Sample records for dynamic concentration range

  1. Six orders of magnitude dynamic range in capillary electrophoresis with ultrasensitive laser-induced fluorescence detection

    PubMed Central

    Whitmore, Colin D.; Essaka, David; Dovichi, Norman J.

    2009-01-01

    An ultrasensitive laser-induced fluorescence detector was used with capillary electrophoresis for the study of 5-carboxy-tetramethylrhodamine. The raw signal from the detector provided roughly three orders of magnitude dynamic range. The signal saturated at high analyte concentrations due to the dead time associated with the single-photon counting avalanche photodiode employed in the detector. The signal can be corrected for the detector dead time, providing an additional order of magnitude dynamic range. To further increase dynamic range, two fiber-optic beam-splitters were cascaded to generate a primary signal and two attenuated signals, each monitored by a single-photon counting avalanche photodiode. The combined signals from the three photodiodes are reasonably linear from the concentration detection limit of 3 pM to 10 μM, the maximum concentration investigated, a range of 3,000,000. Mass detection limits were 150 yoctomoles injected onto the capillary. PMID:19836546

  2. Sample Introduction Using the Hildebrand Grid Nebulizer for Plasma Spectrometry

    DTIC Science & Technology

    1988-01-01

    linear dynamic ranges, precision, and peak width were de- termined for elements in methanol and acetonitrile solutions. , (1)> The grid nebulizer was...FIA) with ICP-OES detection were evaluated. Detec- tion limits, linear dynamic ranges, precision, and peak width were de- termined for elements in...Concentration vs. Log Peak Area for Mn, 59 Cd, Zn, Au, Ni in Methanol (CMSC) 3-28 Log Concentration vs. Log Peak Area for Mn, 60 Cd, Au, Ni in

  3. Flexible nano- and microliter injections on a single liquid chromatography-mass spectrometry system: Minimizing sample preparation and maximizing linear dynamic range.

    PubMed

    Lubin, Arnaud; Sheng, Sheng; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip

    2017-11-17

    Lack of knowledge on the expected concentration range or insufficient linear dynamic range of the analytical method applied are common challenges for the analytical scientist. Samples that are above the upper limit of quantification are typically diluted and reanalyzed. The analysis of undiluted highly concentrated samples can cause contamination of the system, while the dilution step is time consuming and as the case for any sample preparation step, also potentially leads to precipitation, adsorption or degradation of the analytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Factors affecting the viscosity of sodium hypochlorite and their effect on irrigant flow.

    PubMed

    Bukiet, F; Soler, T; Guivarch, M; Camps, J; Tassery, H; Cuisinier, F; Candoni, N

    2013-10-01

    To assess the influence of concentration, temperature and surfactant addition to a sodium hypochlorite solution on its dynamic viscosity and to calculate the corresponding Reynolds number to determine the corresponding flow regimen. The dynamic viscosity of the irrigant was assessed using a rotational viscometer. Sodium hypochlorite with concentrations ranging from 0.6% to 9.6% was tested at 37 and 22 °C. A wide range of concentrations of three different surfactants was mixed in 2.4% sodium hypochlorite for viscosity measurements. The Reynolds number was calculated under each condition. Data were analysed using two-way anova. There was a significant influence of sodium hypochlorite concentration (P < 0.001) and temperature (P < 0.001) on dynamic viscosity: the latter significantly increased with sodium hypochlorite concentration and decreased with temperature. A significant influence of surfactant concentration on dynamic viscosity (P < 0.001) occurred, especially for high surfactant concentrations: 6.25% for benzalkonium chloride, 15% for Tween 80 and 6.25% for Triton X-100. Reynolds number values calculated for a given flow rate (0.14 mL s(-1)), and root canal diameter (sizes 45 and 70) clearly qualified the irrigant flow regimen as laminar. Dynamic viscosity increased with sodium hypochlorite and surfactant concentration but decreased with temperature. Under clinical conditions, all viscosities measured led to laminar flow. The transition between laminar and turbulent flow may be reached by modifying different parameters at the same time: increasing flow rate and temperature whilst decreasing irrigant viscosity by adding surfactants with a high value of critical micellar concentration. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Brownian dynamics simulation of protein diffusion in crowded environments

    NASA Astrophysics Data System (ADS)

    Mereghetti, Paolo; Wade, Rebecca C.

    2013-02-01

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. We first describe the development of a Brownian dynamics simulation methodology to investigate the dynamic and structural properties of protein solutions using atomic-detail protein structures. We then discuss insights obtained from applying this approach to simulation of solutions of a range of types of proteins.

  6. Structures and interactions among globular proteins above the isoelectric point in the presence of divalent ions: A small angle neutron scattering and dynamic light scattering study

    NASA Astrophysics Data System (ADS)

    Kundu, Sarathi; Pandit, Subhankar; Abbas, Sohrab; Aswal, V. K.; Kohlbrecher, J.

    2018-02-01

    Small angle neutron scattering study reveals that at pD ≈ 7.0, above the isoelectric point of the globular protein Bovine Serum Albumin (BSA), in the presence of different divalent ions (Mg2+, Ca2+, Sr2+ and Ba2+), the short-range attractive interaction remains nearly constant and the intermediate-range repulsive interaction decreases with increasing salt concentration up to a certain concentration value but after that remains unchanged. However, for the monovalent ion (Na+), repulsive interaction decreases gradually up to 1 M salt concentration. Dynamic light scattering study shows that for all ions, diffusion coefficient of BSA decreases with increasing salt concentration and then nearly saturates.

  7. An examination of the rheology of flocculated clay suspensions

    NASA Astrophysics Data System (ADS)

    Spearman, Jeremy

    2017-04-01

    A dense cohesive sediment suspension, sometimes referred to as fluid mud, is a thixotropic fluid with a true yield stress. Current rheological formulations struggle to reconcile the structural dynamics of cohesive sediment suspensions with the equilibrium behaviour of these suspensions across the range of concentrations and shear. This paper is concerned with establishing a rheological framework for the range of sediment concentrations from the yield point to Newtonian flow. The shear stress equation is based on floc fractal theory, put forward by Mills and Snabre (1988). This results in a Casson-like rheology equation. Additional structural dynamics is then added, using a theory on the self-similarity of clay suspensions proposed by Coussot (1995), giving an equation which has the ability to match the equilibrium and time-dependent viscous rheology of a wide range of suspensions of different concentration and mineralogy.

  8. Molecular dynamics simulations of amphiphilic graft copolymer molecules at a water/air interface.

    PubMed

    Anderson, Philip M; Wilson, Mark R

    2004-11-01

    Fully atomistic molecular dynamics simulations of amphiphilic graft copolymer molecules have been performed at a range of surface concentrations at a water/air interface. These simulations are compared to experimental results from a corresponding system over a similar range of surface concentrations. Neutron reflectivity data calculated from the simulation trajectories agrees well with experimentally acquired profiles. In particular, excellent agreement in neutron reflectivity is found for lower surface concentration simulations. A simulation of a poly(ethylene oxide) (PEO) chain in aqueous solution has also been performed. This simulation allows the conformational behavior of the free PEO chain and those tethered to the interface in the previous simulations to be compared. (c) 2004 American Institute of Physics.

  9. Statistical persistence of air pollutants (O3,SO2,NO2 and PM10) in Mexico City

    NASA Astrophysics Data System (ADS)

    Meraz, M.; Rodriguez, E.; Femat, R.; Echeverria, J. C.; Alvarez-Ramirez, J.

    2015-06-01

    The rescaled range (R / S) analysis was used for analyzing the statistical persistence of air pollutants in Mexico City. The air-pollution time series consisted of hourly observations of ozone, nitrogen dioxide, sulfur dioxide and particulate matter obtained at the Mexico City downtown monitoring station during 1999-2014. The results showed that long-range persistence is not a uniform property over a wide range of time scales, from days to months. In fact, although the air pollutant concentrations exhibit an average persistent behavior, environmental (e.g., daily and yearly) and socio-economic (e.g., daily and weekly) cycles are reflected in the dependence of the persistence strength as quantified in terms of the Hurst exponent. It was also found that the Hurst exponent exhibits time variations, with the ozone and nitrate oxide concentrations presenting some regularity, such as annual cycles. The persistence dynamics of the pollutant concentrations increased during the rainy season and decreased during the dry season. The time and scale dependences of the persistence properties provide some insights in the mechanisms involved in the internal dynamics of the Mexico City atmosphere for accumulating and dissipating dangerous air pollutants. While in the short-term individual pollutants dynamics seems to be governed by specific mechanisms, in the long-term (for monthly and higher scales) meteorological and seasonal mechanisms involved in atmospheric recirculation seem to dominate the dynamics of all air pollutant concentrations.

  10. Non-monotonic dynamics of water in its binary mixture with 1,2-dimethoxy ethane: A combined THz spectroscopic and MD simulation study.

    PubMed

    Das Mahanta, Debasish; Patra, Animesh; Samanta, Nirnay; Luong, Trung Quan; Mukherjee, Biswaroop; Mitra, Rajib Kumar

    2016-10-28

    A combined experimental (mid- and far-infrared FTIR spectroscopy and THz time domain spectroscopy (TTDS) (0.3-1.6 THz)) and molecular dynamics (MD) simulation technique are used to understand the evolution of the structure and dynamics of water in its binary mixture with 1,2-dimethoxy ethane (DME) over the entire concentration range. The cooperative hydrogen bond dynamics of water obtained from Debye relaxation of TTDS data reveals a non-monotonous behaviour in which the collective dynamics is much faster in the low X w region (where X w is the mole fraction of water in the mixture), whereas in X w ∼ 0.8 region, the dynamics gets slower than that of pure water. The concentration dependence of the reorientation times of water, calculated from the MD simulations, also captures this non-monotonous character. The MD simulation trajectories reveal presence of large amplitude angular jumps, which dominate the orientational relaxation. We rationalize the non-monotonous, concentration dependent orientational dynamics by identifying two different physical mechanisms which operate at high and low water concentration regimes.

  11. EC-QCL mid-IR transmission spectroscopy for monitoring dynamic changes of protein secondary structure in aqueous solution on the example of β-aggregation in alcohol-denaturated α-chymotrypsin.

    PubMed

    Alcaráz, Mirta R; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard

    2016-06-01

    In this work, a novel EC-QCL-based setup for mid-IR transmission measurements in the amide I region is introduced for monitoring dynamic changes in secondary structure of proteins. For this purpose, α-chymotrypsin (aCT) acts as a model protein, which gradually forms intermolecular β-sheet aggregates after adopting a non-native α-helical structure induced by exposure to 50 % TFE. In order to showcase the versatility of the presented setup, the effects of varying pH values and protein concentration on the rate of β-aggregation were studied. The influence of the pH value on the initial reaction rate was studied in the range of pH 5.8-8.2. Results indicate an increased aggregation rate at elevated pH values. Furthermore, the widely accessible concentration range of the laser-based IR transmission setup was utilized to investigate β-aggregation across a concentration range of 5-60 mg mL(-1). For concentrations lower than 20 mg mL(-1), the aggregation rate appears to be independent of concentration. At higher values, the reaction rate increases linearly with protein concentration. Extended MCR-ALS was employed to obtain pure spectral and concentration profiles of the temporal transition between α-helices and intermolecular β-sheets. Comparison of the global solutions obtained by the modelled data with results acquired by the laser-based IR transmission setup at different conditions shows excellent agreement. This demonstrates the potential and versatility of the EC-QCL-based IR transmission setup to monitor dynamic changes of protein secondary structure in aqueous solution at varying conditions and across a wide concentration range. Graphical abstract EC-QCL IR spectroscopy for monitoring protein conformation change.

  12. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study

    NASA Astrophysics Data System (ADS)

    Soltani, Omid; Akbari, Mohammad

    2016-10-01

    In this paper, the effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid is examined. The experiments carried out in the solid volume fraction range of 0 to 1.0% under the temperature ranging from 30 °C to 60 °C. The results showed that the hybrid nanofluid behaves as a Newtonian fluid for all solid volume fractions and temperatures considered. The measurements also indicated that the dynamic viscosity increases with increasing the solid volume fraction and decreases with the temperature rising. The relative viscosity revealed that when the solid volume fraction enhances from 0.1 to 1%, the dynamic viscosity increases up to 168%. Finally, using experimental data, in order to predict the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluids, a new correlation has been suggested. The comparisons between the correlation outputs and experimental results showed that the suggested correlation has an acceptable accuracy.

  13. Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M.

    2016-05-01

    Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.

  14. Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range

    NASA Astrophysics Data System (ADS)

    Wu, Xiang; Oo, Maung Kyaw Khaing; Reddy, Karthik; Chen, Qiushu; Sun, Yuze; Fan, Xudong

    2014-04-01

    Enzyme-linked immunosorbent assay (ELISA) is a powerful method for biomolecular analysis. The traditional ELISA employing light intensity as the sensing signal often encounters large background arising from non-specific bindings, material autofluorescence and leakage of excitation light, which deteriorates its detection limit and dynamic range. Here we develop the optofluidic laser-based ELISA, where ELISA occurs inside a laser cavity. The laser onset time is used as the sensing signal, which is inversely proportional to the enzyme concentration and hence the analyte concentration inside the cavity. We first elucidate the principle of the optofluidic laser-based ELISA, and then characterize the optofluidic laser performance. Finally, we present the dual-mode detection of interleukin-6 using commercial ELISA kits, where the sensing signals are simultaneously obtained by the traditional and the optofluidic laser-based ELISA, showing a detection limit of 1 fg ml-1 (38 aM) and a dynamic range of 6 orders of magnitude.

  15. Mass transport in polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Schipper, F. J. M.; Leyte, J. C.

    1999-02-01

    The self-diffusion coefficients of the three components of a salt-free heavy-water solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide, were measured over a broad concentration range. Three concentration regions were observed for the self-diffusion of both the polyions and the counterions. At polyion concentrations below 0.01 mol monomer kg-1, the dilute concentration regime for the polymer, the polyion self-diffusion coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At polyelectrolyte concentrations above 0.1 mol monomer kg-1, the self-diffusion coefficients of the solvent, the counterions and the polymer decreased with concentration, suggesting that this decrease is due to a topological constraint on the motions of the components. In the intermediate-concentration region, the self-diffusion coefficients of the polyions and the counterions are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and high-concentration regions, reasonably well described by that of a hard sphere, with a radius of 3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost quantitatively over the entire concentration range with the Poisson-Boltzmann-Smoluchowski model for the spherical cell, provided that the sphere radius and the number of charges are chosen appropriately (approximately the number of charges in a persistence length). Using this model, the dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration and counterion radius is calculated quantitatively over a large concentration range.

  16. Dynamic tuning of chemiresistor sensitivity using mechanical strain

    DOEpatents

    Martin, James E; Read, Douglas H

    2014-09-30

    The sensitivity of a chemiresistor sensor can be dynamically tuned using mechanical strain. The increase in sensitivity is a smooth, continuous function of the applied strain, and the effect can be reversible. Sensitivity tuning enables the response curve of the sensor to be dynamically optimized for sensing analytes, such as volatile organic compounds, over a wide concentration range.

  17. Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers

    NASA Astrophysics Data System (ADS)

    Butler, Jason E.; Snook, Braden

    2018-01-01

    The dynamics and rheology of suspensions of rigid, non-Brownian fibers in Newtonian fluids are reviewed. Experiments, theories, and computer simulations are considered, with an emphasis on suspensions at semidilute and concentrated conditions. In these suspensions, interactions between the particles strongly influence the microstructure and rheological properties of the suspension. The interactions can arise from hydrodynamic disturbances, giving multibody interactions at long ranges and pairwise lubrication forces over short distances. For concentrated suspensions, additional interactions due to excluded volume (contacts) and adhesive forces are addressed. The relative importance of the various interactions as a function of fiber concentration is assessed.

  18. A novel instrumentation circuit for electrochemical measurements.

    PubMed

    Yin, Li-Te; Wang, Hung-Yu; Lin, Yang-Chiuan; Huang, Wen-Chung

    2012-01-01

    In this paper, a novel signal processing circuit which can be used for the measurement of H(+) ion and urea concentration is presented. A potentiometric method is used to detect the concentrations of H(+) ions and urea by using H(+) ion-selective electrodes and urea electrodes, respectively. The experimental data shows that this measuring structure has a linear pH response for the concentration range within pH 2 and 12, and the dynamic range for urea concentration measurement is in the range of 0.25 to 64 mg/dL. The designed instrumentation circuit possesses a calibration function and it can be applied to different sensing electrodes for electrochemical analysis. It possesses the advantageous properties of being multi-purpose, easy calibration and low cost.

  19. Polymer-Free Optode Nanosensors for Dynamic, Reversible, and Ratiometric Sodium Imaging in the Physiological Range

    PubMed Central

    Ruckh, Timothy T.; Mehta, Ankeeta A.; Dubach, J. Matthew; Clark, Heather A.

    2013-01-01

    This work introduces a polymer-free optode nanosensor for ratiometric sodium imaging. Transmembrane ion dynamics are often captured by electrophysiology and calcium imaging, but sodium dyes suffer from short excitation wavelengths and poor selectivity. Optodes, optical sensors composed of a polymer matrix with embedded sensing chemistry, have been translated into nanosensors that selectively image ion concentrations. Polymer-free nanosensors were fabricated by emulsification and were stable by diameter and sensitivity for at least one week. Ratiometric fluorescent measurements demonstrated that the nanosensors are selective for sodium over potassium by ~1.4 orders of magnitude, have a dynamic range centered at 20 mM, and are fully reversible. The ratiometric signal changes by 70% between 10 and 100 mM sodium, showing that they are sensitive to changes in sodium concentration. These nanosensors will provide a new tool for sensitive and quantitative ion imaging. PMID:24284431

  20. Dynamics of Model Hydraulic Fracturing Liquid Studied by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Daley, Kim; Kubarych, Kevin J.

    2014-06-01

    The technique of two-dimensional infrared (2DIR) spectroscopy is used to expose the chemical dynamics of various concentrations of polymers and their monomers in heterogeneous mixtures. An environmentally relevant heterogeneous mixture, which inspires this study, is hydraulic fracturing liquid (HFL). Hydraulic fracking is a technique used to extract natural gas from shale deposits. HFL consists of mostly water, proppant (sand), an emulsifier (guar), and other chemicals specific to the drilling site. Utilizing a metal carbonyl as a probe, we observe the spectral dynamics of the polymer, guar, and its monomer, mannose, and compare the results to see how hydration dynamics change with varying concentration. Another polymer, Ficoll, and its monomer, sucrose, are also compared to see how polymer size affects hydration dynamics. The two results are as follows: (1) Guar experiences collective hydration at high concentrations, where as mannose experiences independent hydration; (2) no collective hydration is observed for Ficoll in the same concentration range as guar, possibly due to polymer shape and size. HFL experiences extremely high pressure during natural gas removal, so future studies will focus on how increased pressure affects the hydration dynamics of polymers and monomers.

  1. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

  2. Investigation on Dynamic Calibration for an Optical-Fiber Solids Concentration Probe in Gas-Solid Two-Phase Flows

    PubMed Central

    Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui

    2013-01-01

    This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity. PMID:23867745

  3. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto

    2018-06-04

    In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.

  4. Coupling between amino acid and water dynamics by broadband dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Saiz, Luciana; Cerveny, Silvina

    2014-05-01

    The dynamics of proline aqueous solution was investigated for water concentrations from 40 to 60 wt% by dielectric spectroscopy (106 - 109 Hz) in the temperature range from 230 to 300 K, where the solutions remain amorphous. We found two relaxation processes, related with the reorientation of proline and water as previously observed in a higher frequency range at room temperature [1]. We found that both dynamics are strongly coupled, as previously observed in hydrated proteins powders, in spite of the fact that a single amino acid is a molecule much simpler than a protein.

  5. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study

    DOE PAGES

    Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...

    2015-12-17

    Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less

  6. Dynamics of Reactive Microbial Hotspots in Concentration Gradient.

    NASA Astrophysics Data System (ADS)

    Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.

    2017-12-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  7. Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-17

    In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  8. Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions

    DOE PAGES

    Godfrin, P. Douglas; Hudson, Steven; Hong, Kunlun; ...

    2015-11-24

    Although there have been numerous investigations of the glass transition for colloidal dispersions with only a short-ranged attraction, less is understood for systems interacting with a long-ranged repulsion in addition to this attraction, which is ubiquitous in aqueous protein solutions at low ionic strength. Highly puri ed concentrated lysozyme solutions are used as a model system and investigated over a large range of protein concentrations at very low ionic strength. Newtonian liquid behavior is observed at all concentrations, even up to 480 mg/mL, where the zero shear viscosity increases by more than three orders of magnitude with increasing concentration. Remarkably,more » despite this macroscopic liquid-like behavior, the measurements of the dynamics in the short-time limit shows features typical of glassy colloidal systems. Investigation of the inter-protein structure indicates that the reduced short-time mobility of the protein is caused by localized regions of high density within a heterogeneous density distribution. This structural heterogeneity occurs on intermediate range length scale, driven by the competing potential features, and is distinct from commonly studied colloidal gel systems in which a heterogeneous density distribution tends to extend to the whole system. The presence of long-ranged repulsion also allows for more mobility over large length and long time scales resulting in the macroscopic relaxation of the structure. The experimental results provide evidence for the need to explicitly include intermediate range order in theories for the macroscopic properties of protein solutions interacting via competing potential features.« less

  9. Dynamics of Nafion membrane swelling in H2O/D2O mixtures as studied using FTIR technique

    NASA Astrophysics Data System (ADS)

    Bunkin, Nikolai F.; Kozlov, Valeriy A.; Shkirin, Alexey V.; Ninham, Barry W.; Balashov, Anatoliy A.; Gudkov, Sergey V.

    2018-03-01

    Experiments with Fourier transform spectrometry of Nafion, a water-swollen polymeric membrane, are described. The transmittance spectra of liquid samples and Nafion, soaked in these samples, were studied, depending on the deuterium content in water in the spectral range 1.8-2.15 μm. The experiments were carried out using two protocols: in the first protocol we studied the dynamics of Nafion swelling in H2O + D2O mixtures for the deuterium concentrations 3 < C < 104 ppm, and in the second protocol we studied the dynamics of swelling in pure heavy water (C = 106 ppm). For liquid mixtures in the concentration range 3 < C < 104 ppm, the transmittance spectra are the same, but for Nafion soaked in these fluids, the corresponding spectra are different. It is shown that, in the range of deuterium contents C = 90-500 ppm, the behavior of transmittance of the polymer membrane is non-monotonic. In experiments using the second protocol, the dynamics of diffusion replacement of residual water, which is always present in the bulk of the polymer membrane inside closed cavities (i.e., without access to atmospheric air), were studied. The experimentally estimated diffusion coefficient for this process is ≈6.10-11 cm2/s.

  10. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    DOEpatents

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  11. Vacancy–Vacancy Interaction Induced Oxygen Diffusivity Enhancement in Undoped Nonstoichiometric Ceria

    DOE PAGES

    Yuan, Fenglin; Zhang, Yanwen; Weber, William J.

    2015-05-19

    In this paper, molecular dynamics simulations and molecular static calculations have been used to systematically study oxygen vacancy transport in undoped nonstoichiometric ceria. A strong oxygen diffusivity enhancement appears in the vacancy concentration range of 2–4% over the temperature range from 1000 to 2000 K. An Arrhenius ion diffusion mechanism by vacancy hopping along the (100) direction is unambiguously identified, and an increasing trend of both the oxygen migration barrier and the prefactor with increasing vacancy concentration is observed. Within the framework of classical diffusion theory, a weak concentration dependence of the prefactor in oxygen vacancy migration is shown tomore » be crucial for explaining the unusual fast oxygen ion migration in the low concentration range and consequently the appearance of a maximum in oxygen diffusivity. Finally, a representative (100) direction interaction model is constructed to identify long-range vacancy–vacancy interaction as the structural origin of the positive correlation between oxygen migration barrier and vacancy concentration.« less

  12. An LC-IMS-MS Platform Providing Increased Dynamic Range for High-Throughput Proteomic Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Erin Shammel; Livesay, Eric A.; Orton, Daniel J.

    2010-02-05

    A high-throughput approach and platform using 15 minute reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking twenty reference peptides at varying concentrations from 1 ng/mL to 10 µg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected thirteen out of the twenty spiked peptides that had concentrations ≥100 ng/mL.more » In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for nineteen of the twenty peptides with all spiking level present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects, but in turn limits the achievable dynamic range compared to the TOF detector.« less

  13. ALUMINUM CHLORIDE EFFECT ON Ca2+,Mg(2+)-ATPase ACTIVITY AND DYNAMIC PARAMETERS OF SKELETAL MUSCLE CONTRACTION.

    PubMed

    Nozdrenko, D M; Abramchuk, O M; Soroca, V M; Miroshnichenko, N S

    2015-01-01

    We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10(-4) M Increasing the concentration of AlCl3 to 10(-2) M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg(2+)-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg(2+)-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.

  14. Monoclonal Antibodies Attached to Carbon Nanotube Transistors for Paclitaxel Detection

    NASA Astrophysics Data System (ADS)

    Lee, Wonbae; Lau, Calvin; Richardson, Mark; Rajapakse, Arith; Weiss, Gregory; Collins, Philip; UCI, Molecular Biology; Biochemistry Collaboration; UCI, Departments of Physics; Astronomy Collaboration

    Paclitaxel is a naturally-occurring pharmaceutical used in numerous cancer treatments, despite its toxic side effects. Partial inhibition of this toxicity has been demonstrated using weakly interacting monoclonal antibodies (3C6 and 8A10), but accurate monitoring of antibody and paclitaxel concentrations remains challenging. Here, single-molecule studies of the kinetics of antibody-paclitaxel interactions have been performed using single-walled carbon nanotube field-effect transistors. The devices were sensitized with single antibody attachments to record the single-molecule binding dynamics of paclitaxel. This label-free technique recorded a range of dynamic interactions between the antibody and paclitaxel, and it provided sensitive paclitaxel detection for pM to nM concentrations. Measurements with two different antibodies suggest ways of extending this working range and uncovering the mechanistic differences among different antibodies.

  15. Digital PCR Modeling for Maximal Sensitivity, Dynamic Range and Measurement Precision

    PubMed Central

    Majumdar, Nivedita; Wessel, Thomas; Marks, Jeffrey

    2015-01-01

    The great promise of digital PCR is the potential for unparalleled precision enabling accurate measurements for genetic quantification. A challenge associated with digital PCR experiments, when testing unknown samples, is to perform experiments at dilutions allowing the detection of one or more targets of interest at a desired level of precision. While theory states that optimal precision (Po) is achieved by targeting ~1.59 mean copies per partition (λ), and that dynamic range (R) includes the space spanning one positive (λL) to one negative (λU) result from the total number of partitions (n), these results are tempered for the practitioner seeking to construct digital PCR experiments in the laboratory. A mathematical framework is presented elucidating the relationships between precision, dynamic range, number of partitions, interrogated volume, and sensitivity in digital PCR. The impact that false reaction calls and volumetric variation have on sensitivity and precision is next considered. The resultant effects on sensitivity and precision are established via Monte Carlo simulations reflecting the real-world likelihood of encountering such scenarios in the laboratory. The simulations provide insight to the practitioner on how to adapt experimental loading concentrations to counteract any one of these conditions. The framework is augmented with a method of extending the dynamic range of digital PCR, with and without increasing n, via the use of dilutions. An example experiment demonstrating the capabilities of the framework is presented enabling detection across 3.33 logs of starting copy concentration. PMID:25806524

  16. Dynamic Control of Adsorption Sensitivity for Photo-EMF-Based Ammonia Gas Sensors Using a Wireless Network

    PubMed Central

    Vashpanov, Yuriy; Choo, Hyunseung; Kim, Dongsoo Stephen

    2011-01-01

    This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF)-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time. PMID:22346680

  17. Relaxation dynamics in AgI-doped silver vanadate superionic glasses.

    PubMed

    Bhattacharya, S; Ghosh, A

    2005-09-22

    Relaxation dynamics of Ag+ ions in several series of AgI-Ag2O-V2O5 superionic glasses has been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 93 to 323 K. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. The frequency-dependent electrical data have been analyzed in the framework of conductivity formalism. We have obtained the mobile ion concentration and the power-law exponent from the analysis of the conductivity spectra. We have observed that the concentration of Ag+ ions is independent of temperature and the conductivity is primarily determined by the mobility. A fraction of the Ag+ ions in the glass compositions are involved in the dynamic process. We have also shown that the power-law exponent is independent of temperature. The results are also supported by the temperature and composition independence of the scaling of the conductivity spectra.

  18. Chloride ions induce order-disorder transition at water-oxide interfaces

    NASA Astrophysics Data System (ADS)

    Deshmukh, Sanket; Kamath, Ganesh; Ramanathan, Shriram; Sankaranarayanan, Subramanian K. R. S.

    2013-12-01

    Water can form quasi-two-dimensional ordered layers near a solid interface. The solvation dynamics and ionic transport phenomena through this ordered water structure is of direct relevance to a variety of problems in interface science. Molecular dynamics simulations are used to study the impact of local fluctuation of the chloride ion density in the vicinity of an oxide surface on the structure and dynamics of water layers. We demonstrate that local increase in chloride ions beyond a threshold concentration near the water-MgO (100) interface introduces an order-disorder transition of this two-dimensional layered network into bulklike water, leading to increased diffusional characteristics and reduced hydrogen bonding lifetimes. We find that the extent of this order-disorder transition can be tuned by modifying the defect chemistry and nature of the underlying substrate. The kinetic fluidity resulting from order-disorder transition at high chloride ion concentration has significance for a broad range of phenomena, ranging from freezing point depression of brine to onset of aqueous corrosion.

  19. Dynamics of reactive microbial hotspots in concentration gradients

    NASA Astrophysics Data System (ADS)

    Hubert, Antoine; Farasin, Julien; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy

    2017-04-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as a quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. To quantify bacterial activity we use Fluorescein Diacetate (FDA) hydrolysis by bacterial enzymes which transforms FDA into Fluorescein, whose local concentration is measured optically. We thus measure bacterial activity locally from the time derivative of the measured fluorescence. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  20. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions.

    PubMed

    Cong, X C; Zhao, J J; Jing, Z; Wang, Q G; Ni, P F

    2018-05-09

    Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03-0.25 h -1 . The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h -1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight effective methods to reduce exposure to particles in office buildings.

  1. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity. Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Potirakis, S. M.; Barbosa, S. M.; Matos, J. A. O.; Pereira, A. J. S. C.; Neves, L. J. P. F.

    2015-05-01

    The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes.Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics.

  2. A preliminary assessment of year long relative loose mineral intake and range cow productivity in Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    ssessment of the effectiveness of supplementary mineral nutrition in range cattle to promote important economic traits is lacking due a paucity of methods to measure cause and effect relationships, dynamic dietary mineral concentrations, shifting requirements and a lack of mineral intake quantificat...

  3. A preliminary assessment of year long relative loose mineral intake and range cow productivity in Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Assessment of the effectiveness of supplementary mineral nutrition in range cattle to promote important economic traits is lacking due a paucity of methods to measure cause and effect relationships, dynamic dietary mineral concentrations, shifting requirements and a lack of mineral intake quantifica...

  4. Flows of Wet Foamsand Concentrated Emulsions

    NASA Technical Reports Server (NTRS)

    Nemer, Martin B.

    2005-01-01

    The aim of this project was is to advance a microstructural understanding of foam and emulsion flows. The dynamics of individual surfactant-covered drops and well as the collective behavior of dilute and concentrated was explored using numerical simulations. The long-range goal of this work is the formulation of reliable microphysically-based statistical models of emulsion flows.

  5. A high dynamic range pulse counting detection system for mass spectrometry.

    PubMed

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Molecular motors interacting with their own tracks

    NASA Astrophysics Data System (ADS)

    Artyomov, Max N.; Morozov, Alexander Yu.; Kolomeisky, Anatoly B.

    2008-04-01

    Dynamics of molecular motors that move along linear lattices and interact with them via reversible destruction of specific lattice bonds is investigated theoretically by analyzing exactly solvable discrete-state “burnt-bridge” models. Molecular motors are viewed as diffusing particles that can asymmetrically break or rebuild periodically distributed weak links when passing over them. Our explicit calculations of dynamic properties show that coupling the transport of the unbiased molecular motor with the bridge-burning mechanism leads to a directed motion that lowers fluctuations and produces a dynamic transition in the limit of low concentration of weak links. Interaction between the backward biased molecular motor and the bridge-burning mechanism yields a complex dynamic behavior. For the reversible dissociation the backward motion of the molecular motor is slowed down. There is a change in the direction of the molecular motor’s motion for some range of parameters. The molecular motor also experiences nonmonotonic fluctuations due to the action of two opposing mechanisms: the reduced activity after the burned sites and locking of large fluctuations. Large spatial fluctuations are observed when two mechanisms are comparable. The properties of the molecular motor are different for the irreversible burning of bridges where the velocity and fluctuations are suppressed for some concentration range, and the dynamic transition is also observed. Dynamics of the system is discussed in terms of the effective driving forces and transitions between different diffusional regimes.

  7. Contrasting patterns of nutrient dynamics during different storm events in a semi-arid catchment of northern China.

    PubMed

    Du, Xinzhong; Li, Xuyong; Hao, Shaonan; Wang, Huiliang; Shen, Xiao

    2014-01-01

    Nutrient discharge during storm events is a critical pathway for nutrient export in semi-arid catchments. We investigated nutrient dynamics during three summer storms characterized by different rainfall magnitude in 2012 in a semi-arid catchment of northern China. The results showed that, in response to storm events, nutrient dynamics displayed big variation in temporal trends of nutrient concentration and in nutrient concentration-flow discharge relationships. Nutrient concentrations had broader fluctuations during an extreme storm than during lesser storms, whereas the concentration ranges of the a moderate storm were no broader than those of a smaller one. The different concentration fluctuations were caused by storm magnitude and intensity coupled with the antecedent rainfall amount and cumulative nutrients. Correlation coefficients between nutrient concentrations and flow discharge varied from positive to negative for the three different events. There were no consistent hysteresis effects for the three different events, and no hysteresis effects were observed for any of the variables during the moderate storm (E2). Our findings provide useful information for better understanding nutrient loss mechanisms during storm events in semi-arid areas of a monsoon climate region.

  8. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams

    Treesearch

    Stephen F. Jane; Taylor M. Wilcox; Kevin S. McKelvey; Michael K. Young; Michael K. Schwartz; Winsor H. Lowe; Benjamin H. Letcher; Andrew R. Whiteley

    2014-01-01

    Environmental DNA (eDNA) detection has emerged as a powerful tool for monitoring aquatic organisms, but much remains unknown about the dynamics of aquatic eDNA over a range of environmental conditions. DNA concentrations in streams and rivers will depend not only on the equilibrium between DNA entering the water and DNA leaving the system through degradation, but also...

  9. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi-quantitative predictions of diffusion properties and viscosity of solutions of globular proteins are possible given only the equilibrium structure factor of proteins. Furthermore, we explore the effects of changing the attraction strength on H(q) and η.

  10. Effects of sample injection amount and time-of-flight mass spectrometric detection dynamic range on metabolome analysis by high-performance chemical isotope labeling LC-MS.

    PubMed

    Zhou, Ruokun; Li, Liang

    2015-04-06

    The effect of sample injection amount on metabolome analysis in a chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) platform was investigated. The performance of time-of-flight (TOF) mass spectrometers with and without a high-dynamic-range (HD) detection system was compared in the analysis of (12)C2/(13)C2-dansyl labeled human urine samples. An average of 1635 ± 21 (n = 3) peak pairs or putative metabolites was detected using the HD-TOF-MS, compared to 1429 ± 37 peak pairs from a conventional or non-HD TOF-MS. In both instruments, signal saturation was observed. However, in the HD-TOF-MS, signal saturation was mainly caused by the ionization process, while in the non-HD TOF-MS, it was caused by the detection process. To extend the MS detection range in the non-HD TOF-MS, an automated switching from using (12)C to (13)C-natural abundance peaks for peak ratio calculation when the (12)C peaks are saturated has been implemented in IsoMS, a software tool for processing CIL LC-MS data. This work illustrates that injecting an optimal sample amount is important to maximize the metabolome coverage while avoiding the sample carryover problem often associated with over-injection. A TOF mass spectrometer with an enhanced detection dynamic range can also significantly increase the number of peak pairs detected. In chemical isotope labeling (CIL) LC-MS, relative metabolite quantification is done by measuring the peak ratio of a (13)C2-/(12)C2-labeled peak pair for a given metabolite present in two comparative samples. The dynamic range of peak ratio measurement does not need to be very large, as only subtle changes of metabolite concentrations are encountered in most metabolomic studies where relative metabolome quantification of different groups of samples is performed. However, the absolute concentrations of different metabolites can be very different, requiring a technique to provide a wide detection dynamic range to allow the detection of as many peak pairs as possible. In this work, we demonstrated that controlling the sample injection amount into LC-MS was critical to achieve the optimal detectability while avoiding sample carry-over problem. In addition, the use of a high-dynamic-range TOF system increased the number of peak pairs detected, compared to a conventional TOF system. We also investigated the ionization and detection saturation factors limiting the dynamic range of detection. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Fluorescence Correlation Spectroscopy at Micromolar Concentrations without Optical Nanoconfinement

    DOE PAGES

    Laurence, Ted A.; Ly, Sonny; Bourguet, Feliza; ...

    2014-08-14

    Fluorescence correlation spectroscopy (FCS) is an important technique for studying biochemical interactions dynamically that may be used in vitro and in cell-based studies. It is generally claimed that FCS may only be used at nM concentrations. We show that this general consensus is incorrect and that the limitation to nM concentrations is not fundamental but due to detector limits as well as laser fluctuations. With a high count rate detector system and applying laser fluctuation corrections, we demonstrate FCS measurements up to 38 μM with the same signal-to-noise as at lower concentrations. Optical nanoconfinement approaches previously used to increase themore » concentration range of FCS are not necessary, and further increases above 38 μM may be expected using detectors and detector arrays with higher saturation rates and better laser fluctuation corrections. This approach greatly widens the possibilities of dynamic measurements of biochemical interactions using FCS at physiological concentrations.« less

  12. On the Minimization of Fluctuations in the Response Times of Autoregulatory Gene Networks

    PubMed Central

    Murugan, Rajamanickam; Kreiman, Gabriel

    2011-01-01

    The temporal dynamics of the concentrations of several proteins are tightly regulated, particularly for critical nodes in biological networks such as transcription factors. An important mechanism to control transcription factor levels is through autoregulatory feedback loops where the protein can bind its own promoter. Here we use theoretical tools and computational simulations to further our understanding of transcription-factor autoregulatory loops. We show that the stochastic dynamics of feedback and mRNA synthesis can significantly influence the speed of response of autoregulatory genetic networks toward external stimuli. The fluctuations in the response-times associated with the accumulation of the transcription factor in the presence of negative or positive autoregulation can be minimized by confining the ratio of mRNA/protein lifetimes within 1:10. This predicted range of mRNA/protein lifetime agrees with ranges observed empirically in prokaryotes and eukaryotes. The theory can quantitatively and systematically account for the influence of regulatory element binding and unbinding dynamics on the transcription-factor concentration rise-times. The simulation results are robust against changes in several system parameters of the gene expression machinery. PMID:21943410

  13. Maxwell-Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Jain, Richa Naja; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2016-05-01

    In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green-Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF-KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, ĐLi-K which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2nd law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.

  14. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    NASA Technical Reports Server (NTRS)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  15. Mitigating the Hook Effect in Lateral Flow Sandwich Immunoassays Using Real-Time Reaction Kinetics.

    PubMed

    Rey, Elizabeth G; O'Dell, Dakota; Mehta, Saurabh; Erickson, David

    2017-05-02

    The quantification of analyte concentrations using lateral flow assays is a low-cost and user-friendly alternative to traditional lab-based assays. However, sandwich-type immunoassays are often limited by the high-dose hook effect, which causes falsely low results when analytes are present at very high concentrations. In this paper, we present a reaction kinetics-based technique that solves this problem, significantly increasing the dynamic range of these devices. With the use of a traditional sandwich lateral flow immunoassay, a portable imaging device, and a mobile interface, we demonstrate the technique by quantifying C-reactive protein concentrations in human serum over a large portion of the physiological range. The technique could be applied to any hook effect-limited sandwich lateral flow assay and has a high level of accuracy even in the hook effect range.

  16. Sediment resuspension in a shallow lake with muddy substrates: St Lucia, South Africa

    NASA Astrophysics Data System (ADS)

    Zikhali, Vulindlela; Tirok, Katrin; Stretch, Derek

    2015-10-01

    Wind-driven sediment resuspension affects the physical and biological environment of the water column in shallow estuarine lakes. This study investigated the relationship between wind-driven waves and suspended sediment concentration (SSC) using the 33 km2 South Lake basin of Lake St Lucia, South Africa as a case study. Five wave poles measuring significant wave height and turbidity were deployed over an aggregate period of twenty days at distributed locations where sediment substrate compositions varied from muddy to sandy and depths ranged from 0.7 m to 2.1 m. The resulting turbidity dynamics were used to test a simple depth-averaged model of suspended sediment concentrations. The model performed best in the muddy regions of the lake and was able to simulate the resuspension dynamics more accurately than the settling dynamics. Peak suspended sediment concentration levels were best captured for the deeper muddy locations. The model provides a means to make spatially explicit predictions of suspended sediment concentrations that can be used to understand the forcing mechanisms for primary producer growth and distribution or to improve sediment budget calculations.

  17. Probing water dynamics with OH -

    NASA Astrophysics Data System (ADS)

    Corridoni, T.; Sodo, A.; Bruni, F.; Ricci, M. A.; Nardone, M.

    2007-07-01

    Isotropic Raman spectra of aqueous solutions of LiOH, NaOH and KOH at concentrations ranging from high dilution to saturation have been measured and the frequency and width of the OH - stretching band have been analyzed. The dependence of the bandwidth on solute concentration suggests that the OH - vibration undergoes a transition from fast to slow modulation regimes as the solvent concentration decreases below the value of ˜20 water molecules per solute molecule. A correlation between this finding and structural modifications of the H-bond network of the solvent at similar concentrations is envisaged.

  18. Structural and Dynamical Properties of Alkaline Earth Metal Halides in Supercritical Water: Effect of Ion Size and Concentration.

    PubMed

    Keshri, Sonanki; Tembe, B L

    2017-11-22

    Constant temperature-constant pressure molecular dynamics simulations have been performed for aqueous alkaline earth metal chloride [M 2+ -Cl - (M = Mg, Ca, Sr, and Ba)] solutions over a wide range of concentrations (0.27-5.55 m) in supercritical (SC) and ambient conditions to investigate their structural and dynamical properties. A strong influence of the salt concentration is observed on the ion-ion pair correlation functions in both ambient and SC conditions. In SC conditions, significant clustering is observed in the 0.27 m solution, whereas the reverse situation is observed at room temperature and this is also supported by the residence times of the clusters. The concentration and ion size (cation size) seem to have opposite effects on the average number of hydrogen bonds. The simulation results show that the self-diffusion coefficients of water, cations, and the chloride ion increase with increasing temperature, whereas they decrease with increasing salt concentration. The cluster size distribution shows a strong density dependence in both ambient and SC conditions. In SC conditions, cluster sizes display a near-Gaussian distribution, whereas the distribution decays monotonically in ambient conditions.

  19. Investigation of the Structure and Dynamics of Electrolytes in solvents Used for Primary and Secondary Li-Batteries.

    DTIC Science & Technology

    1985-02-01

    permittivitles in the concentration range 0.05M to 0.3M, frequency range 1 to 90 GHz are Intepreted by two Debye relaxation processes, one due to the...and are co-authors of the published papers. They have not received any financial reward from the contract funds. FILMED 6-85 DTIC

  20. Evaluation of the thyroid status of Basenji dogs in Australia.

    PubMed

    Seavers, A; Snow, D H; Mason, K V; Malik, R

    2008-11-01

    To determine the thyroid status of Basenji dogs in Australia. Jugular or cephalic venipuncture blood samples were taken from 113 Basenji, comprising 47 males, 5 castrates, 48 entire and 13 spayed bitches, and sent on ice in plain and EDTA tubes to a single laboratory to determine haematocrit and serum concentrations of total thyroid hormone (thyroxine, TT4), thyroid-stimulating hormone (TSH) and cholesterol. In a subgroup of 8 dogs with abnormal elevated TSH concentrations and subnormal TT4 concentrations, 5 were further examined by dynamic endocrine testing using recombinant human (rh) TSH (54 microg). Ages ranged from 1 to 14 years and weight range was 6.5 to 14.0 kg. TT4 concentrations (nmol/L) ranged from 2 to 27, with a median of 13 and a mean +/- SD of 13.0 +/- 5.7. Importantly, 85/113 (75%) of TT4 values were lower than the normal laboratory reference range (17-37). TSH concentrations (ng/mL) ranged from 0.05 to 5.37, with a median of 0.16 and a mean +/- SD of 0.3 +/- 0.6. Basenji have a similar reference range for serum TSH, but a considerably lower reference range for TT4 (2-27 nmol/L) than most breeds and crossbreds, resembling the sight hounds in this respect. Given the difficulty of accurately measuring TT4 concentrations that are so low, concomitant serial TSH determinations are essential to properly asses thyroid function. Taken alone, TT4 determinations are only of use when the value is within the reference range, in which case a diagnosis of hypothyroidism is likely excluded.

  1. Glycine transporter2 inhibitors: Getting the balance right.

    PubMed

    Vandenberg, Robert J; Mostyn, Shannon N; Carland, Jane E; Ryan, Renae M

    2016-09-01

    Neurotransmitter transporters are targets for a wide range of therapeutically useful drugs. This is because they have the capacity to selectively manipulate the dynamics of neurotransmitter concentrations and thereby enhance or diminish signalling through particular brain pathways. High affinity glycine transporters (GlyTs) regulate extracellular concentrations of glycine and provide novel therapeutic targets for neurological disorders. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Conceptual design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems

    NASA Astrophysics Data System (ADS)

    Dehne, Hans J.

    1991-05-01

    NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.

  3. Conceptual design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems

    NASA Technical Reports Server (NTRS)

    Dehne, Hans J.

    1991-01-01

    NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.

  4. Thermodynamic properties and diffusion of water + methane binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less

  5. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  6. Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation.

    PubMed

    Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard

    2016-01-21

    The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.

  7. Modulating the protein content of complex proteomes using acetonitrile.

    PubMed

    Prates, João; Martins, Gonçalo; López-Fernández, Hugo; Lodeiro, Carlos; Capelo, J L; Santos, Hugo M

    2018-05-15

    In this work we present acetonitrile as a tool to modulate the dynamic range of the proteome of complex samples. Different concentrations of acetonitrile ranging from 15% v/v to 65% v/v were used to modulate the protein content of serum samples from healthy people and patients with lymphoma and myeloma. We show that the proteome above 70 kDa is pelleted as a function of the concentration of acetonitrile and that profiling with PCA or Clustering is only possible using the supernatants obtained for concentrations of acetonitrile higher than 45% v/v or the pellets for concentrations of acetonitrile of 35% and 45%. The differentiation and classification of the three groups of sera samples (healthy, lymphoma and myeloma) were possible using acetonitrile at 55% v/v concentration. This work opens new avenues for the application of acetonitrile as a cost-effective tool in proteomics applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics.

    PubMed

    Umezawa, Keitaro; Yoshida, Masafumi; Kamiya, Mako; Yamasoba, Tatsuya; Urano, Yasuteru

    2017-03-01

    Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr's work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t 1/2  = 620 ms at [GSH] = 1 mM), as well as appropriate K d values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.

  9. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics

    NASA Astrophysics Data System (ADS)

    Umezawa, Keitaro; Yoshida, Masafumi; Kamiya, Mako; Yamasoba, Tatsuya; Urano, Yasuteru

    2017-03-01

    Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr's work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t1/2 = 620 ms at [GSH] = 1 mM), as well as appropriate Kd values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.

  10. Stability and nuclear dynamics of the Bicoid morphogen gradient

    PubMed Central

    Gregor, Thomas; Wieschaus, Eric F.; McGregor, Alistair P.; Bialek, William; Tank, David W.

    2008-01-01

    Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remains largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (~1 hour after fertilization) with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (±10%), demonstrating a form of gradient stability, but subsequently decays by approximately 30%. Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D ≤ 1 μm2/s), provide a consistent picture of Bicoid transport on short (~min) time scales, but challenge traditional models of long range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient. PMID:17632061

  11. Extracellular calcium controls the expression of two different forms of ripple-like hippocampal oscillations.

    PubMed

    Aivar, Paloma; Valero, Manuel; Bellistri, Elisa; Menendez de la Prida, Liset

    2014-02-19

    Hippocampal high-frequency oscillations (HFOs) are prominent in physiological and pathological conditions. During physiological ripples (100-200 Hz), few pyramidal cells fire together coordinated by rhythmic inhibitory potentials. In the epileptic hippocampus, fast ripples (>200 Hz) reflect population spikes (PSs) from clusters of bursting cells, but HFOs in the ripple and the fast ripple range are vastly intermixed. What is the meaning of this frequency range? What determines the expression of different HFOs? Here, we used different concentrations of Ca(2+) in a physiological range (1-3 mM) to record local field potentials and single cells in hippocampal slices from normal rats. Surprisingly, we found that this sole manipulation results in the emergence of two forms of HFOs reminiscent of ripples and fast ripples recorded in vivo from normal and epileptic rats, respectively. We scrutinized the cellular correlates and mechanisms underlying the emergence of these two forms of HFOs by combining multisite, single-cell and paired-cell recordings in slices prepared from a rat reporter line that facilitates identification of GABAergic cells. We found a major effect of extracellular Ca(2+) in modulating intrinsic excitability and disynaptic inhibition, two critical factors shaping network dynamics. Moreover, locally modulating the extracellular Ca(2+) concentration in an in vivo environment had a similar effect on disynaptic inhibition, pyramidal cell excitability, and ripple dynamics. Therefore, the HFO frequency band reflects a range of firing dynamics of hippocampal networks.

  12. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity - Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, Reik V.; Potirakis, Stelios M.; Barbosa, Susana M.; Matos, Jose A. O.

    2015-04-01

    The presence or absence of long-range correlations in environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas Radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental Radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, Radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between hours and one day) arising from marked periodic components probably related to tidal frequencies, and (iii) low-frequency variability indicating a true long-range dependent process, which might be dominated by a response to meteorological drivers. In the presence of such multi-scale variability, common estimators of long-range memory in time series are necessarily prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. We emphasize that similar properties can be found in other types of geophysical time series (for example, tide gauge records), calling for a careful application of time series analysis tools when studying such data.

  13. Ontogenetic dynamics of mercury accumulation in Northwest Atlantic sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Drevnick, P.E.; Horgan, M.J.; Oris, J.T.; Kynard, B.E.

    2006-01-01

    We examined the ontogenetic dynamics of mercury accumulation in sea lamprey (Petromyzon marinus) from the Connecticut River, USA. Mercury concentrations in eggs (mean 84 ng??g-1 wet weight) were lowest of all life stages and correlated to concentrations in females. There was a higher rate of maternal transfer of mercury to eggs compared with teleosts. Ammocoetes had high mercury concentrations for their trophic level (e.g., mean of age-4 ammocoetes 492 ng??g-1 wet weight). A further investigation of four streams showed that ammocoetes reflected the level of contamination in their nursery streams. Concentrations of mercury decreased during metamorphosis from ammocoete to adult. Mercury concentrations in adults ranged from 83 to 942 ng??g-1 wet weight and, unlike teleosts, showed no relation to sex, length, or weight. We provide evidence from stable isotope analyses that this high variability is due to feeding ecology. There are fundamental differences in mercury accumulation between sea lamprey and teleosts. ?? 2006 NRC Canada.

  14. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications.

    PubMed

    Marín-Sáez, Julia; Atencia, Jesús; Chemisana, Daniel; Collados, María-Victoria

    2016-03-21

    Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range.

  15. Short-time microscopic dynamics of aqueous methanol solutions

    NASA Astrophysics Data System (ADS)

    Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.

    2012-12-01

    In this paper we present the picosecond vibrational dynamics of a series of methanol aqueous solutions over a wide concentration range from dense to dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating the time correlation functions of vibrational relaxation by fits in the frequency domain. This method is applied to aqueous methanol solutions xMeOH-(1 - x)H2O, where x = 0, 0.2, 0.4, 0.6, 0.8 and 1. The important finding is that the vibrational dynamics of the system become slower with increasing methanol concentration. The removal of many-body effects by having the molecules in less-crowded environments seems to be the key factor. The interpretation of the vibrational correlation function in the context of Kubo theory, which is based on the assumption that the environmental modulation arises from a single relaxation process and applied to simple liquids, is inadequate for all solutions studied. We found that the vibrational correlation functions of the solutions over the whole concentration range comply with the Rothschild approach, assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α with dilution indicates the deviation of the solutions from the model simple liquid and the results are discussed in the framework of the current phenomenological status of the field.

  16. Dynamical properties in supercooling liquid of trehalose aqueous solution studied by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Tominaga, Ayane; Takayama, Haruki; Kojima, Seiji

    2013-02-01

    Brillouin scattering spectroscopy has been applied to study the dynamical properties of glass transition of trehalose aqueous solutions in a high-frequency gigahertz range and in the temperature range (-190°C ≤ T ≤ 100°C). The temperature variations of sound velocity and attenuation were accurately determined using the refractive index measured by a prism-coupling method. The temperature dependence of relaxation time of the structural relaxation process was determined by the Debye model. Its temperature dependence shows Arrhenius behavior in a liquid state. The parameters of Arrhenius law were also determined as a function of trehalose concentration.

  17. Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles.

    PubMed

    Chong, Kok-Keong

    2010-05-15

    To overcome astigmatism has always been a great challenge in designing a heliostat capable of focusing the sunlight on a small receiver throughout the year. In this Letter, a nonimaging focusing heliostat with a dynamic adjustment of facet mirrors in a group manner has been analyzed for optimizing the astigmatic correction in a wide range of incident angles. This what is to the author's knowledge a new heliostat is not only designed to serve the purpose of concentrating sunlight to several hundreds of suns, but also to significantly reduce the variation of the solar flux distribution with the incident angle.

  18. A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2014-01-01

    In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592

  19. A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry.

    PubMed

    Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean

    2016-10-01

    To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.

  20. Selected physical properties of various diesel blends

    NASA Astrophysics Data System (ADS)

    Hlaváčová, Zuzana; Božiková, Monika; Hlaváč, Peter; Regrut, Tomáš; Ardonová, Veronika

    2018-01-01

    The quality determination of biofuels requires identifying the chemical and physical parameters. The key physical parameters are rheological, thermal and electrical properties. In our study, we investigated samples of diesel blends with rape-seed methyl esters content in the range from 3 to 100%. In these, we measured basic thermophysical properties, including thermal conductivity and thermal diffusivity, using two different transient methods - the hot-wire method and the dynamic plane source. Every thermophysical parameter was measured 100 times using both methods for all samples. Dynamic viscosity was measured during the heating process under the temperature range 20-80°C. A digital rotational viscometer (Brookfield DV 2T) was used for dynamic viscosity detection. Electrical conductivity was measured using digital conductivity meter (Model 1152) in a temperature range from -5 to 30°C. The highest values of thermal parameters were reached in the diesel sample with the highest biofuel content. The dynamic viscosity of samples increased with higher concentration of bio-component rapeseed methyl esters. The electrical conductivity of blends also increased with rapeseed methyl esters content.

  1. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, M.; Department of Physics, University of Chinese Academy of Sciences, Beijing 100049; Qiu, L., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com

    2014-09-07

    In this article, molecular dynamics simulation was performed to study the heat transport in secondary particles chain of silica aerogel. The two adjacent particles as the basic heat transport unit were modelled to characterize the heat transfer through the calculation of thermal resistance and vibrational density of states (VDOS). The total thermal resistance of two contact particles was predicted by non-equilibrium molecular dynamics simulations (NEMD). The defects were formed by deleting atoms in the system randomly first and performing heating and quenching process afterwards to achieve the DLCA (diffusive limited cluster-cluster aggregation) process. This kind of treatment showed a verymore » reasonable prediction of thermal conductivity for the silica aerogels compared with the experimental values. The heat transport was great suppressed as the contact length increased or defect concentration increased. The constrain effect of heat transport was much significant when contact length fraction was in the small range (<0.5) or the defect concentration is in the high range (>0.5). Also, as the contact length increased, the role of joint thermal resistance played in the constraint of heat transport was increasing. However, the defect concentration did not affect the share of joint thermal resistance as the contact length did. VDOS of the system was calculated by numerical method to characterize the heat transport from atomic vibration view. The smaller contact length and greater defect concentration primarily affected the longitudinal acoustic modes, which ultimately influenced the heat transport between the adjacent particles.« less

  2. Salinity effects on the dynamics and patterns of desiccation cracks

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to drying. At the end of each round of the experiment, a detailed visualization was conducted using Scanning Electron Microscopy to investigate the patterns and morphology of cracks at micro-scale as influenced by the salt concentration. Our results provide new insights and finding about the effects of salt concentrations on desiccation cracks at different scales ranging from a few mm to few microns.

  3. Evaluating the dynamical characteristics of particle matter emissions in an open ore yard with industrial operation activities.

