in two dimensions for a total of 42 compounds. Individual compounds were detected at equimolar concentration. The vinyl iodides, made initially using a crotylborane addition to generate the anti1,2-hydroxylmethyl products, were now made using a more efficient norephedrine propionate boron enolate aldol reaction. The indexed approach, ideally suited for cellular assays that involve membrane-bound targets, allowed for the rapid identification of reversal agents using assays with drug-resistant human breast cancer MCF7-adrR cells. Intersections of potent pools identified new compounds with promising activity. Aryl dimension pools showed R = ph and naphthyl as the most potent. The acetylene dimension had R' = phenylalaninol and alaninol as the most potent. Isolated individual compounds, both active and nonpotent, were assayed to confirm the library results. The most potent new compound was 4ek (R = naphthyl, R' = phenylaninol) at 1.45 microM. Other nonnatural individual naphthyl-amide compounds showed potent MDR reversal including the morpholino-amide 4ej (1.69 microM). Synergistic activities attributed to the two ends of the molecule were also identified. Direct interaction with Pgp was established by ATPase and photoaffinity displacement assays. The results indicate that both ends of the polyene reversal agent are involved in Pgp interaction and can be further modified for increased potency.

  20. Mimotope peptides selected from phage display combinatorial library by serum antibodies of pigs experimentally infected with Taenia solium as leads to developing diagnostic antigens for human neurocysticercosis.

    PubMed

    Gazarian, Karlen; Rowlay, Merril; Gazarian, Tatiana; Vazquez Buchelli, Jorge Enrique; Hernández Gonzáles, Marisela

    2012-12-01

    Neurocysticercosis is caused by penetration of the tapeworm Taenia solium larvae into the central nervous system resulting in a diverse range of neurologic complications including epilepsy in endemic areas that globalization spreads worldwide. Sensitive and specific immunodiagnosis is needed for the early detection and elimination of the parasite, but the lack of standardized, readily obtainable antigens is a challenge. Here, we used the phage display for resolving the problem. The rationale of the strategy rests on the concept that the screening of combinatorial libraries with polyclonal serum to pathogens reveals families of peptides mimicking the pathogen most immunodominant epitopes indispensable for the successful diagnosis. The screening of a 7mer library with serum IgG of four pigs experimentally infected with parasite followed by computer aided segregation of the selected sequences resulted in the discovery of four clusters of homologous sequences of which one presented a family of ten mimotopes selected by three infected pig serum IgGs; the common motif sequence LSPF carried by the family was considered to be the core of an immunodominant epitope of the parasite critical for the binding with the antibody that selected the mimotopes. The immunoassay testing permitted to select a mimotope whose synthetic peptide free of the phage with the amino acid sequence Leu-Ser-Fen-Pro-Ser-Val-Val that distinguished well a panel of 21 cerebrospinal fluids of neurocysticercosis patients from the fluids of individuals with neurological complications of other etiology. This peptide is proposed as a lead for developing a novel molecularly defined diagnostic antigen(s) for the neurocysticercosis.

  1. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kodali, Anuradha

    facility, respectively. The set-covering matrix encapsulates the relationship among the rows (tests or demand points) and columns (faults or locations) of the system at each time. By relaxing the coupling constraints using Lagrange multipliers, the DSC problem can be decoupled into independent subproblems, one for each column. Each subproblem is solved using the Viterbi decoding algorithm, and a primal feasible solution is constructed by modifying the Viterbi solutions via a heuristic. The proposed Viterbi-Lagrangian relaxation algorithm (VLRA) provides a measure of suboptimality via an approximate duality gap. As a major practical extension of the above problem, we also consider the problem of diagnosing faults with delayed test outcomes, termed delay-dynamic set-covering (DDSC), and experiment with real-world problems that exhibit masking faults. Also, we present simulation results on OR-library datasets (set-covering formulations are predominantly validated on these matrices in the literature), posed as facility location problems. Finally, we implement these algorithms to solve problems in aerospace and automotive applications. Firstly, we address the diagnostic ambiguity problem in aerospace and automotive applications by developing a dynamic fusion framework that includes dynamic multiple fault diagnosis algorithms. This improves the correct fault isolation rate, while minimizing the false alarm rates, by considering multiple faults instead of the traditional data-driven techniques based on single fault (class)-single epoch (static) assumption. The dynamic fusion problem is formulated as a maximum a posteriori decision problem of inferring the fault sequence based on uncertain outcomes of multiple binary classifiers over time. The fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using error correcting output codes (ECOC), thereby solving the concomitant binary classification problems; the second step fuses the

  2. Probing a 2-aminobenzimidazole library for binding to RNA internal loops via two-dimensional combinatorial screening.

    PubMed

    Velagapudi, Sai Pradeep; Pushechnikov, Alexei; Labuda, Lucas P; French, Jonathan M; Disney, Matthew D

    2012-11-16

    There are many potential RNA drug targets in bacterial, viral, and human transcriptomes. However, there are few small molecules that modulate RNA function. This is due, in part, to a lack of fundamental understanding about RNA-ligand interactions including the types of small molecules that bind to RNA structural elements and the RNA structural elements that bind to small molecules. In an effort to better understand RNA-ligand interactions, we diversified the 2-aminobenzimidazole core (2AB) and probed the resulting library for binding to a library of RNA internal loops. We chose the 2AB core for these studies because it is a privileged scaffold for binding RNA based on previous reports. These studies identified that N-methyl pyrrolidine, imidazole, and propylamine diversity elements at the R1 position increase binding to internal loops; variability at the R2 position is well tolerated. The preferred RNA loop space was also determined for five ligands using a statistical approach and identified trends that lead to selective recognition.

  3. PR01 Molecular Pathogenesis of Rickettsioses and Development of Anti-Rickettsial Treatment by Combinatorial Peptide-Based Libraries

    DTIC Science & Technology

    2006-02-01

    RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-02-2006 2 . REPORT TYPE Annual 3. DATES COVERED (From - To) 1 Feb 2005 - 31...library and challenge with R. prowazekii, R. rickettsii, and O. tsutsugamushi; 2 ) To determine the role of NF-κB, cytokines, ROS and NO in intracellular...Rev. 8-98) Prescribed by ANSI Std. Z39.18 Table of Contents COVER………………………………………………………………………………… SF 298……………………………………………………………………………..…… 2

  4. Two-dimensional combinatorial screening of a bacterial rRNA A-site-like motif library: defining privileged asymmetric internal loops that bind aminoglycosides.

    PubMed

    Tran, Tuan; Disney, Matthew D

    2010-03-09

    RNAs have diverse structures that are important for biological function. These structures include bulges and internal loops that can form tertiary contacts or serve as ligand binding sites. The most commonly exploited RNA drug target for small molecule intervention is the bacterial ribosome, more specifically the rRNA aminoacyl-tRNA site (rRNA A-site) which is a major target for the aminoglycoside class of antibiotics. The bacterial A-site is composed of a 1 x 1 nucleotide all-U internal loop and a 2 x 1 nucleotide all-A internal loop separated by a single GC base pair. Therefore, we probed the molecular recognition of a small library of four aminoglycosides for binding a 16384-member bacterial rRNA A-site-like internal loop library using two-dimensional combinatorial screening (2DCS). 2DCS is a microarray-based method that probes RNA and chemical spaces simultaneously. These studies sought to determine if aminoglycosides select their therapeutic target if given a choice of binding all possible internal loops derived from an A-site-like library. Results show that the bacterial rRNA A-site was not selected by any aminoglycoside. Analyses of selected sequences using the RNA Privileged Space Predictor (RNA-PSP) program show that each aminoglycoside preferentially binds different types of internal loops. For three of the aminoglycosides, 6''-azido-kanamycin A, 5-O-(2-azidoethyl)-neamine, and 6''-azido-tobramycin, the selected internal loops bind with approximately 10-fold higher affinity than the bacterial rRNA A-site. The internal loops selected to bind 5''-azido-neomycin B bind with an affinity similar to that of the therapeutic target. Selected internal loops that are unique for each aminoglycoside have dissociation constants ranging from 25 to 270 nM and are specific for the aminoglycoside they was selected to bind compared to the other arrayed aminoglycosides. These studies further establish a database of RNA motifs that are recognized by small molecules that

  5. Combinatorial synthesis of ceramic materials

    DOEpatents

    Lauf, Robert J [Oak Ridge, TN; Walls, Claudia A [Oak Ridge, TN; Boatner, Lynn A [Oak Ridge, TN

    2010-02-23

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  6. Combinatorial synthesis of ceramic materials

    DOEpatents

    Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.

    2006-11-14

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  7. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery.

    PubMed

    López-Vallejo, Fabian; Caulfield, Thomas; Martínez-Mayorga, Karina; Giulianotti, Marc A; Nefzi, Adel; Houghten, Richard A; Medina-Franco, Jose L

    2011-07-01

    Virtual screening is increasingly being used in drug discovery programs with a growing number of successful applications. Experimental methodologies developed to speed up the drug discovery processes include high-throughput screening and combinatorial chemistry. The complementarities between computational and experimental screenings have been recognized and reviewed in the literature. Computational methods have also been used in the combinatorial chemistry field, in particular in library design. However, the integration of computational and combinatorial chemistry screenings has been attempted only recently. Combinatorial libraries (experimental or virtual) represent a notable source of chemically related compounds. Advances in combinatorial chemistry and deconvolution strategies, have enabled the rapid exploration of novel and dense regions in the chemical space. The present review is focused on the integration of virtual and experimental screening of combinatorial libraries. Applications of virtual screening to discover novel anticancer agents and our ongoing efforts towards the integration of virtual screening and combinatorial chemistry are also discussed.

  8. Automated high throughput ADME assays for metabolic stability and cytochrome P450 inhibition profiling of combinatorial libraries.

    PubMed

    Jenkins, Kelly M; Angeles, Reginald; Quintos, Marianne T; Xu, Rongda; Kassel, Daniel B; Rourick, Robyn A

    2004-03-10

    Early determinations of pharmaceutical properties can serve as predictors of a compound's likely development success. Our laboratory has implemented high throughput in vitro absorption, distribution, metabolism and excretion (ADME) assays which address absorption, metabolism, and physico-chemical properties in an effort to identify potential development liabilities early, thereby minimizing discovery to market attrition. In response to the throughput demands of parallel synthesis, we have incorporated a SAGIAN core robotics system for the determination of both metabolic stability in human liver microsomes (HLMs) and cytochrome P450 (CYP450) inhibition. This automated solution has led to an increase in capacity, throughput and reliability for both in vitro assays. The SAGIAN core robotics system integrates devices such as liquid handlers, plate hotels and incubators through the use of an ORCA robotic arm. The HLM stability assay utilizes a Multimek 96-channel pipettor for liquid handling. The incubation plates are transferred off-line for final semi-quantitative analysis using high throughput parallel LC/MS. The CYP inhibition method combines both liquid handlers and an integrated fluorescence plate reader to perform single concentration percent inhibition assays for 88 compounds. Cytochrome P450 inhibition is measured for both CYP3A4 and CYP2D6 isozymes. This system represents a fully integrated approach to high throughput ADME evaluation in support of drug discovery. The core system concept creates a plug-and-play approach, which combines a series of modular stations to build a robotic platform, which is flexible, upgradable, and easily reconfigured when assays change or are newly developed. The application of these strategies as a means of assessing metabolic stability and CYP inhibition of synthetic libraries is discussed.

  9. Towards an animal model of ovarian cancer: cataloging chicken blood proteins using combinatorial peptide ligand libraries coupled with shotgun proteomic analysis for translational research.

    PubMed

    Ma, Yingying; Sun, Zeyu; de Matos, Ricardo; Zhang, Jing; Odunsi, Kunle; Lin, Biaoyang

    2014-05-01

    Epithelial ovarian cancer is the most deadly gynecological cancer around the world, with high morbidity in industrialized countries. Early diagnosis is key in reducing its morbidity rate. Yet, robust biomarkers, diagnostics, and animal models are still limited for ovarian cancer. This calls for broader omics and systems science oriented diagnostics strategies. In this vein, the domestic chicken has been used as an ovarian cancer animal model, owing to its high rate of developing spontaneous epithelial ovarian tumors. Chicken blood has thus been considered a surrogate reservoir from which cancer biomarkers can be identified. However, the presence of highly abundant proteins in chicken blood has compromised the applicability of proteomics tools to study chicken blood owing to a lack of immunodepletion methods. Here, we demonstrate that a combinatorial peptide ligand library (CPLL) can efficiently remove highly abundant proteins from chicken blood samples, consequently doubling the number of identified proteins. Using an integrated CPLL-1DGE-LC-MSMS workflow, we identified a catalog of 264 unique proteins. Functional analyses further suggested that most proteins were coagulation and complement factors, blood transport and binding proteins, immune- and defense-related proteins, proteases, protease inhibitors, cellular enzymes, or cell structure and adhesion proteins. Semiquantitative spectral counting analysis identified 10 potential biomarkers from the present chicken ovarian cancer model. Additionally, many human homologs of chicken blood proteins we have identified have been independently suggested as diagnostic biomarkers for ovarian cancer, further triangulating our novel observations reported here. In conclusion, the CPLL-assisted proteomic workflow using the chicken ovarian cancer model provides a feasible platform for translational research to identify ovarian cancer biomarkers and understand ovarian cancer biology. To the best of our knowledge, we report here

  10. Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of Dengue virus NS2B-NS3 protease.

    PubMed

    Frecer, Vladimir; Miertus, Stanislav

    2010-03-01

    Serine protease activity of the NS3 protein of Dengue virus is an important target of antiviral agents that interfere with the viral polyprotein precursor processing catalyzed by the NS3 protease (NS3pro), which is important for the viral replication and maturation. Recent studies showed that substrate-based peptidomimetics carrying an electrophilic warhead inhibit the NS2B-NS3pro cofactor-protease complex with inhibition constants in the low micromolar concentration range when basic amino acid residues occupy P(1) and P(2) positions of the inhibitor, and an aldehyde warhead is attached to the P(1). We have used computer-assisted combinatorial techniques to design, focus using the NS2B-NS3pro receptor 3D structure, and in silico screen a virtual library of more than 9,200 peptidomimetic analogs targeted around the template inhibitor Bz-Nle-Lys-Arg-Arg-H (Bz-benzoyl) that are composed mainly of unusual amino acid residues in all positions P(1)-P(4). The most promising virtual hits were analyzed in terms of computed enzyme-inhibitor interactions and Adsorption, Distribution, Metabolism and Excretion (ADME) related physico-chemical properties. Our study can direct the interest of medicinal chemists working on a next generation of antiviral chemotherapeutics against the Dengue Fever towards the explored subset of the chemical space that is predicted to contain peptide aldehydes with NS3pro inhibition potencies in nanomolar range which display ADME-related properties comparable to the training set inhibitors.

  11. Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of Dengue virus NS2B-NS3 protease

    NASA Astrophysics Data System (ADS)

    Frecer, Vladimir; Miertus, Stanislav

    2010-03-01

    Serine protease activity of the NS3 protein of Dengue virus is an important target of antiviral agents that interfere with the viral polyprotein precursor processing catalyzed by the NS3 protease (NS3pro), which is important for the viral replication and maturation. Recent studies showed that substrate-based peptidomimetics carrying an electrophilic warhead inhibit the NS2B-NS3pro cofactor-protease complex with inhibition constants in the low micromolar concentration range when basic amino acid residues occupy P1 and P2 positions of the inhibitor, and an aldehyde warhead is attached to the P1. We have used computer-assisted combinatorial techniques to design, focus using the NS2B-NS3pro receptor 3D structure, and in silico screen a virtual library of more than 9,200 peptidomimetic analogs targeted around the template inhibitor Bz-Nle-Lys-Arg-Arg- H (Bz—benzoyl) that are composed mainly of unusual amino acid residues in all positions P1-P4. The most promising virtual hits were analyzed in terms of computed enzyme-inhibitor interactions and Adsorption, Distribution, Metabolism and Excretion (ADME) related physico-chemical properties. Our study can direct the interest of medicinal chemists working on a next generation of antiviral chemotherapeutics against the Dengue Fever towards the explored subset of the chemical space that is predicted to contain peptide aldehydes with NS3pro inhibition potencies in nanomolar range which display ADME-related properties comparable to the training set inhibitors.

  12. Towards an Animal Model of Ovarian Cancer: Cataloging Chicken Blood Proteins Using Combinatorial Peptide Ligand Libraries Coupled with Shotgun Proteomic Analysis for Translational Research

    PubMed Central

    Ma, Yingying; Sun, Zeyu; de Matos, Ricardo; Zhang, Jing; Odunsi, Kunle

    2014-01-01

    Abstract Epithelial ovarian cancer is the most deadly gynecological cancer around the world, with high morbidity in industrialized countries. Early diagnosis is key in reducing its morbidity rate. Yet, robust biomarkers, diagnostics, and animal models are still limited for ovarian cancer. This calls for broader omics and systems science oriented diagnostics strategies. In this vein, the domestic chicken has been used as an ovarian cancer animal model, owing to its high rate of developing spontaneous epithelial ovarian tumors. Chicken blood has thus been considered a surrogate reservoir from which cancer biomarkers can be identified. However, the presence of highly abundant proteins in chicken blood has compromised the applicability of proteomics tools to study chicken blood owing to a lack of immunodepletion methods. Here, we demonstrate that a combinatorial peptide ligand library (CPLL) can efficiently remove highly abundant proteins from chicken blood samples, consequently doubling the number of identified proteins. Using an integrated CPLL-1DGE-LC-MSMS workflow, we identified a catalog of 264 unique proteins. Functional analyses further suggested that most proteins were coagulation and complement factors, blood transport and binding proteins, immune- and defense-related proteins, proteases, protease inhibitors, cellular enzymes, or cell structure and adhesion proteins. Semiquantitative spectral counting analysis identified 10 potential biomarkers from the present chicken ovarian cancer model. Additionally, many human homologs of chicken blood proteins we have identified have been independently suggested as diagnostic biomarkers for ovarian cancer, further triangulating our novel observations reported here. In conclusion, the CPLL-assisted proteomic workflow using the chicken ovarian cancer model provides a feasible platform for translational research to identify ovarian cancer biomarkers and understand ovarian cancer biology. To the best of our knowledge, we

  13. Combinatorial Chemistry for Optical Sensing Applications

    NASA Astrophysics Data System (ADS)

    Díaz-García, M. E.; Luis, G. Pina; Rivero-Espejel, I. A.

    The recent interest in combinatorial chemistry for the synthesis of selective recognition materials for optical sensing applications is presented. The preparation, screening, and applications of libraries of ligands and chemosensors against molecular species and metal ions are first considered. Included in this chapter are also the developments involving applications of combinatorial approaches to the discovery of sol-gel and acrylic-based imprinted materials for optical sensing of antibiotics and pesticides, as well as libraries of doped sol-gels for high-throughput optical sensing of oxygen. The potential of combinatorial chemistry applied to the discovery of new sensing materials is highlighted.

  14. Combinatorial Origami

    NASA Astrophysics Data System (ADS)

    Dieleman, Peter; Waitukaitis, Scott; van Hecke, Martin

    To design rigidly foldable quadrilateral meshes one generally needs to solve a complicated set of constraints. Here we present a systematic, combinatorial approach to create rigidly foldable quadrilateral meshes with a limited number of different vertices. The number of discrete, 1 degree-of-freedom folding branches for some of these meshes scales exponentially with the number of vertices on the edge, whilst other meshes generated this way only have two discrete folding branches, regardless of mesh size. We show how these two different behaviours both emerge from the two folding branches present in a single generic 4-vertex. Furthermore, we model generic 4-vertices as a spherical linkage and exploit a previously overlooked symmetry to create non-developable origami patterns using the same combinatorial framework.

  15. Synthesis of small combinatorial libraries of natural products: identification and quantification of new long-chain 3-methyl-2-alkanones from the root essential oil of Inula helenium L. (Asteraceae).

    PubMed

    Radulović, Niko S; Denić, Marija S; Stojanović-Radić, Zorica Z

    2014-01-01

    Recently, a potent anti-staphylococcal activity of Inula helenium L. (Asteraceae) root essential oil was reported. Also, bioassay guided fractionation of the oil pointed to eudesmane sesquiterpene lactones and a series of unidentified constituents as the main carriers of the observed activity. To identify nine new constituents (long-chain 3-methyl-2-alkanones) from a fraction of this root essential oil with a low minimum inhibitory concentration value (0.8 µg/mL) by employing a synthetic methodology that leads to the formation of a small combinatorial library of these compounds. The identity of these constituents was inferred from mass spectral fragmentation patterns and GC retention data. A library of 3-methyl-2-alkanones (C11 -C19 homologous series) was synthesised in three steps starting from methyl acetoacetate and the corresponding alkyl halides. The synthetic library was also screened for in vitro anti-microbial activity. Gas chromatographic analyses of I. helenium essential oil samples with spiked compounds from the synthesised library corroborated the tentative identifications of the long-chain 3-methyl-2-alkanones. The availability of these anti-microbial compounds from this library made it possible to construct GC/FID calibration curves and determine their content in the plant material: 0.08 - 24.2 mg/100 g of dry roots. The small combinatorial library approach enabled the first unequivocal identification of long-chain 3-methyl-2-alkanones as plant secondary metabolites, and, also, allowed determination of not only a single compound and biological properties, but those of a group of structurally related compounds. Copyright © 2013 John Wiley & Sons, Ltd.

  16. A two-channel detection method for autofluorescence correction and efficient on-bead screening of one-bead one-compound combinatorial libraries using the COPAS fluorescence activated bead sorting system

    NASA Astrophysics Data System (ADS)

    Hintersteiner, Martin; Auer, Manfred

    2013-03-01

    One-bead one-compound combinatorial library beads exhibit varying levels of autofluorescence after solid phase combinatorial synthesis. Very often this causes significant problems for automated on-bead screening using TentaGel beads and fluorescently labeled target proteins. Herein, we present a method to overcome this limitation when fluorescence activated bead sorting is used as the screening method. We have equipped the COPAS bead sorting instrument with a high-speed profiling unit and developed a spectral autofluorescence correction method. The correction method is based on a simple algebraic operation using the fluorescence data from two detection channels and is applied on-the-fly in order to reliably identify hit beads by COPAS bead sorting. Our method provides a practical tool for the fast and efficient isolation of hit beads from one-bead one-compound library screens using either fluorescently labeled target proteins or biotinylated target proteins. This method makes hit bead identification easier and more reliable. It reduces false positives and eliminates the need for time-consuming pre-sorting of library beads in order to remove autofluorescent beads.

  17. Modulating weak interactions for molecular recognition: a dynamic combinatorial analysis for assessing the contribution of electrostatics to the stability of CH-π bonds in water.

    PubMed

    Jiménez-Moreno, Ester; Gómez, Ana M; Bastida, Agatha; Corzana, Francisco; Jiménez-Oses, Gonzalo; Jiménez-Barbero, Jesús; Asensio, Juan Luis

    2015-03-27

    Electrostatic and charge-transfer contributions to CH-π complexes can be modulated by attaching electron-withdrawing substituents to the carbon atom. While clearly stabilizing in the gas phase, the outcome of this chemical modification in water is more difficult to predict. Herein we provide a definitive and quantitative answer to this question employing a simple strategy based on dynamic combinatorial chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Complexes of 5,5'-aminoacido-substituted 2,2'-bipyridyl ligands: control of diastereoselectivity with a pH switch and a chloride-responsive combinatorial library.

    PubMed

    Telfer, Shane G; Yang, Xiao-Juan; Williams, Alan F

    2004-03-07

    The synthesis and coordination chemistry of a new chiral ligand, 2,2'-bipyridine substituted at the 5 and 5' positions by N-methyl-L-valine methyl ester (5), is presented. The ligand readily forms complexes [M(5)3]2+ where M = Co(II) and Fe(II) in CH3CN, and the complexation reaction is slightly diastereoselective (d.e. =ca. 20%) in favour of the Delta diastereomer. The addition of six equivalents of HCl to these complexes [M(II)(5)3]2+ leads to formation of Delta-[M(II)(5H2)3]8+ with a d.e. of 100%. This high diastereoselectivity can be reversed by the addition of base i.e. the diastereoselectivity can be controlled by the pH. Delta-[Fe(5H2)3]8+ was found to bind chloride ions in CD3OD-CD3CN (6:1) with a binding constant of 260 M(-1). [Co(II)(5)3]2+ can be oxidised to Delta-[Co(III)(5H2)3]9+. Formation constants for both [Co(II)(5)3]2+ and [Co(II)(5H2)3]8+ in acetonitrile were obtained by spectrophotometric titrations. In the former case, the stability constant, log beta3 = 19.5(8), is very similar to that measured for [Co(II)(bipy)3]2+ (log beta3 = 19.3(7)) but this drops significantly when the amine groups of are protonated (log beta3 = 16.5(2)). A dynamic combinatorial library was prepared by mixing three equivalents of, three equivalents of bipy, and two equivalents of Co(II) in CD3CN. The presence of all possible Delta- and Lambda-[Co(II)(5)x(bipy)(3-x)]2+ complexes was inferred from 1H NMR and ES-MS spectra. Addition of protons to this library reduced the number of components by inducing diastereoselectivity, and presence of chloride further simplified the 1H NMR spectrum, indicating that [Cl2 ligand Delta-[Co(II)(5H2)3

  19. Identification of cancer specific ligands from one-bead one compound combinatorial libraries to develop theranostics agents against oral squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Frances Fan

    Background: Oral squamous cell carcinoma (OSCC) is one of the most prevalent disease worldwide. One-bead one-compound (OBOC) combinatorial technology is a powerful method to identify peptidomimetic ligands against a variety of receptors on cell surfaces. We therefore hypothesized that cancer specific ligands against OSCC might be identified and can be conjugated to optical dyes or nanocarriers to develop theranostic agents against OSCC. Material and methods: Different OSCC cell lines were incubated with OBOC libraries and beads with cell binding were sorted and then screened with normal human cells to identify peptide-beads binding to different OSCC cell lines but not binding to normal human cells. The molecular probes of OSCC were developed by biotinylating the carboxyl end of the ligands. OSCC theranostic agents were developed by decorating LLY13 with NPs and evaluated by using orthotopic bioluminescent oral cancer model. Results: Six OSCC specific ligands were discovered. Initial peptide-histochemistry study indicated that LLY12 and LLY13 were able to specifically detect OSCC cells grown on chamber slides at the concentration of 1 muM. In addition, LLY13 was found to penetrate into the OSCC cells and accumulate in the cytoplasm, and nucleus. After screened with a panel of integrin antibodies, only anti-alpha3 antibody was able to block most of OSCC cells binding to the LLY13 beads. OSCC theranostic agents developed using targeting LLY13 micelles (25+/- 4nm in diameter) were more efficient in binding to HSC-3 cancer cells compared to non-targeting micelles. Ex vivo images demonstrated that xenografts from the mice with targeting micelles appeared to have higher signals than the non-targeting groups. Conclusion: LLY13 has promising in vitro and in vivo targeting activity against OSCC. In addition, LLY13 is also able to penetrate into cancer cells via endocytosis. Initial study indicated that alpha3 integrin might partially be the corresponding receptor involved

  20. DPN-Generated Combinatorial Libraries

    DTIC Science & Technology

    2012-02-29

    Intracellular Gene Regulation” (2008). 30. DARPA /DSRC Workshop on “Nanomanufacturing with Molecular Recognition”, School of Engineering & Applied Sciences...and Therapeutics,” (2009). 53. DARPA – MEMS PI Meeting, SunRiver, OR; “Scanning Probe Epitaxy,” (2009) 54. 238th ACS National Meeting, Washington

  1. Developing New Tools for the in vivo Generation/Screening of Cyclic Peptide Libraries. A New Combinatorial Approach for the Detection of Bacterial Toxin Inhibitors

    SciTech Connect

    Camarero, J A

    2006-11-28

    A new combinatorial approach for the biosynthesis and screening of small drug-like toxin inhibitors inside living cells is presented. This approach has been initially used as proof of principle for finding inhibitors against the LF factor from Bacillus anthracis. Key to our ''living combinatorial'' approach is the use of a living cell as a micro-chemical factory for both synthesis and screening of potential inhibitors for a given molecular recognition event (see Scheme 1). This powerful technique posses the advantage that both processes synthesis and screening happen inside the cell thus accelerating the whole screening/selection process.

  2. A Combinatorial Peptide Ligand Libraries Treatment Followed by a Dual-Enzyme, Dual-Activation Approach on a nano-flow LC/Orbitrap/ETD for Comprehensive Analysis of Swine Plasma Proteome

    PubMed Central

    Tu, Chengjian; Li, Jun; Young, Rebeccah; Page, Brian J.; Engler, Frank; Halfon, Marc S.; Canty, John M.; Qu, Jun

    2011-01-01

    The plasma proteome holds enormous clinical potentials, yet an in-depth analysis of the plasma proteome remains a daunting challenge due to its high complexity and the extremely-wide dynamic range in protein concentrations. Furthermore, existing antibody-based approaches for depleting high-abundance proteins are not adaptable to the analysis of animal plasma proteome, which are often essential for experimental pathology/pharmacology. Here we describe a highly-comprehensive method for the investigation of animal plasma proteomes, which employs an optimized combinatorial peptide ligand libraries (CPLL) treatment to reduce the protein concentration dynamic range and a dual-enzyme, dual-activation strategy to achieve high proteomic coverage. The CPLL-treatment enriched the lower-abundance proteins by >100-fold when loading the samples in moderately-denaturing condition with multiple loading-washing cycles. The native and the CPLL-treated plasma were digested in-parallel respectively by two enzymes (trypsin and GluC) carrying orthogonal specificities. By performing this differential proteolysis, the proteome coverage is improved where peptides produced by only one enzyme are poorly detectable. Digests were fractionated with high-resolution SCX chromatography and then resolved on a long, heated nano-LC column. MS analysis was performed on an LTQ/Orbitrap respectively with two complementary activation methods (CID and ETD). We applied this optimized strategy to investigate the plasma proteome from swine, a prominent animal model for cardiovascular diseases(CVD). This large-scale analysis results in an identification of a total 3421 unique proteins, spanning a concentration range of 9–10 orders of magnitude. The proteins were identified under a set of commonly-accepted criteria including precursor mass error<15 ppm, Xcorr cutoffs, ≥two unique peptides at the peptide probability≥95% and protein probability≥99%, and the peptide FDR of the dataset was 1.8% as

  3. galpy: A python LIBRARY FOR GALACTIC DYNAMICS

    SciTech Connect

    Bovy, Jo

    2015-02-01

    I describe the design, implementation, and usage of galpy, a python package for galactic-dynamics calculations. At its core, galpy consists of a general framework for representing galactic potentials both in python and in C (for accelerated computations); galpy functions, objects, and methods can generally take arbitrary combinations of these as arguments. Numerical orbit integration is supported with a variety of Runge-Kutta-type and symplectic integrators. For planar orbits, integration of the phase-space volume is also possible. galpy supports the calculation of action-angle coordinates and orbital frequencies for a given phase-space point for general spherical potentials, using state-of-the-art numerical approximations for axisymmetric potentials, and making use of a recent general approximation for any static potential. A number of different distribution functions (DFs) are also included in the current release; currently, these consist of two-dimensional axisymmetric and non-axisymmetric disk DFs, a three-dimensional disk DF, and a DF framework for tidal streams. I provide several examples to illustrate the use of the code. I present a simple model for the Milky Way's gravitational potential consistent with the latest observations. I also numerically calculate the Oort functions for different tracer populations of stars and compare them to a new analytical approximation. Additionally, I characterize the response of a kinematically warm disk to an elliptical m = 2 perturbation in detail. Overall, galpy consists of about 54,000 lines, including 23,000 lines of code in the module, 11,000 lines of test code, and about 20,000 lines of documentation. The test suite covers 99.6% of the code. galpy is available at http://github.com/jobovy/galpy with extensive documentation available at http://galpy.readthedocs.org/en/latest.

  4. galpy: A python Library for Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2015-02-01

    I describe the design, implementation, and usage of galpy, a python package for galactic-dynamics calculations. At its core, galpy consists of a general framework for representing galactic potentials both in python and in C (for accelerated computations); galpy functions, objects, and methods can generally take arbitrary combinations of these as arguments. Numerical orbit integration is supported with a variety of Runge-Kutta-type and symplectic integrators. For planar orbits, integration of the phase-space volume is also possible. galpy supports the calculation of action-angle coordinates and orbital frequencies for a given phase-space point for general spherical potentials, using state-of-the-art numerical approximations for axisymmetric potentials, and making use of a recent general approximation for any static potential. A number of different distribution functions (DFs) are also included in the current release; currently, these consist of two-dimensional axisymmetric and non-axisymmetric disk DFs, a three-dimensional disk DF, and a DF framework for tidal streams. I provide several examples to illustrate the use of the code. I present a simple model for the Milky Way's gravitational potential consistent with the latest observations. I also numerically calculate the Oort functions for different tracer populations of stars and compare them to a new analytical approximation. Additionally, I characterize the response of a kinematically warm disk to an elliptical m = 2 perturbation in detail. Overall, galpy consists of about 54,000 lines, including 23,000 lines of code in the module, 11,000 lines of test code, and about 20,000 lines of documentation. The test suite covers 99.6% of the code. galpy is available at http://github.com/jobovy/galpy with extensive documentation available at http://galpy.readthedocs.org/en/latest.

  5. Designing a new Diels-Alderase: a combinatorial, semirational approach including dynamic optimization.

    PubMed

    Linder, Mats; Johansson, Adam Johannes; Olsson, Tjelvar S G; Liebeschuetz, John; Brinck, Tore

    2011-08-22

    A computationally inexpensive design strategy involving 'semirational' screening for enzymatic catalysis is presented. The protocol is based on well-established computational methods and represents a holistic approach to the catalytic process. The model reaction studied here is the Diels-Alder, for which a successful computational design has recently been published (Siegel, J. B. et al. Science 2010, 329, 309-313). While it is a leap forward in the field of computational design, the focus on designing only a small fraction of the active site gives little control over dynamics. Our approach explicitly incorporates mutagenesis and the analysis of binding events and transition states, and a promising enzyme-substrate candidate is generated with relatively little effort. We estimate catalytic rate accelerations of up to 10⁵.

  6. Reversible circuit synthesis by genetic programming using dynamic gate libraries

    NASA Astrophysics Data System (ADS)

    Abubakar, Mustapha Y.; Jung, Low Tang; Zakaria, Nordin; Younes, Ahmed; Abdel-Aty, Abdel-Haleem

    2017-06-01

    We have defined a new method for automatic construction of reversible logic circuits by using the genetic programming approach. The choice of the gate library is 100% dynamic. The algorithm is capable of accepting all possible combinations of the following gate types: NOT TOFFOLI, NOT PERES, NOT CNOT TOFFOLI, NOT CNOT SWAP FREDKIN, NOT CNOT TOFFOLI SWAP FREDKIN, NOT CNOT PERES, NOT CNOT SWAP FREDKIN PERES, NOT CNOT TOFFOLI PERES and NOT CNOT TOFFOLI SWAP FREDKIN PERES. Our method produced near optimum circuits in some cases when a particular subset of gate types was used in the library. Meanwhile, in some cases, optimal circuits were produced due to the heuristic nature of the algorithm. We compared the outcomes of our method with several existing synthesis methods, and it was shown that our algorithm performed relatively well compared to the previous synthesis methods in terms of the output efficiency of the algorithm and execution time as well.

  7. Building Certified Libraries for PCC: Dynamic Storage Allocation

    DTIC Science & Technology

    2003-05-06

    Lectures on reasoning about shared mutable data structure. IFIP Working Group 2.3 School/Seminar on State-of-the-Art Program Design Using Logic...Libraries for PCC: Dynamic Storage Allocation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK... program along with its formal safety proof. The proof attests a certain safety policy enforced by the code, and can be mechanically checked by the host

  8. Non-combinatorial library screening reveals subsite cooperativity and identifies new high-efficiency substrates for kallikrein-related peptidase 14.

    PubMed

    de Veer, Simon J; Swedberg, Joakim E; Parker, Edward A; Harris, Jonathan M

    2012-04-01

    An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.

  9. Stem cells and combinatorial science.

    PubMed

    Fang, Yue Qin; Wong, Wan Qing; Yap, Yan Wen; Orner, Brendan P

    2007-09-01

    Stem cell-based technologies have the potential to help cure a number of cell degenerative diseases. Combinatorial and high throughput screening techniques could provide tools to control and manipulate the self-renewal and differentiation of stem cells. This review chronicles historic and recent progress in the stem cell field involving both pluripotent and multipotent cells, and it highlights relevant cellular signal transduction pathways. This review further describes screens using libraries of soluble, small-molecule ligands, and arrays of molecules immobilized onto surfaces while proposing future trends in similar studies. It is hoped that by reviewing both the stem cell and the relevant high throughput screening literature, this paper can act as a resource to the combinatorial science community.

  10. Gas adsorption properties of the ternary ZnO/CuO/CuCl(2) impregnated activated carbon system for multigas respirator applications assessed through combinatorial methods and dynamic adsorption studies.

    PubMed

    Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Mallay, Matthew G; Croll, Lisa M; Reynolds, Judy A; Andress, Carrie; Simon, Monika; Dahn, Jeff R

    2011-11-14

    A ternary library of 64 ZnO/CuO/CuCl(2) impregnated activated carbon samples was synthesized and screened automatically using a combinatorial (combi) method. The ability of the samples to adsorb toxic gases was screened gravimetrically. The stoichiometric ratio of reaction (SRR) between the moles of toxicant and the total moles of impregnant was obtained from the calculated mass increase of the samples after chemisorption, with a high SRR indicating high efficiency of toxicant removal. The combi samples that exhibited good dry SO(2) and NH(3) adsorption were prepared in bulk using the incipient wetness method and were evaluated for multigas respirator function by dynamic adsorption studies of SO(2), NH(3), HCN, and C(6)H(12) gases in either dry or humid conditions at ambient temperature. The bulk samples showed equivalent gas adsorption capacities when exposed to the different challenge gases indicating the value of the combi method for initial screening. Cu(2)Cl(OH)(3) was identified to be a potential multigas adsorbent.

  11. Library+

    ERIC Educational Resources Information Center

    Merrill, Alex

    2011-01-01

    This article discusses possible future directions for academic libraries in the post Web/Library 2.0 world. These possible directions include areas such as data literacy, linked data sets, and opportunities for libraries in support of digital humanities. The author provides a brief sketch of the background information regarding the topics and…

  12. Discovery of active proteins directly from combinatorial randomized protein libraries without display, purification or sequencing: identification of novel zinc finger proteins

    PubMed Central

    Hughes, Marcus D.; Zhang, Zhan-Ren; Sutherland, Andrew J.; Santos, Albert F.; Hine, Anna V.

    2005-01-01

    We have successfully linked protein library screening directly with the identification of active proteins, without the need for individual purification, display technologies or physical linkage between the protein and its encoding sequence. By using ‘MAX’ randomization we have rapidly constructed 60 overlapping gene libraries that encode zinc finger proteins, randomized variously at the three principal DNA-contacting residues. Expression and screening of the libraries against five possible target DNA sequences generated data points covering a potential 40 000 individual interactions. Comparative analysis of the resulting data enabled direct identification of active proteins. Accuracy of this library analysis methodology was confirmed by both in vitro and in vivo analyses of identified proteins to yield novel zinc finger proteins that bind to their target sequences with high affinity, as indicated by low nanomolar apparent dissociation constants. PMID:15722478

  13. Combinatorial synthesis of deuterium-enriched atorvastatin.

    PubMed

    Li, Feng; Jiang, Wenfeng; Czarnik, Anthony W; Li, Wenbao

    2016-05-01

    It becomes more and more difficult to discover a new drug by existing models. The concept of deuteration has gained attention due to its advantages in the study of clinical pharmacokinetics and metabolic profiles. Herein we built a library of deuterated atorvastatins using combinatorial chemistry, and all 16 D-compounds were characterized by 1H NMR, 13C NMR, MS, and elemental analysis.

  14. Combinatorial protein reagents to manipulate protein function.

    PubMed

    Colas, P

    2000-02-01

    The design and use of combinatorial protein libraries has become a fast moving field in molecular biology. Different experimental systems supporting various selection schemes are now available. The latest breakthroughs include evolutionary experiments to improve existing binding surfaces, selections of homodimerizing peptides, the use of peptide aptamers to disrupt protein interactions inside living cells, and functional selections of aptamers to probe regulatory networks.

  15. A Combinatory Antibody–Antigen Microarray Assay for High-Content Screening of Single-Chain Fragment Variable Clones from Recombinant Libraries

    PubMed Central

    Jansson, Bo; Stuhr-Hansen, Nicolai; Kovács, András; Welinder, Charlotte

    2016-01-01

    We have developed a combinatory antibody–antigen microarray for direct screening of multiple single-chain fragment variable (scFv) clones with no need for pre-purification or enrichment before screening. The straightforward workflow allows for early selection of binders to predefined peptide and glycopeptide targets. A capture antibody is contact printed on microarray slides, side by side with the antigens of interest. A large number of scFv clones, in supernatants, are printed on top of the capture antibody and the antigen in a “spot-on-spot” print. The printed scFv clones, which bind to the capture antibody, are detected using biotinylated antigen, while the binding of scFv clones to the printed antigen is detected through a mouse anti-tag antibody. Two different analyses are thus performed on the same slide, generating two kinds of information: one on the ability of an individual scFv clone to bind to the soluble form of the antigen, which may favour selection for higher affinity rather than avidity, while the other allows the identification of large numbers of clones, simultaneously, due to the binding of scFv clones to densely presented antigens, thus providing an overall increased hit rate. The functionality of the new screening approach was illustrated through the generation of antibodies against peptides from the chaperone complex Ku70/Ku80 and the GalNAcα-serine/threonine epitope on the IgA1 alpha chain hinge region. In total, 659 scFv clones were screened with a hit rate of approximately 20%. This approach allowed the identification of functional antibodies in both cases, illustrating the usefulness and capacity of this combinatory microarray screening technique for efficient analysis and validation of antibodies at an early stage of antibody generation. PMID:28002485

  16. Dissection of the LXXLL Nuclear Receptor-Coactivator Interaction Motif Using Combinatorial Peptide Libraries: Discovery of Peptide Antagonists of Estrogen Receptors α and β

    PubMed Central

    Chang, Ching-yi; Norris, John D.; Grøn, Hanne; Paige, Lisa A.; Hamilton, Paul T.; Kenan, Daniel J.; Fowlkes, Dana; McDonnell, Donald P.

    1999-01-01

    Recruitment of transcriptional coactivators following ligand activation is a critical step in nuclear receptor-mediated target gene expression. Upon binding an agonist, the receptor undergoes a conformational change which facilitates the formation of a specific coactivator binding pocket within the carboxyl terminus of the receptor. This permits the α-helical LXXLL motif within some coactivators to interact with the nuclear receptors. Until recently, the LXXLL motif was thought to function solely as a docking module; however, it now appears that sequences flanking the core motif may play a role in determining receptor selectivity. To address this issue, we used a combinatorial phage display approach to evaluate the role of flanking sequences in influencing these interactions. We sampled more than 108 variations of the core LXXLL motif with estradiol-activated estrogen receptor alpha (ERα) as a target and found three different classes of peptides. All of these peptides interacted with ERα in an agonist-dependent manner and disrupted ERα-mediated transcriptional activity when introduced into target cells. Using a series of ERα-mutants, we found that these three classes of peptides showed different interaction patterns from each other, suggesting that not all LXXLL motifs are the same and that receptor binding selectivity can be achieved by altering sequences flanking the LXXLL core motif. Most notable in this regard was the discovery of a peptide which, when overexpressed in cells, selectively disrupted ERβ- but not ERα-mediated reporter gene expression. This novel ERβ-specific antagonist may be useful in identifying and characterizing the ERβ-regulated process in estradiol-responsive cells. In conclusion, using a combinatorial approach to define cofactor-receptor interactions, we have clearly been able to demonstrate that not all LXXLL motifs are functionally equivalent, a finding which suggests that it may be possible to target receptor-LXXLL interactions

  17. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.

    PubMed

    Berdugo, Cristina; Nalluri, Siva Krishna Mohan; Javid, Nadeem; Escuder, Beatriu; Miravet, Juan F; Ulijn, Rein V

    2015-11-25

    Coupling of peptide self-assembly to dynamic sequence exchange provides a useful approach for the discovery of self-assembling materials. In here, we demonstrate the discovery and optimization of aqueous, gel-phase nanostructures based on dynamically exchanging peptide sequences that self-select to maximize charge transfer of n-type semiconducting naphthalenediimide (NDI)-dipeptide bioconjugates with various π-electron-rich donors (dialkoxy/hydroxy/amino-naphthalene or pyrene derivatives). These gel-phase peptide libraries are characterized by spectroscopy (UV-vis and fluorescence), microscopy (TEM), HPLC, and oscillatory rheology and it is found that, of the various peptide sequences explored (tyrosine Y-NDI with tyrosine Y, phenylalanine F, leucine L, valine V, alanine A or glycine G-NH2), the optimum sequence is tyrosine-phenylalanine in each case; however, both its absolute and relative yield amplification is dictated by the properties of the donor component, indicating cooperativity of peptide sequence and donor/acceptor pairs in assembly. The methodology provides an in situ discovery tool for nanostructures that enable dynamic interfacing of supramolecular electronics with aqueous (biological) systems.

  18. Jeffamine Derivatized TentaGel Beads and PDMS Microbead Cassettes for Ultra-high Throughput in situ Releasable Solution-Phase Cell-based Screening of OBOC Combinatorial Small Molecule Libraries

    PubMed Central

    Townsend, Jared B.; Shaheen, Farzana; Liu, Ruiwu; Lam, Kit S.

    2011-01-01

    A method to efficiently immobilize and partition large quantities of microbeads in an array format in microfabricated polydimethylsiloxane (PDMS) cassette for high-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound (OBOC) combinatorial libraries is described. Commercially available Jeffamine triamine T-403 (∼440 Da) was derivatized such that two of its amino groups were protected by Fmoc and the remaining amino group capped with succinic anhydride to generate a carboxyl group. This resulting tri-functional hydrophilic polymer was then sequentially coupled two times to the outer layer of topologically segregated bilayer TentaGel (TG) beads with solid phase peptide synthesis chemistry, resulting in beads with increased loading capacity, hydrophilicity and porosity at the outer layer. We have found that such bead configuration can facilitate ultra high-throughput in situ releasable solution-phase screening of OBOC libraries. An encoded releasable OBOC small molecule library was constructed on Jeffamine derivatized TG beads with library compounds tethered to the outer layer via a disulfide linker and coding tags in the interior of the beads. Compound-beads could be efficiently loaded (5-10 minutes) into a 5 cm diameter Petri dish containing a 10,000-well PDMS microbead cassette, such that over 90% of the microwells were each filled with only one compound-bead. Jurkat T-lymphoid cancer cells suspended in Matrigel® were then layered over the microbead cassette to immobilize the compound-beads. After 24 hours of incubation at 37°C, dithiothreitol was added to trigger the release of library compounds. Forty-eight hours later, MTT reporter assay was used to identify regions of reduced cell viability surrounding each positive bead. From a total of about 20,000 beads screened, 3 positive beads were detected and physically isolated for decoding. A strong consensus motif was identified for these three positive compounds. These

  19. Jeffamine derivatized TentaGel beads and poly(dimethylsiloxane) microbead cassettes for ultrahigh-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound combinatorial small molecule libraries.

    PubMed

    Townsend, Jared B; Shaheen, Farzana; Liu, Ruiwu; Lam, Kit S

    2010-09-13

    A method to efficiently immobilize and partition large quantities of microbeads in an array format in microfabricated poly(dimethylsiloxane) (PDMS) cassette for ultrahigh-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound (OBOC) combinatorial libraries is described. Commercially available Jeffamine triamine T-403 (∼440 Da) was derivatized such that two of its amino groups were protected by Fmoc and the remaining amino group capped with succinic anhydride to generate a carboxyl group. This resulting trifunctional hydrophilic polymer was then sequentially coupled two times to the outer layer of topologically segregated bilayer TentaGel (TG) beads with solid phase peptide synthesis chemistry resulting in beads with increased loading capacity, hydrophilicity, and porosity at the outer layer. We have found that such bead configuration can facilitate ultrahigh-throughput in situ releasable solution-phase screening of OBOC libraries. An encoded releasable OBOC small molecule library was constructed on Jeffamine derivatized TG beads with library compounds tethered to the outer layer via a disulfide linker and coding tags in the interior of the beads. Compound-beads could be efficiently loaded (5-10 min) into a 5 cm diameter Petri dish containing a 10,000-well PDMS microbead cassette, such that over 90% of the microwells were each filled with only one compound-bead. Jurkat T-lymphoid cancer cells suspended in Matrigel were then layered over the microbead cassette to immobilize the compound-beads. After 24 h of incubation at 37 °C, dithiothreitol was added to trigger the release of library compounds. Forty-eight hours later, MTT reporter assay was used to identify regions of reduced cell viability surrounding each positive bead. From a total of about 20,000 beads screened, 3 positive beads were detected and physically isolated for decoding. A strong consensus motif was identified for these three positive compounds. These compounds

  20. Glycosaminoglycans as naturally occurring combinatorial libraries: developing a mass spectrometry-based strategy for characterization of anti-thrombin interaction with low molecular weight heparin and heparin oligomers.

    PubMed

    Abzalimov, Rinat R; Dubin, Paul L; Kaltashov, Igor A

    2007-08-15

    Heparin is a densely charged polysaccharide, which is best known for its anticoagulant activity, although it also modulates a plethora of other biological processes. Unlike biopolymers whose synthesis is strictly controlled by a unique genetic template, heparin molecules exhibit a remarkable degree of structural heterogeneity, which poses a serious challenge for studies of heparin-protein interactions. This analytical challenge is often dealt with by reducing the enormous structural repertoire of heparin to a model small molecule. In this paper, we describe a different approach inspired by the experimental methodologies from the arsenal of combinatorial chemistry. Interaction of anti-thrombin III (AT) with heparinoids is studied using a mixture of oligoheparin molecules of fixed degree of polymerization, but varying chemical composition (heparin hexasaccharides obtained by size exclusion chromatography of an enzymatic digest of porcine intestinal heparin with bacterial heparinase), as well as a heparin-derived pharmaceutical preparation Tinzaparin (heparin oligosaccharides up to a 22-mer). AT binders are identified based on the results of ESI MS measurements of complexes formed by protein-oligoheparin association. Additionally, differential depletion of free heparin oligomers in solution in the presence of AT is used to verify the binding preferences. ESI MS characterization of oligoheparin-AT interaction under partially denaturing conditions allowed the conformer specificity of the protein-polyanion binding to be monitored. A model emerging from these studies invokes the notion of a well-defined binding site on AT, to which a flexible partner (heparin) adapts to maximize favorable intermolecular electrostatic interactions. This study demonstrates the enormous potential of ESI MS as an analytical tool to study the interactions of highly heterogeneous glycosaminoglycans with their cognate proteins outside of the commonly accepted reductionist paradigm, which reduces

  1. Fractal analysis on human dynamics of library loans

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Guo, Jin-Li; Zha, Yi-Long

    2012-12-01

    In this paper, the fractal characteristic of human behaviors is investigated from the perspective of time series constructed with the amount of library loans. The values of the Hurst exponent and length of non-periodic cycle calculated through rescaled range analysis indicate that the time series of human behaviors and their sub-series are fractal with self-similarity and long-range dependence. Then the time series are converted into complex networks by the visibility algorithm. The topological properties of the networks such as scale-free property and small-world effect imply that there is a close relationship among the numbers of repetitious behaviors performed by people during certain periods of time. Our work implies that there is intrinsic regularity in the human collective repetitious behaviors. The conclusions may be helpful to develop some new approaches to investigate the fractal feature and mechanism of human dynamics, and provide some references for the management and forecast of human collective behaviors.

  2. Fast combinatorial vector field topology.

    PubMed

    Reininghaus, Jan; Löwen, Christian; Hotz, Ingrid

    2011-10-01

    This paper introduces a novel approximation algorithm for the fundamental graph problem of combinatorial vector field topology (CVT). CVT is a combinatorial approach based on a sound theoretical basis given by Forman's work on a discrete Morse theory for dynamical systems. A computational framework for this mathematical model of vector field topology has been developed recently. The applicability of this framework is however severely limited by the quadratic complexity of its main computational kernel. In this work, we present an approximation algorithm for CVT with a significantly lower complexity. This new algorithm reduces the runtime by several orders of magnitude and maintains the main advantages of CVT over the continuous approach. Due to the simplicity of our algorithm it can be easily parallelized to improve the runtime further. © 2011 IEEE

  3. Neural Meta-Memes Framework for Combinatorial Optimization

    NASA Astrophysics Data System (ADS)

    Song, Li Qin; Lim, Meng Hiot; Ong, Yew Soon

    In this paper, we present a Neural Meta-Memes Framework (NMMF) for combinatorial optimization. NMMF is a framework which models basic optimization algorithms as memes and manages them dynamically when solving combinatorial problems. NMMF encompasses neural networks which serve as the overall planner/coordinator to balance the workload between memes. We show the efficacy of the proposed NMMF through empirical study on a class of combinatorial problem, the quadratic assignment problem (QAP).

  4. Combinatorially Developed Peptide Receptors for Biosensors

    NASA Astrophysics Data System (ADS)

    Nakamura, Chikashi; Miyake, Jun

    Various combinatorial libraries were screened for short peptides of 4-10 mer, which were used as sensor molecules for capturing target chemicals or biomolecules. Immuno-antibodies can be synthesized in the living bodies of higher animals even for low-molecular-weight nonnatural chemical compounds, such as dioxins or PCBs. Recently, some peptide ligands that can even bind to inorganic crystals have been reported. This indicates that the 20 natural amino acids have the potential to recognize almost all types of molecules and substances. The question arises whether one should design a “rational” mini library of peptides consisting of a limited number of amino acids according to the motifs in epitopes or paratopes or the binding pocket sequences in receptors, or a completely “random” combinatorial library containing all sequences. If one wants to obtain a peptide binder to target a small chemical compound, the answer is a “random” library, since the molecular interaction between the target compound and an amino acid cannot be precisely predicted beforehand. In this section, we discuss the possibility of using short combinatorial peptides as binders for biosensors to detect chemical compounds.

  5. Causes and Dynamics of User Frustration in an Academic Library

    ERIC Educational Resources Information Center

    Saracevic, T.; And Others

    1977-01-01

    Observations on the causes of user frustration at Sears Library, Case Western Reserve University were done in 1972 and 1974. A method of analysis was developed that allows for the calculation of four independent probabilities indicating measures of performance of acquisitions policy, circulation policy, library operations and users. (Author/AP)

  6. Combinatorial methods in sol-gel technology

    NASA Astrophysics Data System (ADS)

    Rantala, Juha T.; Kololuoma, Terho K.; Kivimaki, L.

    2000-05-01

    Sol-gel processing consists several variable parameters during materials synthesis and post processing steps. The sol-gel synthesis is rather sensitive for the parameters such as pH, temperature, type of catalyst, reaction time etc. However, this sensitivity can be taken as an advantage when developing and studying new materials and their properties. Furthermore, since the sol-gel technology mainly describes the fabrication of solid state materials from a liquid phase by applying metal alkoxides or metal salts as precursors, the post processing such as sintering has critical effects on the final form and properties of the solid material. Combinatorial chemistry and methods are valuable tools to estimate the effects of different variables and to build-up combinatorial libraries for the sol-gel technique. This paper generally describes potentials and the usage motivation of combinatorial chemistry in the sol-gel technology by taking into account some major steps in the synthesis and processing which are valuable for the estimation of the final product properties. Different kind of post processing steps in the combinatorial manner are studied in details. As an example the post processing of sol-gel derived semiconductor oxides and photosensitivity of hybrid sol-gel glasses are presented. The combinatorial treatment and measurement methods for these materials are explained.

  7. Combinatorial and high-throughput screening approaches for strain engineering.

    PubMed

    Liu, Wenshan; Jiang, Rongrong

    2015-03-01

    Microbes have long been used in the industry to produce valuable biochemicals. Combinatorial engineering approaches, new strain engineering tools derived from inverse metabolic engineering, have started to attract attention in recent years, including genome shuffling, error-prone DNA polymerase, global transcription machinery engineering (gTME), random knockout/overexpression libraries, ribosome engineering, multiplex automated genome engineering (MAGE), customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER), and library construction of "tunable intergenic regions" (TIGR). Since combinatorial approaches and high-throughput screening methods are fundamentally interconnected, color/fluorescence-based, growth-based, and biosensor-based high-throughput screening methods have been reviewed. We believe that with the help of metabolic engineering tools and new combinatorial approaches, plus effective high-throughput screening methods, researchers will be able to achieve better results on improving microorganism performance under stress or enhancing biochemical yield.

  8. Available pathways database (APD): an essential resource for combinatorial biology.

    PubMed

    Pirrung, M C; Silva, C M; Jaeger, J

    2000-10-01

    A relational database, the Available Pathways Database (APD), has been constructed of microbial natural products, their producing strains, and their biosynthetic pathways. The database allows the ready selection of donor strains for combinatorial biology experiments. It provides the same type of resource for combinatorial biology as the Available Chemicals Directory (ACD) does for combinatorial chemical library generation. Its cataloging ability can also provide insight into novel aspects of biosynthetic routes. In particular, no 10-unit Type I polyketides were found in the compilation of this edition of the APD (Version I).

  9. Nonparametric Combinatorial Sequence Models

    NASA Astrophysics Data System (ADS)

    Wauthier, Fabian L.; Jordan, Michael I.; Jojic, Nebojsa

    This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This paper presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three sequence datasets which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution induced by the prior. By integrating out the posterior our method compares favorably to leading binding predictors.

  10. Combinatorial Library Cloning of Human Antibodies to Streptococcus pneumoniae Capsular Polysaccharides: Variable Region Primary Structures and Evidence for Somatic Mutation of Fab Fragments Specific for Capsular Serotypes 6B, 14, and 23F

    PubMed Central

    Lucas, Alexander H.; Moulton, Karen D.; Tang, Vanessa R.; Reason, Donald C.

    2001-01-01

    Antibodies specific for capsular polysaccharides play a central role in immunity to encapsulated Streptococcus pneumoniae, but little is known about their genetics or the variable (V) region polymorphisms that affect their protective function. To begin to address these issues, we used combinatorial library cloning to isolate pneumococcal polysaccharide (PPS)-specific Fab fragments from two vaccinated adults. We determined complete V region primary structures and performed antigen binding analyses of seven Fab fragments specific for PPS serotype 6B, 14, or 23F. Fabs were of the immunoglobulin G2 or A isotype. Several VHIII gene segments (HV 3-7, 3-15, 3-23, and 3-11) were identified. VL regions were encoded by several κ genes (KV 4-1, 3-15, 2-24, and 2D-29) and a λ gene (LV 1-51). Deviation of the VH and VL regions from their assigned germ line counterparts indicated that they were somatically mutated. Fabs of the same serotype specificity isolated from a single individual differed in affinity, and these differences could be accounted for either by the extent of mutation among clonal relatives or by usage of different V-region genes. Thus, functionally disparate anti-PPS antibodies can arise within individuals both by activation of independent clones and by intraclonal somatic mutation. For one pair of clonally related Fabs, the more extensively mutated VH was associated with lower affinity for PPS 14, a result suggesting that somatic mutation could lead to diminished protective efficacy. These findings indicate that the PPS repertoire in the adult derives from memory B-cell populations that have class switched and undergone extensive hypermutation. PMID:11159978

  11. Nucleophilic catalysis of acylhydrazone equilibration for protein-directed dynamic covalent chemistry

    PubMed Central

    Bhat, Venugopal T.; Caniard, Anne M.; Luksch, Torsten; Brenk, Ruth; Campopiano, Dominic J.; Greaney, Michael F.

    2010-01-01

    Dynamic covalent chemistry uses reversible chemical reactions to set up an equilibrating network of molecules at thermodynamic equilibrium, which can adjust its composition in response to any agent capable of altering the free energy of the system. When the target is a biological macromolecule, such as a protein, the process corresponds to the protein directing the synthesis of its own best ligand. Here, we demonstrate that reversible acylhydrazone formation is an effective chemistry for biological dynamic combinatorial library formation. In the presence of aniline as a nucleophilic catalyst, dynamic combinatorial libraries equilibrate rapidly at pH 6.2, are fully reversible, and may be switched on or off by means of a change in pH. We have interfaced these hydrazone dynamic combinatorial libraries with two isozymes from the glutathione S-transferase class of enzyme, and observed divergent amplification effects, where each protein selects the best-fitting hydrazone for the hydrophobic region of its active site. PMID:20489719

  12. Combinatorial techniques to efficiently investigate and optimize organic thin film processing and properties.

    PubMed

    Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner

    2013-04-08

    In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.

  13. Combinatorial chemistry, automation and molecular diversity: new trends in the pharmaceutical industry.

    PubMed

    Van Hijfte, L; Marciniak, G; Froloff, N

    1999-04-02

    Combinatorial chemistry has emerged as a set of novel strategies for the synthesis of large sets of compounds (combinatorial libraries) for biological evaluation. Within a few years combinatorial chemistry has undergone a series of changes in trends, which are closely related to two important factors in libraries: numbers and quality. While the number of compounds in a library may be easily expressed, it is a lot more difficult to indicate the degree of quality of a library. This degree of quality can be split into two aspects: purity and diversity. The changing trends in combinatorial chemistry with respect to the strategies, the technologies, the libraries themselves (numbers and purity aspects) and the molecular diversity are outlined in this paper.

  14. Fast combinatorial optimization with parallel digital computers.

    PubMed

    Kakeya, H; Okabe, Y

    2000-01-01

    This paper presents an algorithm which realizes fast search for the solutions of combinatorial optimization problems with parallel digital computers.With the standard weight matrices designed for combinatorial optimization, many iterations are required before convergence to a quasioptimal solution even when many digital processors can be used in parallel. By removing the components of the eingenvectors with eminent negative eigenvalues of the weight matrix, the proposed algorithm avoids oscillation and realizes energy reduction under synchronous discrete dynamics, which enables parallel digital computers to obtain quasi-optimal solutions with much less time than the conventional algorithm.

  15. SwiftLib: rapid degenerate-codon-library optimization through dynamic programming.

    PubMed

    Jacobs, Timothy M; Yumerefendi, Hayretin; Kuhlman, Brian; Leaver-Fay, Andrew

    2015-03-11

    Degenerate codon (DC) libraries efficiently address the experimental library-size limitations of directed evolution by focusing diversity toward the positions and toward the amino acids (AAs) that are most likely to generate hits; however, manually constructing DC libraries is challenging, error prone and time consuming. This paper provides a dynamic programming solution to the task of finding the best DCs while keeping the size of the library beneath some given limit, improving on the existing integer-linear programming formulation. It then extends the algorithm to consider multiple DCs at each position, a heretofore unsolved problem, while adhering to a constraint on the number of primers needed to synthesize the library. In the two library-design problems examined here, the use of multiple DCs produces libraries that very nearly cover the set of desired AAs while still staying within the experimental size limits. Surprisingly, the algorithm is able to find near-perfect libraries where the ratio of amino-acid sequences to nucleic-acid sequences approaches 1; it effectively side-steps the degeneracy of the genetic code. Our algorithm is freely available through our web server and solves most design problems in about a second.

  16. Combinatorial auction design

    PubMed Central

    Porter, David; Rassenti, Stephen; Roopnarine, Anil; Smith, Vernon

    2003-01-01

    Combinatorial auctions allow for more expressive bidding in which participants can submit package bids with logical constraints that limit allowable outcomes. This type of auction can be useful when participants' values are complementary or when participants have production and financial constraints. However, combinatorial auctions are currently rare in practice. The main problems confronted in implementing these auctions are that they have computational uncertainty (i.e., there is no guarantee that the winning bids for such an auction can be found in a “reasonable” amount of time when the number of bidders and items becomes larger) and that the auction is cognitively complex and can lead participants to pursue perverse bidding strategies. This article describes a type of combinatorial auction that, during laboratory testing, eliminated these problems and produced extremely efficient outcomes. PMID:12893875

  17. Combinatorial synthesis of anti-HIV agents--a review.

    PubMed

    Sriram, Dharmarajan; Yogeeswari, Perumal; Nagappa, Ananantha Naik

    2005-08-01

    Combinatorial chemistry has been well recognized as an important tool of drug discovery. An ongoing hand is to integrate the combinatorial approach with fundamentals of medicinal chemistry and rational drug design. The last five years has seen an explosion in the exploration and adoption of combinatorial techniques. Indeed, it is difficult to identify any other topic in chemistry that has ever caught the imagination of chemists with such fervor and with the continuous development of high throughput screening methods. There is a growing need for the synthesis of a large number of molecules. Compound libraries designed to produce specific inhibitors of therapeutic target proteins have generated significant interest in drug discovery research. Combinatorial chemistry provides the opportunity to generate large libraries of compounds for biological testing. A literature search revealed that many lead compounds have indeed been discovered from libraries and this review presents a survey of combinatorial synthesis of HIV-1 reverse transcriptase inhibitors, protease inhibitors, HIV-1 function inhibitors such as adsorption inhibitors, CCR5 antagonists and HIV-1 Tat-tar inhibitors that can be developed as potential anti-HIV drugs.