    PubMed

    Cong, X C; Yang, G S; Qu, J H; Dai, M X

    2016-11-01

    A study to investigate the dynamical characteristics of particle matter emissions in a working open yard is conducted in Caofeidian Port of Hebei Province, China. The average diurnal concentrations of the total suspended particulate (TSP) matter and respirable particulate matter (PM 10 and PM 5 ) are monitored during the field measurement campaign. Sampling is performed at a regular interval at 8 monitoring stations in the yard with normal industrial activities. The average TSP, PM 10 and PM 5 concentrations range from 285 to 568, 198 to 423 and 189 to 330 μg.m-3 in the yard, respectively. The linear regression correlation coefficient of TSP/PM 10 and TSP/PM 5 is 0.95±0.01 and 0.88±0.02, respectively.By using the Spearman correlation method, the wind speed and relative humidity are both weakly correlated with the PM 10 and PM 5 concentrations according to the measurements. In addition, industrial operation activities, such as vehicular traffic in the yard and the loading time of stackers, are significantly positively correlated with the PM concentration. Using the multivariate regression method, the main parameters influencing the TSP concentration variations are integratedly analysed. The traffic volume is found to be a significant predictor of TSP concentration variation, with the smallest P value (P<0.05).To understand the dynamical characteristics of particle emissions in the yard, the emissions from the truck transports, that is, from unpaved haul roads and from the loading process, are established. Then, the dynamical emission factor (EF D ) based on the industrial activities in the yard is proposed. The dynamical emissions average 5.25x10 5 kg.year -1 and EF D is evaluated to be 0.29 kg.(ton.day) -1 during the measurement period. These outcomes have meaningful implications not only for understanding the dynamical characteristics of particle emissions in the working stockyard but also for implementing effective control measures at appropriate sites in the harbour area.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green–Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF–KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture.more » MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, Đ{sub Li-K} which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2{sup nd} law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.« less

  5. Automated Static Culture System Cell Module Mixing Protocol and Computational Fluid Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.; Truong, Tuan; Goodwin, Thomas J,

    2004-01-01

    This report is a documentation of a fluid dynamic analysis of the proposed Automated Static Culture System (ASCS) cell module mixing protocol. The report consists of a review of some basic fluid dynamics principles appropriate for the mixing of a patch of high oxygen content media into the surrounding media which is initially depleted of oxygen, followed by a computational fluid dynamics (CFD) study of this process for the proposed protocol over a range of the governing parameters. The time histories of oxygen concentration distributions and mechanical shear levels generated are used to characterize the mixing process for different parameter values.

  6. Flux concentrations on solar dynamic components due to mispointing

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.

    1992-01-01

    Mispointing of the solar dynamic (SD) concentrator designed for use on Space Station Freedom (SSF) causes the optical axis of the concentrator to be nonparallel to the incoming rays from the Sun. This causes solar flux not to be focused into the aperture hole of the receiver and may position the flux on other SSF components. A Rocketdyne analysis has determined the thermal impact of off-axis radiation due to mispointing on elements of the SD module and photovoltaic (PV) arrays. The conclusion was that flux distributions on some of the radiator components, the two-axis gimbal rings, the truss, and the PV arrays could present problems. The OFFSET computer code was used at Lewis Research Center to further investigate these flux distributions incident on components. The Lewis study included distributions for a greater range of mispoint angles than the Rocketdyne study.

  7. Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, A.

    2017-10-01

    Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz-5 MHz and in the temperature range of 300 K-380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.

  8. A New Optical Aerosol Spectrometer

    NASA Technical Reports Server (NTRS)

    Fonda, Mark; Malcolmson, Andrew; Bonin, Mike; Stratton, David; Rogers, C. Fred; Chang, Sherwood (Technical Monitor)

    1998-01-01

    An optical particle spectrometer capable of measuring aerosol particle size distributions from 0.02 to 100 micrometers has been developed. This instrument combines several optical methods in one, in-situ configuration; it can provide continuous data collection to encompass the wide dynamic size ranges and concentrations found in studies of modeled planetary atmospheres as well as terrestrial air quality research. Currently, the system is incorporated into an eight liter capacity spherical pressure vessel that is appropriate both for flowthrough and for in-situ particle generation. The optical sizing methods include polarization ratio, The scattering, and forward scattering detectors, with illumination from a fiber-coupled, Argon-ion laser. As particle sizes increase above 0.1 micrometer, a customized electronics and software system automatically shifts from polarization to diffraction-based measurements as the angular scattering detectors attain acceptable signal-to-noise ratios. The number concentration detection limits are estimated to be in the part-per-trillion (ppT by volume) range, or roughly 1000 submicron particles per cubic centimeter. Results from static experiments using HFC134A (approved light scattering gas standard), flow-through experiments using sodium chloride (NaCl) and carbon particles, and dynamic 'Tholin' (photochemical produced particles from ultraviolet (UV)-irradiated acetylene and nitrogen) experiments have been obtained. The optical spectrometer data obtained with particles have compared well with particle sizes determined by electron microscopy. The 'Tholin' tests provided real-time size and concentration data as the particles grew from about 30 nanometers to about 0.8 micrometers, with concentrations ranging from ppT to ppB, by volume. Tests are still underway, to better define sizing accuracy and concentration limits, these results will be reported.

  9. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation

    USGS Publications Warehouse

    Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.

    2009-01-01

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.

  10. Structure Formation in Salt-Free Solutions of Amphiphilic Sulfonated Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Bockstaller, Michael; Koehler, Werner

    2000-03-01

    Self-assembled systems have long attracted attention due to their practical importance in many technical and biological fields. Dodecyl-substituted poly(para-phenylen)sulfonates (abbreviated PPPS) are highly charged polyelectrolytes which in the uncharged state have been investigated extensively and an intrinsic persistence length of 15 nm has been reported. Due to their hydrophobic side chains, PPPS are compatible with water only as micellar aggregates and tend to form supramolecular structures even at concentrations as low as 10-5mol_mon.units/l. Because of the rodlike conformation of PPPS, this self-assembly leads to aggregates of anisotropic shape. Therefore, depolarized light scattering was employed to yield complementary information about structure and dynamics of these complex fluids. Aqueous solutions of PPPS at room temperature undergo a structural transition at a critical concentration of c_crit.=0.016 g/l. This transition is characterized by a strong increase of scattered intensity in forward direction and dynamic depolarized scattering. Above c_crit. the cylindrical micelles (L=310 nm, d=3.1 nm, N_radial=12) self assembly into large ellipsoidal clusters of size in the μ m range. Due to the strong increase of depolarized scattered intensity there has to be a preferential orientation of the micelles inside those clusters, which thus represent a lyotropic mesophase. By combining static and dynamic light scattering for the low q-range as well as small angle x-ray scattering for the higher q-range it is possible to determine size and shape of each aggregation step. Decreasing the molecular weight of the PPPS has profound influence on the micellar length and hence on c_crit. which is close to the overlap concentration (c ~ 1/L^3) allowing for the observation of the polyelectrolyte effect.

  11. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics

    DOE PAGES

    Rajput, Nav Nidhi; Qu, Xiaohuui; Sa, Niya; ...

    2015-02-10

    Here in this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectricmore » constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg 2+ -> Mg +), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg +. In contrast, BH 4 $-$ and BF 4 $-$ are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.« less

  12. Anomalous dynamics of aqueous solutions of di-propylene glycol methylether confined in MCM-41 by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Swenson, Jan; Elamin, Khalid; Chen, Guo; Lohstroh, Wiebke; Sakai, Victoria Garcia

    2014-12-01

    The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H2O (or D2O) confined in 28 Å pores of MCM-41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0-90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement, but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 Å. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.

  13. Anomalous dynamics of aqueous solutions of di-propylene glycol methylether confined in MCM-41 by quasielastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, Jan, E-mail: jan.swenson@chalmers.se; Elamin, Khalid; Chen, Guo

    2014-12-07

    The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H{sub 2}O (or D{sub 2}O) confined in 28 Å pores of MCM-41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0–90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement,more » but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 Å. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.« less

  14. From theory to field experiments

    NASA Astrophysics Data System (ADS)

    de Vos, Bram

    2016-04-01

    Peter Raats' achievements in Haren (NL) 1986-1997 were based on a solid theoretical insight in hydrology and transport process in soil. However, Peter was also the driving force behind many experimental studies and applied research. This will be illustrated by a broad range of examples ranging from the dynamics of composting processes of organic material; modelling and monitoring nutrient leaching at field-scale; wind erosion; water and nutrient dynamics in horticultural production systems; oxygen diffusion in soils; and processes of water and nutrient uptake by plant roots. Peter's leadership led to may new approaches and the introduction of innovative measurement techniques in Dutch research; ranging from TDR to nutrient concentration measurements in closed fertigation systems. This presentation will give a brief overview how Peter's theoretical and mathematical insights accelerated this applied research.

  15. Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions

    DOE PAGES

    Pollng-Skutvik, Ryan; Mongcopa, Katrina Irene S.; Faraone, Antonio; ...

    2016-08-17

    We investigate the structure and dynamics of silica nanoparticles and polymer chains in semidilute solutions of high molecular weight polystyrene in 2-butanone to determine the effect of long-range interparticle interactions on the coupling between particle and polymer dynamics. Particles at concentrations of 1–10 wt % are well dispersed in the semidilute polymer solutions and exhibit long-range electrostatic repulsions between particles. Because the particles are comparably sized to the radius of gyration of the polymer, the particle dynamics is predicted to couple to that of the polymer. We verify that the polymer structure and dynamics are not significantly affected by themore » particles, indicating that the particle–polymer coupling does not change with increasing particle loading. We find that the coupling between the dynamics of comparably sized particles and polymer results in subdiffusive particle dynamics, as expected. Over the interparticle distance, however, the particle dynamics is hindered and not fully described by the relaxation of the surrounding polymer chains. Instead, the particle dynamics is inversely related to the structure factor, suggesting that physical particle–polymer coupling on short length scales and interparticle interactions on long length scales both present energetic barriers to particle motion that lead to subdiffusive dynamics and de Gennes narrowing, respectively.« less

  16. Au nanoparticle-based sensor for apomorphine detection in plasma

    PubMed Central

    Lucotti, Andrea; Tommasini, Matteo; Trusso, Sebastiano; de Grazia, Ugo; Ciusani, Emilio; Ossi, Paolo M

    2015-01-01

    Summary Artificially roughened gold surfaces with controlled nanostructure produced by pulsed laser deposition have been investigated as sensors for apomorphine detection aiming at clinical application. The use of such gold surfaces has been optimized using aqueous solutions of apomorphine in the concentration range between 3.3 × 10−4 M and 3.3 × 10−7 M. The experimental parameters have been investigated and the dynamic concentration range of the sensor has been assessed by the selection of two apomorphine surface enhanced Raman scattering (SERS) peaks. The sensor behavior used to detect apomorphine in unfiltered human blood plasma is presented and discussed. PMID:26734514

  17. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction

    NASA Astrophysics Data System (ADS)

    Nováková, A.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.

  18. Sensory determinants of valve rhythm dynamics provide in situ biodetection of copper in aquatic environments.

    PubMed

    Jou, Li-John; Chen, Bo-Ching; Chen, Wei-Yu; Liao, Chung-Min

    2016-03-01

    This study successfully applied an improved valvometry technique to measure waterborne copper (Cu), based on valve activity dynamics of the freshwater clam Corbicula fluminea. The improved valvometry technique allows the use of free-range bivalves and avoids causing stresses from experimental artifacts. The proposed daily valve rhythm models and a toxicodynamics-based Hill model were linked to predict valve dynamic responses under different Cu exposures with a circadian valve rhythm endpoint. Cu-specific detection threshold was 5.6 (95 % CI 2.1-9.3) and 19.5 (14.6-24.3) μg L(-1) for C. fluminea, based on response times of 300 and 30 min, respectively. Upon exposure to Cu concentrations in excess of 50 μg L(-1), the alteration of valve rhythm behavior was correlated with Cu concentration within 30 min, indicating notable sensing ability. This study outlines the feasibility of an in situ early warning dynamic biomonitoring system for detection of waterborne Cu based on circadian valve activities of C. fluminea.

  19. Real-time modulated nanoparticle separation with an ultra-large dynamic range.

    PubMed

    Zeming, Kerwin Kwek; Thakor, Nitish V; Zhang, Yong; Chen, Chia-Hung

    2016-01-07

    Nanoparticles exhibit size-dependent properties which make size-selective purification of proteins, DNA or synthetic nanoparticles essential for bio-analytics, clinical medicine, nano-plasmonics and nano-material sciences. Current purification methods of centrifugation, column chromatography and continuous-flow techniques suffer from particle aggregation, multi-stage process, complex setups and necessary nanofabrication. These increase process costs and time, reduce efficiency and limit dynamic range. Here, we achieve an unprecedented real-time nanoparticle separation (51-1500 nm) using a large-pore (2 μm) deterministic lateral displacement (DLD) device. No external force fields or nanofabrication are required. Instead, we investigated innate long-range electrostatic influences on nanoparticles within a fluid medium at different NaCl ionic concentrations. In this study we account for the electrostatic forces beyond Debye length and showed that they cannot be assumed as negligible especially for precise nanoparticle separation methods such as DLD. Our findings have enabled us to develop a model to simultaneously quantify and modulate the electrostatic force interactions between nanoparticle and micropore. By simply controlling buffer solutions, we achieve dynamic nanoparticle size separation on a single device with a rapid response time (<20 s) and an enlarged dynamic range (>1200%), outperforming standard benchtop centrifuge systems. This novel method and model combines device simplicity, isolation precision and dynamic flexibility, opening opportunities for high-throughput applications in nano-separation for industrial and biological applications.

  20. Extending the dynamic range of transcription factor action by translational regulation

    NASA Astrophysics Data System (ADS)

    Sokolowski, Thomas R.; Walczak, Aleksandra M.; Bialek, William; Tkačik, Gašper

    2016-02-01

    A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression.

  1. Characterization of silica particles modified with γ-methacryloxypropyltrimethoxysilane

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Wang, Wang; Shen, Haiying; Wang, Jiamin; Cao, Jinzhen

    2017-03-01

    The surface of hydrophilic silica particles was modified with different concentrations (2, 4, 6, 8 and 10%) of γ-methacryloxypropyltrimethoxysilane (MPTS). The hydrophobicity and hygroscopicity of unmodified and modified silica were investigated through water contact angle (WCA) tests and dynamic vapor sorption (DVS) method, respectively. The results showed that the surface properties of silica were closely related with the MPTS concentration. Within the range of MPTS concentration applied, 8% MPTS modified silica showed the least aggregation. With the increasing MPTS concentration, the WCAs on modified silica film increased correspondingly, and finally exceeded 90° at 6% and 8% concentrations. The equilibrium moisture contents (EMCs) of modified silica also decreased with the increasing MPTS concentration. The improvement on hydrophobicity can be correlated with the reduction of residual hydroxyl groups (-OH) on modified silica. The self-condensation of MPTS began to occur at concentrations higher than 4%, especially at 8%. Owing to this effect, the modified silica with 8% MPTS showed a slightly higher EMC than 6% MPTS within low relative humidity (RH) range up to 40%. At a higher RH ranging from 40 to 90%, 8% group showed the lowest EMCs because of its highest hydrophobicity and low specific surface area. A mechanism concerning the MPTS modification of silica was also proposed in this study based on the research results.

  2. On a PLIF quantification methodology in a nonlinear dye response regime

    NASA Astrophysics Data System (ADS)

    Baj, P.; Bruce, P. J. K.; Buxton, O. R. H.

    2016-06-01

    A new technique of planar laser-induced fluorescence calibration is presented in this work. It accounts for a nonlinear dye response at high concentrations, an illumination light attenuation and a secondary fluorescence's influence in particular. An analytical approximation of a generic solution of the Beer-Lambert law is provided and utilized for effective concentration evaluation. These features make the technique particularly well suited for high concentration measurements, or those with a large range of concentration values, c, present (i.e. a high dynamic range of c). The method is applied to data gathered in a water flume experiment where a stream of a fluorescent dye (rhodamine 6G) was released into a grid-generated turbulent flow. Based on these results, it is shown that the illumination attenuation and the secondary fluorescence introduce a significant error into the data quantification (up to 15 and 80 %, respectively, for the case considered in this work) unless properly accounted for.

  3. A survey of design methods for failure detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1975-01-01

    A number of methods for detecting abrupt changes (such as failures) in stochastic dynamical systems are surveyed. The class of linear systems is concentrated on but the basic concepts, if not the detailed analyses, carry over to other classes of systems. The methods surveyed range from the design of specific failure-sensitive filters, to the use of statistical tests on filter innovations, to the development of jump process formulations. Tradeoffs in complexity versus performance are discussed.

  4. Expression, crosslinking, and developing modulus master curves of recombinant resilin.

    PubMed

    Khandaker, Md Shahriar K; Dudek, Daniel M; Beers, Eric P; Dillard, David A

    2017-05-01

    Resilin is a disordered elastomeric protein found in specialized regions of insect cuticles, where low stiffness and high resilience are required. Having a wide range of functions that vary among insect species, resilin operates across a wide frequency range, from 5Hz for locomotion to 13kHz for sound production. We synthesize and crosslink a recombinant resilin from clone-1 (exon-1+exon-2) of the gene, and determine the water content (approximately 80wt%) and dynamic mechanical properties, along with estimating surface energies relevant for adhesion. Dynamic moduli master curves have been developed, by applying the time-temperature superposition principle (TTSP) and time-temperature concentration superposition principle (TTCSP), and compared with reported master curves for natural resilin from locusts, dragonflies, and cockroaches. To our knowledge, this is the first time dynamic moduli master curves have been developed to explore the dynamic mechanical properties of recombinant resilin and compare with resilin behavior. The resulting master curves show that the synthetic resilin undergoes a pronounced transition with increasing ethanol concentrations, with the storage modulus increasing by approximately three orders of magnitude. Although possibly a glass transition, alternate explanations include the formation of intramolecular hydrogen bonds or that the chitin binding domain (ChBD) in exon-2 might change the secondary structure of the normally disordered exon-1 into more ordered conformations that limit deformation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. SI-traceable and dynamic reference gas mixtures for water vapour at polar and high troposphere atmospheric levels

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Pascale, Céline; Mutter, Daniel; Wettstein, Sascha; Niederhauser, Bernhard

    2017-04-01

    In the framework of METAS' AtmoChem-ECV project, new facilities are currently being developed to generate reference gas mixtures for water vapour at concentrations measured in the high troposphere and polar regions, in the range 1-20 µmol/mol (ppm). The generation method is dynamic (the mixture is produced continuously over time) and SI-traceable (i.e. the amount of substance fraction in mole per mole is traceable to the definition of SI-units). The generation process is composed of three successive steps. The first step is to purify the matrix gas, nitrogen or synthetic air. Second, this matrix gas is spiked with the pure substance using a permeation technique: a permeation device contains a few grams of pure water in liquid form and loses it linearly over time by permeation through a membrane. In a third step, to reach the desired concentration, the first, high concentration mixture exiting the permeation chamber is then diluted with a chosen flow of matrix gas with one or two subsequent dilution steps. All flows are piloted by mass flow controllers. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. The mixture can eventually be directly used to calibrate an analyser. The standard mixture produced by METAS' dynamic setup was injected into a chilled mirror from MBW Calibration AG, the designated institute for absolute humidity calibration in Switzerland. The used chilled mirror, model 373LX, is able to measure frost point and sample pressure and therefore calculate the water vapour concentration. This intercomparison of the two systems was performed in the range 4-18 ppm water vapour in synthetic air, at two different pressure levels, 1013.25 hPa and 2000 hPa. We present here METAS' dynamic setup, its uncertainty budget and the first results of the intercomparison with MBW's chilled mirror.

  6. The water quality of the River Enborne, UK: insights from high-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, Sarah; Skeffington, Richard; Wade, Andrew; Bowes, Mike; Gozzard, Emma; Palmer-Felgate, Elizabeth; Newman, Johnathan; Jarvie, Helen; Loewenthal, Matt

    2014-05-01

    The River Enborne is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works (STWs) discharges. Between November 2009 and February 2012, the river was instrumented with in situ analytical equipment to take hourly measurements of total reactive phosphorus (TRP), using a Systea Micromac C; nitrate, using a Hach Lange Nitratax; and pH, chlorophyll, dissolved oxygen, conductivity, turbidity and water temperature, using a YSI 6600 Multi-parameter sonde. In addition, weekly 'grab samples' were also collected and analysed for a wide range of chemical determinands including major ions, nutrients, and trace elements. The catchment land use is largely agricultural, with wheat the dominant crop, and the average population density is 123 persons per sq. km. The river water is largely derived from calcareous groundwater, with a mean calcium concentration of 68.5 mg/l, and high nitrogen and phosphorus concentrations, with mean nitrate and TRP concentrations of 3.96 mg/l-N and 0.17 mg/l-P respectively. A mass-balance for the catchment demonstrated that agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus, accounting for 77 % and 84 % respectively. However, the concentration data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics, with the diurnal STW discharge signal discernable in the high-frequency nutrient dynamics. The nutrient dynamics and correlation structure of the data indicate a substantial contribution of groundwater and agricultural runoff to stream nitrate concentrations, whereas discharges from septic tank systems and sewage treatment works are a more important source of phosphorus. The high-frequency turbidity and conductivity dynamics reveal key information about the seasonal changes controlling the system dynamics, with marked differences in diurnal conductivity dynamics at the onset of riparian shading linked to the decreased importance of the photosynthetically-driven cycle of bicarbonate concentration. Only 4 % of the phosphorus input and 9 % of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  7. Optical dynamic range maximization for humidity sensing by controlling growth of zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Yusof, Haziezol Helmi Mohd; Harun, Sulaiman Wadi; Dimyati, Kaharudin; Bora, Tanujjal; Mohammed, Waleed S.; Dutta, Joydeep

    2018-07-01

    An experimental study of the dynamic range maximization with Zinc Oxide (ZnO) nanorods coated glass substrates for humidity and vapor sensing is reported. Growth time of the nanorods and the length of the coated segments were controlled to study the differences between a reference environmental condition (normal humidity or dry condition) and water vapor concentrations. In order to achieve long dynamic range of detection with respect to nanorods coverage, several substrates with triangular patterns of ZnO nanostructures were fabricated by selective hydrothermal growth over different durations of time (5 h, 10 h and 15 h). It was found that maximum dynamic range for the humidity sensing occurs for the combination parameters of normalized length (Z) of 0.23 and normalized scattering coefficient (ζ) of 0.3. A reduction in transmittance by 38% at humidity levels of 80% with reference point as 50% humidity was observed. The results could be correlated to a first order approximation model that assumes uniform growth and the optimum operating conditions for humidity sensing device. This study provides an option to correlate ZnO growth conditions for different vapor sensing applications which can set a platform for compact sensors where modulation of light intensity is followed.

  8. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range.

    PubMed

    Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi

    2016-12-15

    Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. High Dynamic Range Characterization of the Trauma Patient Plasma Proteome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tao; Qian, Weijun; Gritsenko, Marina A.

    2006-06-08

    While human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein, we describe a strategy that combines immunoaffinity subtraction and chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with 2D-LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this ''divide-and-conquer'' strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) thatmore » covered 3654 nonredundant proteins. Numerous low-abundance proteins were identified, exemplified by 78 ''classic'' cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally, a total of 2910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients, which provides a foundation for future high-throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses.« less

  10. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine

    PubMed Central

    Pietak, Alexis; Levin, Michael

    2016-01-01

    Bioelectric cell properties have been revealed as powerful targets for modulating stem cell function, regenerative response, developmental patterning, and tumor reprograming. Spatio-temporal distributions of endogenous resting potential, ion flows, and electric fields are influenced not only by the genome and external signals but also by their own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both determine, and are themselves gated by, cellular resting potential. Thus, the origin and progression of bioelectric patterns in multicellular tissues is complex, which hampers the rational control of voltage distributions for biomedical interventions. To improve understanding of these dynamics and facilitate the development of bioelectric pattern control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a finite volume method multiphysics simulator, which predicts bioelectric patterns and their spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking changes to the fundamental property of ion concentration. We validate performance of the simulator by matching experimentally obtained data on membrane permeability, ion concentration and resting potential to simulated values, and by demonstrating the expected outcomes for a range of well-known cases, such as predicting the correct transmembrane voltage changes for perturbation of single cell membrane states and environmental ion concentrations, in addition to the development of realistic transepithelial potentials and bioelectric wounding signals. In silico experiments reveal factors influencing transmembrane potential are significantly different in gap junction-networked cell clusters with tight junctions, and identify non-linear feedback mechanisms capable of generating strong, emergent, cluster-wide resting potential gradients. The BETSE platform will enable a deep understanding of local and long-range bioelectrical dynamics in tissues, and assist the development of specific interventions to achieve greater control of pattern during morphogenesis and remodeling. PMID:27458581

  11. Experiments in water-macrophyte systems to uncover the dynamics of pesticide mitigation processes in vegetated surface waters/streams.

    PubMed

    Stang, Christoph; Bakanov, Nikita; Schulz, Ralf

    2016-01-01

    Knowledge on the dynamics and the durability of the processes governing the mitigation of pesticide loads by aquatic vegetation in vegetated streams, which are characterized by dynamic discharge regimes and short chemical residence times, is scarce. In a static long-term experiment (48 h), the dissipation of five pesticides from the aqueous phase followed a biphasic pattern in the presence of aquatic macrophytes. A dynamic concentration decrease driven by sorption to the macrophytes ranged from 8.3 to 60.4% for isoproturon and bifenox, respectively, within the first 2 h of exposure. While the aqueous concentrations of imidacloprid, isoproturon, and tebufenozide remained constant thereafter, the continuous but decelerated concentration decrease of difenoconazole and bifenox in the water-macrophyte systems used here was assumed to be attributed to macrophyte-induced degradation processes. In addition, a semi-static short-term experiment was conducted, where macrophytes were transferred to uncontaminated medium after 2 h of exposure to simulate a transient pesticide peak. In the first part of the experiment, adsorption to macrophytes resulted in partitioning coefficients (logK D_Adsorp) ranging from 0.2 for imidacloprid to 2.2 for bifenox. One hour after the macrophytes were transferred to the uncontaminated medium, desorption of the compounds from the macrophytes resulted in a new phase equilibrium and K D_Desorp values of 1.46 for difenoconazole and 1.95 for bifenox were determined. A correlation analysis revealed the best match between the compound affinity to adsorb to macrophytes (expressed as K D_Adsorp) and their soil organic carbon-water partitioning coefficient (K OC) compared to their octanol-water partitioning coefficient (K OW) or a mathematically derived partitioning coefficient.

  12. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia.

    PubMed

    Savidge, William B; Brink, Jonathan; Blanton, Jackson O

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  13. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia

    NASA Astrophysics Data System (ADS)

    Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  14. Bioinspired design of a polymer gel sensor for the realization of extracellular Ca2+ imaging

    NASA Astrophysics Data System (ADS)

    Ishiwari, Fumitaka; Hasebe, Hanako; Matsumura, Satoko; Hajjaj, Fatin; Horii-Hayashi, Noriko; Nishi, Mayumi; Someya, Takao; Fukushima, Takanori

    2016-04-01

    Although the role of extracellular Ca2+ draws increasing attention as a messenger in intercellular communications, there is currently no tool available for imaging Ca2+ dynamics in extracellular regions. Here we report the first solid-state fluorescent Ca2+ sensor that fulfills the essential requirements for realizing extracellular Ca2+ imaging. Inspired by natural extracellular Ca2+-sensing receptors, we designed a particular type of chemically-crosslinked polyacrylic acid gel, which can undergo single-chain aggregation in the presence of Ca2+. By attaching aggregation-induced emission luminogen to the polyacrylic acid as a pendant, the conformational state of the main chain at a given Ca2+ concentration is successfully translated into fluorescence property. The Ca2+ sensor has a millimolar-order apparent dissociation constant compatible with extracellular Ca2+ concentrations, and exhibits sufficient dynamic range and excellent selectivity in the presence of physiological concentrations of biologically relevant ions, thus enabling monitoring of submillimolar fluctuations of Ca2+ in flowing analytes containing millimolar Ca2+ concentrations.

  15. Combined Molecular Dynamics Simulation-Molecular-Thermodynamic Theory Framework for Predicting Surface Tensions.

    PubMed

    Sresht, Vishnu; Lewandowski, Eric P; Blankschtein, Daniel; Jusufi, Arben

    2017-08-22

    A molecular modeling approach is presented with a focus on quantitative predictions of the surface tension of aqueous surfactant solutions. The approach combines classical Molecular Dynamics (MD) simulations with a molecular-thermodynamic theory (MTT) [ Y. J. Nikas, S. Puvvada, D. Blankschtein, Langmuir 1992 , 8 , 2680 ]. The MD component is used to calculate thermodynamic and molecular parameters that are needed in the MTT model to determine the surface tension isotherm. The MD/MTT approach provides the important link between the surfactant bulk concentration, the experimental control parameter, and the surfactant surface concentration, the MD control parameter. We demonstrate the capability of the MD/MTT modeling approach on nonionic alkyl polyethylene glycol surfactants at the air-water interface and observe reasonable agreement of the predicted surface tensions and the experimental surface tension data over a wide range of surfactant concentrations below the critical micelle concentration. Our modeling approach can be extended to ionic surfactants and their mixtures with both ionic and nonionic surfactants at liquid-liquid interfaces.

  16. Molecular dynamics simulations of the dielectric properties of fructose aqueous solutions

    NASA Astrophysics Data System (ADS)

    Sonoda, Milton T.; Elola, M. Dolores; Skaf, Munir S.

    2016-10-01

    The static dielectric permittivity and dielectric relaxation properties of fructose aqueous solutions of different concentrations ranging from 1.0 to 4.0 mol l-1 are investigated by means of molecular dynamics simulations. The contributions from intra- and interspecies molecular correlations were computed individually for both the static and frequency-dependent dielectric properties, and the results were compared with the available experimental data. Simulation results in the time- and frequency-domains were analyzed and indicate that the presence of fructose has little effect on the position of the fast, high-frequency (>500 cm-1) components of the dielectric response spectrum. The low-frequency (<0.1 cm-1) components, however, are markedly influenced by sugar concentration. Our analysis indicates that fructose-fructose and fructose-water interactions strongly affect the rotational-diffusion regime of molecular motions in the solutions. Increasing fructose concentration not only enhances sugar-sugar and sugar-water low frequency contributions to the dielectric loss spectrum but also slows down the reorientational dynamics of water molecules. These results are consistent with previous computer simulations carried out for other disaccharide aqueous solutions.

  17. Dynamic hysteresis in a one-dimensional Ising model: application to allosteric proteins.

    PubMed

    Graham, I; Duke, T A J

    2005-06-01

    We solve exactly the problem of dynamic hysteresis for a finite one-dimensional Ising model at low temperature. We find that the area of the hysteresis loop, as the field is varied periodically, scales as the square root of the field frequency for a large range of frequencies. Below a critical frequency there is a correction to the scaling law, resulting in a linear relationship between hysteresis area and frequency. The one-dimensional Ising model provides a simplified description of switchlike behavior in allosteric proteins, such as hemoglobin. Thus our analysis predicts the switching dynamics of allosteric proteins when they are exposed to a ligand concentration which changes with time. Many allosteric proteins bind a regulator that is maintained at a nonequilibrium concentration by active signal transduction processes. In the light of our analysis, we discuss to what extent allosteric proteins can respond to changes in regulator concentration caused by an upstream signaling event, while remaining insensitive to the intrinsic nonequilibrium fluctuations in regulator level which occur in the absence of a signal.

  18. Dynamics of Molecular Hydrogen in Hypersaline Microbial Mars

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; Visscher, Pieter T.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Early Earth microbial communities that centered around the anaerobic decomposition of organic molecular hydrogen as a carrier of electrons, regulator of energy metabolism, and facilitator of syntroph'c microbial interactions. The advent of oxygenic photosynthetic organisms added a highly dynamic and potentially dominant term to the hydrogen economy of these communities. We have examined the daily variations of hydrogen concentrations in cyanobacteria-dominated microbial mats from hypersaline ponds in Baja California Sur, Mexico. These mats bring together phototrophic and anaerobic bacteria (along with virtually all other trophic groups) in a spatially ordered and chemically dynamic matrix that provides a good analog for early Earth microbial ecosystems. Hydrogen concentrations in the photic zone of the mat can be three orders of magnitude or more higher than in the photic zone, which are, in turn, an order of magnitude higher than in the unconsolidated sediments underlying the mat community. Within the photic zone, hydrogen concentrations can fluctuate dramatically during the diel (24 hour day-night) cycle, ranging from less than 0.001% during the day to nearly 10% at night. The resultant nighttime flux of hydrogen from the mat to the environment was up to 17% of the daytime oxygen flux. The daily pattern observed is highly dependent on cyanobacterial species composition within the mat, with Lyngbya-dominated systems having a much greater dynamic range than those dominated by Microcoleus; this may relate largely to differing degrees of nitrogen-fixing and fermentative activity in the two mats. The greatest H2 concentrations and fluxes were observed in the absence of oxygen, suggesting an important potential feedback control in the context of the evolution of atmospheric composition. The impact of adding this highly dynamic photosynthetic term to the hydrogen economy of early microbial ecosystems must have been substantial. From an evolutionary standpoint, the H2 generated in mats could have represented a very important new source of electrons and energy - but one that could not be harnessed without substantial adaptation to the highly variable chemistry of the mat surface. In addition, the emergent chemistry of anaerobic communities is often highly dependent on ambient hydrogen concentrations, so that incorporation of these communities into photosynthetic mats could have significantly affected the composition and flux of reduced "biosignature' gases to the environment.

  19. Concentration Regimes of Biopolymers Xanthan, Tara, and Clairana, Comparing Dynamic Light Scattering and Distribution of Relaxation Time

    PubMed Central

    Oliveira, Patrícia D.; Michel, Ricardo C.; McBride, Alan J. A.; Moreira, Angelita S.; Lomba, Rosana F. T.; Vendruscolo, Claire T.

    2013-01-01

    The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT) using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums) by an analysis of the overlap (c*) and aggregation (c**) concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers. PMID:23671627

  20. Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range.

    PubMed

    Bachmann, Julie; Raue, Andreas; Schilling, Marcel; Böhm, Martin E; Kreutz, Clemens; Kaschek, Daniel; Busch, Hauke; Gretz, Norbert; Lehmann, Wolf D; Timmer, Jens; Klingmüller, Ursula

    2011-07-19

    Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.

  1. 1.6μm DIAL System for Measurements of CO2 Concentration Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.

    2013-12-01

    We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere. Our 1.6 μm DIAL system has a 60 cm telescope for vertical measurement and a 25 cm scanning telescope for horizontal measurement. This 1.6 μm DIAL system is also available to measure CO2 concentration profiles for daytime by using narrow-band interference filters. The 1.6 μm DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 30 minutes and vertical resolution of 300 - 600 m. The CO2 DIAL was also operated with the range-height indicator (RHI) mode, and the 2-D measurement provided inhomogeneity in the boundary layer. The vertical distribution of CO2 concentration from 2 km to 7 km altitude has been observed using two telescopes with different apertures. We hope to get the data of the CO2 concentration from lower altitude to 7 km at the same time. Since the change of signal intensity is larger near the ground, it is also important to the install the photon counter with the faster count rate to expand the dynamic range. The high speed counter and the telescope system make the dynamic range expand more than 10 times and the vertical distribution observation of CO2 concentration from 0.5 km to 7 km altitude is performed. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp. 748-757, 2009. Stephens, B. B. et al., Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2, Science 316, pp. 1732-1735, 2007.

  2. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool

    NASA Astrophysics Data System (ADS)

    Palmieri, Valentina; Lucchetti, Donatella; Gatto, Ilaria; Maiorana, Alessandro; Marcantoni, Margherita; Maulucci, Giuseppe; Papi, Massimiliano; Pola, Roberto; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    Extracellular vesicles (EVs) are cell-to-cell shuttles that have recently drawn interest both as drug delivery platforms and disease biomarkers. Despite the increasingly recognized relevance of these vesicles, their detection, and characterization still have several technical drawbacks. In this paper, we accurately assess the size distribution and concentration of EVs by using a high-throughput non-perturbative technique such as Dynamic Light Scattering (DLS). The vesicle radii distribution, as further confirmed by Atomic Force Microscopy experiments, ranges from 10 to 80 nm and appears very asymmetric towards larger radii with a main peak at roughly 30 nm. By combining DLS and Bradford assay, we also demonstrate the feasibility of recovering the concentration and its distribution of proteins contained inside vesicles. The sensitivity of our approach allows to detect protein concentrations as low as 0.01 mg/ml.

  3. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    PubMed

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  4. The influence of trehalose on hydrophobic interactions of small nonpolar solute: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Paul, Subrata; Paul, Sandip

    2013-07-01

    Molecular dynamics simulations were carried out to investigate the influences of aqueous trehalose solution on the hydrophobic interactions between neopentane molecules. In this study, we consider six different trehalose concentrations ranging from 0% to 56%. We observe that with increasing trehalose concentration the dispersion of solute neopentane takes place. The neopentane-neopentane association constant value decreases with addition of trehalose. Our preferential interaction calculations suggest that with increasing trehalose concentration neopentane interacts preferentially with water over trehalose. Site-site neopentane-trehalose rdfs indicate that trehalose molecules are expelled out from the neopentane surface. Also observed are (i) trehalose induced second shell collapse of water network (ii) decrease in average number of water-water and water-trehalose hydrogen bonds with increasing trehalose concentration. We also find that addition of trehalose decreases the translational motion of all the solution species. The decrease in diffusion coefficient value is more pronounced for trehalose. We, further, observe that the ratio of the diffusion coefficient values of water and trehalose increases with increasing trehalose concentration.

  5. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    PubMed

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  6. Spatial-temporal dynamics of NDVI and Chl-a concentration from 1998 to 2009 in the East coastal zone of China: integrating terrestrial and oceanic components.

    PubMed

    Hou, Xiyong; Li, Mingjie; Gao, Meng; Yu, Liangju; Bi, Xiaoli

    2013-01-01

    Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial-temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial-temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.

  7. Sulfur isotope dynamics in a high-elevation catchment, West Glacier Lake, Wyoming

    Treesearch

    J. B. Finley; J. I. Drever; J. T. Turk

    1995-01-01

    Stable isotopes of S are used in conjunction with dissolved SO2-|4 concentrations to evaluate the utility of ä34S ratios in tracing contributions of bedrock-derived S to SO2-|4 in runoff. Water samples were collected over the annual hydrograph from two tributaries in the West Glacier Lake, Wyoming, catchment. Concentrations of SO2-|4 ranged from 12.6 to 43.0 Ìeq L-1;...

  8. Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions.

    PubMed

    Bourg, Ian C; Sposito, Garrison

    2011-08-15

    We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl-CaCl(2) electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO(2) or high-level radioactive waste (0.34-1.83 mol(c) dm(-3)). Our results confirm the existence of three distinct ion adsorption planes (0-, β-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the β- and d-planes are independent of ionic strength or ion type and (2) "indifferent electrolyte" ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl(+) ion pairs. Therefore, at concentrations ≥0.34 mol(c) dm(-3), properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid "ice-like" structures for water on clay mineral surfaces. Published by Elsevier Inc.

  9. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles.

    PubMed

    Maiolo, Daniele; Paolini, Lucia; Di Noto, Giuseppe; Zendrini, Andrea; Berti, Debora; Bergese, Paolo; Ricotta, Doris

    2015-04-21

    Extracellular Vesicles (EVs) - cell secreted vesicles that carry rich molecular information of the parental cell and constitute an important mode of intercellular communication - are becoming a primary topic in translational medicine. EVs (that comprise exosomes and microvesicles/microparticles) have a size ranging from 40 nm to 1 μm and share several physicochemical proprieties, including size, density, surface charge, and light interaction, with other nano-objects present in body fluids, such as single and aggregated proteins. This makes separation, titration, and characterization of EVs challenging and time-consuming. Here we present a cost-effective and fast colorimetric assay for probing by eye protein contaminants and determine the concentration of EV preparations, which exploits the synergy between colloidal gold nanoplasmonics, nanoparticle-protein corona, and nanoparticle-membrane interaction. The assay hits a limit of detection of protein contaminants of 5 ng/μL and has a dynamic range of EV concentration ranging from 35 fM to 35 pM, which matches the typical range of EV concentration in body fluids. This work provides the first example of the exploitation of the nanoparticle-protein corona in analytical chemistry.

  10. Structure and dynamics of propylammonium nitrate-acetonitrile mixtures: An intricate multi-scale system probed with experimental and theoretical techniques.

    PubMed

    Campetella, Marco; Mariani, Alessandro; Sadun, Claudia; Wu, Boning; Castner, Edward W; Gontrani, Lorenzo

    2018-04-07

    In this article, we report the study of structural and dynamical properties for a series of acetonitrile/propylammonium nitrate mixtures as a function of their composition. These systems display an unusual increase in intensity in their X-ray diffraction patterns in the low-q regime, and their 1 H-NMR diffusion-ordered NMR spectroscopy (DOSY) spectra display unusual diffusivities. However, the magnitude of both phenomena for mixtures of propylammonium nitrate is smaller than those observed for ethylammonium nitrate mixtures with the same cosolvent, suggesting that the cation alkyl tail plays an important role in these observations. The experimental X-ray scattering data are compared with the results of molecular dynamics simulations, including both ab initio studies used to interpret short-range interactions and classical simulations to describe longer range interactions. The higher level calculations highlight the presence of a strong hydrogen bond network within the ionic liquid, only slightly perturbed even at high acetonitrile concentration. These strong interactions lead to the symmetry breaking of the NO 3 - vibrations, with a splitting of about 88 cm -1 in the ν 3 antisymmetric stretch. The classical force field simulations use a greater number of ion pairs, but are not capable of fully describing the longest range interactions, although they do successfully account for the observed concentration trend, and the analysis of the models confirms the nano-inhomogeneity of these kinds of samples.

  11. Structure and dynamics of propylammonium nitrate-acetonitrile mixtures: An intricate multi-scale system probed with experimental and theoretical techniques

    NASA Astrophysics Data System (ADS)

    Campetella, Marco; Mariani, Alessandro; Sadun, Claudia; Wu, Boning; Castner, Edward W.; Gontrani, Lorenzo

    2018-04-01

    In this article, we report the study of structural and dynamical properties for a series of acetonitrile/propylammonium nitrate mixtures as a function of their composition. These systems display an unusual increase in intensity in their X-ray diffraction patterns in the low-q regime, and their 1H-NMR diffusion-ordered NMR spectroscopy (DOSY) spectra display unusual diffusivities. However, the magnitude of both phenomena for mixtures of propylammonium nitrate is smaller than those observed for ethylammonium nitrate mixtures with the same cosolvent, suggesting that the cation alkyl tail plays an important role in these observations. The experimental X-ray scattering data are compared with the results of molecular dynamics simulations, including both ab initio studies used to interpret short-range interactions and classical simulations to describe longer range interactions. The higher level calculations highlight the presence of a strong hydrogen bond network within the ionic liquid, only slightly perturbed even at high acetonitrile concentration. These strong interactions lead to the symmetry breaking of the NO3 - vibrations, with a splitting of about 88 cm-1 in the ν3 antisymmetric stretch. The classical force field simulations use a greater number of ion pairs, but are not capable of fully describing the longest range interactions, although they do successfully account for the observed concentration trend, and the analysis of the models confirms the nano-inhomogeneity of these kinds of samples.

  12. An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies

    DOE PAGES

    Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.; ...

    2017-11-06

    We present that the mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can yield erroneous results if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flightmore » MS. Here, in this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases for highly saturated species and dynamic range increased by 1–2 orders of magnitude for peptides in a blood serum sample.« less

  13. An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.

    The mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can easily cause problems if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flight MS. In thismore » method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases with highly saturated species and dynamic range increased by 1-2 orders of magnitude for peptides in a blood serum sample.« less

  14. An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.

    We present that the mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can yield erroneous results if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flightmore » MS. Here, in this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases for highly saturated species and dynamic range increased by 1–2 orders of magnitude for peptides in a blood serum sample.« less

  15. The Influence of Submarine Groundwater Discharge on Nearshore Marine Dissolved Organic Carbon Reactivity, Concentration Dynamics, and Offshore Export

    NASA Astrophysics Data System (ADS)

    Goodridge, B.

    2017-12-01

    Dissolved organic carbon (DOC) is the largest pool of reduced carbon in the oceans, with a reservoir equivalent to atmospheric CO2. In nearshore marine regions, DOC sources include primary production, terrestrial DOC delivered by river discharge, and/or terrestrial and marine DOC delivered via submarine groundwater discharge (SGD). While the importance of SGD to coastal carbon cycling has been implicated, the actual influence of this process on nearshore carbon dynamics and offshore export has not been explicitly identified. This study, conducted at a predominantly marine-influenced intertidal beach-nearshore ocean system along the Santa Barbara, California coastline, aimed to address this knowledge gap. I coupled dark, temperature-controlled laboratory incubations, radioisotopic (Rn-222) SGD estimates, and a DOC box model to identify the influence of pore water mixing with seawater on nearshore DOC reactivity, concentration dynamics, and offshore export. Even with a relatively low volumetric contribution, SGD pore water mixing altered nearshore DOC reactivity, and elevated the nearshore DOC concentration by 0.9 to 5.6 µmol L-1 over nearshore seawater residence times ranging from 1 to 6 days. These elevated DOC concentrations were equivalent to 1.2 to 7.5% of the mean offshore DOC concentration taken during the summer months in the Santa Barbara Channel, when the coastal water column is highly thermally stratified. Despite the challenge of assessing carbon dynamics in physically and biogeochemically complex nearshore marine regions, this study demonstrates the need for future investigations to assess and account for SGD as a non-trivial component of coastal marine carbon cycles.

  16. Correlations between dynamics and atomic structures in Cu64.5Zr35.5 metallic glass

    NASA Astrophysics Data System (ADS)

    Wang, C. Z.; Zhang, Y.; Zhang, F.; Mendelev, M. I.; Kramer, M. J.; Ho, K. M.

    2015-03-01

    The atomic structure of Cu-Zr metallic glasses (MGs) has been widely accepted to be heterogeneous and dominated by icosahedral short range order (ISRO). However, the correlations between dynamics and atomic structures in Cu-Zr MGs remain an enigma. Using molecular dynamics (MD) simulations, we investigated the correlations between dynamics and atomic structures in Cu64.5Zr35.5 MG. The atomic structures are characterized using ISRO and the Bergman-type medium range order (BMRO). The simulation and analysis results show that the majority of the mobile atoms are not involved in ISRO or BMRO, indicating that the dynamical heterogeneity has a strong correlation to structural heterogeneity. Moreover, we found that the localized soft vibration modes below 1.0 THz are mostly concentrated on the mobile atoms. The diffusion was studied using the atomic trajectory collected in an extended time interval of 1.2 μs at 700 K in MD simulations. It was found that the long range diffusion in MGs is highly heterogeneous, which is confined to the liquid-like regions and strongly avoids the ISRO and the Bergman-type MRO. All These results clearly demonstrate strong correlations between dynamics (in terms of dynamical heterogeneity and diffusion) and atomic structures in Cu64.5Zr35.5 MGs. This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering under the Contract No. DE-AC02-07CH11358.

  17. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations

    PubMed Central

    Schwaighofer, Andreas; Alcaráz, Mirta R.; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-01-01

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml−1), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml−1). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml−1 in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml−1 was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy. PMID:27633337

  18. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations.

    PubMed

    Schwaighofer, Andreas; Alcaráz, Mirta R; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-09-16

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml(-1)), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml(-1)). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml(-1) in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml(-1) was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.

  19. Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations.

    PubMed

    Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan

    2017-10-18

    We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.

  20. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.

    PubMed

    Running, Steven W.; Gower, Stith T.

    1991-01-01

    A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.

  1. Determination of first flush criteria using dynamic EMCs (event mean concentrations) on highway stormwater runoff.

    PubMed

    Kim, L H; Jeong, S M; Ko, S O

    2007-01-01

    Recently the Ministry of Environment in Korea has developed the total maximum daily load program in accordance with the target pollutant and its concentration goal on four major large rivers. Since the program is largely related to regional development, nonpoint source control is both important and topical. Of the various nonpoint sources, highways are stormwater intensive land uses since they are impervious and have high pollutant mass emissions from vehicular activity. The event mean concentration (EMC) is useful in estimating the loadings to receiving water bodies. However, the EMC does not provide information on the time varying changes in pollutant concentration or mass emissions, which are often important for best management practice development, or understanding shock loads. Therefore, in this study a new concept, the dynamic EMC determination method, will be introduced to clearly verify the relationship between EMC and the first flush effect. Three monitoring sites in Daejeon metropolitan city areas were equipped with an automatic rainfall gauge and a flow meter for accumulating the data such as rainfall and runoff flow. The dynamic EMC method was applied to more than 17 events, and the improved first flush criteria were determined on the ranges of storm duration and accumulated rainfall.

  2. Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.

    PubMed

    Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan

    2017-10-19

    In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.

  3. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    PubMed

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  4. Concentration dependences of the density, viscosity, and refraction index of Cu(NO3)2 · 3H2O solutions in DMSO at 298 K

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, A. K.

    2013-03-01

    Physicochemical properties (density, dynamic viscosity, refraction index) of the DMSO-Cu(NO3)2 · 3H2O system are studied in the concentration range of 0.01-2 M at 298 K. The refraction index of a solution of copper(II) nitrate in dimethylsulfoxide (DMSO) is measured at 288-318 K. The excess and partial molar volumes of the solvent and dissolved substance are calculated analytically.

  5. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes

    Treesearch

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen

    2017-01-01

    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  6. Trapping of Li(+) Ions by [ThFn](4-n) Clusters Leading to Oscillating Maxwell-Stefan Diffusivity in the Molten Salt LiF-ThF4.

    PubMed

    Chakraborty, Brahmananda; Kidwai, Sharif; Ramaniah, Lavanya M

    2016-08-18

    A molten salt mixture of lithium fluoride and thorium fluoride (LiF-ThF4) serves as a fuel as well as a coolant in the most sophisticated molten salt reactor (MSR). Here, we report for the first time dynamic correlations, Onsager coefficients, Maxwell-Stefan (MS) diffusivities, and the concentration dependence of density and enthalpy of the molten salt mixture LiF-ThF4 at 1200 K in the composition range of 2-45% ThF4 and also at eutectic composition in the temperature range of 1123-1600 K using Green-Kubo formalism and equilibrium molecular dynamics simulations. We have observed an interesting oscillating pattern for the MS diffusivity for the cation-cation pair, in which ĐLi-Th oscillates between positive and negative values with the amplitude of the oscillation reducing as the system becomes rich in ThF4. Through the velocity autocorrelation function, vibrational density of states, radial distribution function analysis, and structural snapshots, we establish an interplay between the local structure and multicomponent dynamics and predict that formation of negatively charged [ThFn](4-n) clusters at a higher ThF4 mole % makes positively charged Li(+) ions oscillate between different clusters, with their range of motion reducing as the number of [ThFn](4-n) clusters increases, and finally Li(+) ions almost get trapped at a higher ThF4% when the electrostatic force on Li(+) exerted by various surrounding clusters gets balanced. Although reports on variations of density and enthalpy with temperature exist in the literature, for the first time we report variations of the density and enthalpy of LiF-ThF4 with the concentration of ThF4 (mole %) and fit them with the square root function of ThF4 concentration, which will be very useful for experimentalists to obtain data over a range of concentrations from fitting the formula for design purposes. The formation of [ThFn](4-n) clusters and the reduction in the diffusivity of the ions at a higher ThF4% may limit the percentage of ThF4 that can be used in the MSR to optimize the neutron economy.

  7. Cleaning oil refining drainage waters out of emulsified oil products with thermic treated cedar nut shell

    NASA Astrophysics Data System (ADS)

    Pyatanova, P. A.; Adeeva, L. N.

    2017-08-01

    It was elaborated the ability of the sorbent produced by thermic treatment of cedar nut shell to destruct model and real first kind (direct) emulsions in static and dynamic conditions. In static conditions optimal ratio sorbent-emulsion with the original concentration of oil products 800 mg/l was in the range of 2.0 g per 100 ml of emulsion which corresponds to the level of treatment 94.9%. The time of emulsion destruction was 40 minutes. This sorbent is highly active in dynamic processes of oil-contaminated water treatment, the level of treatment 96.0% is being achieved. Full dynamic sorptive capacity of the sorbent is 0.85 g/g. Sorbent based on the thermic treated cedar nut shell can be elaborated as sorptive filter element of local treatment facilities of oil refining and petrochemical processes. After the treatment with this sorbent of drainage waters of oil refinery in dynamic conditions the concentration of oil products became less than mpc on oil products for waste waters coming to biological treatment.

  8. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    PubMed Central

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  9. Wind tunnel simulation of air pollution dispersion in a street canyon.

    PubMed

    Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek

    2002-01-01

    Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.

  10. Analysis of biogenic amines using corona discharge ion mobility spectrometry.

    PubMed

    Hashemian, Z; Mardihallaj, A; Khayamian, T

    2010-05-15

    A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines.

  11. A Theoretical Basis for the Transition to Denitrification at Nanomolar Oxygen Concentrations

    NASA Astrophysics Data System (ADS)

    Zakem, E.; Follows, M. J.

    2016-02-01

    Current climate change is likely to expand the size and intensity of marine oxygen minimum zones. How will this affect denitrification rates? Current global biogeochemical models typically prescribe a critical oxygen concentration below which anaerobic activity occurs, rather than resolve the underlying microbial processes. Here, we explore the dynamics of an idealized, simulated anoxic zone in which multiple prokaryotic metabolisms are resolved mechanistically, defined by redox chemistry and biophysical constraints. We first ask, what controls the critical oxygen concentration governing the favorability of aerobic or anaerobic respiration? The predicted threshold oxygen concentration varies as a function of the environment as well as of cell physiology, and lies within the nanomolar range. The model thus provides a theoretical underpinning for the recent observations of nanomolar oxygen concentrations in oxygen minimum zones. In the context of an idealized, two-dimensional intensified upwelling simulation, we also predict denitrification at oxygen concentrations orders of magnitude higher due to physical mixing, reconciling observations of denitrification over a similar range and demonstrating a decoupling of denitrification from the local oxygen concentration. In a sensitivity study with the idealized ocean model, we comment upon the relationship between the volume of anoxic waters and total denitrification.

  12. Thermoreversible Gels Composed of Colloidal Silica Rods with Short-Range Attractions

    DOE PAGES

    Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.

    2016-07-28

    Dynamic arrest transitions of colloidal suspensions containing non-spherical particles are of interest for the design and processing of various particle technologies. To better understand the effects of particle shape anisotropy and attraction strength on gel and glass formation, we present a colloidal model system of octadecyl-coated silica rods, termed as adhesive hard rods (AHR), which enables control of rod aspect ratio and temperature-dependent interactions. The aspect ratios of silica rods were controlled by varying the initial TEOS concentration following the work of Kuijk et al. (J. Am. Chem. Soc., 2011, 133, 2346–2349) and temperature-dependent attractions were introduced by coating themore » calcined silica rods with an octadecyl-brush and suspending in tetradecane. The rod length and aspect ratio were found to increase with TEOS concentration as expected, while other properties such as the rod diameter, coating coverage, density, and surface roughness were nearly independent of the aspect ratio. Ultra-small angle X-ray scattering measurements revealed temperature-dependent attractions between octadecyl-coated silica rods in tetradecane, as characterized by a low-q upturn in the scattered intensity upon thermal quenching. Lastly, the rheology of a concentrated AHR suspension in tetradecane demonstrated thermoreversible gelation behavior, displaying a nearly 5 orders of magnitude change in the dynamic moduli as the temperature was cycled between 15 and 40 °C. We find the adhesive hard rod model system serves as a tunable platform to explore the combined influence of particle shape anisotropy and attraction strength on the dynamic arrest transitions in colloidal suspensions with thermoreversible, short-range attractions.« less

  13. Dynamics in dense hard-sphere colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Orsi, Davide; Fluerasu, Andrei; Moussaïd, Abdellatif; Zontone, Federico; Cristofolini, Luigi; Madsen, Anders

    2012-01-01

    The dynamic behavior of a hard-sphere colloidal suspension was studied by x-ray photon correlation spectroscopy and small-angle x-ray scattering over a wide range of particle volume fractions. The short-time mobility of the particles was found to be smaller than that of free particles even at relatively low concentrations, showing the importance of indirect hydrodynamic interactions. Hydrodynamic functions were derived from the data, and for moderate particle volume fractions (Φ≤ 0.40) there is good agreement with earlier many-body theory calculations by Beenakker and Mazur [Physica A0378-437110.1016/0378-4371(84)90206-1 120, 349 (1984)]. Important discrepancies appear at higher concentrations, above Φ≈ 0.40, where the hydrodynamic effects are overestimated by the Beenakker-Mazur theory, but predicted accurately by an accelerated Stokesian dynamics algorithm developed by Banchio and Brady [J. Chem. Phys.0021-960610.1063/1.1571819 118, 10323 (2003)]. For the relaxation rates, good agreement was also found between the experimental data and a scaling form predicted by the mode coupling theory. In the high concentration range, with the fluid suspensions approaching the glass transition, the long-time diffusion coefficient was compared with the short-time collective diffusion coefficient to verify a scaling relation previously proposed by Segrè and Pusey [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.77.771 77, 771 (1996)]. We discuss our results in view of previous experimental attempts to validate this scaling law [L. Lurio , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.84.785 84, 785 (2000)].