  18. Combinatorial biosynthesis--potential and problems.

    PubMed

    Floss, Heinz G

    2006-06-25

    Because of their ecological functions, natural products have been optimized in evolution for interaction with biological systems and receptors. However, they have not necessarily been optimized for other desirable drug properties and thus can often be improved by structural modification. Using examples from the literature, this paper reviews the opportunities for increasing structural diversity among natural products by combinatorial biosynthesis, i.e., the genetic manipulation of biosynthetic pathways. It distinguishes between combinatorial biosynthesis in a narrower sense to generate libraries of modified structures, and metabolic engineering for the targeted formation of specific structural analogs. Some of the problems and limitations encountered with these approaches are also discussed. Work from the author's laboratory on ansamycin antibiotics is presented which illustrates some of the opportunities and limitations.

  19. Combinatorial Biosynthesis – Potential and Problems

    PubMed Central

    Floss, Heinz G.

    2007-01-01

    Because of their ecological functions, natural products have been optimized in evolution for interaction with biological systems and receptors. However, they have not necessarily been optimized for other desirable drug properties and thus can often be improved by structural modification. Using examples from the literature, this paper reviews the opportunities for increasing structural diversity among natural products by combinatorial biosynthesis, i.e., the genetic manipulation of biosynthetic pathways. It distinguishes between combinatorial biosynthesis in a narrower sense to generate libraries of modified structures, and metabolic engineering for the targeted formation of specific structural analogs. Some of the problems and limitations encountered with these approaches are also discussed. Work from the author’s laboratory on ansamycin antibiotics is presented which illustrates some of the opportunities and limitations. PMID:16414140

  20. Application of computer assisted combinatorial chemistry in antivirial, antimalarial and anticancer agents design

    NASA Astrophysics Data System (ADS)

    Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.

    Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.

  1. Manipulating Combinatorial Structures.

    ERIC Educational Resources Information Center

    Labelle, Gilbert

    This set of transparencies shows how the manipulation of combinatorial structures in the context of modern combinatorics can easily lead to interesting teaching and learning activities at every level of education from elementary school to university. The transparencies describe: (1) the importance and relations of combinatorics to science and…

  2. Increasing the dynamic control space of mammalian transcription devices by combinatorial assembly of homologous regulatory elements from different bacterial species.

    PubMed

    Bacchus, William; Weber, Wilfried; Fussenegger, Martin

    2013-01-01

    Prokaryotic transcriptional regulatory elements are widely utilized building blocks for constructing regulatory genetic circuits adapted for mammalian cells and have found their way into a broad range of biotechnological applications. Prokaryotic transcriptional repressors, fused to eukaryotic transactivation or repression domains, compose the transcription factor, which binds and adjusts transcription from chimeric promoters containing the repressor-specific operator sequence. Escherichia coli and Chlamydia trachomatis share common features in the regulatory mechanism of the biosynthesis of l-tryptophan. The repressor protein TrpR of C. trachomatis regulates the trpRBA operon and the TrpR of E. coli regulates the trpEDCBA operon, both requiring l-tryptophan as a co-repressor. Fusion of these bacterial repressors to the VP16 transactivation domain of Herpes simplex virus creates synthetic transactivators that could bind and activate chimeric promoters, assembled by placing repressor-specific operator modules adjacent to a minimal promoter, in an l-tryptophan-adjustable manner. Combinations of different transactivator and promoter variants from the same or different bacterial species resulted in a multitude of regulatory systems where l-tryptophan regulation properties, background noise, and maximal gene expression levels were significantly diverse. Different l-tryptophan analogues showed diverse regulatory capacity depending on the promoter/transactivator combination. We believe the systems approach to rationally choose promoters, transactivators and inducer molecules, to obtain desired and predefined genetic expression dynamics and control profiles, will significantly advance the design of new regulatory circuits as well as improving already existing ones. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Combinatorial parallel synthesis and automated screening of a novel class of liquid crystalline materials.

    PubMed

    Deeg, Oliver; Kirsch, Peer; Pauluth, Detlef; Bäuerle, Peter

    2002-12-07

    Combinatorial parallel synthesis has led to the rapid generation of a single-compound library of novel fluorinated quaterphenyls. Subsequent automated screening revealed liquid crystalline (LC) behaviour and gave qualitative relationships of molecular structures and solid state properties.

  4. The Lock is the Key: Development of Novel Drugs through Receptor Based Combinatorial Chemistry.

    PubMed

    Maraković, Nikola; Šinko, Goran

    2017-01-01

    Modern drug discovery is mainly based on the de novo synthesis of a large number of compounds with a diversity of chemical functionalities. Though the introduction of combinatorial chemistry enabled the preparation of large libraries of compounds from so-called building blocks, the problem of successfully identifying leads remains. The introduction of a dynamic combinatorial chemistry method served as a step forward due to the involvement of biological macromolecular targets (receptors) in the synthesis of high affinity products. The major breakthrough was a synthetic method in which building blocks are irreversibly combined due to the presence of a receptor. Here we present various receptor-based combinatorial chemistry approaches. Huisgen's cycloaddition (1,3-dipolar cycloaddition of azides and alkynes) forms stabile 1,2,3-triazoles with very high receptor affinity that can reach femtomolar levels, as the case with acetylcholinesterase inhibitors shows. Huisgen's cycloaddition can be applied to various receptors including acetylcholinesterase, acetylcholine binding protein, carbonic anhydrase-II, serine/threonine-protein kinase and minor groove of DNA.

  5. A templating guest sorts out a molecular triangle from a dimer-trimer constitutional dynamic library.

    PubMed

    Rancan, Marzio; Dolmella, Alessandro; Seraglia, Roberta; Orlandi, Simonetta; Quici, Silvio; Armelao, Lidia

    2012-03-25

    Cu(II) and a bis-β-diketone ligand generate a small constitutional dynamic library (CDL). The designed introduction of a well suited guest drives the self-sorting of the system toward a supramolecular triangle. Alternatively, the triangle self-assembly is templated by the same guest in a one-pot synthesis.

  6. Automated Combinatorial Chemistry in the Organic Chemistry Majors Laboratory

    ERIC Educational Resources Information Center

    Nichols, Christopher J.; Hanne, Larry F.

    2010-01-01

    A multidisciplinary experiment has been developed in which students each synthesize a combinatorial library of 48 hydrazones with the aid of a liquid-handling robot. Each product is then subjected to a Kirby-Bauer disk diffusion assay to assess its antibacterial activity. Students gain experience working with automation and at the…

  7. Automated Combinatorial Chemistry in the Organic Chemistry Majors Laboratory

    ERIC Educational Resources Information Center

    Nichols, Christopher J.; Hanne, Larry F.

    2010-01-01

    A multidisciplinary experiment has been developed in which students each synthesize a combinatorial library of 48 hydrazones with the aid of a liquid-handling robot. Each product is then subjected to a Kirby-Bauer disk diffusion assay to assess its antibacterial activity. Students gain experience working with automation and at the…

  8. Increased Diversity of Libraries from Libraries: Chemoinformatic Analysis of Bis-Diazacyclic Libraries

    PubMed Central

    López-Vallejo, Fabian; Nefzi, Adel; Bender, Andreas; Owen, John R.; Nabney, Ian T.; Houghten, Richard A.; Medina-Franco, Jose L.

    2011-01-01

    Combinatorial libraries continue to play a key role in drug discovery. To increase structural diversity, several experimental methods have been developed. However, limited efforts have been performed so far to quantify the diversity of the broadly used diversity-oriented synthetic (DOS) libraries. Herein we report a comprehensive characterization of 15 bis-diazacyclic combinatorial libraries obtained through libraries from libraries, which is a DOS approach. Using MACCS keys, radial and different pharmacophoric fingerprints as well as six molecular properties, it was demonstrated the increased structural and property diversity of the libraries from libraries over the individual libraries. Comparison of the libraries to existing drugs, NCI Diversity and the Molecular Libraries Small Molecule Repository revealed the structural uniqueness of the combinatorial libraries (mean similarity < 0.5 for any fingerprint representation). In particular, bis-cyclic thiourea libraries were the most structurally dissimilar to drugs retaining drug-like character in property space. This study represents the first comprehensive quantification of the diversity of libraries from libraries providing a solid quantitative approach to compare and contrast the diversity of DOS libraries with existing drugs or any other compound collection. PMID:21294850

  9. Increased diversity of libraries from libraries: chemoinformatic analysis of bis-diazacyclic libraries.

    PubMed

    López-Vallejo, Fabian; Nefzi, Adel; Bender, Andreas; Owen, John R; Nabney, Ian T; Houghten, Richard A; Medina-Franco, José L

    2011-05-01

    Combinatorial libraries continue to play a key role in drug discovery. To increase structural diversity, several experimental methods have been developed. However, limited efforts have been performed so far to quantify the diversity of the broadly used diversity-oriented synthetic libraries. Herein, we report a comprehensive characterization of 15 bis-diazacyclic combinatorial libraries obtained through libraries from libraries, which is a diversity-oriented synthetic approach. Using MACCS keys, radial and different pharmacophoric fingerprints as well as six molecular properties, it was demonstrated the increased structural and property diversity of the libraries from libraries over the individual libraries. Comparison of the libraries to existing drugs, NCI diversity, and the Molecular Libraries Small Molecule Repository revealed the structural uniqueness of the combinatorial libraries (mean similarity <0.5 for any fingerprint representation). In particular, bis-cyclic thiourea libraries were the most structurally dissimilar to drugs retaining drug-like character in property space. This study represents the first comprehensive quantification of the diversity of libraries from libraries providing a solid quantitative approach to compare and contrast the diversity of diversity-oriented synthetic libraries with existing drugs or any other compound collection. © 2011 John Wiley & Sons A/S.

  10. Libra: An open-Source "methodology discovery" library for quantum and classical dynamics simulations.

    PubMed

    Akimov, Alexey V

    2016-06-30

    The "methodology discovery" library for quantum and classical dynamics simulations is presented. One of the major foci of the code is on nonadiabatic molecular dynamics simulations with model and atomistic Hamiltonians treated on the same footing. The essential aspects of the methodology, design philosophy, and implementation are discussed. The code capabilities are demonstrated on a number of model and atomistic test cases. It is demonstrated how the library can be used to study methodologies for quantum and classical dynamics, as well as a tool for performing detailed atomistic studies of nonadiabatic processes in molecular systems. The source code and additional information are available on the Web at http://www.acsu.buffalo.edu/~alexeyak/libra/index.html. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Microfluidic platform for combinatorial synthesis in picolitre droplets.

    PubMed

    Theberge, Ashleigh B; Mayot, Estelle; El Harrak, Abdeslam; Kleinschmidt, Felix; Huck, Wilhelm T S; Griffiths, Andrew D

    2012-04-07

    This paper presents a droplet-based microfluidic platform for miniaturized combinatorial synthesis. As a proof of concept, a library of small molecules for early stage drug screening was produced. We present an efficient strategy for producing a 7 × 3 library of potential thrombin inhibitors that can be utilized for other combinatorial synthesis applications. Picolitre droplets containing the first type of reagent (reagents A(1), A(2), …, A(m)) were formed individually in identical microfluidic chips and then stored off chip with the aid of stabilizing surfactants. These droplets were then mixed to form a library of droplets containing reagents A(1-m), each individually compartmentalized, which was reinjected into a second microfluidic chip and combinatorially fused with picolitre droplets containing the second reagent (reagents B(1), B(2), …, B(n)) that were formed on chip. The concept was demonstrated with a three-component Ugi-type reaction involving an amine (reagents A(1-3)), an aldehyde (reagents B(1-7)), and an isocyanide (held constant), to synthesize a library of small molecules with potential thrombin inhibitory activity. Our technique produced 10(6) droplets of each reaction at a rate of 2.3 kHz. Each droplet had a reaction volume of 3.1 pL, at least six orders of magnitude lower than conventional techniques. The droplets can then be divided into aliquots for different downstream screening applications. In addition to medicinal chemistry applications, this combinatorial droplet-based approach holds great potential for other applications that involve sampling large areas of chemical parameter space with minimal reagent consumption; such an approach could be beneficial when optimizing reaction conditions or performing combinatorial reactions aimed at producing novel materials.

  12. Combinatorial Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin

    The structure of most mechanical metamaterials is periodic so that their design space is that of the unit cell. Here we introduce a combinatorial strategy to create a vast number of distinct mechanical metamaterials, each with a unique spatial texture and response. These are aperiodic stackings of anisotropic building blocks, and their functionality rests on both the block design and their stacking configuration which is governed by a tiling problem. We realize such metamaterials by 3D printing, and show that they act as soft machines, capable of pattern recognition and pattern analysis.

  13. Cryptographic Combinatorial Securities Exchanges

    NASA Astrophysics Data System (ADS)

    Thorpe, Christopher; Parkes, David C.

    We present a useful new mechanism that facilitates the atomic exchange of many large baskets of securities in a combinatorial exchange. Cryptography prevents information about the securities in the baskets from being exploited, enhancing trust. Our exchange offers institutions who wish to trade large positions a new alternative to existing methods of block trading: they can reduce transaction costs by taking advantage of other institutions’ available liquidity, while third party liquidity providers guarantee execution—preserving their desired portfolio composition at all times. In our exchange, institutions submit encrypted orders which are crossed, leaving a “remainder”. The exchange proves facts about the portfolio risk of this remainder to third party liquidity providers without revealing the securities in the remainder, the knowledge of which could also be exploited. The third parties learn either (depending on the setting) the portfolio risk parameters of the remainder itself, or how their own portfolio risk would change if they were to incorporate the remainder into a portfolio they submit. In one setting, these third parties submit bids on the commission, and the winner supplies necessary liquidity for the entire exchange to clear. This guaranteed clearing, coupled with external price discovery from the primary markets for the securities, sidesteps difficult combinatorial optimization problems. This latter method of proving how taking on the remainder would change risk parameters of one’s own portfolio, without revealing the remainder’s contents or its own risk parameters, is a useful protocol of independent interest.

  14. Combinatorial optimization games

    SciTech Connect

    Deng, X.; Ibaraki, Toshihide; Nagamochi, Hiroshi

    1997-06-01

    We introduce a general integer programming formulation for a class of combinatorial optimization games, which immediately allows us to improve the algorithmic result for finding amputations in the core (an important solution concept in cooperative game theory) of the network flow game on simple networks by Kalai and Zemel. An interesting result is a general theorem that the core for this class of games is nonempty if and only if a related linear program has an integer optimal solution. We study the properties for this mathematical condition to hold for several interesting problems, and apply them to resolve algorithmic and complexity issues for their cores along the line as put forward in: decide whether the core is empty; if the core is empty, find an imputation in the core; given an imputation x, test whether x is in the core. We also explore the properties of totally balanced games in this succinct formulation of cooperative games.

  15. Landlab: an Open-Source Python Library for Modeling Earth Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Adams, J. M.; Hobley, D. E. J.; Hutton, E.; Nudurupati, S. S.; Istanbulluoglu, E.; Tucker, G. E.

    2016-12-01

    Landlab is an open-source Python modeling library that enables users to easily build unique models to explore earth surface dynamics. The Landlab library provides a number of tools and functionalities that are common to many earth surface models, thus eliminating the need for a user to recode fundamental model elements each time she explores a new problem. For example, Landlab provides a gridding engine so that a user can build a uniform or nonuniform grid in one line of code. The library has tools for setting boundary conditions, adding data to a grid, and performing basic operations on the data, such as calculating gradients and curvature. The library also includes a number of process components, which are numerical implementations of physical processes. To create a model, a user creates a grid and couples together process components that act on grid variables. The current library has components for modeling a diverse range of processes, from overland flow generation to bedrock river incision, from soil wetting and drying to vegetation growth, succession and death. The code is freely available for download (https://github.com/landlab/landlab) or can be installed as a Python package. Landlab models can also be built and run on Hydroshare (www.hydroshare.org), an online collaborative environment for sharing hydrologic data, models, and code. Tutorials illustrating a wide range of Landlab capabilities such as building a grid, setting boundary conditions, reading in data, plotting, using components and building models are also available (https://github.com/landlab/tutorials). The code is also comprehensively documented both online and natively in Python. In this presentation, we illustrate the diverse capabilities of Landlab. We highlight existing functionality by illustrating outcomes from a range of models built with Landlab - including applications that explore landscape evolution and ecohydrology. Finally, we describe the range of resources available for new

  16. Advances in microwave-assisted combinatorial chemistry without polymer-supported reagents.

    PubMed

    Martínez-Palou, Rafael

    2006-08-01

    Combinatorial methodologies have dramatically changed the chemical research and discovery process, offering an unlimited source of new molecule entities to be screened for activity. The application of microwave irradiation in Combinatorial Chemistry and high-throughput synthesis has become increasingly popular. By taking advantage of this energy source, compound libraries for lead generation can be assembled in a fraction of time required by conventional thermal heating. This review focuses on the advances in developing synthetic methodologies in microwave without polymer-supported reagents suitable for combinatorial chemistry, including the advances in microwave-assisted fluorous synthesis technology.

  17. Discovery of New Luminescent Oxides by Combinatorial Solid State Chemistry

    NASA Astrophysics Data System (ADS)

    McFarland, Eric

    1998-03-01

    Combinatorial synthesis and screening of extraordinarily large numbers of different organic compounds has been widely applied in the pharmaceutical industry for drug discovery. Combinatorial chemistry is particularly well suited for ternary and higher order inorganic materials discovery where efforts to predict basic properties have been unsuccessful. New compounds for ultraviolet excited phosphors are important for flat panel displays and for lighting applications. Utilizing automated thin film synthesis and parallel screening techniques, combinatorial libraries with up to 25,000 compositions have been investigated for photoluminescence. Screening of the libraries identified Y_0.845Al_0.070La_0.060Eu_0.025VO4 as a new red phosphor which, when synthesized in bulk, has an intrinsic quantum efficiency under 254 nm excitation of 0.83 ± 0.06 (A COMBINATORIAL APPROACH TO THE DISCOVERY AND OPTIMIZATION OF LUMINESCENT MATERIALS, Earl Danielson, Josh Golden, Eric W. McFarland, Casper M. Reaves, W. Henry Weinberg, and Xin Di Wu, Nature), Vol. 389, (1997). In addition, the first one-dimensional (1-D) luminescent inorganic oxide, Sr_2CeO_4, has been discovered using combinatorial solid state chemistry. The elemental ratios from a diverse discovery library led to the synthesis of a bulk sample of single phase Sr_2CeO4 that was structurally characterized by Rietveld refinement of the powder X-ray data to possess a new structure type for a luminescent oxide built up from 1-D chains of edge sharing CeO6 octahedra, with two terminal O atoms per Ce center isolated from one another by Sr^2+ cations. The cerate shows broad excitation and emission maxima at 310 and 485 nm. The lifetime of the excited state, epr data, crystallographic structure, and magnetic susceptibility all suggest that the mechanism of luminescence originates from a ligand to metal Ce^4+ charge transfer. We speculate that the relatively electron rich terminal O atoms bonded to Ce^4+ in Sr_2CeO_4, which give rise

  18. Combinatorial synthesis of deuterium-enriched (S)-oxybutynin.

    PubMed

    Li, Feng; Jiang, Wenfeng; Czarnik, Anthony W; Li, Wenbao

    2016-08-01

    The concept of deuterium enrichment has gained more attention due to its advantages in the studies of clinical pharmacokinetics and metabolic profiles. In addition, it is cost and time efficient to develop deuterium-enriched drugs. Herein we built a combinatorial library of deuterated (S)-oxybutynins which all 8 D-compounds were characterized by MS, [Formula: see text] NMR and [Formula: see text]C NMR.

  19. Combinatorial study of ceramic tape-casting slurries.

    PubMed

    Liu, Zhifu; Wang, Yiling; Li, Yongxiang

    2012-03-12

    Ceramic tape-casting slurries are complex systems composed of ceramic powder, solvent, and a number of organic components. Conventionally, the development of ceramic tape-casting slurries is time-consuming and of low efficiency. In this work, combinatorial approaches were applied to screen the ethanol and ethyl-acetate binary solvent based slurry for ceramic green tape-casting. The combinatorial libraries were designed considering the variation of the amount of PVB (Poly vinyl-butyral) binder, polyethylene-400, and butyl-benzyl-phthalate plasticizers, and glyceryl triacetate dispersant. A parallel magnetic stirring process was used to make the combinatorial slurry library. The properties mapping of the slurry library was obtained by investigating the sedimentation and rheological characteristics of the slurries. The slurry composition was refined by scaling up the experiments and comparing the microstructure, mechanical property, and sintering behavior of green tapes made from the selected slurries. Finally, a kind of ethanol-ethyl acetate binary solvent based slurry system suitable for making X7R dielectric ceramic green tapes was achieved.

  20. Library fingerprints: a novel approach to the screening of virtual libraries.

    PubMed

    Klon, Anthony E; Diller, David J

    2007-01-01

    We propose a novel method to prioritize libraries for combinatorial synthesis and high-throughput screening that assesses the viability of a particular library on the basis of the aggregate physical-chemical properties of the compounds using a naïve Bayesian classifier. This approach prioritizes collections of related compounds according to the aggregate values of their physical-chemical parameters in contrast to single-compound screening. The method is also shown to be useful in screening existing noncombinatorial libraries when the compounds in these libraries have been previously clustered according to their molecular graphs. We show that the method used here is comparable or superior to the single-compound virtual screening of combinatorial libraries and noncombinatorial libraries and is superior to the pairwise Tanimoto similarity searching of a collection of combinatorial libraries.

  1. MCR XVI. Mathematical support for combinatorial chemistry

    PubMed

    Gruber

    2000-05-01

    The algebra of the s- and r-vectors is an adequate formal tool to describe chemical objects in an abstract way. Compounds as well as reactions are represented, including all constitutional and configurational aspects. The stereochemistry of simple organic molecules as well as those of metal-organic compounds may be described in a unique way. Ionic bonds, covalent bonds, aromatics, and electron-deficiency compounds can formally be described without loss of information. Even reaction types and the flow of electrons can be described by this algebra. The biggest benefit of this approach is its intrinsic group theoretical structure. This does not bother the chemist for its use but allows a computer to handle and structure huge amounts of chemical data. This is especially important for combinatorial chemistry, which deals with huge sets of chemically distinct molecules, the so-called molecular libraries.

  2. BAL: A library for the brute-force analysis of dynamical systems

    NASA Astrophysics Data System (ADS)

    Linaro, Daniele; Storace, Marco

    2016-04-01

    This paper describes the functionality and usage of BAL, a C/C++ library with a Python front-end for the brute-force analysis of continuous-time dynamical systems described by ordinary differential equations (ODEs). BAL provides an easy-to-use wrapper for the efficient numerical integration of ODEs and, by detecting intersections of the trajectory with appropriate Poincaré sections, allows to classify the asymptotic trajectory of a dynamical system for bifurcation analysis. Some examples of application are discussed, concerning two-dimensional bifurcation diagrams, Lyapunov exponents and finite-time Lyapunov exponents, basins of attraction, simulation of switching ODE systems, and integration with AUTO, a software package for continuation analysis.

  3. The Primary Care Electronic Library: RSS feeds using SNOMED-CT indexing for dynamic content delivery.

    PubMed

    Robinson, Judas; de Lusignan, Simon; Kostkova, Patty; Madge, Bruce; Marsh, A; Biniaris, C

    2006-01-01

    Rich Site Summary (RSS) feeds are a method for disseminating and syndicating the contents of a website using extensible mark-up language (XML). The Primary Care Electronic Library (PCEL) distributes recent additions to the site in the form of an RSS feed. When new resources are added to PCEL, they are manually assigned medical subject headings (MeSH terms), which are then automatically mapped to SNOMED-CT terms using the Unified Medical Language System (UMLS) Metathesaurus. The library is thus searchable using MeSH or SNOMED-CT. Our syndicate partner wished to have remote access to PCEL coronary heart disease (CHD) information resources based on SNOMED-CT search terms. To pilot the supply of relevant information resources in response to clinically coded requests, using RSS syndication for transmission between web servers. Our syndicate partner provided a list of CHD SNOMED-CT terms to its end-users, a list which was coded according to UMLS specifications. When the end-user requested relevant information resources, this request was relayed from our syndicate partner's web server to the PCEL web server. The relevant resources were retrieved from the PCEL MySQL database. This database is accessed using a server side scripting language (PHP), which enables the production of dynamic RSS feeds on the basis of Source Asserted Identifiers (CODEs) contained in UMLS. Retrieving resources using SNOMED-CT terms using syndication can be used to build a functioning application. The process from request to display of syndicated resources took less than one second. The results of the pilot illustrate that it is possible to exchange data between servers using RSS syndication. This method could be utilised dynamically to supply digital library resources to a clinical system with SNOMED-CT data used as the standard of reference.

  4. Carbonic anhydrase-encoded dynamic constitutional libraries: toward the discovery of isozyme-specific inhibitors.

    PubMed

    Nasr, Gihane; Petit, Eddy; Vullo, Daniela; Winum, Jean-Yves; Supuran, Claudiu T; Barboiu, Mihail

    2009-08-13

    A constitutional dynamic library (CDL) was generated under thermodynamic control by using the amino-carbonyl/imine interconversion as reversible chemistry, combined with noncovalent bonding within the active site of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Considering the pharmacological importance to find isoform-selective CA inhibitors (CAIs), two of the 15 human (h) isoform, i.e., hCAI and hCA II, have been subjected to a parallel screening of the same CDL. The use of parallel constitutional screening of CDL chemistry for the discovery of enzyme inhibitors is straightforward and it might provide initial insights toward the generation of efficient classes of selective, high affinity inhibitors. We demonstrate here that the high selectivity and specificity of inhibiting the hCA I and hCA II isozymes with some of the detected hits may be used to describe a complex constitutional behavior through component selection from the dynamic library, driven by the selective binding to the specific isoform active site. These results also point to the possibility of modulating the drug discovery methods by constitutional recomposition induced by a specific enzymatic target.

  5. A new combinatorial method for synthesizing, screening, and discovering antifouling surface chemistries.

    PubMed

    Imbrogno, Joseph; Williams, Matthew D; Belfort, Georges

    2015-02-04

    A set of diverse monomers were synthesized using combinatorial chemistry and tested using our unique high-throughput screening platform. The versatility of our platform is exemplified by possible applications in reducing biological fouling on ship hulls, filtration membranes, and surgical instruments, to name a few. To demonstrate its efficacy, the novel monomers were graft-polymerized onto light sensitive poly(ether sulfone) (PES) membranes via atmospheric-pressure plasma polymerization. A diverse library was synthesized by reacting a common vinyl ester linker with a library of maleimides containing various different functional groups. This allowed us to produce a library of many different surfaces and graft them all using the same linker chemistry. The modified surfaces were then tested and screened for the best antiprotein adsorption (nonfouling) properties. Membranes, functionalized with carboxylic acid, zwitterionic, and ester groups, had the lowest protein adhesion compared with that of an unmodified control PES membrane after a static fouling test. After dynamic fouling, these same functionalities as well as a hydroxyl group exhibited the highest permeability. These monomers performed better than our best previously synthesized amide monomers as well as our best poly(ethylene glycol) monomers, which are known to have very high protein resistance. Hansen solubility parameters qualitatively predicted which monomers performed best, indicating favorable interactions with water molecules.

  6. Quantum supercharger library: hyper-parallel integral derivatives algorithms for ab initio QM/MM dynamics.

    PubMed

    Renison, C Alicia; Fernandes, Kyle D; Naidoo, Kevin J

    2015-07-05

    This article describes an extension of the quantum supercharger library (QSL) to perform quantum mechanical (QM) gradient and optimization calculations as well as hybrid QM and molecular mechanical (QM/MM) molecular dynamics simulations. The integral derivatives are, after the two-electron integrals, the most computationally expensive part of the aforementioned calculations/simulations. Algorithms are presented for accelerating the one- and two-electron integral derivatives on a graphical processing unit (GPU). It is shown that a Hartree-Fock ab initio gradient calculation is up to 9.3X faster on a single GPU compared with a single central processing unit running an optimized serial version of GAMESS-UK, which uses the efficient Schlegel method for s- and l-orbitals. Benchmark QM and QM/MM molecular dynamics simulations are performed on cellobiose in vacuo and in a 39 Å water sphere (45 QM atoms and 24843 point charges, respectively) using the 6-31G basis set. The QSL can perform 9.7 ps/day of ab initio QM dynamics and 6.4 ps/day of QM/MM dynamics on a single GPU in full double precision. © 2015 Wiley Periodicals, Inc.

  7. Experimental Design for Combinatorial and High Throughput Materials Development

    NASA Astrophysics Data System (ADS)

    Cawse, James N.

    2002-12-01

    In the past decade, combinatorial and high throughput experimental methods have revolutionized the pharmaceutical industry, allowing researchers to conduct more experiments in a week than was previously possible in a year. Now high throughput experimentation is rapidly spreading from its origins in the pharmaceutical world to larger industrial research establishments such as GE and DuPont, and even to smaller companies and universities. Consequently, researchers need to know the kinds of problems, desired outcomes, and appropriate patterns for these new strategies. Editor James Cawse's far-reaching study identifies and applies, with specific examples, these important new principles and techniques. Experimental Design for Combinatorial and High Throughput Materials Development progresses from methods that are now standard, such as gradient arrays, to mathematical developments that are breaking new ground. The former will be particularly useful to researchers entering the field, while the latter should inspire and challenge advanced practitioners. The book's contents are contributed by leading researchers in their respective fields. Chapters include: -High Throughput Synthetic Approaches for the Investigation of Inorganic Phase Space -Combinatorial Mapping of Polymer Blends Phase Behavior -Split-Plot Designs -Artificial Neural Networks in Catalyst Development -The Monte Carlo Approach to Library Design and Redesign This book also contains over 200 useful charts and drawings. Industrial chemists, chemical engineers, materials scientists, and physicists working in combinatorial and high throughput chemistry will find James Cawse's study to be an invaluable resource.

  8. Invention as a combinatorial process: evidence from US patents.

    PubMed

    Youn, Hyejin; Strumsky, Deborah; Bettencourt, Luis M A; Lobo, José

    2015-05-06

    Invention has been commonly conceptualized as a search over a space of combinatorial possibilities. Despite the existence of a rich literature, spanning a variety of disciplines, elaborating on the recombinant nature of invention, we lack a formal and quantitative characterization of the combinatorial process underpinning inventive activity. Here, we use US patent records dating from 1790 to 2010 to formally characterize invention as a combinatorial process. To do this, we treat patented inventions as carriers of technologies and avail ourselves of the elaborate system of technology codes used by the United States Patent and Trademark Office to classify the technologies responsible for an invention's novelty. We find that the combinatorial inventive process exhibits an invariant rate of 'exploitation' (refinements of existing combinations of technologies) and 'exploration' (the development of new technological combinations). This combinatorial dynamic contrasts sharply with the creation of new technological capabilities-the building blocks to be combined-that has significantly slowed down. We also find that, notwithstanding the very reduced rate at which new technologies are introduced, the generation of novel technological combinations engenders a practically infinite space of technological configurations.

  9. Invention as a combinatorial process: evidence from US patents

    PubMed Central

    Youn, Hyejin; Strumsky, Deborah; Bettencourt, Luis M. A.; Lobo, José

    2015-01-01

    Invention has been commonly conceptualized as a search over a space of combinatorial possibilities. Despite the existence of a rich literature, spanning a variety of disciplines, elaborating on the recombinant nature of invention, we lack a formal and quantitative characterization of the combinatorial process underpinning inventive activity. Here, we use US patent records dating from 1790 to 2010 to formally characterize invention as a combinatorial process. To do this, we treat patented inventions as carriers of technologies and avail ourselves of the elaborate system of technology codes used by the United States Patent and Trademark Office to classify the technologies responsible for an invention's novelty. We find that the combinatorial inventive process exhibits an invariant rate of ‘exploitation’ (refinements of existing combinations of technologies) and ‘exploration’ (the development of new technological combinations). This combinatorial dynamic contrasts sharply with the creation of new technological capabilities—the building blocks to be combined—that has significantly slowed down. We also find that, notwithstanding the very reduced rate at which new technologies are introduced, the generation of novel technological combinations engenders a practically infinite space of technological configurations. PMID:25904530

  10. Measuring and Specifying Combinatorial Coverage of Test Input Configurations.

    PubMed

    Kuhn, D Richard; Kacker, Raghu N; Lei, Yu

    2016-12-01

    A key issue in testing is how many tests are needed for a required level of coverage or fault detection. Estimates are often based on error rates in initial testing, or on code coverage. For example, tests may be run until a desired level of statement or branch coverage is achieved. Combinatorial methods present an opportunity for a different approach to estimating required test set size, using characteristics of the test set. This paper describes methods for estimating the coverage of, and ability to detect, t-way interaction faults of a test set based on a covering array. We also develop a connection between (static) combinatorial coverage and (dynamic) code coverage, such that if a specific condition is satisfied, 100% branch coverage is assured. Using these results, we propose practical recommendations for using combinatorial coverage in specifying test requirements.