  14. A new portable generator to dynamically produce SI-traceable reference gas mixtures for VOCs and water vapour at atmospheric concentration

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Pascale, Céline; Ackermann, Andreas; Leuenberger, Daiana; Niederhauser, Bernhard

    2016-04-01

    In the framework of the KEY-VOCs and AtmoChem-ECV projects, we are currently developing new facilities to dynamically generate reference gas mixtures for a variety of reactive compounds, at concentrations measured in the atmosphere and in a SI-traceable way (i.e. the amount of substance fraction in mole per mole is traceable to SI-units). Here we present the realisation of such standards for water vapour in the range 1-10 μmol/mol and for volatile organic compounds (VOCs) such as limonene, alpha-pinene, MVK, MEK, in the nmol/mol range. The matrix gas can be nitrogen or synthetic air. Further development in gas purification techniques could make possible to use purified atmospheric air as carrier gas. The method is based on permeation and dynamic dilution: one permeator containing a pure substance (either water, limonene, MVK, MEK or α-pinene) is kept into a permeation chamber with a constant gas flow. The mass loss is precisely calibrated using a magnetic suspension balance. The carrier gas is purified beforehand from the compounds of interest to the required level, using commercially available purification cartridges. This primary mixture is then diluted to reach the required amount of substance fraction. All flows are piloted by mass flow controllers which makes the production process flexible and easily adaptable to generate the required concentration. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. Two setups are currently developed: one already built and fixed in our laboratory in Bern as well as a portable generator that is still under construction and that could be used anywhere in the field. The permeation chamber of the portable generator has multiple individual cells allowing the generation of mixtures up to 5 different components if needed. Moreover the presented technique can be adapted and applied to a large variety of molecules (e.g., NO2, BTEX, CFCs, HCFCs, HFCs and other refrigerants) and is particularly suitable for gas species and/or concentration ranges that are not stable in cylinders.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunkin, N F; Shkirin, A V; Burkhanov, I S

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)

  16. P-type single-crystalline ZnO films obtained by (N,O) dual implantation through dynamic annealing process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen

    2016-12-01

    Single-crystalline ZnO films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy technique. The films have been implanted with fixed fluence of 120 keV N and 130 keV O ions at 460 °C. Hall measurements show that the dually-implanted single-crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 2.1 × 1018-1.1 × 1019 cm-3, hole mobilities between 1.6 and 1.9 cm2 V-1 s-1, and resistivities in the range of 0.353-1.555 Ω cm. The ZnO films exhibit (002) (c-plane) orientation as identified by the X-ray diffraction pattern. It is confirmed that N ions were effectively implanted by SIMS results. Raman spectra, polarized Raman spectra, and X-ray photoelectron spectroscopy results reflect that the concentration of oxygen vacancies is reduced, which is attributed to O ion implantation. It is concluded that N and O implantation and dynamic annealing play a critical role in forming p-type single-crystalline ZnO films.

  17. Spatial Statistics of atmospheric particulate matter in China

    NASA Astrophysics Data System (ADS)

    Huang, Yongxiang; Wang, Yangjun; Liu, Yulu

    2017-04-01

    In this work, the spatial dynamics of the atmospheric particulate matters (resp. PM10 and PM2.5) are studied using turbulence methodologies. The hourly concentrations of particulate matter were released by the Chinese government (http://www.cnemc.cn). We first processed these data into daily average concentrations. Totally, there are 305 monitor stations with an observations period of 425 days. It is found experimentally that the spatial correlation function ρ(r) shows a log-law on the mesoscale range, i.e., 50 ≤ r ≤ 500 km, with an experimental scaling exponent β = 0.45. The spatial structure function shows a power-law behavior on the mesoscale range 90 ≤ r ≤ 500 km. The experimental scaling exponent ζ(q) is convex, showing that the intermittent correction is relevant in characterizing the spatial dynamics of particulate matter. The measured singularity spectrum f(α) also shows its multifractal nature. Experimentally, the particulate matter is more intermittent than the passive scalar, which could be partially due to the mesoscale movements of the atmosphere, and also due to local sources, such as local industry activities.

  18. Carotenoid incorporation into microsomes: yields, stability and membrane dynamics

    NASA Astrophysics Data System (ADS)

    Socaciu, Carmen; Jessel, Robert; Diehl, Horst A.

    2000-12-01

    The carotenoids β-carotene (BC), lycopene (LYC), lutein (LUT), zeaxanthin (ZEA), canthaxanthin (CTX) and astaxanthin (ASTA) have been incorporated into pig liver microsomes. Effective incorporation concentrations in the range of about 1-6 nmol/mg microsomal protein were obtained. A stability test at room temperature revealed that after 3 h BC and LYC had decayed totally whereas, gradually, CTX (46%), LUT (21%), ASTA (17%) and ZEA (5%) decayed. Biophysical parameters of the microsomal membrane were changed hardly by the incorporation of carotenoids. A small rigidification may occur. Membrane anisotropy seems to offer only a small tolerance for incorporation of carotenoids and seems to limit the achievable incorporation concentrations of the carotenoids into microsomes. Microsomes instead of liposomes should be preferred as a membrane model to study mutual effects of carotenoids and membrane dynamics.

  19. Consumption, supply and transport: self-organization without direct communication

    NASA Technical Reports Server (NTRS)

    Kessler, J. O.

    1996-01-01

    Swimming bacteria of the species Bacillus subtilis require and consume oxygen. In static liquid cultures the cells' swimming behaviour leads them to accumulate up oxygen concentration gradients generated by consumption and supply. Since the density of bacterial cells exceeds that of the fluid in which they live, fluid regions where cells have accumulated are denser than depleted regions. These density variations cause convection. The fluid motion is dynamically maintained by the swimming of the cells toward regions of attraction: the air-fluid interface and the fluctuating advecting attractors, gradients of oxygen concentration that are embedded in the convecting fluid. Because of the fluid dynamical conservation laws, these complex physical and biological factors generate patterns ordered over distances > 10000 bacterial cell diameters. The convection enhances long-range transport and mixing of oxygen, cells and extracellular products by orders of magnitude. Thus, through the interplay of physical and biological factors, a population of undifferentiated selfish cells creates functional dynamic patterns. Populations of bacteria that have organised themselves into regularly patterned regions of vigorous convection and varying cell concentration interact with their environment as if they were one purposeful, coherent multicellular individual. The mathematical and experimental ingredients of these remarkable phenomena are presented here.

  20. Compact Groups analysis using weak gravitational lensing II: CFHT Stripe 82 data

    NASA Astrophysics Data System (ADS)

    Chalela, Martín; Gonzalez, Elizabeth Johana; Makler, Martín; Lambas, Diego García; Pereira, Maria E. S.; O'mill, Ana; Shan, HuanYuan

    2018-06-01

    In this work we present a lensing study of Compact Groups (CGs) using data obtained from the high quality Canada-France-Hawaii Telescope Stripe 82 Survey. Using stacking techniques we obtain the average density contrast profile. We analyse the lensing signal dependence on the groups surface brightness and morphological content, for CGs in the redshift range z = 0.2 - 0.4. We obtain a larger lensing signal for CGs with higher surface brightness, probably due to their lower contamination by interlopers. Also, we find a strong dependence of the lensing signal on the group concentration parameter, with the most concentrated quintile showing a significant lensing signal, consistent with an isothermal sphere with σV = 336 ± 28 km/s and a NFW profile with R200 = 0.60 ± 0.05 h_{70}^{-1}Mpc. We also compare lensing results with dynamical estimates finding a good agreement with lensing determinations for CGs with higher surface brightness and higher concentration indexes. On the other hand, CGs that are more contaminated by interlopers show larger dynamical dispersions, since interlopers bias dynamical estimates to larger values, although the lensing signal is weakened.

  1. Testing the Applicability of Nernst-Planck Theory in Ion Channels: Comparisons with Brownian Dynamics Simulations

    PubMed Central

    Song, Chen; Corry, Ben

    2011-01-01

    The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex ‘catenary’ channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction. PMID:21731672

  2. Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.

    PubMed

    Song, Chen; Corry, Ben

    2011-01-01

    The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.

  3. Real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentration by electromagnetic sensing.

    PubMed

    Harnsoongnoen, Supakorn; Wanthong, Anuwat

    2017-10-01

    Magnetic sensing at microwave frequencies for real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations is reported. The sensing element was designed based on a coplanar waveguide (CPW) loaded with a split ring resonator (SRR), which was fabricated on a DiClad 880 substrate with a thickness of 1.6mm and relative permittivity (ε r ) of 2.2. The magnetic sensor was connected to a Vector Network Analyzer (VNA) and the electromagnetic interaction between the samples and sensor was analyzed. The magnitude of the transmission coefficient (S 21 ) was used as an indicator to detect the solution sample concentrations ranging from 0.04 to 0.20g/ml. The experimental results confirmed that the developed system using microwaves for the real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations gave unique results for each solution type and concentration. Moreover, the proposed sensor has a wide dynamic range, high linearity, fast operation and low-cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Electrokinetic and hydrodynamic properties of charged-particles systems. From small electrolyte ions to large colloids

    NASA Astrophysics Data System (ADS)

    Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.

    2013-11-01

    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.

  5. Quantifying the Dynamics of Bacterial Secondary Metabolites by Spectral Multi-Photon Microscopy

    PubMed Central

    Sullivan, Nora L.; Tzeranis, Dimitrios S.; Wang, Yun; So, Peter T.C.; Newman, Dianne

    2011-01-01

    Phenazines, a group of fluorescent small molecules produced by the bacterium Pseudomonas aeruginosa, play a role in maintaining cellular redox homeostasis. Phenazines have been challenging to study in vivo due to their redox activity, presence both intra- and extracellularly, and their diverse chemical properties. Here, we describe a non-invasive in vivo optical technique to monitor phenazine concentrations within bacterial cells using time-lapsed spectral multi-photon fluorescence microscopy. This technique enables simultaneous monitoring of multiple weakly-fluorescent molecules (phenazines, siderophores, NAD(P)H) expressed by bacteria in culture. This work provides the first in vivo measurements of reduced phenazine concentration as well as the first description of the temporal dynamics of the phenazine-NAD(P)H redox system in Pseudomonas aeruginosa, illuminating an unanticipated role for 1-hydroxyphenazine. Similar approaches could be used to study the abundance and redox dynamics of a wide range of small molecules within bacteria, both as single cells and in communities. PMID:21671613

  6. Transition from fractional to classical Stokes-Einstein behaviour in simple fluids.

    PubMed

    Coglitore, Diego; Edwardson, Stuart P; Macko, Peter; Patterson, Eann A; Whelan, Maurice

    2017-12-01

    An optical technique for tracking single particles has been used to evaluate the particle diameter at which diffusion transitions from molecular behaviour described by the fractional Stokes-Einstein relationship to particle behaviour described by the classical Stokes-Einstein relationship. The results confirm a prior prediction from molecular dynamic simulations that there is a particle size at which transition occurs and show it is inversely dependent on concentration and viscosity but independent of particle density. For concentrations in the range 5 × 10 -3 to 5 × 10 -6  mg ml -1 and viscosities from 0.8 to 150 mPa s, the transition was found to occur in the diameter range 150-300 nm.

  7. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    NASA Astrophysics Data System (ADS)

    Behm, P.; Hashemi, M.; Hoppe, S.; Wessel, S.; Hagens, R.; Jaspers, S.; Wenck, H.; Rübhausen, M.

    2017-11-01

    We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  8. Effect of concentration and temperature on the rheological behavior of collagen solution.

    PubMed

    Lai, Guoli; Li, Yang; Li, Guoying

    2008-04-01

    Dynamic viscoelastic properties of collagen solutions with concentrations of 0.5-1.5% (w/w) were characterized by means of oscillatory rheometry at temperatures ranging from 20 to 32.5 degrees C. All collagen solutions showed a shear-thinning flow behavior. The complex viscosity exhibited an exponential increase and the loss tangent decreased with the increase of collagen concentration (C(COL)) when the C(COL)> or =0.75%. Both storage modulus (G') and loss modulus (G'') increased with the increase of frequency and concentration, but decreased with the increase of temperature and behaved without regularity at 32.5 degrees C. The relaxation times decreased with the increase of temperature for 1.0% collagen solution. According to a three-zone model, dynamic modulus of collagen solutions showed terminal-zone and plateau-zone behavior when C(COL) was no more than 1.25% or the stated temperature was no more than 30 degrees C. The concentrated solution (1.5%) behaved being entirely in plateau zone. An application of the time-temperature superposition (TTS) allowed the construction of master curve and an Arrhenius-type TTS principle was used to yield the activation energy of 161.4 kJ mol(-1).

  9. The self-association of acebutolol: Conductometry and light scattering

    NASA Astrophysics Data System (ADS)

    Ruso, Juan M.; López-Fontán, José L.; Prieto, Gerardo; Sarmiento, Félix

    2003-04-01

    The association characteristics of an amphiphilic beta-blocker drug, acebutolol hydrochloride, in aqueous solution containing high concentrations of electrolyte and at different temperatures have been examined by static and dynamic light scattering and electrical conductivity. Time averaged light scattering measurements on aqueous solutions of acebutolol at 298.15 K in the presence of added electrolyte (0.4-1.0 mol kg-1 NaCl) have shown discontinuities which reflect the appearance of aggregates. The critical micelle concentration, aggregation numbers, effective micelle charges, and degree of micellar ionization were calculated. Dynamic light scattering has shown an increase in micellar size with increase in concentration of added electrolyte. Data have been interpreted using the DLVO theory to quantify the interaction between the drug aggregates and the colloidal stability. Critical micelle concentrations in water have been calculated from conductivity measurements over the temperature range 288.15-313.15 K. The variation in critical concentration with temperature passes through a minimum close to 294 K. Thermodynamic parameters of aggregate formation (ΔGm0,ΔHm0,ΔSm0) were obtained from a variation of the mass action model applicable to systems of low aggregation number.

  10. An experimental phantom study of the effect of gadolinium-based MR contrast agents on PET attenuation coefficients and PET quantification in PET-MR imaging: application to cardiac studies.

    PubMed

    O' Doherty, Jim; Schleyer, Paul

    2017-12-01

    Simultaneous cardiac perfusion studies are an increasing trend in PET-MR imaging. During dynamic PET imaging, the introduction of gadolinium-based MR contrast agents (GBCA) at high concentrations during a dual injection of GBCA and PET radiotracer may cause increased attenuation effects of the PET signal, and thus errors in quantification of PET images. We thus aimed to calculate the change in linear attenuation coefficient (LAC) of a mixture of PET radiotracer and increasing concentrations of GBCA in solution and furthermore, to investigate if this change in LAC produced a measurable effect on the image-based PET activity concentration when attenuation corrected by three different AC strategies. We performed simultaneous PET-MR imaging of a phantom in a static scenario using a fixed activity of 40 MBq [18 F]-NaF, water, and an increasing GBCA concentration from 0 to 66 mM (based on an assumed maximum possible concentration of GBCA in the left ventricle in a clinical study). This simulated a range of clinical concentrations of GBCA. We investigated two methods to calculate the LAC of the solution mixture at 511 keV: (1) a mathematical mixture rule and (2) CT imaging of each concentration step and subsequent conversion to LAC at 511 keV. This comparison showed that the ranges of LAC produced by both methods are equivalent with an increase in LAC of the mixed solution of approximately 2% over the range of 0-66 mM. We then employed three different attenuation correction methods to the PET data: (1) each PET scan at a specific millimolar concentration of GBCA corrected by its corresponding CT scan, (2) each PET scan corrected by a CT scan with no GBCA present (i.e., at 0 mM GBCA), and (3) a manually generated attenuation map, whereby all CT voxels in the phantom at 0 mM were replaced by LAC = 0.1 cm -1 . All attenuation correction methods (1-3) were accurate to the true measured activity concentration within 5%, and there were no trends in image-based activity concentrations upon increasing the GBCA concentration of the solution. The presence of high GBCA concentration (representing a worst-case scenario in dynamic cardiac studies) in solution with PET radiotracer produces a minimal effect on attenuation-corrected PET quantification.

  11. Oxygen concentration dependence of silicon oxide dynamical properties

    NASA Astrophysics Data System (ADS)

    Yajima, Yuji; Shiraishi, Kenji; Endoh, Tetsuo; Kageshima, Hiroyuki

    2018-06-01

    To understand oxidation in three-dimensional silicon, dynamic characteristics of a SiO x system with various stoichiometries were investigated. The calculated results show that the self-diffusion coefficient increases as oxygen density decreases, and the increase is large when the temperature is low. It also shows that the self-diffusion coefficient saturates, when the number of removed oxygen atoms is sufficiently large. Then, approximate analytical equations are derived from the calculated results, and the previously reported expression is confirmed in the extremely low-SiO-density range.

  12. Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports.

    PubMed

    Kröckel, Lars; Frosch, Torsten; Schmidt, Markus A

    2015-05-22

    In conventional absorption spectrometers, the range of accessible concentrations of analytes in aqueous solution is significantly limited by the dynamic range of the measurement system. Here we introduce the concept of multiscale spectroscopy allowing extending that range by orders of magnitude within one single device. The concept relies on using multiple light-sample interaction lengths, boosting the accessible concentration range by a particular extension factor. We experimentally implement our concept by a liquid core waveguide having multiple fiber ports side-wise attached to the waveguide, thus probing the light propagating inside the core at predefined distances from the input. This configuration provides three orders of magnitude of interaction length in one device. To verify the concept we exemplarily determine the concentrations of nitrate and of Rhodamine 6G in water, showing one hundred times improved measurement capabilities. The multiscale spectrometer uses the entire sample volume and allows the simultaneous measurement of fluorescence and attenuance. Due to its integrated design and the extended measurements capabilities, we anticipate application of our device in many application-relevant areas such as water quality analysis or environmental science. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Nutrient dynamics as indicators of karst processes: Comparison of the Chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, U.S.A.)

    USGS Publications Warehouse

    Mahler, B.J.; Valdes, D.; Musgrove, M.; Massei, N.

    2008-01-01

    Karst aquifers display a range of geologic and geomorphic characteristics in a wide range of climatic and land-use settings; identification of transport dynamics representative of karst aquifers in general could help advance our understanding of these complex systems. To this end, nutrient, turbidity, and major ion dynamics in response to storms were compared at multiple sites in two karst aquifers with contrasting characteristics and settings: the Chalk aquifer (Eure Department, Normandy, France) and the Barton Springs segment of the Edwards Aquifer (Texas, U.S.A.). The Chalk aquifer is typified by high matrix porosity, thick surficial deposits (up to 30??m thick), and agricultural land use; the Barton Springs segment is typified by low matrix porosity, outcropping limestone, and urban land use. Following one to three storms, from 5 to 16 samples from springs and wells were analyzed for major ions, and specific conductance and turbidity were monitored continuously. Comparison of the chemographs indicated some generalized responses, including an increase in turbidity and potassium concentrations and a decrease in major ion and nitrate concentrations with infiltrating storm runoff. Factor analysis of major ions and turbidity revealed strikingly similar behavior of the chemical variables for the two aquifers: The first two factors, explaining more than 75% of the variability, illustrate that dynamics of most major ions (including nitrate) are opposed to those of turbidity and of potassium. The results demonstrate that potassium and nitrate are effective tracers of infiltrating storm runoff and resident ground water, respectively, and the similar results for these two highly contrasting aquifers suggest that the dynamics identified might be applicable to karst systems in general. ?? 2008 Elsevier B.V. All rights reserved.

  14. Nutrient dynamics as indicators of karst processes: comparison of the Chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, U.S.A.).

    PubMed

    Mahler, B J; Valdes, D; Musgrove, M; Massei, N

    2008-05-26

    Karst aquifers display a range of geologic and geomorphic characteristics in a wide range of climatic and land-use settings; identification of transport dynamics representative of karst aquifers in general could help advance our understanding of these complex systems. To this end, nutrient, turbidity, and major ion dynamics in response to storms were compared at multiple sites in two karst aquifers with contrasting characteristics and settings: the Chalk aquifer (Eure Department, Normandy, France) and the Barton Springs segment of the Edwards Aquifer (Texas, U.S.A.). The Chalk aquifer is typified by high matrix porosity, thick surficial deposits (up to 30 m thick), and agricultural land use; the Barton Springs segment is typified by low matrix porosity, outcropping limestone, and urban land use. Following one to three storms, from 5 to 16 samples from springs and wells were analyzed for major ions, and specific conductance and turbidity were monitored continuously. Comparison of the chemographs indicated some generalized responses, including an increase in turbidity and potassium concentrations and a decrease in major ion and nitrate concentrations with infiltrating storm runoff. Factor analysis of major ions and turbidity revealed strikingly similar behavior of the chemical variables for the two aquifers: The first two factors, explaining more than 75% of the variability, illustrate that dynamics of most major ions (including nitrate) are opposed to those of turbidity and of potassium. The results demonstrate that potassium and nitrate are effective tracers of infiltrating storm runoff and resident ground water, respectively, and the similar results for these two highly contrasting aquifers suggest that the dynamics identified might be applicable to karst systems in general.

  15. Long-timescale motions in glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulation.

    PubMed

    Laner, Monika; Horta, Bruno A C; Hünenberger, Philippe H

    2015-02-01

    The occurrence of long-timescale motions in glycerol-1-monopalmitate (GMP) lipid bilayers is investigated based on previously reported 600 ns molecular dynamics simulations of a 2×8×8 GMP bilayer patch in the temperature range 302-338 K, performed at three different hydration levels, or in the presence of the cosolutes methanol or trehalose at three different concentrations. The types of long-timescale motions considered are: (i) the possible phase transitions; (ii) the precession of the relative collective tilt-angle of the two leaflets in the gel phase; (iii) the trans-gauche isomerization of the dihedral angles within the lipid aliphatic tails; and (iv) the flipping of single lipids across the two leaflets. The results provide a picture of GMP bilayers involving a rich spectrum of events occurring on a wide range of timescales, from the 100-ps range isomerization of single dihedral angles, via the 100-ns range of tilt precession motions, to the multi-μs range of phase transitions and lipid-flipping events. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Dissolved carbon dynamics in the freshwater-saltwater mixing zone of a coastal river entering the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    He, S.; Xu, Y. J.

    2017-12-01

    Estuaries play an important role in the dynamics of dissolved carbon from freshwater to marine systems. This study aims to determine how dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations change along an 88-km long estuarine river with salinity ranging from 0.02 to 29.50. The study is expected to elucidate which processes most likely control carbon dynamics in a freshwater-saltwater mixing system, and to evaluate the net metabolism of this estuary using mixing curves and stable isotope analyses. From November 2014 to February 2016, water samples were collected and in-situ measurements on ambient water conditions were performed during eighteen field trips at six sites from upstream to downstream of the Calcasieu River, which enters the Northern Gulf of Mexico in the southern United States. δ13CDIC and δ13CDOC were measured from May 2015 to February 2017 during five of the field trips. The DIC concentration and δ13CDIC increased rapidly with increasing salinity in the mixing zone. The DIC concentrations appeared to be largely influenced by conservative mixing. The δ13CDIC values were close to those suggested by the conservative mixing model for May 2015, June 2015 and November 2015, but lower than those for July 2015 and February 2016, suggesting that an estuarine river can fluctuate from a balanced to a heterotrophic system (i.e., production/respiration < 1) seasonally. Unlike the DIC longitudinal trend, the DOC concentrations in the river estuary decreased from upstream to downstream, but to a much smaller degree. This river estuary consistently showed depleted δ13CDOC values (-30.56‰ to -25.92‰), suggesting that the DOC source in the mixing zone was highly terrestrially derived. However, in this relatively small isotopic range, δ13CDOC alone has limitations in differentiating carbon produced by aquatic photosynthesis from carbon produced by terrestrial photosynthesis in a river-ocean continuum. These findings suggest that riverine dissolved carbon undergoes a rapid change in freshwater-saltwater mixing, and that these dynamics should be taken into account in carbon processing and budgeting in the world's estuarine systems.

  17. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae.

    PubMed

    Amillastre, Emilie; Aceves-Lara, César-Arturo; Uribelarrea, Jean-Louis; Alfenore, Sandrine; Guillouet, Stéphane E

    2012-08-01

    The impact of the temperature on an industrial yeast strain was investigated in very high ethanol performance fermentation fed-batch process within the range of 30-47 °C. As previously observed with a lab strain, decoupling between growth and glycerol formation occurred at temperature of 36 °C and higher. A dynamic model was proposed to describe the impact of the temperature on the total and viable biomass, ethanol and glycerol production. The model validation was implemented with experimental data sets from independent cultures under different temperatures, temperature variation profiles and cultivation modes. The proposed model fitted accurately the dynamic evolutions for products and biomass concentrations over a wide range of temperature profiles. R2 values were above 0.96 for ethanol and glycerol in most experiments. The best results were obtained at 37 °C in fed-batch and chemostat cultures. This dynamic model could be further used for optimizing and monitoring the ethanol fermentation at larger scale. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro.

    PubMed

    He, Cheng; Wang, Zhan; Wang, You; Hu, Ruifen; Li, Guang

    2016-11-15

    A nonenzymatic all-solid-state coated wire acetylcholine electrode was investigated. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT/PSS) as conducting polymer was coated on one end of a gold wire (0.5mm in diameter). The acetylcholine selective membrane containing heptakis(2,3,6-tri-Ο-methyl)-β-cyclodextrin as an ionophore covered the conducting polymer layer. The electrode could work stably in a pH range of 6.5-8.5 and a temperature range of 15-40°C. It covered an acetylcholine concentration range of 10(-5)-10(-1)M with a slope of 54.04±1.70mV/decade, while detection limit was 5.69±1.06µM. The selectivity, dynamic response, reproducibility and stability were evaluated. The electrode could work properly in the rat brain homogenate to detect different concentrations of acetylcholine. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise

    NASA Technical Reports Server (NTRS)

    Aratow, M.; Ballard, R. E.; Grenshaw, A. G.; Styf, J.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.

    1993-01-01

    A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers. Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL and the TA, as well as during eccentric contractions. IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.

  20. The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization

    PubMed Central

    Ullah, Ghanim; Wei, Yina; Dahlem, Markus A; Wechselberger, Martin; Schiff, Steven J

    2015-01-01

    Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states. PMID:26273829

  1. The organized melee: Emergence of collective behavior in concentrated suspensions of swimming bacteria and associated phenomena

    NASA Astrophysics Data System (ADS)

    Cisneros Salerno, Luis

    Suspensions of the aerobic bacteria Bacilus subtilis develop patterns and flows from the interplay of motility, chemotaxis and buoyancy. In sessile drops, such bioconvectively driven flows carry plumes down the slanted meniscus and concentrate cells at the drop edge, while in pendant drops such self-concentration occurs at the bottom. These dynamics are explained quantitatively by a mathematical model consisting of oxygen diffusion and consumption, chemotaxis, and viscous fluid dynamics. Concentrated regions in both geometries comprise nearly close-packed populations, forming the collective "Zooming BioNematic" (ZBN) phase. This state exhibits large-scale orientational coherence, analogous to the molecular alignment of nematic liquid crystals, coupled with remarkable spatial and temporal correlations of velocity and vorticity, as measured by both novel and standard applications of particle imaging velocimetry. To probe mechanisms leading to this phase, response of individual cells to steric stress was explored, finding that they can reverse swimming direction at spatial constrictions without turning the cell body. The consequences of this propensity to flip the flagella are quantified, showing that "forwards" and "backwards" motion are dynamically and morphologically indistinguishable. Finally, experiments and mathematical modeling show that complex flows driven by previously unknown bipolar flagellar arrangements are induced when B. subtilis are confined in a thin layer of fluid, between asymmetric boundaries. The resulting driven flow circulates around the cell body ranging over several cell diameters, in contrast to the more localized flows surrounding free swimmers. This discovery extends our knowledge of the dynamic geometry of bacteria and their flagella, and reveals new mechanisms for motility-associated molecular transport and intercellular communication.

  2. A Graphics Processing Unit Implementation of Coulomb Interaction in Molecular Dynamics.

    PubMed

    Jha, Prateek K; Sknepnek, Rastko; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Monica

    2010-10-12

    We report a GPU implementation in HOOMD Blue of long-range electrostatic interactions based on the orientation-averaged Ewald sum scheme, introduced by Yakub and Ronchi (J. Chem. Phys. 2003, 119, 11556). The performance of the method is compared to an optimized CPU version of the traditional Ewald sum available in LAMMPS, in the molecular dynamics of electrolytes. Our GPU implementation is significantly faster than the CPU implementation of the Ewald method for small to a sizable number of particles (∼10(5)). Thermodynamic and structural properties of monovalent and divalent hydrated salts in the bulk are calculated for a wide range of ionic concentrations. An excellent agreement between the two methods was found at the level of electrostatic energy, heat capacity, radial distribution functions, and integrated charge of the electrolytes.

  3. Dynamic pathways for viral capsid assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, Michael F.; Chandler, David

    2006-02-09

    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss themore » relationship between these mechanisms and experimental evaluations of capsid assembly processes.« less

  4. Home Range, Habitat Selection, and Population Dynamics of Southern Flying Squirrels in Managed Forests in Arkansas

    Treesearch

    James F. Taulman; Kimberly G. Smith

    2004-01-01

    Abstract After experimental harvests on 18 mature pine-hardwood stands in 6 replicated groups, flying squirrels changed from uniform pre-harvest patterns of nest box use to concentrating on protected greenbelt (GB) areas on harvested stands. Squirrel densities declined on all harvested stands as densities increased on three control stands. Fifty...

  5. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: Algorithm and limitations

    PubMed Central

    Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey

    2013-01-01

    Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and long-time simulation with an approximate accounting of hydrodynamic interactions. PMID:24089734

  6. A new insight on the dynamics of sodium dodecyl sulfate aqueous micellar solutions by dielectric spectroscopy.

    PubMed

    Lanzi, Leandro; Carlà, Marcello; Lanzi, Leonardo; Gambi, Cecilia M C

    2009-02-01

    Aqueous sodium dodecyl sulfate micellar solutions were investigated by a recently developed double-differential dielectric spectroscopy technique in the frequency range 100 MHz-3 GHz at 22 degrees C, in the surfactant concentration range 29.8-524 mM, explored for the first time above 104 mM. The micellar contribution to dielectric spectra was analyzed according to three models containing, respectively, a single Debye relaxation, a Cole-Cole relaxation and a double Debye relaxation. The single Debye model is not accurate enough. Both Cole-Cole and double Debye models fit well the experimental dielectric spectra. With the double Debye model, two characteristic relaxation times were identified: the slower one, in the range 400-900 ps, is due to the motion of counterions bound to the micellar surface (lateral motion); the faster one, in the range 100-130 ps, is due to interfacial bound water. Time constants and amplitudes of both processes are in fair agreement with Grosse's theoretical model, except at the largest concentration values, where interactions between micelles increase. For each sample, the volume fraction of bulk water and the effect of bound water as well as the conductivity in the low frequency limit were computed. The bound water increases as the surfactant concentration increases, in quantitative agreement with the micellar properties. The number of water molecules per surfactant molecule was also computed. The conductivity values are in agreement with Kallay's model over the whole surfactant concentration range.

  7. Out-of-equilibrium dynamics of photoexcited spin-state concentration waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Andrea; Buron-Le Cointe, M.; Lorenc, M.

    2015-01-28

    The spin crossover compound [Fe IIH 2L 2-Me][PF 6]2 presents a two-step phase transition. In the intermediate phase, a spin state concentration wave (SSCW) appears resulting from a symmetry breaking (cell doubling) associated with a long-range order of alternating high and low spin molecular states. Lastly, by combining time-resolved optical and X-ray diffraction measurements on a single crystal, we study how such a system responds to femtosecond laser excitation and we follow in real time the erasing and rewriting of the SSCW

  8. Thermochemical characteristics of nicotinamide protolytic equilibria in water-dimethylsulfoxide mixtures

    NASA Astrophysics Data System (ADS)

    Grazhdan, K. V.; Gamov, G. A.; Dushina, S. V.; Sharnin, V. A.

    2012-04-01

    The heat effects of nicotinamide protonation in water-dimethylsulfoxide (DMSO) solutions over the concentration range 0-0.75 DMSO mole fractions were determined calorimetrically at 25.00 ± 0.01°C and ionic strength 0.25 (NaClO4). Changes in the enthalpy of protonation as the content of DMSO increased were found to be described by an S-shaped curve. This curve shape was caused by the dynamics of reagent solvation contributions as the concentration of DMSO grew with the predominance of the nicotinamide solvation contribution.

  9. Generation and precise control of dynamic biochemical gradients for cellular assays

    NASA Astrophysics Data System (ADS)

    Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.

    2017-03-01

    Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.

  10. Adaptive time-sequential binary sensing for high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Hu, Chenhui; Lu, Yue M.

    2012-06-01

    We present a novel image sensor for high dynamic range imaging. The sensor performs an adaptive one-bit quantization at each pixel, with the pixel output switched from 0 to 1 only if the number of photons reaching that pixel is greater than or equal to a quantization threshold. With an oracle knowledge of the incident light intensity, one can pick an optimal threshold (for that light intensity) and the corresponding Fisher information contained in the output sequence follows closely that of an ideal unquantized sensor over a wide range of intensity values. This observation suggests the potential gains one may achieve by adaptively updating the quantization thresholds. As the main contribution of this work, we propose a time-sequential threshold-updating rule that asymptotically approaches the performance of the oracle scheme. With every threshold mapped to a number of ordered states, the dynamics of the proposed scheme can be modeled as a parametric Markov chain. We show that the frequencies of different thresholds converge to a steady-state distribution that is concentrated around the optimal choice. Moreover, numerical experiments show that the theoretical performance measures (Fisher information and Craḿer-Rao bounds) can be achieved by a maximum likelihood estimator, which is guaranteed to find globally optimal solution due to the concavity of the log-likelihood functions. Compared with conventional image sensors and the strategy that utilizes a constant single-photon threshold considered in previous work, the proposed scheme attains orders of magnitude improvement in terms of sensor dynamic ranges.

  11. Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations

    DOE PAGES

    Chien, Szu-Chia; Pérez-Sánchez, Germán; Gomes, José R. B.; ...

    2017-02-17

    Molecular dynamics simulations of a coarse-grained model are used to study the formation mechanism of periodic mesoporous silica over a wide range of cationic surfactant concentrations. This follows up on an earlier study of systems with low surfactant concentrations. We started by studying the phase diagram of the surfactant–water system and found that our model shows good qualitative agreement with experiments with respect to the surfactant concentrations where various phases appear. We then considered the impact of silicate species upon the morphologies formed. We have found that even in concentrated surfactant systems—in the concentration range where pure surfactant solutions yieldmore » a liquid crystal phase—the liquid-crystal templating mechanism is not viable because the preformed liquid crystal collapses as silica monomers are added into the solution. Upon the addition of silica dimers, a new phase-separated hexagonal array is formed. The preformed liquid crystals were found to be unstable in the presence of monomeric silicates. In addition, the silica dimer is found to be essential for mesoscale ordering at both low and high surfactant concentrations. Our results support the view that a cooperative interaction of anionic silica oligomers and cationic surfactants determines the mesostructure formation in the M41S family of materials.« less

  12. Nutrient dynamics across a dissolved organic carbon and burn gradient in central Siberia

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Coble, A. A.; Prokishkin, A. S.; Kolosov, R.; Spencer, R. G.; Wymore, A.; McDowell, W. H.

    2016-12-01

    In stream ecosystems, dissolved organic carbon (DOC) and nitrogen (N) processing are tightly linked. In temperate streams, greater DOC concentrations and higher DOC:NO3- ratios promote the greatest nitrate (NO3-) uptake. However, less is known about this relationship in other biomes including the arctic which is undergoing changes due to climate change contributing to thawing of permafrost and alterations in biogeochemical cycles in soils and streams. Headwater streams draining into the N. Tunguska River in the central Siberian plateau are affected by forest fires but little is known about the aquatic biogeochemical implications in both a thawing and burning landscape. There are clear patterns between carbon concentration and fire history where generally DOC concentration in streams decrease after fires and older burn sites have shown greater DOC concentrations and more bioavailable DOC that could promote greater heterotrophic uptake of NO3-. However, the relationship between nutrient dynamics, organic matter composition, and fire history in streams is not very clear. In order to assess the influence of organic matter composition and DOC concentration on nutrient uptake in arctic streams, we conducted a series of short-term nutrient addition experiments following the tracer addition for spiraling curve characterization (TASCC) method, consisting of NO3- and NH4++PO43- additions, across 4 streams that comprise a fire gradient that spans 3- >100 years since the last burn with DOC concentrations ranging between 12-23 mg C/L. We hypothesized that nutrient uptake would be greatest in older burn sites due to greater DOC concentrations and availability. We will specifically examine how nutrient uptake relates to DOC concentration and OM composition (analyzed via FTICR-MS) across the burn gradient. Across the four sites DOC concentration and DOC:NO3- ratios decreased from old burn sites to recently burned sites. Results presented here can elucidate on the potential impacts of permafrost thawing and forest fires on nutrient dynamics in arctic streams.

  13. Evaluation of rate law approximations in bottom-up kinetic models of metabolism.

    PubMed

    Du, Bin; Zielinski, Daniel C; Kavvas, Erol S; Dräger, Andreas; Tan, Justin; Zhang, Zhen; Ruggiero, Kayla E; Arzumanyan, Garri A; Palsson, Bernhard O

    2016-06-06

    The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question. In this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations. Overall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches.

  14. Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.; Domracheva, Elena G.; Pripolzin, Sergey I.; Chernyaeva, Mariya B.

    2016-09-01

    Nowadays the development of analytical spectroscopy with high performance, sensitivity and spectral resolution for exhaled breath research is attended. The method of two-frequency high precise THz spectroscopy and the method of high precise subTHz-THz-IR spectroscopy are presented. Development of a subTHz-THz-IR gas analyzer increases the number of gases that can be identified and the reliability of the detection by confirming the signature in both THz and MIR ranges. The testing measurements have testified this new direction of analytical spectroscopy to open widespread trends of its using for various problems of medicine and biology. First of all, there are laboratory investigations of the processes in exhaled breath and studying of their dynamics. Besides, the methods presented can be applied for detecting intermediate and short time living products of reactions in exhaled breath. The spectrometers have been employed for investigations of acetone, methanol and ethanol in the breath samples of healthy volunteers and diabetes patients. The results have demonstrated an increased concentration of acetone in breath of diabetes patients. The dynamic of changing the acetone concentration before and after taking the medicines is discovered. The potential markers of pre-cancer states and oncological diseases of gastrointestinal tract organs have been detected. The changes in the NO concentration in exhaled breath of cancer patients during radiotherapy as well as increase of the NH3 concentration at gastrointestinal diseases have been revealed. The preliminary investigations of biomarkers in three frequency ranges have demonstrated the advantages of the multifrequency high precise spectroscopy for noninvasive medical diagnostics.

  15. Analytically Sensitive Protein Detection in Microtiter Plates by Proximity Ligation with Rolling Circle Amplification.

    PubMed

    Ebai, Tonge; Souza de Oliveira, Felipe Marques; Löf, Liza; Wik, Lotta; Schweiger, Caroline; Larsson, Anders; Keilholtz, Ulrich; Haybaeck, Johannes; Landegren, Ulf; Kamali-Moghaddam, Masood

    2017-09-01

    Detecting proteins at low concentrations in plasma is crucial for early diagnosis. Current techniques in clinical routine, such as sandwich ELISA, provide sensitive protein detection because of a dependence on target recognition by pairs of antibodies, but detection of still lower protein concentrations is often called for. Proximity ligation assay with rolling circle amplification (PLARCA) is a modified proximity ligation assay (PLA) for analytically specific and sensitive protein detection via binding of target proteins by 3 antibodies, and signal amplification via rolling circle amplification (RCA) in microtiter wells, easily adapted to instrumentation in use in hospitals. Proteins captured by immobilized antibodies were detected using a pair of oligonucleotide-conjugated antibodies. Upon target recognition these PLA probes guided oligonucleotide ligation, followed by amplification via RCA of circular DNA strands that formed in the reaction. The RCA products were detected by horseradish peroxidase-labeled oligonucleotides to generate colorimetric reaction products with readout in an absorbance microplate reader. We compared detection of interleukin (IL)-4, IL-6, IL-8, p53, and growth differentiation factor 15 (GDF-15) by PLARCA and conventional sandwich ELISA or immuno-RCA. PLARCA detected lower concentrations of proteins and exhibited a broader dynamic range compared to ELISA and iRCA using the same antibodies. IL-4 and IL-6 were detected in clinical samples at femtomolar concentrations, considerably lower than for ELISA. PLARCA offers detection of lower protein levels and increased dynamic ranges compared to ELISA. The PLARCA procedure may be adapted to routine instrumentation available in hospitals and research laboratories. © 2017 American Association for Clinical Chemistry.

  16. Confinement-induced alterations in the evaporation dynamics of sessile droplets.

    PubMed

    Bansal, Lalit; Chakraborty, Suman; Basu, Saptarshi

    2017-02-07

    Evaporation of sessile droplets has been a topic of extensive research. However, the effect of confinement on the underlying dynamics has not been well explored. Here, we report the evaporation dynamics of a sessile droplet in a confined fluidic environment. Our findings reveal that an increase in the channel length delays the completion of the evaporation process and leads to unique spatio-temporal evaporation flux and internal flow. The evaporation modes (constant contact angle and constant contact radius) during the droplet lifetime however exhibit global similarity when normalized by appropriate length and timescales. These results are explained in light of an increase in vapor concentration inside the channel due to greater accumulation of water vapor on account of increased channel length. We have formulated a theoretical framework which introduces two key parameters namely an enhanced concentration of the vapor field in the vicinity of the confined droplet and a corresponding accumulation lengthscale over which the accumulated vapor relaxes to the ambient concentration. Using these two parameters and modified diffusion based evaporation we are able to show that confined droplets exhibit a universal behavior in terms of the temporal evolution of each evaporation mode irrespective of the channel length. These results may turn out to be of profound importance in a wide variety of applications, ranging from surface patterning to microfluidic technology.

  17. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.

    PubMed

    Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro

    2018-02-06

    In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.

  18. Dynamics of Uncrystallized Water, Ice, and Hydrated Protein in Partially Crystallized Gelatin-Water Mixtures Studied by Broadband Dielectric Spectroscopy.

    PubMed

    Sasaki, Kaito; Panagopoulou, Anna; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Kyritsis, Apostolos; Pissis, Polycarpos

    2017-01-12

    The glass transition of partially crystallized gelatin-water mixtures was investigated using broadband dielectric spectroscopy (BDS) over a wide range of frequencies (10 mHz to 10 MHz), temperatures (113-298 K), and concentrations (10-45 wt %). Three dielectric relaxation processes (processes I, II, and III) were clearly observed. Processes I, II, and III originate from uncrystallized water (UCW) in the hydration shells of gelatin, ice, and hydrated gelatin, respectively. A dynamic crossover, called the Arrhenius to non-Arrhenius transition of UCW, was observed at the glass transition temperature of the relaxation process of hydrated gelatin for all mixtures. The amount of UCW increases with increasing gelatin content. However, above 35 wt % gelatin, the amount of UCW became more dependent on the gelatin concentration. This increase in UCW causes a decrease in the glass transition temperature of the cooperative motion of gelatin and UCW, which appears to result from a change in the aggregation structure of gelatin in the mixture at a gelatin concentration of approximately 35 wt %. The temperature dependence of the relaxation time of process II has nearly the same activation energy as pure ice made by slow crystallization of ice Ih. This implies that process II originates from the dynamics of slowly crystallized ice Ih.

  19. Unusual properties of aqueous solutions of L-proline: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Civera, Monica; Sironi, Maurizio; Fornili, Sandro L.

    2005-11-01

    Aqueous solutions of the bioprotectant proline are simulated for solute molar fractions ranging from 2.0 × 10 -3 to 2.3 × 10 -1. Statistical analyses show that proline affects the water structure more strongly than glycine betaine and trimethylamine- N-oxide, two of the most effective bioprotectants widely diffuse in nature, and as strongly as tert-butyl alcohol, a protein denaturant which at high concentration self-aggregates. No evidence is found, however, that proline self-aggregates as it has been previously suggested to explain experimental findings on concentrated proline solutions. Nevertheless, the behavior of the diffusion coefficients of proline and water vs. solute concentration qualitatively agrees with such results.

  20. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    NASA Astrophysics Data System (ADS)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  1. Freezing point depression in model Lennard-Jones solutions

    NASA Astrophysics Data System (ADS)

    Koschke, Konstantin; Jörg Limbach, Hans; Kremer, Kurt; Donadio, Davide

    2015-09-01

    Crystallisation of liquid solutions is of uttermost importance in a wide variety of processes in materials, atmospheric and food science. Depending on the type and concentration of solutes the freezing point shifts, thus allowing control on the thermodynamics of complex fluids. Here we investigate the basic principles of solute-induced freezing point depression by computing the melting temperature of a Lennard-Jones fluid with low concentrations of solutes, by means of equilibrium molecular dynamics simulations. The effect of solvophilic and weakly solvophobic solutes at low concentrations is analysed, scanning systematically the size and the concentration. We identify the range of parameters that produce deviations from the linear dependence of the freezing point on the molal concentration of solutes, expected for ideal solutions. Our simulations allow us also to link the shifts in coexistence temperature to the microscopic structure of the solutions.

  2. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range

    PubMed Central

    Ventura, Alejandra C.; Bush, Alan; Vasen, Gustavo; Goldín, Matías A.; Burkinshaw, Brianne; Bhattacharjee, Nirveek; Folch, Albert; Brent, Roger; Chernomoretz, Ariel; Colman-Lerner, Alejandro

    2014-01-01

    Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general “systems level” mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step. PMID:25172920

  3. Reinforcing the membrane-mediated mechanism of action of the anti-tuberculosis candidate drug thioridazine with molecular simulations

    NASA Astrophysics Data System (ADS)

    Kopec, Wojciech; Khandelia, Himanshu

    2014-02-01

    Thioridazine is a well-known dopamine-antagonist drug with a wide range of pharmacological properties ranging from neuroleptic to antimicrobial and even anticancer activity. Thioridazine is a critical component of a promising multi-drug therapy against M. tuberculosis. Amongst the various proposed mechanisms of action, the cell membrane-mediated one is peculiarly tempting due to the distinctive feature of phenothiazine drug family to accumulate in selected body tissues. In this study, we employ long-scale molecular dynamics simulations to investigate the interactions of three different concentrations of thioridazine with zwitterionic and negatively charged model lipid membranes. Thioridazine partitions into the interfacial region of membranes and modifies their structural and dynamic properties, however dissimilarly so at the highest membrane-occurring concentration, that appears to be obtainable only for the negatively charged bilayer. We show that the origin of such changes is the drug induced decrease of the interfacial tension, which ultimately leads to the significant membrane expansion. Our findings support the hypothesis that the phenothiazines therapeutic activity may arise from the drug-membrane interactions, and reinforce the wider, emerging view of action of many small, bioactive compounds.

  4. The Dynamics of Microcystis Genotypes and Microcystin Production and Associations with Environmental Factors during Blooms in Lake Chaohu, China

    PubMed Central

    Yu, Li; Kong, Fanxiang; Zhang, Min; Yang, Zhen; Shi, Xiaoli; Du, Mingyong

    2014-01-01

    Lake Chaohu, which is a large, shallow, hypertrophic freshwater lake in southeastern China, has been experiencing lake-wide toxic Microcystis blooms in recent decades. To illuminate the relationships between microcystin (MC) production, the genotypic composition of the Microcystis community and environmental factors, water samples and associated environmental data were collected from June to October 2012 within Lake Chaohu. The Microcystis genotypes and MC concentrations were quantified using quantitative real-time PCR (qPCR) and HPLC, respectively. The results showed that the abundances of Microcystis genotypes and MC concentrations varied on spatial and temporal scales. Microcystis exists as a mixed population of toxic and non-toxic genotypes, and the proportion of toxic Microcystis genotypes ranged from 9.43% to 87.98%. Both Pearson correlation and stepwise multiple regressions demonstrated that throughout the entire lake, the abundances of total and toxic Microcystis and MC concentrations showed significant positive correlation with the total phosphorus and water temperature, suggesting that increases in temperature together with the phosphorus concentrations may promote more frequent toxic Microcystis blooms and higher concentrations of MC. Whereas, dissolved inorganic carbon (DIC) was negatively correlated with the abundances of total and toxic Microcystis and MC concentrations, indicating that rising DIC concentrations may suppress toxic Microcystis abundance and reduce the MC concentrations in the future. Therefore, our results highlight the fact that future eutrophication and global climate change can affect the dynamics of toxic Microcystis blooms and hence change the MC levels in freshwater. PMID:25474494

  5. A range of newly developed mobile generators to dynamically produce SI-traceable reference gas mixtures for reactive compounds at atmospheric concentrations

    NASA Astrophysics Data System (ADS)

    Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard

    2017-04-01

    Three new mobile facilities have been developed at METAS to dynamically generate SI-traceable reference gas mixtures for a variety of reactive compounds at atmospheric amount of substance fractions and at very low levels of uncertainty (Ux < 3%). We present three new portable "Reactive Gas Standard ReGaS" reference gas generators for the realisation of the following substances: ReGaS1: Ammonia and nitrogen dioxide in the nmol/mol (ppb) range ReGaS2: Volatile organic compounds (VOCs), e.g. limonene, alpha-pinene, MVK, MEK in the nmol/mol (ppb) range ReGaS-3: Fluorinated gases (F-gases, i.e. containing fluorine atoms) in the pmol/mol (ppt) range These three mobile generators have been designed and manufactured at METAS in the framework of the three EMRP projects MetNH3, KEY-VOCs and HIGHGAS. The method is based on permeation and subsequent dynamic dilution: A permeation tube containing the pure substance (e.g. NH3) is stored in the permeation chamber at constant temperature, pressure and matrix gas flow (N2, purified air, synthetic air). Under such conditions the pure substance permeates at constant rate into the matrix gas and can be diluted thereafter to the desired amount fractions in one or two subsequent steps. The permeation rate (mass loss over time) of the permeation tube is precisely calibrated in a fully traceable magnetic suspension balance. The carrier gas is previously purified from the compounds of interest using commercially available purification cartridges. The permeation chambers of ReGaS2 and ReGaS3 have multiple individual cells allowing for the generation of mixtures containing up to 5 different components if required. ReGaS1 allows for the generation of one-component mixtures only. These primary mixtures are then diluted to the required amount of substance fractions using thermal mass flow controllers for full flexibility and adaptability of the generation process over the entire range of possible concentrations. In order to considerably reduce adsorption/desorption processes and thus stabilisation time, all electro-polished stainless steel parts of ReGaS1 and ReGaS2 in contact with the reference gas mixtures are passivated with SilcoNert2000® surface coating. These three state-of-the-art mobile reference gas generators are applicable under both, laboratory and field conditions. Moreover the dynamic generation method can be adapted and applied to a large variety of molecules (e.g. BTEX, CFCs, HCFCs, HFCs and other refrigerants) and is particularly suitable for reactive gas species and/or at concentration ranges which are unstable when stored in pressurised cylinders. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

  6. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicatemore » that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.« less

  7. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: Comparisons among chemical equilibrium models and implications for biotic ligand models

    USGS Publications Warehouse

    Balistrieri, L.S.; Blank, R.G.

    2008-01-01

    In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.

  8. Exploring the dynamics of phase separation in colloid-polymer mixtures with long range attraction.

    PubMed

    Sabin, Juan; Bailey, Arthur E; Frisken, Barbara J

    2016-06-28

    We have studied the kinetics of phase separation and gel formation in a low-dispersity colloid - non-adsorbing polymer system with long range attraction using small-angle light scattering. This system exhibits two-phase and three-phase coexistence of gas, liquid and crystal phases when the strength of attraction is between 2 and 4kBT and gel phases when the strength of attraction is increased. For those samples that undergo macroscopic phase separation, whether to gas-crystal, gas-liquid or gas-liquid-crystal coexistence, we observe dynamic scaling of the structure factor and growth of a characteristic length scale that behaves as expected for phase separation in fluids. In samples that gel, the power law associated with the growth of the dominant length scale is not equal to 1/3, but appears to depend mainly on the strength of attraction, decreasing from 1/3 for samples near the coexistence region to 1/27 at 8kBT, over a wide range of colloid and polymer concentrations.

  9. A microliter capillary rheometer for characterization of protein solutions.

    PubMed

    Hudson, Steven D; Sarangapani, Prasad; Pathak, Jai A; Migler, Kalman B

    2015-02-01

    Rheometry is an important characterization tool for therapeutic protein solutions because it determines syringeability and relates indirectly to solution stability and thermodynamic interactions. Despite the maturity of rheometry, there remains a need for a rheometer that meets the following three needs of the biopharamaceutical industry: small volume; large dynamic range of shear rates; and no air-sample interface. Here, we report the development of a miniaturized capillary rheometer that meets these needs and is potentially scalable to a multiwell format. These measurements consume only a few microliters of sample and have an uncertainty of a few percent. We demonstrate its performance on monoclonal antibody solutions at different concentrations and temperatures. The instrument has a dynamic range of approximately three decades (in shear rate) and can measure Newtonian, shear thinning, and yielding behaviors, which are representative of the different solution behaviors typically encountered. We compare our microliter capillary rheometer with existing instruments to describe the range of parameter space covered by our device. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Modelling algae-duckweed interaction under chemical pressure within a laboratory microcosm.

    PubMed

    Lamonica, Dominique; Clément, Bernard; Charles, Sandrine; Lopes, Christelle

    2016-06-01

    Contaminant effects on species are generally assessed with single-species bioassays. As a consequence, interactions between species that occur in ecosystems are not taken into account. To investigate the effects of contaminants on interacting species dynamics, our study describes the functioning of a 2-L laboratory microcosm with two species, the duckweed Lemna minor and the microalgae Pseudokirchneriella subcapitata, exposed to cadmium contamination. We modelled the dynamics of both species and their interactions using a mechanistic model based on coupled ordinary differential equations. The main processes occurring in this two-species microcosm were thus formalised, including growth and settling of algae, growth of duckweeds, interspecific competition between the two species and cadmium effects. We estimated model parameters by Bayesian inference, using simultaneously all the data issued from multiple laboratory experiments specifically conducted for this study. Cadmium concentrations ranged between 0 and 50 μg·L(-1). For all parameters of our model, we obtained biologically realistic values and reasonable uncertainties. Only duckweed dynamics was affected by interspecific competition, while algal dynamics was not impaired. Growth rate of both species decreased with cadmium concentration, as well as competition intensity showing that the interspecific competition pressure on duckweed decreased with cadmium concentration. This innovative combination of mechanistic modelling and model-guided experiments was successful to understand the algae-duckweed microcosm functioning without and with contaminant. This approach appears promising to include interactions between species when studying contaminant effects on ecosystem functioning. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies.

    PubMed

    Hassan, Asaad F; Hrdina, Radim

    2018-04-01

    Chitosan/nanohydroxyapatite composites based on scallop shells (CP12, CP14 and CP21) were prepared with different chitosan: nanohydroxyapatite ratios (1:2, 1:4 and 2:1, respectively). Nanohydroxyapatite (P), chitosan(C) and their composites were characterized by means of TGA, XRD, N 2 adsorption/desorption analysis, SEM, Zeta potential and FTIR. The BET surface area ranged between 189 and 512 m 2 /g. Static adsorption of Hg +2 was tested for the effect of adsorbent dosage, pH, time and initial Hg +2 concentrations indicating that maximum static adsorption capacity was confirmed by CP12 (111.6 mg/g). Static adsorption well fitted with Langmuir adsorption isotherm and Pseudo-second order kinetic models. CP12 was selected for dynamic adsorption of Hg +2 considering the effect of bed height, flow rate and the effect of Hg +2 concentrations. Maximum dynamic adsorption capacity was confirmed at bed height of 3 cm, 2.0 mL/min flow rate and 300 mg/L as Hg +2 concentration with breakthrough time (t b ) and exhaustion time (t e ) of 9 and 21 h. Yoon-Nelson and Thomas models best described the experimental Hg +2 breakthrough curve model. After static adsorption, EDTA solution confirmed the maximum desorption efficiency. The validity of CP12 was tested through three cycles of column dynamic adsorption-desorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Impact of short range hydrophobic interactions and long range electrostatic forces on the aggregation kinetics of a monoclonal antibody and a dual-variable domain immunoglobulin at low and high concentrations.

    PubMed

    Kumar, Vineet; Dixit, Nitin; Zhou, Liqiang Lisa; Fraunhofer, Wolfgang

    2011-12-12

    The purpose of this work was to determine the nature of long and short-range forces governing protein aggregation kinetics at low and high concentrations for a monoclonal antibody (IgG1) and a dual-variable-domain immunoglobulin (DVD-Ig). Protein-protein interactions (PPI) were studied under dilute conditions by utilizing the methods of static (B(22)) and dynamic light scattering (k(D)). PPI in solutions containing minimal ionic strengths were characterized to get detailed insights into the impact of ionic strength on aggregation. Microcalorimetry and susceptibility to denature at air-liquid interface were used to assess the tertiary structure and quiescent stability studies were conducted to study aggregation characteristics. Results for IgG1 showed that electrostatic interactions governed protein aggregation kinetics both under dilute and concentrated conditions (i.e., 5 mg/mL and 150 mg/mL). For DVD-Ig molecules, on the other hand, although electrostatic interactions governed protein aggregation under dilute conditions, hydrophobic forces clearly determined the kinetics at high concentrations. This manuscript shows for the first time that short-range hydrophobic interactions can outweigh electrostatic forces and play an important role in determining protein aggregation at high concentrations. Additionally, results show that although higher-order virial coefficients become significant under low ionic strength conditions, removal of added charges may be used to enhance the aggregation stability of dilute protein formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Markers of pathological excitability derived from principal dynamic modes of hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Kang, Eunji E.; Zalay, Osbert C.; Serletis, Demitre; Carlen, Peter L.; Bardakjian, Berj L.

    2012-10-01

    Transformation of principal dynamic modes (PDMs) under epileptogenic conditions was investigated by computing the Volterra kernels in a rodent epilepsy model derived from a mouse whole hippocampal preparation, where epileptogenesis was induced by altering the concentrations of Mg2 + and K+ of the perfusate for different levels of excitability. Both integrating and differentiating PDMs were present in the neuronal dynamics, and both of them increased in absolute magnitude for increased excitability levels. However, the integrating PDMs dominated at all levels of excitability in terms of their relative contributions to the overall response, whereas the dominant frequency responses of the differentiating PDMs were shifted to higher ranges under epileptogenic conditions, from ripple activities (75-200 Hz) to fast ripple activities (200-500 Hz).

  14. Markers of pathological excitability derived from principal dynamic modes of hippocampal neurons.

    PubMed

    Kang, Eunji E; Zalay, Osbert C; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L

    2012-10-01

    Transformation of principal dynamic modes (PDMs) under epileptogenic conditions was investigated by computing the Volterra kernels in a rodent epilepsy model derived from a mouse whole hippocampal preparation, where epileptogenesis was induced by altering the concentrations of Mg(2 +) and K(+) of the perfusate for different levels of excitability. Both integrating and differentiating PDMs were present in the neuronal dynamics, and both of them increased in absolute magnitude for increased excitability levels. However, the integrating PDMs dominated at all levels of excitability in terms of their relative contributions to the overall response, whereas the dominant frequency responses of the differentiating PDMs were shifted to higher ranges under epileptogenic conditions, from ripple activities (75-200 Hz) to fast ripple activities (200-500 Hz).

  15. A dual small-molecule rheostat for precise control of protein concentration in Mammalian cells.

    PubMed

    Lin, Yu Hsuan; Pratt, Matthew R

    2014-04-14

    One of the most successful strategies for controlling protein concentrations in living cells relies on protein destabilization domains (DD). Under normal conditions, a DD will be rapidly degraded by the proteasome. However, the same DD can be stabilized or "shielded" in a stoichiometric complex with a small molecule, enabling dose-dependent control of its concentration. This process has been exploited by several labs to post-translationally control the expression levels of proteins in vitro as well as in vivo, although the previous technologies resulted in permanent fusion of the protein of interest to the DD, which can affect biological activity and complicate results. We previously reported a complementary strategy, termed traceless shielding (TShld), in which the protein of interest is released in its native form. Here, we describe an optimized protein concentration control system, TTShld, which retains the traceless features of TShld but utilizes two tiers of small molecule control to set protein concentrations in living cells. These experiments provide the first protein concentration control system that results in both a wide range of protein concentrations and proteins free from engineered fusion constructs. The TTShld system has a greatly improved dynamic range compared to our previously reported system, and the traceless feature is attractive for elucidation of the consequences of protein concentration in cell biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantification of disease marker in undiluted serum using an actuating layer-embedded microcantilever

    NASA Astrophysics Data System (ADS)

    Hwang, Kyo Seon; Jeon, Hye Kyung; Lee, Sang-Myung; Kim, Sang Kyung; Kim, Tae Song

    2009-05-01

    In this study, we describe the application feasibility of a dynamic microcantilever with regard to the detection of a specific protein in human serum or real blood using an end-point analysis. The mechanical response (i.e., resonant frequency) of a functionalized dynamic microcantilever was shown to be altered by molecular interactions, which allowed for the detection of biomolecules present in small quantities without any additional signal enhancements, such as labeling. For the application of the microcantilever sensors to bioassays of serum samples, the mechanical response from the nonspecific adsorption of abundant proteins must be reduced, because it significantly influences the output signal deviation of the microcantilever sensor. We implemented a label-free prostate specific antigen (PSA) detection protocol in standard serum via our established process, which was designed to minimize nonspecific protein adsorption. PSA is a tumor marker for prostate cancer, with a threshold concentration of 2-4 ng/ml (7.2-14.4 pM) for the distinction between patients and normal individuals. The dynamic range of our dynamic microcantilever-based PSA assay on the background of standard serum ranged between 0.1 and 100 ng/ml (3.6 and 3600 pM). It was suggested that the dynamic microcantilever might allow for the sensitive label-free detection of disease markers in an actual human sample.

  17. Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations

    DOE PAGES

    Zhang, Qingteng; Bahadur, Divya; Dufresne, Eric M.; ...

    2017-10-25

    Here, we have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scatter- ing (SAXS), x-ray photon correlation spectroscopy (XPCS), and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically-determined gel temperature, T gel, was characterized via the slow-down of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT = T quench - T gel), wave vector, and formation time (t f). We findmore » similar patterns in the slow-down of dynamics that maps the wave-vector-dependent dynamics at a particular ΔT and t f to that at other ΔTs and t fs via an effective scaling temperature, Ts. A single Ts applies to a broad range of ΔT and tf but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than that of the attraction strength between colloids. Finally, we interpret this strong temperature de- pendence in terms of changes in cooperative bonding required to form stable, energetically favored, local structures.« less

  18. Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingteng; Bahadur, Divya; Dufresne, Eric M.

    Here, we have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scatter- ing (SAXS), x-ray photon correlation spectroscopy (XPCS), and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically-determined gel temperature, T gel, was characterized via the slow-down of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT = T quench - T gel), wave vector, and formation time (t f). We findmore » similar patterns in the slow-down of dynamics that maps the wave-vector-dependent dynamics at a particular ΔT and t f to that at other ΔTs and t fs via an effective scaling temperature, Ts. A single Ts applies to a broad range of ΔT and tf but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than that of the attraction strength between colloids. Finally, we interpret this strong temperature de- pendence in terms of changes in cooperative bonding required to form stable, energetically favored, local structures.« less

  19. Molecular Dynamics Simulation of Surface Tension of NaCl Aqueous Solution at 298.15K: from Diluted to Highly Supersaturated Concentrations

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiang; Chen, Chuchu; Poeschl, Ulirch; Su, Hang; Cheng, Yafang

    2017-04-01

    Sodium chloride (NaCl) is one of the key components of atmospheric aerosol particles. Concentration-depend surface tension of aqueous NaCl solution is essential to determine the equilibrium between droplet NaCl solution and water vapor, which is important in regards to aerosol-cloud interaction and aerosol climate effects. Although supersaturated NaCl droplets can be widely found under atmospheric conditions, the experimental determined concentration dependency of surface tension is limited up to the saturated concentration range due to technical difficulties, i.e., heterogeneous nucleation since nearly all surface tension measurement techniques requires contact of the sensor and solution surface. In this study, the surface tension of NaCl aqueous solution with solute mass fraction from 0 to 1 was calculated using molecular dynamics (MD) simulation. The surface tension increases monotonically and near linearly when mass fraction of NaCl (xNaCl) is lower than 0.265 (saturation point), which follows theoretical predictions (e.g., E-AIM, SP parameterization, and PK parameterization). Once entering into the supersaturated concentration range, the calculated surface tension starts to deviate from the near-linear extrapolation and adopts a slightly higher increasing rate until xNaCl of 0.35. We found that these two increasing phases (xNaCl 0.35) is mainly driven by the increase of excessive surface enthalpy when the solution becomes concentrated. After that, the surface tension remains almost unchanged until xNaCl of 0.52. This phenomenon is supported by the results from experiment based Differential Koehler Analyses. The stable surface tension in this concentration range is attributed to a simultaneous change of surface excess enthalpy and entropy at similar degree. When the NaCl solution is getting more concentrated than xNaCl of 0.52, the simulated surface tension regains an even faster growing momentum and shows the tendency of ultimately approaching the surface tension of molten NaCl at 298.15 K ( 148.4 mN/m by MD simulation). Energetic analyses imply that this fast increase is primarily still an excessive surface enthalpy-driven process, although concurrent fluctuation of excessive surface entropy is also expected but in a much smaller scale. Our results unfold the global landscape of concentration dependence of aqueous NaCl solution and its driven forces: a water surface tension dominated regime (xNaCl from 0 to 0.35), a transition regime (xNaCl from 0.35 to 0.52) and a molten NaCl surface tension dominated regime (xNaCl beyond 0.52).

  20. Dynamics of clogging in drying porous media

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Mahadevan, L.

    2014-11-01

    Drying in porous media pervades a range of phenomena from brine evaporation arrested in porous bricks, causing efflorescence, i.e. salt aggregation on the surface where vapor leaves the medium, to clogging of reservoir rocks via salt precipitation when carbon dioxide is injected for geological storage. During the process of drying, the permeability and porosity of the medium may change due to the solute accumulation as a function of the particle concentration, in turn affecting the evaporation rate and the dynamics of the fluid flow imposed by it. To examine the dynamics of these coupled quantities, we develop a multiphase model of the particulate flow of a saline suspension in a porous medium, induced by evaporation. We further provide dimensional arguments as to how the salt concentration and the resulting change in permeability determine the transition between efflorescence and salt precipitation in the bulk. This research was supported by the Air Force Office of Scientific Research (AFOSR) under Award FA9550-09-1-0669-DOD35CAP and the Kavli Institute for Bionano Science and Technology at Harvard University.

  1. The Effect of Small Additions of Carbon Nanotubes on the Mechanical Properties of Epoxy Polymers under Static and Dynamic Loads

    NASA Astrophysics Data System (ADS)

    Tarasov, A. E.; Badamshina, E. R.; Anokhin, D. V.; Razorenov, S. V.; Vakorina, G. S.

    2018-01-01

    The results of measurements of the mechanical characteristics of cured epoxy composites containing small and ultrasmall additions of single-walled carbon nanotubes in the concentration range from 0 to 0.133 wt % under static and dynamic loads are presented. Static measurements of strength characteristics have been carried out under standard test conditions. Measurements of the Hugoniot elastic limit and spall strength were performed under a shock wave loading of the samples at a deformation rate of (0.8-1.5) ß 105 s-1 before the fracture using explosive devices by recording and subsequent analyzing the evolution of the full wave profiles. It has been shown that agglomerates of nanotubes present in the structure of the composites after curing cause a significant scatter of the measured strength parameters, both in the static and in the dynamic test modes. However, the effects of carbon nanotube additions in the studied concentration interval on the physical and mechanical characteristics of the parameters were not revealed for both types of loading.

  2. Temporal dynamics of optical-microphysical characteristics of atmospheric aerosol at the Spitsbergen Archipelago in 2011-2014

    NASA Astrophysics Data System (ADS)

    Chernov, D. G.; Kozlov, V. S.; Panchenko, M. V.; Turchinovich, Yu. S.; Radionov, V. F.; Gubin, A. V.; Prakhov, A. N.

    2015-11-01

    In 2011-2014, the Institute of Atmospheric Optics (IAO SB RAS, Tomsk) and the Arctic and Antarctic Research Institute (AARI, St. Petersburg) conducted field investigations of the near-ground aerosol characteristics near Barentsburg (Spitsbergen Archipelago) in the spring and summer seasons. The particle number density in the size range 0.3-20 μm, size distribution of particles, and mass concentrations of aerosol and black carbon were measured round-the-clock every hour with Grimm 1.108 and 1.109; and AZ-10 optical counters. The mass concentration of black carbon was measured by the MDA-02 aethalometer developed by the IAO SB RAS. Series of observations are obtained, annual and seasonal average values and their standard deviations are estimated, and seasonal and annual dynamics of the studied parameters is analyzed. Peculiarities of the temporal dynamics of average values of the aerosol characteristics are revealed and compared with the data of observations at other stations of the Spitsbergen Archipelago and in different regions of the Russian Arctic and Subarctic.

  3. Aerosol chemistry during the wet season in central Amazonia - The influence of long-range transport

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Andreae, M. O.; Berresheim, H.; Artaxo, P.; Garstang, M.

    1990-01-01

    The temporal variation in the concentration and chemistry of the atmospheric aerosol over central Amazonia, Brazil, during the 1987 wet season is discussed based on ground and aircraft collected data obtained during the NASA GTE ABLE 2B expedition conducted in April/May 1987. It is found that wet-season aerosol concentrations and composition are variable in contrast to the more uniform biogenic aerosol observed during the 1985 dry season; four distinct intervals of enhanced aerosol concentration coincided with short periods (3 to 5 d) of extensive rainfall. It is hypothesized that aerosol chemistry in Amazonia during the wet season is strongly influenced by long-range transport of soil dust, marine aerosol, and possibly biomass combustion products advected into the central Basin by large-scale tropospheric circulation, producing periodic pulses of material input to local boundary layer air. The resultant wet-season aerosol regime is dynamic, in contrast to the uniformity of natural biogenic aerosols during the dry season.

  4. Quantitative electrochemical metalloimmunoassay for TFF3 in urine using a paper analytical device.

    PubMed

    DeGregory, Paul R; Tsai, Yi-Ju; Scida, Karen; Richards, Ian; Crooks, Richard M

    2016-03-07

    We report a paper-based assay platform for the detection of the kidney disease marker Trefoil Factor 3 (TFF3) in human urine. The sensor is based on a quantitative metalloimmunoassay that can determine TFF3 concentrations via electrochemical detection of environmentally stable silver nanoparticle (AgNP) labels attached to magnetic microbeads via a TFF3 immunosandwich. The paper electroanalytical device incorporates two preconcentration steps that make it possible to detect concentrations of TFF3 in human urine at the low end of the target TFF3 concentration range (0.03-7.0 μg mL(-1)). Importantly, the paper device provides a level of accuracy for TFF3 determination in human urine equivalent to that of a commercial kit. The paper sensor has a dynamic range of ∼2.5 orders of magnitude, only requires a simple, one-step incubation protocol, and is fast, requiring only 10 min to complete. The cost of the materials at the prototypic laboratory scale, excluding reagents, is just US$0.42.

  5. The Effect of Dynamic Evaporation Rates on the Mobility of Pharmaceuticals in Unsaturated Environments

    NASA Astrophysics Data System (ADS)

    Normile, H.; Papelis, C.; Kibbey, T. C. G.

    2015-12-01

    The focus of this work was on investigating how dynamic rates of evaporation affect the fate and transport of pharmaceutical compounds in unsaturated porous media. The environmental processes of saturation and evaporation control local concentrations of contaminants in pore water of porous media. Specifically, the rate of evaporation can affect the identity and extent of solid formation of a pharmaceutical compound. A range of experiments with different evaporation rates were conducted on sand columns saturated with a solution of ciprofloxacin, a fluoroquinolone antibiotic. Experiments were designed to simulate increased and decreased pore-water concentrations of a compound due to evaporation and resaturation, respectively. Results suggest that varied rates of evaporation cause differences in compound adsorption behavior. This result has significant implications for understanding fate and transport within the unsaturated zone. Preliminary models exploring the impact on contaminant mobility are discussed.

  6. Rotating reverse osmosis: a dynamic model for flux and rejection

    NASA Technical Reports Server (NTRS)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Reverse osmosis (RO) is a compact process for the removal of ionic and organic pollutants from contaminated water. However, flux decline and rejection deterioration due to concentration polarization and membrane fouling hinders the application of RO technology. In this study, a rotating cylindrical RO membrane is theoretically investigated as a novel method to reduce polarization and fouling. A dynamic model based on RO membrane transport incorporating concentration polarization is used to predict the performance of rotating RO system. Operating parameters such as rotational speed and transmembrane pressure play an important role in determining the flux and rejection in rotating RO. For a given geometry, a rotational speed sufficient to generate Taylor vortices in the annulus is essential to maintain high flux as well as high rejection. The flux and rejection were calculated for wide range of operating pressures and rotational speeds. c 2001 Elsevier Science B.V. All rights reserved.

  7. Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth

    NASA Astrophysics Data System (ADS)

    Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda

    2017-04-01

    Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.

  8. Accurate viscosity measurements of flowing aqueous glucose solutions with suspended scatterers using a dynamic light scattering approach with optical coherence tomography.

    PubMed

    Weatherbee, Andrew; Popov, Ivan; Vitkin, Alex

    2017-08-01

    The viscosity of turbid colloidal glucose solutions has been accurately determined from spectral domain optical coherence tomography (OCT) M-mode measurements and our recently developed OCT dynamic light scattering model. Results for various glucose concentrations, flow speeds, and flow angles are reported. The relative "combined standard uncertainty" uc(η) on the viscosity measurements was ±1% for the no-flow case and ±5% for the flow cases, a significant improvement in measurement robustness over previously published reports. The available literature data for the viscosity of pure water and our measurements differ by 1% (stagnant case) and 1.5% (flow cases), demonstrating good accuracy; similar agreement is seen across the measured glucose concentration range when compared to interpolated literature values. The developed technique may contribute toward eventual noninvasive glucose measurements in medicine. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. [Dynamics of seed rain of Tripterygium hypoglaucum and soil seed bank].

    PubMed

    Zhang, Zhi-Wei; Wei, Yong-Sheng; Liu, Xiang; Su, Shu; Qu, Xian-You; Wang, Chang-Hua

    2017-11-01

    Tripterygium hypoglaucum is an endangered species in arid areas of Xiannvshan Chongqing, China. The dynamic characteristics of seed rain and soil seed bank of T. hypoglaucum were studied in this paper.Results showed that T. hypoglaucum years of mature seeds distribution number up to October; the seed rain occurred from the last ten-day of September to in the first ten-day of November and the peak of scattered seed rain concentrated in the October.The numbers of soil seed bank at 2-5 cm soil layer,mainly concentrated in the 1.5-3.5 m range. T. hypoglaucum seeds to the wind as a force for transmission, the transmission ability is strong, but in the process of natural reproduction, full mature seed rate is low, the soil seed bank seeds seed short-lived factors these were unfavorable for the natural reproduction of T. hypoglaucum population. Copyright© by the Chinese Pharmaceutical Association.

  10. Anomalous fluorescence enhancement and fluorescence quenching of graphene quantum dots by single walled carbon nanotubes.

    PubMed

    Das, Ruma; Rajender, Gone; Giri, P K

    2018-02-07

    We explore the mechanism of the fluorescence enhancement and fluorescence quenching effect of single walled carbon nanotubes (SWCNTs) on highly fluorescent graphene quantum dots (GQDs) over a wide range of concentrations of SWCNTs. At very low concentrations of SWCNTs, the fluorescence intensity of the GQDs is enhanced, while at higher concentrations, systematic quenching of fluorescence is observed. The nature of the Stern-Volmer plot for the latter case was found to be non-linear indicating a combined effect of dynamic and static quenching. The contribution of the dynamic quenching component was assessed through the fluorescence lifetime measurements. The contribution of static quenching is confirmed from the red shift of the fluorescence spectra of the GQDs after addition of SWCNTs. The fluorescence intensity is first enhanced at very low concentration due to improved dispersion and higher absorption by GQDs, while at higher concentration, the fluorescence of GQDs is quenched due to the complex formation and associated reduction of the radiative sites of the GQDs, which is confirmed from time-resolved fluorescence measurements. Laser confocal microscopy imaging provides direct evidence of the enhancement and quenching of fluorescence at low and high concentrations of SWCNTs, respectively. This study provides an important insight into tuning the fluorescence of GQDs and understanding the interaction between GQDs and different CNTs, which is important for bio-imaging and drug delivery applications.

  11. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Yuchi; Mao, Hua; Wong, Lid B.

    2010-02-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl-]i) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl-]i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl-]i. Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl-]i. These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  12. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol-Water Mixed Solvent Environment

    NASA Astrophysics Data System (ADS)

    Ochije, Henry Ikechukwu

    Effect of protein-solvent interaction on the protein structure is widely studied using both experimental and computational techniques. Despite such extensive studies molecular level understanding of proteins and some simple solvents is still not fully understood. This work focuses on detailed molecular dynamics simulations to study of solvent effect on lysozyme protein, using water, alcohol and different concentrations of water-alcohol mixtures as solvents. The lysozyme protein structure in water, alcohol and alcohol-water mixture (0-12% alcohol) was studied using GROMACS molecular dynamics simulation code. Compared to water environment, the lysozome structure showed remarkable changes in solvents with increasing alcohol concentration. In particular, significant changes were observed in the protein secondary structure involving alpha helices. The influence of alcohol on the lysozyme protein was investigated by studying thermodynamic and structural properties. With increasing ethanol concentration we observed a systematic increase in total energy, enthalpy, root mean square deviation (RMSD), and radius of gyration. a polynomial interpolation approach. Using the resulting polynomial equation, we could determine above quantities for any intermediate alcohol percentage. In order to validate this approach, we selected an intermediate ethanol percentage and carried out full MD simulation. The results from MD simulation were in reasonably good agreement with that obtained using polynomial approach. Hence, the polynomial approach based method proposed here eliminates the need for computationally intensive full MD analysis for the concentrations within the range (0-12%) studied in this work.

  13. Short-Chain Chlorinated Paraffins in Zurich, Switzerland--Atmospheric Concentrations and Emissions.

    PubMed

    Diefenbacher, Pascal S; Bogdal, Christian; Gerecke, Andreas C; Glüge, Juliane; Schmid, Peter; Scheringer, Martin; Hungerbühler, Konrad

    2015-08-18

    Short-chain chlorinated paraffins (SCCPs) are of concern due to their potential for adverse health effects, bioaccumulation, persistence, and long-range transport. Data on concentrations of SCCPs in urban areas and underlying emissions are still scarce. In this study, we investigated the levels and spatial distribution of SCCPs in air, based on two separate, spatially resolved sampling campaigns in the city of Zurich, Switzerland. SCCP concentrations in air ranged from 1.8 to 17 ng·m(-3) (spring 2011) and 1.1 to 42 ng·m(-3) (spring 2013) with medians of 4.3 and 2.7 ng·m(-3), respectively. Both data sets show that atmospheric SCCP levels in Zurich can vary substantially and may be influenced by a number of localized sources within this urban area. Additionally, continuous measurements of atmospheric concentrations performed at one representative sampling site in the city center from 2011 to 2013 showed strong seasonal variations with high SCCP concentrations in summer and lower levels in winter. A long-term dynamic multimedia environmental fate model was parametrized to simulate the seasonal trends of SCCP concentrations in air and to back-calculate urban emissions. Resulting annual SCCP emissions in the city of Zurich accounted for 218-321 kg, which indicates that large SCCP stocks are present in urban areas of industrialized countries.

  14. A simplified guide for charged aerosol detection of non-chromophoric compounds-Analytical method development and validation for the HPLC assay of aerosol particle size distribution for amikacin.

    PubMed

    Soliven, Arianne; Haidar Ahmad, Imad A; Tam, James; Kadrichu, Nani; Challoner, Pete; Markovich, Robert; Blasko, Andrei

    2017-09-05

    Amikacin, an aminoglycoside antibiotic lacking a UV chromophore, was developed into a drug product for delivery by inhalation. A robust method for amikacin assay analysis and aerosol particle size distribution (aPSD) determination, with comparable performance to the conventional UV detector was developed using a charged aerosol detector (CAD). The CAD approach involved more parameters for optimization than UV detection due to its sensitivity to trace impurities, non-linear response and narrow dynamic range of signal versus concentration. Through careful selection of the power transformation function value and evaporation temperature, a wider linear dynamic range, improved signal-to-noise ratio and high repeatability were obtained. The influences of mobile phase grade and glassware binding of amikacin during sample preparation were addressed. A weighed (1/X 2 ) least square regression was used for the calibration curve. The limit of quantitation (LOQ) and limit of detection (LOD) for this method were determined to be 5μg/mL and 2μg/mL, respectively. The method was validated over a concentration range of 0.05-2mg/mL. The correlation coefficient for the peak area versus concentration was 1.00 and the y-intercept was 0.2%. The recovery accuracies of triplicate preparations at 0.05, 1.0, and 2.0mg/mL were in the range of 100-101%. The relative standard deviation (S rel ) of six replicates at 1.0mg/mL was 1%, and S rel of five injections at the limit of quantitation was 4%. A robust HPLC-CAD method was developed and validated for the determination of the aPSD for amikacin. The CAD method development produced a simplified procedure with minimal variability in results during: routine operation, transfer from one instrument to another, and between different analysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quantitative Analysis of Bioactive Compounds from Aromatic Plants by Means of Dynamic Headspace Extraction and Multiple Headspace Extraction-Gas Chromatography-Mass Spectrometry.

    PubMed

    Omar, Jone; Olivares, Maitane; Alonso, Ibone; Vallejo, Asier; Aizpurua-Olaizola, Oier; Etxebarria, Nestor

    2016-04-01

    Seven monoterpenes in 4 aromatic plants (sage, cardamom, lavender, and rosemary) were quantified in liquid extracts and directly in solid samples by means of dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS) and multiple headspace extraction-gas chromatography-mass spectrometry (MHSE), respectively. The monoterpenes were 1st extracted by means of supercritical fluid extraction (SFE) and analyzed by an optimized DHS-GC-MS. The optimization of the dynamic extraction step and the desorption/cryo-focusing step were tackled independently by experimental design assays. The best working conditions were set at 30 °C for the incubation temperature, 5 min of incubation time, and 40 mL of purge volume for the dynamic extraction step of these bioactive molecules. The conditions of the desorption/cryo-trapping step from the Tenax TA trap were set at follows: the temperature was increased from 30 to 300 °C at 150 °C/min, although the cryo-trapping was maintained at -70 °C. In order to estimate the efficiency of the SFE process, the analysis of monoterpenes in the 4 aromatic plants was directly carried out by means of MHSE because it did not require any sample preparation. Good linearity (r2) > 0.99) and reproducibility (relative standard deviation % <12) was obtained for solid and liquid quantification approaches, in the ranges of 0.5 to 200 ng and 10 to 500 ng/mL, respectively. The developed methods were applied to analyze the concentration of 7 monoterpenes in aromatic plants obtaining concentrations in the range of 2 to 6000 ng/g and 0.25 to 110 μg/mg, respectively. © 2016 Institute of Food Technologists®

  16. Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time.

    PubMed

    Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin

    2017-11-01

    Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.

  17. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  18. Determination of the glass-transition temperature of proteins from a viscometric approach.

    PubMed

    Monkos, Karol

    2015-03-01

    All fully hydrated proteins undergo a distinct change in their dynamical properties at glass-transition temperature Tg. To determine indirectly this temperature for dry albumins, the viscosity measurements of aqueous solutions of human, equine, ovine, porcine and rabbit serum albumin have been conducted at a wide range of concentrations and at temperatures ranging from 278 K to 318 K. Viscosity-temperature dependence of the solutions is discussed on the basis of the three parameters equation resulting from Avramov's model. One of the parameter in the Avramov's equation is the glass-transition temperature. For all studied albumins, Tg of a solution monotonically increases with increasing concentration. The glass-transition temperature of a solution depends both on Tg for a dissolved dry protein Tg,p and water Tg,w. To obtain Tg,p for each studied albumin the modified Gordon-Taylor equation was applied. This equation describes the dependence of Tg of a solution on concentration, and Tg,p and a parameter depending on the strength of the protein-solvent interaction are the fitting parameters. Thus determined the glass-transition temperature for the studied dry albumins is in the range (215.4-245.5)K. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Organic Seston Dynamics in Upland Neotropical Streams: Implications for Amphibian Declines

    NASA Astrophysics Data System (ADS)

    Peterson, S. D.; Colon-Gaud, C.; Whiles, M. R.; Hunte-Brown, M.; Connelly, S.; Kilham, S.; Pringle, C. M.; Lips, K. R.; Brenes, R.

    2005-05-01

    Organic seston represents food for filter feeders and a mechanism for downstream transport of energy and nutrients. As part of a study assessing the ecological impacts of stream-breeding anuran extirpations, we examined seston dynamics in 2 stream reaches with tadpoles (El Cope) and 2 without (Fortuna) in the Panamanian uplands. All reaches are high gradient with annual average discharge ranging from 46-102 L/s. Samples were collected multiple times per month at various discharges, sieved into fine (<754μm, >98μm) and very fine (<98μm, >1.6μm) fractions, and processed to estimate ash-free dry mass (AFDM), total C, and total N. Average annual concentrations ranged from 0.52- 2.51 mg/L (fine) and 2.04-3.14 mg/L (very fine), and total export ranged from 0.27-7,981 mg/s across all streams. On average, very fine particles comprised 78% of export from El Cope sites and 61% from Fortuna streams. Average total N export ranged from 5.32-30.53 mg/s in El Cope sites and 1.71-6.04 mg/s at Fortuna. Average particle quality (C/N) in El Cope streams was higher (7.6) than Fortuna streams (11.5). Lower export of very fine particles and lower seston quality in Fortuna streams suggests the loss of tadpoles may influence seston dynamics and quality in these systems.

  20. Long-term dynamics of dissolved organic carbon: implications for drinking water supply.

    PubMed

    Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N

    2012-08-15

    Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Biosensing of DNA oxidative damage: a model of using glucose meter for non-glucose biomarker detection.

    PubMed

    Zhu, Xuena; Sarwar, Mehenur; Yue, Qiaoli; Chen, Chunying; Li, Chen-Zhong

    2017-01-01

    Non-glucose biomarker-DNA oxidative damage biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) has been successfully detected using a smartphone-enabled glucose meter. Through a series of immune reactions and enzymatic reactions on a solid lateral flow platform, 8-OHdG concentration has been converted to a relative amount of glucose, and therefore can be detected by conventional glucose meter directly. The device was able to detect 8-OHdG concentrations in phosphate buffer saline as low as 1.73 ng mL -1 with a dynamic range of 1-200 ng mL -1 . Considering the inherent advantages of the personal glucose meter, the demonstration of this device, therefore, should provide new opportunities for the monitoring of a wide range of biomarkers and various target analytes in connection with different molecular recognition events.

  2. Influence of ventilation and filtration on indoor particle concentrations in urban office buildings

    NASA Astrophysics Data System (ADS)

    Quang, Tran Ngoc; He, Congrong; Morawska, Lidia; Knibbs, Luke D.

    2013-11-01

    This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 μm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6-3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building's HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.

  3. Solid State Research

    DTIC Science & Technology

    1991-08-15

    G. E. Betts Analog Optical Links for High Dynamic L. M. Johnson Range C. H. Cox III Nonimaging Concentrators for Diode- P. Lacovara Pumped Slab Lasers...P. Gleckman* SPIEs 1991 International R. Holman* Symposium on Optical Science R. Winston * and Engineering, San Diego, California, Free-Space Board-to...xxv 1. ELECTROOPTICAL DEVICES 1 1.1 Optical Phase Difference Measurement and Correction Using AIGaAs Integrated Guided-Wave Components 1 1.2 Two

  4. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions.

    PubMed

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-20

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute molecules and the structure and dynamics of water.

  5. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-01

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute molecules and the structure and dynamics of water.

  6. To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?

    NASA Astrophysics Data System (ADS)

    Henneberg, O.; Lohmann, U.

    2017-12-01

    Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL

  7. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation

    NASA Astrophysics Data System (ADS)

    Zia, Roseanna N.; Swan, James W.; Su, Yu

    2015-12-01

    The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.

  8. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.

    PubMed

    Zia, Roseanna N; Swan, James W; Su, Yu

    2015-12-14

    The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.

  9. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zia, Roseanna N., E-mail: zia@cbe.cornell.edu; Su, Yu; Swan, James W.

    2015-12-14

    The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations ismore » the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261–290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16–29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375–400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1–29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.« less

  10. Green autofluorescence, a double edged monitoring tool for bacterial growth and activity in micro-plates

    NASA Astrophysics Data System (ADS)

    Mihalcescu, Irina; Van-Melle Gateau, Mathilde; Chelli, Bernard; Pinel, Corinne; Ravanat, Jean-Luc

    2015-12-01

    The intrinsic green autofluorescence of an Escherichia coli culture has long been overlooked and empirically corrected in green fluorescent protein (GFP) reporter experiments. We show here, by using complementary methods of fluorescence analysis and HPLC, that this autofluorescence, principally arise from the secreted flavins in the external media. The cells secrete roughly 10 times more than what they keep inside. We show next that the secreted flavin fluorescence can be used as a complementary method in measuring the cell concentration particularly when the classical method, based on optical density measure, starts to fail. We also demonstrate that the same external flavins limit the dynamical range of GFP quantification and can lead to a false interpretation of lower global dynamic range of expression than what really happens. In the end we evaluate different autofluorescence correction methods to extract the real GFP signal.

  11. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range

    PubMed Central

    Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut

    2015-01-01

    Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015

  12. Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds

    DOE PAGES

    Chang, D.; Cheng, Y.; Reutter, P.; ...

    2015-09-21

    Here, a recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations ( N CN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of N CN andmore » dynamic conditions. The integrated concentration of hydrometeors over the full spatial and temporal scales was used to evaluate the aerosol and dynamic effects. The results show the following. (1) The three regimes for cloud condensation nuclei (CCN) activation in the parcel model (namely aerosol-limited, updraft-limited, and transitional regimes) still exist within our simulations, but net production of raindrops and frozen particles occurs mostly within the updraft-limited regime. (2) Generally, elevated aerosols enhance the formation of cloud droplets and frozen particles. The response of raindrops and precipitation to aerosols is more complex and can be either positive or negative as a function of aerosol concentrations. The most negative effect was found for values of N CN of ~ 1000 to 3000 cm –3. (3) The nonlinear properties of aerosol–cloud interactions challenge the conclusions drawn from limited case studies in terms of their representativeness, and ensemble studies over a wide range of aerosol concentrations and other influencing factors are strongly recommended for a more robust assessment of the aerosol effects.« less

  13. Bubble dynamics in a standing sound field: the bubble habitat.

    PubMed

    Koch, P; Kurz, T; Parlitz, U; Lauterborn, W

    2011-11-01

    Bubble dynamics is investigated numerically with special emphasis on the static pressure and the positional stability of the bubble in a standing sound field. The bubble habitat, made up of not dissolving, positionally and spherically stable bubbles, is calculated in the parameter space of the bubble radius at rest and sound pressure amplitude for different sound field frequencies, static pressures, and gas concentrations of the liquid. The bubble habitat grows with static pressure and shrinks with sound field frequency. The range of diffusionally stable bubble oscillations, found at positive slopes of the habitat-diffusion border, can be increased substantially with static pressure.

  14. Molecular dynamics simulation study of the role of evenly spaced poly(ethylene oxide) tethers on the aggregation of C60 fullerenes in water.

    PubMed

    Bedrov, Dmitry; Smith, Grant D; Li, Liwei

    2005-06-07

    The aggregation behavior of C60 fullerenes and C60 fullerenes with six symmetrically tethered poly(ethylene oxide) oligomers [(PEO)-6-C60] in aqueous solutions has been studied using implicit solvent molecular dynamics simulations. Our simulations reveal that while the attraction between two (PEO)-6-C60 fullerenes in aqueous solution is stronger and longer range than that between two bare C60 fullerenes, the (PEO)-6-C60 fullerenes do not phase-separate in water but rather aggregate in chain-like clusters at concentrations where unmodified fullerenes completely phase-separate.

  15. Long-Range Self-Assembly via the Mutual Lorentz Force of Plasmon Radiation.

    PubMed

    Ji, Haojie; Trevino, Jacob; Tu, Raymond; Knapp, Ellen; McQuade, James; Yurkiv, Vitaliy; Mashayek, Farzad; Vuong, Luat T

    2018-04-11

    Long-range interactions often proceed as a sequence of hopping through intermediate, statistically favored events. Here, we demonstrate predictable mechanical dynamics of particles that arise from the Lorentz force between plasmons. Even if the radiation is weak, the nonconservative Lorentz force produces stable locations perpendicular to the plasmon oscillation; over time, distinct patterns emerge. Experimentally, linearly polarized light illumination leads to the formation of 80 nm diameter Au nanoparticle chains, perpendicularly aligned, with lengths that are orders of magnitude greater than their plasmon near-field interaction. There is a critical intensity threshold and optimal concentration for observing self-assembly.

  16. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  17. Microbial community dynamics and methane, carbon dioxide, oxygen, and nitrous oxide concentrations in upland forest and riparian soils across a seasonal gradient of fully saturated soils to completely dried soils

    NASA Astrophysics Data System (ADS)

    Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.

    2015-12-01

    Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R = 0.578, p < 0.001; O2: R = 0.517, p < 0.001; Soil moisture: R = 0.408, p < 0.001; N2O: R = 0.218, p = 0.003; CH4: R = 0.195, p = 0.008). Despite the rather low co-variation between methane concentrations and microbial community composition, relative abundances of methanotrophic and methanogenic lineages did co-vary strongly with methane concentrations.

  18. Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions.

    PubMed

    Eberle, Aaron P R; Castañeda-Priego, Ramón; Kim, Jung M; Wagner, Norman J

    2012-01-24

    We report an experimental study of the dynamical arrest transition for a model system consisting of octadecyl coated silica suspended in n-tetradecane from dilute to concentrated conditions spanning the state diagram. The dispersion's interparticle potential is tuned by temperature affecting the brush conformation leading to a thermoreversible model system. The critical temperature for dynamical arrest, T*, is determined as a function of dispersion volume fraction by small-amplitude dynamic oscillatory shear rheology. We corroborate this transition temperature by measuring a power-law decay of the autocorrelation function and a loss of ergodicity via fiber-optic quasi-elastic light scattering. The structure at T* is measured using small-angle neutron scattering. The scattering intensity is fit to extract the interparticle pair-potential using the Ornstein-Zernike equation with the Percus-Yevick closure approximation, assuming a square-well interaction potential with a short-range interaction (1% of particle diameter). (1) The strength of attraction is characterized using the Baxter temperature (2) and mapped onto the adhesive hard sphere state diagram. The experiments show a continuous dynamical arrest transition line that follows the predicted dynamical percolation line until ϕ ≈ 0.41 where it subtends the predictions toward the mode coupling theory attractive-driven glass line. An alternative analysis of the phase transition through the reduced second virial coefficient B(2)* shows a change in the functional dependence of B(2)* on particle concentration around ϕ ≈ 0.36. We propose this signifies the location of a gel-to-glass transition. The results presented herein differ from those observed for depletion flocculated dispersion of micrometer-sized particles in polymer solutions, where dynamical arrest is a consequence of multicomponent phase separation, suggesting dynamical arrest is sensitive to the physical mechanism of attraction.

  19. Formation of protein/surfactant adsorption layer at the air/water interface as studied by dilational surface rheology.

    PubMed

    Mikhailovskaya, A A; Noskov, B A; Lin, S-Y; Loglio, G; Miller, R

    2011-08-25

    The dynamic dilatational surface elasticity of mixed solutions of globular proteins (β-lactoglobulin (BLG) and bovine serum albumin (BSA)) with cationic (dodecyltrimethylammonium bromide (DTAB)) and anionic (sodium dodecyl sulfate (SDS)) surfactants was measured as a function of the surfactant concentration and surface age. If the cationic surfactant concentration exceeds a certain critical value, the kinetic dependencies of the dynamic surface elasticity of BLG/DTAB and BSA/DTAB solutions become nonmonotonous and resemble those of mixed solutions of proteins with guanidine hydrochloride. This result indicates not only the destruction of the protein tertiary structure in the surface layer of mixed solution but also a strong perturbation of the secondary structure. The corresponding kinetic dependencies for protein solutions with added anionic surfactants are always monotonous, thereby revealing a different mechanism of the adsorption layer formation. One can assume that the secondary structure is destroyed to a lesser extent in the latter case and hinders the formation of loops and tails at the interface. The increase of the solution's ionic strength by the addition of sodium chloride results in stronger changes of the protein conformations in the surface layer and the appearance of a local maximum in the kinetic dependencies of the dynamic surface elasticity in a relatively narrow range of SDS concentration. © 2011 American Chemical Society

  20. Understanding transport mechanisms in ionic liquid/carbonate solvent electrolyte blends.

    PubMed

    Oldiges, K; Diddens, D; Ebrahiminia, M; Hooper, J B; Cekic-Laskovic, I; Heuer, A; Bedrov, D; Winter, M; Brunklaus, G

    2018-06-20

    To unravel mechanistic details of the ion transport in liquid electrolytes, blends of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), ethylene carbonate (EC) and dimethyl carbonate (DMC) with the conducting salts lithium hexafluorophosphate (LiPF6) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were investigated as a function of the IL concentration. Electrochemical impedance, Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR) and Raman spectroscopy supported by Molecular Dynamics (MD) simulations allowed the structural and dynamic correlations of the ion motions to be probed. Remarkably, we identified that though the individual correlations among different ion types exhibit a clear concentration dependence, their net effect is nearly constant throughout the entire concentration range, resulting in approximately equal transport and transference numbers, despite a monitored cross-over from carbonate-based lithium coordination to a TFSI-based ion coordination. In addition, though dynamical ion correlation could be found, the absolute values of the ionic conductivity are essentially determined by the overall viscosity of the electrolyte. The IL/carbonate blends with a Pyr14TFSI fraction of ∼10 wt% are found to be promising electrolyte solvents, with ionic conductivities and lithium ion transference numbers comparable to those of standard carbonate-based electrolytes while the thermal and electrochemical stabilities are considerably improved. In contrast, the choice of the conducting salt only marginally affects the transport properties.

  1. Dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Dynamics of glucose concentration in human organism is an important diagnostic characteristic for it's parameters correlate significantly with the severity of metabolic, vessel and perfusion disorders. 36 patients with stable angina pectoris of II and III functional classes were involved in this study. All of them were men in age range of 45-59 years old. 7 patients hospitalized with acute myocardial infarction (aged from 49 to 59 years old) form the group of compare. Control group (n = 5) was of practically healthy men in comparable age. To all patients intravenous glucose solution (40%) in standard loading dose was injected. Capillary and vein blood samples were withdrawn before, and 5, 60, 120, 180 and 240 minutes after glucose load. At these time points blood pressure and glucose concentration were measured. In prepared blood smears shape, deformability and sizes of erythrocytes, quantity and degree of shear stress resistant erythrocyte aggregates were studied. Received data were approximated by polynomial of high degree to receive concentration function of studied parameters, which first derivative elucidate velocity characteristics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease and practically healthy persons. Received data show principle differences in dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease as a possible mechanism of coronary blood flow destabilization.

  2. Evaluation of the External RNA Controls Consortium (ERCC) reference material using a modified Latin square design.

    PubMed

    Pine, P Scott; Munro, Sarah A; Parsons, Jerod R; McDaniel, Jennifer; Lucas, Anne Bergstrom; Lozach, Jean; Myers, Timothy G; Su, Qin; Jacobs-Helber, Sarah M; Salit, Marc

    2016-06-24

    Highly multiplexed assays for quantitation of RNA transcripts are being used in many areas of biology and medicine. Using data generated by these transcriptomic assays requires measurement assurance with appropriate controls. Methods to prototype and evaluate multiple RNA controls were developed as part of the External RNA Controls Consortium (ERCC) assessment process. These approaches included a modified Latin square design to provide a broad dynamic range of relative abundance with known differences between four complex pools of ERCC RNA transcripts spiked into a human liver total RNA background. ERCC pools were analyzed on four different microarray platforms: Agilent 1- and 2-color, Illumina bead, and NIAID lab-made spotted microarrays; and two different second-generation sequencing platforms: the Life Technologies 5500xl and the Illumina HiSeq 2500. Individual ERCC controls were assessed for reproducible performance in signal response to concentration among the platforms. Most demonstrated linear behavior if they were not located near one of the extremes of the dynamic range. Performance issues with any individual ERCC transcript could be attributed to detection limitations, platform-specific target probe issues, or potential mixing errors. Collectively, these pools of spike-in RNA controls were evaluated for suitability as surrogates for endogenous transcripts to interrogate the performance of the RNA measurement process of each platform. The controls were useful for establishing the dynamic range of the assay, as well as delineating the useable region of that range where differential expression measurements, expressed as ratios, would be expected to be accurate. The modified Latin square design presented here uses a composite testing scheme for the evaluation of multiple performance characteristics: linear performance of individual controls, signal response within dynamic range pools of controls, and ratio detection between pairs of dynamic range pools. This compact design provides an economical sample format for the evaluation of multiple external RNA controls within a single experiment per platform. These results indicate that well-designed pools of RNA controls, spiked into samples, provide measurement assurance for endogenous gene expression studies.

  3. Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions.

    PubMed

    Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen

    2016-09-10

    The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Analysis of cis and trans 3-Methylfentanyl by Liquid Chromatography High Resolution Mass Spectrometry and Findings in Forensic Toxicology Casework.

    PubMed

    Fogarty, Melissa F; Papsun, Donna M; Logan, Barry K

    2018-05-25

    3-Methylfentanyl (3-MF), N-(3-methyl-1-phenethyl-4-piperidyl)-N-phenyl-propanamide, has reappeared in the United States illicit drug market since its disappearance after a series of overdose deaths in 1988.3-MF presents an analytical challenge, due to presence of cis and trans stereoisomers, each with different potencies, and ultimately very low concentrations in the blood after use. A method was developed using liquid chromatography time-of-flight mass spectrometry for the analysis of (±)-cis-3-MF and (±)-trans-3-MF in blood specimens after solid phase extraction. The linear dynamic range of this method was 0.1-10 ng/mL. Blood samples from 25 postmortem cases and 2 human performance case involving 3-MF were submitted for quantitative analysis. The mean and median concentration for the (±)-cis-3-MF were 0.84 ng/mL (±0.81) and 0.66 ng/mL, respectively, range 0.14-3.43 ng/mL. The resulting (±)-trans-3-MF mean concentration was 0.46 ng/mL (±0.38) and the median concentration was 0.37 ng/mL with a range of 0.11-1.90 ng/mL. The resulting (±)-cis-3-MF and (±)-trans-3-MF concentrations were summed to give the total amount of 3-MF present in the case with the resulting average concentration at 1.28 ng/mL (±1.16), median at 1 ng/mL and range 0.18-5.18. As the estimated dose of this compound is approximately 0.1-0.5 mg with the resulting concentrations in the sub-nanogram range, it is necessary for forensic toxicology laboratories to obtain instruments sensitive enough to detect these substances in driving under the influence of drugs and postmortem cases. Quantitation of 3-MF with separation of (±)-cis and (±)-trans-3-MF provides additional detail for more specific toxicological interpretation. This article is protected by copyright. All rights reserved.

  5. Evaluation of the performance and response of the bacharach TLV sniffer and H-Nu photoionization gas analyzer to common hydrocarbon solvents.

    PubMed

    Chelton, C F; Zakraysek, N; Lautner, G M; Confer, R G

    1983-10-01

    Two direct reading instruments, the H-Nu PI 101 photoionization analyzer and the J.W. Bacharach TLV Sniffer, were evaluated under laboratory conditions to determine their performance characteristics when challenged by vapors of common hydrocarbon solvent mixtures. Each instrument was evaluated against the manufacturer's recommended test solvent for rise time, fall time, noise, span drift, zero drift, position sensitivity, battery life, and recharge time. The precision, accuracy, and operating linear range were also determined for the test solvents and some petroleum solvent mixtures which are common refinery products. For these latter mixtures, correction factors are presented which allow for an improved estimate of ambient concentrations when monitoring with each of these instruments. All tests except operating humidity range were performed by challenging each instrument with a known concentration of hydrocarbon generated by evaporating calculated liquid volumes into a static chamber. Humidity tests were performed using a dynamic dilution apparatus generating a fixed concentration of hydrocarbon while relative humidity was varied. Concentrations in both systems were verified by gas injection into gas chromatograph. Each instrument performed well when challenged by manufacturers' recommended test solvents. Humidity was shown to influence each instrument's readings. Also, the instruments were shown to have application as monitors of airborne concentrations of common hydrocarbon solvent mixtures.

  6. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    PubMed

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  7. Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana

    2014-05-01

    The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling the properties of a long-range correlated process.

  8. Evaluation of slide based cytometry (SBC) for concentration measurements of fluorescent dyes in solution

    NASA Astrophysics Data System (ADS)

    Pierzchalski, Arkadiusz; Marecka, Monika; Müller, Hans-Willy; Bocsi, József; Tárnok, Attila

    2009-02-01

    Flow cytometers (FCM) are built for particle measurements. In principle, concentration measurement of a homogeneous solution is not possible with FCM due to the lack of a trigger signal. In contrast to FCM slide based cytometry systems could act as tools for the measurement of concentrations using volume defined cell counting chambers. These chambers enable to analyze a well defined volume. Sensovation AG (Stockach, Germany) introduced an automated imaging system that combines imaging with cytometric features analysis. Aim of this study was to apply this imaging system to quantify the fluorescent molecule concentrations. The Lumisens (Sensovation AG) slide-based technology based on fluorescence digital imaging microscopy was used. The instrument is equipped with an inverted microscope, blue and red LEDs, double band-pass filters and a high-resolution cooled 16-bit digital camera. The instrument was focussed on the bottom of 400μm deep 6 chamber slides (IBIDI GmbH, Martinsried, Germany) or flat bottom 96 well plates (Greiner Bio One GmbH, Frickenhausen, Germany). Fluorescent solutions were imaged under 90% pixel saturation in a broad concentration range (FITC: 0.0002-250 μg/ml, methylene blue (MethB): 0.0002-250 μg/ml). Exposition times were recorded. Images were analysed by the iCys (CompuCyte Corp., Cambridge, MA, USA) image analysis software with the phantom contour function. Relative fluorescence intensities were calculated from mean fluorescence intensities per phantom contours divided by the exposition time. Solution concentrations could be distinguished over a broad dynamic range of 3.5 to 5.5 decades log (range FITC: 0.0002-31.25μg/ml, MethB: 0.0076-31.25μg/ml) with a good linear relationship between dye concentration and relative fluorescence intensity. The minimal number of fluorescent molecules per pixel as determined by the mean fluorescence intensity and the molecular weight of the fluorochrome were about 800 molecules FITC and ~2.000 MethB. The novel slide-based imaging system is suitable for detection of fluorescence differences over a broad range of concentrations. This approach may lead to novel assays for measuring concentration differences in cell free solutions and cell cultures e.g. in secretion assays.

  9. Biological Variation and Diagnostic Accuracy of Dehydration Assessment Markers

    DTIC Science & Technology

    2010-07-01

    range of values as good general starting points, II data negate their relevance for static dehydration assessment (31, 32, 48, 50) in high- risk ...treatment situations. However, a practical use in cir- cumstances of lower- risk assessment may still be warranted (4, 5, 23). Dynamic dehydration assessment...usefulness, al- though it may still be of practical use for low- risk population assessment (15, 23). Importantly, any urine concentration mea- sure

  10. Indirect MRI of 17 o-labeled water using steady-state sequences: Signal simulation and preclinical experiment.

    PubMed

    Kudo, Kohsuke; Harada, Taisuke; Kameda, Hiroyuki; Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Yoshioka, Kunihiro; Sasaki, Makoto

    2018-05-01

    Few studies have been reported for T 2 -weighted indirect 17 O imaging. To evaluate the feasibility of steady-state sequences for indirect 17 O brain imaging. Signal simulation, phantom measurements, and prospective animal experiments were performed in accordance with the institutional guidelines for animal experiments. Signal simulations of balanced steady-state free precession (bSSFP) were performed for concentrations of 17 O ranging from 0.037-1.600%. Phantom measurements with concentrations of 17 O water ranging from 0.037-1.566% were also conducted. Six healthy beagle dogs were scanned with intravenous administration of 20% 17 O-labeled water (1 mL/kg). Dynamic 3D-bSSFP scans were performed at 3T MRI. 17 O-labeled water was injected 60 seconds after the scan start, and the total scan duration was 5 minutes. Based on the result of signal simulation and phantom measurement, signal changes in the beagle dogs were measured and converted into 17 O concentrations. The 17 O concentrations were averaged for every 15 seconds, and compared to the baseline (30-45 sec) with Dunnett's multiple comparison tests. Signal simulation revealed that the relationships between 17 O concentration and the natural logarithm of relative signals were linear. The intraclass correlation coefficient between relative signals in phantom measurement and signal simulations was 0.974. In the animal experiments, significant increases in 17 O concentration (P < 0.05) were observed 60 seconds after the injection of 17 O. At the end of scanning, mean respective 17 O concentrations of 0.084 ± 0.026%, 0.117 ± 0.038, 0.082 ± 0.037%, and 0.049 ± 0.004% were noted for the cerebral cortex, cerebellar cortex, cerebral white matter, and ventricle. Dynamic steady-state sequences were feasible for indirect 17 O imaging, and absolute quantification was possible. This method can be applied for the measurement of permeability and blood flow in the brain, and for kinetic analysis of cerebrospinal fluid. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1373-1379. © 2017 International Society for Magnetic Resonance in Medicine.

  11. The trans-Golgi Network and the Golgi Stacks Behave Independently During Regeneration After Brefeldin A Treatment in Tobacco BY-2 Cells.

    PubMed

    Ito, Yoko; Toyooka, Kiminori; Fujimoto, Masaru; Ueda, Takashi; Uemura, Tomohiro; Nakano, Akihiko

    2017-04-01

    The trans-Golgi network (TGN) plays an essential role in intracellular membrane trafficking. In plant cells, recent live-cell imaging studies have revealed the dynamic behavior of the TGN independent from the Golgi apparatus. In order to better understand the relationships between the two organelles, we examined their dynamic responses to the reagent brefeldin A (BFA) and their recovery after BFA removal. Golgi markers responded to BFA similarly over a range of concentrations, whereas the behavior of the TGN was BFA concentration dependent. The TGN formed aggregates at high concentrations of BFA; however, TGN proteins relocalized to numerous small vesicular structures dispersed throughout the cytoplasm at lower BFA concentrations. During recovery from weak BFA treatment, the TGN started to regenerate earlier than the completion of the Golgi. The regeneration of the two organelles proceeded independently of each other for a while, and eventually was completed by their association. Our data suggest that there is some degree of autonomy for the regeneration of the TGN and the Golgi in tobacco BY-2 cells. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. The fresnel interferometric imager

    NASA Astrophysics Data System (ADS)

    Koechlin, Laurent; Serre, Denis; Deba, Paul; Pelló, Roser; Peillon, Christelle; Duchon, Paul; Gomez de Castro, Ana Ines; Karovska, Margarita; Désert, Jean-Michel; Ehrenreich, David; Hebrard, Guillaume; Lecavelier Des Etangs, Alain; Ferlet, Roger; Sing, David; Vidal-Madjar, Alfred

    2009-03-01

    The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 - 6. We have also validated numerical simulation algorithms for larger Fresnel interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 - 8 for arrays such as the 3.6 m one we propose. A dynamic range of 10 - 8 allows detection of objects at contrasts as high as than 10 - 9 in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.

  13. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.

    An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less

  14. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems

    DOE PAGES

    Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.

    2016-06-17

    An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less

  15. A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne

    We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less

  16. A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range

    DOE PAGES

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne; ...

    2017-06-08

    We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less

  17. Bioelectronic Sensors and Devices

    NASA Astrophysics Data System (ADS)

    Reed, Mark

    Nanoscale electronic devices have recently enabled the ability to controllably probe biological systems, from the molecular to the cellular level, opening up new applications and understanding of biological function and response. This talk reviews some of the advances in the field, ranging from diagnostic and therapeutic applications, to cellular manipulation and response, to the emulation of biological response. In diagnostics, integrated nanodevice biosensors compatible with CMOS technology have achieved unprecedented sensitivity, enabling a wide range of label-free biochemical and macromolecule sensing applications down to femtomolar concentrations. These systems have demonstrated integrated assays of biomarkers at clinically important concentrations for both diagnostics and as a quantitative tool for drug design and discovery. Cellular level response can also be observed, including immune response function and dynamics. Finally, the field is beginning to create devices that emulate function, and the demonstration of a solid state artificial ion channel will be discussed.

  18. Adsorption and Depletion Regimes of a Nonionic Surfactant in Hydrophilic Mesopores: An Experimental and Simulation Study

    DOE PAGES

    Müter, Dirk; Rother, Gernot; Bock, Henry; ...

    2017-08-15

    Adsorption and aggregation of nonionic surfactants at oxide surfaces has been studied extensively in the past, but only for concentrations below and near the critical micelle concentration. In this paper, we report an adsorption study of a short-chain surfactant (C 6E 3) in porous silica glass of different pore sizes (7.5 to 50 nm), covering a wide composition range up to 50 wt % in a temperature range from 20 °C to the LCST. Aggregative adsorption is observed at low concentrations, but the excess concentration of C 6E 3 in the pores decreases and approaches zero at higher bulk concentrations.more » Strong depletion of surfactant (corresponding to enrichment of water in the pores) is observed in materials with wide pores at high bulk concentrations. We propose an explanation for the observed pore-size dependence of the azeotropic point. Mesoscale simulations based on dissipative particle dynamics (DPD) were performed to reveal the structural origin of this transition from the adsorption to the depletion regime. The simulated adsorption isotherms reproduce the behavior found in the 7.5 nm pores. Finally, the calculated bead density profiles indicate that the repulsive interaction of surfactant head groups causes a depletion of surfactant in the region around the corona of the surface micelles.« less

  19. The superiority of L3-CCDs in the high-flux and wide dynamic range regimes

    NASA Astrophysics Data System (ADS)

    Butler, Raymond F.; Sheehan, Brendan J.

    2008-02-01

    Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.

  20. The Virtue of Just Enough Stress: A Molecular Model

    PubMed Central

    Bishopric, Nanette H.

    2012-01-01

    Molecular biology emphasizes the study of all-or-nothing phenomena and molecular events with a large dynamic range. However, many important physiologic parameters in the clinical setting are tightly constrained (e.g., serum sodium concentration, body mass, venous oxygen saturation, sleep duration). Stress responses exhibit both a wide dynamic range and a potential for important effects at a “just-enough” threshold activation level. Stress responses occur in a number of body systems (e.g., neuropsychiatric, immune, cardiovascular) and are essential for short-term damage control, but also must be tightly constrained in range and duration to permit the organism to walk the narrow homeostatic path to long-term survival. Using an example of a newly appreciated stress-responsive molecule in the heart, acetyltransferase p300, as well as examples from the literature, this article discusses the advantages of self-limited stress, the adverse effects of sustained stress, and the built-in mechanisms that feed back on and terminate stress signals, and advances a hypothesis regarding stress as a pharmacological target in the heart. PMID:23303984

  1. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.