  11. Rapid combinatorial screening by synchrotron X-ray imaging

    NASA Astrophysics Data System (ADS)

    Eba, Hiromi; Sakurai, Kenji

    2006-01-01

    An X-ray imaging system, which does not require any scans of the sample or an X-ray beam and which, therefore, dramatically reduces the amount of time required, was employed to evaluate combinatorial libraries efficiently. Two-dimensional X-ray fluorescence (XRF) images of an 8 mm × 8 mm area were observed for combinatorial substrates of manganese-cobalt spinel MnCo 2O 4 and lithium ferrite LiFeO 2 via an exposure time of 1-3 s using synchrotron X-rays. Thus, XRF signals from a whole substrate could be observed at once in a short space of time. In order to observe the chemical environment simultaneously for all materials arranged on the substrate, the fluorescent X-ray absorption fine structure (XAFS) was measured by repeating the imaging during the monochromator scans across the absorption edge for metals. This is extremely efficient because XAFS spectra for all materials placed on the common substrate are obtained from only a single energy scan. One can determine the valence numbers, as well as other aspects of the chemical environment of the metal included in each material, from the differences in spectral features and the energy shifts. Hence, combinatorial libraries can be screened very rapidly, and therefore efficiently, using the X-ray imaging system.

  12. Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals.

    PubMed

    Kim, Hyo Jin; Turner, Timothy Lee; Jin, Yong-Su

    2013-11-01

    Recent advances in metabolic engineering have enabled microbial factories to compete with conventional processes for producing fuels and chemicals. Both rational and combinatorial approaches coupled with synthetic and systematic tools play central roles in metabolic engineering to create and improve a selected microbial phenotype. Compared to knowledge-based rational approaches, combinatorial approaches exploiting biological diversity and high-throughput screening have been demonstrated as more effective tools for improving various phenotypes of interest. In particular, identification of unprecedented targets to rewire metabolic circuits for maximizing yield and productivity of a target chemical has been made possible. This review highlights general principles and the features of the combinatorial approaches using various libraries to implement desired phenotypes for strain improvement. In addition, recent applications that harnessed the combinatorial approaches to produce biofuels and biochemicals will be discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. EDITORIAL: Combinatorial and High-Throughput Materials Research

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Takeuchi, Ichiro

    2005-01-01

    The success of combinatorial and high-throughput methodologies relies greatly on the availability of various characterization tools with new and improved capabilities [1]. Indeed, how useful can a combinatorial library of 250, 400, 25 000 or 2 000 000 compounds be [2-5] if one is unable to characterize its properties of interest fairly quickly? How useful can a set of thousands of spectra or chromatograms be if one is unable to analyse them in a timely manner? For these reasons, the development of new approaches for materials characterization is one of the most active areas in combinatorial materials science. The importance of this aspect of research in the field has been discussed in numerous conferences including the Pittsburgh Conferences, the American Chemical Society Meetings, the American Physical Society Meetings, the Materials Research Society Symposia and various Gordon Research Conferences. Naturally, the development of new measurement instrumentation attracts the attention not only of practitioners of combinatorial materials science but also of those who design new software for data manipulation and mining. Experimental designs of combinatorial libraries are pursued with available and realistic synthetic and characterization capabilities in mind. It is becoming increasingly critical to link the design of new equipment for high-throughput parallel materials synthesis with integrated measurement tools in order to enhance the efficacy of the overall experimental strategy. We have received an overwhelming response to our proposal and call for papers for this Special Issue on Combinatorial Materials Science. The papers in this issue of Measurement Science and Technology are a very timely collection that captures the state of modern combinatorial materials science. They demonstrate the significant advances that are taking place in the field. In some cases, characterization tools are now being operated in the factory mode. At the same time, major challenges

  14. Natural products and combinatorial chemistry: back to the future.

    PubMed

    Ortholand, Jean-Yves; Ganesan, A

    2004-06-01

    The introduction of high-throughput synthesis and combinatorial chemistry has precipitated a global decline in the screening of natural products by the pharmaceutical industry. Some companies terminated their natural products program, despite the unproven success of the new technologies. This was a premature decision, as natural products have a long history of providing important medicinal agents. Furthermore, they occupy a complementary region of chemical space compared with the typical synthetic compound library. For these reasons, the interest in natural products has been rekindled. Various approaches have evolved that combine the power of natural products and organic chemistry, ranging from the combinatorial total synthesis of analogues to the exploration of natural product scaffolds and the design of completely unnatural molecules that resemble natural products in their molecular characteristics.

  15. Combinatorial Synthesis and Discovery of an Antibiotic Compound. An Experiment Suitable for High School and Undergraduate Laboratories

    NASA Astrophysics Data System (ADS)

    Wolkenberg, Scott E.; Su, Andrew I.

    2001-06-01

    An exercise demonstrating solution-phase combinatorial chemistry and its application to drug discovery is described. The experiment involves the synthesis of six libraries of three hydrazones, screening the libraries for antibiotic activity, and deconvolution to determine the active individual compound. The laboratory was designed for a high school classroom, though it can easily be expanded to suit a college introductory organic laboratory course.

  16. Combinatorial approaches: A new tool to search for highly structured β-hairpin peptides

    PubMed Central

    Pastor, Maria Teresa; López de la Paz, Manuela; Lacroix, Emmanuel; Serrano, Luis; Pérez-Payá, Enrique

    2002-01-01

    Here we present a combinatorial approach to evolve a stable β-hairpin fold in a linear peptide. Starting with a de novo-designed linear peptide that shows a β-hairpin structure population of around 30%, we selected four positions to build up a combinatorial library of 204 sequences. Deconvolution of the library using circular dichroism reduced such a sequence complexity to 36 defined sequences. Circular dichroism and NMR of these peptides resulted in the identification of two linear 14-aa-long peptides that in plain buffered solutions showed a percentage of β-hairpin structure higher than 70%. Our results show how combinatorial approaches can be used to obtain highly structured peptide sequences that could be used as templates in which functionality can be introduced. PMID:11782528

  17. Why is combinatorial communication rare in the natural world, and why is language an exception to this trend?

    PubMed

    Scott-Phillips, Thomas C; Blythe, Richard A

    2013-11-06

    In a combinatorial communication system, some signals consist of the combinations of other signals. Such systems are more efficient than equivalent, non-combinatorial systems, yet despite this they are rare in nature. Why? Previous explanations have focused on the adaptive limits of combinatorial communication, or on its purported cognitive difficulties, but neither of these explains the full distribution of combinatorial communication in the natural world. Here, we present a nonlinear dynamical model of the emergence of combinatorial communication that, unlike previous models, considers how initially non-communicative behaviour evolves to take on a communicative function. We derive three basic principles about the emergence of combinatorial communication. We hence show that the interdependence of signals and responses places significant constraints on the historical pathways by which combinatorial signals might emerge, to the extent that anything other than the most simple form of combinatorial communication is extremely unlikely. We also argue that these constraints can be bypassed if individuals have the socio-cognitive capacity to engage in ostensive communication. Humans, but probably no other species, have this ability. This may explain why language, which is massively combinatorial, is such an extreme exception to nature's general trend for non-combinatorial communication.

  18. Why is combinatorial communication rare in the natural world, and why is language an exception to this trend?

    PubMed Central

    Scott-Phillips, Thomas C.; Blythe, Richard A.

    2013-01-01

    In a combinatorial communication system, some signals consist of the combinations of other signals. Such systems are more efficient than equivalent, non-combinatorial systems, yet despite this they are rare in nature. Why? Previous explanations have focused on the adaptive limits of combinatorial communication, or on its purported cognitive difficulties, but neither of these explains the full distribution of combinatorial communication in the natural world. Here, we present a nonlinear dynamical model of the emergence of combinatorial communication that, unlike previous models, considers how initially non-communicative behaviour evolves to take on a communicative function. We derive three basic principles about the emergence of combinatorial communication. We hence show that the interdependence of signals and responses places significant constraints on the historical pathways by which combinatorial signals might emerge, to the extent that anything other than the most simple form of combinatorial communication is extremely unlikely. We also argue that these constraints can be bypassed if individuals have the socio-cognitive capacity to engage in ostensive communication. Humans, but probably no other species, have this ability. This may explain why language, which is massively combinatorial, is such an extreme exception to nature's general trend for non-combinatorial communication. PMID:24047871

  19. A High Through-put Combinatorial Growth Technique for Semiconductor Thin Film Search

    NASA Astrophysics Data System (ADS)

    Ma, Z. X.; Hao, H. Y.; Xiao, P.; Oehlerking, L. J.; Liu, D. F.; Zhang, X. J.; Yu, K.-M.; Walukiewicz, W.; Mao, S. S.; Yu, P. Y.

    2011-12-01

    Conventional semiconductor material growth technique is costly and time-consuming. Here we developed a new method to growth semiconductor thin films using high through-put combinatorial technique. In this way, we have successfully fabricated tens of semiconductor libraries with high crystallinity and high product of μτ for the purpose of radiation detection.

  20. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  1. Combinatorial screening for specific drug solubilizers with switchable release profiles.

    PubMed

    Wieczorek, Sebastian; Vigne, Sara; Masini, Tiziana; Ponader, Daniela; Hartmann, Laura; Hirsch, Anna K H; Börner, Hans G

    2015-01-01

    Polymer-block-peptide conjugates are tailored to render hydrophobic small molecule drugs water soluble. The combinatorial strategy selects for bioconjugates that exhibit sequence-specific solubilization and switchable release profiles of the cargo through incorporation of a disulfide linker moiety into the peptide-library design. While the study focused on the photosensitizer m-THPC and reductive carrier cleavage, the approach is generic and might be expanded toward a broad range of poorly soluble small-molecule drugs and other selective cleavage mechanisms to disassemble a peptide binding domain of the bioconjugate-based solubilizer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. YCRD: Yeast Combinatorial Regulation Database

    PubMed Central

    Wu, Wei-Sheng; Hsieh, Yen-Chen; Lai, Fu-Jou

    2016-01-01

    In eukaryotes, the precise transcriptional control of gene expression is typically achieved through combinatorial regulation using cooperative transcription factors (TFs). Therefore, a database which provides regulatory associations between cooperative TFs and their target genes is helpful for biologists to study the molecular mechanisms of transcriptional regulation of gene expression. Because there is no such kind of databases in the public domain, this prompts us to construct a database, called Yeast Combinatorial Regulation Database (YCRD), which deposits 434,197 regulatory associations between 2535 cooperative TF pairs and 6243 genes. The comprehensive collection of more than 2500 cooperative TF pairs was retrieved from 17 existing algorithms in the literature. The target genes of a cooperative TF pair (e.g. TF1-TF2) are defined as the common target genes of TF1 and TF2, where a TF’s experimentally validated target genes were downloaded from YEASTRACT database. In YCRD, users can (i) search the target genes of a cooperative TF pair of interest, (ii) search the cooperative TF pairs which regulate a gene of interest and (iii) identify important cooperative TF pairs which regulate a given set of genes. We believe that YCRD will be a valuable resource for yeast biologists to study combinatorial regulation of gene expression. YCRD is available at http://cosbi.ee.ncku.edu.tw/YCRD/ or http://cosbi2.ee.ncku.edu.tw/YCRD/. PMID:27392072

  3. Combinatorial parallel and scientific computing.

    SciTech Connect

    Pinar, Ali; Hendrickson, Bruce Alan

    2005-04-01

    Combinatorial algorithms have long played a pivotal enabling role in many applications of parallel computing. Graph algorithms in particular arise in load balancing, scheduling, mapping and many other aspects of the parallelization of irregular applications. These are still active research areas, mostly due to evolving computational techniques and rapidly changing computational platforms. But the relationship between parallel computing and discrete algorithms is much richer than the mere use of graph algorithms to support the parallelization of traditional scientific computations. Important, emerging areas of science are fundamentally discrete, and they are increasingly reliant on the power of parallel computing. Examples include computational biology, scientific data mining, and network analysis. These applications are changing the relationship between discrete algorithms and parallel computing. In addition to their traditional role as enablers of high performance, combinatorial algorithms are now customers for parallel computing. New parallelization techniques for combinatorial algorithms need to be developed to support these nontraditional scientific approaches. This chapter will describe some of the many areas of intersection between discrete algorithms and parallel scientific computing. Due to space limitations, this chapter is not a comprehensive survey, but rather an introduction to a diverse set of techniques and applications with a particular emphasis on work presented at the Eleventh SIAM Conference on Parallel Processing for Scientific Computing. Some topics highly relevant to this chapter (e.g. load balancing) are addressed elsewhere in this book, and so we will not discuss them here.

  4. Using Web Services and XML Harvesting to Achieve a Dynamic Web Site. Computers in Small Libraries

    ERIC Educational Resources Information Center

    Roberts, Gary

    2005-01-01

    Exploiting and contextualizing free information is a natural part of library culture. In this column, Gary Roberts, the information systems and reference librarian at Herrick Library, Alfred University in Alfred, NY, describes how to use XML content on a Web site to link to hundreds of free and useful resources. He gives a general overview of the…

  5. Dynamic regulation of a cell adhesion protein complex including CADM1 by combinatorial analysis of FRAP with exponential curve-fitting.

    PubMed

    Sakurai-Yageta, Mika; Maruyama, Tomoko; Suzuki, Takashi; Ichikawa, Kazuhisa; Murakami, Yoshinori

    2015-01-01

    Protein components of cell adhesion machinery show continuous renewal even in the static state of epithelial cells and participate in the formation and maintenance of normal epithelial architecture and tumor suppression. CADM1 is a tumor suppressor belonging to the immunoglobulin superfamily of cell adhesion molecule and forms a cell adhesion complex with an actin-binding protein, 4.1B, and a scaffold protein, MPP3, in the cytoplasm. Here, we investigate dynamic regulation of the CADM1-4.1B-MPP3 complex in mature cell adhesion by fluorescence recovery after photobleaching (FRAP) analysis. Traditional FRAP analysis were performed for relatively short period of around 10 min. Here, thanks to recent advances in the sensitive laser detector systems, we examine FRAP of CADM1 complex for longer period of 60 min and analyze the recovery with exponential curve-fitting to distinguish the fractions with different diffusion constants. This approach reveals that the fluorescence recovery of CADM1 is fitted to a single exponential function with a time constant (τ) of approximately 16 min, whereas 4.1B and MPP3 are fitted to a double exponential function with two τs of approximately 40-60 sec and 16 min. The longer τ is similar to that of CADM1, suggesting that 4.1B and MPP3 have two distinct fractions, one forming a complex with CADM1 and the other present as a free pool. Fluorescence loss in photobleaching analysis supports the presence of a free pool of these proteins near the plasma membrane. Furthermore, double exponential fitting makes it possible to estimate the ratio of 4.1B and MPP3 present as a free pool and as a complex with CADM1 as approximately 3:2 and 3:1, respectively. Our analyses reveal a central role of CADM1 in stabilizing the complex with 4.1B and MPP3 and provide insight in the dynamics of adhesion complex formation.

  6. Development of Combinatorial Methods for Alloy Design and Optimization

    SciTech Connect

    Pharr, George M.; George, Easo P.; Santella, Michael L

    2005-07-01

    The primary goal of this research was to develop a comprehensive methodology for designing and optimizing metallic alloys by combinatorial principles. Because conventional techniques for alloy preparation are unavoidably restrictive in the range of alloy composition that can be examined, combinatorial methods promise to significantly reduce the time, energy, and expense needed for alloy design. Combinatorial methods can be developed not only to optimize existing alloys, but to explore and develop new ones as well. The scientific approach involved fabricating an alloy specimen with a continuous distribution of binary and ternary alloy compositions across its surface--an ''alloy library''--and then using spatially resolved probing techniques to characterize its structure, composition, and relevant properties. The three specific objectives of the project were: (1) to devise means by which simple test specimens with a library of alloy compositions spanning the range interest can be produced; (2) to assess how well the properties of the combinatorial specimen reproduce those of the conventionally processed alloys; and (3) to devise screening tools which can be used to rapidly assess the important properties of the alloys. As proof of principle, the methodology was applied to the Fe-Ni-Cr ternary alloy system that constitutes many commercially important materials such as stainless steels and the H-series and C-series heat and corrosion resistant casting alloys. Three different techniques were developed for making alloy libraries: (1) vapor deposition of discrete thin films on an appropriate substrate and then alloying them together by solid-state diffusion; (2) co-deposition of the alloying elements from three separate magnetron sputtering sources onto an inert substrate; and (3) localized melting of thin films with a focused electron-beam welding system. Each of the techniques was found to have its own advantages and disadvantages. A new and very powerful technique for

  7. Peptide affinity chromatography based on combinatorial strategies for protein purification.

    PubMed

    Camperi, Silvia Andrea; Martínez-Ceron, María Camila; Giudicessi, Silvana Laura; Marani, Mariela Mirta; Albericio, Fernando; Cascone, Osvaldo

    2014-01-01

    We describe a method to develop affinity chromatography matrices with short peptide ligands for protein purification. The method entitles the following: (a) synthesis of a combinatorial library on the hydromethylbenzoyl (HMBA)-ChemMatrix resin by the divide-couple-recombine (DCR) method using the Fmoc chemistry, (b) library screening with the protein of interest labeled with a fluorescent dye or biotin, (c) identification of peptides contained on positive beads by tandem matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS/MS), (d) solid-phase peptide ligand synthesis and immobilization in chromatographic supports, and (e) evaluation of protein adsorption on peptide affinity matrices from the equilibrium isotherms and breakthrough curves.

  8. Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors.

    PubMed

    Rodrigo, Guillermo; Carrera, Javier; Jaramillo, Alfonso

    2011-11-01

    The engineering of synthetic gene networks has mostly relied on the assembly of few characterized regulatory elements using rational design principles. It is of outmost importance to analyze the scalability and limits of such a design workflow. To analyze the design capabilities of libraries of regulatory elements, we have developed the first automated design approach that combines such elements to search the genotype space associated to a given phenotypic behavior. Herein, we calculated the designability of dynamical functions obtained from circuits assembled with a given genetic library. By designing circuits working as amplitude filters, pulse counters and oscillators, we could infer new mechanisms for such behaviors. We also highlighted the hierarchical design and the optimization of the interface between devices. We dissected the functional diversity of a constrained library and we found that even such libraries can provide a rich variety of behaviors. We also found that intrinsic noise slightly reduces the designability of digital circuits, but it increases the designability of oscillators. Finally, we analyzed the robust design as a strategy to counteract the evolvability and noise in gene expression of the engineered circuits within a cellular background, obtaining mechanisms for robustness through non-linear negative feedback loops.

  9. Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors

    PubMed Central

    Rodrigo, Guillermo; Carrera, Javier; Jaramillo, Alfonso

    2011-01-01

    The engineering of synthetic gene networks has mostly relied on the assembly of few characterized regulatory elements using rational design principles. It is of outmost importance to analyze the scalability and limits of such a design workflow. To analyze the design capabilities of libraries of regulatory elements, we have developed the first automated design approach that combines such elements to search the genotype space associated to a given phenotypic behavior. Herein, we calculated the designability of dynamical functions obtained from circuits assembled with a given genetic library. By designing circuits working as amplitude filters, pulse counters and oscillators, we could infer new mechanisms for such behaviors. We also highlighted the hierarchical design and the optimization of the interface between devices. We dissected the functional diversity of a constrained library and we found that even such libraries can provide a rich variety of behaviors. We also found that intrinsic noise slightly reduces the designability of digital circuits, but it increases the designability of oscillators. Finally, we analyzed the robust design as a strategy to counteract the evolvability and noise in gene expression of the engineered circuits within a cellular background, obtaining mechanisms for robustness through non-linear negative feedback loops. PMID:21865275

  10. Statistical Mechanics of Combinatorial Auctions

    NASA Astrophysics Data System (ADS)

    Galla, Tobias; Leone, Michele; Marsili, Matteo; Sellitto, Mauro; Weigt, Martin; Zecchina, Riccardo

    2006-09-01

    Combinatorial auctions are formulated as frustrated lattice gases on sparse random graphs, allowing the determination of the optimal revenue by methods of statistical physics. Transitions between computationally easy and hard regimes are found and interpreted in terms of the geometric structure of the space of solutions. We introduce an iterative algorithm to solve intermediate and large instances, and discuss competing states of optimal revenue and maximal number of satisfied bidders. The algorithm can be generalized to the hard phase and to more sophisticated auction protocols.

  11. Complex synthetic chemical libraries indexed with molecular tags.

    PubMed Central

    Ohlmeyer, M H; Swanson, R N; Dillard, L W; Reader, J C; Asouline, G; Kobayashi, R; Wigler, M; Still, W C

    1993-01-01

    Combinatorial methods of chemical synthesis allow the creation of molecular libraries having immense diversity. The utility of such libraries is dependent upon identifying the structures of the molecules so prepared. We describe the construction of a peptide combinatorial library, having 117,649 different members, synthesized on beads and indexed with inert chemical tags. These tags are used as a binary code to record the reaction history of each bead. The code can be read directly from a single bead by electron capture capillary gas chromatography. We demonstrate the correct selection of members of the library on the basis of binding to a monoclonal antibody. Images Fig. 2 PMID:7504286

  12. One step DNA assembly for combinatorial metabolic engineering.

    PubMed

    Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan

    2014-05-01

    The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Combinatorial Strategies for the Development of Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Ding, Shiyan

    The systematic identification of multi-component alloys out of the vast composition space is still a daunting task, especially in the development of bulk metallic glasses that are typically based on three or more elements. In order to address this challenge, combinatorial approaches have been proposed. However, previous attempts have not successfully coupled the synthesis of combinatorial libraries with high-throughput characterization methods. The goal of my dissertation is to develop efficient high-throughput characterization methods, optimized to identify glass formers systematically. Here, two innovative approaches have been invented. One is to measure the nucleation temperature in parallel for up-to 800 compositions. The composition with the lowest nucleation temperature has a reasonable agreement with the best-known glass forming composition. In addition, the thermoplastic formability of a metallic glass forming system is determined through blow molding a compositional library. Our results reveal that the composition with the largest thermoplastic deformation correlates well with the best-known formability composition. I have demonstrated both methods as powerful tools to develop new bulk metallic glasses.

  14. Do-It-Yourself: A Special Library's Approach to Creating Dynamic Web Pages Using Commercial Off-The-Shelf Applications

    NASA Technical Reports Server (NTRS)

    Steeman, Gerald; Connell, Christopher

    2000-01-01

    Many librarians may feel that dynamic Web pages are out of their reach, financially and technically. Yet we are reminded in library and Web design literature that static home pages are a thing of the past. This paper describes how librarians at the Institute for Defense Analyses (IDA) library developed a database-driven, dynamic intranet site using commercial off-the-shelf applications. Administrative issues include surveying a library users group for interest and needs evaluation; outlining metadata elements; and, committing resources from managing time to populate the database and training in Microsoft FrontPage and Web-to-database design. Technical issues covered include Microsoft Access database fundamentals, lessons learned in the Web-to-database process (including setting up Database Source Names (DSNs), redesigning queries to accommodate the Web interface, and understanding Access 97 query language vs. Standard Query Language (SQL)). This paper also offers tips on editing Active Server Pages (ASP) scripting to create desired results. A how-to annotated resource list closes out the paper.

  15. From combinatorial chemistry to cancer targeting nanotherapeutics

    NASA Astrophysics Data System (ADS)

    Xiao, Kai; Luo, Juntao; Li, Yuanpei; Xiao, Wenwu; Lee, Joyce S.; Gonik, Abby M.; Lam, Kit S.

    2010-04-01

    We have developed a number of amphiphilic polymers, comprised of a cluster of cholic acids (4 to 10) linked by a series of lysines and attached to one end of a linear polyethylene glycol chain (PEG, 2000-5000 Dalton). Under aqueous condition, such telodendrimers can self-assemble together with hydrophobic payloads to form highly stable micelles (15-150 nm diameter, size tunable). We used near infrared fluorescence (NIRF) optical imaging technique to study the in vivo passive accumulation of our nanocarriers (via EPR effect) in different types and stages of tumors. The results demonstrated that the micelle could preferentially accumulate in many types of tumor xenografts or synografts implanted in mice. Nanoparticle uptake in solid tumors was found to be much higher than that of lymphoma, which could be attributed to the relatively low microvascular density in the latter. We have also demonstrated that micelles smaller than 64 nm preferentially targeted xenografts with high efficiency and with low liver and lung uptake, whereas those micelles at 154 nm targeted the tumor poorly but with very high liver and lung uptake. Telodendrimers decorated with oligolysine or oligoaspartic acid resulted in high uptake of the nanoparticles into the liver. When decorated with cancer targeting ligands identified from the one-bead-one-compound (OBOC) combinatorial library methods, the drug-loaded nanoparticles were rapidly taken up by the target cultured tumor cells causing cell death. In vivo near infra-red optical imaging studies with hydrophobic fluorescent dye demonstrated that xenograft uptake of the micelles was greatly enhanced by the cancer targeting peptide.

  16. Reconstructing pedigrees: a combinatorial perspective.

    PubMed

    Steel, Mike; Hein, Jotun

    2006-06-07

    A pedigree is a directed graph that displays the relationship between individuals according to their parentage. We derive a combinatorial result that shows how any pedigree-up to individuals who have no extant (present-day) ancestors-can be reconstructed from (sex-labelled) pedigrees that describe the ancestry of single extant individuals and pairs of extant individuals. Furthermore, this reconstruction can be done in polynomial time. We also provide an example to show that the corresponding reconstruction result does not hold for pedigrees that are not sex-labelled. We then show how any pedigree can also be reconstructed from two functions that just describe certain circuits in the pedigree. Finally, we obtain an enumeration result for pedigrees that is relevant to the question of how many segregating sites are needed to reconstruct pedigrees.

  17. Combinatorial methods: aptamers and aptazymes

    NASA Astrophysics Data System (ADS)

    Ellington, Andrew D.; Hesselberth, Jay; Jhaveri, Sulay; Robertson, Michael P.

    1999-12-01

    Combinatorial methods have been used to generate nucleic acid molecules with specific characteristics. Aptamers are nucleic acid binding species, and can be modified to directly transduce molecular recognition to optical signals. Aptazymes are allosteric or effector-activated ribyzymes. We have designed or selected aptazymes that are responsive to a variety of ligands. In particular, we have selected a ribozyme ligase that is activated 10,000-fold in the presence of an oligonucleotide effector, and have designed ligases that are up to 1,600-fold dependent on small molecule effectors. Even in those instances where designed constructs were initially unresponsive, we have been able to use selection to optimize their response characteristics.

  18. X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods

    PubMed Central

    Yang, Yanyin; Dorsey, Shauna M.; Becker, Matthew L.; Lin-Gibson, Sheng; Schumacher, Gary E.; Flaim, Glenn M.; Kohn, Joachim; Simon, Carl G.

    2010-01-01

    We have developed a combinatorial method for determining optimum tissue scaffold composition for several X-ray imaging techniques. X-ray radiography and X-ray microcomputed tomography enable non-invasive imaging of implants in vivo and in vitro. However, highly porous polymeric scaffolds do not always possess sufficient X-ray contrast and are therefore difficult to image with X-ray-based techniques. Incorporation of high radiocontrast atoms, such as iodine, into the polymer structure improves X-ray radiopacity but also affects physicochemical properties and material performance. Thus, we have developed a combinatorial library approach to efficiently determine the minimum amount of contrast agent necessary for X-ray-based imaging. The combinatorial approach is demonstrated in a polymer blend scaffold system where X-ray imaging of poly(desaminotyrosyl-tyrosine ethyl ester carbonate) (pDTEc) scaffolds is improved through a controlled composition variation with an iodinated-pDTEc analog (pI2DTEc). The results show that pDTEc scaffolds must include at least 9%, 16%, 38% or 46% pI2DTEc (by mass) to enable effective imaging by microradiography, dental radiography, dental radiography through 0.75 cm of muscle tissue or micro-computed tomography, respectively. Only two scaffold libraries were required to determine these minimum pI2DTEc percentages required for X-ray imaging, which demonstrates the efficiency of this new combinatorial approach for optimizing scaffold formulations. PMID:18242689

  19. Institutional, Public and Individual Learning Dynamics of the Andy Holt Virtual Library.

    ERIC Educational Resources Information Center

    Peckham, Robert

    The Andy Holt Virtual Library, with a focus on the Humanities and Fine Arts, is free and open to the public, though designed to serve the learning communities within the College of Humanities and Fine Arts at the University of Tennessee-Martin (UT). It also plays a resource role in UT's New College and the Tennessee Governors School for the…

  20. Developmental Relationships in the Dynamic Library Environment: Re-Conceptualizing Mentoring for the Future

    ERIC Educational Resources Information Center

    Murphy, Sarah Anne

    2008-01-01

    This article examines the current conceptualization of mentoring in academic libraries and argues that traditional hierarchical mentoring relationships are no longer sufficient for developing tomorrow's leaders. Drawing insights from the management and human resources development literature, it concludes that an expanded understanding of…

  1. A Complex Systems Framework for Research on Leadership and Organizational Dynamics in Academic Libraries

    ERIC Educational Resources Information Center

    Gilstrap, Donald L.

    2009-01-01

    This article provides a historiographical analysis of major leadership and organizational development theories that have shaped our thinking about how we lead and administrate academic libraries. Drawing from behavioral, cognitive, systems, and complexity theories, this article discusses major theorists and research studies appearing over the past…

  2. A Complex Systems Framework for Research on Leadership and Organizational Dynamics in Academic Libraries

    ERIC Educational Resources Information Center

    Gilstrap, Donald L.

    2009-01-01

    This article provides a historiographical analysis of major leadership and organizational development theories that have shaped our thinking about how we lead and administrate academic libraries. Drawing from behavioral, cognitive, systems, and complexity theories, this article discusses major theorists and research studies appearing over the past…

  3. Education Library 2.0: The Establishment of a Dynamic Multi-Site Liaison Program

    ERIC Educational Resources Information Center

    Dutton Ewbank, Ann

    2009-01-01

    Using a combination of marketing, Web 2.0 tools, videoconferencing, face-to-face instruction and site visits, a library presence including systematic information literacy instruction is embedded into multiple programs at sixteen sites in a growing college of education with nearly 6000 students and over 115 full-time faculty members. As the needs…

  4. Developmental Relationships in the Dynamic Library Environment: Re-Conceptualizing Mentoring for the Future

    ERIC Educational Resources Information Center

    Murphy, Sarah Anne

    2008-01-01

    This article examines the current conceptualization of mentoring in academic libraries and argues that traditional hierarchical mentoring relationships are no longer sufficient for developing tomorrow's leaders. Drawing insights from the management and human resources development literature, it concludes that an expanded understanding of…

  5. Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Verma, Sunita; Delzeit, Lance; Meyyappan, M.; Han, Jie

    2000-01-01

    Libraries of liquid-phase catalyst precursor solutions were printed onto iridium-coated silicon substrates and evaluated for their effectiveness in catalyzing the growth of multi-walled carbon nanotubes (MWNTs) by chemical vapor deposition (CVD). The catalyst precursor solutions were composed of inorganic salts and a removable tri-block copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene oxide) structure-directing agent (SDA), dissolved in ethanol/methanol mixtures. Sample libraries were quickly assayed using scanning electron microscopy after CVD growth to identify active catalysts and CVD conditions. Composition libraries and focus libraries were then constructed around the active spots identified in the discovery libraries to understand how catalyst precursor composition affects the yield, density, and quality of the nanotubes. Successful implementation of combinatorial optimization methods in the development of highly active, carbon nanotube catalysts is demonstrated, as well as the identification of catalyst formulations that lead to varying densities and shapes of aligned nanotube towers.

  6. Combinatorial synthesis of heterocycles: solid-phase synthesis of 2-amino-4(1H)-quinazolinone derivatives.

    PubMed

    Gopalsamy, A; Yang, H

    2000-01-01

    A new solid-phase synthesis of various substituted 2-amino-4(1H)-quinazolinones from a resin bound amine component is described. The amine was readily converted to the corresponding polymer bound S-methylthiopseudourea. Condensation with different substituted isatoic anhydrides afforded 2-amino-4(1H)-quinazolinone derivatives. The method is amenable for combinatorial library generation.

  7. Combinatorial and automated synthesis of phosphodiester galactosyl cluster on solid support by click chemistry assisted by microwaves.

    PubMed

    Pourceau, Gwladys; Meyer, Albert; Vasseur, Jean-Jacques; Morvan, François

    2008-08-01

    Small libraries of di-, tri-, and tetragalactosyl clusters were efficiently synthesized using combinatorial methodology, on solid support, by click chemistry assisted by microwaves, starting from different poly alkyne DNA-based scaffolds and two galactosyl azide derivatives. The scaffold was synthesized by standard DNA solid-supported phosphoramidite chemistry using a novel alkyne phosphoramidite and an alkyne solid support. The proportion of each glycocluster in a library was modulated using different molar ratios of both galactose azides.