    2015-10-01

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.

  2. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials.

    PubMed

    Sun, Tian Yin; Bornhöft, Nikolaus A; Hungerbühler, Konrad; Nowack, Bernd

    2016-05-03

    The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental concentrations. Despite significant advances in analytical methods, it is still not possible to measure the concentrations of ENM in natural systems. Material flow and environmental fate models have been used to provide predicted environmental concentrations. However, almost all current models are static and consider neither the rapid development of ENM production nor the fact that many ENM are entering an in-use stock and are released with a lag phase. Here we use dynamic probabilistic material flow modeling to predict the flows of four ENM (nano-TiO2, nano-ZnO, nano-Ag and CNT) to the environment and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. Caused by the increase in production, the concentrations of all ENM in all compartments are increasing. Nano-TiO2 had far higher concentrations than the other three ENM. Sediment showed in our worst-case scenario concentrations ranging from 6.7 μg/kg (CNT) to about 40 000 μg/kg (nano-TiO2). In most cases the concentrations in waste incineration residues are at the "mg/kg" level. The flows to the environment that we provide will constitute the most accurate and reliable input of masses for environmental fate models which are using process-based descriptions of the fate and behavior of ENM in natural systems and rely on accurate mass input parameters.

  3. Investigation the foam dynamics capacity of SDS in foam generator by affecting the presence of organic and inorganic contaminant

    NASA Astrophysics Data System (ADS)

    Haryanto, Bode; Siswarni, M. Z.; Sianipar, Yosef C. H.; Sinaga, Tongam M. A.; Bestari, Imam

    2017-05-01

    The effect of negative charge SDS monomer on its foam capacity with the presence of contaminants was investigated in foam generator. Generally, surfactant with higher concentration has higher foam capacity. The higher concentration will increase the number of monomer then increase the micelles in liquid phase. Increasing the number of monomer with the negative charge is a potential to increase interaction with metal ion with positive charge in solution. The presence of inorganic compound as metal ion with positive charge and organic compound (colloid) as particle of coffee impacting to generate the foam lamella with monomer is evaluated. Foam dynamic capacity of only SDS with variation of CMC, 1 x; 2 x; 3 x have the height 7.5, 8.0 and 8.3 cm respectively with the different range time were investigated. The Height of foam dynamic capacity with the presence of 20 ppm Cd2+ ion contaminant was 8.0, 8.3 and 8.4 cm at the same CMC variation of SDS. The presence of metal ion contaminant within the foam was confirmed by AAS. The black coffee particles and oil as contaminant decreased the foam capacity significantly in comparing to metal ions.

  4. Dynamic behavior of semivolatile organic compounds in indoor air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loy, Michael David Van

    1998-12-09

    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release ofmore » reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.« less

  5. Ion-Specific Control of the Self-Assembly Dynamics of a Nanostructured Protein Lattice

    DOE PAGES

    Rad, Behzad; Haxton, Thomas K.; Shon, Albert; ...

    2014-12-10

    Self-assembling proteins offer a potential means of creating nanostructures with complex structure and function. However, using self-assembly to create nanostructures with long-range order whose size is tunable is challenging, because the kinetics and thermodynamics of protein interactions depend sensitively on solution conditions. Here we systematically investigate the impact of varying solution conditions on the self-assembly of SbpA, a surface-layer protein from Lysinibacillus sphaericus that forms two-dimensional nanosheets. Using high-throughput light scattering measurements, we mapped out diagrams that reveal the relative yield of self-assembly of nanosheets over a wide range of concentrations of SbpA and Ca 2+. These diagrams revealed amore » localized region of optimum yield of nanosheets at intermediate Ca 2+ concentration. Replacement of Mg 2+ or Ba 2+ for Ca 2+ indicates that Ca 2+ acts both as a specific ion that is required to induce self-assembly and as a general divalent cation. In addition, we use competitive titration experiments to find that 5 Ca 2+ bind to SbpA with an affinity of 67.1 ± 0.3 μM. Finally, we show via modeling that nanosheet assembly occurs by growth from a negligibly small critical nucleus. We also chart the dynamics of nanosheet size over a variety of conditions. In conclusion, our results demonstrate control of the dynamics and size of the self-assembly of a nanostructured lattice, the constituents of which are one of a class of building blocks able to form novel hybrid nanomaterials.« less

  6. Understanding the role of saliva in aroma release from wine by using static and dynamic headspace conditions.

    PubMed

    Muñoz-González, Carolina; Feron, Gilles; Guichard, Elisabeth; Rodríguez-Bencomo, J José; Martín-Álvarez, Pedro J; Moreno-Arribas, M Victoria; Pozo-Bayón, M Ángeles

    2014-08-20

    The aim of this work was to determine the role of saliva in wine aroma release by using static and dynamic headspace conditions. In the latter conditions, two different sampling points (t = 0 and t = 10 min) corresponding with oral (25.5 °C) and postoral phases (36 °C) were monitored. Both methodologies were applied to reconstituted dearomatized white and red wines with different nonvolatile wine matrix compositions and a synthetic wine (without matrix effect). All of the wines had the same ethanol concentration and were spiked with a mixture of 45 aroma compounds covering a wide range of physicochemical characteristics at typical wine concentrations. Two types of saliva (human and artificial) or control samples (water) were added to the wines. The adequacy of the two headspace methodologies for the purposes of the study (repeatability, linear ranges, determination coefficients, etc.) was previously determined. After application of different chemometric analysis (ANOVA, LSD, PCA), results showed a significant effect of saliva on aroma release dependent on saliva type (differences between artificial and human) and on wine matrix using static headspace conditions. Red wines were more affected than white and synthetic wines by saliva, specifically human saliva, which provoked a reduction in aroma release for most of the assayed aroma compounds independent of their chemical structure. The application of dynamic headspace conditions using a saliva bioreactor at the two different sampling points (t = 0 and t = 10 min) showed a lesser but significant effect of saliva than matrix composition and a high influence of temperature (oral and postoral phases) on aroma release.

  7. Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load.

    PubMed

    Shen, Feng; Sun, Bing; Kreutz, Jason E; Davydova, Elena K; Du, Wenbin; Reddy, Poluru L; Joseph, Loren J; Ismagilov, Rustem F

    2011-11-09

    In this paper, we are working toward a problem of great importance to global health: determination of viral HIV and hepatitis C (HCV) loads under point-of-care and resource limited settings. While antiretroviral treatments are becoming widely available, viral load must be evaluated at regular intervals to prevent the spread of drug resistance and requires a quantitative measurement of RNA concentration over a wide dynamic range (from 50 up to 10(6) molecules/mL for HIV and up to 10(8) molecules/mL for HCV). "Digital" single molecule measurements are attractive for quantification, but the dynamic range of such systems is typically limited or requires excessive numbers of compartments. Here we designed and tested two microfluidic rotational SlipChips to perform multivolume digital RT-PCR (MV digital RT-PCR) experiments with large and tunable dynamic range. These designs were characterized using synthetic control RNA and validated with HIV viral RNA and HCV control viral RNA. The first design contained 160 wells of each of four volumes (125 nL, 25 nL, 5 nL, and 1 nL) to achieve a dynamic range of 5.2 × 10(2) to 4.0 × 10(6) molecules/mL at 3-fold resolution. The second design tested the flexibility of this approach, and further expanded it to allow for multiplexing while maintaining a large dynamic range by adding additional wells with volumes of 0.2 nL and 625 nL and dividing the SlipChip into five regions to analyze five samples each at a dynamic range of 1.8 × 10(3) to 1.2 × 10(7) molecules/mL at 3-fold resolution. No evidence of cross-contamination was observed. The multiplexed SlipChip can be used to analyze a single sample at a dynamic range of 1.7 × 10(2) to 2.0 × 10(7) molecules/mL at 3-fold resolution with limit of detection of 40 molecules/mL. HIV viral RNA purified from clinical samples were tested on the SlipChip, and viral load results were self-consistent and in good agreement with results determined using the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test. With further validation, this SlipChip should become useful to precisely quantify viral HIV and HCV RNA for high-performance diagnostics in resource-limited settings. These microfluidic designs should also be valuable for other diagnostic and research applications, including detecting rare cells and rare mutations, prenatal diagnostics, monitoring residual disease, and quantifying copy number variation and gene expression patterns. The theory for the design and analysis of multivolume digital PCR experiments is presented in other work by Kreutz et al.

  8. On The Ubiquity of Nonstationary Fluvial Suspended Sediment Dynamics: A Call for Long Term Monitoring and Dynamical Sediment Management Strategies

    NASA Astrophysics Data System (ADS)

    Gray, A. B.

    2017-12-01

    Watersheds with sufficient monitoring data have been predominantly found to display nonstationary suspended sediment dynamics, whereby the relationship between suspended sediment concentration and discharge changes over time. Despite the importance of suspended sediment as a keystone of geophysical and biochemical processes, and as a primary mediator of water quality, stationary behavior remains largely assumed in the context of these applications. This study presents an investigation into the time dependent behavior of small mountainous rivers draining the coastal ranges of the western continental US over interannual to interdecadal time scales. Of the 250+ small coastal (drainage area < 2x104 km2) watersheds in this region, only 23 have discharge associated suspended sediment concentration time series with base periods of 10 years or more. Event to interdecadal scale nonstationary suspended sediment dynamics were identified throughout these systems. Temporal patterns of non-stationary behavior provided some evidence for spatial coherence, which may be related to synoptic hydro-metrological patterns and regional scale changes in land use patterns. However, the results also highlight the complex, integrative nature of watershed scale fluvial suspended sediment dynamics. This underscores the need for in-depth, forensic approaches for initial processes identification, which require long term, high resolution monitoring efforts in order to adequately inform management. The societal implications of nonstationary sediment dynamics and their controls were further explored through the case of California, USA, where over 150 impairment listings have resulted in more than 50 sediment TMDLs, only 3 of which are flux based - none of which account for non-stationary behavior.

  9. Optimal estimation of suspended-sediment concentrations in streams

    USGS Publications Warehouse

    Holtschlag, D.J.

    2001-01-01

    Optimal estimators are developed for computation of suspended-sediment concentrations in streams. The estimators are a function of parameters, computed by use of generalized least squares, which simultaneously account for effects of streamflow, seasonal variations in average sediment concentrations, a dynamic error component, and the uncertainty in concentration measurements. The parameters are used in a Kalman filter for on-line estimation and an associated smoother for off-line estimation of suspended-sediment concentrations. The accuracies of the optimal estimators are compared with alternative time-averaging interpolators and flow-weighting regression estimators by use of long-term daily-mean suspended-sediment concentration and streamflow data from 10 sites within the United States. For sampling intervals from 3 to 48 days, the standard errors of on-line and off-line optimal estimators ranged from 52.7 to 107%, and from 39.5 to 93.0%, respectively. The corresponding standard errors of linear and cubic-spline interpolators ranged from 48.8 to 158%, and from 50.6 to 176%, respectively. The standard errors of simple and multiple regression estimators, which did not vary with the sampling interval, were 124 and 105%, respectively. Thus, the optimal off-line estimator (Kalman smoother) had the lowest error characteristics of those evaluated. Because suspended-sediment concentrations are typically measured at less than 3-day intervals, use of optimal estimators will likely result in significant improvements in the accuracy of continuous suspended-sediment concentration records. Additional research on the integration of direct suspended-sediment concentration measurements and optimal estimators applied at hourly or shorter intervals is needed.

  10. Primary weathering rates, water transit times and concentration-discharge relations: A theoretical analysis for the critical zone

    NASA Astrophysics Data System (ADS)

    Ameli, Ali; Erlandsson, Martin; Beven, Keith; Creed, Irena; McDonnell, Jeffrey; Bishop, Kevin

    2017-04-01

    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flowpath dynamics drive the spatio-temporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flowpaths are complex and difficult to map quantitatively. Here, we couple a new integrated flow and particle tracking transport model with a general reversible Transition-State-Theory style dissolution rate-law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration to intrinsic weathering rate, vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As the ratio of equilibrium concentration to intrinsic weathering rate decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behaviour, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as the ratio of equilibrium concentration to intrinsic weathering rate decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time)

  11. Improved porous silicon (P-Si) microarray based PSA (prostate specific antigen) immunoassay by optimized surface density of the capture antibody

    PubMed Central

    Lee, SangWook; Kim, Soyoun; Malm, Johan; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas

    2014-01-01

    Enriching the surface density of immobilized capture antibodies enhances the detection signal of antibody sandwich microarrays. In this study, we improved the detection sensitivity of our previously developed P-Si (porous silicon) antibody microarray by optimizing concentrations of the capturing antibody. We investigated immunoassays using a P-Si microarray at three different capture antibody (PSA - prostate specific antigen) concentrations, analyzing the influence of the antibody density on the assay detection sensitivity. The LOD (limit of detection) for PSA was 2.5ngmL−1, 80pgmL−1, and 800fgmL−1 when arraying the PSA antibody, H117 at the concentration 15µgmL−1, 35µgmL−1 and 154µgmL−1, respectively. We further investigated PSA spiked into human female serum in the range of 800fgmL−1 to 500ngmL−1. The microarray showed a LOD of 800fgmL−1 and a dynamic range of 800 fgmL−1 to 80ngmL−1 in serum spiked samples. PMID:24016590

  12. Simple detection of residual enrofloxacin in meat products using microparticles and biochips.

    PubMed

    Ha, Mi-Sun; Chung, Myung-Sub; Bae, Dong-Ho

    2016-05-01

    A simple and sensitive method for detecting enrofloxacin, a major veterinary fluoroquinolone, was developed. Monoclonal antibody specific for enrofloxacin was immobilised on a chip and fluorescent dye-labelled microparticles were covalently bound to the enrofloxacin molecules. Enrofloxacin in solution competes with the microparticle-immobilised enrofloxacin (enroMPs) to bind to the antibody on the chip. The presence of enrofloxacin was verified by detecting the fluorescence of enrofloxacin-bound microparticles. Under optimum conditions, a high dynamic range was achieved at enrofloxacin concentrations ranging from 1 to 1000 μg kg(-1). The limits of detection and quantification for standard solutions were 5 and 20 μg kg(-1) respectively, which are markedly lower than the maximum residue limit. Using simple extraction methods, recoveries from fortified beef, pork and chicken samples were 43.4-62.3%. This novel method also enabled approximate quantification of enrofloxacin concentration: the enroMP signal intensity decreased with increasing enrofloxacin concentration. Because of its sensitivity, specificity, simplicity and rapidity, the method described herein will facilitate the detection and approximate quantification of enrofloxacin residues in foods in a high-throughput manner.

  13. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles

    NASA Astrophysics Data System (ADS)

    Banchio, Adolfo J.; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard

    2018-04-01

    We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, fc(q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of fc(q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with fc(q, t), there is indication of long-time exponential decay of fc(q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of fc(q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for fc(q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, fs(q, t), and its non-Gaussian parameter α2(t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from fc(q, t) is theoretically validated.

  14. Optimising the quantification of cytokines present at low concentrations in small human mucosal tissue samples using Luminex assays☆

    PubMed Central

    Staples, Emily; Ingram, Richard James Michael; Atherton, John Christopher; Robinson, Karen

    2013-01-01

    Sensitive measurement of multiple cytokine profiles from small mucosal tissue biopsies, for example human gastric biopsies obtained through an endoscope, is technically challenging. Multiplex methods such as Luminex assays offer an attractive solution but standard protocols are not available for tissue samples. We assessed the utility of three commercial Luminex kits (VersaMAP, Bio-Plex and MILLIPLEX) to measure interleukin-17A (IL-17) and interferon-gamma (IFNγ) concentrations in human gastric biopsies and we optimised preparation of mucosal samples for this application. First, we assessed the technical performance, limits of sensitivity and linear dynamic ranges for each kit. Next we spiked human gastric biopsies with recombinant IL-17 and IFNγ at a range of concentrations (1.5 to 1000 pg/mL) and assessed kit accuracy for spiked cytokine recovery and intra-assay precision. We also evaluated the impact of different tissue processing methods and extraction buffers on our results. Finally we assessed recovery of endogenous cytokines in unspiked samples. In terms of sensitivity, all of the kits performed well within the manufacturers' recommended standard curve ranges but the MILLIPLEX kit provided most consistent sensitivity for low cytokine concentrations. In the spiking experiments, the MILLIPLEX kit performed most consistently over the widest range of concentrations. For tissue processing, manual disruption provided significantly improved cytokine recovery over automated methods. Our selected kit and optimised protocol were further validated by measurement of relative cytokine levels in inflamed and uninflamed gastric mucosa using Luminex and real-time polymerase chain reaction. In summary, with proper optimisation Luminex kits (and for IL-17 and IFNγ the MILLIPLEX kit in particular) can be used for the sensitive detection of cytokines in mucosal biopsies. Our results should help other researchers seeking to quantify multiple low concentration cytokines in small tissue samples. PMID:23644159

  15. The thermodynamic characteristics of solutions of Bu4NI in dimethylsulfoxide over a wide concentration range

    NASA Astrophysics Data System (ADS)

    Safonova, L. P.; Shmukler, L. E.; Kolker, A. M.

    2008-05-01

    The integral heats of solution of Bu4NI in dimethylsulfoxide (DMSO) were measured at 298.15, 313.15, and 328.15 K and concentrations from dilute to saturation. The standard enthalpies and heat capacities of solution and solvation of Bu4NI in DMSO at various temperatures and the bar C_p^o (Bu_4 N^ + ) value at 298.15 K were calculated. The obtained and literature data were used to consider the influence of the nature of solvents on Δsol H m (Bu4NI) and of the electrolyte on Δsol H m in dimethylsulfoxide at 298.15 K. The dynamic viscosity and density of the Bu4NI-DMSO system were determined at various concentrations and temperatures. The Eyring equation was used to calculate the activation energy of viscous flow at all the concentrations studied.

  16. Surfactant and nonlinear drop dynamics in microgravity

    NASA Astrophysics Data System (ADS)

    Jankovsky, Joseph Charles

    2000-11-01

    Large amplitude drop dynamics in microgravity were conducted during the second United States Microgravity Laboratory mission carried onboard the Space Shuttle Columbia (20 October-5 November 1995). Centimeter- sized drops were statically deformed by acoustic radiation pressure and released to oscillate freely about a spherical equilibrium. Initial aspect ratios of up to 2.0 were achieved. Experiments using pure water and varying aqueous concentrations of Triton-X 100 and bovine serum albumin (BSA) were performed. The axisymmetric drop shape oscillations were fit using the degenerate spherical shape modes. The frequency and decay values of the fundamental quadrupole and fourth order shape mode were analyzed. Several large amplitude nonlinear oscillation dynamics were observed. Shape entrainment of the higher modes by the fundamental quadrupole mode occurred. Amplitude- dependent effects were observed. The nonlinear frequency shift, where the oscillation frequency is found to decrease with larger amplitudes, was largely unaffected by the presence of surfactants. The percentage of time spent in the prolate shape over one oscillation cycle was found to increase with oscillation amplitude. This prolate shape bias was also unaffected by the addition of surfactants. These amplitude-dependent effects indicate that the nonlinearities are a function of the bulk properties and not the surface properties. BSA was found to greatly enhance the surface viscoelastic properties by increasing the total damping of the oscillation, while Triton had only a small influence on damping. The surface concentration of BSA was found to be diffusion-controlled over the time of the experiments, while the Triton diffusion rate was very rapid. Using the experimental frequency and decay values, the suface viscoelastic properties of surface dilatational viscosity ( ks ) and surface shear viscosity ( ms ) were found for varying surfactant concentrations using the transcendental equation of Lu & Apfel (1991) and Tian et al. (1997). Values for Triton for concentrations of 0.017 to 2 CMC range from 0.01 to 0.05 surface poise (sp) for ks . For BSA, the fitting of the experimental data was highly sensitive to ms over a wide range of ks . Setting ks = 1 sp for 1 CMC drops ms , was found to increase from 0.07 to 0.28 sp linearly with the square root of time, indicating that surface shear viscosity is proportional to the surface concentration in the diffusion-controlled regime. The same time dependence was found for 2 CMC drops. However, the fitted shear viscosity was nearly half that of the 1 CMC concentration over the same time frame.

  17. Preparation of non-aggregating aqueous fullerenes in highly saline solutions with a biocompatible non-ionic polymer

    NASA Astrophysics Data System (ADS)

    Aich, Nirupam; Boateng, Linkel K.; Flora, Joseph R. V.; Saleh, Navid B.

    2013-10-01

    Size-tunable stable aqueous fullerenes were prepared with different concentrations of biocompatible block-copolymer pluronic (PA) F-127, ranging from 0.001% to 1% (w/v). Size uniformity increased with the increase in PA concentration, yielding optimum 58.8 ± 5.6 and 61.8 ± 5.6 nm nC60s and nC70s, respectively (0.10%w/v PA), as observed using a dynamic light scattering technique. Fullerene aqueous suspensions also manifested enhanced stability in saline solution, Dulbecco’s modified Eagle medium (DMEM), and Roswell Park Memorial Institute (RPMI) culture medium. Transmission electron microscopy was performed to elaborate on the morphology and size specificity of fullerene clusters. Physicochemical characterizations of the suspended fullerenes were performed through UV-vis spectroscopy and electrophoretic mobility measurements. PA molecules showed size restriction by encasement, as observed via molecular dynamics simulations. Such solubilization with controllable size and non-aggregating behavior can facilitate application enhancement and mechanistic environmental and toxicological studies of size-specific fullerenes.

  18. [The study of the role of the water medium in the mechanism of action of peptides in low and ultra low doses].

    PubMed

    Grigor'ev, E I; Khavinson, V Kh; Malinin, V V; Grigor'ev, A E; Kochnev, I N; Kudriavtseva, T A

    2003-01-01

    The correlation between the structures and conformations of short peptides KE, EW, AEDG and other, their influence on the dynamic properties of water and dose/biologic effect dependencies in a wide range of concentrations were regarded. Their effects on the dynamic properties of water were studied by temperature dependencies (5-45 degrees C) of infrared spectra of the solutions in the near (5180 cm-1) and far (200 cm-1). In vitro biotesting included the determination of the proliferative activity of thymocytes, a bimodal curve with the second maximum were detected at super-low doses (10(-17)-10(-15) mol/l). Authors propose a hypothesis that for superlow concentrations the formation and distance transmission of a signal from ligand to a target cell without the formation of any ligand-receptor complex take place. An active role in this model belongs to water medium acting according to the solution mechanism.

  19. Multifunctional structural lithium ion batteries for electrical energy storage applications

    NASA Astrophysics Data System (ADS)

    Javaid, Atif; Zeshan Ali, Muhammad

    2018-05-01

    Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.

  20. Sucrose in Aqueous Solution Revisited: 2. Adaptively Biased Molecular Dynamics Simulations and Computational Analysis of NMR Relaxation

    PubMed Central

    Xia, Junchao; Case, David A.

    2012-01-01

    We report 100 ns molecular dynamics simulations, at various temperatures, of sucrose in water (with concentrations of sucrose ranging from 0.02 to 4 M), and in a 7:3 water-DMSO mixture. Convergence of the resulting conformational ensembles was checked using adaptive-biased simulations along the glycosidic φ and ψ torsion angles. NMR relaxation parameters, including longitudinal (R1) and transverse (R2) relaxation rates, nuclear Overhauser enhancements (NOE), and generalized order parameter (S2) were computed from the resulting time-correlation functions. The amplitude and time scales of molecular motions change with temperature and concentration in ways that track closely with experimental results, and are consistent with a model in which sucrose conformational fluctuations are limited (with 80–90% of the conformations having φ – ψ values within 20° of an average conformation), but with some important differences in conformation between pure water and DMSO-water mixtures. PMID:22058066

  1. Trace explosives sensor testbed (TESTbed)

    NASA Astrophysics Data System (ADS)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  2. Pinch-off dynamics, extensional viscosity and relaxation time of dilute and ultradilute aqueous polymer solutions

    NASA Astrophysics Data System (ADS)

    Biagioli, Madeleine; Dinic, Jelena; Jimenez, Leidy Nallely; Sharma, Vivek

    Free surface flows and drop formation processes present in printing, jetting, spraying, and coating involve the development of columnar necks that undergo spontaneous surface-tension driven instability, thinning, and pinch-off. Stream-wise velocity gradients that arise within the thinning neck create and extensional flow field, which induces micro-structural changes within complex fluids that contribute elastic stresses, changing the thinning and pinch-off dynamics. In this contribution, we use dripping-onto-substrate (DoS) extensional rheometry technique for visualization and analysis of the pinch-off dynamics of dilute and ultra-dilute aqueous polyethylene oxide (PEO) solutions. Using a range of molecular weights, we study the effect of both elasticity and finite extensibility. Both effective relaxation time and the transient extensional viscosity are found to be strongly concentration-dependent even for highly dilute solutions.

  3. Interactions between aerosol absorption, thermodynamics, dynamics, and microphysics and their impacts on a multiple-cloud system

    NASA Astrophysics Data System (ADS)

    Lee, Seoung Soo; Li, Zhanqing; Mok, Jungbin; Ahn, Myoung-Hwan; Kim, Byung-Gon; Choi, Yong-Sang; Jung, Chang-Hoon; Yoo, Hye Lim

    2017-12-01

    This study investigates how the increasing concentration of black carbon aerosols, which act as radiation absorbers as well as agents for the cloud-particle nucleation, affects stability, dynamics and microphysics in a multiple-cloud system using simulations. Simulations show that despite increases in stability due to increasing concentrations of black carbon aerosols, there are increases in the averaged updraft mass fluxes (over the whole simulation domain and period). This is because aerosol-enhanced evaporative cooling intensifies convergence near the surface. This increase in the intensity of convergence induces an increase in the frequency of updrafts with the low range of speeds, leading to the increase in the averaged updraft mass fluxes. The increase in the frequency of updrafts induces that in the number of condensation entities and this leads to more condensation and cloud liquid that acts to be a source of the accretion of cloud liquid by precipitation. Hence, eventually, there is more accretion that offsets suppressed autoconversion, which results in negligible changes in cumulative precipitation as aerosol concentrations increase. The increase in the frequency of updrafts with the low range of speeds alters the cloud-system organization (represented by cloud-depth spatiotemporal distributions and cloud-cell population) by supporting more low-depth clouds. The altered organization in turn alters precipitation spatiotemporal distributions by generating more weak precipitation events. Aerosol-induced reduction in solar radiation that reaches the surface induces more occurrences of small-value surface heat fluxes, which in turn supports the more low-depth clouds and weak precipitation together with the greater occurrence of low-speed updrafts.

  4. Totomatix: a novel automatic set-up to control diurnal, diel and long-term plant nitrate nutrition

    PubMed Central

    Adamowicz, Stéphane; Le Bot, Jacques; Huanosto Magaña, Ruth; Fabre, José

    2012-01-01

    Background Stand-alone nutritional set-ups are useful tools to grow plants at defined nutrient availabilities and to measure nutrient uptake rates continuously, in particular that for nitrate. Their use is essential when the measurements are meant to cover long time periods. These complex systems have, however, important drawbacks, including poor long-term reliability and low precision at high nitrate concentration. This explains why the information dealing with diel dynamics of nitrate uptake rate is scarce and concerns mainly young plants grown at low nitrate concentration. Scope The novel system detailed in this paper has been developed to allow versatile use in growth rooms, greenhouses or open fields at nitrate concentrations ranging from a few micro- to several millimoles per litres. The system controls, at set frequencies, the solution nitrate concentration, pH and volumes. Nitrate concentration is measured by spectral deconvolution of UV spectra. The main advantages of the set-up are its low maintenance (weekly basis), an ability to diagnose interference or erroneous analyses and high precision of nitrate concentration measurements (0·025 % at 3 mm). The paper details the precision of diurnal nitrate uptake rate measurements, which reveals sensitivity to solution volume at low nitrate concentration, whereas at high concentration, it is mostly sensitive to the precision of volume estimates. Conclusions This novel set-up allows us to measure and characterize the dynamics of plant nitrate nutrition at high temporal resolution (minutes to hours) over long-term experiments (up to 1 year). It is reliable and also offers a novel method to regulate up to seven N treatments by adjusting the daily uptake of test plants relative to controls, in variable environments such as open fields and glasshouses. PMID:21985796

  5. Molecular dynamics simulations of dislocations in TlBr crystals under an electrical field

    DOE PAGES

    Zhou, X. W.; Foster, M. E.; Yang, P.; ...

    2016-07-13

    TlBr crystals have superior radiation detection properties; however, their properties degrade in the range of hours to weeks when an operating electrical field is applied. To account for this rapid degradation using the widely-accepted vacancy migration mechanism, the vacancy concentration must be orders of magnitude higher than any conventional estimates. The present work has incorporated a new analytical variable charge model in molecular dynamics (MD) simulations to examine the structural changes of materials under electrical fields. Our simulations indicate that dislocations in TlBr move under electrical fields. As a result, this discovery can lead to new understanding of TlBr agingmore » mechanisms under external fields.« less

  6. Solute load concentrations in some streams in the Upper Osun and Owena drainage basins, central western Nigeria

    NASA Astrophysics Data System (ADS)

    Jeje, L. K.; Ogunkoya, O. O.; Oluwatimilehin, J. M.

    1999-12-01

    The solute load dynamics of 12 third-order streams in central western Nigeria are presented, during storm and non-storm runoff events. The relevance of the Walling and Foster model for explaining storm period solute load dynamics in the humid tropical environment was assessed and it was found that this model was generally applicable to the study area. Exceptions appear to be streams draining settlements and/or farms where fertilizers are applied heavily. The solute load ranged from 5 mg l -1 to 580 mg l -1 with streams draining basins with tree-crop plantations ( Theobroma cacao, Cola sp.) as the dominant land cover having the highest solute load.

  7. Unveiling the complex network of interactions in Ionic Liquids: a combined EXAFS and Molecular Dynamics approach

    NASA Astrophysics Data System (ADS)

    Serva, A.; Migliorati, V.; Lapi, A.; D'Angelo, P.

    2016-05-01

    The structural properties of geminal dicationic ionic liquids ([Cn (mim)2]Br2)/water mixtures have been investigated by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and Molecular Dynamics (MD) simulations. This synergic approach allowed us to assess the reliability of the MD results and to provide accurate structural information about the first coordination shell of the Br- ion. We found that the local environment around the anion changes as a function of the water concentration, while it is the same independently from the length of the bridge-alkyl chain. Moreover, as regards the long-range structural organization, no tail-tail aggregation occurs with increasing alkyl chain length.

  8. Phytotoxic Effects of (±)-Catechin In vitro, in Soil, and in the Field

    PubMed Central

    Inderjit; Pollock, Jarrod L.; Callaway, Ragan M.; Holben, William

    2008-01-01

    Background Exploring the residence time of allelochemicals released by plants into different soils, episodic exposure of plants to allelochemicals, and the effects of allelochemicals in the field has the potential to improve our understanding of interactions among plants. Methodology/Principal Findings We conducted experiments in India and the USA to understand the dynamics of soil concentrations and phytotoxicity of (±)-catechin, an allelopathic compound exuded from the roots of Centaurea maculosa, to other plants in vitro and in soil. Experiments with single and pulsed applications into soil were conducted in the field. Experimental application of (±)-catechin to soils always resulted in concentrations that were far lower than the amounts added but within the range of reported natural soil concentrations. Pulses replenished (±)-catechin levels in soils, but consistently at concentrations much lower than were applied, and even pulsed concentrations declined rapidly. Different natural soils varied substantially in the retention of (±)-catechin after application but consistent rapid decreases in concentrations over time suggested that applied experimental concentrations may overestimate concentrations necessary for phytotoxicity by over an order of magnitude. (±)-Catechin was not phytotoxic to Bambusa arundinacea in natural Indian soil in a single pulse, but soil concentrations at the time of planting seeds were either undetectable or very low. However, a single dose of (±)-catechin suppressed the growth of bamboo in sand, in soil mixed with organic matter, and Koeleria macrantha in soils from Montana and Romania, and in field applications at 40 µg l−1. Multiple pulses of (±)-catechin were inhibitory at very low concentrations in Indian soil. Conclusions/Significance Our results demonstrate that (±)-catechin is highly dynamic in natural soils, but is phytotoxic well below natural concentrations measured in some soils and applied at low concentrations in the field. However, there is substantial conditionality in the effects of the allelochemical. PMID:18648546

  9. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    NASA Astrophysics Data System (ADS)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global warming.

  10. Spatial and temporal variations of metal content and water quality in the Belaya River Basin

    NASA Astrophysics Data System (ADS)

    Fashchevskaia, T. B.; Motovilov, Y.

    2016-12-01

    The aim of this research is to identify the spatiotemporal regularities of iron, copper and zinc contents dynamics in the streams of the Belaya River basin. The Belaya River is situated in the South Ural region and is one of the biggest tributary in the Volga River basin with catchment area of 142 000 km2. More than sixty years the diverse economic activities are carried out in the Belaya River basin, the intensity of this activity is characterized by high temporal variability. The leading industries in the region are oil, mining, petroleum processing, chemistry and petro chemistry, mechanical engineering, metallurgy, power industry. The dynamics of human activities in the catchment and intra and inter-annual changes in the water quality are analyzed for the period 1969-2007 years. Inter-annual dynamics of the metal content in the river waters was identified on the basis of the long-term hydrological monitoring statistics at the 32 sites. It was found that the dynamics of intensity of economic activities in the Belaya River basin is the cause statistically significant changes in the metal content of the river network. Statistically homogeneous time intervals have been set for each monitoring site. Within these time intervals there were obtained averaged reliable quantitative estimations of water quality. Empirical probability distributions of iron, copper and zinc concentrations for various phases of the water regime in all investigated monitoring sites were approximated by Pearson type III curves and the averages of the concentration values, the coefficient of variation and asymmetry, as well as the values of the concentrations of metal in the range of 1-95% of frequency were estimated. It was found that by the end of the test period, the average long-term concentrations for iron and copper exceed MAC for fishery use, for zinc become smaller MAC in many streams of Belaya River basin. Acknowledgements. The work was financially supported by the Russian Foundation for Basic Research (Grant 15-05-09022)

  11. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms.

    PubMed

    Ibrahim, George M; Wong, Simeon M; Anderson, Ryan A; Singh-Cadieux, Gabrielle; Akiyama, Tomoyuki; Ochi, Ayako; Otsubo, Hiroshi; Okanishi, Tohru; Valiante, Taufik A; Donner, Elizabeth; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2014-01-01

    Pathological high frequency oscillations (pHFOs) have been proposed to be robust markers of epileptic cortex. Oscillatory activity below this frequency range has been shown to be modulated by phase of lower frequency oscillations. Here, we tested the hypothesis that dynamic cross-frequency interactions involving pHFOs are concentrated within the epileptogenic cortex. Intracranial electroencephalographic recordings from 17 children with medically-intractable epilepsy secondary to focal cortical dysplasia were obtained. A time-resolved analysis was performed to determine topographic concentrations and dynamic changes in cross-frequency amplitude-to-phase coupling (CFC). CFC between pHFOs and the phase of theta and alpha rhythms was found to be significantly elevated in the seizure-onset zone compared to non-epileptic regions (p<0.01). Data simulations showed that elevated CFC could not be attributed to the presence of sharp transients or other signal properties. The phase of low frequency oscillations at which pHFO amplitudes were maximal was inconsistent at seizure initiation, yet consistently at the trough of the low frequency rhythm at seizure termination. Amplitudes of pHFOs were most significantly modulated by the phase of alpha-band oscillations (p<0.01). These results suggest that increased CFC between pHFO amplitude and alpha phase may constitute a marker of epileptogenic brain areas and may be relevant for understanding seizure dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Particle-based simulations of self-motile suspensions

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2015-11-01

    A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.

  13. Normal modes of weak colloidal gels

    NASA Astrophysics Data System (ADS)

    Varga, Zsigmond; Swan, James W.

    2018-01-01

    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels.

  14. Quantitative Cross-Species Extrapolation between Humans and Fish: The Case of the Anti-Depressant Fluoxetine

    PubMed Central

    Margiotta-Casaluci, Luigi; Owen, Stewart F.; Cumming, Rob I.; de Polo, Anna; Winter, Matthew J.; Panter, Grace H.; Rand-Weaver, Mariann; Sumpter, John P.

    2014-01-01

    Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE) based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis). To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas) were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 µg/L) to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (HTPCs). Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the HTPC range, whereas no effects were observed at plasma concentrations below the HTPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool to guide the assessment of the sensitivity of fish to pharmaceuticals, and strengthens the translational power of the cross-species extrapolation. PMID:25338069

  15. Oligonucleotide-functionalized gold nanoparticles-enhanced QCM-D sensor for mercury(II) ions with high sensitivity and tunable dynamic range.

    PubMed

    Chen, Qiang; Wu, Xiaojie; Wang, Dingzhong; Tang, Wei; Li, Na; Liu, Feng

    2011-06-21

    A quartz crystal microbalance with dissipation monitoring (QCM-D) sensor was developed for highly sensitive and specific detection of mercury(II) ions (Hg(2+)) with a tunable dynamic range, using oligonucleotide-functionalized gold nanoparticles (GNPs) for both frequency and dissipation amplification. The fabrication of the sensor employed a 'sandwich-type' strategy, and formation of T-Hg(2+)-T structures in linker DNA reduced the hybridization of the GNPs-tagged DNA on the gold electrode, which could be used as the molecular switch for Hg(2+) sensing. This QCM-D mercury sensor showed a linear response of 10-200 nM, with detection limits of 4 nM and 7 nM for frequency and dissipation measurements, respectively. Moreover, the dynamic range of the sensor could be tuned by simply altering the concentration of linker DNA without designing new sensors in the cases where detection of Hg(2+) at different levels is required. This sensor afforded excellent selectivity toward Hg(2+) compared with other potential coexisting metal ions. The feasibility of the sensor was demonstrated by analyzing Hg(2+)-spiked tap- and lake-water samples with satisfactory recoveries. The proposed approach extended the application of the QCM-D system in metal ions sensing, and could be adopted for the detection of other analytes when complemented with the use of functional DNA structures.

  16. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane

    PubMed Central

    Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-01-01

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance. PMID:26907291

  17. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-02-20

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  18. Thermal and Denaturation Studies of the Time-Resolved Fluorescence Decay of Human Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Silva, Norberto De Jesus

    Previous studies have shown that time-resolved fluorescence decay of various single tryptophan proteins is best described by a distribution of fluorescence lifetimes rather than one or two lifetimes. The thermal dependence of the lifetime distributions is consistent with the hypothesis that proteins fluctuate between a hierarchy of many conformational substates. With this scenario as a theoretical framework, the correlations between protein dynamic and structure are investigated by studying the time-resolved fluorescence and anisotropy decay of the single tryptophan (Trp) residue of human superoxide dismutase (HSOD) over a wide range of temperatures and at different denaturant concentrations. First, it is demonstrated that the center of the lifetime distribution can characterize the average deactivation environment of the excited Trp-protein system. A qualitative model is introduced to explain the time-resolved fluorescence decay of HSOD in 80% glycerol over a wide range of temperatures. The dynamical model features isoenergetic conformational substates separated by a hierarchy of energy barriers. The HSOD system is also investigated as a function of denaturant concentration in aqueous solution. As a function of guanidine hydrochloride (GdHCl), the width of the fluorescence lifetime distribution of HSOD displays a maximum which is not coincident with the fully denatured form of HSOD at 6.5M GdHCl. Furthermore, the width for the fully denatured form of HSOD is greater than that of the native form. This is consistent with the scenario that more conformational substates are being created upon denaturation of HSOD. HSOD is a dimeric protein and it was observed that the width of the lifetime distribution of HSOD at intermediate GdHCl concentrations increased with decreasing protein concentration. In addition, the secondary structure of HSOD at intermediate GdHCl concentration does not change with protein concentration. These results suggest that HSOD display structural microheterogeneity which is consistent with the hypothesis of conformational substates. Further analysis show that, during denaturation, the monomeric form of HSOD is an intermediate which displays native-like secondary structure and fluctuating tertiary structure; i.e., the monomeric form of HSOD is a molten globule.

  19. (A)biotic processes control soil carbon dynamics: quantitative assessment of model complexity, stability and response to perturbations for improving ESMs

    NASA Astrophysics Data System (ADS)

    Georgiou, K.; Abramoff, R. Z.; Harte, J.; Riley, W. J.; Torn, M. S.

    2016-12-01

    As global temperatures and atmospheric CO2 concentrations continue to increase, soil microbial activity and decomposition of soil organic matter (SOM) are expected to follow suit, potentially limiting soil carbon storage. Traditional global- and ecosystem-scale models simulate SOM decomposition using linear kinetics, which are inherently unable to reproduce carbon-concentration feedbacks, such as priming of native SOM at elevated CO2 concentrations. Recent studies using nonlinear microbial models of SOM decomposition seek to capture these interactions, and several groups are currently integrating these microbial models into Earth System Models (ESMs). However, despite their widespread ability to exhibit nonlinear responses, these models vary tremendously in complexity and, consequently, dynamics. In this study, we explore, both analytically and numerically, the emergent oscillatory behavior and insensitivity of SOM stocks to carbon inputs that have been deemed `unrealistic' in recent microbial models. We discuss the sources of instability in four models of varying complexity, by sequentially reducing complexity of a detailed model that includes microbial physiology, a mineral sorption isotherm, and enzyme dynamics. We also present an alternative representation of microbial turnover that limits population sizes and, thus, reduces oscillations. We compare these models to several long-term carbon input manipulations, including the Detritus Input and Removal Treatment (DIRT) experiments, to show that there are clear metrics that can be used to distinguish and validate the inherent dynamics of each model structure. We find that traditional linear and nonlinear models cannot readily capture the range of long-term responses observed across the DIRT experiments as a direct consequence of their model structures, and that modifying microbial turnover results in more realistic predictions. Finally, we discuss our findings in the context of improving microbial model behavior for inclusion in ESMs.

  20. Landslides and Volcanoes: Fingerprinting Erosional Processes on a tropical island, Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Tomenchok, K.; Hill, M.; Jimerson, C.; Talbot-Wendlandt, , H.; Schmidt, A.; Frey, H. M.

    2017-12-01

    With 9 active volcanic centers, frequent tropical storms, and widespread landslides, the topography of Dominica is rugged and dynamic. This study aims to fingerprint sediment source dynamics in this relatively unstudied region with fallout radionuclides, clay mineralogy, and acid-extractable grain coating concentration measured in detrital sediments. We also aim to measure basin average erosion rates and determine river incision rates into the underlying ignimbrites. Baseline data on the effects of volcanoes, landslides, land use, and topography in setting erosional dynamics will be established. We sampled outlets of 20 large (>10 km2) rivers as well as 11 points in the Roseau River watershed for a network analysis. Block and ash flows and ignimbrites underlie 89% of the study area. Steep topography (mean slope = 19.6˚) and high levels of rainfall (mean annual rainfall = 1981.41 mm) are consistent throughout the 89% forested island. 934 landslides affect 13% of the study area. We hypothesize that basin average parameters and landslide frequency will correlate with erosion rates and fallout radionuclide activities. In addition, we used topographic data and published ignimbrite ages to calculate river incision rates that ranged from 0.448 - 113.9 mm/yr in the north and 0.86 - 44 mm/yr in the south. Basin average erosion rates will be compared to incision rates to quantify differences between basin wide erosional and river incision processes. We will fingerprint sediment sources with 7Be, 210Pbex, and 137Cs, concentration of grain coatings, and clay mineralogy. We hypothesize that watersheds with erosion from stabilizing landslide scars will have high 7Be, low 210Pbex and 137Cs, low concentrations of grain coatings, and less weathered clays. Watersheds with river bank/scarp erosion or active landslides will have little 7Be, 210Pbex, and 137Cs, less weathered clays, and low concentrations of grain coatings. Watersheds with widespread surface erosion will have high activities, weathered clays, and high concentrations of grain coatings. We will correlate basin average statistics with measured fingerprints to provide a better understanding of sediment source dynamics in an understudied region of the world. With the potential for future landslides, further information will advance hazard mitigation in Dominica.

  1. A dynamic dilution system-based evaluation of the procedure adopted for determining ozone precursor volatile compounds.

    PubMed

    Palluau, Fabienne; Mirabel, Philippe; Millet, Maurice

    2005-02-01

    A dynamic dilution system was created to evaluate the performance and the reliability of ozone precursor volatile organic compound (VOC) sampling ("TO-Can" canisters) and analysis (thermal desorption/gas chromatography/flame ionisation detection) techniques used by the "Laboratoire Interregional de Chimie du Grand Est (LIC)". Different atmospheres of VOCs were generated at concentrations between 0.8 and 25 ppb, with temperatures of 0, 10, 20 and 30 degrees C, and with relative humidities of 0, 30, 50, 70 and 90%. These conditions are generally representative of those commonly observed in ambient air in the eastern France. This dynamic dilution allows the simulation of a wide range of scenarios (concentrations, temperatures and relative humidities). After assessing the capacity and performance of the system, it was applied in order to evaluate the recoveries and stabilities of VOCs from canisters used for the collection and analysis of two mixtures of VOCs. The first mixture contained six alkanes (ethane, propane, butane, pentane, hexane and heptane), and the second contained five alkenes (ethene, propene, butene, 1-pentene and 1-hexene), five aromatics (benzene, toluene, ethylbenzene, m-xylene and o-xylene), acetylene, and 1,3-butadiene. No significant losses of alkanes from the canisters were observed after 21 days of storage, and good recoveries of alkanes from the canisters (>80%) were obtained regardless of the concentration, the temperature and the relative humidity. However, losses of certain aromatics were noted at low relative humidity.

  2. Effects of cross-linking on partitioning of nanoparticles into a polymer brush: Coarse-grained simulations test simple approximate theories

    NASA Astrophysics Data System (ADS)

    Ozmaian, Masoumeh; Jasnow, David; Eskandari Nasrabad, Afshin; Zilman, Anton; Coalson, Rob D.

    2018-01-01

    The effect of cohesive contacts or, equivalently, dynamical cross-linking on the equilibrium morphology of a polymer brush infiltrated by nanoparticles that are attracted to the polymer strands is studied for plane-grafted brushes using coarse-grained molecular dynamics and approximate statistical mechanical models. In particular, the Alexander-de Gennes (AdG) and Strong Stretching Theory (SST) mean-field theory (MFT) models are considered. It is found that for values of the MFT cross-link strength interaction parameter beyond a certain threshold, both AdG and SST models predict that the polymer brush will be in a compact state of nearly uniform density packed next to the grafting surface over a wide range of solution phase nanoparticle concentrations. Coarse grained molecular dynamics simulations confirm this prediction, for both small nanoparticles (nanoparticle volume = monomer volume) and large nanoparticles (nanoparticle volume = 27 × monomer volume). Simulation results for these cross-linked systems are compared with analogous results for systems with no cross-linking. At the same solution phase nanoparticle concentration, strong cross-linking results in additional compression of the brush relative to the non-crosslinked analog and, at all but the lowest concentrations, to a lesser degree of infiltration by nanoparticles. For large nanoparticles, the monomer density profiles show clear oscillations moving outwards from the grafting surface, corresponding to a degree of layering of the absorbed nanoparticles in the brush as they pack against the grafting surface.

  3. The distribution of persistent organic pollutants in a trophically complex Antarctic ecosystem model

    NASA Astrophysics Data System (ADS)

    Bates, Michael L.; Bengtson Nash, Susan M.; Hawker, Darryl W.; Shaw, Emily C.; Cropp, Roger A.

    2017-06-01

    Despite Antarctica's isolation from human population centres, persistent organic pollutants (POPs) are transported there via long range atmospheric transport and subsequently cold-trapped. The challenging nature of working in the Antarctic environment greatly limits our ability to monitor POP concentrations and understand the processes that govern the distribution of POPs in Antarctic ecosystems. Here we couple a dynamic, trophically complex biological model with a fugacity model to investigate the distribution of hexachlorobenzene (HCB) in a near-shore Antarctic ecosystem. Using this model we examine the steady-state, and annual cycle of HCB concentration in the atmosphere, ocean, sediment, detritus, and 21 classes of biota that span from primary producers to apex predators. The scope and trophic resolution of our model allows us to examine POP pathways through the ecosystem. In our model the main pathway of HCB to upper trophic species is via pelagic communities, with relatively little via benthic communities. Using a dynamic ecosystem model also allows us to examine the seasonal and potential climate change induced changes in POP distribution. We show that there is a large annual cycle in concentration in the planktonic communities, which may have implications for biomagnification factors calculated from observations. We also examine the direct effects of increasing temperature on the redistribution of HCB in a changing climate and find that it is likely minor compared to other indirect effects, such as changes in atmospheric circulation, sea ice dynamics, and changes to the ecosystem itself.

  4. Assessment of analytical methods to determine pyrethroids content of bednets.

    PubMed

    Castellarnau, Marc; Ramón-Azcón, Javier; Gonzalez-Quinteiro, Yolanda; López, Jordi F; Grimalt, Joan O; Marco, María-Pilar; Nieuwenhuijsen, Mark; Picado, Albert

    2017-01-01

    To present and evaluate simple, cost-effective tests to determine the amount of insecticide on treated materials. We developed and evaluated a competitive immunoassay on two different platforms: a label-free impedimetric biosensor (EIS biosensor) and a lateral flow. Both approaches were validated by gas chromatography (GC) and ELISA, gold standards for analytical methods and immunoassays, respectively. Finally, commercially available pyrethroid-treated ITN samples were analysed. Different extraction methods were evaluated. Insecticide extraction by direct infusion of the ITN samples with dichloromethane and dioxane showed recovery efficiencies around 100% for insecticide-coated bednets, and >70% for insecticide-incorporated bednets. These results were comparable to those obtained with standard sonication methods. The competitive immunoassay characterisation with ELISA presented a dynamic range between 12 nm and 1.5 μm (coefficient of variation (CV) below 5%), with an IC 50 at 138 nm, and a limit of detection (LOD) of 3.2 nm. EIS biosensor had a linear range between 1.7 nm and 61 nm (CV around 14%), with an IC 50 at 10.4 nm, and a LOD of 0.6 nm. Finally, the lateral flow approach showed a dynamic range between 150 nm and 1.5 μm, an IC 50 at 505 nm and a LOD of 67 nm. ELISA can replace chromatography as an accurate laboratory technique to determine insecticide concentration in bednets. The lateral flow approach developed can be used to estimate ITN insecticide concentration in the field. This new technology, coupled to the new extraction methods, should provide reliable guidelines for ITN use and replacement in the field. © 2016 John Wiley & Sons Ltd.

  5. Using ToxCast data to reconstruct dynamic cell state trajectories and estimate toxicological points of departure.

    EPA Pesticide Factsheets

    Background: High-content imaging (HCI) allows simultaneous measurement of multiple cellular phenotypic changes and is an important tool for evaluating the biological activity of chemicals.Objectives: Our goal was to analyze dynamic cellular changes using HCI to identify the ??tipping point?? at which the cells did not show recovery towards a normal phenotypic state.Methods: HCI was used to evaluate the effects of 967 chemicals (in concentrations ranging from 0.4 to 200 03bcM) on HepG2 cells over a 72-hr exposure period. The HCI end points included p53, c-Jun, histone H2A.x, 03b1-tubulin, histone H3, alpha tubulin, mitochondrial membrane potential, mitochondrial mass, cell cycle arrest, nuclear size, and cell number. A computational model was developed to interpret HCI responses as cell-state trajectories.Results: Analysis of cell-state trajectories showed that 336 chemicals produced tipping points and that HepG2 cells were resilient to the effects of 334 chemicals up to the highest concentration (200 03bcM) and duration (72 hr) tested. Tipping points were identified as concentration-dependent transitions in system recovery, and the corresponding critical concentrations were generally between 5 and 15 times (25th and 75th percentiles, respectively) lower than the concentration that produced any significant effect on HepG2 cells. The remaining 297 chemicals require more data before they can be placed in either of these categories.Conclusions: These findings show t

  6. Nonlinear dynamic range transformation in visual communication channels.

    PubMed

    Alter-Gartenberg, R

    1996-01-01

    The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.

  7. Steady and dynamic shear rheological behavior of semi dilute Alyssum homolocarpum seed gum solutions: influence of concentration, temperature and heating-cooling rate.

    PubMed

    Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak

    2018-05-01

    Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Hydrological mobilization of mercury and dissolved organic carbon in a snow-dominated, forested watershed: Conceptualization and modeling

    USGS Publications Warehouse

    Schelker, J.; Burns, Douglas A.; Weiler, M.; Laudon, H.

    2011-01-01

    The mobilization of mercury and dissolved organic carbon (DOC) during snowmelt often accounts for a major fraction of the annual loads. We studied the role of hydrological connectivity of riparian wetlands and upland/wetland transition zones to surface waters on the mobilization of Hg and DOC in Fishing Brook, a headwater of the Adirondack Mountains, New York. Stream water total mercury (THg) concentrations varied strongly (mean = 2.25 ?? 0.5 ng L -1), and the two snowmelt seasons contributed 40% (2007) and 48% (2008) of the annual load. Methyl mercury (MeHg) concentrations ranged up to 0.26 ng L-1, and showed an inverse log relationship with discharge. TOPMODEL-simulated saturated area corresponded well with wetland areas, and the application of a flow algorithm based elevation-above-creek approach suggests that most wetlands become well connected during high flow. The dynamics of simulated saturated area and soil storage deficit were able to explain a large part of the variation of THg concentrations (r2 = 0.53 to 0.72). In contrast, the simulations were not able to explain DOC variations and DOC and THg concentrations were not correlated. These results indicate that all three constituents, THg, MeHg, and DOC, follow different patterns at the outlet: (1) the mobilization of THg is primarily controlled by the saturation state of the catchment, (2) the dilution of MeHg suggests flushing from a supply limited pool, and (3) DOC dynamics follow a pattern different from THg dynamics, which likely results from differing gain and/or loss processes for THg and/or DOC within the Fishing Brook catchment. Copyright 2011 by the American Geophysical Union.

  9. Evaluation of detector dynamic range in the x-ray exposure domain in mammography: a comparison between film-screen and flat panel detector systems.

    PubMed

    Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V

    2003-10-01

    Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.

  10. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  11. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    NASA Astrophysics Data System (ADS)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  12. Using ToxCast data to reconstruct dynamic cell state ...

    EPA Pesticide Factsheets

    AbstractBackground. High-throughput in vitro screening is an important tool for evaluating the potential biological activity of the thousands of existing chemicals in commerce and the hundreds more introduced each year. Among the assay technologies available, high-content imaging (HCI) allows multiplexed measurements of cellular phenotypic changes induced by chemical exposures. For a large chemical inventory having limited concentration-time series data, the deconvolution of cellular response profiles into transitive or irrevocable state trajectories is an important consideration. Objectives. Our goal was to analyze temporal and concentration-related cellular changes measured using HCI to identify the “tipping point” at which the cells did not show recovery towards a normal phenotypic state. Methods. The effects of 976 chemicals (ToxCast Phase I and II) were evaluated using HCI as a function of concentration and time in HepG2 cells over a 72-hr exposure period to concentrations ranging from 0.4- to 200 µM. The cellular endpoints included nuclear p53 accumulation, JNK, markers of oxidative stress, cytoskeletal changes, mitochondrial energization and density, cell viability and cell cycle progression. A novel computational model was developed to interpret dynamic multidimensional system responses as cell-state trajectories. Results. Analysis of cell-state trajectories showed that HepG2 cells were resilient to the effects of 178 chemicals up to the highest co

  13. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    PubMed Central

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2015-01-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin’s lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides. PMID:25642134

  14. The temporal dynamics of carbon dioxide under snow in a high elevation Rocky Mountain subalpine forest and meadow

    Treesearch

    R. C. Musselman; W. J. Massman; J. M. Frank; J. L. Korfmacher

    2005-01-01

    Carbon dioxide (CO2) concentration under snow was examined through two winter seasons at a 3100 m elevation subalpine site in the Snowy Range of Wyoming. CO2 was monitored every half hour at the soil/snow interface, and at about 25 cm soil depth the second year, in a meadow and in an adjacent forest. CO2 under snow in the meadow was significantly higher than that in...

  15. Construction and modelling of an inducible positive feedback loop stably integrated in a mammalian cell-line.

    PubMed

    Siciliano, Velia; Menolascina, Filippo; Marucci, Lucia; Fracassi, Chiara; Garzilli, Immacolata; Moretti, Maria Nicoletta; di Bernardo, Diego

    2011-06-01

    Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL) by generating a clonal population of mammalian cells (CHO) carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA), whose expression is regulated by a tTA responsive promoter (CMV-TET), thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP), thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL), by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off), and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the "switch off" times, as compared to the non-autoregulated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour.

  16. Efficient dynamic events discrimination technique for fiber distributed Brillouin sensors.

    PubMed

    Galindez, Carlos A; Madruga, Francisco J; Lopez-Higuera, Jose M

    2011-09-26

    A technique to detect real time variations of temperature or strain in Brillouin based distributed fiber sensors is proposed and is investigated in this paper. The technique is based on anomaly detection methods such as the RX-algorithm. Detection and isolation of dynamic events from the static ones are demonstrated by a proper processing of the Brillouin gain values obtained by using a standard BOTDA system. Results also suggest that better signal to noise ratio, dynamic range and spatial resolution can be obtained. For a pump pulse of 5 ns the spatial resolution is enhanced, (from 0.541 m obtained by direct gain measurement, to 0.418 m obtained with the technique here exposed) since the analysis is concentrated in the variation of the Brillouin gain and not only on the averaging of the signal along the time. © 2011 Optical Society of America

  17. Dynamic effective properties of heterogeneous geological formations with spherical inclusions under periodic time variations

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.; Dagan, G.; Miloh, T.

    2013-04-01

    In unsteady groundwater flow (or similar processes of heat/electrical conduction), the heterogeneous medium structure is characterized by two random properties, the conductivity K and the specific storativity S. The average head field ⟨H ⟩and the associated effective properties Kef, Sef are determined for a layer with a periodic head drop between boundaries, such that H is periodic in time, and a medium made up of a matrix with a dilute concentration of spherical inclusions. In the common quasi-steady approximation, Kef is equal to the classical steady solution while Sef = SA, the arithmetic mean. We derive expressions for the frequency dependent Kef, Sef, which are generally complex, i.e., dynamic. The main result is the delineation of the ranges of the parameters: dimensionless frequency (ω) and contrasts of conductivity (κ) and storativity (s) between the matrix and the inclusions, for which dynamic effects are significant.

  18. Sulfation effect on levan polysaccharide chains structure with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Coskunkan, Binnaz; Turgut, Deniz; Rende, Deniz; Malta, Seyda; Baysal, Nihat; Ozisik, Rahmi; Toksoy-Oner, Ebru

    Diversity in conformations and structural heterogeneity make polysaccharides the most challenging biopolymer type for experimental and theoretical characterization studies. Levan is a biopolymer chain that consists of fructose rings with β(2-6) linkages. It is a glycan that has great potential as a functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Sulfated polysaccharides are group of macromolecules with sulfated groups in their hydroxyl parts with a range of important biological properties. Sulfate groups and their positions have a major effect on anticoagulant activity. It is reported that sulfate modified levan has anticoagulant activity such as heparin. In the current study, the effect of sulfation on the structure and dynamics of unmodified and sulfate modified levan are investigated via fully atomistic Molecular Dynamics simulations in aqueous media and varying salt concentrations at 310 K. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  19. Stability and dynamics of membrane-spanning DNA nanopores

    NASA Astrophysics Data System (ADS)

    Maingi, Vishal; Burns, Jonathan R.; Uusitalo, Jaakko J.; Howorka, Stefan; Marrink, Siewert J.; Sansom, Mark S. P.

    2017-03-01

    Recently developed DNA-based analogues of membrane proteins have advanced synthetic biology. A fundamental question is how hydrophilic nanostructures reside in the hydrophobic environment of the membrane. Here, we use multiscale molecular dynamics (MD) simulations to explore the structure, stability and dynamics of an archetypical DNA nanotube inserted via a ring of membrane anchors into a phospholipid bilayer. Coarse-grained MD reveals that the lipids reorganize locally to interact closely with the membrane-spanning section of the DNA tube. Steered simulations along the bilayer normal establish the metastable nature of the inserted pore, yielding a force profile with barriers for membrane exit due to the membrane anchors. Atomistic, equilibrium simulations at two salt concentrations confirm the close packing of lipid around of the stably inserted DNA pore and its cation selectivity, while revealing localized structural fluctuations. The wide-ranging and detailed insight informs the design of next-generation DNA pores for synthetic biology or biomedicine.

  20. In-depth characterization of the fluorescent signal of HyPer, a probe for hydrogen peroxide, in bacteria exposed to external oxidative stress.

    PubMed

    Lim, Joseph B; Barker, Kimberly A; Huang, Beijing K; Sikes, Hadley D

    2014-11-01

    Genetically encoded, fluorescent biosensors have been developed to probe the activities of various signaling molecules inside cells ranging from changes in intracellular ion concentrations to dynamics of lipid second messengers. HyPer is a member of this class of biosensors and is the first to dynamically respond to hydrogen peroxide (H2O2), a reactive oxygen species that functions as a signaling molecule. However, detailed characterization of HyPer's signal is not currently available within the context of bacteria exposed to external oxidative stress, which occurs in the immunological response of higher organisms against invasive pathogenic bacteria. Here, we performed this characterization, specifically in Escherichia coli exposed to external H2O2. We found that the temporal behavior of the signal does not correspond exactly to peroxide concentration in the system as a function of time and expression of the sensor decreases the peroxide scavenging activity of the cell. We also determined the effects of cell number, both before and after normalization of externally added H2O2 to the number of cells. Finally, we report quantitative characteristics of HyPer's signal in this context, including the dynamic range of the signal, the signal-to-noise ratio, and the half saturation constant. These parameters show statistically meaningful differences in signal between two commonly used strains of E. coli, demonstrating how signal can vary with strain. Taken together, our results establish a systematic, quantitative framework for researchers seeking to better understand the role of H2O2 in the immunological response against bacteria, and for understanding potential differences in the details of HyPer's quantitative performance across studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed

    USGS Publications Warehouse

    Schuster, P.F.; Shanley, J.B.; Marvin-DiPasquale, M.; Reddy, M.M.; Aiken, G.R.; Roth, D.A.; Taylor, Howard E.; Krabbenhoft, D.P.; DeWild, J.F.

    2008-01-01

    Mercury and organic carbon concentrations vary dynamically in streamwater at the Sleepers River Research Watershed in Vermont, USA. Total mercury (THg) concentrations ranged from 0.53 to 93.8 ng/L during a 3-year period of study. The highest mercury (Hg) concentrations occurred slightly before peak flows and were associated with the highest organic carbon (OC) concentrations. Dissolved Hg (DHg) was the dominant form in the upland catchments; particulate Hg (PHg) dominated in the lowland catchments. The concentration of hydrophobic acid (HPOA), the major component of dissolved organic carbon (DOC), explained 41-98% of the variability of DHg concentration while DOC flux explained 68-85% of the variability in DHg flux, indicating both quality and quantity of the DOC substantially influenced the transport and fate of DHg. Particulate organic carbon (POC) concentrations explained 50% of the PHg variability, indicating that POC is an important transport mechanism for PHg. Despite available sources of DHg and wetlands in the upland catchments, dissolved methylmercury (DmeHg) concentrations in streamwaters were below detection limit (0.04 ng/L). PHg and particulate methylmercury (PmeHg) had a strong positive correlation (r 2 = 0.84, p < 0.0001), suggesting a common source; likely in-stream or near-stream POC eroded or re-suspended during spring snowmelt and summer storms. Ratios of PmeHg to THg were low and fairly constant despite an apparent higher methylmercury (meHg) production potential in the summer. Methylmercury production in soils and stream sediments was below detection during snowmelt in April and highest in stream sediments (compared to forest and wetland soils) sampled in July. Using the watershed approach, the correlation of the percent of wetland cover to TmeHg concentrations in streamwater indicates that poorly drained wetland soils are a source of meHg and the relatively high concentrations found in stream surface sediments in July indicate these zones are a meHg sink. ?? 2007 Springer Science+Business Media B.V.

  2. Laser trapping-induced crystallization of L-phenylalanine through its high-concentration domain formation.

    PubMed

    Yuyama, Ken-ichi; Wu, Chi-Shiun; Sugiyama, Teruki; Masuhara, Hiroshi

    2014-02-01

    We present the laser trapping-induced crystallization of L-phenylalanine through high-concentration domain formation in H2O and D2O solutions which is achieved by focusing a continuous-wave (CW) near-infrared laser beam at the solution surface. Upon laser irradiation into the H2O solution, laser trapping of the liquid-like clusters increases the local concentration, accompanying laser heating, and a single plate-like crystal is eventually prepared at the focal spot. On the other hand, in the D2O solution, a lot of the monohydrate needle-like crystals are observed, not at the focal spot where the concentration is high enough to trigger crystal nucleation, but in the 0.5-1.5 mm range from the focal spot. The dynamics and mechanism of the amazing crystallization behaviour induced by laser trapping are discussed from the viewpoints of the concentration increase due to laser heating depending on solvent, the large high-concentration domain formation by laser trapping of liquid-like clusters, and the orientational disorder of molecules/clusters at the domain edge.

  3. Photothermal laser deflection, an innovative technique to measure particles in exhausts

    NASA Astrophysics Data System (ADS)

    Hess, Cecil F.

    1993-10-01

    Photothermal Laser Deflection (PLD) is an analytical technique to measure in real-time the mass concentration of particles and gaseous exhaust pollutants in a variety of combustion devices (e.g., gas turbine engines and rockets). PLD uses a pump laser to locally heat the particle or gaseous species, thus changing the refractive index of the surrounding gas to form a thermal lens. A probe laser beam travelling through the thermal lens is temporarily deflected, and the amount of deflection is proportional to the species mass concentration. The experiments and analyses conducted during phase 1 demonstrated the feasibility of PLD in measuring the mass concentration of both soot particles and NO2 at a repetition rate of 25 HZ. PLD response was linear at soot concentrations from 0.3 to 10 mg/cubic meters at NO2 concentrations from approximately 6 to 208 ppm. Strategies to measure lower concentrations have been defined and include focusing the probe beam onto the face of the bi-cell detector. The large dynamic range, fast acquisition rate, and ability to measure particulate and gaseous pollutants makes PLD superior to other available methods.

  4. Hardware-in-the-loop projector system for light detection and ranging sensor testing

    NASA Astrophysics Data System (ADS)

    Kim, Hajin J.; Naumann, Charles B.; Cornell, Michael C.

    2012-08-01

    Efforts in developing a synthetic environment for testing light detection and ranging (LADAR) sensors in a hardware-in-the-loop simulation are continuing at the Aviation and Missile Research, Engineering, and Development Center of the U.S. Army Research, Engineering and Development Command (RDECOM). Current activities have concentrated on evaluating the optical projection techniques for the LADAR synthetic environment. Schemes for generating the optical signals representing the individual pixels of the projection are of particular interest. Several approaches have been investigated and tested with emphasis on operating wavelength, intensity dynamic range and uniformity, and flexibility in pixel waveform generation. This paper will discuss some of the results from these current efforts at RDECOM's System Simulation and Development Directorate's Electro Optical Technology Development Laboratory.

  5. Sediment dynamics in a large shallow lake characterized by seasonal flood pulse in Southeast Asia.

    PubMed

    Siev, Sokly; Yang, Heejun; Sok, Ty; Uk, Sovannara; Song, Layheang; Kodikara, Dilini; Oeurng, Chantha; Hul, Seingheng; Yoshimura, Chihiro

    2018-08-01

    Most of studies on sediment dynamics in stable shallow lakes focused on the resuspension process as it is the dominant process. However, understanding of sediment dynamics in a shallow lake influenced by flood pulse is unclear. We tested a hypothesis that floodplain vegetation plays as a significant role in lessening the intensity of resuspension process in a shallow lake characterized by the flood pulse system. Therefore, this study aimed to investigate sediment dynamics in this type of shallow lake. The target was Tonle Sap Lake (TSL), which is a large shallow lake influenced by a flood pulse system of Mekong River located in Southeast Asia. An extensive and seasonal sampling survey was conducted to measure total suspended solid (TSS) concentrations, sedimentation and resuspension rates in TSL and its 4 floodplain areas. The study revealed that sedimentation process was dominant (TSS ranged: 3-126mgL -1 ) in the high water period (September-December) while resuspension process was dominant (TSS ranged: 4-652mgL -1 ) only in the low water period (March-June). In addition, floodplain vegetation reduced the resuspension of sediment (up to 26.3%) in water. The implication of the study showed that resuspension is a seasonally dominant process in shallow lake influenced by the flood pulse system at least for the case of TSL. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Myers, M. T.; Charnvanichborikarn, S.

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependencemore » of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ∼4–13 ms and a diffusion length of ∼15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  7. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  8. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE PAGES

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...

    2015-10-06

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  9. Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations

    PubMed Central

    McDowell, S. Elizabeth; Jun, Jesse M.; Walter, Nils G.

    2010-01-01

    Enzymes generally are thought to derive their functional activity from conformational motions. The limited chemical variation in RNA suggests that such structural dynamics may play a particularly important role in RNA function. Minimal hammerhead ribozymes are known to cleave efficiently only in ∼10-fold higher than physiologic concentrations of Mg2+ ions. Extended versions containing native loop–loop interactions, however, show greatly enhanced catalytic activity at physiologically relevant Mg2+ concentrations, for reasons that are still ill-understood. Here, we use Mg2+ titrations, activity assays, ensemble, and single molecule fluorescence resonance energy transfer (FRET) approaches, combined with molecular dynamics (MD) simulations, to ask what influence the spatially distant tertiary loop–loop interactions of an extended hammerhead ribozyme have on its structural dynamics. By comparing hammerhead variants with wild-type, partially disrupted, and fully disrupted loop–loop interaction sequences we find that the tertiary interactions lead to a dynamic motional sampling that increasingly populates catalytically active conformations. At the global level the wild-type tertiary interactions lead to more frequent, if transient, encounters of the loop-carrying stems, whereas at the local level they lead to an enrichment in favorable in-line attack angles at the cleavage site. These results invoke a linkage between RNA structural dynamics and function and suggest that loop–loop interactions in extended hammerhead ribozymes—and Mg2+ ions that bind to minimal ribozymes—may generally allow more frequent access to a catalytically relevant conformation(s), rather than simply locking the ribozyme into a single active state. PMID:20921269

  10. Particulate matter dynamics in naturally ventilated freestall dairy barns

    NASA Astrophysics Data System (ADS)

    Joo, H. S.; Ndegwa, P. M.; Heber, A. J.; Ni, J.-Q.; Bogan, B. W.; Ramirez-Dorronsoro, J. C.; Cortus, E. L.

    2013-04-01

    Particulate matter (PM) concentrations and ventilation rates, in two naturally ventilated freestall dairy barns, were continuously monitored for two years. The first barn (B1) housed 400 fresh lactating cows, while the second barn (B2) housed 835 non-fresh lactating cows and 15 bulls. The relationships between PM concentrations and accepted governing parameters (environmental conditions and cattle activity) were examined. In comparison with other seasons, PM concentrations were lowest in winter. Total suspended particulate (TSP) concentrations in spring and autumn were relatively higher than those in summer. Overall: the concentrations in the barns and ambient air, for all the PM categories (PM2.5, PM10, and TSP), exhibited non-normal positively skewed distributions, which tended to overestimate mean or average concentrations. Only concentrations of PM2.5 and PM10 increased with ambient air temperature (R2 = 0.60-0.82), whereas only concentrations of TSP increased with cattle activity. The mean respective emission rates of PM2.5, PM10, and TSP for the two barns ranged between 1.6-4.0, 11.9-15.0, and 48.7-52.5 g d-1 cow-1, indicating similar emissions from the two barns.

  11. Primary weathering rates, water transit times, and concentration-discharge relations: A theoretical analysis for the critical zone

    NASA Astrophysics Data System (ADS)

    Ameli, Ali A.; Beven, Keith; Erlandsson, Martin; Creed, Irena F.; McDonnell, Jeffrey J.; Bishop, Kevin

    2017-01-01

    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flow path dynamics drive the spatiotemporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flow paths are complex and difficult to map quantitatively. Here we couple a new integrated flow and particle tracking transport model with a general reversible Transition State Theory style dissolution rate law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration (Ceq) to intrinsic weathering rate (Rmax), vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As CeqRmax decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behavior, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as CeqRmax decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time).

  12. Biologically inspired dynamic material systems.

    PubMed

    Studart, André R

    2015-03-09

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An In Situ Method for Sizing Insoluble Residues in Precipitation and Other Aqueous Samples

    PubMed Central

    Axson, Jessica L.; Creamean, Jessie M.; Bondy, Amy L.; Capracotta, Sonja S.; Warner, Katy Y.; Ault, Andrew P.

    2015-01-01

    Particles are frequently incorporated into clouds or precipitation, influencing climate by acting as cloud condensation or ice nuclei, taking up coatings during cloud processing, and removing species through wet deposition. Many of these particles, particularly ice nuclei, can remain suspended within cloud droplets/crystals as insoluble residues. While previous studies have measured the soluble or bulk mass of species within clouds and precipitation, no studies to date have determined the number concentration and size distribution of insoluble residues in precipitation or cloud water using in situ methods. Herein, for the first time we demonstrate that Nanoparticle Tracking Analysis (NTA) is a powerful in situ method for determining the total number concentration, number size distribution, and surface area distribution of insoluble residues in precipitation, both of rain and melted snow. The method uses 500 μL or less of liquid sample and does not require sample modification. Number concentrations for the insoluble residues in aqueous precipitation samples ranged from 2.0–3.0(±0.3)×108 particles cm−3, while surface area ranged from 1.8(±0.7)–3.2(±1.0)×107 μm2 cm−3. Number size distributions peaked between 133–150 nm, with both single and multi-modal character, while surface area distributions peaked between 173–270 nm. Comparison with electron microscopy of particles up to 10 μm show that, by number, > 97% residues are <1 μm in diameter, the upper limit of the NTA. The range of concentration and distribution properties indicates that insoluble residue properties vary with ambient aerosol concentrations, cloud microphysics, and meteorological dynamics. NTA has great potential for studying the role that insoluble residues play in critical atmospheric processes. PMID:25705069

  14. Dynamic behavior of tripolar hip endoprostheses under physiological conditions and their effect on stability.

    PubMed

    Fabry, Christian; Kaehler, Michael; Herrmann, Sven; Woernle, Christoph; Bader, Rainer

    2014-01-01

    Tripolar systems have been implanted to reduce the risk of recurrent dislocation. However, there is little known about the dynamic behavior of tripolar hip endoprostheses under daily life conditions and achieved joint stability. Hence, the objective of this biomechanical study was to examine the in vivo dynamics and dislocation behavior of two types of tripolar systems compared to a standard total hip replacement (THR) with the same outer head diameter. Several load cases of daily life activities were applied to an eccentric and a concentric tripolar system by an industrial robot. During testing, the motion of the intermediate component was measured using a stereo camera system. Additionally, their behavior under different dislocation scenarios was investigated in comparison to a standard THR. For the eccentric tripolar system, the intermediate component demonstrated the shifting into moderate valgus-positions, regardless of the type of movement. This implant showed the highest resisting torque against dislocation in combination with a large range of motion. In contrast, the concentric tripolar system tended to remain in varus-positions and was primarily moved after stem contact. According to the results, eccentric tripolar systems can work well under in vivo conditions and increase hip joint stability in comparison to standard THRs. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Dissipative particle dynamics: Effects of thermostating schemes on nano-colloid electrophoresis

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Afrouzi, Hamid; Moshfegh, Abouzar; Farhadi, Mousa; Sedighi, Kurosh

    2018-05-01

    A novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced in the present study to model the electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Performance of various thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field (0 . 072 < E < 0 . 361 v/nm) covering linear to non-linear response regime, and ionic salt concentration (0.049 < SC < 0 . 69 [M]) covering weak to strong Debye screening of the colloid. System temperature and electrophoretic mobility both show a direct and inverse relationships respectively with electric field and colloidal repulsion; although they each respectively behave direct and inverse trends with salt concentration under various thermostats. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0 . 145[v/nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the system radial distribution function with available EW3D modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  16. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  17. Ab initio study of phonon dispersion and thermodynamic properties of pure and doped pyrites

    NASA Astrophysics Data System (ADS)

    Musari, Abolore A.; Joubert, Daniel P.; Olowofela, Joseph A.; Akinwale, Adio T.; Adebayo, Gboyega A.

    2017-12-01

    Pyrites (FeS2) are solid minerals that are found abundantly in Nigeria and are easy to prepare in laboratories. In this work, FeS2 is studied extensively in its pure state as well as when iron is substitutionally doped with zinc and calcium at concentrations of 0, 0.25, 0.5, 0.75 and 1. Using density functional theory, the eectronic, dynamic and thermodynamic properties were calculated. The results revealed that the lattice parameters and bulk modulus increases with increasing concentration and the obtained values are in agreement with available experimental and theoretical values. Though pyrite, when doped with zinc, obeys Vegard's law, doping with calcium revealed pronounced deviation from this law. The calculated band structures showed that FeS2 has an indirect band gap whose size decreases after introducing zinc while doping with calcium increases the band gap. The phonon dispersion of the end members FeS2 and ZnS2 indicate that the systems are dynamically stable while CaS2 is dynamically unstate. Also, the thermodynamic properties of the pure and doped pyrites were calculated and the ranges of temperature at which the lattice and electronic degrees of freedom contribute to the specific heat capacity are presented.

  18. Development of a Molecular Tagging Velocimetry Technique for Non-Intrusive Velocity Measurements in Low-Speed Gas Flows

    NASA Technical Reports Server (NTRS)

    Andre, M. A.; Bardet, P. M.; Cadell, S. R.; Woods, B.; Burns, R. A.; Danehy, P. M.

    2017-01-01

    N2O molecular tagging velocimetry (N2O-MTV) is developed for use in very-high-temperature reactor environments. Tests were carried out to determine the optimum excitation wavelength, tracer concentration, and timing parameters for the laser system. Using NO tracers obtained from photo-dissociation of N2O, velocity profiles are successfully obtained in air, nitrogen, and helium for a large range of parameters: temperature from 295 to 781 K, pressure from 1 to 3 bars, with a velocity precision of 0.01 m/s. Furthermore, by using two read pulses at adjustable time delays, the velocity dynamic range can be increased. An unprecedented dynamic range of 5,000 has been obtained to successfully resolve the flow during a helium blowdown from 1000 m/s down to 0.2 m/s. This technique is also applied to the high-temperature test facility (HTTF) at Oregon State University (OSU) during a depressurized condition cooldown (DCC) event. Details of these measurements are presented in a companion paper. This technique shows a strong potential for fundamental understanding of gas flows in nuclear reactors and to provide benchmark experimental data to validate numerical simulations.

  19. Assessing Electrolyte Transport Properties with Molecular Dynamics

    DOE PAGES

    Jones, R. E.; Ward, D. K.; Gittleson, F. S.; ...

    2017-04-15

    Here in this work we use estimates of ionic transport properties obtained from molecular dynamics to rank lithium electrolytes of different compositions. We develop linear response methods to obtain the Onsager diffusivity matrix for all chemical species, its Fickian counterpart, and the mobilities of the ionic species. We apply these methods to the well-studied propylene carbonate/ethylene carbonate solvent with dissolved LiBF 4 and O 2. The results show that, over a range of lithium concentrations and carbonate mixtures, trends in the transport coefficients can be identified and optimal electrolytes can be selected for experimental focus; however, refinement of these estimationmore » techniques is necessary for a reliable ranking of a large set of electrolytes.« less

  20. Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-07-01

    We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.

  1. A disposable tear glucose biosensor--part 3: assessment of enzymatic specificity.

    PubMed

    Lan, Kenneth; McAferty, Kenyon; Shah, Pankti; Lieberman, Erica; Patel, Dharmendra R; Cook, Curtiss B; La Belle, Jeffrey T

    2011-09-01

    A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance. Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD. Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10(-7) versus -3.11 × 10(-7) A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0-30 versus 0-10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose. Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or hyperglycemia in blood. © 2011 Diabetes Technology Society.

  2. Predicting nitrate discharge dynamics in mesoscale catchments using the lumped StreamGEM model and Bayesian parameter inference

    NASA Astrophysics Data System (ADS)

    Woodward, Simon James Roy; Wöhling, Thomas; Rode, Michael; Stenger, Roland

    2017-09-01

    The common practice of infrequent (e.g., monthly) stream water quality sampling for state of the environment monitoring may, when combined with high resolution stream flow data, provide sufficient information to accurately characterise the dominant nutrient transfer pathways and predict annual catchment yields. In the proposed approach, we use the spatially lumped catchment model StreamGEM to predict daily stream flow and nitrate concentration (mg L-1 NO3-N) in four contrasting mesoscale headwater catchments based on four years of daily rainfall, potential evapotranspiration, and stream flow measurements, and monthly or daily nitrate concentrations. Posterior model parameter distributions were estimated using the Markov Chain Monte Carlo sampling code DREAMZS and a log-likelihood function assuming heteroscedastic, t-distributed residuals. Despite high uncertainty in some model parameters, the flow and nitrate calibration data was well reproduced across all catchments (Nash-Sutcliffe efficiency against Log transformed data, NSL, in the range 0.62-0.83 for daily flow and 0.17-0.88 for nitrate concentration). The slight increase in the size of the residuals for a separate validation period was considered acceptable (NSL in the range 0.60-0.89 for daily flow and 0.10-0.74 for nitrate concentration, excluding one data set with limited validation data). Proportions of flow and nitrate discharge attributed to near-surface, fast seasonal groundwater and slow deeper groundwater were consistent with expectations based on catchment geology. The results for the Weida Stream in Thuringia, Germany, using monthly as opposed to daily nitrate data were, for all intents and purposes, identical, suggesting that four years of monthly nitrate sampling provides sufficient information for calibration of the StreamGEM model and prediction of catchment dynamics. This study highlights the remarkable effectiveness of process based, spatially lumped modelling with commonly available monthly stream sample data, to elucidate high resolution catchment function, when appropriate calibration methods are used that correctly handle the inherent uncertainties.

  3. A Disposable Tear Glucose Biosensor—Part 3: Assessment of Enzymatic Specificity

    PubMed Central

    Lan, Kenneth; McAferty, Kenyon; Shah, Pankti; Lieberman, Erica; Patel, Dharmendra R; Cook, Curtiss B; La Belle, Jeffrey T

    2011-01-01

    Background A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance. Methods Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD. Results Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10-7 versus -3.11 × 10-7 A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0–30 versus 0–10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose. Conclusion Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or hyperglycemia in blood. PMID:22027303

  4. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community.

    PubMed

    Hättenschwiler, Stephan; Aeschlimann, Beat; Coûteaux, Marie-Madeleine; Roy, Jacques; Bonal, Damien

    2008-01-01

    Distinct ecosystem level carbon : nitrogen : phosphorus (C : N : P) stoichiometries in forest foliage have been suggested to reflect ecosystem-scale selection for physiological strategies in plant nutrient use. Here, this hypothesis was explored in a nutrient-poor lowland rainforest in French Guiana. Variation in C, N and P concentrations was evaluated in leaf litter and foliage from neighbour trees of 45 different species, and the litter concentrations of major C fractions were also measured. Litter C ranged from 45.3 to 52.4%, litter N varied threefold (0.68-2.01%), and litter P varied seven-fold (0.009-0.062%) among species. Compared with foliage, mean litter N and P concentrations decreased by 30% and 65%, respectively. Accordingly, the range in mass-based N : P shifted from 14 to 55 in foliage to 26 to 105 in litter. Resorption proficiencies indicated maximum P withdrawal in most species, but with a substantial increase in variation in litter P compared with foliage. These data suggest that constrained ecosystem-level C : N : P ratios do not preclude the evolution of highly diversified strategies of nutrient use and conservation among tropical rainforest tree species. The resulting large variation in litter quality will influence stoichiometric constraints within the decomposer food web, with potentially far-ranging consequences on nutrient dynamics and plant-soil feedbacks.

  5. Optimization and Validation of RP-HPLC-UV/Vis Method for Determination Phenolic Compounds in Several Personal Care Products

    PubMed Central

    Akkbik, Mohammed; Assim, Zaini Bin; Ahmad, Fasihuddin Badruddin

    2011-01-01

    An HPLC method with ultraviolet-visible spectrophotometry detection has been optimized and validated for the simultaneous determination of phenolic compounds, such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as antioxidants, and octyl methyl cinnamate (OMC) as UVB-filter in several personal care products. The dynamic range was between 1 to 250 mg/L with relative standard deviation less than 0.25% (n = 4). Limits of detection for BHA, BHT, and OMC were 0.196, 0.170, and 0.478 mg/L, respectively. While limits of quantification for BHA, BHT, and OMC were 0.593, 0.515, and 1.448 mg/L, respectively. The recovery for BHA, BHT, and OMC was ranged from 92.1–105.9%, 83.2–108.9%, and 87.3–103.7%, respectively. The concentration ranges of BHA, BHT, and OMC in 12 commercial personal care samples were 0.13–4.85, 0.16–2.30, and 0.12–65.5 mg/g, respectively. The concentrations of phenolic compounds in these personal care samples were below than maximum allowable concentration in personal care formulation, that is, 0.0004–10 mg/g, 0.002–5 mg/g, and up to 100 mg/g for BHA, BHT, and OMC, respectively. PMID:21760792

  6. Weak polyelectrolyte complexation driven by associative charging.

    PubMed

    Rathee, Vikramjit S; Zervoudakis, Aristotle J; Sidky, Hythem; Sikora, Benjamin J; Whitmer, Jonathan K

    2018-03-21

    Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.

  7. Weak polyelectrolyte complexation driven by associative charging

    NASA Astrophysics Data System (ADS)

    Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.

    2018-03-01

    Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.

  8. Detection of Ionic liquid using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  9. Evolution of biomolecular loadings along a major river system

    NASA Astrophysics Data System (ADS)

    Freymond, Chantal V.; Kündig, Nicole; Stark, Courcelle; Peterse, Francien; Buggle, Björn; Lupker, Maarten; Plötze, Michael; Blattmann, Thomas M.; Filip, Florin; Giosan, Liviu; Eglinton, Timothy I.

    2018-02-01

    Understanding the transport history and fate of organic carbon (OC) within river systems is crucial in order to constrain the dynamics and significance of land-ocean interactions as a component of the global carbon cycle. Fluvial export and burial of terrestrial OC in marine sediments influences atmospheric CO2 over a range of timescales, while river-dominated sedimentary sequences can provide valuable archives of paleoenvironmental information. While there is abundant evidence that the association of organic matter (OM) with minerals exerts an important influence on its stability as well as hydrodynamic behavior in aquatic systems, there is a paucity of information on where such associations form and how they evolve during fluvial transport. Here, we track total organic carbon (TOC) and terrestrial biomarker concentrations (plant wax-derived long-chain fatty acids (FA), branched glycerol dialkyl glycerol tetraethers (brGDGTs) and lignin-derived phenols) in sediments collected along the entire course of the Danube River system in the context of sedimentological parameters. Mineral-specific surface area-normalized biomarker and TOC concentrations show a systematic decrease from the upper to the lower Danube basin. Changes in OM loading of the available mineral phase correspond to a net decrease of 70-80% of different biomolecular components. Ranges for biomarker loadings on Danube River sediments, corresponding to 0.4-1.5 μgFA/m2 for long-chain (n-C24-32) fatty acids and 17-71 ngbrGDGT/m2 for brGDGTs, are proposed as a benchmark for comparison with other systems. We propose that normalizing TOC as well as biomarker concentrations to mineral surface area provides valuable quantitative constraints on OM dynamics and organo-mineral interactions during fluvial transport from terrigenous source to oceanic sink.

  10. Evaluating the environmental fate of short-chain chlorinated paraffins (SCCPs) in the Nordic environment using a dynamic multimedia model.

    PubMed

    Krogseth, Ingjerd S; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders R; Schlabach, Martin

    2013-12-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SCCPs in the Nordic environment. Realistic SCCP emission scenarios, resolved by formula group, were estimated and used to predict the composition and concentrations of SCCPs in the environment and the human food chain. Emissions at the upper end of the estimated range resulted in predicted total concentrations that were often within a factor of 6 of observations. Similar model performance for a complex group of organic contaminants as for the well-known polychlorinated biphenyls strengthens the confidence in the CoZMoMAN model and implies a relatively good mechanistic understanding of the environmental fate of SCCPs. However, the degree of chlorination predicted for SCCPs in sediments, fish, and humans was higher than observed and poorly established environmental half-lives and biotransformation rate constants contributed to the uncertainties in the predicted composition and ∑SCCP concentrations. Improving prediction of the SCCP composition will also require better constrained estimates of the composition of SCCP emissions. There is, however, also large uncertainty and lack of coherence in the existing observations, and better model-measurement agreement will require improved analytical methods and more strategic sampling. More measurements of SCCP levels and compositions in samples from background regions are particularly important.

  11. Drying paint: from micro-scale dynamics to mechanical instabilities

    NASA Astrophysics Data System (ADS)

    Goehring, Lucas; Li, Joaquim; Kiatkirakajorn, Pree-Cha

    2017-04-01

    Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities-shear-banding and fracture-can be controlled. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  12. Food-grade submicrometer particles from salts prepared using ethanol-in-oil mixtures.

    PubMed

    Paques, Jerome P; van der Linden, Erik; Sagis, Leonard M C; van Rijn, Cees J M

    2012-08-29

    A simple method for preparing food-grade particles in the submicrometer range of ethanol soluble salts using ethanol-in-oil (E/O) mixtures is described. Salts CaCl2·2H2O and MgCl2·6H2O were dissolved in ethanol that subsequently was mixed with a medium-chain triglyceride oil phase. It was found that type and concentration of salt have a significant influence on the miscibility of ethanol and oil phase and on the stability of E/O mixtures. The ethanol phase was evaporated from the mixture at elevated temperatures, and salt particles with dimensions in the submicrometer range (6-400 nm) remained suspended in the oil phase. It was found that the concentration of salt and volume fraction of ethanol in MCT oil have a significant influence on the size distribution of salt particles. The size of CaCl2 and MgCl2 submicrometer particles was ascertained by scanning electron microscopy and dynamic light scattering.

  13. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    NASA Astrophysics Data System (ADS)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal dynamics of CO2 production are the same for both soils and associated with seasonal changes in climatic parameters (temperature and moisture). CO2 efflux in the annual cycle correlates well with the soil temperature at a depth of 10 cm (r2 = 0.7). In the dry summer months, efflux largely depends on soil moisture. Soil CO2 efflux decreased by 1.5 - 2 times during the dry season.

  14. Nitrogen attenuation along delivery pathways in agricultural catchments

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.

    2014-05-01

    Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg/L). Whereas in the grassland catchment NO3-N concentrations ranged from 0.001 - 23.9 mg/L (SD = 4.40 mg/L) with elevated concentrations in the midslope and upslope zones and groundwater at the hillslope bottom which were consistently close to the limits of detection, indicating a potential denitrifying zone. Using a combination of groundwater flow modelling (Visual Modflow-Flex), high density spatial and temporal sampling and push pull tracer techniques; it is aimed to contribute to the wider understanding of N dynamics in terms of the individual environmental parameters affecting N attenuation, spatial and temporal variability in denitrification rates and gaseous emissions along the hillslope flow path.

  15. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis.

    PubMed

    Tashkova, Katerina; Korošec, Peter; Silc, Jurij; Todorovski, Ljupčo; Džeroski, Sašo

    2011-10-11

    We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology.

  16. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis

    PubMed Central

    2011-01-01

    Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology. PMID:21989196

  17. Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study.

    PubMed

    Vuletić, T; Dolanski Babić, S; Ivek, T; Grgicin, D; Tomić, S; Podgornik, R

    2010-07-01

    Dielectric spectroscopy is used to investigate fundamental length scales describing the structure of hyaluronic acid sodium salt (Na-HA) semidilute aqueous solutions. In salt-free regime, the length scale of the relaxation mode detected in MHz range scales with HA concentration as c(HA)(-0.5) and corresponds to the de Gennes-Pfeuty-Dobrynin correlation length of polyelectrolytes in semidilute solution. The same scaling was observed for the case of long, genomic DNA. Conversely, the length scale of the mode detected in kilohertz range also varies with HA concentration as c(HA)(-0.5) which differs from the case of DNA (c(DNA)(-0.25)). The observed behavior suggests that the relaxation in the kilohertz range reveals the de Gennes-Dobrynin renormalized Debye screening length, and not the average size of the chain, as the pertinent length scale. Similarly, with increasing added salt the electrostatic contribution to the HA persistence length is observed to scale as the Debye length, contrary to scaling pertinent to the Odijk-Skolnick-Fixman electrostatic persistence length observed in the case of DNA. We argue that the observed features of the kilohertz range relaxation are due to much weaker electrostatic interactions that lead to the absence of Manning condensation as well as a rather high flexibility of HA as compared to DNA.

  18. [Improvement of sensitivity in the second generation HCV core antigen assay by a novel concentration method using polyethylene glycol (PEG)].

    PubMed

    Higashimoto, Makiko; Takahashi, Masahiko; Jokyu, Ritsuko; Syundou, Hiromi; Saito, Hidetsugu

    2007-11-01

    A HCV core antigen (Ag) detection assay system, Lumipulse Ortho HCV Ag has been developed and is commercially available in Japan with a lower detection level limit of 50 fmol/l, which is equivalent to 20 KIU/ml in PCR quantitative assay. HCV core Ag assay has an advantage of broader dynamic range compared with PCR assay, however the sensitivity is lower than PCR. We developed a novel HCV core Ag concentration method using polyethylene glycol (PEG), which can improve the sensitivity five times better than the original assay. The reproducibility was examined by consecutive five-time measurement of HCV patients serum, in which the results of HCV core Ag original and concentrated method were 56.8 +/- 8.1 fmol/l (mean +/- SD), CV 14.2% and 322.9 +/- 45.5 fmol/l CV 14.0%, respectively. The assay results of HCV negative samples in original HCV core Ag were all 0.1 fmol/l and the results were same even in the concentration method. The results of concentration method were 5.7 times higher than original assay, which was almost equal to theoretical rate as expected. The assay results of serially diluted samples were also as same as expected data in both original and concentration assay. We confirmed that the sensitivity of HCV core Ag concentration method had almost as same sensitivity as PCR high range assay in the competitive assay study using the serially monitored samples of five HCV patients during interferon therapy. A novel concentration method using PEG in HCV core Ag assay system seems to be useful for assessing and monitoring interferon treatment for HCV.

  19. Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA

    USGS Publications Warehouse

    Barringer, J.L.; Riskin, M.L.; Szabo, Z.; Reilly, P.A.; Rosman, R.; Bonin, J.L.; Fischer, J.M.; Heckathorn, H.A.

    2010-01-01

    The upper Great Egg Harbor River watershed in New Jersey's Coastal Plain is urbanized but extensive freshwater wetlands are present downstream. In 2006-2007, studies to assess levels of total mercury (THg) found concentrations in unfiltered streamwater to range as high as 187 ng/L in urbanized areas. THg concentrations were <20 ng/L in streamwater in forested/wetlands areas where both THg and dissolved organic carbon concentrations tended to increase while pH and concentrations of dissolved oxygen and nitrate decreased with flushing of soils after rain. Most of the river's flow comes from groundwater seepage; unfiltered groundwater samples contained up to 177 ng/L of THg in urban areas where there is a history of well water with THg that exceeds the drinking water standard (2,000 ng/L). THg concentrations were lower (<25 ng/L) in unfiltered groundwater from downstream wetland areas. In addition to higher THg concentrations (mostly particulate), concentrations of chloride were higher in streamwater and groundwater from urban areas than in those from downstream wetland areas. Methylmercury (MeHg) concentrations in unfiltered streamwater ranged from 0.17 ng/L at a forest/wetlands site to 2.94 ng/L at an urban site. The percentage of THg present as MeHg increased as the percentage of forest + wetlands increased, but also was high in some urban areas. MeHg was detected only in groundwater <1 m below the water/sediment interface. Atmospheric deposition is presumed to be the main source of Hg to the wetlands and also may be a source to groundwater, where wastewater inputs in urban areas are hypothesized to mobilize Hg deposited to soils. ?? 2010 US Government.

  20. The Permeability Enhancing Mechanism of DMSO in Ceramide Bilayers Simulated by Molecular Dynamics

    PubMed Central

    Notman, Rebecca; den Otter, Wouter K.; Noro, Massimo G.; Briels, W. J.; Anwar, Jamshed

    2007-01-01

    The lipids of the topmost layer of the skin, the stratum corneum, represent the primary barrier to molecules penetrating the skin. One approach to overcoming this barrier for the purpose of delivery of active molecules into or via the skin is to employ chemical permeability enhancers, such as dimethylsulfoxide (DMSO). How these molecules exert their effect at the molecular level is not understood. We have investigated the interaction of DMSO with gel-phase bilayers of ceramide 2, the predominant lipid in the stratum corneum, by means of molecular dynamics simulations. The simulations satisfactorily reproduce the phase behavior and the known structural parameters of ceramide 2 bilayers in water. The effect of DMSO on the gel-phase bilayers was investigated at various concentrations over the range 0.0−0.6 mol fraction DMSO. The DMSO molecules accumulate in the headgroup region and weaken the lateral forces between the ceramides. At high concentrations of DMSO (≥0.4 mol fraction), the ceramide bilayers undergo a phase transition from the gel phase to the liquid crystalline phase. The liquid-crystalline phase of ceramides is expected to be markedly more permeable to solutes than the gel phase. The results are consistent with the experimental evidence that high concentrations of DMSO fluidize the stratum corneum lipids and enhance permeability. PMID:17513383

  1. The effects of high concentrations of ionic liquid on GB1 protein structure and dynamics probed by high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    Warner, Lisa; Gjersing, Erica; Follett, Shelby E; Elliott, K Wade; Dzyuba, Sergei V; Varga, Krisztina

    2016-12-01

    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentration of ionic liquids, has been challenging. In the present work the 13 C, 15 N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid - protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4 -mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6 to 3.5 M, which corresponds to 10%-60% v/v). Interactions between GB1 and [C 4 -mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15 N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4 -mim]Br were assigned using 3D methods under HR-MAS conditions. Thus, HR-MAS NMR is a viable tool that could aid in elucidation of the molecular mechanism of ionic liquid - protein interactions.

  2. Long-term dynamics of freshwater red tide in shallow lake in central Japan.

    PubMed

    Hirabayashi, Kimio; Yoshizawa, Kazuya; Yoshida, Norihiko; Ariizumi, Kazunori; Kazama, Futaba

    2007-01-01

    The aim of this study is to clarify the long-term dynamics of the red tide occurring in Lake Kawaguchi. The measurement of environmental factors and water sampling were carried out monthly at a fixed station in Lake Kawaguchi's center basin from April 1993 to March 2004. On June 26, 1995, the horizontal distribution ofPeridinium bipes was investigated using a plastic pipe, obtaining 0∼1-m layers of water column samples at 68 locations across the entire lake. P. bipes showed an explosive growth and formed a freshwater red tide in the early summer of 1995, when the nutrient level was higher than those in the other years, particularly the phosphate concentration in the surface layer. The dissolved total phosphorus (DTP) concentration was sufficient forP. bipes growth in that year. In the study of its horizontal distribution,P. bipes was found at all the locations. The numbers of cells per milliliter ranged from 67 to 5360, averaging 1094±987 cells/ml, with particularly high densities along the northern shore. Since then,P. bipes has annually averaged about 25 cells/ml in Lake Kawaguchi. We observed that the red tide caused byP. bipes correlates with a high DTP concentration in Lake Kawaguchi.

  3. Determination of glyphosate and AMPA in surface and waste water using high-performance ion chromatography coupled to inductively coupled plasma dynamic reaction cell mass spectrometry (HPIC-ICP-DRC-MS).

    PubMed

    Popp, Maximilian; Hann, Stephan; Mentler, Axel; Fuerhacker, Maria; Stingeder, Gerhard; Koellensperger, Gunda

    2008-05-01

    A novel method employing high-performance cation chromatography in combination with inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS) for the simultaneous determination of the herbicide glyphosate (N-phosphonomethylglycine) and its main metabolite aminomethyl phosphonic acid (AMPA) is presented. P was measured as (31)P(16)O(+) using oxygen as reaction gas. For monitoring the stringent target value of 0.1 μg L(-1) for glyphosate, applicable for drinking and surface water within the EU, a two-step enrichment procedure employing Chelex 100 and AG1-X8 resins was applied prior to HPIC-ICP-MS analysis. The presented approach was validated for surface water, revealing concentrations of 0.67 μg L(-1) glyphosate and 2.8 μg L(-1) AMPA in selected Austrian river water samples. Moreover, investigations at three waste water-treatment plants showed that elimination of the compounds at the present concentration levels was not straightforward. On the contrary, all investigated plant effluents showed significant amounts of both compounds. Concentration levels ranged from 0.5-2 μg L(-1) and 4-14 μg L(-1) for glyphosate and AMPA, respectively.

  4. Phase behavior and dynamics of a micelle-forming triblock copolymer system

    NASA Astrophysics Data System (ADS)

    Mohan, P. Harsha; Bandyopadhyay, Ranjini

    2008-04-01

    Synperonic F-108 (generic name, “pluronic”) is a micelle forming triblock copolymer of type ABA , where A is polyethylene oxide (PEO) and B is polypropylene oxide (PPO). At high temperatures, the hydrophobicity of the PPO chains increase, and the pluronic molecules, when dissolved in an aqueous medium, self-associate into spherical micelles with dense PPO cores and hydrated PEO coronas. At appropriately high concentrations, these micelles arrange in a face centered cubic lattice to show inverse crystallization, with the samples exhibiting high-temperature crystalline and low-temperature fluidlike phases. By studying the evolution of the elastic and viscous moduli as temperature is increased at a fixed rate, we construct the concentration-temperature phase diagram of Synperonic F-108. For a certain range of temperatures and at appropriate sample concentrations, we observe a predominantly elastic response. Oscillatory strain amplitude sweep measurements on these samples show pronounced peaks in the loss moduli, a typical feature of soft solids. The soft solidlike nature of these materials is further demonstrated by measuring their frequency-dependent mechanical moduli. The storage moduli are significantly larger than the loss moduli and are almost independent of the applied angular frequency. Finally, we perform strain rate frequency superposition experiments to measure the slow relaxation dynamics of this soft solid.

  5. NF-κB dynamics show digital activation and analog information processing in cells

    NASA Astrophysics Data System (ADS)

    Tay, Savas; Hughey, Jake; Lee, Timothy; Lipniacki, Tomasz; Covert, Markus; Quake, Stephen

    2010-03-01

    Cells operate in ever changing environments using extraordinary communication capabilities. Cell-to-cell communication is mediated by signaling molecules that form spatiotemporal concentration gradients, which requires cells to respond to a wide range of signal intensities. We used high-throughput microfluidic cell culture, quantitative gene expression analysis and mathematical modeling to investigate how single mammalian cells respond to different concentrations of the signaling molecule TNF-α via the transcription factor NF-κB. We measured NF-κB activity in thousands of live cells under TNF-α doses covering four orders of magnitude. In contrast to population studies, the activation is a stochastic, switch-like process at the single cell level with fewer cells responding at lower doses. The activated cells respond fully and express early genes independent of the TNF-α concentration, while only high dose stimulation results in the expression of late genes. Cells also encode a set of analog parameters such as the NF-κB peak intensity, response time and number of oscillations to modulate the outcome. We developed a stochastic model that reproduces both the digital and analog dynamics as well as the gene expression profiles at all measured conditions, constituting a broadly applicable model for TNF-α induced NF-κB signaling in various types of cells.

  6. Polymeric assembly of gluten proteins in an aqueous ethanol solvent.

    PubMed

    Dahesh, Mohsen; Banc, Amélie; Duri, Agnès; Morel, Marie-Hélène; Ramos, Laurence

    2014-09-25

    The supramolecular organization of wheat gluten proteins is largely unknown due to the intrinsic complexity of this family of proteins and their insolubility in water. We fractionate gluten in a water/ethanol mixture (50/50 v/v) and obtain a protein extract which is depleted in gliadin, the monomeric part of wheat gluten proteins, and enriched in glutenin, the polymeric part of wheat gluten proteins. We investigate the structure of the proteins in the solvent used for extraction over a wide range of concentration, by combining X-ray scattering and multiangle static and dynamic light scattering. Our data show that, in the ethanol/water mixture, the proteins display features characteristic of flexible polymer chains in a good solvent. In the dilute regime, the proteins form very loose structures of characteristic size 150 nm, with an internal dynamics which is quantitatively similar to that of branched polymer coils. In more concentrated regimes, data highlight a hierarchical structure with one characteristic length scale of the order of a few nm, which displays the scaling with concentration expected for a semidilute polymer in good solvent, and a fractal arrangement at a much larger length scale. This structure is strikingly similar to that of polymeric gels, thus providing some factual knowledge to rationalize the viscoelastic properties of wheat gluten proteins and their assemblies.

  7. Nanojets: Electrification, Energetics, Dynamics, Stability and Breakup

    DTIC Science & Technology

    2006-12-31

    OF: 17. LIMITATION OF 18 . NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF Dr Uzi Landman PAGES SU 19b. TELEPHONE...F(Ei )dE,. = Fm,, (Ero, )F,,h (Er,,b)dEro, dEwbh. (8) 16 where F,.ot( Erot ), and Fvwb(Evib) are the normalized rotational and vibrational Maxwell...corresponding to the concentrated solution, while the jet 18 dimensions are associated with radii in the range between 2.3 and 3.29 nm, with the larger

  8. Nanoscale methods for single-molecule electrochemistry.

    PubMed

    Mathwig, Klaus; Aartsma, Thijs J; Canters, Gerard W; Lemay, Serge G

    2014-01-01

    The development of experiments capable of probing individual molecules has led to major breakthroughs in fields ranging from molecular electronics to biophysics, allowing direct tests of knowledge derived from macroscopic measurements and enabling new assays that probe population heterogeneities and internal molecular dynamics. Although still somewhat in their infancy, such methods are also being developed for probing molecular systems in solution using electrochemical transduction mechanisms. Here we outline the present status of this emerging field, concentrating in particular on optical methods, metal-molecule-metal junctions, and electrochemical nanofluidic devices.

  9. Electrical and Mechanical Behavior of Nano-Filled Polymers through Molecular Dynamics Simulations

    DTIC Science & Technology

    2009-03-27

    that case. The length of the fibers can be fixed or vary within a specified range; in the later case, every time a new fiber is going to be added to...trends and values of the simulation are similar to the experimental ones. The experimental values refer to MWCNT /PVDF composites with an average aspect...concentrations disagree with the multi wall carbon nanotube/poly(vinylidene fluoride) - MWCNT /PVDF - composite study by Wang and Dang [17] (0.0161), and

  10. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.

    PubMed

    Banchio, Adolfo J; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard

    2018-04-07

    We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, f c (q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of f c (q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with f c (q, t), there is indication of long-time exponential decay of f c (q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of f c (q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for f c (q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, f s (q, t), and its non-Gaussian parameter α 2 (t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from f c (q, t) is theoretically validated.

  11. Spatial mapping of dynamic cerebral autoregulation by multichannel near-infrared spectroscopy in high-grade carotid artery disease

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthias; Schumacher, F. Konrad; Rutsch, Sebastian; Oeinck, Maximilian; Timmer, Jens; Mader, Irina; Schelter, Björn; Weiller, Cornelius; Kaller, Christoph P.

    2014-09-01

    The exact spatial distribution of impaired cerebral autoregulation in carotid artery disease is unknown. In this pilot study, we present a new approach of multichannel near-infrared spectroscopy (mcNIRS) for noninvasive spatial mapping of dynamic autoregulation in carotid artery disease. In 15 patients with unilateral severe carotid artery stenosis or occlusion, cortical hemodynamics in the bilateral frontal cortex were assessed from changes in oxyhemoglobin concentration using 52-channel NIRS (spatial resolution ˜2 cm). Dynamic autoregulation was graded by the phase shift between respiratory-induced 0.1 Hz oscillations of blood pressure and oxyhemoglobin. Ten of 15 patients showed regular phase values in the expected (patho) physiological range. Five patients had clearly outlying irregular phase values mostly due to artifacts. In patients with a regular phase pattern, a significant side-to-side difference of dynamic autoregulation was observed for the cortical border zone area between the middle and anterior cerebral artery (p<0.05). In conclusion, dynamic cerebral autoregulation can be spatially assessed from slow hemodynamic oscillations with mcNIRS. In high-grade carotid artery disease, cortical dynamic autoregulation is affected mostly in the vascular border zone. Spatial mapping of dynamic autoregulation may serve as a powerful tool for identifying brain regions at specific risks for hemodynamic infarction.

  12. Dielectric Properties of Generation 3 Pamam Dendrimer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ristić, Sanja; Mijović, Jovan

    2008-08-01

    Broadband dielectric relaxation spectroscopy (DRS) was employed to study molecular dynamics of blends composed of generation 3 poly(amidoamine) (PAMAM) dendrimers with ethylenediamine core and amino surface groups and four linear polymers: poly(propylene oxide)—PPO, two block copolymers, poly(propylene oxide)/poly(ethylene oxide)—PPO/PEO with different mol ratios (29/6 and 10/31) and poly(ethylene oxide)—PEO. The results were generated over a broad range of frequency. Dielectric spectra of dendrimers in PPO matrix reveal slight shift of normal and segmental processes to higher frequency with increasing concentration of dendrimers. In the 29PPO/6PEO matrix, no effect of concentration on the average relaxation time for normal and segmental processes was observed. In the 10PPO/31PEO matrix the relaxation time of the segmental process increases with increasing dendrimer concentration, while in the PEO matrix, local processes in dendrimers slow down. A detailed analysis of the effect of concentration of dendrimers and morphology of polymer matrix on the dielectric properties of dendrimer nanocomposites will be presented.

  13. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners

    PubMed Central

    Kirchberger, Martin

    2016-01-01

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. PMID:26868955

  14. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners.

    PubMed

    Kirchberger, Martin; Russo, Frank A

    2016-02-10

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. © The Author(s) 2016.

  15. Global Picosecond Structural Dynamics of Orange Carotenoid Protein in Photo/Chemical Activated Signaling States

    NASA Astrophysics Data System (ADS)

    Deng, Yanting; Xu, Mengyang; Liu, Hanjun; Blankenship, Robert; Markelz, Andrea

    Light availability to photosynthetic organisms changes throughout the day. High light can over-saturate photosynthetic capacity and produce reactive oxygen which damages the photosynthetic apparatus and leads to cell death. Photosynthetic organisms have evolved multiple photo-protective strategies to prevent oxidative damage from light stress. For cyanobacteria, a blue-light photo-sensor orange carotenoid protein (OCP) responds to exposure to intense light. Upon high light stress, OCP converts from the orange inactive form (OCPO) to the red active form (OCPR) , with a large conformational change. And OCPR interacts with the light harvesting antenna phycobilisome (PB), and mediates the energy quenching of PB. We argue that both the susceptibility of OCP to large conformational change and its interaction with PB are associated with changes in the long range picosecond structural flexibility. To investigate the protein flexibility with signaling state dependence, temperature dependent terahertz time domain spectroscopy is performed in the range of 80 - 290 K on OCP solutions, as a function of illumination and chaotrope (NaSCN) concentration, which produces a long lived red state in the absence of photoexcitation. We characterize the global flexibility by both the net THz absorbance and the dynamical transition temperature, which scales with structural stability, and observed the dynamical transition occurred in the 180-220 K range. R.E.B. acknowledges DOE award DE-FG02- 07ER15902 and A.G.M. acknowledges NSF awards DBI 1556359 and MCB 1616529, and DOE award DE-SC0016317 for support of the work.

  16. Assessment of variables controlling nitrate dynamics in groundwater: is it a threat to surface aquatic ecosystems?

    PubMed

    Rasiah, V; Armour, J D; Cogle, A L

    2005-01-01

    The impact of fertilised cropping on nitrate-N dynamics in groundwater (GW) was assessed in a catchment from piezometers installed: (i) to different depths, (ii) in different soil types, (iii) on different positions on landscape, and (iv) compared with the Australian and New Zealand Environmental and Conservation Council guideline values provided for different aquatic ecosystems. The GW and NO(3)-N concentration dynamics were monitored in 39 piezometer wells, installed to 5-90 m depth, under fertilized sugarcane (Saccharum officinarum-S) in the Johnstone River Catchment, Australia, from 1999 January through September 2002. The median nitrate-N concentration ranged from 14 to 1511 microg L(-1), and the 80th percentile from 0 to 1341 microg L(-1). In 34 out of the 39 piezometer wells the 80th percentile or 80% of the nitrate-N values were higher than 30 microg L(-1), which is the maximum trigger value provided in the ANZECC table for sustainable health of different aquatic ecosystems. Nitrate-N concentration decreased with increasing well depth, increasing depth of water in wells, and with decreasing relief on landscape. Nitrate-N was higher in alluvial soil profiles than on those formed in-situ. Nitrate-N increased with increasing rainfall at the beginning of the rainy season, fluctuated during the peak rainy period, and then decreased when the rain ceased. The rapid decrease in GW after the rains ceased suggested potential existed for nitrate-N to be discharged as lateral-flow into streams. This may contribute towards the deterioration in the health of down-stream aquatic ecosystems.

  17. Gold in the hills: patterns of placer gold accumulation under dynamic tectonic and climatic conditions

    NASA Astrophysics Data System (ADS)

    Roy, Sam; Upton, Phaedra; Craw, Dave

    2018-01-01

    Formation of placer accumulations in fluvial environments requires 103-106 or even greater times concentration of heavy minerals. For this to occur, regular sediment supply from erosion of adjacent topography is required, the river should remain within a single course for an extended period of time and the material must be reworked such that a high proportion of the sediment is removed while a high proportion of the heavy minerals remains. We use numerical modeling, constrained by observations of circum-Pacific placer gold deposits, to explore processes occurring in evolving river systems in dynamic tectonic environments. A fluvial erosion/transport model is used to determine the mobility of placer gold under variable uplift rate, storm intensity, and rock mass strength conditions. Gold concentration is calculated from hydraulic and bedload grain size conditions. Model results suggest that optimal gold concentration occurs in river channels that frequently approach a threshold between detachment-limited and transport-limited hydraulic conditions. Such a condition enables the accumulation of gold particles within the framework of a residual gravel lag. An increase in transport capacity, which can be triggered by faster uplift rates, more resistant bedrock, or higher intensity storm events, will strip all bedload from the channel. Conversely, a reduction in transport capacity, triggered by a reduction in uplift rate, bedrock resistance, or storm intensity, will lead to a greater accumulation of a majority of sediments and a net decrease in gold concentration. For our model parameter range, the optimal conditions for placer gold concentration are met by 103 times difference in strength between bedrock and fault, uplift rates between 1 and 5 mm a-1, and moderate storm intensities. Fault damage networks are shown to be a critical factor for high Au concentrations and should be a target for exploration.