  8. A web based Radiation Oncology Dose Manager with a rich User Interface developed using AJAX, ruby, dynamic XHTML and the new Yahoo/EXT User Interface Library.

    PubMed

    Vali, Faisal; Hong, Robert

    2007-10-11

    With the evolution of AJAX, ruby on rails, advanced dynamic XHTML technologies and the advent of powerful user interface libraries for javascript (EXT, Yahoo User Interface Library), developers now have the ability to provide truly rich interfaces within web browsers, with reasonable effort and without third-party plugins. We designed and developed an example of such a solution. The User Interface allows radiation oncology practices to intuitively manage different dose fractionation schemes by helping estimate total dose to irradiated organs.

  9. Similarity searching in large combinatorial chemistry spaces

    NASA Astrophysics Data System (ADS)

    Rarey, Matthias; Stahl, Martin

    2001-06-01

    We present a novel algorithm, called Ftrees-FS, for similarity searching in large chemistry spaces based on dynamic programming. Given a query compound, the algorithm generates sets of compounds from a given chemistry space that are similar to the query. The similarity search is based on the feature tree similarity measure representing molecules by tree structures. This descriptor allows handling combinatorial chemistry spaces as a whole instead of looking at subsets of enumerated compounds. Within few minutes of computing time, the algorithm is able to find the most similar compound in very large spaces as well as sets of compounds at an arbitrary similarity level. In addition, the diversity among the generated compounds can be controlled. A set of 17 000 fragments of known drugs, generated by the RECAP procedure from the World Drug Index, was used as the search chemistry space. These fragments can be combined to more than 1018 compounds of reasonable size. For validation, known antagonists/inhibitors of several targets including dopamine D4, histamine H1, and COX2 are used as queries. Comparison of the compounds created by Ftrees-FS to other known actives demonstrates the ability of the method to jump between structurally unrelated molecule classes.

  10. The identification and characterization of hydrazinyl urea-based antibacterial agents through combinatorial chemistry.

    PubMed

    Wilson, L J; Morris, T W; Wu, Q; Renick, P J; Parker, C N; Davis, M C; McKeever, H D; Hershberger, P M; Switzer, A G; Shrum, G; Sunder, S; Jones, D R; Soper, S S; Dobson, R L; Burt, T; Morand, K L; Stella, M

    2001-05-07

    An effort to identify novel inhibitors of peptidoglycan synthesis with antibacterial activity resulted in the discovery of a series of biaryl urea-based antibacterial agents through isolation of a by-product from a mixture-based combinatorial library of semi-carbazones and subsequent parallel synthesis efforts. The compounds were shown to possess broad spectrum antibacterial activity against gram-positive drug resistant pathogens, and showed apparent specificity for disruption of the bacterial cell wall biosynthesis pathway.

  11. Parallel and Distributed Computing Combinatorial Algorithms

    DTIC Science & Technology

    1993-10-01

    FUPNDKC %2,•, PARALLEL AND DISTRIBUTED COMPUTING COMBINATORIAL ALGORITHMS 6. AUTHOR(S) 2304/DS F49620-92-J-0125 DR. LEIGHTON 7 PERFORMING ORGANIZATION NAME...on several problems involving parallel and distributed computing and combinatorial optimization. This research is reported in the numerous papers that...network decom- position. In Proceedings of the Eleventh Annual ACM Symposium on Principles of Distributed Computing , August 1992. [15] B. Awerbuch, B

  12. Spinach - A software library for simulation of spin dynamics in large spin systems

    NASA Astrophysics Data System (ADS)

    Hogben, H. J.; Krzystyniak, M.; Charnock, G. T. P.; Hore, P. J.; Kuprov, Ilya

    2011-02-01

    We introduce a software library incorporating our recent research into efficient simulation algorithms for large spin systems. Liouville space simulations (including symmetry, relaxation and chemical kinetics) of most liquid-state NMR experiments on 40+ spin systems can now be performed without effort on a desktop workstation. Much progress has also been made with improving the efficiency of ESR, solid state NMR and Spin Chemistry simulations. Spinach is available for download at http://spindynamics.org.

  13. Combinatorial explosion in model gene networks

    NASA Astrophysics Data System (ADS)

    Edwards, R.; Glass, L.

    2000-09-01

    The explosive growth in knowledge of the genome of humans and other organisms leaves open the question of how the functioning of genes in interacting networks is coordinated for orderly activity. One approach to this problem is to study mathematical properties of abstract network models that capture the logical structures of gene networks. The principal issue is to understand how particular patterns of activity can result from particular network structures, and what types of behavior are possible. We study idealized models in which the logical structure of the network is explicitly represented by Boolean functions that can be represented by directed graphs on n-cubes, but which are continuous in time and described by differential equations, rather than being updated synchronously via a discrete clock. The equations are piecewise linear, which allows significant analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to the question of how many distinct logical structures exist for n-dimensional networks, showing that the number increases very rapidly with n. We then outline analytic methods that can be used to establish the existence, stability and periods of periodic orbits corresponding to particular cycles on the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least several hundred different patterns of stable periodic behavior are possible, many of them surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that small mutations (reversal of one or a few edges on the n-cube) need not destroy the stability of a limit cycle. Although these networks are very simple as models of gene networks, their mathematical transparency reveals relationships between structure and behavior, they suggest that the possibilities for orderly dynamics in such

  14. Combinatorial discovery of two-photon photoremovable protecting groups

    PubMed Central

    Pirrung, Michael C.; Pieper, Wolfgang H.; Kaliappan, Krishna P.; Dhananjeyan, Mugunthu R.

    2003-01-01

    A design principle for a two-photon photochemically removable protecting group based on sequential one-photon processes has been established. The expected performance of such groups in spatially directed photoactivation/photodeprotection has been shown by a kinetic analysis. One particular molecular class fitting into this design, the nitrobenzyl ethers of o-hydroxycinnamates, has been presented. An initial demonstration of two-photon deprotection of one such group prompted further optimization with respect to photochemical deprotection rate. This was accomplished by the preparation and screening of a 135-member indexed combinatorial library. Optimum performance for λ >350 nm deprotection in organic solvent was found with 4,5-dialkoxy and α-cyano substitution in the nitrobenzyl group and 4-methoxy substitution in the cinnamate. PMID:14557545

  15. High-pressure combinatorial process integrating hot isostatic pressing.

    PubMed

    Fujimoto, Kenjiro; Morita, Hiroki; Goshima, Yuji; Ito, Shigeru

    2013-12-09

    A high-pressure combinatorial process integrating hot isostatic pressing (HIP) was developed by providing a reaction vessel with a high-pressure tightness based on a commercial flange. The reaction vessel can be used up to 200 MPa and 500 °C under HIP processing condition. Preparation of spinel-type MgAl2O4 from Mg(OH)2, Al(OH)3 and AlOOH was performed using the reaction vessel under 200 MPa and 500 °C as demonstration. The entire powder library was characterized using powder X-ray diffraction patterns, and the single phase of spinel-type MgAl2O4 was obtained from Mg(OH)2+Al(OH)3. These assessments corresponded with previously published data.

  16. Combinatorial investigation of Fe–B thin-film nanocomposites

    PubMed Central

    Brunken, Hayo; Grochla, Dario; Savan, Alan; Kieschnick, Michael; Meijer, Jan D; Ludwig, Alfred

    2011-01-01

    Combinatorial magnetron sputter deposition from elemental targets was used to create Fe–B composition spread type thin film materials libraries on thermally oxidized 4-in. Si wafers. The materials libraries consisting of wedge-type multilayer thin films were annealed at 500 or 700 °C to transform the multilayers into multiphase alloys. The libraries were characterized by nuclear reaction analysis, Rutherford backscattering, nanoindentation, vibrating sample magnetometry, x-ray diffraction (XRD) and transmission electron microscopy (TEM). Young's modulus and hardness values were related to the annealing parameters, structure and composition of the films. The magnetic properties of the films were improved by annealing in a H2 atmosphere, showing a more than tenfold decrease in the coercive field values in comparison to those of the vacuum-annealed films. The hardness values increased from 8 to 18 GPa when the annealing temperature was increased from 500 to 700 °C. The appearance of Fe2B phases, as revealed by XRD and TEM, had a significant effect on the mechanical properties of the films. PMID:27877435

  17. Combinatorial investigation of Fe-B thin-film nanocomposites.

    PubMed

    Brunken, Hayo; Grochla, Dario; Savan, Alan; Kieschnick, Michael; Meijer, Jan D; Ludwig, Alfred

    2011-10-01

    Combinatorial magnetron sputter deposition from elemental targets was used to create Fe-B composition spread type thin film materials libraries on thermally oxidized 4-in. Si wafers. The materials libraries consisting of wedge-type multilayer thin films were annealed at 500 or 700 °C to transform the multilayers into multiphase alloys. The libraries were characterized by nuclear reaction analysis, Rutherford backscattering, nanoindentation, vibrating sample magnetometry, x-ray diffraction (XRD) and transmission electron microscopy (TEM). Young's modulus and hardness values were related to the annealing parameters, structure and composition of the films. The magnetic properties of the films were improved by annealing in a H2 atmosphere, showing a more than tenfold decrease in the coercive field values in comparison to those of the vacuum-annealed films. The hardness values increased from 8 to 18 GPa when the annealing temperature was increased from 500 to 700 °C. The appearance of Fe2B phases, as revealed by XRD and TEM, had a significant effect on the mechanical properties of the films.

  18. The cascade radical annulation approach to new analogues of camptothecins. Combinatorial synthesis of silatecans and homosilatecans.

    PubMed

    Curran, D P; Josien, H; Bom, D; Gabarda, A E; Du, W

    2000-01-01

    An overview of the cascade radical annulation approach to the camptothecin family of antitumor drugs is presented. This combinatorial synthetic approach involves two key steps: (1) N-propargylation of a lactone/pyridone D/E ring fragment and (2) cascade radical annulation of an A-ring isonitrile to form rings B and C. The synthesis is probably the most flexible and general route to the camptothecin class of molecules. The parallel synthesis of several libraries of silatecan and homosilatecan libraries is summarized. One of the first-generation silatecans, DB-67, is emerging as a serious candidate for cancer chemotherapy.

  19. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials

    NASA Astrophysics Data System (ADS)

    Green, Martin L.; Takeuchi, Ichiro; Hattrick-Simpers, Jason R.

    2013-06-01

    High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a "library" sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same "library" sample, they can be highly uniform with respect to fixed processing parameters. This article critically reviews the literature pertaining to applications of combinatorial materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high throughput methodologies will facilitate commercialization of novel materials for these critically important applications. Despite the overwhelming evidence presented in this paper that high throughput studies can effectively inform commercial practice, in our perception, it remains an underutilized research and development tool. Part of this perception may be due to the inaccessibility of proprietary industrial research and development practices, but clearly the initial cost and availability of high throughput laboratory equipment plays a role. Combinatorial materials science has traditionally been focused on materials discovery, screening, and optimization to combat the extremely high cost and long development times for new materials and their introduction into commerce. Going forward, combinatorial materials science will also be driven by other needs such as materials substitution and experimental verification of materials properties predicted by modeling and simulation, which have recently received much attention with the advent of the Materials Genome

  20. Losing Libraries, Saving Libraries

    ERIC Educational Resources Information Center

    Miller, Rebecca

    2010-01-01

    This summer, as public libraries continued to get budget hit after budget hit across the country, several readers asked for a comprehensive picture of the ravages of the recession on library service. In partnership with 2010 Movers & Shakers Laura Solomon and Mandy Knapp, Ohio librarians who bought the Losing Libraries domain name,…

  1. Losing Libraries, Saving Libraries

    ERIC Educational Resources Information Center

    Miller, Rebecca

    2010-01-01

    This summer, as public libraries continued to get budget hit after budget hit across the country, several readers asked for a comprehensive picture of the ravages of the recession on library service. In partnership with 2010 Movers & Shakers Laura Solomon and Mandy Knapp, Ohio librarians who bought the Losing Libraries domain name,…

  2. Inducible and combinatorial gene manipulation in mouse brain

    PubMed Central

    Dogbevia, Godwin K.; Marticorena-Alvarez, Ricardo; Bausen, Melanie; Sprengel, Rolf; Hasan, Mazahir T.

    2015-01-01

    We have deployed recombinant adeno-associated viruses equipped with tetracycline-controlled genetic switches to manipulate gene expression in mouse brain. Here, we show a combinatorial genetic approach for inducible, cell type-specific gene expression and Cre/loxP mediated gene recombination in different brain regions. Our chemical-genetic approach will help to investigate ‘when’, ‘where’, and ‘how’ gene(s) control neuronal circuit dynamics, and organize, for example, sensory signal processing, learning and memory, and behavior. PMID:25954155

  3. Immobilized OBOC combinatorial bead array to facilitate multiplicative screening.

    PubMed

    Xiao, Wenwu; Bononi, Fernanda C; Townsend, Jared; Li, Yuanpei; Liu, Ruiwu; Lam, Kit S

    2013-07-01

    One-bead-one-compound (OBOC) combinatorial library screening has been broadly utilized for the last two decades to identify small molecules, peptides or peptidomimetics targeting variable screening probes such as cell surface receptors, bacteria, protein kinases, phosphatases, proteases etc. In previous screening methods, library beads were suspended in solution and screened against one single probe. Only the positive beads were tracked and isolated for additional screens and finally selected for chemical decoding. During this process, the remaining negative beads were not tracked and discarded. Here we report a novel bead immobilization method such that a bead library array can be conveniently prepared and screened in its entirety, sequentially many times with a series of distinct probes. This method not only allows us to increase the screening efficiency but also permits us to determine the binding profile of each and every library bead against a large number of target receptors. As proof of concept, we serially screened a random OBOC disulfide containing cyclic heptapeptide library with three water soluble dyes as model probes: malachite green, bromocresol purple and indigo carmine. This multiplicative screening approach resulted in a rapid determination of the binding profile of each and every bead respective to each of the three dyes. Beads that interacted with malachite green only, bromocresol purple only, or both indigo carmine and bromocresol purple were isolated, and their peptide sequences were determined with microsequencer. Ultimately, the novel OBOC multiplicative screening approach could play a key role in the enhancement of existing on-bead assays such as whole cell binding, bacteria binding, protein binding, posttranslational modifications etc. with increased efficiency, capacity, and specificity.

  4. Combinatorial Pooling Enables Selective Sequencing of the Barley Gene Space

    PubMed Central

    Lonardi, Stefano; Duma, Denisa; Alpert, Matthew; Cordero, Francesca; Beccuti, Marco; Bhat, Prasanna R.; Wu, Yonghui; Ciardo, Gianfranco; Alsaihati, Burair; Ma, Yaqin; Wanamaker, Steve; Resnik, Josh; Bozdag, Serdar; Luo, Ming-Cheng; Close, Timothy J.

    2013-01-01

    For the vast majority of species – including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding. PMID:23592960

  5. Spinach--a software library for simulation of spin dynamics in large spin systems.

    PubMed

    Hogben, H J; Krzystyniak, M; Charnock, G T P; Hore, P J; Kuprov, Ilya

    2011-02-01

    We introduce a software library incorporating our recent research into efficient simulation algorithms for large spin systems. Liouville space simulations (including symmetry, relaxation and chemical kinetics) of most liquid-state NMR experiments on 40+ spin systems can now be performed without effort on a desktop workstation. Much progress has also been made with improving the efficiency of ESR, solid state NMR and Spin Chemistry simulations. Spinach is available for download at http://spindynamics.org. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Quality Library Services, K-12.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus.

    Developed to promote excellence in Ohio's school libraries, this document is designed to: (1) provide a rationale for integration of the school library into the total education program; (2) delineate the dimensions of service of a dynamic K-12 library program; (3) identify essential components of an effective K-12 library program; (4) provide a…

  7. Copper(I)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes.

    PubMed

    Berrocal, José Augusto; Nieuwenhuizen, Marko M L; Mandolini, Luigi; Meijer, E W; Di Stefano, Stefano

    2014-08-28

    Olefin cross-metathesis of diluted dichloromethane solutions (≤0.15 M) of the 28-membered macrocyclic alkene C1, featuring a 1,10-phenanthroline moiety in the backbone, as well as of catenand 1, composed of two identical interlocked C1 units, generates families of noninterlocked oligomers Ci. The composition of the libraries is strongly dependent on the monomer concentration, but independent of whether C1 or 1 is used as feedstock, as expected for truly equilibrated systems. Accordingly, the limiting value 0.022 M approached by the equilibrium concentration of C1 when the total monomer concentration approaches the critical value, as predicted by the Jacobson-Stockmayer theory, provides a reliable estimate of the thermodynamically effective molarity. Catenand 1 behaves as a virtual component of the dynamic libraries, in that there is no detectable trace of its presence in the equilibrated mixtures, but becomes the major component - in the form of its copper(I) complex - when olefin cross-metathesis is carried out in the presence of a copper(I) salt.

  8. Adaptive Correction from Virtually Complex Dynamic Libraries: The Role of Noncovalent Interactions in Structural Selection and Folding.

    PubMed

    Lafuente, Maria; Atcher, Joan; Solà, Jordi; Alfonso, Ignacio

    2015-11-16

    The hierarchical self-assembling of complex molecular systems is dictated by the chemical and structural information stored in their components. This information can be expressed through an adaptive process that determines the structurally fittest assembly under given environmental conditions. We have set up complex disulfide-based dynamic covalent libraries of chemically and topologically diverse pseudopeptidic compounds. We show how the reaction evolves from very complex mixtures at short reaction times to the almost exclusive formation of a major compound, through the establishment of intramolecular noncovalent interactions. Our experiments demonstrate that the systems evolve through error-check and error-correction processes. The nature of these interactions, the importance of the folding and the effects of the environment are also discussed.

  9. A combinatorial approach to the discovery and optimization of luminescent materials

    NASA Astrophysics Data System (ADS)

    Danielson, Earl; Golden, Josh H.; McFarland, Eric W.; Reaves, Casper M.; Weinberg, W. Henry; Wu, Xin Di

    1997-10-01

    Combinatorial synthesis and screening of very large numbers of organic compounds has been widely applied in the pharmaceutical industry for drug discovery. Recently, combinatorial arrays of inorganic materials with known or potential superconductivity and giant magnetoresistance have been synthesized and screened. The combinatorial approach is particularly well suited to ternary and higher-order inorganic materials, for which efforts to predict basic properties have been unsuccessful. Here we describe an automated combinatorial method for synthesizing and characterizing thin-film libraries of up to 25,000 different materials, on a three-inch-diameter substrate, as candidates for new phosphors. The discovery and development of new compounds for ultraviolet-excited phosphors is of great importance for the development of flat-panel displays and lighting. As there are no reliable theories to predict the relation between composition and phosphor colour and efficiency, the less than 100 useful commercial phosphor materials have been discovered through one-by-one serial synthesis and testing. Our approach, in contrast, offers rapid screening of many compositions, and it has enabled us to identify a new red phosphor, Y0.845Al0.070La0.060Eu0.025VO4, which has a quantum efficiency comparable or superior to those of existing commercial red phosphors.

  10. Microfluidic-Enabled Print-to-Screen Platform for High-Throughput Screening of Combinatorial Chemotherapy.

    PubMed

    Ding, Yuzhe; Li, Jiannan; Xiao, Wenwu; Xiao, Kai; Lee, Joyce; Bhardwaj, Urvashi; Zhu, Zijie; Digiglio, Philip; Yang, Gaomai; Lam, Kit S; Pan, Tingrui

    2015-10-20

    Since the 1960s, combination chemotherapy has been widely utilized as a standard method to treat cancer. However, because of the potentially enormous number of drug candidates and combinations, conventional identification methods of the effective drug combinations are usually associated with significantly high operational costs, low throughput screening, laborious and time-consuming procedures, and ethical concerns. In this paper, we present a low-cost, high-efficiency microfluidic print-to-screen (P2S) platform, which integrates combinatorial screening with biomolecular printing for high-throughput screening of anticancer drug combinations. This P2S platform provides several distinct advantages and features, including automatic combinatorial printing, high-throughput parallel drug screening, modular disposable cartridge, and biocompatibility, which can potentially speed up the entire discovery cycle of potent drug combinations. Microfluidic impact printing utilizing plug-and-play microfluidic cartridges is experimentally characterized with controllable droplet volume and accurate positioning. Furthermore, the combinatorial print-to-screen assay is demonstrated in a proof-of-concept biological experiment which can identify the positive hits among the entire drug combination library in a parallel and rapid manner. Overall, this microfluidic print-to-screen platform offers a simple, low-cost, high-efficiency solution for high-throughput large-scale combinatorial screening and can be applicable for various emerging applications in drug cocktail discovery.

  11. Combinatorial chemistry approach to chiral catalyst engineering and screening: rational design and serendipity.

    PubMed

    Ding, Kuiling; Du, Haifeng; Yuan, Yu; Long, Jiang

    2004-06-21

    An efficient asymmetric catalyst relies on the successful combination of a large number of interrelated variables, including rational design, intuition, persistence, and good fortune-not all of which are necessarily well-understood; this renders such practice largely empirical. As a result, the possibility of using combinatorial chemistry methods in asymmetric catalysis research has been widely recognized to be highly desirable. In this account, we attempt to show the principle and application of combinatorial approach in the discovery of chiral catalysts for enantioselective reactions. The concept focuses on the strategy for the creation of a modular chiral catalyst library by two-component ligand modification of metal ions on the basis of molecular recognition and assembly. The self-assembled chiral catalyst with two different ligands indeed exhibited synergistic effects in terms of both enantioselectivity and activity in comparison with its corresponding homocombinations in many reactions. The examples described in this paper demonstrated the powerfulness of combinatorial approach for the discovery of novel chiral catalyst systems, particularly for the development of highly efficient, enantioselective, and practical catalysts for enantioselective reactions. We hope this concept will stimulate further work on the discovery of more highly efficient and enantioselective catalysts, as well as unexpected classes of catalysts or catalytic enantioselective reactions in the future with the help of a combinatorial chemistry approach.

  12. Driven evolution of a constitutional dynamic library of molecular helices toward the selective generation of [2 x 2] gridlike arrays under the pressure of metal ion coordination.

    PubMed

    Giuseppone, Nicolas; Schmitt, Jean-Louis; Lehn, Jean-Marie

    2006-12-27

    Constitutional dynamics, self-assembly, and helical-folding control are brought together in the efficient Sc(OTf)3/microwave-catalyzed transimination of helical oligohydrazone strands, yielding highly diverse dynamic libraries of interconverting constituents through assembly, dissociation, and exchange of components. The transimination-type mechanism of the ScIII-promoted exchange, as well as its regioselectivity, occurring only at the extremities of the helical strands, allow one to perform directional terminal polymerization/depolymerization processes when starting with dissymmetric strands. A particular library is subsequently brought to express quantitatively [2 x 2] gridlike metallosupramolecular arrays in the presence of ZnII ions by component recombination generating the correct ligand from the dynamic set of interconverting strands. This behavior represents a process of driven evolution of a constitutional dynamic chemical system under the pressure (coordination interaction) of an external effector (metal ions).

  13. Bulk combinatorial synthesis and high throughput characterization for rapid assessment of magnetic materials: Application of laser engineered net shaping (LENS)

    DOE PAGES

    Geng, J.; Nlebedim, I. C.; Besser, M. F.; ...

    2016-04-15

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  14. Bulk Combinatorial Synthesis and High Throughput Characterization for Rapid Assessment of Magnetic Materials: Application of Laser Engineered Net Shaping (LENS™)

    NASA Astrophysics Data System (ADS)

    Geng, J.; Nlebedim, I. C.; Besser, M. F.; Simsek, E.; Ott, R. T.

    2016-07-01

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS™; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS™ system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. The Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  15. Combinatorial gene regulation by modulation of relative pulse timing

    PubMed Central

    Lin, Yihan; Sohn, Chang Ho; Dalal, Chiraj K.; Cai, Long; Elowitz, Michael B.

    2015-01-01

    Studies of individual living cells have revealed that many transcription factors activate in dynamic, and often stochastic, pulses within the same cell. However, it has remained unclear whether cells might modulate the relative timing of these pulses to control gene expression. Here, using quantitative single-cell time-lapse imaging of Saccharomyces cerevisiae, we show that the pulsatile transcription factors Msn2 and Mig1 combinatorially regulate their target genes through modulation of their relative pulse timing. The activator Msn2 and repressor Mig1 pulsed in either a temporally overlapping or non-overlapping manner during their transient response to different inputs, with only the non-overlapping dynamics efficiently activating target gene expression. Similarly, under constant environmental conditions, where Msn2 and Mig1 exhibit sporadic pulsing, glucose concentration modulated the temporal overlap between pulses of the two factors. Together, these results reveal a time-based mode of combinatorial gene regulation. Regulation through relative signal timing is common in engineering and neurobiology, and these results suggest that it could also function broadly within the signaling and regulatory systems of the cell. PMID:26466562

  16. Combinatorial Polymer Electrospun Matrices Promote Physiologically-Relevant Cardiomyogenic Stem Cell Differentiation

    PubMed Central

    Gupta, Mukesh K.; Walthall, Joel M.; Venkataraman, Raghav; Crowder, Spencer W.; Jung, Dae Kwang; Yu, Shann S.; Feaster, Tromondae K.; Wang, Xintong; Giorgio, Todd D.; Hong, Charles C.; Baudenbacher, Franz J.; Hatzopoulos, Antonis K.; Sung, Hak-Joon

    2011-01-01

    Myocardial infarction results in extensive cardiomyocyte death which can lead to fatal arrhythmias or congestive heart failure. Delivery of stem cells to repopulate damaged cardiac tissue may be an attractive and innovative solution for repairing the damaged heart. Instructive polymer scaffolds with a wide range of properties have been used extensively to direct the differentiation of stem cells. In this study, we have optimized the chemical and mechanical properties of an electrospun polymer mesh for directed differentiation of embryonic stem cells (ESCs) towards a cardiomyogenic lineage. A combinatorial polymer library was prepared by copolymerizing three distinct subunits at varying molar ratios to tune the physicochemical properties of the resulting polymer: hydrophilic polyethylene glycol (PEG), hydrophobic poly(ε-caprolactone) (PCL), and negatively-charged, carboxylated PCL (CPCL). Murine ESCs were cultured on electrospun polymeric scaffolds and their differentiation to cardiomyocytes was assessed through measurements of viability, intracellular reactive oxygen species (ROS), α-myosin heavy chain expression (α-MHC), and intracellular Ca2+ signaling dynamics. Interestingly, ESCs on the most compliant substrate, 4%PEG-86%PCL-10%CPCL, exhibited the highest α-MHC expression as well as the most mature Ca2+ signaling dynamics. To investigate the role of scaffold modulus in ESC differentiation, the scaffold fiber density was reduced by altering the electrospinning parameters. The reduced modulus was found to enhance α-MHC gene expression, and promote maturation of myocyte Ca2+ handling. These data indicate that ESC-derived cardiomyocyte differentiation and maturation can be promoted by tuning the mechanical and chemical properties of polymer scaffold via copolymerization and electrospinning techniques. PMID:22216144

  17. Quantum control implemented as combinatorial optimization.

    PubMed

    Strohecker, Traci; Rabitz, Herschel

    2010-01-15

    Optimal control theory provides a general means for designing controls to manipulate quantum phenomena. Traditional implementation requires solving coupled nonlinear equations to obtain the optimal control solution, whereas this work introduces a combinatorial quantum control (CQC) algorithm to avoid this complexity. The CQC technique uses a predetermined toolkit of small time step propagators in conjunction with combinatorial optimization to identify a proper sequence for the toolkit members. Results indicate that the CQC technique exhibits invariance of search effort to the number of system states and very favorable scaling upon comparison to a standard gradient algorithm, taking into consideration that CQC is easily parallelizable.

  18. [Combinatorial optimization of synthetic biological systems].

    PubMed

    Gu, Qun; Li, Yifan; Chen, Tao

    2013-08-01

    A major challenge in synthetic biology is to engineer complex biological systems with novel functions. Due to the inherent complexity of biological systems, it is often difficult to rationally design every component in a synthetic gene network to achive an optimal performance. Combinatorial engineering is an important solution to this problem and can greatly facilitate the construction of novel biological functions. Here, we review methods and techniques developed in recent years for combinatorial optimization of synthetic biological systems, including methods for fine-tuning pathway components, strategies for systematically optimization of metabolic pathways, and techniques for introducing multiplex genome wide perturbations.

  19. Mass spectrometry and combinatorial chemistry: new approaches for direct support-bound compound identification.

    PubMed

    Enjalbal, C; Maux, D; Martinez, J; Combarieu, R; Aubagnac, J L

    2001-06-01

    Mass spectrometry is a powerful analytical tool allowing rapid and sensitive structural elucidation of a wide range of molecules issued from solution-, solid- and liquid-phase syntheses. Therefore, mass spectrometry has become the most widely used tool to probe combinatorial libraries. A significant portion of the reported combinatorial data are being produced using solid phase organic synthesis. In contrast to indirect strategies where the tethered structures were released from the support into solution to undergo standard mass spectrometric analyses, static - secondary ion mass spectrometry (S-SIMS) has enabled the identification of support-bound molecules without any chemical treatment of the resin bead. Such non-destructive characterization was applied at the bead level and facilitated the step-by-step monitoring of solid-phase peptide syntheses. Side-reactions were also detected. The relevance of S-SIMS in the rehearsal phase of combinatorial chemistry is demonstrated by comparison with infrared and nuclear magnetic resonance (NMR) spectroscopies, the two other techniques investigated in that field. An alternative to solid-phase synthesis consists of assembling molecules on a soluble polymer. This methodology is termed liquid-phase synthesis. Compound characterization is facilitated since the derivatized support is soluble in spectroscopic solvents used in NMR or in electrospray ionization mass spectrometry. The advantages and drawbacks of this approach will be discussed in terms of the direct monitoring of supported reactions during chemistry optimization and rehearsal library validation.

  20. Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.

    PubMed

    Smith, J E

    2012-01-01

    Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes

  1. Chromodomain Ligand Optimization via Target-Class Directed Combinatorial Repurposing.

    PubMed

    Barnash, Kimberly D; Lamb, Kelsey N; Stuckey, Jacob I; Norris, Jacqueline L; Cholensky, Stephanie H; Kireev, Dmitri B; Frye, Stephen V; James, Lindsey I

    2016-09-16

    Efforts to develop strategies for small-molecule chemical probe discovery against the readers of the methyl-lysine (Kme) post-translational modification have been met with limited success. Targeted disruption of these protein-protein interactions via peptidomimetic inhibitor optimization is a promising alternative to small-molecule hit discovery; however, recognition of identical peptide motifs by multiple Kme reader proteins presents a unique challenge in the development of selective Kme reader chemical probes. These selectivity challenges are exemplified by the Polycomb repressive complex 1 (PRC1) chemical probe, UNC3866, which demonstrates submicromolar off-target affinity toward the non-PRC1 chromodomains CDYL2 and CDYL. Moreover, since peptidomimetics are challenging subjects for structure-activity relationship (SAR) studies, traditional optimization of UNC3866 would prove costly and time-consuming. Herein, we report a broadly applicable strategy for the affinity-based, target-class screening of chromodomains via the repurposing of UNC3866 in an efficient, combinatorial peptide library. A first-generation library yielded UNC4991, a UNC3866 analogue that exhibits a distinct selectivity profile while maintaining submicromolar affinity toward the CDYL chromodomains. Additionally, in vitro pull-down experiments from HeLa nuclear lysates further demonstrate the selectivity and utility of this compound for future elucidation of CDYL protein function.

  2. Combinatorial discovery of tumor targeting peptides using phage display.

    PubMed

    Landon, Linda A; Deutscher, Susan L

    2003-10-15

    Peptides possess appropriate pharmacokinetic properties to serve as cancer imaging or therapeutic targeting agents. Currently, only a small number of rationally-derived, labeled peptide analogues that target only a limited subset of antigens are available. Thus, finding new cancer targeting peptides is a central goal in the field of molecular targeting. Novel tumor-avid peptides can be efficiently identified via affinity selections using complex random peptide libraries containing millions of peptides that are displayed on bacteriophage. In vitro and in situ affinity selections may be used to identify peptides with high affinity for the target antigen in vitro. Unfortunately, it has been found that peptides selected in vitro or in situ may not effectively target tumors in vivo due to poor peptide stability and other problems. To improve in vivo targeting, methodological combinatorial chemistry innovations allow selections to be conducted in the environment of the whole animal. Thus, new targeting peptides with optimal in vivo properties can be selected in vivo in tumor-bearing animals. In vivo selections have been proven successful in identifying peptides that target the vasculature of specific organs. In addition, in vivo selections have identified peptides that bind specifically to the surface of or are internalized into tumor cells. In the future, direct selection of peptides for cancer imaging may be expedited using genetically engineered bacteriophage libraries that encode peptides with intrinsic radiometal-chelation or fluorescent sequences.