  18. Interactions of atmospheric gases and aerosols with the monsoon dynamics over the Sudano-Guinean region during AMMA

    NASA Astrophysics Data System (ADS)

    Deroubaix, Adrien; Flamant, Cyrille; Menut, Laurent; Siour, Guillaume; Mailler, Sylvain; Turquety, Solène; Briant, Régis; Khvorostyanov, Dmitry; Crumeyrolle, Suzanne

    2018-01-01

    Carbon monoxide, CO, and fine atmospheric particulate matter, PM2.5, are analyzed over the Guinean Gulf coastal region using the WRF-CHIMERE modeling system and observations during the beginning of the monsoon 2006 (from May to July), corresponding to the Africa Multidisciplinary Monsoon Analysis (AMMA) campaign period. Along the Guinean Gulf coast, the contribution of long-range pollution transport to CO or PM2.5 concentrations is important. The contribution of desert dust PM2.5 concentration decreases from ˜ 38 % in May to ˜ 5 % in July. The contribution of biomass burning PM2.5 concentration from Central Africa increases from ˜ 10 % in May to ˜ 52 % in July. The anthropogenic contribution is ˜ 30 % for CO and ˜ 10 % for PM2.5 during the whole period. When focusing only on anthropogenic pollution, frequent northward transport events from the coast to the Sahel are associated with periods of low wind and no precipitation. In June, anthropogenic PM2.5 and CO concentrations are higher than in May or July over the Guinean coastal region. Air mass dynamics concentrate pollutants emitted in the Sahel due to a meridional atmospheric cell. Moreover, a part of the pollution emitted remotely at the coast is transported and accumulated over the Sahel. Focusing the analysis on the period 8-15 June, anthropogenic pollutants emitted along the coastline are exported toward the north especially at the beginning of the night (18:00 to 00:00 UTC) with the establishment of the nocturnal low level jet. Plumes originating from different cities are mixed for some hours at the coast, leading to high pollution concentration, because of specific disturbed meteorological conditions.

  19. Trimethylamine N-oxide (TMAO) and tert-butyl alcohol (TBA) at hydrophobic interfaces: insights from molecular dynamics simulations.

    PubMed

    Fiore, Andrew; Venkateshwaran, Vasudevan; Garde, Shekhar

    2013-06-25

    TMAO, a potent osmolyte, and TBA, a denaturant, have similar molecular architecture but somewhat different chemistry. We employ extensive molecular dynamics simulations to quantify their behavior at vapor-water and octane-water interfaces. We show that interfacial structure-density and orientation-and their dependence on solution concentration are markedly different for the two molecules. TMAO molecules are moderately surface active and adopt orientations with their N-O vector approximately parallel to the aqueous interface. That is, not all methyl groups of TMAO at the interface point away from the water phase. In contrast, TBA molecules act as molecular amphiphiles, are highly surface active, and, at low concentrations, adopt orientations with their methyl groups pointing away and the C-O vector pointing directly into water. The behavior of TMAO at aqueous interfaces is only weakly dependent on its solution concentration, whereas that of TBA depends strongly on concentration. We show that this concentration dependence arises from their different hydrogen bonding capabilities-TMAO can only accept hydrogen bonds from water, whereas TBA can accept (donate) hydrogen bonds from (to) water or other TBA molecules. The ability to self-associate, particularly visible in TBA molecules in the interfacial layer, allows them to sample a broad range of orientations at higher concentrations. In light of the role of TMAO and TBA in biomolecular stability, our results provide a reference with which to compare their behavior near biological interfaces. Also, given the ubiquity of aqueous interfaces in biology, chemistry, and technology, our results may be useful in the design of interfacially active small molecules with the aim to control their orientations and interactions.

  20. Switching characteristics for ferroelectric random access memory based on RC model in poly(vinylidene fluoride-trifluoroethylene) ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, ChangLi; Complex and Intelligent System Research Center, East China University of Science and Technology, Shanghai 200237; Wang, XueJun

    2016-05-15

    The switching characteristic of the poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different ranges of applied electric field. It is suggest that the increase of the switching speed upon nucleation protocol and the deceleration of switching could be related to the presence of a non-ferroelectric layer. Remarkably, a capacitor and resistor (RC) links model plays significant roles in the polarization switching dynamics of the thin films. For P(VDF-TrFE) ultrathin films with electroactive interlayer, it is found that the switching dynamic characteristics are strongly affected by the contributions of resistor and non-ferroelectric (non-FE) interface factors. A corresponding experiment is designedmore » using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic) (PEDOT-PSSH) as interlayer with different proton concentrations, and the testing results show that the robust switching is determined by the proton concentration in interlayer and lower leakage current in circuit to reliable applications of such polymer films. These findings provide a new feasible method to enhance the polarization switching for the ferroelectric random access memory.« less

  1. Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis.

    PubMed

    Postnikov, Alexander V; Uvarov, Ilia V; Penkov, Nikita V; Svetovoy, Vitaly B

    2017-12-21

    Nanobubbles in liquids are mysterious gaseous objects with exceptional stability. They promise a wide range of applications, but their production is not well controlled and localized. Alternating polarity electrolysis of water is a tool that can control the production of bulk nanobubbles in space and time without generating larger bubbles. Using the schlieren technique, the detailed three-dimensional structure of a dense cloud of nanobubbles above the electrodes is visualized. It is demonstrated that the thermal effects produce a different schlieren pattern and have different dynamics. A localized volume enriched with nanobubbles can be separated from the parent cloud and exists on its own. This volume demonstrates buoyancy, from which the concentration of nanobubbles is estimated as 2 × 10 18 m -3 . This concentration is smaller than that in the parent cloud. Dynamic light scattering shows that the average size of nanobubbles during the process is 60-80 nm. The bubbles are observed 15 minutes after switching off the electrical pulses but their size is shifted to larger values of about 250 nm. Thus, an efficient way to generate and control nanobubbles is proposed.

  2. Bifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams

    USGS Publications Warehouse

    Rogers, Holly; Schmidt, Travis S.; Dabney, Brittanie L.; Hladik, Michelle; Mahler, Barbara J.; Van Metre, Peter C.

    2016-01-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  3. Lysozyme as a recognition element for monitoring of bacterial population.

    PubMed

    Zheng, Laibao; Wan, Yi; Yu, Liangmin; Zhang, Dun

    2016-01-01

    Bacterial infections remain a significant challenge in biomedicine and environment safety. Increasing worldwide demand for point-of-care techniques and increasing concern on their safe development and use, require a simple and sensitive bioanalysis for pathogen detection. However, this goal is not yet achieved. A design for fluorescein isothiocyanate-labeled lysozyme (FITC-LYZ), which provides quantitative binding information for gram-positive bacteria, Micrococcus luteus, and detects pathogen concentration, is presented. The functional lysozyme is used not only as the pathogenic detection platform, but also as a tracking reagent for microbial population in antibacterial tests. A nonlinear relationship between the system response and the logarithm of the bacterial concentration was observed in the range of 1.2×10(2)-1.2×10(5) cfu mL(-1). The system has a potential for further applications and provides a facile and simple method for detection of pathogenic bacteria. Meanwhile, the fluorescein isothiocyanate -labeled lysozyme is also employed as the tracking agent for antibacterial dynamic assay, which show a similar dynamic curve compared with UV-vis test. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Bifenthrin Causes Trophic Cascade and Altered Insect Emergence in Mesocosms: Implications for Small Streams.

    PubMed

    Rogers, Holly A; Schmidt, Travis S; Dabney, Brittanie L; Hladik, Michelle L; Mahler, Barbara J; Van Metre, Peter C

    2016-11-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC 50 's ranged from 197.6 to 233.5 ng bifenthrin/g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  5. Online submicron particle sizing by dynamic light scattering using autodilution

    NASA Technical Reports Server (NTRS)

    Nicoli, David F.; Elings, V. B.

    1989-01-01

    Efficient production of a wide range of commercial products based on submicron colloidal dispersions would benefit from instrumentation for online particle sizing, permitting real time monitoring and control of the particle size distribution. Recent advances in the technology of dynamic light scattering (DLS), especially improvements in algorithms for inversion of the intensity autocorrelation function, have made it ideally suited to the measurement of simple particle size distributions in the difficult submicron region. Crucial to the success of an online DSL based instrument is a simple mechanism for automatically sampling and diluting the starting concentrated sample suspension, yielding a final concentration which is optimal for the light scattering measurement. A proprietary method and apparatus was developed for performing this function, designed to be used with a DLS based particle sizing instrument. A PC/AT computer is used as a smart controller for the valves in the sampler diluter, as well as an input-output communicator, video display and data storage device. Quantitative results are presented for a latex suspension and an oil-in-water emulsion.

  6. Scale-dependent temporal variations in stream water geochemistry.

    PubMed

    Nagorski, Sonia A; Moore, Iohnnie N; McKinnon, Temple E; Smith, David B

    2003-03-01

    A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.

  7. Scale-dependent temporal variations in stream water geochemistry

    USGS Publications Warehouse

    Nagorski, S.A.; Moore, J.N.; McKinnon, Temple E.; Smith, D.B.

    2003-01-01

    A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.

  8. Dynamic biological exposure indexes for n-hexane and 2,5-hexanedione, suggested by a physiologically based pharmacokinetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perbellini, L.; Mozzo, P.; Olivato, D.

    Biological exposure index (BEI) of n-hexane was studied for accuracy using a physiologically based pharmacokinetic (PB-PK) model. The kinetics of n-hexane in alveolar air, blood, urine, and other tissues were simulated for different values of alveolar ventilations and also for constant and variable exposures. The kinetics of 2,5-hexanedione, the toxic n-hexane metabolite, were also simulated. The ranges of n-hexane concentrations in biological media and the urinary concentrations of 2,5-hexanedione are discussed in connection with a mean n-hexane exposure of 180 mg/m3 (50 ppm) (threshold limit value (TLV) suggested by American Conference of Governmental Industrial Hygienists (ACGIH) for 1988-89). The experimentalmore » and field data as well as those predicted by simulation with the PB-PK model were comparable. The physiological-pharmacokinetic simulations are used to propose the dynamic BEIs of n-hexane and 2,5-hexanedione. The use of simulation with PB-PK models enables a better understanding of the limits, advantages, and issues associated with biological monitoring of exposures to industrial solvents.« less

  9. Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047.

    PubMed

    Moreno, J; Vargas, M A; Madiedo, J M; Muñoz, J; Rivas, J; Guerrero, M G

    2000-02-05

    The cyanobacterium (blue-green alga) Anabaena sp. ATCC 33047 produces an exopolysaccharide (EPS) during the stationary growth phase in batch culture. Chemical analysis of EPS revealed a heteropolysaccharidic nature, with xylose, glucose, galactose, and mannose the main neutral sugars found. The infrared (IR) spectrum of EPS showed absorption bands of carboxylate groups. The average molecular mass of the polymer was 1.35 MDa. Aqueous dispersions at EPS concentrations ranging from 0.2% to 0.6% (w/w) showed marked shear-thinning properties (power-law behavior). Linear dynamic viscoelastic properties showed that the elastic component was always higher than the viscous component. Viscous and viscoelastic properties demonstrated the absence of conformational changes within the concentration range studied. Stress-growth experiments revealed that 0.4% and 0.6% (w/w) EPS dispersions showed thixotropic properties. A detailed comparison of the linear dynamic viscoelasticity, transient flow, and decreasing shear rate flow curve properties was made for 0.4% (w/w) dispersions of xanthan gum (XG), Alkemir 110 (AG), and EPS. Viscoelastic spectra demonstrated that the EPS dispersion turned out to be more "fluidlike" than the AG and XG dispersions. The flow indexes indicated that the EPS dispersion was less shear-sensitive than that of XG, showing essentially the same viscosity, that is, >50 s(-1). The fact that viscosities of EPS and AG dispersions were not substantially different within the shear-rate range covered must be emphasized, in relation to EPS potential applications. The rheological behavior of EPS dispersions indicates the formation of an intermediate structure between a random-coil polysaccharide and a weak gel. Copyright 2000 John Wiley & Sons, Inc.

  10. Armored RNA as Virus Surrogate in a Real-Time Reverse Transcriptase PCR Assay Proficiency Panel

    PubMed Central

    Hietala, S. K.; Crossley, B. M.

    2006-01-01

    In recent years testing responsibilities for high-consequence pathogens have been expanded from national reference laboratories into networks of local and regional laboratories in order to support enhanced disease surveillance and to test for surge capacity. This movement of testing of select agents and high-consequence pathogens beyond reference laboratories introduces a critical need for standardized, noninfectious surrogates of disease agents for use as training and proficiency test samples. In this study, reverse transcription-PCR assay RNA targets were developed and packaged as armored RNA for use as a noninfectious, quantifiable synthetic substitute for four high-consequence animal pathogens: classical swine fever virus; foot-and-mouth disease virus; vesicular stomatitis virus, New Jersey serogroup; and vesicular stomatitis virus, Indiana serogroup. Armored RNA spiked into oral swab fluid specimens mimicked virus-positive clinical material through all stages of the reverse transcription-PCR testing process, including RNA recovery by four different commercial extraction procedures, reverse transcription, PCR amplification, and real-time detection at target concentrations consistent with the dynamic ranges of the existing real-time PCR assays. The armored RNA concentrations spiked into the oral swab fluid specimens were stable under storage conditions selected to approximate the extremes of time and temperature expected for shipping and handling of proficiency panel samples, including 24 h at 37°C and 2 weeks at temperatures ranging from ambient room temperature to −70°C. The analytic test performance, including the reproducibility over the dynamic range of the assays, indicates that armored RNA can provide a noninfectious, quantifiable, and stable virus surrogate for specific assay training and proficiency test purposes. PMID:16390950

  11. Tunable mechanical stability and deformation response of a resilin-based elastomer.

    PubMed

    Li, Linqing; Teller, Sean; Clifton, Rodney J; Jia, Xinqiao; Kiick, Kristi L

    2011-06-13

    Resilin, the highly elastomeric protein found in specialized compartments of most arthropods, possesses superior resilience and excellent high-frequency responsiveness. Enabled by biosynthetic strategies, we have designed and produced a modular, recombinant resilin-like polypeptide bearing both mechanically active and biologically active domains to create novel biomaterial microenvironments for engineering mechanically active tissues such as blood vessels, cardiovascular tissues, and vocal folds. Preliminary studies revealed that these recombinant materials exhibit promising mechanical properties and support the adhesion of NIH 3T3 fibroblasts. In this Article, we detail the characterization of the dynamic mechanical properties of these materials, as assessed via dynamic oscillatory shear rheology at various protein concentrations and cross-linking ratios. Simply by varying the polypeptide concentration and cross-linker ratios, the storage modulus G' can be easily tuned within the range of 500 Pa to 10 kPa. Strain-stress cycles and resilience measurements were probed via standard tensile testing methods and indicated the excellent resilience (>90%) of these materials, even when the mechanically active domains are intercepted by nonmechanically active biological cassettes. Further evaluation, at high frequencies, of the mechanical properties of these materials were assessed by a custom-designed torsional wave apparatus (TWA) at frequencies close to human phonation, indicating elastic modulus values from 200 to 2500 Pa, which is within the range of experimental data collected on excised porcine and human vocal fold tissues. The results validate the outstanding mechanical properties of the engineered materials, which are highly comparable to the mechanical properties of targeted vocal fold tissues. The ease of production of these biologically active materials, coupled to their outstanding mechanical properties over a range of compositions, suggests their potential in tissue regeneration applications.

  12. Paths and patterns: the biology and physics of swimming bacterial populations

    NASA Technical Reports Server (NTRS)

    Kessler, J. O.; Strittmatter, R. P.; Swartz, D. L.; Wiseley, D. A.; Wojciechowski, M. F.

    1995-01-01

    The velocity distribution of swimming micro-organisms depends on directional cues supplied by the environment. Directional swimming within a bounded space results in the accumulation of organisms near one or more surfaces. Gravity, gradients of chemical concentration and illumination affect the motile behaviour of individual swimmers. Concentrated populations of organisms scatter and absorb light or consume molecules, such as oxygen. When supply is one-sided, consumption creates gradients; the presence of the population alters the intensity and the symmetry of the environmental cues. Patterns of cues interact dynamically with patterns of the consumer population. In suspensions, spatial variations in the concentration of organisms are equivalent to variations of mean mass density of the fluid. When organisms accumulate in one region whilst moving away from another region, the force of gravity causes convection that translocates both organisms and dissolved substances. The geometry of the resulting concentration-convection patterns has features that are remarkably reproducible. Of interest for biology are (1) the long-range organisation achieved by organisms that do not communicate, and (2) that the entire system, consisting of fluid, cells, directional supply of consumables, boundaries and gravity, generates a dynamic that improves the organisms' habitat by enhancing transport and mixing. Velocity distributions of the bacterium Bacillus subtilis have been measured within the milieu of the spatially and temporally varying oxygen concentration which they themselves create. These distributions of swimming speed and direction are the fundamental ingredients required for a quantitative mathematical treatment of the patterns. The quantitative measurement of swimming behaviour also contributes to our understanding of aerotaxis of individual cells.

  13. High dynamic range image acquisition based on multiplex cameras

    NASA Astrophysics Data System (ADS)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  14. Design and fabrication of engineering model fiber-optics detector

    NASA Technical Reports Server (NTRS)

    Mcsweeney, A.

    1972-01-01

    The design and fabrication of an annular ring detector consisting of optical fibers terminated with photodetectors is described. The maximum width of each concentric ring has to be small enough to permit the resolution of a Ronchi ruling transform with a dot spacing of 150 microns. A minimum of 100 concentric rings covering a circular area of 2.54 cm diameter also is necessary. A fiber-optic array consisting of approximately 89,000 fibers of 76 microns diameter was fabricated to meet the above requirements. The fibers within a circular area of 2.5 cm diameter were sorted into 168 adjacent rings concentric with the center fiber. The response characteristics of several photodetectors were measured, and the data used to compare their linearity of response and dynamic range. Also, coupling loss measurements were made for three different methods of terminating the optical fibers with a photodetector.

  15. Chitosan as cationic polyelectrolyte for the modification of electroosmotic flow and its utilization for the separation of inorganic anions by capillary zone electrophoresis.

    PubMed

    Takayanagi, Toshio; Motomizu, Shoji

    2006-09-01

    Cationic polyelectrolyte of chitosan was used for the reversal of electroosmotic flow in capillary zone electrophoresis. The chitosan was dissolved in acetic acid solution, and stable electroosmotic flow was obtained at the chitosan concentrations between 50 and 300 microg/mL. Separation of inorganic anions was carried out using the dynamically coated capillary by capillary zone electrophoresis. Nine kinds of anions were separated and detected with the capillary. The electrophoretic mobility of the analyte anions decreased with increasing concentrations of chitosan in the migrating solution through ion-ion interaction, but the migration order of the analyte anions was not changed in the concentration range of the chitosan examined. The signal shape for the analyte anions was developed by using field-enhanced sample stacking with 10 mM sodium sulfate.

  16. Investigation of concentration-dependence of thermodynamic properties of lanthanum, yttrium, scandium and terbium in eutectic LiCl-KCl molten salt

    NASA Astrophysics Data System (ADS)

    Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2016-09-01

    Thermodynamic properties of rare earth metals in LiCl-KCl molten salt electrolyte are crucial to the development of electrochemical separation for the treatment of used nuclear fuels. In the present study, activity coefficient, apparent potential, and diffusion coefficient of lanthanum, yttrium, scandium, and terbium in the molten salt (58 at% LiCl and 42 at% KCl) were calculated by the method of molecular dynamics simulation up to a concentration around 3 at% at temperatures of 723 K and 773 K. It was found that the activity coefficient and the apparent potential increase with the species concentration while diffusion coefficient shows a trend of increase followed by decrease. The calculated results were validated by available measurement data of dilution cases. This research extends the range of data to a wide component and would provide further insight to the pyroprocessing design and safeguards.

  17. Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer.

    PubMed

    Desjardins, Philippe; Hansen, Joel B; Allen, Michael

    2009-11-04

    Traditional spectrophotometry requires placing samples into cuvettes or capillaries. This is often impractical due to the limited sample volumes often used for protein analysis. The Thermo Scientific NanoDrop 2000c Spectrophotometer solves this issue with an innovative sample retention system that holds microvolume samples between two measurement surfaces using the surface tension properties of liquids, enabling the quantification of samples in volumes as low as 0.5-2 microL. The elimination of cuvettes or capillaries allows real time changes in path length, which reduces the measurement time while greatly increasing the dynamic range of protein concentrations that can be measured. The need for dilutions is also eliminated, and preparations for sample quantification are relatively easy as the measurement surfaces can be simply wiped with laboratory wipe. This video article presents modifications to traditional protein concentration determination methods for quantification of microvolume amounts of protein using A280 absorbance readings or the BCA colorimetric assay.

  18. Pulsed Lidar Measurements of Atmospheric CO2 Column Concentration in the ASCENDS 2014 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Chen, J. R.

    2015-12-01

    We report progress in demonstrating a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line by using 30 wavelength samples distributed across the lube. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the optimum CO2 absorption line shape and the column average CO2 concentrations using radiative transfer calculations based on HITRAN, the aircraft altitude, range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations sampled by in-situ sensors on the aircraft. The number of wavelength samples can be reduced in the retrievals. During the ASCENDS airborne campaign in 2013 two flights were made in February over snow in the Rocky Mountains and the Central Plains allowing measurement of snow-covered surface reflectivity. Several improvements were made to the lidar for the 2014 campaign. These included using a new step-locked laser diode source, and incorporating a new HgCdTe APD detector and analog digitizer into the lidar receiver. Testing showed this detector had higher sensitivity, analog response, and a more linear dynamic range than the PMT detector used previously. In 2014 flights were made in late August and early September over the California Central Valley, the redwood forests along the California coast, two desert areas in Nevada and California, and two flights above growing agriculture in Iowa. Two flights were also made under OCO-2 satellite ground tracks. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, and through thin clouds and aerosol scattering. The lidar measurements clearly show the decrease in CO2 concentration over growing cropland in Iowa. In several flights the agreement of the lidar with the column average concentration was < 1ppm, with standard deviation of 0.9 ppm. A summary of these results will be presented.

  19. Spatial and Temporal Patterns of Throughfall Amounts and Solutes in a Tropical Montane Forest - Comparisons with Findings From Lowland Rain Forests

    NASA Astrophysics Data System (ADS)

    Zimmermann, A.

    2007-05-01

    The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time stability patterns of solute deposition were somewhat weaker than for concentrations for most of the solutes. Epiphytes strongly affected time stability patterns in that collectors situated below thick moss mats or arboreal bromeliads were in large part responsible for the extreme persistence with low throughfall amounts and high ion concentrations (H+ showed low concentrations). Rainfall solute concentrations were low compared with a variety of other tropical lowland and montane forest sites and showed a small temporal variability during the study period for both between and within-event dynamics, respectively. Throughfall solute concentrations were more within the range when compared with other sites and showed highly variable within-event dynamics. For most of the solutes, within-event concentrations did not reach low, constant concentrations in later event stages, rather concentrations fluctuated (e.g. Cl-) or increased (e.g. K and TOC). The within-event throughfall solute concentration dynamics in this lower montane rain forest contrast to recent observations from lowland tropical rain forests in Panama and Brazil. The observed within-event patterns are attributed (1) to the influence of epiphytes and associated canopy humus, and (2) to low rainfall intensities.

  20. Analysis of possible future atmospheric retention of fossil fuel CO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmonds, J.A.; Reilly, J.; Trabalka, J.R.

    1984-09-01

    This report investigates the likely rates and the potential range of future CO/sub 2/ emissions, combined with knowledge of the global cycle of carbon, to estimate a possible range of future atmospheric CO/sub 2/ concentrations through the year 2075. Historic fossil fuel usage to the present, growing at a rate of 4.5% per year until 1973 and at a slower rate of 1.9% after 1973, was combined with three scenarios of projected emissions growth ranging from approximately 0.2 to 2.8% per year to provide annual CO/sub 2/ emissions data for two different carbon cycle models. The emissions scenarios were constructedmore » using an energy-economic model and by varying key parameters within the bounds of currently expected future values. The extreme values for CO/sub 2/ emissions in the year 2075 are 6.8 x 10/sup 15/ and 91 x 10/sup 15/ g C year/sup -1/. Carbon cycle model simulations used a range of year - 1800 preindustrial atmospheric concentrations of 245 to 292 ppM CO/sub 2/ and three scenarios of bioshere conversion as additional atmospheric CO/sub 2/ source terms. These simulations yield a range of possible atmospheric CO/sub 2/ concentrations in year 2075 of approximately 500 to 1500 ppM, with a median of about 700 ppM. The time at which atmospheric CO/sub 2/ would potentially double from the preindustrial level ranges from year 2025 to >2075. The practical, programmatic value of this forecast exercise is that it forces quantitative definition of the assumptions, and the uncertainties therein, which form the basis of our understanding of the natural biogeochemical cycle of carbon and both historic and future human influences on the dynamics of the global cycle. Assumptions about the possible range of future atmospheric CO/sub 2/ levels provide a basis on which to evaluate the implications of these changes on climate and the biosphere. 44 references, 17 figures, 21 tables.« less

  1. Extremely high myoglobin plasma concentrations producing hook effect in a critically ill patient.

    PubMed

    Kurt-Mangold, Michelle; Drees, Denny; Krasowski, Matthew D

    2012-12-24

    A 21-year old female suffered a cardiac arrest after a one week history of viral illness later shown to be caused by influenza B. The patient required extended cardiopulmonary resuscitation and had further complications including compartment syndrome. Plasma myoglobin concentration was measured using the Roche Diagnostics electrochemiluminescent myoglobin assay. The myoglobin concentration was 205,590 μg/l in an undiluted specimen, consistent with severe rhabdomyolysis. Subsequent myoglobin concentrations measured two days later showed dramatic decreases to approximately 1000 μg/l, raising suspicion of a hook effect. Dilution and re-analysis of the specimens revealed that the actual myoglobin concentrations were >395,000 μg/l, with one specimen possessing an estimated myoglobin concentration of >600,000 μg/l. Interestingly, three specimens from this patient did not show evidence of hook effect, with undiluted specimens producing myoglobin concentrations as high as 284,000 μg/l. Retrospective analysis of myoglobin results over an 8-year period did not reveal other cases with suspicion of hook effect. The case patient had the highest myoglobin concentrations out of 7301 specimens. This case illustrates that while the Roche myoglobin assay has a very wide dynamic range, hook effect can occur with extremely high concentrations of plasma myoglobin. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Simulation of the effects of the Devils Lake State Outlet on hydrodynamics and water quality in Lake Ashtabula, North Dakota, 2006-10

    USGS Publications Warehouse

    Galloway, Joel M.

    2011-01-01

    In 2010, a two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Lake Ashtabula, North Dakota, was developed by the U.S. Geological Survey in cooperation with the North Dakota State Water Commission to understand the dynamics of chemical constituents in the reservoir and to provide a tool for the management and operation of the Devils Lake State Outlet in meeting the water-quality standards downstream from Baldhill Dam. The Lake Ashtabula model was calibrated for hydrodynamics, sulfate concentrations, and total dissolved-solids concentrations to ambient conditions from June 2006 through June 2010. The calibrated model then was used to simulate four scenarios that represent various Devils Lake outlet options that have been considered for reducing the water levels in Devils Lake. Simulated water temperatures compared well with measured temperatures and differences varied spatially in Lake Ashtabula from June 2006 through June 2010. The absolute mean error ranged from 0.7 degrees Celsius to 1.0 degrees Celsius and the root mean square error ranged from 0.7 degrees Celsius to 1.1 degrees Celsius. Simulated sulfate concentrations compared well with measured concentrations in Lake Ashtabula. In general, simulated sulfate concentrations were slightly overpredicted with mean differences between simulated and measured sulfate concentrations ranging from -2 milligram per liter to 18 milligrams per liter. Differences between simulated and measured sulfate concentrations varied temporally in Lake Ashtabula from June 2006 through June 2010. In 2006, sulfate concentrations were overpredicted in the lower part of the reservoir and underpredicted in the upper part of the reservoir. Simulated total dissolved solids generally were greater than measured total dissolved-solids concentrations in Lake Ashtabula from June 2006 through June 2010. The mean difference between simulated and measured total dissolved-solids concentrations ranged from -3 milligrams per liter to 15 milligrams per liter, the absolute mean error ranged from 58 milligrams per liter to 100 milligrams per liter, and the root mean square error ranged from 73 milligrams per liter to 114 milligrams per liter. Simulated sulfate concentrations from four scenarios were compared to simulated ambient concentrations from June 2006 through June 2009. For scenario 1, the same location, outflow capacity, and sulfate concentration as the current (2010) Devils Lake State Outlet were assumed. The increased flow and sulfate concentration in scenario 1, beginning on May 31 and extending to October 31 each year, resulted in an increase in sulfate concentrations to greater than 450 milligrams per liter in the reservoir at site 7T (approximately the middle of the reservoir), starting July 5 in 2006, July 28 in 2007, and July 15 in 2008. Sulfate concentrations increased to greater than 450 milligrams per liter considerably later at site 1T (near the dam), starting October 8 in 2006, October 29 in 2007, and October 3 in 2008. For scenario 2, the same Devils Lake State Outlet sulfate concentration as scenario 1 was assumed, but the flow through the Devils Lake State Outlet was doubled, which resulted in a more rapid increase in sulfate concentrations in the lower part of the reservoir and slightly greater values at all four sites compared to scenario 1. Sulfate concentrations increased to greater than 450 milligrams per liter 61 days earlier in 2006, 67 days earlier in 2007, and 41 days earlier in 2008 at site 1T. For scenarios 3 and 4, possible increases in flow and concentration from the current outlet location (from the West Bay of Devils Lake) and from a proposed outlet from East Devils Lake were simulated. Conditions for scenario 3 resulted in a relatively rapid increase in sulfate concentrations in the reservoir, and concentrations were greater than 750 milligrams per liter in most years at all four sites. As expected, scenario 4 resulted in greater sulfate concentr

  3. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis

    PubMed Central

    Waadt, Rainer; Hitomi, Kenichi; Nishimura, Noriyuki; Hitomi, Chiharu; Adams, Stephen R; Getzoff, Elizabeth D; Schroeder, Julian I

    2014-01-01

    Abscisic acid (ABA) is a plant hormone that regulates plant growth and development and mediates abiotic stress responses. Direct cellular monitoring of dynamic ABA concentration changes in response to environmental cues is essential for understanding ABA action. We have developed ABAleons: ABA-specific optogenetic reporters that instantaneously convert the phytohormone-triggered interaction of ABA receptors with PP2C-type phosphatases to send a fluorescence resonance energy transfer (FRET) signal in response to ABA. We report the design, engineering and use of ABAleons with ABA affinities in the range of 100–600 nM to map ABA concentration changes in plant tissues with spatial and temporal resolution. High ABAleon expression can partially repress Arabidopsis ABA responses. ABAleons report ABA concentration differences in distinct cell types, ABA concentration increases in response to low humidity and NaCl in guard cells and to NaCl and osmotic stress in roots and ABA transport from the hypocotyl to the shoot and root. DOI: http://dx.doi.org/10.7554/eLife.01739.001 PMID:24737861

  4. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning.

    PubMed

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2016-11-01

    Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm 2 . This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 10 5 to 1.4 × 10 6 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.

  5. Rapid measurement of perchlorate in polar ice cores down to sub-ng L(-1) levels without pre-concentration.

    PubMed

    Peterson, Kari; Cole-Dai, Jihong; Brandis, Derek; Cox, Thomas; Splett, Scott

    2015-10-01

    An ion chromatography-electrospray ionization-tandem mass spectrometry (IC-ESI-MS/MS) method has been developed for rapid and accurate measurement of perchlorate in polar snow and ice core samples in which perchlorate concentrations are expected to be as low as 0.1 ng L(-1). Separation of perchlorate from major inorganic species in snow is achieved with an ion chromatography system interfaced to an AB SCIEX triple quadrupole mass spectrometer operating in multiple reaction monitoring mode. Under optimized conditions, the limit of detection and lower limit of quantification without pre-concentration have been determined to be 0.1 and 0.3 ng L(-1), respectively, with a linear dynamic range of 0.3-10.0 ng L(-1) in routine measurement. These represent improvements over previously reported methods using similar analytical techniques. The improved method allows fast, accurate, and reproducible perchlorate quantification down to the sub-ng L(-1) level and will facilitate perchlorate measurement in the study of natural perchlorate production with polar ice cores in which perchlorate concentrations are anticipated to vary in the low and sub-ng L(-1) range. Initial measurements of perchlorate in ice core samples from central Greenland show that typical perchlorate concentrations in snow dated prior to the Industrial Revolution are about 0.8 ng L(-1), while perchlorate concentrations are significantly higher in recent (post-1980) snow, suggesting that anthropogenic sources are a significant contributor to perchlorate in the current environment.

  6. Solvation dynamics of tryptophan in water-dimethyl sulfoxide binary mixture: in search of molecular origin of composition dependent multiple anomalies.

    PubMed

    Roy, Susmita; Bagchi, Biman

    2013-07-21

    Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H2O to 1H2O:1DMSO and 1H2O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H2O and 2DMSO:1H2O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.

  7. Dynamic range in small-world networks of Hodgkin-Huxley neurons with chemical synapses

    NASA Astrophysics Data System (ADS)

    Batista, C. A. S.; Viana, R. L.; Lopes, S. R.; Batista, A. M.

    2014-09-01

    According to Stevens' law the relationship between stimulus and response is a power-law within an interval called the dynamic range. The dynamic range of sensory organs is found to be larger than that of a single neuron, suggesting that the network structure plays a key role in the behavior of both the scaling exponent and the dynamic range of neuron assemblies. In order to verify computationally the relationships between stimulus and response for spiking neurons, we investigate small-world networks of neurons described by the Hodgkin-Huxley equations connected by chemical synapses. We found that the dynamic range increases with the network size, suggesting that the enhancement of the dynamic range observed in sensory organs, with respect to single neurons, is an emergent property of complex network dynamics.

  8. Structure and Relaxation in Solutions of Monoclonal Antibodies.

    PubMed

    Wang, Gang; Varga, Zsigmond; Hofmann, Jennifer; Zarraga, Isidro E; Swan, James W

    2018-03-22

    Reversible self-association of therapeutic antibodies is a key factor in high protein solution viscosities. In the present work, a coarse-grained computational model accounting for electrostatic, dispersion, and long-ranged hydrodynamic interactions of two model monoclonal antibodies is applied to understand the nature of self-association, predicting the solution microstructure and resulting transport properties of the solution. For the proteins investigated, the structure factor across a range of solution conditions shows quantitative agreement with neutron-scattering experiments. We observe a homogeneous, dynamical association of the antibodies with no evidence of phase separation. Calculations of self-diffusivity and viscosity from coarse-grained dynamic simulations show the appropriate trends with concentration but, respectively, over- and under-predict the experimentally measured values. By adding constraints to the self-associated clusters that rigidify them under flow, prediction of the transport properties is significantly improved with respect to experimental measurements. We hypothesize that these rigidity constraints are associated with missing degrees of freedom in the coarse-grained model resulting from patchy and heterogeneous interactions among coarse-grained domains. These results demonstrate how structural anisotropy and anisotropy of interactions generated by features at the 2-5 nm length scale in antibodies are sufficient to recover the dynamics and rheological properties of these important macromolecular solutions.

  9. Polarimetry as a tool for the study of solutions of chiral solutes.

    PubMed

    Orlova, Anna V; Andrade, Renato R; da Silva, Clarissa O; Zinin, Alexander I; Kononov, Leonid O

    2014-01-13

    Optical rotation of aqueous solutions of D-levoglucosan was studied experimentally in the 0.03-4.0 mol L(-1) concentration range and a nonlinear concentration dependence of specific optical rotation (SR) was revealed. Discontinuities observed in the concentration plot of SR (at 0.1, 0.3, 0.5, 1.0, and 2.0 mol L(-1)) are well correlated with those found by static and dynamic light scattering and identify concentration ranges in which different solution domains (supramers) may exist. The average SR experimental value for a D-levoglucosan aqueous solution ([α]D(28) -58.5±8.7 deg dm(-1) cm(-3) g(-1)) was found to be in good agreement with values obtained by theoretical calculation (TD-DFT/GIAO) of SR for 15 different conformers revealed by conformational sampling at the PCM/B3LYP/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) level, which were shown to be strongly affected by the solvation microenvironment (0, 1, 2, and 3 explicit solvent molecules considered) due to local geometrical changes induced in the solute molecule. This exceptionally high sensitivity of SR makes polarimetry a unique method capable of sensing changes in the structure of supramers detected in this study. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simultaneous quantification of cannabinoids and metabolites in oral fluid by two-dimensional gas chromatography mass spectrometry

    PubMed Central

    Milman, Garry; Barnes, Allan J.; Lowe, Ross H.; Huestis, Marilyn A.

    2010-01-01

    Development and validation of a method for simultaneous identification and quantification of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), and metabolites 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) in oral fluid. Simultaneous analysis was problematic due to different physicochemical characteristics and concentration ranges. Neutral analytes, such as THC and CBD, are present in ng/mL, rather than pg/mL concentrations, as observed for the acidic THCCOOH biomarker in oral fluid. THCCOOH is not present in cannabis smoke, definitively differentiating cannabis use from passive smoke exposure. THC, 11-OH-THC, THCCOOH, CBD, and CBN quantification was achieved in a single oral fluid specimen collected with the Quantisal™ device. One mL oral fluid/buffer solution (0.25mL oral fluid and 0.75mL buffer) was applied to conditioned CEREX® Polycrom™ THC solid phase extraction (SPE) columns. After washing, THC, 11-OH-THC, CBD, and CBN were eluted with hexane/acetone/ethyl acetate (60:30:20, v/v/v), derivatized with N, O-bis-(trimethylsilyl) trifluoroacetamide and quantified by two-dimensional gas chromatography electron ionization mass spectrometry (2D-GCMS) with cold trapping. Acidic THCCOOH was separately eluted with hexane/ethyl acetate/acetic acid (75:25:2.5, v/v/v), derivatized with trifluoroacetic anhydride and hexafluoroisopropanol, and quantified by the more sensitive 2D-GCMS–electron capture negative chemical ionization (NCI-MS). Linearity was 0.5-50ng/mL for THC, 11-OH-THC, CBD and 1-50ng/mL for CBN. The linear dynamic range for THCCOOH was 7.5–500pg/mL. Intra-and inter-assay imprecision as percent RSD at three concentrations across the linear dynamic range were 0.3%-6.6%. Analytical recovery was within 13.8% of target. This new SPE 2D-GCMS assay achieved efficient quantification of five cannabinoids in oral fluid, including pg/mL concentrations of THCCOOH by combining differential elution, 2D-GCMS with electron ionization and negative chemical ionization. This method will be applied to quantification of cannabinoids in oral fluid specimens from individuals participating in controlled cannabis and Sativex® (50% THC and 50% CBD) administration studies, and during cannabis withdrawal. PMID:20083251

  11. Flow pattern changes influenced by variation of viscosities of a heterogeneous gas-liquid mixture flow in a vertical channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keska, Jerry K.; Hincapie, Juan; Jones, Richard

    In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less

  12. Spatial variability of mercury wet deposition in eastern Ohio: summertime meteorological case study analysis of local source influences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emily M. White; Gerald J. Keeler; Matthew S. Landis

    2009-07-01

    Extensive exploration of event precipitation data in the Ohio River Valley indicates that coal combustion emissions play an important role in mercury (Hg) wet deposition. During July-September 2006, an intensive study was undertaken to discern the degree of local source influence. Source-receptor relationships were explored by establishing a set of wet deposition sites in and around Steubenville, Ohio. For the three month period of study, volume-weighted mean Hg concentrations observed at the eight sites ranged from 10.2 to 22.3 ng L{sup -1}, but this range increased drastically on an event basis with a maximum concentration of 89.4 ng L{sup -1}more » and a minimum concentration of 4.1 ng L{sup -1}. A subset of events was explored in depth, and the degree of variability in Hg concentrations between sites was linked to the degree of local source enhancement. Samples collected at sites less than 1 km from coal-fired utility stacks (near-field) exhibited up to 72% enhancement in Hg concentrations over regionally representative samples on an event basis. Air mass transport and precipitating cell histories were traced in order to evaluate relationships between local point sources and receptor sites. It was found that the interaction of several dynamic atmospheric parameters combined to favor local Hg concentration enhancement over the more regional contribution. When significant meteorological factors (wind speed at time of maximum rain rate, wind speed 24 h prior to precipitation, mixing height, and observed ceiling) were explored, it was estimated that during summertime precipitation, 42% of Hg concentration in near-field samples could be attributed to the adjacent coal-fired utility source. 28 refs., 3 figs., 2 tabs.« less

  13. Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture.

    PubMed

    Tric, Mircea; Lederle, Mario; Neuner, Lisa; Dolgowjasow, Igor; Wiedemann, Philipp; Wölfl, Stefan; Werner, Tobias

    2017-09-01

    Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for biosensor stability. In the light of this finding, the glucose sensor was optimized to reach a long functional stability (>52 days) under continuous glucose monitoring conditions with a dynamic range of 0-20 mM and a response time of t 90  ≤ 10 min. In addition, we demonstrated that the sensor was sterilizable with beta and UV irradiation and only subjected to minor cross sensitivity to oxygen, when an oxygen reference sensor was applied. Graphical abstract Measuring setup of a glucose biosensor in a shake flask for continuous glucose monitoring in mammalian cell culture.

  14. Effects of Frothers and Oil at Saltwater–Air Interfaces for Oil Separation: Molecular Dynamics Simulations and Experimental Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, Leebyn; Lai, Yungchieh; Gray, McMahan

    Separating oil from saltwater is a process relevant to some industries and may be aided by bubble and froth generation. Simulating saltwater–air interfaces adsorbed with surfactants and oil molecules can assist in understanding froth stability to improve separation. Here, combining with surface tension experimental measurements, in this work we employ molecular dynamics with a united-atom force field to linear alkane oil and three surfactant frothers, methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE), to investigate their synergistic behaviors for oil separation. The interfacial phenomena were measured for a range of frother surface coverages on saltwater. Density profilesmore » of the hydrophilic and hydrophobic portions of the frothers show an expected orientation of alcohol groups adsorbing to the polar water. A decrease in surface tension with increasing surface coverage of MIBC and terpineol was observed and reflected in experiments where the frother concentration increased. Relations between surface coverage and bulk concentration were observed by comparing the surface tension decreases. Additionally, a range of oil surface coverages was explored when the interface has a thin layer of adsorbed frother molecules. Finally, the obtained results indicate that an increase in surface coverage of oil molecules led to an increase in surface tension for all frother types and the pair correlation functions depicted MIBC and terpineol as having higher distributions with water at closer distances than with oil.« less

  15. Effects of Frothers and Oil at Saltwater–Air Interfaces for Oil Separation: Molecular Dynamics Simulations and Experimental Measurements

    DOE PAGES

    Chong, Leebyn; Lai, Yungchieh; Gray, McMahan; ...

    2017-06-16

    Separating oil from saltwater is a process relevant to some industries and may be aided by bubble and froth generation. Simulating saltwater–air interfaces adsorbed with surfactants and oil molecules can assist in understanding froth stability to improve separation. Here, combining with surface tension experimental measurements, in this work we employ molecular dynamics with a united-atom force field to linear alkane oil and three surfactant frothers, methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE), to investigate their synergistic behaviors for oil separation. The interfacial phenomena were measured for a range of frother surface coverages on saltwater. Density profilesmore » of the hydrophilic and hydrophobic portions of the frothers show an expected orientation of alcohol groups adsorbing to the polar water. A decrease in surface tension with increasing surface coverage of MIBC and terpineol was observed and reflected in experiments where the frother concentration increased. Relations between surface coverage and bulk concentration were observed by comparing the surface tension decreases. Additionally, a range of oil surface coverages was explored when the interface has a thin layer of adsorbed frother molecules. Finally, the obtained results indicate that an increase in surface coverage of oil molecules led to an increase in surface tension for all frother types and the pair correlation functions depicted MIBC and terpineol as having higher distributions with water at closer distances than with oil.« less

  16. Dynamic quadrupole interactions in semiconductors

    NASA Astrophysics Data System (ADS)

    Dang, Thien Thanh; Schell, Juliana; Lupascu, Doru C.; Vianden, Reiner

    2018-04-01

    The time differential perturbed angular correlation, TDPAC, technique has been used for several decades to study electric quadrupole hyperfine interactions in semiconductors such as dynamic quadrupole interactions (DQI) resulting from after-effects of the nuclear decay as well as static quadrupole interactions originating from static defects around the probe nuclei such as interstitial ions, stresses in the crystalline structure, and impurities. Nowadays, the quality of the available semiconductor materials is much better, allowing us to study purely dynamic interactions. We present TDPAC measurements on pure Si, Ge, GaAs, and InP as a function of temperature between 12 K and 110 K. The probe 111In (111Cd) was used. Implantation damage was recovered by thermal annealing. Si experienced the strongest DQI with lifetime, τg, increasing with rising temperature, followed by Ge. In contrast, InP and GaAs, which have larger band gaps and less electron concentration than Si and Ge in the same temperature range, presented no DQI. The results obtained also allow us to conclude that indirect band gap semiconductors showed the dynamic interaction, whereas the direct band gap semiconductors, restricted to GaAs and InP, did not.

  17. Gravitational dynamics of biosystems - Some speculations

    NASA Technical Reports Server (NTRS)

    Kessler, J. O.; Bier, M.

    1976-01-01

    The response of organisms to gravity is generally discussed in terms of hypotheses involving sedimentation and other static effects. This paper considers several complex, inhomogeneous fluid-containing systems that are intended to model some possible dynamic effects of gravity on biosystems. It is shown that the presence of gravity may result in modified long range transport, concentration oscillations, and broken symmetries. The magnitude of density-gradient-driven convective transport times, and their ratios to diffusive transport times, are calculated for cell dimensions of six different plant varieties. The results indicate that further investigation of gravitational convection effects may be realistic in some cases and is definitely not in others. The results of this paper should aid in the planning of 'zero-gravity' experiments concerning plant geotropism and bio-materials processing.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yongqiang; Balachandran, Janakiraman; Bi, Zhonghe

    The local structure around the mobile ions influences their dynamics. The knowledge about the relationship between these properties is of fundamental importance and may lead the way for development of improved solid state ionic conductors. Here, we use inelastic neutron scattering and ab initio modeling to study a representative proton conductor, La 0.8Ba 1.2GaO 3.9, where different local structures are possible for the same stoichiometry. The intrinsic correlations between the local bonding environment and the dynamical behavior of protons are presented. In particular, we identify how the local Ba/La concentration affects the proton vibrational frequencies, hydrogen bond strength, O–H rotationsmore » and in turn long-range proton mobility. Furthermore, possible mechanism for proton transport, through the inter-tetrahedral bond switching, O–H rotations and tetrahedral reorientation is anticipated.« less

  19. Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles

    PubMed Central

    Haddadian, Esmael J.; Zhang, Hao; Freed, Karl F.; Douglas, Jack F.

    2017-01-01

    Molecular dynamics simulations of ubiquitin in water/glycerol solutions are used to test the suggestion by Karplus and coworkers that proteins in their biologically active state should exhibit a dynamics similar to ‘surface-melted’ inorganic nanoparticles (NPs). Motivated by recent studies indicating that surface-melted inorganic NPs are in a ‘glassy’ state that is an intermediate dynamical state between a solid and liquid, we probe the validity and significance of this proposed analogy. In particular, atomistic simulations of ubiquitin in solution based on CHARMM36 force field and pre-melted Ni NPs (Voter-Chen Embedded Atom Method potential) indicate a common dynamic heterogeneity, along with other features of glass-forming (GF) liquids such as collective atomic motion in the form of string-like atomic displacements, potential energy fluctuations and particle displacements with long range correlations (‘colored’ or ‘pink’ noise), and particle displacement events having a power law scaling in magnitude, as found in earthquakes. On the other hand, we find the dynamics of ubiquitin to be even more like a polycrystalline material in which the α-helix and β-sheet regions of the protein are similar to crystal grains so that the string-like collective atomic motion is concentrated in regions between the α-helix and β-sheet domains. PMID:28176808

  20. Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haddadian, Esmael J.; Zhang, Hao; Freed, Karl F.; Douglas, Jack F.

    2017-02-01

    Molecular dynamics simulations of ubiquitin in water/glycerol solutions are used to test the suggestion by Karplus and coworkers that proteins in their biologically active state should exhibit a dynamics similar to ‘surface-melted’ inorganic nanoparticles (NPs). Motivated by recent studies indicating that surface-melted inorganic NPs are in a ‘glassy’ state that is an intermediate dynamical state between a solid and liquid, we probe the validity and significance of this proposed analogy. In particular, atomistic simulations of ubiquitin in solution based on CHARMM36 force field and pre-melted Ni NPs (Voter-Chen Embedded Atom Method potential) indicate a common dynamic heterogeneity, along with other features of glass-forming (GF) liquids such as collective atomic motion in the form of string-like atomic displacements, potential energy fluctuations and particle displacements with long range correlations (‘colored’ or ‘pink’ noise), and particle displacement events having a power law scaling in magnitude, as found in earthquakes. On the other hand, we find the dynamics of ubiquitin to be even more like a polycrystalline material in which the α-helix and β-sheet regions of the protein are similar to crystal grains so that the string-like collective atomic motion is concentrated in regions between the α-helix and β-sheet domains.

  1. Asymmetric correlations in the ozone concentration dynamics of the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Meraz, M.; Alvarez-Ramirez, J.; Echeverria, J. C.

    2017-04-01

    Mexico City is a megalopolis with severe pollution problems caused by vehicles and industrial activity. This condition imposes important risks to human health and economic activity. Based on hourly-sampled data during the last decade, in a recent work (Meraz et al., 2015) we showed that the pollutant dynamics in Mexico City exhibits long-term and scale-dependent persistence effects resulting from the combination of pollutants generation by vehicles and removal by advection mechanisms. In this work, we analyzed the dynamics of ozone, a key component reflecting the degree of atmospheric contamination, to determine if its long-term correlations are asymmetric in relation to the actual concentration trend (increasing or decreasing). The analysis is conducted with detrended fluctuation analysis. The results showed that the average ozone dynamics is uncorrelated when the concentration is increasing. In contrast, the ozone dynamics shows long-term anti-persistence effects when the concentration is decreasing.

  2. High-speed microstrip multi-anode multichannel plate detector system

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter

    2017-04-01

    High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.

  3. An evaluation of an ICCD imager of dynamic range expansion technique and application of insitu procedures for life-time extension

    NASA Technical Reports Server (NTRS)

    Currie, D. G.

    1982-01-01

    Research toward practical implementation of the Intensified Charge Coupled Device (ICCD) as a photon-counting array detector for astronomy is reported. The first area of concentration was to determine the rate and extent of the lifetime limiting damage to the CCD caused by the impact of high energy electrons, and to find whether various methods of annealing the damage were productive. The second effort was to determine the performance of the ICCD in a photon-counting mode to produce extended dynamic range measurements. There are two main effects that appear as the practical results of the electron damage to the CCD. One is an increase in the leakage current, i.e., the normal thermal generation of charge carriers in the silicon that provides a background dark signal that adds to the light produced image. In an undamaged CCD, the leakage current is usually fairly uniform across the photosensitive area of the silicon chip, with the exception of various bright pixels which have an anomalous leakage current well above the overall level.

  4. Dynamics of Functionalized Surface Molecular Monolayers Studied with Ultrafast Infrared Vibrational Spectroscopy

    PubMed Central

    Rosenfeld, Daniel E.; Nishida, Jun; Yan, Chang; Gengeliczki, Zsolt; Smith, Brian J.; Fayer, Michael D.

    2012-01-01

    The structural dynamics of thin films consisting of tricarbonyl (1,10-phenanthroline)rhenium chloride (RePhen(CO)3Cl) linked to an alkyl silane monolayer through a triazole linker synthesized on silica-on-calcium-fluoride substrates are investigated using ultrafast infrared (IR) techniques. Ultrafast 2D IR vibrational echo experiments and polarization selective heterodyne detected transient grating (HDTG) measurements, as well as polarization dependent FT-IR and AFM experiments are employed to study the samples. The vibrational echo experiments measure spectral diffusion, while the HDTG experiments measure the vibrational excited state population relaxation and investigate the vibrational transition dipole orientational anisotropy decay. To investigate the anticipated impact of vibrational excitation transfer, which can be caused by the high concentration of RePhen(CO)3Cl in the monolayer, a concentration dependence of the spectral diffusion is measured. To generate a range of concentrations, mixed monolayers consisting of both hydrogen terminated and triazole/RePhen(CO)3Cl terminated alkyl silanes are synthesized. It is found that the measured rate of spectral diffusion is independent of concentration, with all samples showing spectral diffusion of 37 ± 6 ps. To definitively test for vibrational excitation transfer, polarization selective HDTG experiments are conducted. Excitation transfer will cause anisotropy decay. Polarization resolved heterodyne detected transient grating spectroscopy is sensitive to anisotropy decay (depolarization) caused by excitation transfer and molecular reorientation. The HDTG experiments show no evidence of anisotropy decay on the appropriate time scale, demonstrating the absence of excitation transfer the RePhen(CO)3Cl. Therefore the influence of excitation transfer on spectral diffusion is inconsequential in these samples, and the vibrational echo measurements of spectral diffusion report solely on structural dynamics. A small amount of very fast (~2 ps time scale) anisotropy decay is observed. The decay is concentration independent, and is assigned to wobbling-in-a-cone orientational motions of the RePhen(CO)3Cl. Theoretical calculations reported previously for experiments on a single concentration of the same type of sample suggested the presence of some vibrational excitation transfer and excitation transfer induced spectral diffusion. Possible reasons for the experimentally observed lack of excitation transfer in these high concentration samples are discussed. PMID:23259027

  5. Formation of metallic and metallic-glass hollow spheres and their solidification characteristics

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1985-01-01

    Various metals and metallic glass systems have bene processed into hollow spheres with sizes ranging from 3 mm to 440 microns in diameter. The technique for the formation of the large hollow spheres, in general, is based on the fluid-dynamic instability of a hollow annular jet. A refined technique has also been developed for microshell formation, in which discrete bubbles are injected into the stream of the molten material and individually 'flushed' out at a frequency related to the Rayleigh jet instability. The surfaces of those spheres of all sizes exhibit a range of contrasting solidification behaviors and characteristics. Metal shells of varying materials, sizes, aspect ratios, sphericity and concentricity have many useful and novel applications.

  6. Image dynamic range test and evaluation of Gaofen-2 dual cameras

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhua; Gan, Fuping; Wei, Dandan

    2015-12-01

    In order to fully understand the dynamic range of Gaofen-2 satellite data and support the data processing, application and next satellites development, in this article, we evaluated the dynamic range by calculating some statistics such as maximum ,minimum, average and stand deviation of four images obtained at the same time by Gaofen-2 dual cameras in Beijing area; then the maximum ,minimum, average and stand deviation of each longitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of each camera's dynamic range consistency; and these four statistics of each latitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of the dynamic range consistency between PMS1 and PMS2 at last. The results suggest that there is a wide dynamic range of DN value in the image obtained by PMS1 and PMS2 which contains rich information of ground objects; in general, the consistency of dynamic range between the single camera images is in close agreement, but also a little difference, so do the dual cameras. The consistency of dynamic range between the single camera images is better than the dual cameras'.

  7. Microgels for multiplex and direct fluorescence detection

    NASA Astrophysics Data System (ADS)

    Causa, Filippo; Aliberti, Anna; Cusano, Angela M.; Battista, Edmondo; Netti, Paolo A.

    2015-05-01

    Blood borne oligonucleotides fragments contain useful clinical information whose detection and monitoring represent the new frontier in liquid biopsy as they can transform the current diagnosis procedure. For instance, recent studies have identified a new class of circulating biomarkers such as s miRNAs, and demonstrated that changes in their concentration are closely associated with the development of cancer and other pathologies. However, direct detection of miRNAs in body fluids is particularly challenging and demands high sensitivity -concentration range between atto to femtomolarspecificity, and multiplexing Here we report on engineered multifunctional microgels and innovative probe design for a direct and multiplex detection of relevant clinical miRNAs in fluorescence by single particle assay. Polyethyleneglycol-based microgels have a coreshell architecture with two spectrally encoded fluorescent dyes for multiplex analyses and are endowed with fluorescent probes for miRNA detection. Encoding and detection fluorescence signals are distinguishable by not overlapping emission spectra. Tuneable fluorescence probe conjugation and corresponding emission confinement on single microgel allows for enhanced target detection. Such suspension array has indeed high selectivity and sensitivity with a detection limit of 10-15 M and a dynamic range from 10-9 to 10-15 M. We believe that sensitivity in the fM concentration range, signal background minimization, multiplexed capability and direct measurement of such microgels will translate into diagnostic benefits opening up new roots toward liquid biopsy in the context of point-of-care testing through an easy and fast detection of sensitive diagnostic biomarkers directly in serum.

  8. Sampling and physical characterization of diesel exhaust aerosols. SAE Paper 770720

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verrant, J.A.; Kittelson, D.A.