  3. A New Approach for Proving or Generating Combinatorial Identities

    ERIC Educational Resources Information Center

    Gonzalez, Luis

    2010-01-01

    A new method for proving, in an immediate way, many combinatorial identities is presented. The method is based on a simple recursive combinatorial formula involving n + 1 arbitrary real parameters. Moreover, this formula enables one not only to prove, but also generate many different combinatorial identities (not being required to know them "a…

  4. Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication

    ERIC Educational Resources Information Center

    Wolf, Michael Maclean

    2009-01-01

    Combinatorial scientific computing plays an important enabling role in computational science, particularly in high performance scientific computing. In this thesis, we will describe our work on optimizing matrix-vector multiplication using combinatorial techniques. Our research has focused on two different problems in combinatorial scientific…

  5. Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication

    ERIC Educational Resources Information Center

    Wolf, Michael Maclean

    2009-01-01

    Combinatorial scientific computing plays an important enabling role in computational science, particularly in high performance scientific computing. In this thesis, we will describe our work on optimizing matrix-vector multiplication using combinatorial techniques. Our research has focused on two different problems in combinatorial scientific…

  6. Chemical Space of DNA-Encoded Libraries.

    PubMed

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  7. Combinatorial Algorithms to Enable Computational Science and Engineering: Work from the CSCAPES Institute

    SciTech Connect

    Boman, Erik G.; Catalyurek, Umit V.; Chevalier, Cedric; Devine, Karen D.; Gebremedhin, Assefaw H.; Hovland, Paul D.; Pothen, Alex; Rajamanickam, Sivasankaran; Safro, Ilya; Wolf, Michael M.; Zhou, Min

    2015-01-16

    This final progress report summarizes the work accomplished at the Combinatorial Scientific Computing and Petascale Simulations Institute. We developed Zoltan, a parallel mesh partitioning library that made use of accurate hypergraph models to provide load balancing in mesh-based computations. We developed several graph coloring algorithms for computing Jacobian and Hessian matrices and organized them into a software package called ColPack. We developed parallel algorithms for graph coloring and graph matching problems, and also designed multi-scale graph algorithms. Three PhD students graduated, six more are continuing their PhD studies, and four postdoctoral scholars were advised. Six of these students and Fellows have joined DOE Labs (Sandia, Berkeley), as staff scientists or as postdoctoral scientists. We also organized the SIAM Workshop on Combinatorial Scientific Computing (CSC) in 2007, 2009, and 2011 to continue to foster the CSC community.

  8. Combinatorial studies for determining properties of thin-film gold-cobalt alloys

    NASA Astrophysics Data System (ADS)

    Ramirez, Ainissa G.; Saha, Ranjana

    2004-11-01

    A library of gold-cobalt alloys was synthesized by combinatorial methods to explore potential contact materials for microfabricated microrelays. After a compositionally graded film was deposited, it was subjected to heat treatments to create precipitates and to promote precipitation hardening. Using a high-throughput screening method, the film was then characterized for mechanical hardness, sheet resistance, composition, and microstructure by using nanoindentation, four-point probe, x-ray photoelectron spectroscopy, and transmission electron microscopy. The hardness exhibited a linear behavior from pure gold to pure cobalt from 2 to 9 GPa. The microstructure included a metastable gold-silicide with a grain size that seems dependent on the amount of cobalt. From this combinatorial method, we gain an understanding of the material's structure-property relationship and can illuminate the link between mechanical and electrical properties to composition. This work presents the experiments and techniques for mapping material properties.

  9. Discovery of Cationic Polymers for Non-viral Gene Delivery using Combinatorial Approaches

    PubMed Central

    Barua, Sutapa; Ramos, James; Potta, Thrimoorthy; Taylor, David; Huang, Huang-Chiao; Montanez, Gabriela; Rege, Kaushal

    2015-01-01

    Gene therapy is an attractive treatment option for diseases of genetic origin, including several cancers and cardiovascular diseases. While viruses are effective vectors for delivering exogenous genes to cells, concerns related to insertional mutagenesis, immunogenicity, lack of tropism, decay and high production costs necessitate the discovery of non-viral methods. Significant efforts have been focused on cationic polymers as non-viral alternatives for gene delivery. Recent studies have employed combinatorial syntheses and parallel screening methods for enhancing the efficacy of gene delivery, biocompatibility of the delivery vehicle, and overcoming cellular level barriers as they relate to polymer-mediated transgene uptake, transport, transcription, and expression. This review summarizes and discusses recent advances in combinatorial syntheses and parallel screening of cationic polymer libraries for the discovery of efficient and safe gene delivery systems. PMID:21843141

  10. Combinatorial Development of Fe-Co-Nb Thin Film Magnetic Nanocomposites.

    PubMed

    Alexandrakis, Vasileios; Wallisch, Wolfgang; Hamann, Sven; Varvaro, Gaspare; Fidler, Josef; Ludwig, Alfred

    2015-11-09

    A Fe-Co-Nb thin film materials library was deposited by combinatorial magnetron sputtering and investigated by high-throughput methods to identify new noncubic ferromagnetic phases, indicating that combinatorial experimentation is an efficient method to discover new ferromagnetic phases adequate for permanent magnet applications. Structural analysis indicated the formation of a new magnetic ternary compound (Fe,Co)3Nb with a hexagonal crystal structure (C36) embedded in an FeCo-based matrix. This nanocomposite exhibits characteristics of a two-phase ferromagnetic system, the so-called hard-soft nanocomposites, indicating that the new phase (Fe,Co)3Nb is ferromagnetic. Magnetic hysteresis loops at various angles revealed that the magnetization reversal process is governed by a domain wall pinning mechanism.

  11. A combinatorial code for pattern formation in Drosophila oogenesis

    PubMed Central

    Yakoby, N.; Bristow, C.A.; Gong, D.; Schafer, X.; Lembong, J.; Zartman, J.J.; Halfon, M.S.; Schüpbach, T.; Shvartsman, S.Y.

    2010-01-01

    Summary Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggested that they follow a simple combinatorial code, based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of the inductive signals, provided by the highly conserved EGFR and DPP pathways. We demonstrated the validity of the code by testing it against a set of newly identified expression patterns, obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguished 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterized their joint dynamics over four stages of oogenesis. This work provides the first systematic analysis of the diversity and dynamics of two-dimensional gene expression patterns in a developing tissue. PMID:19000837

  12. Quantum Resonance Approach to Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1997-01-01

    It is shown that quantum resonance can be used for combinatorial optimization. The advantage of the approach is in independence of the computing time upon the dimensionality of the problem. As an example, the solution to a constraint satisfaction problem of exponential complexity is demonstrated.

  13. More Combinatorial Proofs via Flagpole Arrangements

    ERIC Educational Resources Information Center

    DeTemple, Duane; Reynolds, H. David, II

    2006-01-01

    Combinatorial identities are proved by counting the number of arrangements of a flagpole and guy wires on a row of blocks that satisfy a set of conditions. An identity is proved by first deriving and then equating two expressions that each count the number of permissible arrangements. Identities for binomial coefficients and recursion relations…

  14. A Model of Students' Combinatorial Thinking

    ERIC Educational Resources Information Center

    Lockwood, Elise

    2013-01-01

    Combinatorial topics have become increasingly prevalent in K-12 and undergraduate curricula, yet research on combinatorics education indicates that students face difficulties when solving counting problems. The research community has not yet addressed students' ways of thinking at a level that facilitates deeper understanding of how students…

  15. More Combinatorial Proofs via Flagpole Arrangements

    ERIC Educational Resources Information Center

    DeTemple, Duane; Reynolds, H. David, II

    2006-01-01

    Combinatorial identities are proved by counting the number of arrangements of a flagpole and guy wires on a row of blocks that satisfy a set of conditions. An identity is proved by first deriving and then equating two expressions that each count the number of permissible arrangements. Identities for binomial coefficients and recursion relations…

  16. Affinity chromatography matures as bioinformatic and combinatorial tools develop.

    PubMed

    Clonis, Yannis D

    2006-01-06

    Affinity chromatography has the reputation of a more expensive and less robust than other types of liquid chromatography. Furthermore, the technique is considered to stand a modest chance of large-scale purification of proteinaceous pharmaceuticals. This perception is changing because of the pressure for quality protein therapeutics, and the realization that higher returns can be expected when ensuring fewer purification steps and increased product recovery. These developments necessitated a rethinking of the protein purification processes and restored the interest for affinity chromatography. This liquid chromatography technique is designed to offer high specificity, being able to safely guide protein manufactures to successfully cope with the aforementioned challenges. Affinity ligands are distinguished into synthetic and biological. These can be generated by rational design or selected from ligand libraries. Synthetic ligands are generated by three methods. The rational method features the functional approach and the structural template approach. The combinatorial method relies on the selection of ligands from a library of synthetic ligands synthesized randomly. The combined method employs both methods, that is, the ligand is selected from an intentionally biased library based on a rationally designed ligand. Biological ligands are selected by employing high-throughput biological techniques, e.g. phage- and ribosome-display for peptide and microprotein ligands, in addition to SELEX for oligonucleotide ligands. Synthetic mimodyes and chimaeric dye-ligands are usually designed by rational approaches and comprise a chloro-triazinlyl scaffold. The latter substituted with various amino acids, carbocyclic, and heterocyclic groups, generates libraries from which synthetic ligands can be selected. A 'lead' compound may help to generating a 'focused' or 'biased' library. This can be designed by various approaches, e.g.: (i) using a natural ligand-protein complex as a

  17. Creating Library Spaces: Libraries 2040.

    ERIC Educational Resources Information Center

    Bruijnzeels, Rob

    This paper suggests that by 2004, the traditional public libraries will have ceased to exist and new, attractive future libraries will have taken their place. The Libraries 2040 project of the Netherlands is initiating seven different libraries of the future. The Brabant library is the "ultimate library of the future" for the Dutch…

  18. Combinatorial structures to modeling simple games and applications

    NASA Astrophysics Data System (ADS)

    Molinero, Xavier

    2017-09-01

    We connect three different topics: combinatorial structures, game theory and chemistry. In particular, we establish the bases to represent some simple games, defined as influence games, and molecules, defined from atoms, by using combinatorial structures. First, we characterize simple games as influence games using influence graphs. It let us to modeling simple games as combinatorial structures (from the viewpoint of structures or graphs). Second, we formally define molecules as combinations of atoms. It let us to modeling molecules as combinatorial structures (from the viewpoint of combinations). It is open to generate such combinatorial structures using some specific techniques as genetic algorithms, (meta-)heuristics algorithms and parallel programming, among others.

  19. London University Search Instrument: a combinatorial robot for high-throughput methods in ceramic science.

    PubMed

    Wang, Jian; Evans, Julian R G

    2005-01-01

    This paper describes the design, construction, and operation of the London University Search Instrument (LUSI) which was recently commissioned to create and test combinatorial libraries of ceramic compositions. The instrument uses commercially available powders, milled as necessary to create thick-film libraries by ink-jet printing. Multicomponent mixtures are prepared by well plate reformatting of ceramic inks. The library tiles are robotically loaded into a flatbed furnace and, when fired, transferred to a 2-axis high-resolution measurement table fitted with a hot plate where measurements of, for example, optical or electrical properties can be made. Data are transferred to a dedicated high-performance computer. The possibilities for remote interrogation and search steering are discussed.

  20. Combinatorial methods in catalyst development

    NASA Astrophysics Data System (ADS)

    Lauterbach, Jochen

    2002-03-01

    The discovery of novel catalytic materials has traditionally followed a hypothesize-and-test methodology with limited systematic guidance. In the past few years, a high-throughput approach to catalysis has emerged, which includes efficient sample preparation, parallel processing, and rapid sequential or parallel testing of large diversities of different catalytic materials. A short review of high-throughput screening techniques will be presented. We combine computer-aided materials design techniques with high-throughput screening methodologies for automating and systematizing the catalyst design process. Rapid-scan Fourier transform infrared hyperspectral imaging is used as the main tool for the parallel investigation of multiple member supported catalyst systems. It combines the chemical specificity of infrared spectroscopy with the ability to rapidly analyze multiple samples simultaneously. Using CO oxidation, propylene oxidation, and NO decomposition as model systems, it will be demonstrated that FTIR imaging is well suited to high throughput parallel analysis of reaction products from supported catalyst libraries. A novel, systems-oriented, integrated knowledge architecture that enables the use of high-throughput data for catalyst design will be presented. This new approach involves solving the forward problem of performance prediction using hybrid first principles, rule-based and statistical models and then using that solution to solve the inverse problem: the determination of the optimal catalyst descriptors that meet the target performance.

  1. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories

    PubMed Central

    McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.; Klein, Christoph; Swails, Jason M.; Hernández, Carlos X.; Schwantes, Christian R.; Wang, Lee-Ping; Lane, Thomas J.; Pande, Vijay S.

    2015-01-01

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. PMID:26488642

  2. Dynamic chemistry of anion recognition

    SciTech Connect

    Custelcean, Radu

    2012-01-01

    In the past 40 years, anion recognition by synthetic receptors has grown into a rich and vibrant research topic, developing into a distinct branch of Supramolecular Chemistry. Traditional anion receptors comprise organic scaffolds functionalized with complementary binding groups that are assembled by multistep organic synthesis. Recently, a new approach to anion receptors has emerged, in which the host is dynamically self-assembled in the presence of the anionic guest, via reversible bond formation between functional building units. While coordination bonds were initially employed for the self-assembly of the anion hosts, more recent studies demonstrated that reversible covalent bonds can serve the same purpose. In both cases, due to their labile connections, the molecular constituents have the ability to assemble, dissociate, and recombine continuously, thereby creating a dynamic combinatorial library (DCL) of receptors. The anionic guests, through specific molecular recognition, may then amplify (express) the formation of a particular structure among all possible combinations (real or virtual) by shifting the equilibria involved towards the most optimal receptor. This approach is not limited to solution self-assembly, but is equally applicable to crystallization, where the fittest anion-binding crystal may be selected. Finally, the pros and cons of employing dynamic combinatorial chemistry (DCC) vs molecular design for developing anion receptors, and the implications of both approaches to selective anion separations, will be discussed.

  3. Combinatorial investigation of rare-earth free permanent magnets

    NASA Astrophysics Data System (ADS)

    Fackler, Sean Wu

    The combinatorial high throughput method allows one to rapidly study a large number of samples with systematically changing parameters. We apply this method to study Fe-Co-V alloys as alternatives to rare-earth permanent magnets. Rare-earth permanent magnets derive their unmatched magnetic properties from the hybridization of Fe and Co with the f-orbitals of rare-earth elements, which have strong spin-orbit coupling. It is predicted that Fe and Co may also have strong hybridization with 4d and 5d refractory transition metals with strong spin-orbit coupling. Refractory transition metals like V also have the desirable property of high temperature stability, which is important for permanent magnet applications in traction motors. In this work, we focus on the role of crystal structure, composition, and secondary phases in the origin of competitive permanent magnetic properties of a particular Fe-Co-V alloy. Fe38Co52V10, compositions are known as Vicalloys. Fe-CoV composition spreads were sputtered onto three-inch silicon wafers and patterned into discrete sample pads forming a combinatorial library. We employed highthroughput screening methods using synchrotron X-rays, wavelength dispersive spectroscopy, and magneto-optical Kerr effect (MOKE) to rapidly screen crystal structure, composition, and magnetic properties, respectively. We found that in-plane magnetic coercive fields of our Vicalloy thin films agree with known bulk values (300 G), but found a remarkable eight times increase of the out-of-plane coercive fields (˜2,500 G). To explain this, we measured the switching fields between in-plane and out-of-plane thin film directions which revealed that the Kondorsky model of 180° domain wall reversal was responsible for Vicalloy's enhanced out-of-plane coercive field and possibly its permanent magnetic properties. The Kondorsky model suggests that domain-wall pinning is the origin of Vicalloy's permanent magnetic properties, in contrast to strain, shape, or

  4. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of metal-ion selected dynamic protein libraries.

    PubMed

    Cooper, Helen J; Case, Martin A; McLendon, George L; Marshall, Alan G

    2003-05-07

    The application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the investigation of the relative stabilities (and thus packing efficiencies) of Fe-bound trihelix peptide bundles is demonstrated. Small dynamic protein libraries are created by metal-ion assisted assembly of peptide subunits. Control of the trimeric aggregation state is coupled to stability selection by exploiting the coordination requirements of Fe(2+) in the presence of bidentate 2,2'-bipyridyl ligands covalently appended to the peptide monomers. At limiting metal-ion concentration, the most thermodynamically stable, optimally packed peptide trimers dominate the mass spectrum. The identities of optimally stable candidate trimers observed in the ESI FT-ICR mass spectra are confirmed by resynthesis of exchange-inert analogues and measurement of their folding free energies. The peptide composition of the trimers may be determined by infrared multiphoton dissociation (IRMPD) MS(3) experiments. Additional sequence information for the peptide subunits is obtained from electron capture dissociation (ECD) of peptides and metal-bound trimers. The experiments also suggest the presence of secondary structure in the gas phase, possibly due to partial retention of the solution-phase coiled coil structure.

  5. Combinatorial synthesis of functionalized chiral and doubly chiral ionic liquids and their applications as asymmetric covalent/non-covalent bifunctional organocatalysts.

    PubMed

    Zhang, Long; Luo, Sanzhong; Mi, Xueling; Liu, Song; Qiao, Yupu; Xu, Hui; Cheng, Jin-Pei

    2008-02-07

    A facile combinatorial strategy was developed for the construction of libraries of functionalized chiral ionic liquids (FCILs) including doubly chiral ionic liquids and bis-functional chiral ionic liquids. These FCIL libraries have the potential to be used as asymmetric catalysts or chiral ligands. As an example, novel asymmetric bifunctional catalysts were developed by simultaneously incorporating functional groups onto the cation and anion. The resultant bis-functionalized CILs showed significantly improved stereoselectivity over the mono-functionalized parent CILs.

  6. FOREWORD: Focus on Combinatorial Materials Science Focus on Combinatorial Materials Science

    NASA Astrophysics Data System (ADS)

    Chikyo, Toyohiro

    2011-10-01

    About 15 years have passed since the introduction of modern combinatorial synthesis and high-throughput techniques for the development of novel inorganic materials; however, similar methods existed before. The most famous was reported in 1970 by Hanak who prepared composition-spread films of metal alloys by sputtering mixed-material targets. Although this method was innovative, it was rarely used because of the large amount of data to be processed. This problem is solved in the modern combinatorial material research, which is strongly related to computer data analysis and robotics. This field is still at the developing stage and may be enriched by new methods. Nevertheless, given the progress in measurement equipment and procedures, we believe the combinatorial approach will become a major and standard tool of materials screening and development. The first article of this journal, published in 2000, was titled 'Combinatorial solid state materials science and technology', and this focus issue aims to reintroduce this topic to the Science and Technology of Advanced Materials audience. It covers recent progress in combinatorial materials research describing new results in catalysis, phosphors, polymers and metal alloys for shape memory materials. Sophisticated high-throughput characterization schemes and innovative synthesis tools are also presented, such as spray deposition using nanoparticles or ion plating. On a technical note, data handling systems are introduced to familiarize researchers with the combinatorial methodology. We hope that through this focus issue a wide audience of materials scientists can learn about recent and future trends in combinatorial materials science and high-throughput experimentation.

  7. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.

    PubMed

    McGibbon, Robert T; Beauchamp, Kyle A; Harrigan, Matthew P; Klein, Christoph; Swails, Jason M; Hernández, Carlos X; Schwantes, Christian R; Wang, Lee-Ping; Lane, Thomas J; Pande, Vijay S

    2015-10-20

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4

    NASA Astrophysics Data System (ADS)

    Evensen, Erik; Joseph-McCarthy, Diane; Weiss, Gregory A.; Schreiber, Stuart L.; Karplus, Martin

    2007-07-01

    Combinatorial synthesis and large scale screening methods are being used increasingly in drug discovery, particularly for finding novel lead compounds. Although these "random" methods sample larger areas of chemical space than traditional synthetic approaches, only a relatively small percentage of all possible compounds are practically accessible. It is therefore helpful to select regions of chemical space that have greater likelihood of yielding useful leads. When three-dimensional structural data are available for the target molecule this can be achieved by applying structure-based computational design methods to focus the combinatorial library. This is advantageous over the standard usage of computational methods to design a small number of specific novel ligands, because here computation is employed as part of the combinatorial design process and so is required only to determine a propensity for binding of certain chemical moieties in regions of the target molecule. This paper describes the application of the Multiple Copy Simultaneous Search (MCSS) method, an active site mapping and de novo structure-based design tool, to design a focused combinatorial library for the class II MHC protein HLA-DR4. Methods for the synthesizing and screening the computationally designed library are presented; evidence is provided to show that binding was achieved. Although the structure of the protein-ligand complex could not be determined, experimental results including cross-exclusion of a known HLA-DR4 peptide ligand (HA) by a compound from the library. Computational model building suggest that at least one of the ligands designed and identified by the methods described binds in a mode similar to that of native peptides.

  9. Library Computing.

    ERIC Educational Resources Information Center

    Library Journal, 1985

    1985-01-01

    This special supplement to "Library Journal" and "School Library Journal" includes articles on technological dependency, promise of computers for reluctant readers, copyright and database downloading, access to neighborhood of Mister Rogers, library acquisitions, circulating personal computers, "microcomputeritis,"…

  10. Exploiting Quantum Resonance to Solve Combinatorial Problems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  11. Switched Systems and Motion Coordination: Combinatorial Challenges

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.

    2016-01-01

    Problems of routing commercial air traffic in a terminal airspace encounter different constraints: separation assurance, aircraft performance limitations, regulations. The general setting of these problems is that of a switched control system. Such a system combines the differentiable motion of the aircraft with the combinatorial choices of choosing precedence when traffic routes merge and choosing branches when the routes diverge. This presentation gives an overview of the problem, the ATM context, related literature, and directions for future research.

  12. Combinatorial Cis-regulation in Saccharomyces Species.

    PubMed

    Spivak, Aaron T; Stormo, Gary D

    2016-01-15

    Transcriptional control of gene expression requires interactions between the cis-regulatory elements (CREs) controlling gene promoters. We developed a sensitive computational method to identify CRE combinations with conserved spacing that does not require genome alignments. When applied to seven sensu stricto and sensu lato Saccharomyces species, 80% of the predicted interactions displayed some evidence of combinatorial transcriptional behavior in several existing datasets including: (1) chromatin immunoprecipitation data for colocalization of transcription factors, (2) gene expression data for coexpression of predicted regulatory targets, and (3) gene ontology databases for common pathway membership of predicted regulatory targets. We tested several predicted CRE interactions with chromatin immunoprecipitation experiments in a wild-type strain and strains in which a predicted cofactor was deleted. Our experiments confirmed that transcription factor (TF) occupancy at the promoters of the CRE combination target genes depends on the predicted cofactor while occupancy of other promoters is independent of the predicted cofactor. Our method has the additional advantage of identifying regulatory differences between species. By analyzing the S. cerevisiae and S. bayanus genomes, we identified differences in combinatorial cis-regulation between the species and showed that the predicted changes in gene regulation explain several of the species-specific differences seen in gene expression datasets. In some instances, the same CRE combinations appear to regulate genes involved in distinct biological processes in the two different species. The results of this research demonstrate that (1) combinatorial cis-regulation can be inferred by multi-genome analysis and (2) combinatorial cis-regulation can explain differences in gene expression between species. Copyright © 2016 Spivak and Stormo.

  13. Combinatorial Cis-regulation in Saccharomyces Species

    PubMed Central

    Spivak, Aaron T.; Stormo, Gary D.

    2016-01-01

    Transcriptional control of gene expression requires interactions between the cis-regulatory elements (CREs) controlling gene promoters. We developed a sensitive computational method to identify CRE combinations with conserved spacing that does not require genome alignments. When applied to seven sensu stricto and sensu lato Saccharomyces species, 80% of the predicted interactions displayed some evidence of combinatorial transcriptional behavior in several existing datasets including: (1) chromatin immunoprecipitation data for colocalization of transcription factors, (2) gene expression data for coexpression of predicted regulatory targets, and (3) gene ontology databases for common pathway membership of predicted regulatory targets. We tested several predicted CRE interactions with chromatin immunoprecipitation experiments in a wild-type strain and strains in which a predicted cofactor was deleted. Our experiments confirmed that transcription factor (TF) occupancy at the promoters of the CRE combination target genes depends on the predicted cofactor while occupancy of other promoters is independent of the predicted cofactor. Our method has the additional advantage of identifying regulatory differences between species. By analyzing the S. cerevisiae and S. bayanus genomes, we identified differences in combinatorial cis-regulation between the species and showed that the predicted changes in gene regulation explain several of the species-specific differences seen in gene expression datasets. In some instances, the same CRE combinations appear to regulate genes involved in distinct biological processes in the two different species. The results of this research demonstrate that (1) combinatorial cis-regulation can be inferred by multi-genome analysis and (2) combinatorial cis-regulation can explain differences in gene expression between species. PMID:26772747

  14. A Synergistic Combinatorial and Chiroptical Study of Peptide Catalysts for Asymmetric Baeyer–Villiger Oxidation

    PubMed Central

    Giuliano, Michael W.; Lin, Chung-Yon; Romney, David K.

    2015-01-01

    We report an approach to the asymmetric Baeyer–Villiger oxidation utilizing bioinformatics-inspired combinatorial screening for catalyst discovery. Scaled-up validation of our on-bead efforts with a circular dichroism-based assay of alcohols derived from the products of solution-phase reactions established the absolute configuration of lactone products; this assay proved equivalent to HPLC in its ability to evaluate catalyst performance, but was far superior in its speed of analysis. Further solution-phase screening of a focused library suggested a mode of asymmetric induction that draws distinct parallels with the mechanism of Baeyer–Villiger monooxygenases. PMID:26543444

  15. Solid-phase combinatorial synthesis using MicroKan reactors, Rf tagging, and directed sorting.

    PubMed

    Xiao, X Y; Li, R; Zhuang, H; Ewing, B; Karunaratne, K; Lillig, J; Brown, R; Nicolaou, K C

    2000-01-01

    A modular system for high-output solid-phase combinatorial synthesis has been designed and developed. The system employs three technological innovations to achieve its high efficiency and reliability: (1) application of microreactors as the reaction units in solid-phase synthesis; (2) use of radiofrequency tagging as the non-chemical tracking method; and (3) development of the directed sorting technology for split & pool synthesis. The system has been successfully applied in the synthesis of compound libraries of several hundred to several thousand compounds in multi-milligrams per compound quantity by many organizations. Copyright 2000 John Wiley & Sons, Inc.

  16. Adaptive random testing with combinatorial input domain.

    PubMed

    Huang, Rubing; Chen, Jinfu; Lu, Yansheng

    2014-01-01

    Random testing (RT) is a fundamental testing technique to assess software reliability, by simply selecting test cases in a random manner from the whole input domain. As an enhancement of RT, adaptive random testing (ART) has better failure-detection capability and has been widely applied in different scenarios, such as numerical programs, some object-oriented programs, and mobile applications. However, not much work has been done on the effectiveness of ART for the programs with combinatorial input domain (i.e., the set of categorical data). To extend the ideas to the testing for combinatorial input domain, we have adopted different similarity measures that are widely used for categorical data in data mining and have proposed two similarity measures based on interaction coverage. Then, we propose a new version named ART-CID as an extension of ART in combinatorial input domain, which selects an element from categorical data as the next test case such that it has the lowest similarity against already generated test cases. Experimental results show that ART-CID generally performs better than RT, with respect to different evaluation metrics.

  17. On schemes of combinatorial transcription logic.

    PubMed

    Buchler, Nicolas E; Gerland, Ulrich; Hwa, Terence

    2003-04-29

    Cells receive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate specific genetic responses. Here we explore theoretically the potentials and limitations of combinatorial signal integration at the level of cis-regulatory transcription control. Our analysis suggests that many complex transcription-control functions of the type encountered in higher eukaryotes are already implementable within the much simpler bacterial transcription system. Using a quantitative model of bacterial transcription and invoking only specific protein-DNA interaction and weak glue-like interaction between regulatory proteins, we show explicit schemes to implement regulatory logic functions of increasing complexity by appropriately selecting the strengths and arranging the relative positions of the relevant protein-binding DNA sequences in the cis-regulatory region. The architectures that emerge are naturally modular and evolvable. Our results suggest that the transcription regulatory apparatus is a "programmable" computing machine, belonging formally to the class of Boltzmann machines. Crucial to our results is the ability to regulate gene expression at a distance. In bacteria, this can be achieved for isolated genes via DNA looping controlled by the dimerization of DNA-bound proteins. However, if adopted extensively in the genome, long-distance interaction can cause unintentional intergenic cross talk, a detrimental side effect difficult to overcome by the known bacterial transcription-regulation systems. This may be a key factor limiting the genome-wide adoption of complex transcription control in bacteria. Implications of our findings for combinatorial transcription control in eukaryotes are discussed.

  18. Viral morphogenesis is the dominant source of sequence censorship in M13 combinatorial peptide phage display.

    SciTech Connect

    Rodi, D. J.; Soares, A. S.; Makowski, L.; Biosciences Division; BNL

    2002-01-01

    Novel statistical methods have been developed and used to quantitate and annotate the sequence diversity within combinatorial peptide libraries on the basis of small numbers (1-200) of sequences selected at random from commercially available M13 p3-based phage display libraries. These libraries behave statistically as though they correspond to populations containing roughly 4.0{+-}1.6% of the random dodecapeptides and 7.9{+-}2.6% of the random constrained heptapeptides that are theoretically possible within the phage populations. Analysis of amino acid residue occurrence patterns shows no demonstrable influence on sequence censorship by Escherichia coli tRNA isoacceptor profiles or either overall codon or Class II codon usage patterns, suggesting no metabolic constraints on recombinant p3 synthesis. There is an overall depression in the occurrence of cysteine, arginine and glycine residues and an overabundance of proline, threonine and histidine residues. The majority of position-dependent amino acid sequence bias is clustered at three positions within the inserted peptides of the dodecapeptide library, +1, +3 and +12 downstream from the signal peptidase cleavage site. Conformational tendency measures of the peptides indicate a significant preference for inserts favoring a {beta}-turn conformation. The observed protein sequence limitations can primarily be attributed to genetic codon degeneracy and signal peptidase cleavage preferences. These data suggest that for applications in which maximal sequence diversity is essential, such as epitope mapping or novel receptor identification, combinatorial peptide libraries should be constructed using codon-corrected trinucleotide cassettes within vector-host systems designed to minimize morphogenesis-related censorship.

  19. [Status of libraries and databases for natural products at abroad].

    PubMed

    Zhao, Li-Mei; Tan, Ning-Hua

    2015-01-01

    For natural products are one of the important sources for drug discovery, libraries and databases of natural products are significant for the development and research of natural products. At present, most of compound libraries at abroad are synthetic or combinatorial synthetic molecules, resulting to access natural products difficult; for information of natural products are scattered with different standards, it is difficult to construct convenient, comprehensive and large-scale databases for natural products. This paper reviewed the status of current accessing libraries and databases for natural products at abroad and provided some important information for the development of libraries and database for natural products.

  20. Customized optimization of metabolic pathways by combinatorial transcriptional engineering.

    PubMed

    Du, Jing; Yuan, Yongbo; Si, Tong; Lian, Jiazhang; Zhao, Huimin

    2012-10-01

    A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named 'customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER)' for rapid tuning of gene expression in a heterologous pathway under distinct metabolic backgrounds. Specifically, a library of mutant pathways is created by de novo assembly of promoter mutants of varying strengths for each pathway gene in a target organism followed by high-throughput screening/selection. To demonstrate this approach, a single round of COMPACTER was used to generate both a xylose utilizing pathway with near-highest efficiency and a cellobiose utilizing pathway with highest efficiency that were ever reported in literature for both laboratory and industrial yeast strains. Interestingly, these engineered xylose and cellobiose utilizing pathways were all host-specific. Therefore, COMPACTER represents a powerful approach to tailor-make metabolic pathways for different strain backgrounds, which is difficult if not impossible to achieve by existing pathway engineering methods.

  1. Customized optimization of metabolic pathways by combinatorial transcriptional engineering

    PubMed Central

    Du, Jing; Yuan, Yongbo; Si, Tong; Lian, Jiazhang; Zhao, Huimin

    2012-01-01

    A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named ‘customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER)’ for rapid tuning of gene expression in a heterologous pathway under distinct metabolic backgrounds. Specifically, a library of mutant pathways is created by de novo assembly of promoter mutants of varying strengths for each pathway gene in a target organism followed by high-throughput screening/selection. To demonstrate this approach, a single round of COMPACTER was used to generate both a xylose utilizing pathway with near-highest efficiency and a cellobiose utilizing pathway with highest efficiency that were ever reported in literature for both laboratory and industrial yeast strains. Interestingly, these engineered xylose and cellobiose utilizing pathways were all host-specific. Therefore, COMPACTER represents a powerful approach to tailor-make metabolic pathways for different strain backgrounds, which is difficult if not impossible to achieve by existing pathway engineering methods. PMID:22718979

  2. Combinatorial mutagenesis and selection to understand and improve yeast promoters.

    PubMed

    Berg, Laila; Strand, Trine Aakvik; Valla, Svein; Brautaset, Trygve

    2013-01-01

    Microbial promoters are important targets both for understanding the global gene expression and developing genetic tools for heterologous expression of proteins and complex biosynthetic pathways. Previously, we have developed and used combinatorial mutagenesis methods to analyse and improve bacterial expression systems. Here, we present for the first time an analogous strategy for yeast. Our model promoter is the strong and inducible P AOX1 promoter in methylotrophic Pichia pastoris. The Zeocin resistance gene was applied as a valuable reporter for mutant P AOX1 promoter activity, and we used an episomal plasmid vector to ensure a constant reporter gene dosage in the yeast host cells. This novel design enabled direct selection for colonies of recombinant cells with altered Zeocin tolerance levels originating solely from randomly introduced point mutations in the P AOX1 promoter DNA sequence. We demonstrate that this approach can be used to select for P AOX1 promoter variants with abolished glucose repression in large mutant libraries. We also selected P AOX1 promoter variants with elevated expression level under induced conditions. The properties of the selected P AOX1 promoter variants were confirmed by expressing luciferase as an alternative reporter gene. The tools developed here should be useful for effective screening, characterization, and improvement of any yeast promoters.

  3. Combinatorial Approach to Nanoarchitectonics for Nonviral Delivery of Nucleic Acids.

    PubMed

    Molla, Mijanur Rahaman; Levkin, Pavel A

    2016-02-10

    Nanoparticles based on cationic polymers, lipids or lipidoids are of great interest in the field of gene delivery applications. The research on these nanosystems is rapidly growing as they hold promise to treat wide variety of human diseases ranging from viral infections to genetic disorders and cancer. Recently, combinatorial design principles have been adopted for rapid generation of large numbers of chemically diverse polymers and lipids capable of forming multifunctional nanocarriers for the use in gene delivery applications. At the same time, current high-throughput screening systems as well as convenient cell assays and readout techniques allow for fast evaluation of cell transfection efficiencies and toxicities of libraries of novel gene delivery agents. This allows for a rapid evaluation of structure-function relationship as well as identification of novel efficient nanocarriers for cell transfection and gene therapy. Here, the recent contribution of high-throughput synthesis to the development of novel nanocarriers for gene delivery applications is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Generalized topological spaces in evolutionary theory and combinatorial chemistry.

    PubMed

    Stadler, Bärbel M R; Stadler, Peter F

    2002-01-01

    The search spaces in combinatorial chemistry as well as the sequence spaces underlying (molecular) evolution are conventionally thought of as graphs. Recombination, however, implies a nongraphical structure of the combinatorial search spaces. These structures, and their implications for search process itself, are heretofore not well understood in general. In this contribution we review a very general formalism from point set topology and discuss its application to combinatorial search spaces, fitness landscapes, evolutionary trajectories, and artificial chemistries.

  5. Focused fluorescent probe library for metal cations and biological anions.

    PubMed

    Rhee, Hyun-Woo; Lee, Sang Wook; Lee, Jun-Seok; Chang, Young-Tae; Hong, Jong-In

    2013-09-09

    A focused fluorescent probe library for metal cations was developed by combining metal chelators and picolinium/quinolinium moieties as combinatorial blocks connected through a styryl group. Furthermore, metal complexes derived from metal chelators having high binding affinities for metal cations were used to construct a focused probe library for phosphorylated biomolecules. More than 250 fluorescent probes were screened for identifying an ultraselective probe for dTTP.

  6. Library 2000.

    ERIC Educational Resources Information Center

    Drake, Miriam A.

    In fall 1984, the Georgia Institute of Technology administration and library staff began planning for Library 2000, a project aimed at creating a showcase library to demonstrate the application of the latest information technology in an academic and research environment. The purposes of Library 2000 include: increasing awareness of students,…

  7. Library Buildings.

    ERIC Educational Resources Information Center

    Manley, Will; And Others

    1989-01-01

    The innovative designs of three libraries are described: the Tempe (Arizona) Public Library, which emphasizes services for children and students; an underground library at Park College, Missouri; and a public library located in the Vancouver (Washington) Mall. The fourth article describes the work going on to restore the Los Angeles (California)…

  8. Library Computing.

    ERIC Educational Resources Information Center

    Dayall, Susan A.; And Others

    1987-01-01

    Six articles on computers in libraries discuss training librarians and staff to use new software; appropriate technology; system upgrades of the Research Libraries Group's information system; pre-IBM PC microcomputers; multiuser systems for small to medium-sized libraries; and a library user's view of the traditional card catalog. (EM)

  9. Special Libraries.

    ERIC Educational Resources Information Center

    Foskett, D. J.

    The Special Library is distinguished from other libraries as being a library serving a particular group of readers, who have an existence as a group outside of their readership of the library, and whose members direct at least some of their activities towards a common purpose. Thus, the special librarian's first and major responsibility is to know…

  10. A Developing State Plan for Library Services.

    ERIC Educational Resources Information Center

    New Jersey State Library, Trenton.

    This dynamic approach to a state plan for library services places clear responsibility upon the state library, the profession, and library users to monitor and evaluate library services of all types, to communicate the needs of state residents, and to perfect the delivery of quality services within the limits of cost effectiveness. While the plan…

  11. Combinatorial brain decoding of people's whereabouts during visuospatial navigation

    PubMed Central

    Op de Beeck, Hans P.; Vermaercke, Ben; Woolley, Daniel G.; Wenderoth, Nicole

    2013-01-01

    Complex behavior typically relies upon many different processes which are related to activity in multiple brain regions. In contrast, neuroimaging analyses typically focus upon isolated processes. Here we present a new approach, combinatorial brain decoding, in which we decode complex behavior by combining the information which we can retrieve from the neural signals about the many different sub-processes. The case in point is visuospatial navigation. We explore the extent to which the route travelled by human subjects (N = 3) in a complex virtual maze can be decoded from activity patterns as measured with functional magnetic resonance imaging. Preliminary analyses suggest that it is difficult to directly decode spatial position from regions known to contain an explicit cognitive map of the environment, such as the hippocampus. Instead, we were able to indirectly derive spatial position from the pattern of activity in visual and motor cortex. The non-spatial representations in these regions reflect processes which are inherent to navigation, such as which stimuli are perceived at which point in time and which motor movement is executed when (e.g., turning left at a crossroad). Highly successful decoding of routes followed through the maze was possible by combining information about multiple aspects of navigation events across time and across multiple cortical regions. This “proof of principle” study highlights how visuospatial navigation is related to the combined activity of multiple brain regions, and establishes combinatorial brain decoding as a means to study complex mental events that involve a dynamic interplay of many cognitive processes. PMID:23730269

  12. Data Mining and Machine Learning Tools for Combinatorial Material Science of All-Oxide Photovoltaic Cells.

    PubMed

    Yosipof, Abraham; Nahum, Oren E; Anderson, Assaf Y; Barad, Hannah-Noa; Zaban, Arie; Senderowitz, Hanoch

    2015-06-01

    Growth in energy demands, coupled with the need for clean energy, are likely to make solar cells an important part of future energy resources. In particular, cells entirely made of metal oxides (MOs) have the potential to provide clean and affordable energy if their power conversion efficiencies are improved. Such improvements require the development of new MOs which could benefit from combining combinatorial material sciences for producing solar cells libraries with data mining tools to direct synthesis efforts. In this work we developed a data mining workflow and applied it to the analysis of two recently reported solar cell libraries based on Titanium and Copper oxides. Our results demonstrate that QSAR models with good prediction statistics for multiple solar cells properties could be developed and that these models highlight important factors affecting these properties in accord with experimental findings. The resulting models are therefore suitable for designing better solar cells.

  13. Synthesis of Chemiluminescent Esters: A Combinatorial Synthesis Experiment for Organic Chemistry Students

    ERIC Educational Resources Information Center

    Duarte, Robert; Nielson, Janne T.; Dragojlovic, Veljko

    2004-01-01

    A group of techniques aimed at synthesizing a large number of structurally diverse compounds is called combinatorial synthesis. Synthesis of chemiluminescence esters using parallel combinatorial synthesis and mix-and-split combinatorial synthesis is experimented.

  14. Synthesis of Chemiluminescent Esters: A Combinatorial Synthesis Experiment for Organic Chemistry Students

    ERIC Educational Resources Information Center

    Duarte, Robert; Nielson, Janne T.; Dragojlovic, Veljko

    2004-01-01

    A group of techniques aimed at synthesizing a large number of structurally diverse compounds is called combinatorial synthesis. Synthesis of chemiluminescence esters using parallel combinatorial synthesis and mix-and-split combinatorial synthesis is experimented.

  15. Effects of Suboptimal Bidding in Combinatorial Auctions

    NASA Astrophysics Data System (ADS)

    Schneider, Stefan; Shabalin, Pasha; Bichler, Martin

    Though the VCG auction assumes a central place in the mechanism design literature, there are a number of reasons for favoring iterative combinatorial auction designs. Several promising ascending auction formats have been developed throughout the past few years based on primal-dual and subgradient algorithms and linear programming theory. Prices are interpreted as a feasible dual solution and the provisional allocation is interpreted as a feasible primal solution. iBundle( 3) (Parkes and Ungar 2000), dVSV (de Vries et al. 2007) and the Ascending Proxy auction (Ausubel and Milgrom 2002) result in VCG payoffs when the coalitional value function satisfies the buyer submodularity condition and bidders bid straightforward, which is an expost Nash equilibrium in that case. iBEA and CreditDebit auctions (Mishra and Parkes 2007) do not even require the buyer submodularity condition and achieve the same properties for general valuations. In many situations, however, one cannot assume bidders to bid straightforward and it is not clear from the theory how these non-linear personalized price auctions (NLPPAs) perform in this case. Robustness of auctions with respect to different bidding behavior is therefore a critical issue for any application. We have conducted a large number of computational experiments to analyze the performance of NLPPA designs with respect to different bidding strategies and different valuation models. We compare the results of NLPPAs to those of the VCG auction and those of iterative combinatorial auctions with approximate linear prices, such as ALPS (Bichler et al. 2009) and the Combinatorial Clock auction (Porter et al. 2003).

  16. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds.

    PubMed

    Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R J D; Giacomini, Elisa; Hansen, Mette R; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F; Spring, David R

    2015-04-21

    Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.

  17. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    PubMed

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc.

  18. Developing New Antibiotics with Combinatorial Biosynthesis

    NASA Astrophysics Data System (ADS)

    Pohl, Nicola L.

    2000-11-01

    Polyketide synthases (PKSs), a class of enzymes found in soil bacteria that produce antibiotics such as erythromycin, string together acetate units using basic organic reactions. The manipulation of the sequence of these reactions at the genetic level has resulted in an alteration of the corresponding chemical structure of the antibiotic produced by the bacteria. This process, called combinatorial biosynthesis, allows the generation of many presently unknown complex structures that can be tested for antibacterial activity, thereby contributing to the race against antibiotic-resistant infectious bacteria.

  19. Some useful combinatorial formulas for bosonic operators

    SciTech Connect

    Blasiak, P.; Penson, K.A.; Solomon, A.I.; Horzela, A.; Duchamp, G.H.E.

    2005-05-01

    We give a general expression for the normally ordered form of a function F[w(a,a{sup {dagger}})] where w is a function of boson creation and annihilation operators satisfying [a,a{sup {dagger}}]=1. The expectation value of this expression in a coherent state becomes an exact generating function of Feynman-type graphs associated with the zero-dimensional quantum field theory defined by F(w). This enables one to enumerate explicitly the graphs of given order in the realm of combinatorially defined sequences. We give several examples of the use of this technique, including the applications to Kerr-type and superfluidity-type Hamiltonians.

  20. Polynomial Local Improvement Algorithms in Combinatorial Optimization.

    DTIC Science & Technology

    1981-11-01

    NUMBER SOL 81- 21 IIS -J O 15 14. TITLE (am#Su&Utl & YEO RPR ERO OEE Polynomial Local Improvement Algorithms in TcnclRpr Combinatorial Optimization 6...Stanford, CA 94305 II . CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE Office of Naval Research - Dept. of the Navy November 1981 800 N. Qu~incy Street...corresponds to a node of the tree. ii ) The father of a vertex is its optimal adjacent vertex; if a vertex is a local optimum, it has no father. The tree is

  1. Method and apparatus for combinatorial chemistry

    SciTech Connect

    Foote, Robert S.

    2009-06-23

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  2. Apparatus for combinatorial screening of electrochemical materials

    DOEpatents

    A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source is disclosed wherein temperature changes arising from the application of an electrical load to a cell array are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells that are connected to each other in parallel or in series, an electronic load for applying a voltage or current to the electrochemical cells , and a device , external to the cells, for monitoring the relative temperature of each cell when the load is applied.

    2009-12-15

    A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source (2) is disclosed wherein temperature changes arising from the application of an electrical load to a cell array (1) are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells (1) that are connected to each other in parallel or in series, an electronic load (2) for applying a voltage or current to the electrochemical cells (1), and a device (3), external to the cells, for monitoring the relative temperature of each cell when the load is applied.

  3. Method and apparatus for combinatorial chemistry

    DOEpatents

    Foote, Robert S [Oak Ridge, TN

    2012-06-05

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  4. Method and apparatus for combinatorial chemistry

    DOEpatents

    Foote, Robert S.

    2007-02-20

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  5. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  6. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  7. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  8. Combinatorial study of Fe-Co-V hard magnetic thin films

    SciTech Connect

    Fackler, Sean W.; Alexandrakis, Vasileios; König, Dennis; Kusne, A. Gilad; Gao, Tieren; Kramer, Matthew J.; Stasak, Drew; Lopez, Kenny; Zayac, Brad; Mehta, Apurva; Ludwig, Alfred; Takeuchi, Ichiro

    2017-01-01

    Thin film libraries of Fe-Co-V were fabricated by combinatorial sputtering to study magnetic and structural properties over wide ranges of composition and thickness by high-throughput methods: synchrotron X-ray diffraction, magnetometry, composition, and thickness were measured across the Fe-Co-V libraries. In-plane magnetic hysteresis loops were shown to have a coercive field of 23.9 kA m–1 (300 G) and magnetization of 1000 kA m–1. The out-of-plane direction revealed enhanced coercive fields of 207 kA m–1 (2.6 kG) which was attributed to the shape anisotropy of column grains observed with electron microscopy. Angular dependence of the switching field showed that the magnetization reversal mechanism is governed by 180° domain wall pinning. In the thickness-dependent combinatorial study, co-sputtered composition spreads had a thickness ranging from 50 to 500 nm and (Fe70Co30)100-xVx compositions of x = 2–80. Furthermore, comparison of high-throughput magneto-optical Kerr effect and traditional vibrating sample magnetometer measurements show agreement of trends in coercive fields across large composition and thickness regions.

  9. Combinatorial study of Fe-Co-V hard magnetic thin films

    DOE PAGES

    Fackler, Sean W.; Alexandrakis, Vasileios; König, Dennis; ...

    2017-01-01

    Thin film libraries of Fe-Co-V were fabricated by combinatorial sputtering to study magnetic and structural properties over wide ranges of composition and thickness by high-throughput methods: synchrotron X-ray diffraction, magnetometry, composition, and thickness were measured across the Fe-Co-V libraries. In-plane magnetic hysteresis loops were shown to have a coercive field of 23.9 kA m–1 (300 G) and magnetization of 1000 kA m–1. The out-of-plane direction revealed enhanced coercive fields of 207 kA m–1 (2.6 kG) which was attributed to the shape anisotropy of column grains observed with electron microscopy. Angular dependence of the switching field showed that the magnetization reversalmore » mechanism is governed by 180° domain wall pinning. In the thickness-dependent combinatorial study, co-sputtered composition spreads had a thickness ranging from 50 to 500 nm and (Fe70Co30)100-xVx compositions of x = 2–80. Furthermore, comparison of high-throughput magneto-optical Kerr effect and traditional vibrating sample magnetometer measurements show agreement of trends in coercive fields across large composition and thickness regions.« less

  10. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    PubMed Central

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  11. A universal combinatorial design of antibody framework to graft distinct CDR sequences: a bioinformatics approach.

    PubMed

    Haidar, Jaafar N; Yuan, Qing-An; Zeng, Lin; Snavely, Mark; Luna, Xenia; Zhang, Haifan; Zhu, Wei; Ludwig, Dale L; Zhu, Zhenping

    2012-03-01

    Antibody (Ab) humanization is crucial to generate clinically relevant biologics from hybridoma-derived monoclonal antibodies (mAbs). In this study, we integrated antibody structural information from the Protein Data Bank with known back-to-mouse mutational data to build a universal consensus of framework positions (10 heavy and 7 light) critical for the preservation of the functional conformation of the Complimentarity Determining Region of antibodies. On the basis of FR consensus, we describe here a universal combinatorial library suitable for humanizing exogenous antibodies by CDR-grafting. The six CDRs of the murine anti-human EGFR Fab M225 were grafted onto a distinct (low FR sequence similarity to M225) human FR sequence that incorporates at the 17 FR consensus positions the permutations of the naturally observed amino acid diversities. Ten clones were selected from the combinatorial library expressing phage-displayed humanized M225 Fabs. Surprisingly, 2 of the 10 clones were found to bind EGFR with stronger affinity than M225. Cell-based assays demonstrated that the 10 selected clones retained epitope specificity by blocking EGFR phosphorylation and thus hindering cellular proliferation. Our results suggest that there is a universal and structurally rigid near-CDR set of FR positions that cooperatively support the binding conformation of CDRs. Copyright © 2011 Wiley Periodicals, Inc.

  12. Library screening by means of mass spectrometry (MS) binding assays-exemplarily demonstrated for a pseudostatic library addressing γ-aminobutyric acid (GABA) transporter 1 (GAT1).

    PubMed

    Sindelar, Miriam; Wanner, Klaus T

    2012-09-01

    In the present study, the application of mass spectrometry (MS) binding assays as a tool for library screening is reported. For library generation, dynamic combinatorial chemistry (DCC) was used. These libraries can be screened by means of MS binding assays when appropriate measures are taken to render the libraries pseudostatic. That way, the efficiency of MS binding assays to determine ligand binding in compound screening with the ease of library generation by DCC is combined. The feasibility of this approach is shown for γ-aminobutyric acid (GABA) transporter 1 (GAT1) as a target, representing the most important subtype of the GABA transporters. For the screening, hydrazone libraries were employed that were generated in the presence of the target by reacting various sets of aldehydes with a hydrazine derivative that is delineated from piperidine-3-carboxylic acid (nipecotic acid), a common fragment of known GAT1 inhibitors. To ensure that the library generated is pseudostatic, a large excess of the nipecotic acid derivative is employed. As the library is generated in a buffer system suitable for binding and the target is already present, the mixtures can be directly analyzed by MS binding assays-the process of library generation and screening thus becoming simple to perform. The binding affinities of the hits identified by deconvolution were confirmed in conventional competitive MS binding assays performed with single compounds obtained by separate synthesis. In this way, two nipecotic acid derivatives exhibiting a biaryl moiety, 1-{2-[2'-(1,1'-biphenyl-2-ylmethylidene)hydrazine]ethyl}piperidine-3-carboxylic acid and 1-(2-{2'-[1-(2-thiophenylphenyl)methylidene]hydrazine}ethyl)piperidine-3-carboxylic acid, were found to be potent GAT1 ligands exhibiting pK(i) values of 6.186 ± 0.028 and 6.229 ± 0.039, respectively. This method enables screening of libraries, whether generated by conventional chemistry or DCC, and is applicable to all kinds of targets including

  13. Smooth Constrained Heuristic Optimization of a Combinatorial Chemical Space

    DTIC Science & Technology

    2015-05-01

    ARL-TR-7294•MAY 2015 US Army Research Laboratory Smooth ConstrainedHeuristic Optimization of a Combinatorial Chemical Space by Berend Christopher...7294•MAY 2015 US Army Research Laboratory Smooth ConstrainedHeuristic Optimization of a Combinatorial Chemical Space by Berend Christopher...

  14. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  15. Combinatorial design of textured mechanical metamaterials.

    PubMed

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2016-07-28

    The structural complexity of metamaterials is limitless, but, in practice, most designs comprise periodic architectures that lead to materials with spatially homogeneous features. More advanced applications in soft robotics, prosthetics and wearable technology involve spatially textured mechanical functionality, which requires aperiodic architectures. However, a naive implementation of such structural complexity invariably leads to geometrical frustration (whereby local constraints cannot be satisfied everywhere), which prevents coherent operation and impedes functionality. Here we introduce a combinatorial strategy for the design of aperiodic, yet frustration-free, mechanical metamaterials that exhibit spatially textured functionalities. We implement this strategy using cubic building blocks-voxels-that deform anisotropically, a local stacking rule that allows cooperative shape changes by guaranteeing that deformed building blocks fit together as in a three-dimensional jigsaw puzzle, and three-dimensional printing. These aperiodic metamaterials exhibit long-range holographic order, whereby the two-dimensional pixelated surface texture dictates the three-dimensional interior voxel arrangement. They also act as programmable shape-shifters, morphing into spatially complex, but predictable and designable, shapes when uniaxially compressed. Finally, their mechanical response to compression by a textured surface reveals their ability to perform sensing and pattern analysis. Combinatorial design thus opens up a new avenue towards mechanical metamaterials with unusual order and machine-like functionalities.

  16. A combinatorial morphospace for angiosperm pollen

    NASA Astrophysics Data System (ADS)

    Mander, Luke

    2016-04-01

    The morphology of angiosperm (flowering plant) pollen is extraordinarily diverse. This diversity results from variations in the morphology of discrete anatomical components. These components include the overall shape of a pollen grain, the stratification of the exine, the number and form of any apertures, the type of dispersal unit, and the nature of any surface ornamentation. Different angiosperm pollen morphotypes reflect different combinations of these discrete components. In this talk, I ask the following question: given the anatomical components of angiosperm pollen that are known to exist in the plant kingdom, how many unique biologically plausible combinations of these components are there? I explore this question from the perspective of enumerative combinatorics using an algorithm I have written in the Python programming language. This algorithm (1) calculates the number of combinations of these components; (2) enumerates those combinations; and (3) graphically displays those combinations. The result is a combinatorial morphospace that reflects an underlying notion that the process of morphogenesis in angiosperm pollen can be thought of as an n choose k counting problem. I compare the morphology of extant and fossil angiosperm pollen grains to this morphospace, and suggest that from a combinatorial point of view angiosperm pollen is not as diverse as it could be, which may be a result of developmental constraints.

  17. Combinatorial design of textured mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2016-07-01

    The structural complexity of metamaterials is limitless, but, in practice, most designs comprise periodic architectures that lead to materials with spatially homogeneous features. More advanced applications in soft robotics, prosthetics and wearable technology involve spatially textured mechanical functionality, which requires aperiodic architectures. However, a naive implementation of such structural complexity invariably leads to geometrical frustration (whereby local constraints cannot be satisfied everywhere), which prevents coherent operation and impedes functionality. Here we introduce a combinatorial strategy for the design of aperiodic, yet frustration-free, mechanical metamaterials that exhibit spatially textured functionalities. We implement this strategy using cubic building blocks—voxels—that deform anisotropically, a local stacking rule that allows cooperative shape changes by guaranteeing that deformed building blocks fit together as in a three-dimensional jigsaw puzzle, and three-dimensional printing. These aperiodic metamaterials exhibit long-range holographic order, whereby the two-dimensional pixelated surface texture dictates the three-dimensional interior voxel arrangement. They also act as programmable shape-shifters, morphing into spatially complex, but predictable and designable, shapes when uniaxially compressed. Finally, their mechanical response to compression by a textured surface reveals their ability to perform sensing and pattern analysis. Combinatorial design thus opens up a new avenue towards mechanical metamaterials with unusual order and machine-like functionalities.

  18. Strategies and applications of combinatorial methods and high throughput screening to the discovery of non-noble metal catalyst

    NASA Astrophysics Data System (ADS)

    Bricker, Maureen L.; Sachtler, J. W. Adriaan; Gillespie, Ralph D.; McGonegal, Charles P.; Vega, Honorio; Bem, Dave S.; Holmgren, Jennifer S.

    2004-02-01

    The integrated End-to-End™ combinatorial process for catalyst preparation and screening, with emphasis on its capability to vary both process and compositional parameters will be demonstrated. Additionally, each step of the combinatorial screening process has been validated against results from traditional screening methods. The greatest challenge of all has been the adherence to the core concepts of the combinatorial approach. Catalyst libraries have been made and tested for naphthalene dehydrogenation chemistry. The preparation of these libraries has included the application of high throughput techniques for: metal impregnation; catalyst finishing; catalyst screening. The catalyst screening system has been used to find a non-noble metal catalyst system that can replace Pt in dehydrogenation applications in the petroleum industry. A proprietary catalytic composition was developed for the dehydrogenation of methylcyclohexane (MCH) to toluene starting with four non-noble metals of different proportions and four different supports (alumina, titania, zirconia and silica) prepared in different ways and applying a statistical design of experiments. These data demonstrate that all steps of catalyst preparation and screening are performed in a rapid, useful, high throughput manner. Data will be presented from the catalyst screening efforts will demonstrate that optimized metal composition is dependent on the support type.

  19. Microbatteries for Combinatorial Studies of Conventional Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Bugga, Ratnakumar

    2003-01-01

    Integrated arrays of microscopic solid-state batteries have been demonstrated in a continuing effort to develop microscopic sources of power and of voltage reference circuits to be incorporated into low-power integrated circuits. Perhaps even more importantly, arrays of microscopic batteries can be fabricated and tested in combinatorial experiments directed toward optimization and discovery of battery materials. The value of the combinatorial approach to optimization and discovery has been proven in the optoelectronic, pharmaceutical, and bioengineering industries. Depending on the specific application, the combinatorial approach can involve the investigation of hundreds or even thousands of different combinations; hence, it is time-consuming and expensive to attempt to implement the combinatorial approach by building and testing full-size, discrete cells and batteries. The conception of microbattery arrays makes it practical to bring the advantages of the combinatorial approach to the development of batteries.

  20. Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy.

    PubMed

    Kawashima, Kazuhiro; Okamoto, Yuji; Annayev, Orazmuhammet; Toyokura, Nobuo; Takahashi, Ryota; Lippmaa, Mikk; Itaka, Kenji; Suzuki, Yoshikazu; Matsuki, Nobuyuki; Koinuma, Hideomi

    2017-01-01

    As an extension of combinatorial molecular layer epitaxy via ablation of perovskite oxides by a pulsed excimer laser, we have developed a laser molecular beam epitaxy (MBE) system for parallel integration of nano-scaled thin films of organic-inorganic hybrid materials. A pulsed infrared (IR) semiconductor laser was adopted for thermal evaporation of organic halide (A-site: CH3NH3I) and inorganic halide (B-site: PbI2) powder targets to deposit repeated A/B bilayer films where the thickness of each layer was controlled on molecular layer scale by programming the evaporation IR laser pulse number, length, or power. The layer thickness was monitored with an in situ quartz crystal microbalance and calibrated against ex situ stylus profilometer measurements. A computer-controlled movable mask system enabled the deposition of combinatorial thin film libraries, where each library contains a vertically homogeneous film with spatially programmable A- and B-layer thicknesses. On the composition gradient film, a hole transport Spiro-OMeTAD layer was spin-coated and dried followed by the vacuum evaporation of Ag electrodes to form the solar cell. The preliminary cell performance was evaluated by measuring I-V characteristics at seven different positions on the 12.5 mm × 12.5 mm combinatorial library sample with seven 2 mm × 4 mm slits under a solar simulator irradiation. The combinatorial solar cell library clearly demonstrated that the energy conversion efficiency sharply changes from nearly zero to 10.2% as a function of the illumination area in the library. The exploration of deposition parameters for obtaining optimum performance could thus be greatly accelerated. Since the thickness ratio of PbI2 and CH3NH3I can be freely chosen along the shadow mask movement, these experiments show the potential of this system for high-throughput screening of optimum chemical composition in the binary film library and application to halide perovskite solar cell.

  1. Reducing Disparities in Cancer Screening and Prevention through Community-Based Participatory Research Partnerships with Local Libraries: A Comprehensive Dynamic Trial.

    PubMed

    Rapkin, Bruce D; Weiss, Elisa; Lounsbury, David; Michel, Tamara; Gordon, Alexis; Erb-Downward, Jennifer; Sabino-Laughlin, Eilleen; Carpenter, Alison; Schwartz, Carolyn E; Bulone, Linda; Kemeny, Margaret

    2017-09-15

    Reduction of cancer-related disparities requires strategies that link medically underserved communities to preventive care. In this community-based participatory research project, a public library system brought together stakeholders to plan and undertake programs to address cancer screening and risk behavior. This study was implemented over 48 months in 20 large urban neighborhoods, selected to reach diverse communities disconnected from care. In each neighborhood, Cancer Action Councils were organized to conduct a comprehensive dynamic trial, an iterative process of program planning, implementation and evaluation. This process was phased into neighborhoods in random, stepped-wedge sequence. Population-level outcomes included self-reported screening adherence and smoking cessation, based on street intercept interviews. Event-history regressions (n = 9374) demonstrated that adherence outcomes were associated with program implementation, as were mediators such as awareness of screening programs and cancer information seeking. Findings varied by ethnicity, and were strongest among respondents born outside the U.S. or least engaged in care. This intervention impacted health behavior in diverse, underserved and vulnerable neighborhoods. It has been sustained as a routine library system program for several years after conclusion of grant support. In sum, participatory research with the public library system offers a flexible, scalable approach to reduce cancer health disparities. © Society for Community Research and Action 2017.

  2. Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers.

    PubMed

    Blanc, Frédéric; Chong, Samantha Y; McDonald, Tom O; Adams, Dave J; Pawsey, Shane; Caporini, Marc A; Cooper, Andrew I

    2013-10-16

    Dynamic nuclear polarization (DNP) solid-state NMR was used to obtain natural abundance (13)C and (15)N CP MAS NMR spectra of microporous organic polymers with excellent signal-to-noise ratio, allowing for unprecedented details in the molecular structure to be determined for these complex polymer networks. Sensitivity enhancements larger than 10 were obtained with bis-nitroxide radical at 14.1 T and low temperature (∼105 K). This DNP MAS NMR approach allows efficient, high-throughput characterization of libraries of porous polymers prepared by combinatorial chemistry methods.

  3. Special Libraries

    ERIC Educational Resources Information Center

    Lavendel, Giuliana

    1977-01-01

    Discusses problems involved in maintaining special scientific or engineering libraries, including budget problems, remote storage locations, rental computer retrieval systems, protecting trade secrets, and establishing a magnetic tape library. (MLH)

  4. Library Buildings

    ERIC Educational Resources Information Center

    Allen, Walter C.