    Diesel exhaust aerosols are highly dynamic and therefore, difficult to sample without introducing falsification. This paper describes a study of these aerosols using a rapid dilution sampling system and an electrical aerosol analyzer. An Onan single cylinder indirect injection engine was used as an exhaust source. The sampler diluted the exhaust with clean air in ratios of 400:1 to 600:1 in order to prevent sample falsification by condensation and coagulation. The electrical aerosol analyzer was used to determine particle size and concentration. Volume concentration in the exhaust ranged from 2000 to 50,000 ..mu.. m/sup 3/ cm/sup -3/ which correspond tomore » mass loadings of 2.0 to 50 mg m/sup -3/ (assuming a density of 1 gm cm/sup -3/). Volume geometric mean diameters ranged from 0.12 to 0.19 ..mu..m. Evaporation and coagulation effects on diesel aerosols were observed by aging in a Teflon holding bag. A simple evaporation model was fit to the decrease of aerosol volume concentration with time. The fit revealed that the aerosols evaporated as if they were composed of normal paraffins in the 350 to 500 molecular weight range. Although the sample dilution system used in this study may alter the sample somewhat, it is probably analogous to what happens at the tailpipe of a vehicle. Measurements taken on a test track in the exhaust plume of a Peugeot 504 diesel showed aerosol size distributions very similar to those measured in our laboratory studies.« less

  9. Microbial population dynamics in the sediments of a eutrophic lake (Aydat, France) and characterization of some heterotrophic bacterial isolates.

    PubMed

    Mallet, C; Basset, M; Fonty, G; Desvilettes, C; Bourdier, G; Debroas, D

    2004-07-01

    The bacterial populations of anoxic sediments in a eutrophic lake (Aydat, Puy-de-Dôme-France) were studied by phospholipid fatty acid analysis (PLFA) and also by culturing heterotrophic bacteria under strictly anaerobic conditions. The mean PLFA concentrations of prokaryotes and microeukaryotes were 5.7 +/- 2.9 mgC g(-1) DS and 9.6 +/- 6.7 mgC g(-1) DS, respectively. The analysis of bacterial PLFA markers was used to determine the dynamics of the Gram-positive and Gram-negative species of anaerobic bacteria, Clostridiae, and sulfate-reducing bacteria. Throughout the sampling period the concentrations of i15:0 (from 20 nmol g(-1) DS to 130 nmol g(-1) DS), markers of Gram-positive bacteria, were higher than those for Gram-negative bacteria. The dynamics of Clostridiae (Cy15:0) paralleled those of sulfate-reducing bacteria that were marked by i17:1omega7. Partial 16S rDNA sequencing and the physiological study of the various fermenting strains, whose abundance in the superficial sediment layer was 1.1 +/- 0.4 x 10(6) cells mL(-1), showed that all the isolates belonged to the Clostridiae and related taxa ( Lactosphaera pasteurii, Clostridium vincentii, C. butyricum, C. algidixylanolyticum, C. puniceum, C. lituseburense, and C. gasigenes). All the isolates were capable of metabolizing a wide range of organic substrates.

  10. Dynamic adaptive chemistry for turbulent flame simulations

    NASA Astrophysics Data System (ADS)

    Yang, Hongtao; Ren, Zhuyin; Lu, Tianfeng; Goldin, Graham M.

    2013-02-01

    The use of large chemical mechanisms in flame simulations is computationally expensive due to the large number of chemical species and the wide range of chemical time scales involved. This study investigates the use of dynamic adaptive chemistry (DAC) for efficient chemistry calculations in turbulent flame simulations. DAC is achieved through the directed relation graph (DRG) method, which is invoked for each computational fluid dynamics cell/particle to obtain a small skeletal mechanism that is valid for the local thermochemical condition. Consequently, during reaction fractional steps, one needs to solve a smaller set of ordinary differential equations governing chemical kinetics. Test calculations are performed in a partially-stirred reactor (PaSR) involving both methane/air premixed and non-premixed combustion with chemistry described by the 53-species GRI-Mech 3.0 mechanism and the 129-species USC-Mech II mechanism augmented with recently updated NO x pathways, respectively. Results show that, in the DAC approach, the DRG reduction threshold effectively controls the incurred errors in the predicted temperature and species concentrations. The computational saving achieved by DAC increases with the size of chemical kinetic mechanisms. For the PaSR simulations, DAC achieves a speedup factor of up to three for GRI-Mech 3.0 and up to six for USC-Mech II in simulation time, while at the same time maintaining good accuracy in temperature and species concentration predictions.

  11. A dynamic nitrogen budget model of a Pacific Northwest salt ...

    EPA Pesticide Factsheets

    The role of salt marshes as either nitrogen sinks or sources in relation to their adjacent estuaries has been a focus of ecosystem service research for many decades. The complex hydrology of these systems is driven by tides, upland surface runoff, precipitation, evapotranspiration, and groundwater inputs, all of which can vary significantly on timescales ranging from sub-daily to seasonal. Additionally, many of these hydrologic drivers may vary with a changing climate. Due to this temporal variation in hydrology, it is difficult to represent salt marsh nitrogen budgets as steady-state models. A dynamic nitrogen budget model that varies based on hydrologic conditions may more accurately describe the role of salt marshes in nitrogen cycling. In this study we aim to develop a hydrologic model that is coupled with a process-based nitrogen model to simulate nitrogen dynamics at multiple temporal scales. To construct and validate our model we will use hydrologic and nitrogen species data collected from 2010 to present, from a 1.8 hectare salt marsh in the Yaquina Estuary, OR, USA. Hydrologic data include water table levels at two transects, upland tributary flow, tidal channel stage and flow, and vertical hydraulic head gradients. Nitrogen pool data include concentrations of nitrate and ammonium in porewater, tidal channel water, and extracted from soil cores. Nitrogen flux data include denitrification rates, nitrogen concentrations in upland runoff, and tida

  12. H-division quarterly report, October--December 1977. [Lawrence Livermore Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-02-10

    The Theoretical EOS Group develops theoretical techniques for describing material properties under extreme conditions and constructs equation-of-state (EOS) tables for specific applications. Work this quarter concentrated on a Li equation of state, equation of state for equilibrium plasma, improved ion corrections to the Thomas--Fermi--Kirzhnitz theory, and theoretical estimates of high-pressure melting in metals. The Experimental Physics Group investigates properties of materials at extreme conditions of pressure and temperature, and develops new experimental techniques. Effort this quarter concerned the following: parabolic projectile distortion in the two-state light-gas gun, construction of a ballistic range for long-rod penetrators, thermodynamics and sound velocities inmore » liquid metals, isobaric expansion measurements in Pt, and calculation of the velocity--mass profile of a jet produced by a shaped charge. Code development was concentrated on the PELE code, a multimaterial, multiphase, explicit finite-difference Eulerian code for pool suppression dynamics of a hypothetical loss-of-coolant accident in a nuclear reactor. Activities of the Fluid Dynamics Group were directed toward development of a code to compute the equations of state and transport properties of liquid metals (e.g. Li) and partially ionized dense plasmas, jet stability in the Li reactor system, and the study and problem application of fluid dynamic turbulence theory. 19 figures, 5 tables. (RWR)« less

  13. Analysis of 14C-bearing compounds released by the corrosion of irradiated steel using accelerator mass spectrometry.

    PubMed

    Cvetković, B Z; Salazar, G; Kunz, D; Szidat, S; Wieland, E

    2018-06-25

    The combination of ion chromatography (IC) with accelerator mass spectrometry (AMS) was developed to determine the speciation of 14C-(radiocarbon) bearing organic compounds in the femto to pico molar concentration range. The development of this compound-specific radiocarbon analysis (CSRA) of carboxylic acids is reported and the application of the method on a leaching solution from neutron-irradiated steel is demonstrated. The background and the dynamic range of the AMS-based method were quantified. On using 14C-labelled standards, the measurements demonstrate the repeatability of the analytical method and the reproducible recovery of the main target carboxylic acids (i.e., acetate, formate, malonate, and oxalate). The detection limit was determined to be in the mid fmol 14C per L level while the dynamic range of the analytical method covers three orders of magnitude from the low fmol to the mid pmol 14C per L level. Cross contamination was found to be negligible during IC fractionation and was accounted for during eluate processing and 14C detection by AMS. The 14C-bearing carboxylates released from an irradiated steel nut into an alkaline leaching solution were analysed using the CSRA-based analytical method with the aim to check the applicability of the approach and develop appropriate sample preparation. The concentrations of 14C-bearing formate and acetate, the main organic corrosion products, were at a low pmol 14C per L level for convenient dimensions of the alkaline leaching experiment which demonstrates that compound-specific 14C AMS is an extremely sensitive analytical method for analysing 14C-bearing compounds. The content of total organic 14C in solution (TO14C) determined by the direct measurement of an aliquot of the leaching solution agrees well with the sum of the 14C concentrations of the individual carboxylates within the uncertainty of the data. Furthermore, the TO14C content is in good agreement with the calculated value using the corrosion rate determined from the 60Co release and the 14C inventory of the irradiated steel specimen.

  14. Intrinsically Disordered Titin PEVK as a Molecular Velcro: Salt-Bridge Dynamics and Elasticity

    NASA Astrophysics Data System (ADS)

    Forbes, Jeffrey; Tsai, Wanxia; Wittebort, Richard; Wang, Kuan

    2009-03-01

    Titin is a giant modular protein (3-4 MDa) found in the muscle sarcomere, where the intrinsically disordered and elastic PEVK segment plays a major role in the passive tension of skeletal and heart tissues. We have proposed that salt-bridges play a central role in the elasticity of PEVK. The 50 kDa engineered PEVK polyprotein shows well-resolved NMR spectra at all concentrations. From long-range NOE's, we observed stable K to E salt-bridges. Simulated annealing with NMR restraints yielded a manifold of structures for an exon 172 trimer. Steered molecular dynamics simulations were done to study how the manifold of salt-bridges evolves during the stretching experiment. Repeated SMD simulations at slow velocity (0.0005 nm/ps) showed force spectra consistent with experimental AFM force spectra of the polyprotein. SMD shows that salt-bridges occur even at high degrees of stretch and that these short range interactions are in integral part of the mechanical properties of PEVK. We propose that the long-range, non-stereospecific nature of electrostatic interactions provide a facile mechanism to tether and untether the flexible chains, which in turn affect elasticity as well as control the accessibility of protein-protein interaction to these nanogel-like proteins.

  15. Observations of Dynamic Strain Aging in Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Noebe, R. D.; Kaufman, M. J.

    1996-01-01

    Dynamic strain aging has been investigated at temperatures between 77 and 1100 K in eight polycrystalline NiAl alloys. The 0.2% offset yield stress and work hardening rates for these alloys generally decreased with increasing temperature. However, local plateaus or maxima were observed in conventional purity and carbon doped alloys at intermediate temperatures (600-900 K). This anomalous behavior was not observed in low interstitial high-purity, nitrogen doped, or in titanium doped materials. Low or negative strain rate sensitivities (SRS) were also observed in all eight alloys in this intermediate temperature range. Coincident with the occurrence of negative SRS was the occurrence of serrated flow in conventional purity alloys containing high concentrations of Si in addition to C. These phenomena have been attributed to dynamic strain aging (DSA). Chemical analysis of the alloys used in this study suggests that the main species causing strain aging in polycrystalline NiAl is C but indicate that residual Si impurities can enhance the strain aging effect.

  16. Dynamic modeling of reversible methanolysis of Jatropha curcas oil to biodiesel.

    PubMed

    Syam, Azhari M; Hamid, Hamidah A; Yunus, Robiah; Rashid, Umer

    2013-01-01

    Many kinetics studies on methanolysis assumed the reactions to be irreversible. The aim of the present work was to study the dynamic modeling of reversible methanolysis of Jatropha curcas oil (JCO) to biodiesel. The experimental data were collected under the optimal reaction conditions: molar ratio of methanol to JCO at 6 : 1, reaction temperature of 60°C, 60 min of reaction time, and 1% w/w of catalyst concentration. The dynamic modeling involved the derivation of differential equations for rates of three stepwise reactions. The simulation study was then performed on the resulting equations using MATLAB. The newly developed reversible models were fitted with various rate constants and compared with the experimental data for fitting purposes. In addition, analysis of variance was done statistically to evaluate the adequacy and quality of model parameters. The kinetics study revealed that the reverse reactions were significantly slower than forward reactions. The activation energies ranged from 6.5 to 44.4 KJ mol⁻¹.

  17. Dynamic Modeling of Reversible Methanolysis of Jatropha curcas Oil to Biodiesel

    PubMed Central

    Syam, Azhari M.; Hamid, Hamidah A.; Yunus, Robiah; Rashid, Umer

    2013-01-01

    Many kinetics studies on methanolysis assumed the reactions to be irreversible. The aim of the present work was to study the dynamic modeling of reversible methanolysis of Jatropha curcas oil (JCO) to biodiesel. The experimental data were collected under the optimal reaction conditions: molar ratio of methanol to JCO at 6 : 1, reaction temperature of 60°C, 60 min of reaction time, and 1% w/w of catalyst concentration. The dynamic modeling involved the derivation of differential equations for rates of three stepwise reactions. The simulation study was then performed on the resulting equations using MATLAB. The newly developed reversible models were fitted with various rate constants and compared with the experimental data for fitting purposes. In addition, analysis of variance was done statistically to evaluate the adequacy and quality of model parameters. The kinetics study revealed that the reverse reactions were significantly slower than forward reactions. The activation energies ranged from 6.5 to 44.4 KJ mol−1. PMID:24363616

  18. Dynamic Nuclear Polarization in Samarium Doped Lanthanum Magnesium Nitrate. Ph.D. Thesis - Va. Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.

    1971-01-01

    The dynamic nuclear polarization of hydrogen nuclei by the solid effect in single crystals of samarium doped lanthanum magnesium nitrate (Sm:LMN) was studied theoretically and experimentally. The equations of evolution governing the dynamic nuclear polarization by the solid effect were derived in detail using the spin temperature theory and the complete expression for the steady state enhancement of the nuclear polarization was calculated. Experimental enhancements of the proton polarization were obtained for eight crystals at 9.2 GHz and liquid helium temperatures. The samarium concentration ranged from 0.1 percent to 1.1 percent as determined by X-ray fluorescence. A peak enhancement of 181 was measured for a 1.1 percent Sm:LMN crystal at 3.0 K. The maximum enhancements extrapolated with the theory using the experimental data for peak enhancement versus microwave power and correcting for leakage, agree with the ideal enhancement (240 in this experiment) within experimental error for three of the crystals.

  19. Suppression of ciprofloxacin-induced resistant Pseudomonas aeruginosa in a dynamic kill curve system.

    PubMed

    Wu, Benjamin M; Sabarinath, Sreedharan N; Rand, Kenneth; Johnson, Judith; Derendorf, Hartmut

    2011-06-01

    Current dosing approaches for treating microbial infections ignore resistant subpopulations. A clinical isolate of Pseudomonas aeruginosa was cultured in a dynamic in vitro kill curve system designed to simulate the half-lives of drugs in order to evaluate the drug-microbial response relationship. The first dose of ciprofloxacin (CIP) uses a concentration equivalent to the unbound fraction of a 200mg clinical dose. A second dose of 200mg or 600 mg CIP, or ceftriaxone (CFX) or gentamicin (GEN) was administered at 12h. Dynamics of the minimum inhibitory concentration (MIC) were assessed using Etest strips before and throughout the CIP treatment period. In addition, the microbroth dilution method was used to evaluate drug susceptibility across a wide range of antibiotics using samples from before and after CIP exposure. A significant loss of CIP effects was observed at the second dose. Cross-resistance to many antibiotics (cefoxitin, cefuroxime, cefotetan, ampicillin and ertapenem) was observed. GEN, but not CFX or high-dose CIP, was sufficient to suppress the developed resistant subpopulation following the initial CIP exposure. The CIP MIC increased substantially from 0.13 μg/mL pre dose to 4 μg/mL at 12h after a CIP dose. In addition, aztreonam induced a similar resistance pattern as CIP, indicating that induction of resistance was not limited to fluoroquinolones. In conclusion, the in vitro dynamic kill curve system revealed that aminoglycosides, more than other classes of antibiotics, were effective against the CIP-induced resistant subpopulations. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  20. Role of Micro-Topographic Variability on the Distribution of Inorganic Soil-Nitrogen Age in Intensively Managed Landscape

    NASA Astrophysics Data System (ADS)

    Woo, Dong K.; Kumar, Praveen

    2017-10-01

    How does the variability of topography structure the spatial heterogeneity of nutrient dynamics? In particular, what role does micro-topographic depression play in the spatial and temporal dynamics of nitrate, ammonia, and ammonium? We explore these questions using the 3-D simulation of their joint dynamics of concentration and age. To explicitly resolve micro-topographic variability and its control on moisture, vegetation, and carbon-nitrogen dynamics, we use a high-resolution LiDAR data over an agricultural site under a corn-soybean rotation in the Intensively Managed landscapes Critical Zone Observatory in the U.S. Midwest. We utilize a hybrid CPU-GPU parallel computing architecture to reduce the computational cost associated with such high-resolution simulations. Our results show that in areas that present closed topographic depressions, relatively lower nitrate concentration and age are observed compared to elsewhere. The periodic ponding in depressions increases the downward flux of water that carries more dissolved nitrate to the deeper soil layer. However, the variability in the depressions is relatively higher as a result of the episodic ponding pattern. When aggregate efflux from the soil domain at the bottom of the soil is considered, we find a gradual decrease in the age on the rising limb of nitrate efflux and a gradual increase on the falling limb. In addition, the age of the nitrate efflux ranges from 4 to 7 years. These are significantly higher as compared to the ages associated with a nonreactive tracer indicating that they provide an inaccurate estimate of residence time of a reactive constituent through the soil column.

  1. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.

    PubMed

    Mereghetti, Paolo; Wade, Rebecca C

    2012-07-26

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.

  2. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  3. Dynamics of microemulsions bridged with hydrophobically end-capped star polymers studied by neutron spin-echo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, I., E-mail: ingo.hoffmann@tu-berlin.de; Institut Max von Laue-Paul Langevin; Malo de Molina, Paula

    2014-01-21

    The mesoscopic dynamical properties of oil-in-water microemulsions (MEs) bridged with telechelic polymers of different number of arms and with different lengths of hydrophobic stickers were studied with neutron spin-echo (NSE) probing the dynamics in the size range of individual ME droplets. These results then were compared to those of dynamicic light scattering (DLS) which allow to investigate the dynamics on a much larger length scale. Studies were performed as a function of the polymer concentration, number of polymer arms, and length of the hydrophobic end-group. In general it is observed that the polymer bridging has a rather small influence onmore » the local dynamics, despite the fact that the polymer addition leads to an increase of viscosity by several orders of magnitude. In contrast to results from rheology and DLS, where the dynamics on much larger length and time scales are observed, NSE shows that the linear polymer is more efficient in arresting the motion of individual ME droplets. This finding can be explained by a simple simulation, merely by the fact that the interconnection of droplets becomes more efficient with a decreasing number of arms. This means that the dynamics observed on the short and on the longer length scale depend in an opposite way on the number of arms and hydrophobic stickers.« less

  4. The Determination of Metals in Sediment Pore Waters and in 1N HCl-Extracted Sediments by ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brumbaugh, W.G.; Schmitt, C.J.

    1997-01-01

    Concentrations of metals in sediment interstitial water (pore water) and those extractable from sediment with weak acids can provide important information about the bioavailability and toxicological effects of such contaminants. The highly variable nature of metal concentrations in these matrices requires instrumentation with the detection limit capability of graphite furnace atomic absorption and the wide dynamic linear range capability of ICP-OES. These criteria are satisfied with ICP-MS instrumentation. We investigated the performance of ICP-MS in the determination of certain metals from these matrices. The results for three metals were compared to those determined by graphite furnace atomic absorption spectroscopy. It was concluded that ICP-MS was an excellent instrumental approach for the determination of metals in these matrices.

  5. Starbursts and Wispy Drops : Surfactants Spreading on Gel Substrates

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Daniels, Karen; Behringer, Robert

    2005-11-01

    We report a phase diagram for a novel instability seen in drops of nonionic surfactant solution (Triton X-305) spreading on viscoelastic agar gel substrate . This system allows us to examine the effect of varying the effective fluidity/stiffness of aqueous substrates. The morphology is strongly affected by the substrate fluidity, ranging from spreading starbursts of arms on weak gels, to wispy drops on intermediate strength gels, to circular drops on stiff gels. We analyze the dynamics of spreading in the starburst phase, where the arm length grows as t ^3/4 at early times, independent of the gel strength and surfactant concentration. The number of arms is proportional to the surfactant concentration and inversely proportional to the gel strength. Ongoing work is exploring the effects of changing the drop volume.

  6. Determination of Diffusion Parameters of CO2 Through Microporous PTFE Using a Potentiometric Method

    NASA Astrophysics Data System (ADS)

    Tarsiche, I.; Ciurchea, D.

    Dk values at the diffusion of CO2 through microporous PTFE of 1 to 7 × 10- 7 cm2 s- 1 in the concentration range from 4 × 10- 4 to 0.22 g/l CO2 are determined using a simple, fast and reliable potentiometric method. The method is based on the least-squares fitting of the potential versus time response of a self made CO2 sensitive Severinghaus type sensor with PTFE as a gas-permeable membrane. The obtained results are in good agreement with other reported literature data, both experimental or calculated ones using molecular dynamics simulations. The proposed technique is very sensitive especially at low concentrations of gas and may be used for the study of other polymeric membranes too.

  7. Does anthropogenic nitrogen enrichment increase organic nitrogen concentrations in runoff from forested and human-dominated watersheds?

    USGS Publications Warehouse

    Pellerin, B.A.; Kaushal, S.S.; McDowell, W.H.

    2006-01-01

    Although the effects of anthropogenic nitrogen (N) inputs on the dynamics of inorganic N in watersheds have been studied extensively, "the influence of N enrichment on organic N loss" is not as well understood. We compiled and synthesized data on surface water N concentrations from 348 forested and human-dominated watersheds with a range of N loads (from less than 100 to 7,100 kg N km-2 y-1) to evaluate the effects of N loading via atmospheric deposition, fertilization, and wastewater on dissolved organic N (DON) concentrations. Our results indicate that, on average, DON accounts for half of the total dissolved N (TDN) concentrations from forested watersheds, but it accounts for a smaller fraction of TDN in runoff from urban and agricultural watersheds with higher N loading. A significant but weak correlation (r 2 = 0.06) suggests that N loading has little influence on DON concentrations in forested watersheds. This result contrasts with observations from some plot-scale N fertilization studies and suggests that variability in watershed characteristics and climate among forested watersheds may be a more important control on DON losses than N loading from atmospheric sources. Mean DON concentrations were positively correlated, however, with N load across the entire land-use gradient (r 2 = 0.37, P < 0.01), with the highest concentrations found in agricultural and urban watersheds. We hypothesize that both direct contributions of DON from wastewater and agricultural amendments and indirect transformations of inorganic N to organic N represent important sources of DON to surface waters in human-dominated watersheds. We conclude that DON is an important component of N loss in surface waters draining forested and human-dominated watersheds and suggest several research priorities that may be useful in elucidating the role of N enrichment in watershed DON dynamics. ?? 2006 Springer Science+Business Media, Inc.

  8. From Solvent-Free to Dilute Electrolytes: Essential Components for a Continuum Theory.

    PubMed

    Gavish, Nir; Elad, Doron; Yochelis, Arik

    2018-01-04

    The increasing number of experimental observations on highly concentrated electrolytes and ionic liquids show qualitative features that are distinct from dilute or moderately concentrated electrolytes, such as self-assembly, multiple-time relaxation, and underscreening, which all impact the emergence of fluid/solid interfaces, and the transport in these systems. Because these phenomena are not captured by existing mean-field models of electrolytes, there is a paramount need for a continuum framework for highly concentrated electrolytes and ionic liquid mixtures. In this work, we present a self-consistent spatiotemporal framework for a ternary composition that comprises ions and solvent employing a free energy that consists of short- and long-range interactions, along with an energy dissipation mechanism obtained by Onsager's relations. We show that the model can describe multiple bulk and interfacial morphologies at steady-state. Thus, the dynamic processes in the emergence of distinct morphologies become equally as important as the interactions that are specified by the free energy. The model equations not only provide insights into transport mechanisms beyond the Stokes-Einstein-Smoluchowski relations but also enable qualitative recovery of three distinct regions in the full range of the nonmonotonic electrical screening length that has been recently observed in experiments in which organic solvent is used to dilute ionic liquids.

  9. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.

    PubMed

    Kubis, Christoph; Sawall, Mathias; Block, Axel; Neymeyr, Klaus; Ludwig, Ralf; Börner, Armin; Selent, Detlef

    2014-09-08

    The influence of carbon monoxide concentration on the kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a phosphite-modified rhodium catalyst has been studied for the pressure range p(CO)=0.20-3.83 MPa. Highly resolved time-dependent concentration profiles of the organometallic intermediates were derived from IR spectroscopic data collected in situ for the entire olefin-conversion range. The dynamics of the catalyst and organic components are described by enzyme-type kinetics with competitive and uncompetitive inhibition reactions involving carbon monoxide taken into account. Saturation of the alkyl-rhodium intermediates with carbon monoxide as a cosubstrate occurs between 1.5 and 2 MPa of carbon monoxide pressure, which brings about a convergence of aldehyde regioselectivity. Hydrogenolysis of the acyl intermediate is fast at 30 °C and low pressure of p(CO)=0.2 MPa, but is of minus first order with respect to the solution concentration of carbon monoxide. Resting 18-electron hydrido and acyl complexes that correspond to early and late rate-determining states, respectively, coexist as long as the conversion of the substrate is not complete. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton.

    PubMed Central

    Clark, D R; Flynn, K J

    2000-01-01

    A range of marine phytoplankton was grown in closed systems in order to investigate the kinetics of dissolved inorganic carbon (DIC) use and the influence of the nitrogen source under conditions of constant pH. The kinetics of DIC use could be described by a rectangular hyperbolic curve, yielding estimations of KG(DIC) (the half saturation constant for carbon-specific growth, i.e. C mu) and mu max (the theoretical maximum C mu). All species attained a KG(DIC) within the range of 30-750 microM DIC. For most species, NH4+ use enabled growth with a lower KG(DIC) and/or, for two species, an increase in mu max. At DIC concentrations of > 1.6 mM, C mu was > 90% saturated for all species relative to the rate at the natural seawater DIC concentration of 2.0 mM. The results suggest that neither the rate nor the extent of primary productivity will be significantly limited by the DIC in the quasi-steady-state conditions associated with oligotrophic oceans. The method needs to be applied in the conditions associated with dynamic coastal (eutrophic) systems for clarification of a potential DIC rate limitation where cells may grow to higher densities and under variable pH and nitrogen supply. PMID:10874743

  11. Design of the NDUV detection circuit for the NO concentration of the vehicle exhaust emissions

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhang, Yujun; He, Ying; You, Kun; Gao, Yanwei; Chen, Chen; Liu, Guohua; He, Chungui; Lu, Yibing; Liu, Wenqing

    2016-10-01

    With the increasing number of vehicles, the harm from NO to the environment becomes more and more prominent. So the monitoring of the NO concentration of the vehicle exhaust emissions is very important to assess the emission levels. In this paper, the NO detection system designing for vehicle exhaust emissions based on the non-dispersive ultraviolet principle (NDUV) has been researched. The technical indexes of the two-way modulation UV signal detection circuit are discussed in detail. And then a precision detection circuit is designed, which is composed of a trans-impedance amplifier and a lock-in amplifier, with which the output of the UV photoelectric detector can be amplified to a suitable voltage range, and the DC noise of the pre-stage amplifier is effectively removed by the lock-in amplifier. An experimental system was set up to test the designed circuit. To ensure the consistency of the two channels, the method of exchange calibration was adopted in the test. It's drawn that the designed circuit is of high SNR, measuring accuracy and a large dynamic range from the test results. The NO concentration detection limit of vehicle emissions can reach 1ppm, and the detection precision is +/-15ppm.

  12. Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 μm laser absorption sensor

    NASA Astrophysics Data System (ADS)

    Chao, Xing; Jeffries, Jay B.; Hanson, Ronald K.

    2013-03-01

    A real-time, in situ CO sensor using 2.3 μm DFB diode laser absorption, with calibration-free wavelength-modulation-spectroscopy, was demonstrated for continuous monitoring in the boiler exhaust of a pulverized-coal-fired power plant up to temperatures of 700 K. The sensor was similar to a design demonstrated earlier in laboratory conditions, now refined to accommodate the harsh conditions of utility boilers. Measurements were performed across a 3 m path in the particulate-laden economizer exhaust of the coal-fired boiler. A 0.6 ppm detection limit with 1 s averaging was estimated from the results of a continuous 7-h-long measurement with varied excess air levels. The measured CO concentration exhibited expected inverse trends with the excess O2 concentration, which was varied between 1 and 3 %. Measured CO concentrations ranged between 6 and 200 ppm; evaluation of the data suggested a dynamic range from 6 to 10,000 ppm based on a minimum signal-to-noise ratio of ten and maximum absorbance of one. This field demonstration of a 2.3 μm laser absorption sensor for CO showed great potential for real-time combustion exhaust monitoring and control of practical combustion systems.

  13. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2014-01-01

    Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.

  14. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2010-11-01

    In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Growth-incompetent monomers of human calcitonin lead to a noncanonical direct relationship between peptide concentration and aggregation lag time.

    PubMed

    Kamgar-Parsi, Kian; Hong, Liu; Naito, Akira; Brooks, Charles L; Ramamoorthy, Ayyalusamy

    2017-09-08

    The role of the peptide hormone calcitonin in skeletal protection has led to its use as a therapeutic for osteoporosis. However, calcitonin aggregation into amyloid fibrils limits its therapeutic efficacy, necessitating a modification of calcitonin's aggregation kinetics. Here, we report a direct relationship between human calcitonin (hCT) concentration and aggregation lag time. This kinetic trend was contrary to the conventional understanding of amyloid aggregation and persisted over a range of aggregation conditions, as confirmed by thioflavin-T kinetics assays, CD spectroscopy, and transmission EM. Dynamic light scattering, 1 H NMR experiments, and seeded thioflavin-T assay results indicated that differences in initial peptide species contribute to this trend more than variations in the primary nucleus formation rate. On the basis of kinetics modeling results, we propose a mechanism whereby a structural conversion of hCT monomers is needed before incorporation into the fibril. Our kinetic mechanism recapitulates the experimentally observed relationship between peptide concentration and lag time and represents a novel mechanism in amyloid aggregation. Interestingly, hCT at low pH and salmon calcitonin (sCT) exhibited the canonical inverse relationship between concentration and lag time. Comparative studies of hCT and sCT with molecular dynamics simulations and CD indicated an increased α-helical structure in sCT and low-pH hCT monomers compared with neutral-pH hCT, suggesting that α-helical monomers represent a growth-competent species, whereas unstructured random coil monomers represent a growth-incompetent species. Our finding that initial monomer concentration is positively correlated with lag time in hCT aggregation could help inform future efforts for improving therapeutic applications of CT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Recovery of Agricultural Odors and Odorous Compounds from Polyvinyl Fluoride Film Bags

    PubMed Central

    Parker, David B.; Perschbacher-Buser, Zena L.; Cole, N. Andy; Koziel, Jacek A.

    2010-01-01

    Accurate sampling methods are necessary when quantifying odor and volatile organic compound emissions at agricultural facilities. The commonly accepted methodology in the U.S. has been to collect odor samples in polyvinyl fluoride bags (PVF, brand name Tedlar®) and, subsequently, analyze with human panelists using dynamic triangular forced-choice olfactometry. The purpose of this research was to simultaneously quantify and compare recoveries of odor and odorous compounds from both commercial and homemade PVF sampling bags. A standard gas mixture consisting of p-cresol (40 μg m−3) and seven volatile fatty acids: acetic (2,311 μg m−3), propionic (15,800 μg m−3), isobutyric (1,686 μg m−3), butyric (1,049 μg m−3), isovaleric (1,236 μg m−3), valeric (643 μg m−3), and hexanoic (2,158 μg m−3) was placed in the PVF bags at times of 1 h, 1 d, 2 d, 3 d, and 7 d prior to compound and odor concentration analyses. Compound concentrations were quantified using sorbent tubes and gas chromatography/mass spectrometry. Odor concentration, intensity, and hedonic tone were measured using a panel of trained human subjects. Compound recoveries ranged from 2 to 40% after 1 h and 0 to 14% after 7 d. Between 1 h and 7 d, odor concentrations increased by 45% in commercial bags, and decreased by 39% in homemade bags. Minimal changes were observed in intensity and hedonic tone over the same time period. These results suggest that PVF bags can bias individual compound concentrations and odor as measured by dynamic triangular forced-choice olfactometry. PMID:22163671

  17. Concentration/time-dependent dissipation, partitioning and plant accumulation of hazardous current-used pesticides and 2-hydroxyatrazine in sand and soil.

    PubMed

    Neuwirthová, Natália; Bílková, Zuzana; Vašíčková, Jana; Hofman, Jakub; Bielská, Lucie

    2018-07-01

    The dissipation, partitioning dynamics and biouptake was measured for selected hazardous current-used pesticides (conazole fungicides: epoxiconazole, flusilazole, tebuconazole; prochloraz, chlorpyrifos, pendimethalin) and for a transformation product (2-hydroxyatrazine) in agricultural soil and quartz sand as representatives of a real and a worst-case scenario. Dissipation, uptake to Lactuca sativa and the freely dissolved concentration along with the organic carbon-normalized sorption coefficients (K oc ) were determined on days 12, 40, and 90 following the application of compounds at three fortification levels (0.1-1.0-10 mg/kg). Conazole fungicides showed similar dissipation patterns and were more persistent in soil than prochloraz, chlorpyrifos and pendimethalin. 2-Hydroxyatrazine showed a concentration-depended decrease in persistency in soil. Lettuce roots were shown to accumulate higher amounts than shoots where the extent of root uptake was driven by compound partitioning. This was evidenced by the ability of freely dissolved concentration (C free ) to reliably (r 2  = 0.94) predict root uptake. Concentration in leaves did not exceed the maximum residue levels (MRLs) for lettuce, which was likely given by the low root-to-shoot translocation factors (TFs) of the tested compounds varying between 0.007 and 0.14. K oc values were in the range of literature values. Sorption to soil was higher than to sand for all compounds, yet following the K oc dynamics compounds did not appear to be sequestered in soil with increasing residence time. From these results, it follows that the tested compounds may persist in soil but since they did not accumulate in lettuce above MRLs, contamination of the food web is unlikely. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Determining size-specific emission factors for environmental tobacco smoke particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured everymore » minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.« less

  19. Excess protons in water-acetone mixtures. II. A conductivity study.

    PubMed

    Semino, Rocío; Longinotti, M Paula

    2013-10-28

    In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion.

  20. Temporal Variations in the Dynamics of Potentially Microcystin-Producing Strains in a Bloom-Forming Planktothrix agardhii (Cyanobacterium) Population▿ †

    PubMed Central

    Briand, Enora; Gugger, Muriel; François, Jean-Christophe; Bernard, Cécile; Humbert, Jean-François; Quiblier, Catherine

    2008-01-01

    The concentration of microcystins (MCs) produced during blooms depends on variations in both the proportion of strains containing the genes involved in MC production and the MC cell quota (the ratio between the MC concentration and the density of cells with the mcyA genotype) for toxic strains. In order to assess the dynamics of MC-producing and non-MC-producing strains and to identify the impact of environmental factors on the relative proportions of these two subpopulations, we performed a 2-year survey of a perennial bloom of Planktothrix agardhii (cyanobacteria). Applying quantitative real-time PCR to the mcyA and phycocyanin genes, we found that the proportion of cells with the mcyA genotype varied considerably over time (ranging from 30 to 80% of the population). The changes in the proportion of cells with the mcyA genotype appeared to be inversely correlated to changes in the density of P. agardhii cells and also, to a lesser extent, to the availability of certain nutrients and the abundance of cladocerans. Among toxic cells, the MC cell quota varied throughout the survey. However, a negative correlation between the MC cell quota and the mcyA cell number during two short periods characterized by marked changes in the cyanobacterial biomass was found. Finally, only 54% of the variation in the MC concentrations measured in the lake can be explained by the dynamics of the density of cells with the MC producer genotype, suggesting that this measurement is not a satisfactory method for use in monitoring programs intended to predict the toxic risk associated with cyanobacterial proliferation. PMID:18441113

  1. Sorption of tetracycline antibiotics on hyper-crosslinked polystyrene from aqueous and aqueous-organic media

    NASA Astrophysics Data System (ADS)

    Udalova, A. Yu.; Dmitrienko, S. G.; Apyari, V. V.

    2015-06-01

    The sorption of tetracycline, oxytetracycline, chlortetracycline, and doxycycline on hyper-cross-linked polystyrene from aqueous and aqueous-organic solutions is studied under static and dynamic conditions in order to extend the range of the sorbents suitable for sorption isolation and the preconcentration of tetracycline antibiotics. Features of tetracycline sorption depending on the acidity of a solution and the nature and concentration of the compounds are explained. It is shown that hyper-crosslinked polystyrene can be used for the group sorption preconcentration of these compounds.

  2. Quantification of Carbohydrates and Related Materials Using Sodium Ion Adducts Produced by Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Moon, Jeong Hee; Lee, Seong Hoon; Kim, Myung Soo

    2016-11-01

    The utility of sodium ion adducts produced by matrix-assisted laser desorption ionization for the quantification of analytes with multiple oxygen atoms was evaluated. Uses of homogeneous solid samples and temperature control allowed the acquisition of reproducible spectra. The method resulted in a direct proportionality between the ion abundance ratio I([A + Na]+)/I([M + Na]+) and the analyte concentration, which could be used as a calibration curve. This was demonstrated for carbohydrates, glycans, and polyether diols with dynamic range exceeding three orders of magnitude.

  3. Advanced ballistic range technology

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1993-01-01

    Experimental interferograms, schlieren, and shadowgraphs are used for quantitative and qualitative flow-field studies. These images are created by passing light through a flow field, and the recorded intensity patterns are functions of the phase shift and angular deflection of the light. As part of the grant NCC2-583, techniques and software have been developed for obtaining phase shifts from finite-fringe interferograms and for constructing optical images from Computational Fluid Dynamics (CFD) solutions. During the period from 1 Nov. 1992 - 30 Jun. 1993, research efforts have been concentrated in improving these techniques.

  4. Sediment Equilibrium and Diffusive Fluxes in Relation to Phosphorus Dynamics in the Turbid Minnesota River

    DTIC Science & Technology

    2009-01-01

    extractable P and K in a sandy clay loam soil under continuous corn ( Zea mays L .). Can J Soil Sci 75:361-367. Zhang, T. Q., A. F. MacKenzie, B. C...diffusive P flux from deposited sediment stored in river channels may also play a role in soluble P control. Ranges in equilibrium partitioning between...largest plants in the State of Minnesota, discharge (average discharge = 1.8 m3 s-1) at effluent P concentrations of 1.5 mg L -1 or less. A 538-megawatt

  5. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE PAGES

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou; ...

    2017-06-06

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  6. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  7. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone.

    PubMed

    Zhu, Jianting; Sun, Dongmin

    2016-09-01

    Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The effects of high concentrations of ionic liquid on GB1 protein structure and dynamics probed by high-resolution magic-angle-spinning NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Lisa; Gjersing, Erica; Follett, Shelby E.

    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid-protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6-3.5 M, whichmore » corresponds to 10-60% v/v). Interactions between GB1 and [C 4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4-mim]Br were assigned using 3D methods under HR-MAS conditions. Furthermore, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid-protein interactions.« less

  9. [Application of Brownian dynamics to the description of transmembrane ion flow as exemplified by the chloride channel of glycine receptor].

    PubMed

    Boronovskiĭ, S E; Nartsissov, Ia R

    2009-01-01

    Using the Brownian dynamics of the movement of hydrated ion in a viscous water solution, a mathematical model has been built, which describes the transport of charged particles through a single protein pore in a lipid membrane. The dependences of transmembrane ion currents on ion concentrations in solution have been obtained. It was shown that, if the geometry of a membrane pore is identical to that of the inner part of the glycine receptor channel and there is no ion selectivity, then the values of both chloride and sodium currents are not greater than 0.5 pA at the physiological concentrations of these ions. If local charge heterogeneity caused by charged amino acid residues of transmembrane protein segments is included into the model calculations, the chloride current increases to about 3.7 pA, which exceeds more than seven times the value for sodium ions under the conditions of the complex channel geometry in the range of physiological concentrations of ions in the solution. The model takes changes in the density of charge distribution both inside the channel and near the protein surface into account. The alteration of pore geometry can be also considered as a parameter at the researcher's option. Thus, the model appears as an effective tool for the description of transmembrane currents for other types of membrane channels.

  10. The effects of high concentrations of ionic liquid on GB1 protein structure and dynamics probed by high-resolution magic-angle-spinning NMR spectroscopy

    DOE PAGES

    Warner, Lisa; Gjersing, Erica; Follett, Shelby E.; ...

    2016-08-11

    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid-protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6-3.5 M, whichmore » corresponds to 10-60% v/v). Interactions between GB1 and [C 4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4-mim]Br were assigned using 3D methods under HR-MAS conditions. Furthermore, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid-protein interactions.« less

  11. An integrated platform for biomolecule interaction analysis

    NASA Astrophysics Data System (ADS)

    Jan, Chia-Ming; Tsai, Pei-I.; Chou, Shin-Ting; Lee, Shu-Sheng; Lee, Chih-Kung

    2013-02-01

    We developed a new metrology platform which can detect real-time changes in both a phase-interrogation mode and intensity mode of a SPR (surface plasmon resonance). We integrated a SPR and ellipsometer to a biosensor chip platform to create a new biomolecular interaction measurement mechanism. We adopted a conductive ITO (indium-tinoxide) film to the bio-sensor platform chip to expand the dynamic range and improve measurement accuracy. The thickness of the conductive film and the suitable voltage constants were found to enhance performance. A circularly polarized ellipsometry configuration was incorporated into the newly developed platform to measure the label-free interactions of recombinant human C-reactive protein (CRP) with immobilized biomolecule target monoclonal human CRP antibody at various concentrations. CRP was chosen as it is a cardiovascular risk biomarker and is an acute phase reactant as well as a specific prognostic indicator for inflammation. We found that the sensitivity of a phaseinterrogation SPR is predominantly dependent on the optimization of the sample incidence angle. The effect of the ITO layer effective index under DC and AC effects as well as an optimal modulation were experimentally performed and discussed. Our experimental results showed that the modulated dynamic range for phase detection was 10E-2 RIU based on a current effect and 10E-4 RIU based on a potential effect of which a 0.55 (°/RIU) measurement was found by angular-interrogation. The performance of our newly developed metrology platform was characterized to have a higher sensitivity and less dynamic range when compared to a traditional full-field measurement system.

  12. Reconstruction of fluorophore concentration variation in dynamic fluorescence molecular tomography.

    PubMed

    Zhang, Xuanxuan; Liu, Fei; Zuo, Simin; Shi, Junwei; Zhang, Guanglei; Bai, Jing; Luo, Jianwen

    2015-01-01

    Dynamic fluorescence molecular tomography (DFMT) is a potential approach for drug delivery, tumor detection, diagnosis, and staging. The purpose of DFMT is to quantify the changes of fluorescent agents in the bodies, which offer important information about the underlying physiological processes. However, the conventional method requires that the fluorophore concentrations to be reconstructed are stationary during the data collection period. As thus, it cannot offer the dynamic information of fluorophore concentration variation within the data collection period. In this paper, a method is proposed to reconstruct the fluorophore concentration variation instead of the fluorophore concentration through a linear approximation. The fluorophore concentration variation rate is introduced by the linear approximation as a new unknown term to be reconstructed and is used to obtain the time courses of fluorophore concentration. Simulation and phantom studies are performed to validate the proposed method. The results show that the method is able to reconstruct the fluorophore concentration variation rates and the time courses of fluorophore concentration with relative errors less than 0.0218.

  13. Assessing dissolved carbon transport and transformation along an estuarine river with stable isotope analyses

    NASA Astrophysics Data System (ADS)

    He, Songjie; Xu, Y. Jun

    2017-10-01

    Estuaries play an important role in the dynamics of dissolved carbon from rivers to coastal oceans. However, our knowledge of dissolved carbon transport and transformation in mixing zones of the world's coastal rivers is still limited. This study aims to determine how dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations and stable isotopes (δ13CDIC and δ13CDOC) change along an 88-km long estuarine river, the Calcasieu River in Louisiana, southern USA, with salinity ranging from 0.02 to 21.92. The study is expected to elucidate which processes most likely control carbon dynamics in a freshwater-saltwater mixing system, and to evaluate the net metabolism of this estuary. Between May 2015 and February 2016, water samples were collected and in-situ measurements on ambient water conditions were performed during five field trips at six sites from upstream to downstream of the Calcasieu River, which enters the Northern Gulf of Mexico (NGOM). The DIC concentration and δ13CDIC increased rapidly with increasing salinity in the mixing zone. The average DIC concentration and δ13CDIC at the site closest to the NGOM (site 6) were 1.31 mM and -6.34‰, respectively, much higher than those at the site furthest upstream (site 1, 0.42 mM and -20.83‰). The DIC concentrations appeared to be largely influenced by conservative mixing, while high water temperature may have played a role in deviating DIC concentration from the conservative line due likely to increased respiration and decomposition. The δ13CDIC values were close to those suggested by the conservative mixing model for May, June and November, but lower than those for July and February, suggesting that an estuarine river can fluctuate from a balanced to a heterotrophic system (i.e., production/respiration (P/R) < 1) seasonally. Unlike the DIC longitudinal trend, the DOC concentrations in the river estuary decreased from upstream to downstream, but to a much smaller degree. The DOC concentrations consistently showed a deviation from those suggested by the conservative mixing model, which may have been a consequence of in-stream photosynthesis. This river estuary consistently showed depleted δ13CDOC values (i.e., from -30.56‰ to -25.92‰), suggesting that the DOC source in the mixing zone was highly terrestrially derived. However, in this relatively small isotopic range, δ13CDOC alone has limitations in differentiating carbon produced by aquatic photosynthesis from carbon produced by terrestrial photosynthesis in a river-ocean continuum.

  14. High dynamic range subjective testing

    NASA Astrophysics Data System (ADS)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  15. Determination of glycated albumin using boronic acid-derived agarose beads on paper-based devices.

    PubMed

    Ko, Euna; Tran, Van-Khue; Geng, Yanfang; Kim, Min Ki; Jin, Ga Hyun; Son, Seong Eun; Hur, Won; Seong, Gi Hun

    2018-01-01

    Self-monitoring of glycated albumin (GA), a useful glycemic marker, is an established method for preventing diabetes complications. Here, the paper-based lateral flow assay devices were developed for the sensitive detection of GA and the total human serum albumin (tHSA) in self-monitoring diabetes patients. Boronic acid-derived agarose beads were packed into a hole on a lateral flow channel. These well-coordinated agarose beads were used to capture GA through specific cis-diol interactions and to enhance the colorimetric signals by concentrating the target molecules. The devices exhibited large dynamic ranges (from 10  μ g/ml to 10 mg/ml for GA and from 10 mg/ml to 50 mg/ml for tHSA) and low detection limits (7.1  μ g/ml for GA and 4.7 mg/ml for tHSA), which cover the range of GA concentration in healthy plasma, which is 0.21-1.65 mg/ml (0.6%-3%). In determining the unknown GA concentrations in two commercial human plasma samples, the relative percentage difference between the values found by a standard ELISA kit and those found by our developed devices was 2.62% and 8.80%, which are within an acceptable range. The measurements of GA and tHSA were completed within 20 min for the total sample-to-answer diagnosis, fulfilling the demand for rapid analysis. Furthermore, the recovery values ranged from 99.4% to 110% in device accuracy tests. These results indicate that the developed paper-based device with boronic acid-derived agarose beads is a promising platform for GA and tHSA detection as applied to self-monitoring systems.

  16. Reproductive performance in East Greenland polar bears (Ursus maritimus) may be affected by organohalogen contaminants as shown by physiologically-based pharmacokinetic (PBPK) modelling.

    PubMed

    Sonne, Christian; Gustavson, Kim; Rigét, Frank F; Dietz, Rune; Birkved, Morten; Letcher, Robert J; Bossi, Rossana; Vorkamp, Katrin; Born, Erik W; Petersen, Gitte

    2009-12-01

    Polar bears (Ursus maritimus) feed mainly on ringed seal (Phoca hispida) and consume large quantities of blubber and consequently have one of the highest tissue concentrations of organohalogen contaminants (OHCs) worldwide. In East Greenland, studies of OHC time trends and organ system health effects, including reproductive, were conducted during 1990-2006. However, it has been difficult to determine the nature of the effects induced by OHC exposures on wild caught polar bears using body burden data and associated changes in reproductive organs and systems. We therefore conducted a risk quotient (RQ) evaluation to more quantitatively evaluate the effect risk on reproduction (embryotoxicity and teratogenicity) based on the critical body residue (CBR) concept and using a physiologically-based pharmacokinetic (PBPK) model. We applied modelling approaches to PCBs, p,p'-DDE, dieldrin, oxychlordane, HCHs, HCB, PBDEs and PFOS in East Greenland polar bears based on known OHC pharmacokinetics and dynamics in laboratory rats (Rattus rattus). The results showed that subcutaneous adipose tissue concentrations of dieldrin (range: 79-1271 ng g(-1) lw) and PCBs (range: 4128-53,923 ng g(-1) lw) reported in bears in the year 1990 were in the range to elicit possible adverse health effects on reproduction in polar bears in East Greenland (all RQs > or = 1). Similar results were found for PCBs (range: 1928-17,376 ng g(-1) lw) and PFOS (range: 104-2840 ng g(-1) ww) in the year 2000 and for dieldrin (range: 43-640 ng g(-1) lw), PCBs (range: 3491-13,243 ng g(-1) lw) and PFOS (range: 1332-6160 ng g(-1) ww) in the year 2006. The concentrations of oxychlordane, DDTs, HCB and HCHs in polar bears resulted in RQs<1 and thus appear less likely to be linked to reproductive effects. Furthermore, sumRQs above 1 suggested risk for OHC additive effects. Thus, previous suggestions of possible adverse health effects in polar bears correlated to OHC exposure are supported by the present study. This study also indicates that PBPK models may be a supportive tool in the evaluation of possible OHC-mediated health effects for Arctic wildlife.

  17. Using ToxCast™ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure

    PubMed Central

    Shah, Imran; Setzer, R. Woodrow; Jack, John; Houck, Keith A.; Judson, Richard S.; Knudsen, Thomas B.; Liu, Jie; Martin, Matthew T.; Reif, David M.; Richard, Ann M.; Thomas, Russell S.; Crofton, Kevin M.; Dix, David J.; Kavlock, Robert J.

    2015-01-01

    Background: High-content imaging (HCI) allows simultaneous measurement of multiple cellular phenotypic changes and is an important tool for evaluating the biological activity of chemicals. Objectives: Our goal was to analyze dynamic cellular changes using HCI to identify the “tipping point” at which the cells did not show recovery towards a normal phenotypic state. Methods: HCI was used to evaluate the effects of 967 chemicals (in concentrations ranging from 0.4 to 200 μM) on HepG2 cells over a 72-hr exposure period. The HCI end points included p53, c-Jun, histone H2A.x, α-tubulin, histone H3, alpha tubulin, mitochondrial membrane potential, mitochondrial mass, cell cycle arrest, nuclear size, and cell number. A computational model was developed to interpret HCI responses as cell-state trajectories. Results: Analysis of cell-state trajectories showed that 336 chemicals produced tipping points and that HepG2 cells were resilient to the effects of 334 chemicals up to the highest concentration (200 μM) and duration (72 hr) tested. Tipping points were identified as concentration-dependent transitions in system recovery, and the corresponding critical concentrations were generally between 5 and 15 times (25th and 75th percentiles, respectively) lower than the concentration that produced any significant effect on HepG2 cells. The remaining 297 chemicals require more data before they can be placed in either of these categories. Conclusions: These findings show the utility of HCI data for reconstructing cell state trajectories and provide insight into the adaptation and resilience of in vitro cellular systems based on tipping points. Cellular tipping points could be used to define a point of departure for risk-based prioritization of environmental chemicals. Citation: Shah I, Setzer RW, Jack J, Houck KA, Judson RS, Knudsen TB, Liu J, Martin MT, Reif DM, Richard AM, Thomas RS, Crofton KM, Dix DJ, Kavlock RJ. 2016. Using ToxCast™ data to reconstruct dynamic cell state trajectories and estimate toxicological points of departure. Environ Health Perspect 124:910–919; http://dx.doi.org/10.1289/ehp.1409029 PMID:26473631

  18. Adsorption of β-casein-surfactant mixed layers at the air-water interface evaluated by interfacial rheology.

    PubMed

    Maestro, Armando; Kotsmar, Csaba; Javadi, Aliyar; Miller, Reinhard; Ortega, Francisco; Rubio, Ramón G

    2012-04-26

    This work presents a detailed study of the dilational viscoelastic moduli of the adsorption layers of the milk protein β-casein (BCS) and a surfactant at the liquid/air interface, over a broad frequency range. Two complementary techniques have been used: a drop profile tensiometry technique and an excited capillary wave method, ECW. Two different surfactants were studied: the nonionic dodecyldimethylphosphine oxide (C12DMPO) and the cationic dodecyltrimethylammonium bromide (DoTAB). The interfacial dilational elasticity and viscosity are very sensitive to the composition of protein-surfactant mixed adsorption layers at the air/water interface. Two different dynamic processes have been observed for the two systems studied, whose characteristic frequencies are close to 0.01 and 100 Hz. In both systems, the surface elasticity was found to show a maximum when plotted versus the surfactant concentration. However, at frequencies above 50 Hz the surface elasticity of BCS + C12DMPO is higher than the one of the aqueous BCS solution over most of the surfactant concentration range, whereas for the BCS + DoTAB it is smaller for high surfactant concentrations and higher at low concentrations. The BCS-surfactant interaction modifies the BCS random coil structure via electrostatic and/or hydrophobic interactions, leading to a competitive adsorption of the BCS-surfactant complexes with the free, unbound surfactant molecules. Increasing the surfactant concentration decreases the adsorbed proteins. However, the BCS molecules are rather strongly bound to the interface due to their large adsorption energy. The results have been fitted to the model proposed by C. Kotsmar et al. ( J. Phys. Chem. B 2009 , 113 , 103 ). Even though the model describes well the concentration dependence of the limiting elasticity, it does not properly describe its frequency dependence.

  19. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings

    NASA Astrophysics Data System (ADS)

    Su, Yu; Swan, James W.; Zia, Roseanna N.

    2017-03-01

    Accurate modeling of particle interactions arising from hydrodynamic, entropic, and other microscopic forces is essential to understanding and predicting particle motion and suspension behavior in complex and biological fluids. The long-range nature of hydrodynamic interactions can be particularly challenging to capture. In dilute dispersions, pair-level interactions are sufficient and can be modeled in detail by analytical relations derived by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [Phys. Fluids A 4, 16-29 (1992)]. In more concentrated dispersions, analytical modeling of many-body hydrodynamic interactions quickly becomes intractable, leading to the development of simplified models. These include mean-field approaches that smear out particle-scale structure and essentially assume that long-range hydrodynamic interactions are screened by crowding, as particle mobility decays at high concentrations. Toward the development of an accurate and simplified model for the hydrodynamic interactions in concentrated suspensions, we recently computed a set of effective pair of hydrodynamic functions coupling particle motion to a hydrodynamic force and torque at volume fractions up to 50% utilizing accelerated Stokesian dynamics and a fast stochastic sampling technique [Zia et al., J. Chem. Phys. 143, 224901 (2015)]. We showed that the hydrodynamic mobility in suspensions of colloidal spheres is not screened, and the power law decay of the hydrodynamic functions persists at all concentrations studied. In the present work, we extend these mobility functions to include the couplings of particle motion and straining flow to the hydrodynamic stresslet. The couplings computed in these two articles constitute a set of orthogonal coupling functions that can be utilized to compute equilibrium properties in suspensions at arbitrary concentration and are readily applied to solve many-body hydrodynamic interactions analytically.

  20. Carbon dioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO2 concentration variations.

    PubMed

    Cabello, Juan; Morales, Marcia; Revah, Sergio

    2017-04-15

    The extensive microalgae diversity offers considerable versatility for a wide range of biotechnological applications in environmental and production processes. Microalgal cultivation is based on CO 2 fixation via photosynthesis and, consequently, it is necessary to evaluate, in a short time and reliable way, the effect of the CO 2 gas concentration on the consumption rate and establish the tolerance range of different strains and the amount of inorganic carbon that can be incorporated into biomass in order to establish the potential for industrial scale application. Dynamic experiments allow calculating the short-term microalgal photosynthetic activity of strains in photobioreactors. In this paper, the effect of step-changes in CO 2 concentration fed to a 20L bubble column photobioreactor on the CO 2 consumption rate of Scenedesmus obtusiusculus was evaluated at different operation times. The highest apparent CO 2 consumption rate (336μmolm -2 s -1 and 5.6% of CO 2 ) was 6530mg CO2 g b -1 d -1 and it decreased to 222mg CO2 g b -1 d -1 when biomass concentration increased of 0.5 to 3.1g b L -1 and 5.6% of CO 2 was fed. For low CO 2 concentrations (<3.8%) the pH remained close to the optimal value (7.5 and 8). The CO 2 consumption rates show that S. obtusiusculus was not limited by CO 2 availability for concentrations above of 3.8%. The CO 2 mass balance showed that 90% of the C-CO 2 transferred was used for S. obtusiusculus growth. Copyright © 2017. Published by Elsevier B.V.

Top