    1976-01-01

    Examines a century of library architecture in relation to the changing perceptions of library functions, the development of building techniques and materials, fluctuating esthetic fashions and sometimes wildly erratic economic climates. (Author)

  5. Library Skills.

    ERIC Educational Resources Information Center

    Paul, Karin; Kuhlthau, Carol C.; Branch, Jennifer L.; Solowan, Diane Galloway; Case, Roland; Abilock, Debbie; Eisenberg, Michael B.; Koechlin, Carol; Zwaan, Sandi; Hughes, Sandra; Low, Ann; Litch, Margaret; Lowry, Cindy; Irvine, Linda; Stimson, Margaret; Schlarb, Irene; Wilson, Janet; Warriner, Emily; Parsons, Les; Luongo-Orlando, Katherine; Hamilton, Donald

    2003-01-01

    Includes 19 articles that address issues related to library skills and Canadian school libraries. Topics include information literacy; inquiry learning; critical thinking and electronic research; collaborative inquiry; information skills and the Big 6 approach to problem solving; student use of online databases; library skills; Internet accuracy;…

  6. Library Skills.

    ERIC Educational Resources Information Center

    Paul, Karin; Kuhlthau, Carol C.; Branch, Jennifer L.; Solowan, Diane Galloway; Case, Roland; Abilock, Debbie; Eisenberg, Michael B.; Koechlin, Carol; Zwaan, Sandi; Hughes, Sandra; Low, Ann; Litch, Margaret; Lowry, Cindy; Irvine, Linda; Stimson, Margaret; Schlarb, Irene; Wilson, Janet; Warriner, Emily; Parsons, Les; Luongo-Orlando, Katherine; Hamilton, Donald

    2003-01-01

    Includes 19 articles that address issues related to library skills and Canadian school libraries. Topics include information literacy; inquiry learning; critical thinking and electronic research; collaborative inquiry; information skills and the Big 6 approach to problem solving; student use of online databases; library skills; Internet accuracy;…

  7. Library Computing.

    ERIC Educational Resources Information Center

    Goodgion, Laurel; And Others

    1986-01-01

    Eight articles in special supplement to "Library Journal" and "School Library Journal" cover a computer program called "Byte into Books"; microcomputers and the small library; creating databases with students; online searching with a microcomputer; quality automation software; Meckler Publishing Company's…

  8. Library Computing

    ERIC Educational Resources Information Center

    Library Computing, 1985

    1985-01-01

    Special supplement to "Library Journal" and "School Library Journal" covers topics of interest to school, public, academic, and special libraries planning for automation: microcomputer use, readings in automation, online searching, databases of microcomputer software, public access to microcomputers, circulation, creating a…

  9. CLEVER: pipeline for designing in silico chemical libraries.

    PubMed

    Song, Chun Meng; Bernardo, Paul H; Chai, Christina L L; Tong, Joo Chuan

    2009-01-01

    Advances in virtual screening have created new channels for expediting the process of discovering novel drugs. Of particular relevance and interest are in silico techniques that enable the enumeration of combinatorial chemical libraries, generation of 3D coordinates and assessment of their propensity for drug-likeness. In a bid to provide an integrated pipeline that encompasses the common components functional for designing, managing and analyzing combinatorial chemical libraries, we describe a platform-independent, standalone Java application entitled CLEVER (Chemical Library Editing, Visualizing and Enumerating Resource). CLEVER supports chemical library creation and manipulation, combinatorial chemical library enumeration using user-specified chemical components, chemical format conversion and visualization, as well as chemical compounds analysis and filtration with respect to drug-likeness, lead-likeness and fragment-likeness based on the physicochemical properties computed from the derived molecules. Also provided is an integrated property-based graphing component that visually depicts the diversity, coverage and distribution of selected compound collections. When deployed in conjunction with large-scale virtual screening campaigns, CLEVER can offer insights into what chemical compounds to synthesize, and more importantly, what not to synthesize. The software is available at http://datam.i2r.a-star.edu.sg/clever/.

  10. Combinatorial selection of molecular conformations and supramolecular synthons in quercetin cocrystal landscapes: a route to ternary solids

    PubMed Central

    Dubey, Ritesh; Desiraju, Gautam R.

    2015-01-01

    The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O—H⋯N and O—H⋯O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular ‘confusion’ that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution. PMID:26175900

  11. Thermal Sensor Arrays for The Combinatorial Analysis of Thin Films

    NASA Astrophysics Data System (ADS)

    McCluskey, Patrick James

    2011-12-01

    Membrane-based thermal sensor arrays were developed for the high-throughput analysis of the thermophysical properties of thin films. The continuous growth of integrated circuits and microelectromechanical systems, as well as the development of functional materials and the optimization of materials properties, have produced the need for instruments capable of fast materials screening and analysis at reduced length scales. Two instruments were developed based on a similar architecture, one to measure thermal transport properties and the other to perform calorimetry measurements. Both have the capability to accelerate the pace of materials development and understanding using combinatorial measurement methods. The shared architecture of the instruments consists of a silicon-based micromachined array of thermal sensors. Each sensor consists of a SiN X membrane and a W heating element that also serves as a temperature gauge. The array design allows the simultaneous creation of a library of thin film samples by various deposition techniques while systematically varying a parameter of interest across the device. The membrane-based sensors have little thermal mass making them extremely sensitive to changes in thermal energy. The nano-thermal transport array has an array of sensors optimized for sensitivity to heat loss. The heat loss is determined from the temperature response of the sensor to an applied current. An analytical model is used with a linear regression analysis to fit the thermal properties of the samples to the temperature response. The assumptions of the analytical model are validated with a finite element model. Measured thermal properties include specific heat, thermal effusivity, thermal conductivity, and emissivity. The technique is demonstrated by measuring the thermal transport properties of sputter deposited Cu multilayers with a total film thickness from 15 to 470 nm. The experimental results compare well to a theory based on electronic thermal

  12. Combinatorial/high throughput methods for the determination of polyanhydride phase behavior.

    PubMed

    Thorstenson, Jon B; Petersen, Latrisha K; Narasimhan, Balaji

    2009-01-01

    Combinatorial methods have been developed to study the phase behavior of biodegradable polyanhydrides for drug delivery applications. The polyanhydrides of interest are poly[1,6-bis(p-carboxyphenoxy) hexane] (CPH) and poly[sebacic anhydride] (SA). Both continuous and discrete polymer blend libraries were fabricated by using a combination of solution-based gradient deposition and rapid prototyping. Blend compositions were characterized via a high throughput transmission Fourier transform infrared (FTIR) sampling technique and compared against theoretical mass balance predictions. To obtain phase diagrams of CPH/SA, the effect of blend composition and annealing temperature on the miscibility of the blend was studied. This gradient library was observed with optical microscopy in order to determine cloud points. These results were compared with a theoretical phase diagram obtained from Flory-Huggins theory and with atomic force microscopy (AFM) experiments on blend libraries and the agreement between the methods was very good. The high throughput method demonstrates that the CPH/SA system exhibits upper critical solution temperature behavior. These libraries are amenable to other high throughput applications in biomaterials science including cell viability, cell activation, and protein/biomaterial interactions.

  13. Combinatorial Contextualization of Peptidic Epitopes for Enhanced Cellular Immunity

    PubMed Central

    Ito, Masaki; Hayashi, Kazumi; Adachi, Eru; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2014-01-01

    Invocation of cellular immunity by epitopic peptides remains largely dependent on empirically developed protocols, such as interfusion of aluminum salts or emulsification using terpenoids and surfactants. To explore novel vaccine formulation, epitopic peptide motifs were co-programmed with structural motifs to produce artificial antigens using our “motif-programming” approach. As a proof of concept, we used an ovalbumin (OVA) system and prepared an artificial protein library by combinatorially polymerizing MHC class I and II sequences from OVA along with a sequence that tends to form secondary structures. The purified endotoxin-free proteins were then examined for their ability to activate OVA-specific T-cell hybridoma cells after being processed within dendritic cells. One clone, F37A (containing three MHC I and two MHC II OVA epitopes), possessed a greater ability to evoke cellular immunity than the native OVA or the other artificial antigens. The sensitivity profiles of drugs that interfered with the F37A uptake differed from those of the other artificial proteins and OVA, suggesting that alteration of the cross-presentation pathway is responsible for the enhanced immunogenicity. Moreover, F37A, but not an epitopic peptide, invoked cellular immunity when injected together with monophosphoryl lipid A (MPL), and retarded tumor growth in mice. Thus, an artificially synthesized protein antigen induced cellular immunity in vivo in the absence of incomplete Freund's adjuvant or aluminum salts. The method described here could be potentially used for developing vaccines for such intractable ailments as AIDS, malaria and cancer, ailments in which cellular immunity likely play a crucial role in prevention and treatment. PMID:25343355

  14. Characterizing the combinatorial beam angle selection problem

    NASA Astrophysics Data System (ADS)

    Bangert, Mark; Ziegenhein, Peter; Oelfke, Uwe

    2012-10-01

    The beam angle selection (BAS) problem in intensity-modulated radiation therapy is often interpreted as a combinatorial optimization problem, i.e. finding the best combination of η beams in a discrete set of candidate beams. It is well established that the combinatorial BAS problem may be solved efficiently with metaheuristics such as simulated annealing or genetic algorithms. However, the underlying parameters of the optimization process, such as the inclusion of non-coplanar candidate beams, the angular resolution in the space of candidate beams, and the number of evaluated beam ensembles as well as the relative performance of different metaheuristics have not yet been systematically investigated. We study these open questions in a meta-analysis of four strategies for combinatorial optimization in order to provide a reference for future research related to the BAS problem in intensity-modulated radiation therapy treatment planning. We introduce a high-performance inverse planning engine for BAS. It performs a full fluence optimization for ≈3600 treatment plans per hour while handling up to 50 GB of dose influence data (≈1400 candidate beams). For three head and neck patients, we compare the relative performance of a genetic, a cross-entropy, a simulated annealing and a naive iterative algorithm. The selection of ensembles with 5, 7, 9 and 11 beams considering either only coplanar or all feasible candidate beams is studied for an angular resolution of 5°, 10°, 15° and 20° in the space of candidate beams. The impact of different convergence criteria is investigated in comparison to a fixed termination after the evaluation of 10 000 beam ensembles. In total, our simulations comprise a full fluence optimization for about 3000 000 treatment plans. All four combinatorial BAS strategies yield significant improvements of the objective function value and of the corresponding dose distributions compared to standard beam configurations with equi

  15. Combinatorial strategies for combating invasive fungal infections.

    PubMed

    Spitzer, Michaela; Robbins, Nicole; Wright, Gerard D

    2017-02-17

    Invasive fungal infections are an important cause of human mortality and morbidity, particularly for immunocompromised populations. However, there remains a paucity of antifungal drug treatments available to combat these fungal pathogens. Further, antifungal compounds are plagued with problems such as host toxicity, fungistatic activity, and the emergence of drug resistance in pathogen populations. A promising therapeutic strategy to increase drug effectiveness and mitigate the emergence of drug resistance is through the use of combination drug therapy. In this review we describe the current arsenal of antifungals in medicine and elaborate on the benefits of combination therapy to expand our current antifungal drug repertoire. We examine those antifungal combinations that have shown potential against fungal pathogens and discuss strategies being employed to discover novel combination therapeutics, in particular combining antifungal agents with non-antifungal bioactive compounds. The findings summarized in this review highlight the promise of combinatorial strategies in combatting invasive mycoses.

  16. Combinatorial and computational challenges for biocatalyst design

    NASA Astrophysics Data System (ADS)

    Arnold, Frances H.

    2001-01-01

    Nature provides a fantastic array of catalysts extremely well suited to supporting life, but usually not so well suited for technology. Whether biocatalysis will have a significant technological impact depends on our finding robust routes for tailoring nature's catalysts or redesigning them anew. Laboratory evolution methods are now used widely to fine-tune the selectivity and activity of enzymes. The current rapid development of these combinatorial methods promises solutions to more complex problems, including the creation of new biosynthetic pathways. Computational methods are also developing quickly. The marriage of these approaches will allow us to generate the efficient, effective catalysts needed by the pharmaceutical, food and chemicals industries and should open up new opportunities for producing energy and chemicals from renewable resources.

  17. Combinatorial optimization methods for disassembly line balancing

    NASA Astrophysics Data System (ADS)

    McGovern, Seamus M.; Gupta, Surendra M.

    2004-12-01

    Disassembly takes place in remanufacturing, recycling, and disposal with a line being the best choice for automation. The disassembly line balancing problem seeks a sequence which: minimizes workstations, ensures similar idle times, and is feasible. Finding the optimal balance is computationally intensive due to factorial growth. Combinatorial optimization methods hold promise for providing solutions to the disassembly line balancing problem, which is proven to belong to the class of NP-complete problems. Ant colony optimization, genetic algorithm, and H-K metaheuristics are presented and compared along with a greedy/hill-climbing heuristic hybrid. A numerical study is performed to illustrate the implementation and compare performance. Conclusions drawn include the consistent generation of optimal or near-optimal solutions, the ability to preserve precedence, the speed of the techniques, and their practicality due to ease of implementation.

  18. Multipin technology in the preparation and screening of peptide libraries.

    PubMed

    Rodda, S J; Mason, T J; Maeji, N J

    1993-01-01

    Peptide libraries are relatively new sources of enormous numbers of unique compounds, fodder for the mill of drug discovery programs. Their enormous diversity derives from vast numbers of combinations of a small number of monomers (Geysen et al., 1986). For example, a complete hexapeptide library synthesized from just 10 monomers (amino acids) has one million unique compounds in it. In principle, other types of combinatorial libraries can have equally vast numbers of members; for example, the monomers can be N-acyl glycines, giving rise to the so-called "peptoids" (Simon et al., 1992); or the monomers could be monosaccharides or nucleotides.

  19. Structure-based library design in efficient discovery of novel inhibitors.

    PubMed

    Yan, Shunqi; Selliah, Robert

    2011-01-01

    Structure-based library design employs both structure-based drug design (SBDD) and combinatorial library design. Combinatorial library design concepts have evolved over the past decade, and this chapter covers several novel aspects of structure-based library design together with successful case studies in the anti-viral drug design HCV target area. Discussions include reagent selections, diversity library designs, virtual screening, scoring/ranking, and post-docking pose filtering, in addition to the considerations of chemistry synthesis. Validation criteria for a successful design include an X-ray co-crystal complex structure, in vitro biological data, and the number of compounds to be made, and these are addressed in this chapter as well.

  20. Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems.

    PubMed

    Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G

    2016-01-01

    This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.

  1. Establishment of pseudoternary LiO0.5-NiO-MnO2 phase diagram by combinatorial wet process.

    PubMed

    Fujimoto, Kenjiro; Shimura, Yosuke; Ito, Shigeru

    2013-12-09

    A pseudoternary LiO0.5-NiO-MnO2 reaction phase diagram was established using a combinatorial high-throughput materials exploration process to find candidate electrode materials for lithium ion secondary batteries. Each powder library was prepared using our combinatorial wet process based on the electrostatic spray deposition method and results obtained at various firing temperatures in an air atmosphere and an oxide atmosphere. In the air atmosphere, newly composed single phase regions of a layered rock salt-type structure were only found around Li2MnO3 at 800 °C. On the other hand, in the oxide atmosphere, most of the powder library showed the multiphase of the spinel and layered rock salt type structure.

  2. Library Intranets: Trends and Enhancements

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2010-01-01

    Libraries are widely known as institutions that access, organize, and preserve collections of information. Libraries are also dynamic administrative entities that generate and exchange internal business information. From small operations with limited staff and technology to large, multidepartmental institutions with full IT support, libraries…

  3. Library Intranets: Trends and Enhancements

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2010-01-01

    Libraries are widely known as institutions that access, organize, and preserve collections of information. Libraries are also dynamic administrative entities that generate and exchange internal business information. From small operations with limited staff and technology to large, multidepartmental institutions with full IT support, libraries…

  4. A Combinatorial Kin Discrimination System in Bacillus subtilis

    PubMed Central

    Lyons, Nicholas A.; Kraigher, Barbara; Stefanic, Polonca; Mandic-Mulec, Ines; Kolter, Roberto

    2016-01-01

    SUMMARY Multicellularity inherently involves a number of cooperative behaviors that are potentially susceptible to exploitation but can be protected by mechanisms such as kin discrimination. Discrimination of kin from non-kin has been observed in swarms of the bacterium Bacillus subtilis, but the underlying molecular mechanism has been unknown. We used genetic, transcriptomic, and bioinformatic analyses to uncover kin recognition factors in this organism. Our results identified many molecules involved in cell surface modification and antimicrobial production and response. These genes varied significantly in expression level and mutation phenotype among B. subtilis strains, suggesting interstrain variation in the exact kin discrimination mechanism used. Genome analyses revealed a substantial diversity of antimicrobial genes present in unique combinations in different strains, with many likely acquired by horizontal gene transfer. The dynamic combinatorial effect derived from this plethora of kin discrimination genes creates a tight relatedness cutoff for cooperation that has likely led to rapid diversification within the species. Our data suggest that genes likely originally selected for competitive purposes also generate preferential interactions among kin, thus stabilizing multicellular lifestyles. PMID:26923784

  5. A Combinatorial Kin Discrimination System in Bacillus subtilis.

    PubMed

    Lyons, Nicholas A; Kraigher, Barbara; Stefanic, Polonca; Mandic-Mulec, Ines; Kolter, Roberto

    2016-03-21

    Multicellularity inherently involves a number of cooperative behaviors that are potentially susceptible to exploitation but can be protected by mechanisms such as kin discrimination. Discrimination of kin from non-kin has been observed in swarms of the bacterium Bacillus subtilis, but the underlying molecular mechanism has been unknown. We used genetic, transcriptomic, and bioinformatic analyses to uncover kin recognition factors in this organism. Our results identified many molecules involved in cell-surface modification and antimicrobial production and response. These genes varied significantly in expression level and mutation phenotype among B. subtilis strains, suggesting interstrain variation in the exact kin discrimination mechanism used. Genome analyses revealed a substantial diversity of antimicrobial genes present in unique combinations in different strains, with many likely acquired by horizontal gene transfer. The dynamic combinatorial effect derived from this plethora of kin discrimination genes creates a tight relatedness cutoff for cooperation that has likely led to rapid diversification within the species. Our data suggest that genes likely originally selected for competitive purposes also generate preferential interactions among kin, thus stabilizing multicellular lifestyles.

  6. Combinatorial semantics strengthens angular-anterior temporal coupling.

    PubMed

    Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel

    2015-04-01

    The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning.

  7. Libraries program

    USGS Publications Warehouse

    2011-01-01

    The U.S. Congress authorized a library for the U.S. Geological Survey (USGS) in 1879. The library was formally established in 1882 with the naming of the first librarian and began with a staff of three and a collection of 1,400 books. Today, the USGS Libraries Program is one of the world's largest Earth and natural science repositories and a resource of national significance used by researchers and the public worldwide.

  8. Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity

    PubMed Central

    1993-01-01

    In Heterodontus, a phylogenetically primitive shark species, the variable (VH), diversity (DH), joining (JH) segments, and constant (CH) exons are organized in individual approximately 18-20-kb "clusters." A single large VH family with > 90% nucleic acid homology and a monotypic second gene family are identified by extensive screening of a genomic DNA library. Little variation in the nucleotide sequences of DH segments from different germline gene clusters is evident, suggesting that the early role for DH was in promoting junctional diversity rather than contributing unique coding specificities. A gene-specific oligodeoxynucleotide screening method was used to relate specific transcription products (cDNAs) to individual gene clusters and showed that gene rearrangements are intra- rather than intercluster. This provides further evidence for restricted diversity in the immunoglobulin heavy chain of Heterodontus, from which it is inferred that combinatorial diversity is a more recently acquired means for generating diversity. The observed differences between cDNA sequences selected and the sequences of segmental elements derived from conventional genomic libraries as well as from VH segment-specific libraries generated by direct PCR amplification of genomic DNA indicate that the VH repertoire is diversified by both junctional diversity and somatic mutation. Taken together, these findings suggest a heretofore unrecognized contribution of somatic variation that preceded both extensive diversification of the germline repertoire and the combinatorial joining process in the evolution of humoral immunity. PMID:8350055

  9. Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity.

    PubMed

    Hinds-Frey, K R; Nishikata, H; Litman, R T; Litman, G W

    1993-09-01

    In Heterodontus, a phylogenetically primitive shark species, the variable (VH), diversity (DH), joining (JH) segments, and constant (CH) exons are organized in individual approximately 18-20-kb "clusters." A single large VH family with > 90% nucleic acid homology and a monotypic second gene family are identified by extensive screening of a genomic DNA library. Little variation in the nucleotide sequences of DH segments from different germline gene clusters is evident, suggesting that the early role for DH was in promoting junctional diversity rather than contributing unique coding specificities. A gene-specific oligodeoxynucleotide screening method was used to relate specific transcription products (cDNAs) to individual gene clusters and showed that gene rearrangements are intra- rather than intercluster. This provides further evidence for restricted diversity in the immunoglobulin heavy chain of Heterodontus, from which it is inferred that combinatorial diversity is a more recently acquired means for generating diversity. The observed differences between cDNA sequences selected and the sequences of segmental elements derived from conventional genomic libraries as well as from VH segment-specific libraries generated by direct PCR amplification of genomic DNA indicate that the VH repertoire is diversified by both junctional diversity and somatic mutation. Taken together, these findings suggest a heretofore unrecognized contribution of somatic variation that preceded both extensive diversification of the germline repertoire and the combinatorial joining process in the evolution of humoral immunity.

  10. Combinatorial synthesis of substituted 3-(2-indolyl)piperidines and 2-phenyl indoles as inhibitors of ZipA-FtsZ interaction.

    PubMed

    Jennings, Lee D; Foreman, Kenneth W; Rush, Thomas S; Tsao, Desiree H H; Mosyak, Lidia; Kincaid, Scott L; Sukhdeo, Mohani N; Sutherland, Alan G; Ding, Weidong; Kenny, Cynthia Hess; Sabus, Chantel L; Liu, Hanlan; Dushin, Elizabeth G; Moghazeh, Soraya L; Labthavikul, Pornpen; Petersen, Peter J; Tuckman, Margareta; Haney, Steven A; Ruzin, Alexey V

    2004-10-01

    The ZipA-FtsZ protein-protein interaction is a potential target for antibacterial therapy. The design and parallel synthesis of a combinatorial library of small molecules, which target the FtsZ binding area on ZipA are described. Compounds were demonstrated to bind to the FtsZ binding domain of ZipA by HSQC NMR and to inhibit cell division in a cell elongation assay.

  11. Crystallization of macromolecular complexes: combinatorial complex crystallization

    NASA Astrophysics Data System (ADS)

    Stura, Enrico A.; Graille, Marc; Charbonnier, Jean-Baptiste

    2001-11-01

    The usefulness of antibody complexation, as a way of increasing the chances of crystallization needs to be re-evaluated after many antibody complexes have been crystallized and their structure determined. It is somewhat striking that among these, only a small number is a complex with a large protein antigen. The problem is that the effort of raising, cleaving and purifying an Fab is rewarded only by an extra chance of getting crystals; depending on the relative likelihood of crystallization of the complexed and uncomplexed protein. The example of the complex between HIV gp120, CD4 and an Fab fragment from a neutralizing antibody suggests that further complexation of an antigen-antibody complex with a third protein could, by increasing the number of possible combinations, improve the likelihood of crystallization. We propose the use of Ig-binding proteins as a way of extending the method from HIV gp120 to all proteins for which there are monoclonal antibodies. We discuss this technique, combinatorial complex crystallization (CCC), as part of a multi-component system for the enhancement of crystallization of macromolecular complexes. The method makes use of single Ig-binding domains from Staphylococcus aureus protein A (SpA), Peptostreptococcus magnus protein L (PpL) and the streptococcal protein G (SpG). The generality of the method depends on the ability of these domains to interact with a large repertoire of antibodies without affecting antigen binding. There is strong evidence to suggest that these Ig-binding domains bind outside the antigen-combining site of the antibody without perturbing antigen binding. It is clear from the crystal structure of the single SpG domain complexed with an Fab that the interaction involves mainly the immunoglobulin CH1 domain, a region not involved in antigen recognition. We have recently determined the structure of the complex between a human Fab and the domain D from SpA and found that steric hindrance is unlikely even for large

  12. America's Star Libraries: Top-Rated Libraries

    ERIC Educational Resources Information Center

    Lance, Keith Curry; Lyons, Ray

    2009-01-01

    "Library Journal"'s national rating of public libraries, the "LJ" Index of Public Library Service 2009, Round 2, identifies 258 "star" libraries. Created by Keith Curry Lance and Ray Lyons and based on 2007 data from the IMLS, it rates 7,268 public libraries. The top libraries in each group get five, four, or three stars. All included libraries,…

  13. America's Star Libraries: Top-Rated Libraries

    ERIC Educational Resources Information Center

    Lance, Keith Curry; Lyons, Ray

    2009-01-01

    "Library Journal"'s national rating of public libraries, the "LJ" Index of Public Library Service 2009, Round 2, identifies 258 "star" libraries. Created by Keith Curry Lance and Ray Lyons and based on 2007 data from the IMLS, it rates 7,268 public libraries. The top libraries in each group get five, four, or three stars. All included libraries,…

  14. Combinatorial Dyson-Schwinger equations and inductive data types

    NASA Astrophysics Data System (ADS)

    Kock, Joachim

    2016-06-01

    The goal of this contribution is to explain the analogy between combinatorial Dyson-Schwinger equations and inductive data types to a readership of mathematical physicists. The connection relies on an interpretation of combinatorial Dyson-Schwinger equations as fixpoint equations for polynomial functors (established elsewhere by the author, and summarised here), combined with the now-classical fact that polynomial functors provide semantics for inductive types. The paper is expository, and comprises also a brief introduction to type theory.

  15. cGRNB: a web server for building combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets.

    PubMed

    Xu, Huayong; Yu, Hui; Tu, Kang; Shi, Qianqian; Wei, Chaochun; Li, Yuan-Yuan; Li, Yi-Xue

    2013-01-01

    We are witnessing rapid progress in the development of methodologies for building the combinatorial gene regulatory networks involving both TFs (Transcription Factors) and miRNAs (microRNAs). There are a few tools available to do these jobs but most of them are not easy to use and not accessible online. A web server is especially needed in order to allow users to upload experimental expression datasets and build combinatorial regulatory networks corresponding to their particular contexts. In this work, we compiled putative TF-gene, miRNA-gene and TF-miRNA regulatory relationships from forward-engineering pipelines and curated them as built-in data libraries. We streamlined the R codes of our two separate forward-and-reverse engineering algorithms for combinatorial gene regulatory network construction and formalized them as two major functional modules. As a result, we released the cGRNB (combinatorial Gene Regulatory Networks Builder): a web server for constructing combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets. The cGRNB enables two major network-building modules, one for MPGE (miRNA-perturbed gene expression) datasets and the other for parallel miRNA/mRNA expression datasets. A miRNA-centered two-layer combinatorial regulatory cascade is the output of the first module and a comprehensive genome-wide network involving all three types of combinatorial regulations (TF-gene, TF-miRNA, and miRNA-gene) are the output of the second module. In this article we propose cGRNB, a web server for building combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets. Since parallel miRNA/mRNA expression datasets are rapidly accumulated by the advance of next-generation sequencing techniques, cGRNB will be very useful tool for researchers to build combinatorial gene regulatory networks based on expression datasets

  16. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences.

    PubMed

    Li, Yifan; Gu, Qun; Lin, Zhenquan; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2013-11-15

    Engineering complex biological systems typically requires combinatorial optimization to achieve the desired functionality. Here, we present Multiplex Iterative Plasmid Engineering (MIPE), which is a highly efficient and customized method for combinatorial diversification of plasmid sequences. MIPE exploits ssDNA mediated λ Red recombineering for the introduction of mutations, allowing it to target several sites simultaneously and generate libraries of up to 10(7) sequences in one reaction. We also describe "restriction digestion mediated co-selection (RD CoS)", which enables MIPE to produce enhanced recombineering efficiencies with greatly simplified coselection procedures. To demonstrate this approach, we applied MIPE to fine-tune gene expression level in the 5-gene riboflavin biosynthetic pathway and successfully isolated a clone with 2.67-fold improved production in less than a week. We further demonstrated the ability of MIPE for highly multiplexed diversification of protein coding sequence by simultaneously targeting 23 codons scattered along the 750 bp sequence. We anticipate this method to benefit the optimization of diverse biological systems in synthetic biology and metabolic engineering.

  17. Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition.

    PubMed

    Motemani, Yahya; Khare, Chinmay; Savan, Alan; Hans, Michael; Paulsen, Alexander; Frenzel, Jan; Somsen, Christoph; Mücklich, Frank; Eggeler, Gunther; Ludwig, Alfred

    2016-12-09

    Ti-Ta alloys are attractive materials for applications in actuators as well as biomedical implants. When fabricated as thin films, these alloys can potentially be employed as microactuators, components for micro-implantable devices and coatings on surgical implants. In this study, Ti100-x Ta x (x = 21, 30) nanocolumnar thin films are fabricated by glancing angle deposition (GLAD) at room temperature using Ti73Ta27 and Ta sputter targets. Crystal structure, morphology and microstructure of the nanostructured thin films are systematically investigated by XRD, SEM and TEM, respectively. Nanocolumns of ∼150-160 nm in width are oriented perpendicular to the substrate for both Ti79Ta21 and Ti70Ta30 compositions. The disordered α″ martensite phase with orthorhombic structure is formed in room temperature as-deposited thin films. The columns are found to be elongated small single crystals which are aligned perpendicular to the [Formula: see text] and [Formula: see text] planes of α″ martensite, indicating that the films' growth orientation is mainly dominated by these crystallographic planes. Laser pre-patterned substrates are utilized to obtain periodic nanocolumnar arrays. The differences in seed pattern, and inter-seed distances lead to growth of multi-level porous nanostructures. Using a unique sputter deposition geometry consisting of Ti73Ta27 and Ta sputter sources, a nanocolumnar Ti-Ta materials library was fabricated on a static substrate by a co-deposition process (combinatorial-GLAD approach). In this library, a composition spread developed between Ti72.8Ta27.2 and Ti64.4Ta35.6, as confirmed by high-throughput EDX analysis. The morphology over the materials library varies from well-isolated nanocolumns to fan-like nanocolumnar structures. The influence of two sputter sources is investigated by studying the resulting column angle on the materials library. The presented nanostructuring methods including the use of the GLAD technique along with pre

  18. Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Motemani, Yahya; Khare, Chinmay; Savan, Alan; Hans, Michael; Paulsen, Alexander; Frenzel, Jan; Somsen, Christoph; Mücklich, Frank; Eggeler, Gunther; Ludwig, Alfred

    2016-12-01

    Ti-Ta alloys are attractive materials for applications in actuators as well as biomedical implants. When fabricated as thin films, these alloys can potentially be employed as microactuators, components for micro-implantable devices and coatings on surgical implants. In this study, Ti100-x Ta x (x = 21, 30) nanocolumnar thin films are fabricated by glancing angle deposition (GLAD) at room temperature using Ti73Ta27 and Ta sputter targets. Crystal structure, morphology and microstructure of the nanostructured thin films are systematically investigated by XRD, SEM and TEM, respectively. Nanocolumns of ˜150-160 nm in width are oriented perpendicular to the substrate for both Ti79Ta21 and Ti70Ta30 compositions. The disordered α″ martensite phase with orthorhombic structure is formed in room temperature as-deposited thin films. The columns are found to be elongated small single crystals which are aligned perpendicular to the (20\\bar{4}) and (204) planes of α″ martensite, indicating that the films’ growth orientation is mainly dominated by these crystallographic planes. Laser pre-patterned substrates are utilized to obtain periodic nanocolumnar arrays. The differences in seed pattern, and inter-seed distances lead to growth of multi-level porous nanostructures. Using a unique sputter deposition geometry consisting of Ti73Ta27 and Ta sputter sources, a nanocolumnar Ti-Ta materials library was fabricated on a static substrate by a co-deposition process (combinatorial-GLAD approach). In this library, a composition spread developed between Ti72.8Ta27.2 and Ti64.4Ta35.6, as confirmed by high-throughput EDX analysis. The morphology over the materials library varies from well-isolated nanocolumns to fan-like nanocolumnar structures. The influence of two sputter sources is investigated by studying the resulting column angle on the materials library. The presented nanostructuring methods including the use of the GLAD technique along with pre-patterning and a

  19. Signal dimensionality and the emergence of combinatorial structure.

    PubMed

    Little, Hannah; Eryılmaz, Kerem; de Boer, Bart

    2017-11-01

    In language, a small number of meaningless building blocks can be combined into an unlimited set of meaningful utterances. This is known as combinatorial structure. One hypothesis for the initial emergence of combinatorial structure in language is that recombining elements of signals solves the problem of overcrowding in a signal space. Another hypothesis is that iconicity may impede the emergence of combinatorial structure. However, how these two hypotheses relate to each other is not often discussed. In this paper, we explore how signal space dimensionality relates to both overcrowding in the signal space and iconicity. We use an artificial signalling experiment to test whether a signal space and a meaning space having similar topologies will generate an iconic system and whether, when the topologies differ, the emergence of combinatorially structured signals is facilitated. In our experiments, signals are created from participants' hand movements, which are measured using an infrared sensor. We found that participants take advantage of iconic signal-meaning mappings where possible. Further, we use trajectory predictability, measures of variance, and Hidden Markov Models to measure the use of structure within the signals produced and found that when topologies do not match, then there is more evidence of combinatorial structure. The results from these experiments are interpreted in the context of the differences between the emergence of combinatorial structure in different linguistic modalities (speech and sign). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A combinatorial approach towards water-stable metal-organic frameworks for highly efficient carbon dioxide separation.

    PubMed

    Hu, Zhigang; Zhang, Kang; Zhang, Mei; Guo, Zhengang; Jiang, Jianwen; Zhao, Dan

    2014-10-01

    A library of 20 UiO-66-derived metal-organic frameworks (MOFs) is synthesized in a combinatorial approach involving mixed ligand copolymerization and two post-synthetic modifications (PSMs) in tandem. Mixed ligand co-polymerization of benzene-1,4-dicarboxylic acid (BDC) and sodium 2-sulfoterephthalate (SS-BDC) with zirconium tetrachloride (ZrCl4 ) was used to prepare 5 groups of MOFs with the same UiO-66 topology but differing amounts of sulfate groups. These MOFs exhibit excellent water stabilities in a pH range of 1 to 12, together with high CO2 uptake capacities and selectivities.